Diffusers for LED-based lights

Information

  • Patent Grant
  • 9285084
  • Patent Number
    9,285,084
  • Date Filed
    Thursday, March 13, 2014
    10 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
An LED-based light assembly includes a plurality of LEDs and an elongate housing for the LEDs. The housing has an outer surface at least partially defined by a first lens. The assembly also includes a second lens. The second lens is removably attachable to the outer surface of the housing such that at least a portion of the second lens overlays the first lens in a spaced relationship. The assembly further includes at least one connector arranged at an end of the housing that configured for engagement with a socket of a fluorescent light fixture.
Description
TECHNICAL FIELD

This disclosure relates to light emitting diode (LED)-based lights for replacing conventional lights in standard light fixtures and more particularly to diffusers for such lights.


BACKGROUND

Fluorescent lights are widely used in a variety of locations, such as schools and office buildings. Although conventional fluorescent lights have certain advantages over, for example, incandescent lights, they also pose certain disadvantages including, inter alia, disposal problems due to the presence of toxic materials within the light.


LED-based lights designed as one-for-one replacements for fluorescent lights have appeared in recent years. LED-based lights have also been developed for use as replacements for incandescent bulbs.


SUMMARY

Disclosed herein are a system, method and apparatus for diffusing the light of an LED-based light that includes a lens by affixing a second lens to the LED-based light. In one aspect, an LED-based light assembly comprises a plurality of LEDs; an elongate housing for the LEDs, the housing having an outer surface at least partially defined by a first lens; a second lens, the second lens removably attachable to the outer surface of the housing such that at least a portion of the second lens overlays the first lens in a spaced relationship; and at least one connector arranged at an end of the housing, the connector configured for engagement with a socket of a fluorescent light fixture.


In another aspect, a method of modifying the light diffusion characteristics of an LED-based light with a plurality of LEDs, an elongate housing for the LEDs having an outer surface at least partially defined by a first lens, and at least one connector arranged at an end of the housing configured for engagement with a socket of a fluorescent light fixture comprises removably attaching a second lens to the outer surface of the housing, such that at least a portion of the second lens overlays the first lens in a spaced relationship.


In yet another aspect, an LED-based light assembly comprises a plurality of LEDs; an elongate housing for the LEDs, the housing having an outer surface at least partially defined by a first lens and defining a first groove on a first side of the lens and a second groove on an opposing side of the lens, with the first groove bordered by a first edge of the outer surface and the second groove bordered by a second edge of the outer surface; a second lens, the second lens having two opposing end portions and an interior surface extending between the two end portions, with first and second opposing pairs of spaced tabs projecting radially inwardly from the interior surface, wherein the second lens is resiliently flexible such that the second lens is configured to be arranged around the outer surface of the housing in at least one of: a first attachment position, where the first pair of spaced tabs is positioned in the first groove, the second pair of spaced tabs is positioned in the second groove, and at least a portion of the second lens overlays the first lens in a first spaced relationship, or a second attachment position, the first pair of spaced tabs is positioned on both sides of the first edge, the second pair of spaced tabs is positioned on both sides of the second edge, and at least a portion of the second lens overlays the first lens in a second spaced relationship different from the first spaced relationship; and at least one connector arranged at an end of the housing, the connector configured for engagement with a socket of a fluorescent light fixture.


Variations in these and other aspects of this disclosure will be described in additional detail hereafter.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages and other uses of the present system and method will become more apparent by referring to the following detailed description and drawings in which:



FIG. 1 is a perspective view of an example of an LED-based light;



FIG. 2 is a perspective assembly view of the LED-based light of FIG. 1 showing a housing including a lower portion and a lens, an LED circuit board, a power supply circuit board and a pair of end caps;



FIG. 3 is a cross-section of an example of a diffuser for the LED-based light in accordance with one disclosed implementation;



FIG. 4 is a perspective view of the LED-based light with the diffuser in accordance with FIG. 3;



FIGS. 5
a-h are cross-sectional views of different examples of diffusers for the LED-based light;



FIG. 6 is a cross-sectional view of the LED-based light;



FIG. 7. is a cross-sectional view of the LED-based light with a primary diffuser, showing light rays;



FIG. 8 is a cross-sectional view of the LED-based light with a secondary diffuser in a first position;



FIG. 9. is a cross-sectional view of the LED-based light with a secondary diffuser in a first position, showing light rays; and



FIG. 10 is a cross-sectional view of the LED-based light with a secondary diffuser in a second position.





DETAILED DESCRIPTION


FIGS. 1 and 2 illustrate an LED-based light 10 for replacing a conventional light in a standard light fixture. LED-based light 10 includes a housing 12 and has a pair of end caps 20 positioned at the ends of housing 12. An LED circuit board 30 including LEDs 34 and a power supply circuit board 32 are arranged within housing 12.


Housing 12 can generally define a single package sized for use in a standard fluorescent light fixture. In the illustrated example, the pair of end caps 20 is attached at opposing longitudinal ends of housing 12 for physically connecting LED-based light 10 to a light fixture. As shown, each end cap 20 carries an electrical connector 18 configured to physically connect to the light fixture. Electrical connectors 18 can be the sole physical connection between LED-based light 10 and the light fixture. One example of a light fixture for the LED-based light 10 is a troffer designed to accept conventional fluorescent lights, such as T5, T8 or T12 fluorescent tube lights. These and other light fixtures for LED-based light 10 can include one or more sockets adapted for physical engagement with electrical connectors 18. Each of the illustrated electrical connectors 18 is a bi-pin connector including two pins 22. Bi-pin electrical connectors 18 are compatible with many fluorescent light fixtures and sockets, although other types of electrical connectors can be used, such as a single pin connector or a screw type connector.


The light fixture for LED-based light 10 can connect to a power source, and at least one of electrical connectors 18 can additionally electrically connect LED-based light 10 to the light fixture to provide power to LED-based light 10. In this example, each electrical connector 18 can include two pins 22, although two of the total four pins can be “dummy pins” that provide physical but not electrical connection to the light fixture. The light fixture can optionally include a ballast for electrical connection between the power source and LED-based light 10.


While the illustrated housing 12 is cylindrical, a housing having a square, triangular, polygonal, or other cross-sectional shape can alternatively be used. Similarly, while the illustrated housing 12 is linear, housings having an alternative shape, e.g., a U-shape or a circular shape can alternatively be used. LED-based light 10 can have any suitable length. For example, LED-based light 10 may be approximately 48″ long, and housing 12 can have a 0.625″, 1.0″ or 1.5″ diameter for engagement with a standard fluorescent light fixture.


Housing 12 can be formed by attaching multiple individual parts, not all of which need be light transmitting. For example, the illustrated example of housing 12 is formed in part by attaching a lens 14 at least partially defining housing 12 to an opaque lower portion 16. The illustrated housing 12 has a generally bipartite configuration defining a first cavity 50 between lower portion 16 and lens 14 sized and shaped for housing LED circuit board 30 and a second cavity 60 defined by lower portion 16 sized and shaped for housing power supply circuit board 32.


As shown, the lower portion 16 defines an LED mounting surface 52 for supporting LED circuit board 30. LED mounting surface 52 can be substantially flat, so as to support a flat underside of LED circuit board 30 opposite the LEDs 34. After attachment of lens 14 to lower portion 16 during assembly of LED-based light 10, LED circuit board 30 is positioned within first cavity 50 and adjacent lens 14, such that LEDs 34 of LED circuit board 30 are oriented to illuminate lens 14.


The illustrated lower portion 16 has a tubular construction to define second cavity 60, although lower portion 16 could be otherwise configured to define a cavity configured for housing power supply circuit board 32. LED-based light 10 can include features for supporting power supply circuit board 32 within second cavity 60. For example, as shown, an end cap 20 may include channels 62 configured to slidably receive outboard portions of an end 32a of power supply circuit board 32. It will be understood that channels 62 are provided as a non-limiting example and that power supply circuit board 32 may be otherwise and/or additionally supported within second cavity 60.


Lower portion 16 may be constructed from a thermally conductive material and configured as a heat sink to enhance dissipation of heat generated by LEDs 34 during operation to an ambient environment surrounding LED-based light 10. In exemplary LED-based light 10, an LED mounting surface 52 of lower portion 16 is thermally coupled to LEDs 34 through LED circuit board 30, and the remainder of lower portion 16 defines a heat transfer path from LED mounting surface 52 to the ambient environment.


Lower portion 16 and lens 14 may each include complementary structures permitting for attachment of lens 14 to lower portion 16 to define first cavity 50. For example, as shown, lower portion 16 may include a pair of hooked projections 54 for retaining a corresponding pair of projections 56 of lens 14. Projections 56 of lens 14 can be slidably engaged with hooked projections 54 of lower portion 16, or can be snap fit to hooked projections 54. Hooked projections 54 can be formed integrally with lower portion 16 by, for example, extruding lower portion 16 to include hooked projections 54. Similarly, projections 56 can be formed integrally with lens 14 by, for example, extruding lens 14 to include projections 56. Hooked projections 54 and projections 56 can extend the longitudinal lengths of lower portion 16 and lens 14, respectively, although a number of discrete hooked projections 54 and/or projections 56 could be used to couple lens 14 to lower portion 16. Alternatively, lower portion 16 could be otherwise configured for attachment with lens 14. For example, lens 14 could be clipped, adhered, snap- or friction-fit, screwed or otherwise attached to lower portion 16.


Alternatively to the illustrated housing 12, housing 12 can include a light transmitting tube at least partially defined by lens 14. Lens 14 can be made from polycarbonate, acrylic, glass or other light transmitting material (i.e., lens 14 can be transparent or translucent). The term “lens” as used herein means a light transmitting structure, and not necessarily a structure for concentrating or diverging light.


LED-based light 10 can include features for distributing the light produced by LEDs 34 to, for example, emulate in full or in part the uniform light distribution of a conventional fluorescent light. For instance, lens 14 can be manufactured to include light diffusing structures, such as ridges, dots, bumps, dimples or other uneven surfaces formed on an interior or exterior of lens 14. The light diffusing structures can be formed integrally with lens 14, for example, by molding or extruding, or the structures can be formed in a separate manufacturing step such as surface roughening. Alternatively, the material from which lens 14 is formed can include light refracting particles. For example, lens 14 can be made from a composite, such as polycarbonate, with particles of a light refracting material interspersed in the polycarbonate. In addition to or as an alternative to these light diffusing structures, a light diffusing film can be applied to the exterior of lens 14 or placed in housing 12.


LED-based light 10 can include other features for distributing light produced by LEDs 34. For example, lens 14 can be manufactured with structures to collimate light produced by LEDs 34. The light collimating structures can be formed integrally with lens 14, for example, or can be formed in a separate manufacturing step. In addition to or as an alternative to manufacturing lens 14 to include light collimating structures, a light collimating film can be applied to the exterior of lens 14 or placed in housing 12.


In yet other embodiments, LEDs 34 can be over molded or otherwise encapsulated with light transmitting material configured to distribute light produced by LEDs 34. For example, the light transmitting material can be configured to diffuse, refract, collimate and/or otherwise distribute the light produced by LEDs 34. Over molded LEDs 34 can be used alone to achieve a desired light distribution for LED-based light 10, or can be implemented in combination with lens 14 and/or films described above.


The above described or other light distributing features can be implemented uniformly or non-uniformly along a length and/or circumference of the LED-based light 10. These features are provided as non-limiting examples, and in other embodiments, the LED-based light 10 may not include any light distributing features.


LED circuit board 30 can include at least one LED 34, a plurality of series-connected or parallel-connected LEDs 34, an array of LEDs 34 or any other arrangement of LEDs 34. Each of the illustrated LEDs 34 can include a single diode or multiple diodes, such as a package of diodes producing light that appears to an ordinary observer as coming from a single source. LEDs 34 can be surface-mount devices of a type available from Nichia, although other types of LEDs can alternatively be used. For example, LED-based light 10 can include high-brightness semiconductor LEDs, organic light emitting diodes (OLEDs), semiconductor dies that produce light in response to current, light emitting polymers, electro-luminescent strips (EL) or the like. LEDs 34 can emit white light. However, LEDs that emit blue light, ultra-violet light or other wavelengths of light can be used in place of or in combination with white light emitting LEDs 34.


The orientation, number and spacing of LEDs 34 can be a function of a length of LED-based light 10, a desired lumen output of LED-based light 10, the wattage of LEDs 34, a desired light distribution for LED-based light 10 and/or the viewing angle of LEDs 34.


LEDs 34 can be fixedly or variably oriented in LED-based light 10 for facing or partially facing an environment to be illuminated when LED-based light 10 is installed in a light fixture. Alternatively, LEDs 34 can be oriented to partially or fully face away from the environment to be illuminated. In this alternative example, LED-based light 10 and/or a light fixture for LED-based light 10 may include features for reflecting or otherwise redirecting the light produced by the LEDs into the environment to be illuminated.


For a 48″ LED-based light 10, the number of LEDs 34 may vary from about thirty to sixty such that LED-based light 10 outputs approximately 3,000 lumens. However, a different number of LEDs 34 can alternatively be used, and LED-based light 10 can output any other amount of lumens.


LEDs 34 can be arranged in a single longitudinally extending row along a central portion of LED circuit board 30 as shown, or can be arranged in a plurality of rows or arranged in groups. LEDs 34 can be spaced along LED circuit board 30 and arranged on LED circuit board 30 to substantially fill a space along a length of lens 14 between end caps 20 positioned at opposing longitudinal ends of housing 12. The spacing of LEDs 34 can be determined based on, for example, the light distribution of each LED 34 and the number of LEDs 34. The spacing of LEDs 34 can be chosen so that light output by LEDs 34 is uniform or non-uniform along a length of lens 14. In one implementation, one or more additional LEDs 34 can be located at one or both ends of LED-based light 10 so that an intensity of light output at lens 14 is relatively greater at the one or more ends of LED-based light 10. Alternatively, or in addition to spacing LEDs 34 as described above, LEDs 34 nearer one or both ends of LED-based light 10 can be configured to output relatively more light than the other LEDs 34. For instance, LEDs 34 nearer one or both ends of LED-based light 10 can have a higher light output capacity and/or can be provided with more power during operation.


Power supply circuit board 32 is positioned within housing 12 adjacent electrical connector 18 and has power supply circuitry configured to condition an input power received from, for example, the light fixture through electrical connector 18, to a power usable by and suitable for LEDs 34. In some implementations, power supply circuit board 32 can include one or more of an inrush protection circuit, a surge suppressor circuit, a noise filter circuit, a rectifier circuit, a main filter circuit, a current regulator circuit and a shunt voltage regulator circuit. Power supply circuit board 32 can be suitably designed to receive a wide range of currents and/or voltages from a power source and convert them to a power usable by LEDs 34.


LED-based light 10 may require a number of electrical connections to convey power between the various illustrated spatially distributed electrical assemblies included in LED-based light 10, such as LED circuit board 30, power supply circuit board 32 and electrical connector 18. These connections can be made using a circuit connector header 40 and a pin connector header 42, as shown in FIG. 2. In particular, when LED-based light 10 is assembled, circuit connector header 40 may be arranged to electrically couple LED circuit board 30 to power supply circuit board 32, and pin connector header 42 may be arranged to electrically couple power supply circuit board 32 to pins 22 of an end cap 20.


As shown, LED circuit board 30 the power supply circuit board 32 are vertically opposed and spaced with respect to one another within housing 12. LED circuit board 30 and power supply circuit board 32 can extend a length or a partial length of housing 12, and LED circuit board 30 can have a length different from a length of power supply circuit board 32. For example, LED circuit board 30 can generally extend a substantial length of housing 12, and power supply circuit board 32 can extend a partial length of housing 12. However, it will be understood that LED circuit board 30 and/or power supply circuit board 32 could be alternatively arranged within housing 12, and that LED circuit board 30 and power supply circuit board 32 could be alternatively spaced and/or sized with respect to one another.


LED circuit board 30 and power supply circuit board 32 are illustrated as elongate printed circuit boards. Multiple circuit board sections can be joined by bridge connectors to create LED circuit board 30 and/or power supply circuit board 32. Also, other types of circuit boards may be used, such as a metal core circuit board. Further, the components of LED circuit board 30 and power supply circuit board 32 could be on a single circuit board or more than two circuit boards.


LED-based lights are often used in lighting fixtures that require four or more lighting tubes each. Some lighting fixtures include diffusers, however, in other cases, the lighting fixtures do not include diffusers or include diffusers that were designed for non-LED-based lights, such as fluorescent lights, and may not diffuse light well enough to work with LED-based lights. In these lighting fixtures, the spacing between multiple LED-based lights can create “hot spots” at locations corresponding to the positions of the LED-based lights on production of light by the LEDs. In addition, because the LED-based lights are generally more efficient sources of light compared to the fluorescent lights, it is contemplated that one or more of the total lights in a lighting fixture may be eliminated during a retrofit replacement of fluorescent lights with LED-based lights. This in turn may accentuate the existence and appearance of hot spots. Aspects of disclosed implementations provide diffusors to work with LED-based lights by attaching directly to the light without requiring fasteners or adhesives. These diffusers can be attached to LED-based lights without additional diffusers or in conjunction with existing diffusers.


The diffusers disclosed herein can be attached directly to LED-based lights without any additional fixtures, fasteners or adhesives. The diffusers disclosed herein can be slipped or snapped on to the LED-based light without tools and may be held in place by tabs on the diffuser fitting into a groove or grooves on the LED-based light where friction between the diffuser tabs and the LED-based light keeps the diffuser in place. This is in contrast to diffusers that are manufactured to attach to light fixtures or ceiling panels, for example. Diffusers manufactured to attach to light fixtures or ceiling panels cannot be used to attach directly to an LED-based light because the size, shape and elasticity of these diffusers do not permit them to be attached to the LED-based light and held in position without fasteners or adhesives.


Particularly where LED-based lights are used in lighting fixtures having no diffuser, the teachings herein provide diffusing capability to the LED-based light by providing a diffuser that can be attached to an LED-based light. The diffusers may be attached to an LED-based light without requiring fasteners or adhesives. The diffuser can be attached and detached without tools to permit the diffuser to be removed, for example, from a burned-out light and/or attached to the new replacement light.


The diffusers, although according to the examples may have different cross-sections and sizes, are each sized and shaped to permit the diffuser to be affixed to an LED-based light that already has a lens, a way of maintaining their position on an LED-based light once slid or snapped into place and sufficient surface area to cover the lens so as to diffuse the light being emitted from the LED-based light to which the LED-based light is affixed. In certain embodiments, it is desirable that the diffusers be flexible to permit the diffuser to be deformed while being snap-fit to the LED-based light. In these cases, the diffuser could be removed and exchanged, such as to change the appearance of the emitted light. In other cases, such as where the diffusers are slid on, removal of the LED-based light from its fixture may be required to remove and/or replace the diffuser.



FIG. 3 shows a cross-sectional view of a diffuser 300 designed to attach to an LED-based light such as LED-based light 10. Diffuser 300 includes a curved section 302 of diffusing material, which can be opalescent or otherwise frosted translucent plastic material. Diffuser 300 can also be made of plastic material embossed with a pattern that diffuses light. Diffuser 300 has a generally constant curved cross sectional profile with a radius of curvature R1. Diffuser 300 also includes tabs 304 formed at an interior surface of diffuser 300 that can be molded into diffuser 300 to attach diffuser 300 to an LED-based light. As shown, tabs 304 project radially inward from curved section 302 to provide two or more points of attachment to an LED-based light. Diffuser 300 may be made of any suitable plastic or other material having the properties of being transparent or translucent to visible wavelengths of light, flexible enough to snap onto an LED-based light and sturdy enough to provide adequate service life.


Diffuser 300 can have a generally open cross sectional profile and can be manually forced to an open position by bending it open in the direction of the arrows A and B to permit diffuser 300 to be placed over an LED-based light and then released to attach the diffuser 300 to the LED-based light. Once diffuser 300 is bent open in the direction of the arrows A and B and placed over the LED-based light, diffuser 300 can be released to permit tabs 304 to assume their normal position, thereby forming a friction fit to the LED-based light. In a normal position, diffuser 300 is designed so that distance “C” between the tabs 304 is sized to be slightly smaller than the width of the LED-based light, so that when diffuser 300 is released, diffuser 300 will be held onto the LED-based light by the friction between tabs 304 and the LED-based light. When diffuser 300 is assembled with the LED-based light, tabs 304 on diffuser 300 may fit into recesses on the sides of the LED-based light. Diffuser 300 can be manufactured from a resilient material that permits the diffuser to be bent open to permit diffuser 300 to be put into position over the LED-based light and then released to allow the tabs of the diffuser to contact the LED-based light. The dimensions of diffuser 300 are specified to permit diffuser 300 to be bent open to fit into position on the LED-based light and when released hold the LED-based light firmly enough to keep diffuser 300 in position without slipping off or out of position.



FIG. 4 shows an LED-based light assembly 400 including an LED-based light 402 having a diffuser 404. LED-based light 402 conforms to the configuration of FIGS. 1 and 2 in this example. Diffuser 404 is attached to LED-based light 402 by bending diffuser 404 open to permit tabs 408 of diffuser 404 to be placed over housing 406 and released to fit tabs 408 into a groove 410 in housing 406. The elasticity of the plastic material of which diffuser 404 is made can cause tabs 408 to fit tightly in groove 410 of housing 406 and thereby affix diffuser 404 to LED-based light 402 without using fasteners or adhesive. In this way, diffuser 400 is snap-fit on to LED-based light 402. To remove diffuser 400 from LED-based light 402, diffuser 400 is bent open to permit tabs 408 to be removed from groove 410 in housing 406. In an alternative implementation, diffuser 404 may be slid into groove 410 in whole or in part instead of being snap-fit with groove 410. Light from LEDs of LED-based light assembly 400 pass through the lens and then diffuser 404 to affect the characteristics of the emitted light.



FIGS. 5
a-5h show cross-sectional views of various diffusers that can be used in accordance with the teachings herein. As described above in connection with diffuser 300 shown in FIG. 3, diffusers may be manufactured in various colors and textures, including transparent and translucent colors such as opal. They may also have surface effects and/or coatings as described above with regard to lens 14. It will be understood that these diffusers may also be attached to an LED-based light in a similar manner as that described above for diffuser 300.



FIG. 5
a shows a diffuser 500a. Similarly to diffuser 300, diffuser 500a includes a curved section 502a of diffusing material. Differently from diffuser 300, curved section 502a of diffuser 500a is less rounded than curved section 302. In particular, curved section 502a of diffuser 500a has a slightly elongated curved cross sectional profile, with a radius of curvature R1a being larger than radius of curvature R2a. Diffuser 500a also includes tabs 504a that can be molded into diffuser 500a to attach diffuser 500a to an LED-based light. As shown, tabs 504a generally taper to a blunt point as they project radially inward from curved section 502a.



FIG. 5
b shows a diffuser 500b. Diffuser 500b is similar to diffuser 500a from FIG. 5a, with a curved section 502b of diffusing material. In diffuser 500b, however, tabs 504b are generally rounded. FIG. 5c shows a diffuser 500c that, similarly to diffusers 500a and 500b, includes a curved section 502c of diffusing material. In diffuser 500c, however, tabs 504c do not taper radially inward as they project radially inward from curved section 502c and are not rounded. Instead, as shown, tabs 504c have generally straight, parallel opposing walls. In addition, in diffuser 500c of FIG. 5c, tabs 504c are slightly folded under, or angled towards curved section 502c, to permit diffuser 500c to be securely engaged to an LED-based light.



FIGS. 5
d, 5e and 5f show examples of diffusers with light diffusing structures molded into an interior surface of the curved section of the diffuser. In the examples, the light diffusing structures are longitudinally extending ridges that may, for example, be formed into the diffusers during an extrusion process. As explained below, the ridges can have different thicknesses, as defined by a distance between the peaks of the ridges and an opposing outer surface of the curved section.



FIG. 5
d shows a diffuser 500d. Diffuser 500d is similar to diffuser 500b from FIG. 5b, with a curved section 502d of diffusing material and generally rounded tabs 504d. Diffuser 500d further includes ridges 506d formed on an interior surface of the curved section 502d. In diffuser 500d, ridges 506d have a thickness defined by a distance Dd between the peaks of the ridges 506d and an opposing outer surface of curved section 502d.



FIG. 5
e shows a diffuser 500e. Diffuser 500e is also similar to diffuser 500b from FIG. 5b, with a curved section 502e of diffusing material and generally rounded tabs 504e. Diffuser 500e further includes ridges 506e formed on an interior surface of the curved section 502e. In diffuser 500e, ridges 506e have a thickness defined by a distance De between the peaks of the ridges 506e and an opposing outer surface of curved section 502e. It can be seen that in diffuser 500e, distance De is larger than distance Dd in diffuser 500d from FIG. 5d.



FIG. 5
f shows a diffuser 500f. Diffuser 500f is similar to diffuser 500b from FIG. 5b, with a curved section 502f of diffusing material and generally rounded tabs 504f. In diffuser 500f, however, the cross sectional profile of curved section 502f is slightly shallower than that of curved section 502b of diffuser 500b from FIG. 5b. Diffuser 500f further includes ridges 506f formed on an interior surface of the curved section 502f. In diffuser 500f, ridges 506f have a thickness defined by a distance Df between the peaks of the ridges 506f and an opposing outer surface of curved section 502f.



FIG. 5
g shows a diffuser 500g having a curved section 502g of diffusing material with a generally elliptical cross sectional profile. Diffuser 500g includes tabs 504g molded into its base to fit grooves in an LED-based light to prevent diffuser 500g from shifting when it is attached to the LED-based light. The overall shape and size of diffuser 500g may be such that it encompasses almost an entirety of the surface of a housing of an LED-based light, instead of being arranged to encompass only one portion of the surface, such as to encompass a relatively small lens area. Diffuser 500g, therefore, although it may be used with various LED-based light designs, can be particularly useful where the LED-based light has a large lens.



FIG. 5
h shows a diffuser 500g having a curved section 502g of diffusing material with a generally elliptical cross sectional profile similarly to diffuser 500f in FIG. 5f. However, diffuser 500h includes end portions 516h on each side of diffuser 500h having first ribs, or tabs 516h and second ribs, or tabs 518h. The overall shape and size of diffuser 500h may be such that it encompasses almost an entirety of the surface of a housing of an LED-based light, instead of being arranged to encompass only one portion of the surface, such as to encompass a relatively small lens area. Diffuser 500h, therefore, although it may be used with various LED-based light designs, can be particularly useful where the LED-based light has a large lens.



FIG. 6 shows a cross-section of the LED-based light 402 of FIG. 4 more clearly showing grooves 410 defined at an outer surface of housing 406 that may, in some cases, accept the tabs of a diffuser. A diffuser may be held in place by the friction of tabs against the outer surface of LED-based light 402. In such implementations, the ability of the diffuser to remain in place is a function of the resilience of the diffuser material and the dimensions of the diffuser, which cause the tabs of the diffuser to be held against LED-based light 402 by friction, thereby eliminating the need for fasteners or adhesives to hold the diffuser in place. Fasteners and adhesives may also be omitted when diffusers are slid over all or part of the housing of an LED-based light. Possibly, although less desirably, diffuser may be a closed shape that encompasses the entire surface of LED-based light 402. Note that FIG. 6 also illustrates a circuit board 422 that supports LEDs 424 and extends the length of housing 406. Lens 420 is slid or snap-fit on to housing 406.



FIG. 7 shows a cross-sectional view of an LED-based light 700 having a built-in primary diffuser or lens 712. LED-based light 700, in this example, has a form similar to that in FIGS. 1 and 2. A housing 702 has a groove 704 on opposing sides and an edge 706 on at least the upper end of groove 704 formed between groove 714 and a remainder of housing 702. LED-based light 700 has a circuit board 708 upon which LEDs 710 are mounted. LEDs 710 emit light, several rays 714 of which are illustrated. Light rays 714 can be emitted by LEDs 710 to pass through primary diffuser 712. Diffuser 712 diffuses light rays 714 passing through it as shown in FIG. 7, thereby diffusing the point-source LED light into a more pleasing diffuse light.



FIG. 8 shows an LED-based light 800 having a primary diffuser or lens 812 and a secondary diffuser 814. In this example, LED-base light 800 has a structure similar to that shown in FIG. 7, including a housing 802 with grooves 804 and edges 806 and a circuit board 808 and LEDs 810 that emit light through primary diffuser 812.


In general, in diffusing the light emanating from a light source with an angular spread, such as LEDs 810, a diffusing lens can effectively utilize the extent to which the light emanating from LEDs 810 is already spread, either over space, by a diffuser, or both. Thus, for LEDs 810 with a given spread, the effectiveness of a diffuser in diffusing the light emanating from LEDs 810 of LED-based light 800 is a product of, among other things, the proximity of the diffuser to LEDs 800.


LED-based light 800 also has secondary diffuser 814 having end portions 816 on each side of secondary diffuser 814 having first ribs, or tabs 818 and second ribs, or tabs 820. The radially outward spacing of secondary diffuser 814 with respect to primary diffuser or lens 812 allows for greater diffusion of the light emanating from LEDs 810, as compared, for example, to primary diffuser or lens 812 in illustrated LED-based light 800 or lenses in other LED-based lights that similarly fall along the cross sectional profile of a fluorescent light. Since this is a cross-sectional view, ribs 818, 820 can extend in the direction in and out of the page. Secondary diffuser 814 can be made of a flexible, transparent or translucent material, for example plastic, which can transmit light and maintain sufficient flexibility to permit secondary diffuser 814 to be attached to housing 802 without requiring fasteners or adhesives. The surface of primary diffuser 812 and secondary diffuser 814 can be embossed or molded with features that diffuse light, such as ridges or surface finishes that diffuse light such as frosting.


Secondary diffuser 814 is made having a size such that end portions 816 can be bent slightly outwards permitting first ribs 818 fit over edges 806. When released, secondary diffuser 814 attempts to return to its original dimensions and thereby grips housing 802 with first 818 and second 820 ribs on either side of edges 806. Secondary diffuser 814 stays in position with respect to housing 802 and LEDs 810 through friction between first 818 and second 820 ribs and housing 802.



FIG. 9 shows LED-based light 800 from FIG. 8 having LEDs 810 that emit light rays 902 that pass through primary diffuser 812 and secondary diffuser 814 before being emitted from LED-based light 800. As can be seen from FIG. 9, light rays 902 from LEDs 810 is diffused by primary diffuser 812 and then further diffused by secondary diffuser 814. Adding secondary diffuser 814 permits LED-based light 800 to emit light more diffusely than is available with only primary diffuser 812 without requiring any additional fixtures or diffusers to be added.



FIG. 10 shows an LED-based light 1000 having a primary diffuser 1012 and a secondary diffuser 1014. LED-base light 1000 has a structure similar to that shown in FIG. 7, with a housing 1002 having grooves 1004 and edges 1006 and a circuit board 1008 and LEDs 1010 that emit light through primary diffuser 1012. LED-based light 800 also has secondary diffuser 1014 with end portions 1016 having first ribs 1018 and second ribs 1020. Secondary diffuser 1014 thus has a structure similar to that shown in FIGS. 8 and 9. In this case, end portions 1016 have been bent open to permit first ribs 1018 and second ribs 1020 to fit over edges 1006 of groves 1004 and into grooves 1004. Friction between ribs 1018, 1020 and housing 1002 including grooves 1004 and edges 1006 can prevent secondary diffuser 1014 from moving with respect to LED-based light 1000.


Adjusting a secondary diffuser from the position of diffuser 814 in FIG. 8 to the position of diffuser 1014 in FIG. 10 can change the appearance of the LED-based light. Moving the diffuser closer as shown in FIG. 10 can increase light output over a larger area than the arrangement shown in FIGS. 8 and 9 at the expense, however, of providing somewhat less diffusion. This provides an example in which the light output from the LED-based light can exceed a 180-degree scope, extending backwards significantly to describe an arc of 320 degrees or so, by virtue of the diffuser width exceeding the width of the LED replacement lamp housing.


In some implementations, a secondary diffuser may have surface treatments or other features that change the pattern of light that would otherwise be emitted from the lens of the LED-based light. In other words, the diffuser may be inhomogeneous in reflectivity and/or transmission, instead of providing uniform diffuse light. Changes in the emitted light pattern may be achieved by applying an opaque and/or reflective material to the diffuser by adhesion or by painting or by having a change to one or more sections of the surface of the diffuser itself. In one implementation, portions of the diffusing surface may be covered with an opaque material to block portions of the light being emitted from the LEDs through that portion. For example, a central reflection strip (i.e., one made of a reflective material such as aluminized mylar) may be applied to the length of an interior central portion of the secondary diffuser to prevent light from being emitted directly downwards, thereby making the LED-based light an indirect light source. Similarly, one or more variable internal reflectors may move light around the LED-based light to create a variety of emission patterns. The change in emission pattern may be created by forming one or more sections of the diffuser with a texture that changes the appearance of the emitted light in a localized area of the diffuser. Changes in the emission light pattern may also be achieved by the use of additional optical control films such as multi-layer dielectric reflectors, etc.


While the invention has been described in connection with certain embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments. On the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims
  • 1. An LED-based light assembly, comprising: a plurality of LEDs;an elongate housing for the LEDs, the housing having an outer surface at least partially defined by a first lens;a second lens, the second lens removably attachable to the outer surface of the housing such that at least a portion of the second lens overlays the first lens in a spaced relationship; andat least one connector arranged at an end of the housing, the connector configured for engagement with a socket of a fluorescent light fixture, wherein: the housing defines a groove at the outer surface, the groove bordered by an edge, the second lens includes a pair of spaced tabs projecting radially inwardly from an interior surface of the second lens,the second lens is resiliently flexible and configured to: be manually forced to an open position for arrangement around the outer surface of the housing, to be released for attachment to the outer surface of the housing in a first attachment position with the pair of spaced tabs positioned in the groove, and to be released for attachment to the outer surface of the housing in a second attachment position with the pair of spaced tabs positioned on both sides of the edge.
  • 2. The LED-based light assembly of claim 1, wherein the portion of the second lens for overlaying the first lens is further spaced from the first lens with the second lens released for attachment to the outer surface of the housing in the second attachment position compared to when the second lens is released for attachment to the outer surface of the housing in the first attachment position.
  • 3. The LED-based light assembly of claim 1, wherein the second lens is removably attachable to the outer surface of the housing by a friction fit, without using fasteners or adhesives.
  • 4. The LED-based light assembly of claim 1, wherein the portion of the second lens for overlaying the first lens is translucent.
  • 5. The LED-based light assembly of claim 1, wherein the portion of the second lens for overlaying the first lens includes light diffusing ridges.
  • 6. A method of modifying the light diffusion characteristics of an LED-based light with a plurality of LEDs, an elongate housing for the LEDs having an outer surface at least partially defined by a first lens and defining a groove at the outer surface bordered by an edge, and at least one connector arranged at an end of the housing configured for engagement with a socket of a fluorescent light fixture, the method comprising: removably attaching a second lens to the outer surface of the housing, such that at least a portion of the second lens overlays the first lens in a spaced relationship, the second lens being resiliently flexible and including a pair of spaced tabs projecting radially inwardly from an interior surface;forcing the second lens to an open position;with the second lens in an open position, arranging the second lens at least partially around the outer surface of the housing; andreleasing the second lens for attachment to the outer surface of the housing in one of a first attachment position, where the pair of spaced tabs is positioned in the groove, or in a second attachment position, where the pair of spaced tabs is positioned on both sides of the edge.
  • 7. The method of claim 6, further comprising: removing the second lens from the outer surface of the housing; andremovably attaching a third lens to the outer surface of the housing, such that at least a portion of the third lens overlays the first lens in a spaced relationship.
  • 8. The method of claim 6, wherein the portion of the second lens overlaying the first lens is further spaced from the first lens with the second lens released for attachment to the outer surface of the housing in the second attachment position compared to when the second lens is released for attachment to the outer surface of the housing in the first attachment position.
  • 9. The method of claim 6, wherein the removable attachment of the second lens to the outer surface of the housing is by a friction fit, without using fasteners or adhesives.
  • 10. An LED-based light assembly, comprising: a plurality of LEDs;an elongate housing for the LEDs, the housing having an outer surface at least partially defined by a first lens and defining a first groove on a first side of the lens and a second groove on an opposing side of the lens, with the first groove bordered by a first edge of the outer surface and the second groove bordered by a second edge of the outer surface;a second lens, the second lens having two opposing end portions and an interior surface extending between the two end portions, with first and second opposing pairs of spaced tabs projecting radially inwardly from the interior surface, wherein the second lens is resiliently flexible such that the second lens is configured to be arranged around the outer surface of the housing in: a first attachment position, where the first pair of spaced tabs is positioned in the first groove, the second pair of spaced tabs is positioned in the second groove, and at least a portion of the second lens overlays the first lens in a first spaced relationship, anda second attachment position, the first pair of spaced tabs is positioned on both sides of the first edge, the second pair of spaced tabs is positioned on both sides of the second edge, and at least a portion of the second lens overlays the first lens in a second spaced relationship different from the first spaced relationship; andat least one connector arranged at an end of the housing, the connector configured for engagement with a socket of a fluorescent light fixture.
  • 11. The LED-based light assembly of claim 10, wherein the second lens is removably attachable to the outer surface of the housing by a friction fit in either the first attachment position or the second attachment position, without using fasteners or adhesives.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/783,217 filed Mar. 14, 2013 and U.S. Provisional Patent Application No. 61/846,712 filed Jul. 16, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (1342)
Number Name Date Kind
D54511 Owen Feb 1920 S
D58105 Poritz Jun 1921 S
D79814 Hoch Nov 1929 S
D80419 Kramer Jan 1930 S
D84763 Stange Jul 1931 S
D119797 Winkler et al. Apr 1940 S
D125312 Logan Feb 1941 S
2826679 Rosenberg Mar 1958 A
2909097 Alden et al. Oct 1959 A
3178622 Paul et al. Apr 1965 A
3272977 Holmes Sep 1966 A
3318185 Kott May 1967 A
3561719 Grindle Feb 1971 A
3586936 McLeroy Jun 1971 A
3601621 Ritchie Aug 1971 A
3612855 Juhnke Oct 1971 A
3643088 Osteen et al. Feb 1972 A
3739336 Burland Jun 1973 A
3746918 Drucker et al. Jul 1973 A
3818216 Larraburu Jun 1974 A
3821590 Kosman et al. Jun 1974 A
3832503 Crane Aug 1974 A
3858086 Anderson et al. Dec 1974 A
3909670 Wakamatsu et al. Sep 1975 A
3924120 Cox, III Dec 1975 A
3958885 Stockinger et al. May 1976 A
3969720 Nishino Jul 1976 A
3974637 Bergey et al. Aug 1976 A
3993386 Rowe Nov 1976 A
4001571 Martin Jan 1977 A
4009394 Mierzwinski Feb 1977 A
4054814 Fegley et al. Oct 1977 A
4070568 Gala Jan 1978 A
4082395 Donato et al. Apr 1978 A
4096349 Donato Jun 1978 A
4102558 Krachman Jul 1978 A
4107581 Abernethy Aug 1978 A
4189663 Schmutzer et al. Feb 1980 A
4211955 Ray Jul 1980 A
4241295 Williams, Jr. Dec 1980 A
4257672 Balliet Mar 1981 A
4261029 Mousset Apr 1981 A
4262255 Kokei et al. Apr 1981 A
4271408 Teshima et al. Jun 1981 A
4271458 George, Jr. Jun 1981 A
4272689 Crosby et al. Jun 1981 A
4273999 Pierpoint Jun 1981 A
4298869 Okuno Nov 1981 A
4329625 Nishizawa et al. May 1982 A
4339788 White et al. Jul 1982 A
4342947 Bloyd Aug 1982 A
4344117 Niccum Aug 1982 A
4367464 Kurahashi et al. Jan 1983 A
D268134 Zurcher Mar 1983 S
4382272 Quella et al. May 1983 A
4388567 Yamazaki et al. Jun 1983 A
4388589 Molldrem, Jr. Jun 1983 A
4392187 Bornhorst Jul 1983 A
4394719 Moberg Jul 1983 A
4420711 Takahashi et al. Dec 1983 A
4455562 Dolan et al. Jun 1984 A
4500796 Quin Feb 1985 A
4521835 Meggs et al. Jun 1985 A
4531114 Topol et al. Jul 1985 A
4581687 Nakanishi Apr 1986 A
4597033 Meggs et al. Jun 1986 A
4600972 MacIntyre Jul 1986 A
4607317 Lin Aug 1986 A
4622881 Rand Nov 1986 A
4625152 Nakai Nov 1986 A
4635052 Aoike et al. Jan 1987 A
4647217 Havel Mar 1987 A
4650971 Manecci et al. Mar 1987 A
4656398 Michael et al. Apr 1987 A
4661890 Watanabe et al. Apr 1987 A
4668895 Schneiter May 1987 A
4669033 Lee May 1987 A
4675575 Smith et al. Jun 1987 A
4682079 Sanders et al. Jul 1987 A
4686425 Havel Aug 1987 A
4687340 Havel Aug 1987 A
4688154 Nilssen Aug 1987 A
4688869 Kelly Aug 1987 A
4695769 Schweickardt Sep 1987 A
4698730 Sakai et al. Oct 1987 A
4701669 Head et al. Oct 1987 A
4705406 Havel Nov 1987 A
4707141 Havel Nov 1987 A
D293723 Buttner Jan 1988 S
4727289 Uchida Feb 1988 A
4727457 Thillays Feb 1988 A
4739454 Federgreen Apr 1988 A
4740882 Miller Apr 1988 A
4748545 Schmitt May 1988 A
4753148 Johnson Jun 1988 A
4758173 Northrop Jul 1988 A
4765708 Becker et al. Aug 1988 A
4767172 Hubble, III et al. Aug 1988 A
4771274 Havel Sep 1988 A
4780621 Bartleucci et al. Oct 1988 A
4794373 Harrison Dec 1988 A
4794383 Havel Dec 1988 A
4801928 Minter Jan 1989 A
4810937 Havel Mar 1989 A
4818072 Mohebban Apr 1989 A
4824269 Havel Apr 1989 A
4837565 White Jun 1989 A
4843627 Stebbins Jun 1989 A
4845481 Havel Jul 1989 A
4845745 Havel Jul 1989 A
4847536 Lowe et al. Jul 1989 A
4851972 Atlman Jul 1989 A
4854701 Noll et al. Aug 1989 A
4857801 Farrell Aug 1989 A
4863223 Weissenbach et al. Sep 1989 A
4870325 Kazar Sep 1989 A
4874320 Freed et al. Oct 1989 A
4887074 Simon et al. Dec 1989 A
4894832 Colak Jan 1990 A
4901207 Sato et al. Feb 1990 A
4904988 Nesbit et al. Feb 1990 A
4912371 Hamilton Mar 1990 A
4920459 Rothwell et al. Apr 1990 A
4922154 Cacoub May 1990 A
4929936 Friedman et al. May 1990 A
4934852 Havel Jun 1990 A
4941072 Yasumoto et al. Jul 1990 A
4943900 Gartner Jul 1990 A
4962687 Belliveau et al. Oct 1990 A
4965561 Havel Oct 1990 A
4973835 Kurosu et al. Nov 1990 A
4977351 Bavaro et al. Dec 1990 A
4979081 Leach et al. Dec 1990 A
4979180 Muncheryan Dec 1990 A
4980806 Taylor et al. Dec 1990 A
4991070 Stob Feb 1991 A
4992704 Stinson Feb 1991 A
5001609 Gardner et al. Mar 1991 A
5003227 Nilssen Mar 1991 A
5008595 Kazar Apr 1991 A
5008788 Palinkas Apr 1991 A
5010459 Taylor et al. Apr 1991 A
5018054 Ohashi et al. May 1991 A
5027037 Wei Jun 1991 A
5027262 Freed Jun 1991 A
5032960 Katoh Jul 1991 A
5034807 Von Kohorn Jul 1991 A
5036248 McEwan et al. Jul 1991 A
5038255 Nishihashi et al. Aug 1991 A
5065226 Kluitmans et al. Nov 1991 A
5072216 Grange Dec 1991 A
5078039 Tulk et al. Jan 1992 A
5083063 Brooks Jan 1992 A
5088013 Revis Feb 1992 A
5089748 Ihms Feb 1992 A
5103382 Kondo et al. Apr 1992 A
5122733 Havel Jun 1992 A
5126634 Johnson Jun 1992 A
5128595 Hara Jul 1992 A
5130761 Tanaka Jul 1992 A
5130909 Gross Jul 1992 A
5134387 Smith et al. Jul 1992 A
5136483 Schnogier et al. Aug 1992 A
5140220 Hasegawa Aug 1992 A
5142199 Elwell Aug 1992 A
5151679 Dimmick Sep 1992 A
5154641 McLaughlin Oct 1992 A
5161879 McDermott Nov 1992 A
5161882 Garrett Nov 1992 A
5164715 Kashiwabara et al. Nov 1992 A
5184114 Brown Feb 1993 A
5194854 Havel Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5209560 Taylor et al. May 1993 A
5220250 Szuba Jun 1993 A
5225765 Callahan et al. Jul 1993 A
5226723 Chen Jul 1993 A
5254910 Yang Oct 1993 A
5256948 Boldin et al. Oct 1993 A
5268828 Miura Dec 1993 A
5278542 Smith et al. Jan 1994 A
5282121 Bornhorst et al. Jan 1994 A
5283517 Havel Feb 1994 A
5287352 Jackson et al. Feb 1994 A
5294865 Haraden Mar 1994 A
5298871 Shimohara Mar 1994 A
5301090 Hed Apr 1994 A
5303124 Wrobel Apr 1994 A
5307295 Taylor et al. Apr 1994 A
5321593 Moates Jun 1994 A
5323226 Schreder Jun 1994 A
5329431 Taylor et al. Jul 1994 A
5344068 Haessig Sep 1994 A
5350977 Hamamoto et al. Sep 1994 A
5357170 Luchaco et al. Oct 1994 A
5365411 Rycroft et al. Nov 1994 A
5371618 Tai et al. Dec 1994 A
5374876 Horibata et al. Dec 1994 A
5375043 Tokunaga Dec 1994 A
D354360 Murata Jan 1995 S
5381074 Rudzewicz et al. Jan 1995 A
5388357 Malita Feb 1995 A
5402702 Hata Apr 1995 A
5404094 Green et al. Apr 1995 A
5404282 Klinke et al. Apr 1995 A
5406176 Sugden Apr 1995 A
5410328 Yoksza et al. Apr 1995 A
5412284 Moore et al. May 1995 A
5412552 Fernandes May 1995 A
5420482 Phares May 1995 A
5421059 Leffers, Jr. Jun 1995 A
5430356 Ference et al. Jul 1995 A
5432408 Matsuda et al. Jul 1995 A
5436535 Yang Jul 1995 A
5436853 Shimohara Jul 1995 A
5450301 Waltz et al. Sep 1995 A
5461188 Drago et al. Oct 1995 A
5463280 Johnson Oct 1995 A
5463502 Savage, Jr. Oct 1995 A
5465144 Parker et al. Nov 1995 A
5473522 Kriz et al. Dec 1995 A
5475300 Havel Dec 1995 A
5481441 Stevens Jan 1996 A
5489827 Xia Feb 1996 A
5491402 Small Feb 1996 A
5493183 Kimball Feb 1996 A
5504395 Johnson et al. Apr 1996 A
5506760 Giebler et al. Apr 1996 A
5513082 Asano Apr 1996 A
5519496 Borgert et al. May 1996 A
5530322 Ference et al. Jun 1996 A
5539628 Sieb Jul 1996 A
5544809 Keating et al. Aug 1996 A
5545950 Cho Aug 1996 A
5550440 Allison et al. Aug 1996 A
5559681 Duarte Sep 1996 A
5561346 Byrne Oct 1996 A
D376030 Cohen Nov 1996 S
5575459 Anderson Nov 1996 A
5575554 Guritz Nov 1996 A
5581158 Quazi Dec 1996 A
5592051 Korkala Jan 1997 A
5592054 Nerone et al. Jan 1997 A
5600199 Martin, Sr. et al. Feb 1997 A
5607227 Yasumoto et al. Mar 1997 A
5608290 Hutchisson et al. Mar 1997 A
5614788 Mullins et al. Mar 1997 A
5621282 Haskell Apr 1997 A
5621603 Adamec et al. Apr 1997 A
5621662 Humphries et al. Apr 1997 A
5622423 Lee Apr 1997 A
5633629 Hochstein May 1997 A
5634711 Kennedy et al. Jun 1997 A
5639158 Sato Jun 1997 A
5640061 Bornhorst et al. Jun 1997 A
5640141 Myllymaki Jun 1997 A
5640792 O'Shea et al. Jun 1997 A
5642129 Zavracky et al. Jun 1997 A
5655830 Ruskouski Aug 1997 A
5656935 Havel Aug 1997 A
5661374 Cassidy et al. Aug 1997 A
5661645 Hochstein Aug 1997 A
5673059 Zavracky et al. Sep 1997 A
5682103 Burrell Oct 1997 A
5684523 Satoh et al. Nov 1997 A
5688042 Madadi et al. Nov 1997 A
5690417 Choate et al. Nov 1997 A
5697695 Lin et al. Dec 1997 A
5699243 Eckel et al. Dec 1997 A
5701058 Roth Dec 1997 A
5712650 Barlow Jan 1998 A
5713655 Blackman Feb 1998 A
5721471 Begemann et al. Feb 1998 A
5725148 Hartman Mar 1998 A
5726535 Yan Mar 1998 A
5731759 Finucan Mar 1998 A
5734590 Tebbe Mar 1998 A
5751118 Mortimer May 1998 A
5752766 Bailey et al. May 1998 A
5765940 Levy et al. Jun 1998 A
5769527 Taylor et al. Jun 1998 A
5784006 Hochstein Jul 1998 A
5785227 Akiba Jul 1998 A
5790329 Klaus et al. Aug 1998 A
5803579 Turnbull et al. Sep 1998 A
5803580 Tseng Sep 1998 A
5803729 Tsimerman Sep 1998 A
5806965 Deese Sep 1998 A
5808689 Small Sep 1998 A
5810463 Kawahara et al. Sep 1998 A
5812105 Van de Ven Sep 1998 A
5813751 Shaffer Sep 1998 A
5813753 Vriens et al. Sep 1998 A
5821695 Vilanilam et al. Oct 1998 A
5825051 Bauer et al. Oct 1998 A
5828178 York et al. Oct 1998 A
5831522 Weed et al. Nov 1998 A
5836676 Ando et al. Nov 1998 A
5848837 Gustafson Dec 1998 A
5850126 Kanbar Dec 1998 A
5851063 Doughty et al. Dec 1998 A
5852658 Knight et al. Dec 1998 A
5854542 Forbes Dec 1998 A
RE36030 Nadeau Jan 1999 E
5859508 Ge et al. Jan 1999 A
5865529 Yan Feb 1999 A
5870233 Benz et al. Feb 1999 A
5890794 Abtahi et al. Apr 1999 A
5893633 Saito et al. Apr 1999 A
5896010 Mikolajczak et al. Apr 1999 A
5904415 Robertson et al. May 1999 A
5907742 Johnson et al. May 1999 A
5909378 De Milleville Jun 1999 A
5912653 Fitch Jun 1999 A
5917287 Haederle et al. Jun 1999 A
5917534 Rajeswaran Jun 1999 A
5921660 Yu Jul 1999 A
5924784 Chliwnyj et al. Jul 1999 A
5927845 Gustafson et al. Jul 1999 A
5934792 Camarota Aug 1999 A
5936599 Reymond Aug 1999 A
5943802 Tijanic Aug 1999 A
5946209 Eckel et al. Aug 1999 A
5949347 Wu Sep 1999 A
5951145 Iwasaki et al. Sep 1999 A
5952680 Strite Sep 1999 A
5959547 Tubel et al. Sep 1999 A
5961072 Bodle Oct 1999 A
5962989 Baker Oct 1999 A
5962992 Huang et al. Oct 1999 A
5963185 Havel Oct 1999 A
5966069 Zmurk et al. Oct 1999 A
5974553 Gandar Oct 1999 A
5980064 Metroyanis Nov 1999 A
5998925 Shimizu et al. Dec 1999 A
5998928 Hipp Dec 1999 A
6000807 Moreland Dec 1999 A
6007209 Pelka Dec 1999 A
6008783 Kitagawa et al. Dec 1999 A
6010228 Blackman et al. Jan 2000 A
6011691 Schreffler Jan 2000 A
6016038 Mueller et al. Jan 2000 A
6018237 Havel Jan 2000 A
6019493 Kuo et al. Feb 2000 A
6020825 Chansky et al. Feb 2000 A
6025550 Kato Feb 2000 A
6028694 Schmidt Feb 2000 A
6030099 McDermott Feb 2000 A
6031343 Recknagel et al. Feb 2000 A
6031958 McGaffigan Feb 2000 A
6036335 Openiano Mar 2000 A
6036336 Wu Mar 2000 A
D422737 Orozco Apr 2000 S
6056420 Wilson et al. May 2000 A
6068383 Robertson et al. May 2000 A
6069597 Hansen May 2000 A
6072280 Allen Jun 2000 A
6074074 Marcus Jun 2000 A
6084359 Hetzel et al. Jul 2000 A
6086220 Lash et al. Jul 2000 A
6091200 Lenz Jul 2000 A
6092915 Rensch Jul 2000 A
6095661 Lebens et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6115184 Hubble, III et al. Sep 2000 A
6116748 George Sep 2000 A
6121875 Hamm et al. Sep 2000 A
6127783 Pashley et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6135604 Lin Oct 2000 A
6135620 Marsh Oct 2000 A
6139174 Butterworth Oct 2000 A
6149283 Conway et al. Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6151529 Batko Nov 2000 A
6153985 Grossman Nov 2000 A
6158882 Bischoff, Jr. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6175201 Sid Jan 2001 B1
6175220 Billig et al. Jan 2001 B1
6181126 Havel Jan 2001 B1
D437947 Huang Feb 2001 S
6183086 Neubert Feb 2001 B1
6183104 Ferrara Feb 2001 B1
6184628 Ruthenberg Feb 2001 B1
6196471 Ruthenberg Mar 2001 B1
6203180 Fleischmann Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6215409 Blach Apr 2001 B1
6217190 Altman et al. Apr 2001 B1
6219239 Mellberg et al. Apr 2001 B1
6227679 Zhang et al. May 2001 B1
6234645 Börner et al. May 2001 B1
6238075 Dealey, Jr. et al. May 2001 B1
6240665 Brown et al. Jun 2001 B1
6241359 Lin Jun 2001 B1
6249221 Reed Jun 2001 B1
6250774 Begemann et al. Jun 2001 B1
6252350 Alvarez Jun 2001 B1
6252358 Xydis et al. Jun 2001 B1
6268600 Nakamura et al. Jul 2001 B1
6273338 White Aug 2001 B1
6275397 McClain Aug 2001 B1
6283612 Hunter Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293684 Riblett Sep 2001 B1
6297724 Bryans et al. Oct 2001 B1
6305109 Lee Oct 2001 B1
6305821 Hsieh et al. Oct 2001 B1
6307331 Bonasia et al. Oct 2001 B1
6310590 Havel Oct 2001 B1
6315429 Grandolfo Nov 2001 B1
6323832 Nishizawa et al. Nov 2001 B1
6325651 Nishihara et al. Dec 2001 B1
6334699 Gladnick Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6354714 Rhodes Mar 2002 B1
6361186 Slayden Mar 2002 B1
6362578 Swanson et al. Mar 2002 B1
6369525 Chang et al. Apr 2002 B1
6371637 Atchinson et al. Apr 2002 B1
6373733 Wu et al. Apr 2002 B1
6379022 Amerson et al. Apr 2002 B1
6380865 Pederson Apr 2002 B1
D457667 Piepgras et al. May 2002 S
D457669 Piepgras et al. May 2002 S
D457974 Piepgras et al. May 2002 S
6388393 Illingworth May 2002 B1
6394623 Tsui May 2002 B1
6396216 Noone et al. May 2002 B1
D458395 Piepgras et al. Jun 2002 S
6400096 Wells et al. Jun 2002 B1
6404131 Kawano et al. Jun 2002 B1
6411022 Machida Jun 2002 B1
6411045 Nerone Jun 2002 B1
6422716 Henrici et al. Jul 2002 B2
6428189 Hochstein Aug 2002 B1
6429604 Chang Aug 2002 B1
D463610 Piepgras et al. Sep 2002 S
6445139 Marshall et al. Sep 2002 B1
6448550 Nishimura Sep 2002 B1
6448716 Hutchison Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6464373 Petrick Oct 2002 B1
6469457 Callahan Oct 2002 B2
6471388 Marsh Oct 2002 B1
6472823 Yen Oct 2002 B2
6473002 Hutchison Oct 2002 B1
D468035 Blanc et al. Dec 2002 S
6488392 Lu Dec 2002 B1
6495964 Muthu et al. Dec 2002 B1
6511204 Emmel et al. Jan 2003 B2
6517218 Hochstein Feb 2003 B2
6521879 Rand et al. Feb 2003 B1
6527411 Sayers Mar 2003 B1
6528954 Lys et al. Mar 2003 B1
6528958 Hulshof et al. Mar 2003 B2
6538375 Duggal et al. Mar 2003 B1
6540381 Douglass, II Apr 2003 B1
6541800 Barnett et al. Apr 2003 B2
6548967 Dowling et al. Apr 2003 B1
6568834 Scianna May 2003 B1
6573536 Dry Jun 2003 B1
6577072 Saito et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577512 Tripathi et al. Jun 2003 B2
6577794 Currie et al. Jun 2003 B1
6578979 Truttmann-Battig Jun 2003 B2
6582103 Popovich et al. Jun 2003 B1
6583550 Iwasa et al. Jun 2003 B2
6583573 Bierman Jun 2003 B2
D477093 Moriyama et al. Jul 2003 S
6585393 Brandes et al. Jul 2003 B1
6586890 Min et al. Jul 2003 B2
6590343 Pederson Jul 2003 B2
6592238 Cleaver et al. Jul 2003 B2
6594369 Une Jul 2003 B1
6596977 Muthu et al. Jul 2003 B2
6598996 Lodhie Jul 2003 B1
6608453 Morgan et al. Aug 2003 B2
6608614 Johnson Aug 2003 B1
6609804 Nolan et al. Aug 2003 B2
6609813 Showers et al. Aug 2003 B1
6612712 Nepil Sep 2003 B2
6612717 Yen Sep 2003 B2
6612729 Hoffman Sep 2003 B1
6621222 Hong Sep 2003 B1
6623151 Pederson Sep 2003 B2
6624597 Dowling et al. Sep 2003 B2
D481484 Cuevas et al. Oct 2003 S
6634770 Cao Oct 2003 B2
6634779 Reed Oct 2003 B2
6636003 Rahm et al. Oct 2003 B2
6639349 Bahadur Oct 2003 B1
6641284 Stopa et al. Nov 2003 B2
6652117 Tsai Nov 2003 B2
6659622 Katogi et al. Dec 2003 B2
6660935 Southard et al. Dec 2003 B2
6666689 Savage, Jr. Dec 2003 B1
6667623 Bourgault et al. Dec 2003 B2
6674096 Sommers Jan 2004 B2
6676284 Wynne Willson Jan 2004 B1
6679621 West et al. Jan 2004 B2
6681154 Nierlich et al. Jan 2004 B2
6682205 Lin Jan 2004 B2
6683419 Kriparos Jan 2004 B2
6700136 Guida Mar 2004 B2
6712486 Popovich et al. Mar 2004 B1
6717376 Lys et al. Apr 2004 B2
6717526 Martineau et al. Apr 2004 B2
6720745 Lys et al. Apr 2004 B2
6726348 Gloisten Apr 2004 B2
6736525 Chin May 2004 B2
6741324 Kim May 2004 B1
D491678 Piepgras Jun 2004 S
D492042 Piepgras Jun 2004 S
6744223 Laflamme et al. Jun 2004 B2
6748299 Motoyama Jun 2004 B1
6762562 Leong Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6774584 Lys et al. Aug 2004 B2
6777891 Lys et al. Aug 2004 B2
6781329 Mueller et al. Aug 2004 B2
6787999 Stimac et al. Sep 2004 B2
6788000 Appelberg et al. Sep 2004 B2
6788011 Mueller et al. Sep 2004 B2
6791840 Chun Sep 2004 B2
6796680 Showers et al. Sep 2004 B1
6799864 Bohler et al. Oct 2004 B2
6801003 Schanberger et al. Oct 2004 B2
6803732 Kraus et al. Oct 2004 B2
6806659 Mueller et al. Oct 2004 B1
6814470 Rizkin et al. Nov 2004 B2
6814478 Menke Nov 2004 B2
6815724 Dry Nov 2004 B2
6846094 Luk Jan 2005 B2
6851816 Wu et al. Feb 2005 B2
6851832 Tieszen Feb 2005 B2
6853150 Clauberg et al. Feb 2005 B2
6853151 Leong et al. Feb 2005 B2
6853563 Yang et al. Feb 2005 B1
6857924 Fu et al. Feb 2005 B2
6860628 Robertson et al. Mar 2005 B2
6866401 Sommers et al. Mar 2005 B2
6869204 Morgan et al. Mar 2005 B2
6871981 Alexanderson et al. Mar 2005 B2
6874924 Hulse et al. Apr 2005 B1
6879883 Motoyama Apr 2005 B1
6882111 Kan et al. Apr 2005 B2
6883929 Dowling Apr 2005 B2
6883934 Kawakami et al. Apr 2005 B2
6888322 Dowling et al. May 2005 B2
6897624 Lys et al. May 2005 B2
D506274 Moriyama et al. Jun 2005 S
6909239 Gauna Jun 2005 B2
6909921 Bilger Jun 2005 B1
6918680 Seeberger Jul 2005 B2
6921181 Yen Jul 2005 B2
6926419 An Aug 2005 B2
6936968 Cross et al. Aug 2005 B2
6936978 Morgan et al. Aug 2005 B2
6940230 Myron et al. Sep 2005 B2
6948829 Verdes et al. Sep 2005 B2
6953261 Jiao et al. Oct 2005 B1
6957905 Pritchard et al. Oct 2005 B1
6963175 Archenhold et al. Nov 2005 B2
6964501 Ryan Nov 2005 B2
6965197 Tyan et al. Nov 2005 B2
6965205 Piepgras et al. Nov 2005 B2
6967448 Morgan et al. Nov 2005 B2
6969179 Sloan et al. Nov 2005 B2
6969186 Sonderegger et al. Nov 2005 B2
6969954 Lys Nov 2005 B2
6975079 Lys et al. Dec 2005 B2
6979097 Elam et al. Dec 2005 B2
6982518 Chou et al. Jan 2006 B2
6995681 Pederson Feb 2006 B2
6997576 Lodhie et al. Feb 2006 B1
6999318 Newby Feb 2006 B2
7004603 Knight Feb 2006 B2
D518218 Roberge et al. Mar 2006 S
7008079 Smith Mar 2006 B2
7014336 Ducharme et al. Mar 2006 B1
7015650 McGrath Mar 2006 B2
7018063 Michael et al. Mar 2006 B2
7018074 Raby et al. Mar 2006 B2
7021799 Mizuyoshi Apr 2006 B2
7021809 Iwasa et al. Apr 2006 B2
7024256 Krzyzanowski et al. Apr 2006 B2
7029145 Frederick Apr 2006 B2
7031920 Dowling et al. Apr 2006 B2
7033036 Pederson Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038399 Lys et al. May 2006 B2
7042172 Dowling et al. May 2006 B2
7048423 Stepanenko et al. May 2006 B2
7049761 Timmermans et al. May 2006 B2
7052171 Lefebvre et al. May 2006 B1
7053557 Cross et al. May 2006 B2
7064498 Dowling et al. Jun 2006 B2
7064674 Pederson Jun 2006 B2
7067992 Leong et al. Jun 2006 B2
7077978 Setlur et al. Jul 2006 B2
7080927 Feuerborn et al. Jul 2006 B2
7086747 Nielson et al. Aug 2006 B2
7088014 Nierlich et al. Aug 2006 B2
7088904 Ryan, Jr. Aug 2006 B2
7102902 Brown et al. Sep 2006 B1
7113541 Lys et al. Sep 2006 B1
7114830 Robertson et al. Oct 2006 B2
7114834 Rivas et al. Oct 2006 B2
7118262 Negley Oct 2006 B2
7119503 Kemper Oct 2006 B2
7120560 Williams et al. Oct 2006 B2
7121679 Fujimoto Oct 2006 B2
7122976 Null et al. Oct 2006 B1
7128442 Lee et al. Oct 2006 B2
7128454 Kim et al. Oct 2006 B2
D532532 Maxik Nov 2006 S
7132635 Dowling Nov 2006 B2
7132785 Ducharme Nov 2006 B2
7132804 Lys et al. Nov 2006 B2
7135824 Lys et al. Nov 2006 B2
7139617 Morgan et al. Nov 2006 B1
7144135 Martin et al. Dec 2006 B2
7153002 Kim et al. Dec 2006 B2
7161311 Mueller et al. Jan 2007 B2
7161313 Piepgras et al. Jan 2007 B2
7161556 Morgan et al. Jan 2007 B2
7164110 Pitigoi-Aron et al. Jan 2007 B2
7164235 Ito et al. Jan 2007 B2
7165863 Thomas et al. Jan 2007 B1
7165866 Li Jan 2007 B2
7167777 Budike, Jr. Jan 2007 B2
7168843 Striebel Jan 2007 B2
D536468 Crosby Feb 2007 S
7178941 Roberge et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
D538950 Maxik Mar 2007 S
D538952 Maxik et al. Mar 2007 S
D538962 Elliott Mar 2007 S
7186003 Dowling et al. Mar 2007 B2
7186005 Hulse Mar 2007 B2
7187141 Mueller et al. Mar 2007 B2
7190126 Paton Mar 2007 B1
7192154 Becker Mar 2007 B2
7198387 Gloisten et al. Apr 2007 B1
7201491 Bayat et al. Apr 2007 B2
7201497 Weaver, Jr. et al. Apr 2007 B2
7202613 Morgan et al. Apr 2007 B2
7204615 Arik et al. Apr 2007 B2
7204622 Dowling et al. Apr 2007 B2
7207696 Lin Apr 2007 B1
7210818 Luk et al. May 2007 B2
7210957 Mrakovich et al. May 2007 B2
7211959 Chou May 2007 B1
7213934 Zarian et al. May 2007 B2
7217004 Park et al. May 2007 B2
7217012 Southard et al. May 2007 B2
7217022 Ruffin May 2007 B2
7218056 Harwood May 2007 B1
7218238 Right et al. May 2007 B2
7220015 Dowling May 2007 B2
7220018 Crabb et al. May 2007 B2
7221104 Lys et al. May 2007 B2
7221110 Sears et al. May 2007 B2
7224000 Aanegola et al. May 2007 B2
7226189 Lee et al. Jun 2007 B2
7228052 Lin Jun 2007 B1
7228190 Dowling et al. Jun 2007 B2
7231060 Dowling et al. Jun 2007 B2
7233115 Lys Jun 2007 B2
7233831 Blackwell Jun 2007 B2
7236366 Chen Jun 2007 B2
7237924 Martineau et al. Jul 2007 B2
7237925 Mayer et al. Jul 2007 B2
7239532 Hsu et al. Jul 2007 B1
7241038 Naniwa et al. Jul 2007 B2
7242152 Dowling et al. Jul 2007 B2
7246926 Harwood Jul 2007 B2
7246931 Hsieh et al. Jul 2007 B2
7248239 Dowling et al. Jul 2007 B2
7249269 Motoyama Jul 2007 B1
7249865 Robertson Jul 2007 B2
D548868 Roberge et al. Aug 2007 S
7252408 Mazzochette et al. Aug 2007 B2
7253566 Lys et al. Aug 2007 B2
7255457 Ducharme et al. Aug 2007 B2
7255460 Lee Aug 2007 B2
7256554 Lys Aug 2007 B2
7258458 Mochiachvili et al. Aug 2007 B2
7258467 Saccomanno et al. Aug 2007 B2
7259528 Pilz Aug 2007 B2
7262439 Setlur et al. Aug 2007 B2
7262559 Tripathi et al. Aug 2007 B2
D550379 Hoshikawa et al. Sep 2007 S
7264372 Maglica Sep 2007 B2
7267467 Wu et al. Sep 2007 B2
7270443 Kurtz et al. Sep 2007 B2
7271794 Cheng et al. Sep 2007 B1
7273300 Mrakovich Sep 2007 B2
7274045 Chandran et al. Sep 2007 B2
7274160 Mueller et al. Sep 2007 B2
7274183 Gu et al. Sep 2007 B1
D553267 Yuen Oct 2007 S
7285801 Eliashevich et al. Oct 2007 B2
7288902 Melanson Oct 2007 B1
7288904 Numeroli et al. Oct 2007 B2
7296912 Beauchamp Nov 2007 B2
7300184 Ichikawa et al. Nov 2007 B2
7300192 Mueller et al. Nov 2007 B2
D556937 Ly Dec 2007 S
D557854 Lewis Dec 2007 S
7303300 Dowling et al. Dec 2007 B2
7306353 Popovich et al. Dec 2007 B2
7307391 Shan Dec 2007 B2
7308296 Lys et al. Dec 2007 B2
7309965 Dowling et al. Dec 2007 B2
7318658 Wang et al. Jan 2008 B2
7319244 Liu et al. Jan 2008 B2
7319246 Soules et al. Jan 2008 B2
7321191 Setlur et al. Jan 2008 B2
7326964 Lim et al. Feb 2008 B2
7327281 Hutchison Feb 2008 B2
7329024 Lynch et al. Feb 2008 B2
7329031 Liaw et al. Feb 2008 B2
D563589 Hariri et al. Mar 2008 S
7344278 Paravantsos Mar 2008 B2
7345320 Dahm Mar 2008 B2
7348604 Matheson Mar 2008 B2
7350936 Ducharme et al. Apr 2008 B2
7350952 Nishigaki Apr 2008 B2
7352138 Lys et al. Apr 2008 B2
7352339 Morgan et al. Apr 2008 B2
7353071 Blackwell et al. Apr 2008 B2
7358679 Lys et al. Apr 2008 B2
7358929 Mueller et al. Apr 2008 B2
7370986 Chan May 2008 B2
7374327 Schexnaider May 2008 B2
7378805 Oh et al. May 2008 B2
7378976 Paterno May 2008 B1
7385359 Dowling et al. Jun 2008 B2
7391159 Harwood Jun 2008 B2
D574093 Kitagawa et al. Jul 2008 S
7396142 Laizure, Jr. et al. Jul 2008 B2
7396146 Wang Jul 2008 B2
7401935 VanderSchuit Jul 2008 B2
7401945 Zhang Jul 2008 B2
D576749 Kitagawa et al. Sep 2008 S
7423548 Kontovich Sep 2008 B2
7427840 Morgan et al. Sep 2008 B2
7429117 Pohlert et al. Sep 2008 B2
7434964 Zheng et al. Oct 2008 B1
7438441 Sun et al. Oct 2008 B2
D580089 Ly et al. Nov 2008 S
D581556 To et al. Nov 2008 S
7449847 Schanberger et al. Nov 2008 B2
D582577 Yuen Dec 2008 S
7466082 Synder et al. Dec 2008 B1
7470046 Kao et al. Dec 2008 B2
D584428 Li et al. Jan 2009 S
D584429 Pei et al. Jan 2009 S
7476002 Wolf et al. Jan 2009 B2
7476004 Chan Jan 2009 B2
7478924 Robertson Jan 2009 B2
7482764 Morgan et al. Jan 2009 B2
D586484 Liu et al. Feb 2009 S
D586928 Liu et al. Feb 2009 S
7490957 Leong et al. Feb 2009 B2
7497596 Ge Mar 2009 B2
7498753 McAvoy et al. Mar 2009 B2
7507001 Kit Mar 2009 B2
7510299 Timmermans et al. Mar 2009 B2
7510400 Glovatsky et al. Mar 2009 B2
7514876 Roach, Jr. Apr 2009 B2
7520635 Wolf et al. Apr 2009 B2
7521872 Bruning Apr 2009 B2
7524089 Park Apr 2009 B2
D592766 Zhu et al. May 2009 S
D593223 Komar May 2009 S
7530701 Chan-Wing May 2009 B2
7534002 Yamaguchi et al. May 2009 B2
D594999 Uchida et al. Jun 2009 S
7549769 Kim et al. Jun 2009 B2
7556396 Kuo et al. Jul 2009 B2
7559663 Wong et al. Jul 2009 B2
7562998 Yen Jul 2009 B1
D597686 Noh Aug 2009 S
7569981 Ciancanelli Aug 2009 B1
7572030 Booth et al. Aug 2009 B2
7575339 Hung Aug 2009 B2
7579786 Soos Aug 2009 B2
7583035 Shteynberg et al. Sep 2009 B2
7583901 Nakagawa et al. Sep 2009 B2
7594738 Lin et al. Sep 2009 B1
D601726 Mollaert et al. Oct 2009 S
7598681 Lys et al. Oct 2009 B2
7598684 Lys et al. Oct 2009 B2
7598686 Lys et al. Oct 2009 B2
7600907 Liu et al. Oct 2009 B2
7602559 Jang et al. Oct 2009 B2
7618157 Galvez et al. Nov 2009 B1
7619366 Diederiks Nov 2009 B2
7635201 Deng Dec 2009 B2
7635214 Perlo Dec 2009 B2
7639517 Zhou et al. Dec 2009 B2
7648251 Whitehouse et al. Jan 2010 B2
7649327 Peng Jan 2010 B2
D610724 Chiang et al. Feb 2010 S
7654703 Kan et al. Feb 2010 B2
7661839 Tsai Feb 2010 B2
D612528 McGrath et al. Mar 2010 S
7690813 Kanamori et al. Apr 2010 B2
7710047 Shteynberg et al. May 2010 B2
7710253 Fredricks May 2010 B1
7712918 Siemiet et al. May 2010 B2
7748886 Pazula et al. Jul 2010 B2
7758207 Zhou et al. Jul 2010 B1
7759881 Melanson Jul 2010 B1
D621975 Wang Aug 2010 S
7784966 Verfuerth et al. Aug 2010 B2
7800511 Hutchison et al. Sep 2010 B1
7815338 Siemiet et al. Oct 2010 B2
7815341 Steedly et al. Oct 2010 B2
7828471 Lin Nov 2010 B2
7843150 Wang et al. Nov 2010 B2
7848702 Ho et al. Dec 2010 B2
7850341 Mrakovich et al. Dec 2010 B2
RE42161 Hochstein Feb 2011 E
7878683 Logan et al. Feb 2011 B2
7887216 Patrick Feb 2011 B2
7887226 Huang et al. Feb 2011 B2
7889051 Billig et al. Feb 2011 B1
D634452 de Visser Mar 2011 S
7926975 Siemiet et al. Apr 2011 B2
7938562 Ivey et al. May 2011 B2
7946729 Ivey et al. May 2011 B2
7952292 Vegter et al. May 2011 B2
7976196 Ivey et al. Jul 2011 B2
7990070 Nerone Aug 2011 B2
7997770 Meurer Aug 2011 B1
8013472 Adest et al. Sep 2011 B2
D650097 Trumble et al. Dec 2011 S
D650494 Tsao et al. Dec 2011 S
D652968 Aguiar et al. Jan 2012 S
8093823 Ivey et al. Jan 2012 B1
D654192 Maxik et al. Feb 2012 S
8118447 Simon et al. Feb 2012 B2
8147091 Hsia et al. Apr 2012 B2
8159152 Salessi Apr 2012 B1
D660472 Aguiar et al. May 2012 S
8167452 Chou May 2012 B2
8177388 Yen May 2012 B2
8179037 Chen et al. May 2012 B2
8183989 Tsai May 2012 B2
D662236 Matsushita Jun 2012 S
8203445 Recker et al. Jun 2012 B2
8214084 Ivey et al. Jul 2012 B2
8247985 Timmermans et al. Aug 2012 B2
8251544 Ivey et al. Aug 2012 B2
8262249 Hsia et al. Sep 2012 B2
8272764 Son Sep 2012 B2
8287144 Pedersen et al. Oct 2012 B2
8297788 Bishop Oct 2012 B2
8299722 Melanson Oct 2012 B2
8304993 Tzou et al. Nov 2012 B2
8313213 Lin et al. Nov 2012 B2
8319407 Ke Nov 2012 B2
8319433 Lin et al. Nov 2012 B2
8319437 Carlin et al. Nov 2012 B2
8322878 Hsia et al. Dec 2012 B2
8324817 Ivey et al. Dec 2012 B2
8337071 Negley et al. Dec 2012 B2
8366291 Hoffmann Feb 2013 B2
8376579 Chang Feb 2013 B2
8376588 Yen Feb 2013 B2
8382322 Bishop Feb 2013 B2
8382327 Timmermans et al. Feb 2013 B2
8382502 Cao et al. Feb 2013 B2
8388179 Hood et al. Mar 2013 B2
8398275 Wang et al. Mar 2013 B2
8403692 Cao et al. Mar 2013 B2
8405314 Jensen Mar 2013 B2
8434914 Li et al. May 2013 B2
8454193 Simon et al. Jun 2013 B2
8482212 Ivey et al. Jul 2013 B1
8571716 Ivey et al. Oct 2013 B2
9016895 Handsaker Apr 2015 B2
20010033488 Chliwnyj et al. Oct 2001 A1
20010045803 Cencur Nov 2001 A1
20020011801 Chang Jan 2002 A1
20020015297 Hayashi et al. Feb 2002 A1
20020038157 Dowling et al. Mar 2002 A1
20020041159 Kaping Apr 2002 A1
20020044066 Dowling et al. Apr 2002 A1
20020047516 Iwasa et al. Apr 2002 A1
20020047569 Dowling et al. Apr 2002 A1
20020047624 Stam et al. Apr 2002 A1
20020047628 Morgan et al. Apr 2002 A1
20020048169 Dowling et al. Apr 2002 A1
20020057061 Mueller et al. May 2002 A1
20020060526 Timmermans et al. May 2002 A1
20020070688 Dowling et al. Jun 2002 A1
20020074559 Dowling et al. Jun 2002 A1
20020074958 Crenshaw Jun 2002 A1
20020078221 Blackwell et al. Jun 2002 A1
20020101197 Lys et al. Aug 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020130627 Morgan et al. Sep 2002 A1
20020145394 Morgan et al. Oct 2002 A1
20020145869 Dowling Oct 2002 A1
20020152045 Dowling et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020153851 Morgan et al. Oct 2002 A1
20020158583 Lys et al. Oct 2002 A1
20020163316 Lys et al. Nov 2002 A1
20020171365 Morgan et al. Nov 2002 A1
20020171377 Mueller et al. Nov 2002 A1
20020171378 Morgan et al. Nov 2002 A1
20020176259 Ducharme Nov 2002 A1
20020179816 Haines et al. Dec 2002 A1
20020195975 Schanberger et al. Dec 2002 A1
20030011538 Lys et al. Jan 2003 A1
20030021117 Chan Jan 2003 A1
20030028260 Blackwell Feb 2003 A1
20030031015 Ishibashi Feb 2003 A1
20030048641 Alexanderson et al. Mar 2003 A1
20030052599 Sun Mar 2003 A1
20030057884 Dowling et al. Mar 2003 A1
20030057886 Lys et al. Mar 2003 A1
20030057887 Dowling et al. Mar 2003 A1
20030057890 Lys et al. Mar 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030085710 Bourgault et al. May 2003 A1
20030095404 Becks et al. May 2003 A1
20030100837 Lys et al. May 2003 A1
20030102810 Cross et al. Jun 2003 A1
20030133292 Mueller et al. Jul 2003 A1
20030137258 Piepgras et al. Jul 2003 A1
20030185005 Sommers et al. Oct 2003 A1
20030185014 Gloisten Oct 2003 A1
20030189412 Cunningham Oct 2003 A1
20030218879 Tieszen Nov 2003 A1
20030222587 Dowling, Jr. et al. Dec 2003 A1
20030234342 Gaines et al. Dec 2003 A1
20040003545 Gillespie Jan 2004 A1
20040007980 Shibata Jan 2004 A1
20040012959 Robertson et al. Jan 2004 A1
20040036006 Dowling Feb 2004 A1
20040037088 English et al. Feb 2004 A1
20040052076 Mueller et al. Mar 2004 A1
20040062041 Cross et al. Apr 2004 A1
20040075572 Buschmann et al. Apr 2004 A1
20040080960 Wu Apr 2004 A1
20040090191 Mueller et al. May 2004 A1
20040090787 Dowling et al. May 2004 A1
20040105261 Ducharme et al. Jun 2004 A1
20040105264 Spero Jun 2004 A1
20040113568 Dowling et al. Jun 2004 A1
20040114371 Lea et al. Jun 2004 A1
20040116039 Mueller et al. Jun 2004 A1
20040124782 Yu Jul 2004 A1
20040130908 McClurg et al. Jul 2004 A1
20040130909 Mueller et al. Jul 2004 A1
20040141321 Dowling et al. Jul 2004 A1
20040145886 Fatemi Jul 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040160199 Morgan et al. Aug 2004 A1
20040178751 Mueller et al. Sep 2004 A1
20040189262 McGrath Sep 2004 A1
20040212320 Dowling et al. Oct 2004 A1
20040212321 Lys et al. Oct 2004 A1
20040212993 Morgan et al. Oct 2004 A1
20040223328 Lee et al. Nov 2004 A1
20040240890 Lys et al. Dec 2004 A1
20040251854 Matsuda et al. Dec 2004 A1
20040257007 Lys et al. Dec 2004 A1
20050013133 Yeh Jan 2005 A1
20050023536 Shackle Feb 2005 A1
20050024877 Frederick Feb 2005 A1
20050030744 Ducharme et al. Feb 2005 A1
20050035728 Schanberger et al. Feb 2005 A1
20050036300 Dowling et al. Feb 2005 A1
20050040774 Mueller et al. Feb 2005 A1
20050041161 Dowling et al. Feb 2005 A1
20050041424 Ducharme Feb 2005 A1
20050043907 Eckel et al. Feb 2005 A1
20050044617 Mueller et al. Mar 2005 A1
20050047132 Dowling et al. Mar 2005 A1
20050047134 Mueller et al. Mar 2005 A1
20050062440 Lys et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050078477 Lo Apr 2005 A1
20050093488 Hung et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107694 Jansen et al. May 2005 A1
20050110384 Peterson May 2005 A1
20050116667 Mueller et al. Jun 2005 A1
20050128751 Roberge et al. Jun 2005 A1
20050141225 Striebel Jun 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050151663 Tanguay Jul 2005 A1
20050154494 Ahmed Jul 2005 A1
20050162093 Timmermans et al. Jul 2005 A1
20050162100 Romano et al. Jul 2005 A1
20050162101 Leong et al. Jul 2005 A1
20050166634 Lieberman et al. Aug 2005 A1
20050174473 Morgan et al. Aug 2005 A1
20050174780 Park Aug 2005 A1
20050184667 Sturman et al. Aug 2005 A1
20050201112 Machi et al. Sep 2005 A1
20050206529 St.-Germain Sep 2005 A1
20050213320 Kazuhiro et al. Sep 2005 A1
20050213352 Lys Sep 2005 A1
20050213353 Lys Sep 2005 A1
20050218838 Lys Oct 2005 A1
20050218870 Lys Oct 2005 A1
20050219860 Schexnaider Oct 2005 A1
20050219872 Lys Oct 2005 A1
20050225979 Robertson et al. Oct 2005 A1
20050231133 Lys Oct 2005 A1
20050236029 Dowling Oct 2005 A1
20050236998 Mueller et al. Oct 2005 A1
20050242742 Chaeng et al. Nov 2005 A1
20050243577 Moon Nov 2005 A1
20050248299 Chemel et al. Nov 2005 A1
20050253533 Lys et al. Nov 2005 A1
20050259424 Zampini, II et al. Nov 2005 A1
20050264474 Rast Dec 2005 A1
20050265019 Sommers et al. Dec 2005 A1
20050275626 Mueller et al. Dec 2005 A1
20050276051 Caudle et al. Dec 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050276064 Wu et al. Dec 2005 A1
20050281030 Leong et al. Dec 2005 A1
20050285547 Piepgras et al. Dec 2005 A1
20060002110 Dowling et al. Jan 2006 A1
20060012987 Ducharme et al. Jan 2006 A9
20060012997 Catalano et al. Jan 2006 A1
20060016960 Morgan et al. Jan 2006 A1
20060022214 Morgan et al. Feb 2006 A1
20060028155 Young Feb 2006 A1
20060028837 Mrakovich Feb 2006 A1
20060034078 Kovacik et al. Feb 2006 A1
20060050509 Dowling et al. Mar 2006 A9
20060050514 Opolka Mar 2006 A1
20060056855 Nakagawa et al. Mar 2006 A1
20060066447 Davenport et al. Mar 2006 A1
20060076908 Morgan et al. Apr 2006 A1
20060081863 Kim et al. Apr 2006 A1
20060091826 Chen May 2006 A1
20060092640 Li May 2006 A1
20060098077 Dowling May 2006 A1
20060104058 Chemel et al. May 2006 A1
20060109648 Trenchard et al. May 2006 A1
20060109649 Ducharme et al. May 2006 A1
20060109661 Coushaine et al. May 2006 A1
20060126325 Lefebvre et al. Jun 2006 A1
20060126338 Mighetto Jun 2006 A1
20060132061 McCormick et al. Jun 2006 A1
20060132323 Grady, Jr. Jun 2006 A1
20060146531 Reo et al. Jul 2006 A1
20060152172 Mueller et al. Jul 2006 A9
20060158881 Dowling Jul 2006 A1
20060170376 Piepgras et al. Aug 2006 A1
20060192502 Brown et al. Aug 2006 A1
20060193131 McGrath et al. Aug 2006 A1
20060197661 Tracy et al. Sep 2006 A1
20060198128 Piepgras et al. Sep 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060215422 Laizure, Jr. et al. Sep 2006 A1
20060220595 Lu Oct 2006 A1
20060221606 Dowling et al. Oct 2006 A1
20060221619 Nishigaki Oct 2006 A1
20060227558 Osawa et al. Oct 2006 A1
20060232974 Lee et al. Oct 2006 A1
20060238884 Jang et al. Oct 2006 A1
20060262516 Dowling et al. Nov 2006 A9
20060262521 Piepgras et al. Nov 2006 A1
20060262544 Piepgras et al. Nov 2006 A1
20060262545 Piepgras et al. Nov 2006 A1
20060265921 Korall et al. Nov 2006 A1
20060273741 Stalker, III Dec 2006 A1
20060274529 Cao Dec 2006 A1
20060285325 Ducharme et al. Dec 2006 A1
20070035255 Shuster et al. Feb 2007 A1
20070035538 Garcia et al. Feb 2007 A1
20070035965 Holst Feb 2007 A1
20070040516 Chen Feb 2007 A1
20070041220 Lynch Feb 2007 A1
20070047227 Ducharme Mar 2007 A1
20070053182 Robertson Mar 2007 A1
20070053208 Justel et al. Mar 2007 A1
20070064419 Gandhi Mar 2007 A1
20070064425 Frecska et al. Mar 2007 A1
20070070621 Rivas et al. Mar 2007 A1
20070070631 Huang et al. Mar 2007 A1
20070081423 Chien Apr 2007 A1
20070086754 Lys et al. Apr 2007 A1
20070086912 Dowling et al. Apr 2007 A1
20070097678 Yang May 2007 A1
20070109763 Wolf et al. May 2007 A1
20070115658 Mueller et al. May 2007 A1
20070115665 Mueller et al. May 2007 A1
20070120463 Hayashi et al. May 2007 A1
20070120594 Balakrishnan et al. May 2007 A1
20070127234 Jervey, III Jun 2007 A1
20070133202 Huang et al. Jun 2007 A1
20070139938 Petroski et al. Jun 2007 A1
20070145915 Roberge et al. Jun 2007 A1
20070146126 Wang Jun 2007 A1
20070147046 Arik et al. Jun 2007 A1
20070152797 Chemel et al. Jul 2007 A1
20070152808 LaCasse Jul 2007 A1
20070153514 Dowling et al. Jul 2007 A1
20070159828 Wang Jul 2007 A1
20070165402 Weaver, Jr. et al. Jul 2007 A1
20070165405 Chen Jul 2007 A1
20070173978 Fein et al. Jul 2007 A1
20070177382 Pritchard et al. Aug 2007 A1
20070182387 Weirich Aug 2007 A1
20070188114 Lys et al. Aug 2007 A1
20070189026 Chemel et al. Aug 2007 A1
20070195526 Dowling et al. Aug 2007 A1
20070195527 Russell Aug 2007 A1
20070195532 Reisenauer et al. Aug 2007 A1
20070200725 Fredericks et al. Aug 2007 A1
20070205712 Radkov et al. Sep 2007 A1
20070206375 Piepgras et al. Sep 2007 A1
20070211461 Harwood Sep 2007 A1
20070211463 Chevalier et al. Sep 2007 A1
20070228999 Kit Oct 2007 A1
20070235751 Radkov et al. Oct 2007 A1
20070236156 Lys et al. Oct 2007 A1
20070236358 Street et al. Oct 2007 A1
20070237284 Lys et al. Oct 2007 A1
20070240346 Li et al. Oct 2007 A1
20070241657 Radkov et al. Oct 2007 A1
20070242466 Wu et al. Oct 2007 A1
20070247450 Lee Oct 2007 A1
20070247842 Zampini et al. Oct 2007 A1
20070247847 Villard Oct 2007 A1
20070247851 Villard Oct 2007 A1
20070252161 Meis et al. Nov 2007 A1
20070258231 Koerner et al. Nov 2007 A1
20070258240 Ducharme et al. Nov 2007 A1
20070263379 Dowling Nov 2007 A1
20070274070 Wedell Nov 2007 A1
20070281520 Insalaco et al. Dec 2007 A1
20070285926 Maxik Dec 2007 A1
20070285933 Southard et al. Dec 2007 A1
20070290625 He et al. Dec 2007 A1
20070291483 Lys Dec 2007 A1
20070296350 Maxik et al. Dec 2007 A1
20080003664 Tysoe et al. Jan 2008 A1
20080007945 Kelly et al. Jan 2008 A1
20080012502 Lys Jan 2008 A1
20080012506 Mueller et al. Jan 2008 A1
20080013316 Chiang Jan 2008 A1
20080013324 Yu Jan 2008 A1
20080018261 Kastner Jan 2008 A1
20080024067 Ishibashi Jan 2008 A1
20080029720 Li Feb 2008 A1
20080037226 Shin et al. Feb 2008 A1
20080037245 Chan Feb 2008 A1
20080037284 Rudisill Feb 2008 A1
20080049434 Marsh Feb 2008 A1
20080055894 Deng Mar 2008 A1
20080062680 Timmermans et al. Mar 2008 A1
20080068838 Galke et al. Mar 2008 A1
20080068839 Matheson Mar 2008 A1
20080074872 Panotopoulos Mar 2008 A1
20080089075 Hsu Apr 2008 A1
20080092800 Smith et al. Apr 2008 A1
20080093615 Lin et al. Apr 2008 A1
20080093998 Dennery et al. Apr 2008 A1
20080094819 Vaish Apr 2008 A1
20080094837 Dobbins et al. Apr 2008 A1
20080129211 Lin et al. Jun 2008 A1
20080130267 Dowling et al. Jun 2008 A1
20080150444 Usui et al. Jun 2008 A1
20080151535 de Castris Jun 2008 A1
20080158871 McAvoy et al. Jul 2008 A1
20080158887 Zhu et al. Jul 2008 A1
20080164826 Lys Jul 2008 A1
20080164827 Lys Jul 2008 A1
20080164854 Lys Jul 2008 A1
20080175003 Tsou et al. Jul 2008 A1
20080180036 Garrity et al. Jul 2008 A1
20080185961 Hong Aug 2008 A1
20080186704 Chou et al. Aug 2008 A1
20080192436 Peng et al. Aug 2008 A1
20080198598 Ward Aug 2008 A1
20080211386 Choi et al. Sep 2008 A1
20080211419 Garrity Sep 2008 A1
20080218993 Li Sep 2008 A1
20080224629 Melanson Sep 2008 A1
20080224636 Melanson Sep 2008 A1
20080253125 Kang et al. Oct 2008 A1
20080258631 Wu et al. Oct 2008 A1
20080258647 Scianna Oct 2008 A1
20080278092 Lys et al. Nov 2008 A1
20080285257 King Nov 2008 A1
20080285266 Thomas Nov 2008 A1
20080290814 Leong et al. Nov 2008 A1
20080291675 Lin et al. Nov 2008 A1
20080298080 Wu et al. Dec 2008 A1
20080310119 Giacoma Dec 2008 A1
20080315773 Pang Dec 2008 A1
20080315784 Tseng Dec 2008 A1
20090002995 Lee et al. Jan 2009 A1
20090010022 Tsai Jan 2009 A1
20090016063 Hu Jan 2009 A1
20090021140 Takasu et al. Jan 2009 A1
20090046473 Tsai et al. Feb 2009 A1
20090052186 Xue Feb 2009 A1
20090059557 Tanaka Mar 2009 A1
20090059559 Pabst et al. Mar 2009 A1
20090059603 Recker et al. Mar 2009 A1
20090067170 Bloeman et al. Mar 2009 A1
20090067182 Hsu et al. Mar 2009 A1
20090073693 Nall et al. Mar 2009 A1
20090085500 Zampini, II et al. Apr 2009 A1
20090086492 Meyer Apr 2009 A1
20090091929 Faubion Apr 2009 A1
20090091938 Jacobson et al. Apr 2009 A1
20090101930 Li Apr 2009 A1
20090139690 Maerz et al. Jun 2009 A1
20090140285 Lin et al. Jun 2009 A1
20090175041 Yuen et al. Jul 2009 A1
20090185373 Grajcar Jul 2009 A1
20090189540 Huang et al. Jul 2009 A1
20090195186 Guest et al. Aug 2009 A1
20090196034 Gherardini et al. Aug 2009 A1
20090213588 Manes Aug 2009 A1
20090219713 Siemiet et al. Sep 2009 A1
20090231831 Hsiao et al. Sep 2009 A1
20090268461 Deak et al. Oct 2009 A1
20090273924 Chiang Nov 2009 A1
20090273926 Deng Nov 2009 A1
20090284169 Valois Nov 2009 A1
20090290334 Ivey et al. Nov 2009 A1
20090295776 Yu et al. Dec 2009 A1
20090296381 Dubord Dec 2009 A1
20090303720 McGrath Dec 2009 A1
20090316408 Villard Dec 2009 A1
20100008085 Ivey et al. Jan 2010 A1
20100019689 Shan Jan 2010 A1
20100027259 Simon et al. Feb 2010 A1
20100033095 Sadwick Feb 2010 A1
20100033964 Choi et al. Feb 2010 A1
20100046210 Mathai et al. Feb 2010 A1
20100046222 Yang Feb 2010 A1
20100071946 Hashimoto Mar 2010 A1
20100073944 Chen Mar 2010 A1
20100079085 Wendt et al. Apr 2010 A1
20100096992 Yamamoto et al. Apr 2010 A1
20100096998 Beers Apr 2010 A1
20100103664 Simon et al. Apr 2010 A1
20100103673 Ivey et al. Apr 2010 A1
20100109550 Huda et al. May 2010 A1
20100109558 Chew May 2010 A1
20100141173 Negrete Jun 2010 A1
20100148650 Wu et al. Jun 2010 A1
20100149806 Yiu Jun 2010 A1
20100157608 Chen et al. Jun 2010 A1
20100164404 Shao et al. Jul 2010 A1
20100177532 Simon et al. Jul 2010 A1
20100181178 Chang et al. Jul 2010 A1
20100201269 Tzou et al. Aug 2010 A1
20100207547 Koroki et al. Aug 2010 A1
20100220469 Ivey et al. Sep 2010 A1
20100237790 Peng Sep 2010 A1
20100265732 Liu Oct 2010 A1
20100270925 Withers Oct 2010 A1
20100277069 Janik et al. Nov 2010 A1
20100289418 Langovsky Nov 2010 A1
20100308733 Shao Dec 2010 A1
20100309652 Shen et al. Dec 2010 A1
20100320922 Palazzolo et al. Dec 2010 A1
20110006658 Chan et al. Jan 2011 A1
20110090682 Zheng et al. Apr 2011 A1
20110109454 McSheffrey, Sr. May 2011 A1
20110112661 Jung et al. May 2011 A1
20110141745 Gu et al. Jun 2011 A1
20110156584 Kim Jun 2011 A1
20110176298 Meurer et al. Jul 2011 A1
20110199723 Sato Aug 2011 A1
20110199769 Bretschneider et al. Aug 2011 A1
20110204777 Lenk Aug 2011 A1
20110280010 Ou et al. Nov 2011 A1
20110291588 Tagare Dec 2011 A1
20120014086 Jonsson Jan 2012 A1
20120043892 Visser et al. Feb 2012 A1
20120063140 Kong et al. Mar 2012 A1
20120080994 Chin et al. Apr 2012 A1
20120081891 Tung et al. Apr 2012 A1
20120098439 Recker et al. Apr 2012 A1
20120106144 Chang May 2012 A1
20120113628 Burrow et al. May 2012 A1
20120127726 Yen May 2012 A1
20120146503 Negley et al. Jun 2012 A1
20120147597 Farmer Jun 2012 A1
20120153865 Rolfes et al. Jun 2012 A1
20120155073 McCanless et al. Jun 2012 A1
20120161666 Antony et al. Jun 2012 A1
20120194086 Liu et al. Aug 2012 A1
20120195032 Shew Aug 2012 A1
20120212951 Lai et al. Aug 2012 A1
20120212953 Bloom et al. Aug 2012 A1
20120230044 Zhang et al. Sep 2012 A1
20120236533 Nakamura et al. Sep 2012 A1
20120236554 Rust Sep 2012 A1
20120243216 Lai et al. Sep 2012 A1
20120243217 Szprengiel et al. Sep 2012 A1
20120274214 Radermacher et al. Nov 2012 A1
20120275154 Hood et al. Nov 2012 A1
20120293991 Lin Nov 2012 A1
20120293996 Thomas et al. Nov 2012 A1
20120300445 Chu et al. Nov 2012 A1
20120300468 Chang et al. Nov 2012 A1
20120300486 Matsushita et al. Nov 2012 A1
20120307524 Schapira et al. Dec 2012 A1
20120320598 Son Dec 2012 A1
20130039051 Wu Feb 2013 A1
20130044471 Chen Feb 2013 A1
20130044476 Bretschneider et al. Feb 2013 A1
20130050997 Bretschneider et al. Feb 2013 A1
20130050998 Chu et al. Feb 2013 A1
20130057146 Chao Mar 2013 A1
20130058079 Dellian et al. Mar 2013 A1
20130063944 Lodhie et al. Mar 2013 A1
20130077297 Wu et al. Mar 2013 A1
20130094200 Dellian et al. Apr 2013 A1
20130148349 Pasqualini et al. Jun 2013 A1
20130200797 Timmermans et al. Aug 2013 A1
20130201690 Vissenberg et al. Aug 2013 A1
20130206597 Wang et al. Aug 2013 A1
20130221867 Deppe et al. Aug 2013 A1
20130242553 Feng et al. Sep 2013 A1
20130250610 Brick et al. Sep 2013 A1
20130258668 Dellian et al. Oct 2013 A1
Foreign Referenced Citations (248)
Number Date Country
1584388 Feb 2005 CN
2766345 Mar 2006 CN
2869556 Feb 2007 CN
101016976 Aug 2007 CN
101075605 Nov 2007 CN
201129681 Oct 2008 CN
201184574 Jan 2009 CN
101737664 Jun 2010 CN
19651140 Jun 1997 DE
19624087 Dec 1997 DE
29819966 Mar 1999 DE
29900320 May 1999 DE
29817609 Jan 2000 DE
20018865 Feb 2001 DE
0013782 Mar 1983 EP
0091172 Oct 1983 EP
0124924 Sep 1987 EP
0174699 Nov 1988 EP
0197602 Nov 1990 EP
0214701 Mar 1992 EP
0262713 Jun 1992 EP
0203668 Feb 1993 EP
0272749 Aug 1993 EP
0337567 Nov 1993 EP
0390262 Dec 1993 EP
0359329 Mar 1994 EP
0403011 Apr 1994 EP
0632511 Jan 1995 EP
0432848 Apr 1995 EP
0659531 Jun 1995 EP
0403001 Aug 1995 EP
0525876 May 1996 EP
0714556 Jan 1999 EP
0889283 Jul 1999 EP
0458408 Sep 1999 EP
0578302 Sep 1999 EP
0723701 Jan 2000 EP
0787419 May 2001 EP
1195740 Apr 2002 EP
1016062 Aug 2002 EP
1195740 Jan 2003 EP
1149510 Feb 2003 EP
1056993 Mar 2003 EP
0766436 May 2003 EP
0924281 May 2003 EP
0826167 Jun 2003 EP
1147686 Jan 2004 EP
1142452 Mar 2004 EP
1145602 Mar 2004 EP
1422975 May 2004 EP
0890059 Jun 2004 EP
1348319 Jun 2005 EP
1037862 Jul 2005 EP
1346609 Aug 2005 EP
1321012 Dec 2005 EP
1610593 Dec 2005 EP
1624728 Feb 2006 EP
1415517 May 2006 EP
1415518 May 2006 EP
1438877 May 2006 EP
1166604 Jun 2006 EP
1479270 Jul 2006 EP
1348318 Aug 2006 EP
1399694 Aug 2006 EP
1461980 Oct 2006 EP
1110120 Apr 2007 EP
1440604 Apr 2007 EP
1047903 Jun 2007 EP
1500307 Jun 2007 EP
0922305 Aug 2007 EP
0922306 Aug 2007 EP
1194918 Aug 2007 EP
1833035 Sep 2007 EP
1048085 Nov 2007 EP
1852648 Nov 2007 EP
1763650 Dec 2007 EP
1776722 Jan 2008 EP
1873012 Jan 2008 EP
1459599 Feb 2008 EP
1887836 Feb 2008 EP
1579733 Apr 2008 EP
1145282 Jul 2008 EP
1157428 Sep 2008 EP
1000522 Dec 2008 EP
1502483 Dec 2008 EP
1576858 Dec 2008 EP
1646092 Jan 2009 EP
1579736 Feb 2009 EP
1889519 Mar 2009 EP
1537354 Apr 2009 EP
1518445 May 2009 EP
1337784 Jun 2009 EP
2013530 Aug 2009 EP
1461982 Sep 2009 EP
2333407 Jun 2011 EP
2430888 Mar 2012 EP
2469155 Jun 2012 EP
2573457 Mar 2013 EP
2554895 Jun 2013 EP
2813115 Feb 2002 FR
2215024 Sep 1989 GB
2324901 Nov 1998 GB
2447257 Sep 2008 GB
2472345 Feb 2011 GB
2486410 Jun 2012 GB
2495647 Apr 2013 GB
S68248271A Oct 1987 JP
06-054289 Feb 1994 JP
H6-54103 Jul 1994 JP
07-249467 Sep 1995 JP
7264036 Oct 1995 JP
08-162677 Jun 1996 JP
H11-135274 May 1999 JP
H11-162234 Jun 1999 JP
H11-260125 Sep 1999 JP
2001-238272 Aug 2001 JP
2001-291406 Oct 2001 JP
2002-141555 May 2002 JP
3098271 Feb 2004 JP
2004-119078 Apr 2004 JP
2004-273234 Sep 2004 JP
2004-335426 Nov 2004 JP
2005-158363 Jun 2005 JP
2005-166617 Jun 2005 JP
2005-347214 Dec 2005 JP
2006-507641 Mar 2006 JP
2005-322866 Dec 2006 JP
2007-227342 Sep 2007 JP
3139714 Feb 2008 JP
2008-186758 Aug 2008 JP
2008-258124 Oct 2008 JP
2008-293753 Dec 2008 JP
3154200 Sep 2009 JP
2010-15754 Jan 2010 JP
2010-192229 Sep 2010 JP
2010-205553 Sep 2010 JP
5102530 Dec 2012 JP
10-2004-0008244 Jan 2004 KR
10-2006-0112113 Oct 2006 KR
20-0430022 Nov 2006 KR
10-2006-0133784 Dec 2006 KR
10-2007-0063595 Jun 2007 KR
10-0781652 Dec 2007 KR
10-0844538 Jul 2008 KR
10-0888669 Mar 2009 KR
10-0927851 Nov 2009 KR
M337036 Jul 2008 TW
M349465 Jan 2009 TW
WO9906759 Feb 1999 WO
WO9910867 Mar 1999 WO
WO9931560 Jun 1999 WO
WO9945312 Sep 1999 WO
WO9957945 Nov 1999 WO
WO0001067 Jan 2000 WO
WO0225842 Mar 2002 WO
WO02061330 Aug 2002 WO
WO02069306 Sep 2002 WO
WO02091805 Nov 2002 WO
WO02098182 Dec 2002 WO
WO02099780 Dec 2002 WO
WO03026358 Mar 2003 WO
WO03055273 Jul 2003 WO
WO03067934 Aug 2003 WO
WO03090890 Nov 2003 WO
WO03096761 Nov 2003 WO
WO2004021747 Mar 2004 WO
WO2004023850 Mar 2004 WO
WO2004032572 Apr 2004 WO
WO2004057924 Jul 2004 WO
WO2004100624 Nov 2004 WO
WO2005031860 Apr 2005 WO
WO2005052751 Jun 2005 WO
WO2005060309 Jun 2005 WO
WO2005116519 Aug 2005 WO
WO2005084339 Sep 2005 WO
WO2005089293 Sep 2005 WO
WO2005089309 Sep 2005 WO
WO2005103555 Nov 2005 WO
WO2006023149 Mar 2006 WO
WO2006044328 Apr 2006 WO
WO2006046207 May 2006 WO
WO2006056120 Jun 2006 WO
WO2006093889 Sep 2006 WO
WO2006095315 Sep 2006 WO
WO2006095316 Sep 2006 WO
WO2006127666 Nov 2006 WO
WO2006127785 Nov 2006 WO
WO2006133272 Dec 2006 WO
WO2006137686 Dec 2006 WO
WO2007004679 Jan 2007 WO
WO2007081674 Jul 2007 WO
WO2007090292 Aug 2007 WO
WO2007094810 Aug 2007 WO
WO2008018002 Feb 2008 WO
WO2008027093 Mar 2008 WO
WO2008061991 May 2008 WO
WO2008110978 Sep 2008 WO
WO2008129488 Oct 2008 WO
WO2008137460 Nov 2008 WO
WO2009061124 May 2009 WO
WO2009067074 May 2009 WO
WO2009111978 Sep 2009 WO
WO2009143047 Nov 2009 WO
WO2010014437 Feb 2010 WO
WO2010030509 Mar 2010 WO
WO2010047896 Apr 2010 WO
WO2010047898 Apr 2010 WO
WO2010047973 Apr 2010 WO
WO2010069983 Jun 2010 WO
WO2010083370 Jul 2010 WO
WO2010088105 Aug 2010 WO
WO2010132625 Nov 2010 WO
WO2010141537 Dec 2010 WO
WO2011005562 Jan 2011 WO
WO2011005579 Jan 2011 WO
WO2011021719 Feb 2011 WO
WO2011072308 Jun 2011 WO
WO2011074884 Jun 2011 WO
WO2011113709 Sep 2011 WO
WO2011117059 Sep 2011 WO
WO2011159436 Dec 2011 WO
WO2012001584 Jan 2012 WO
WO2012004708 Jan 2012 WO
WO2012007899 Jan 2012 WO
WO2012019535 Feb 2012 WO
WO2012025626 Mar 2012 WO
WO2012063174 May 2012 WO
WO2012117018 Sep 2012 WO
WO2012129301 Sep 2012 WO
WO2012131522 Oct 2012 WO
WO2012131547 Oct 2012 WO
WO2013028965 Feb 2013 WO
WO2013029960 Mar 2013 WO
WO2013030128 Mar 2013 WO
WO2013045255 Apr 2013 WO
WO2013045439 Apr 2013 WO
WO2013057660 Apr 2013 WO
WO2013079242 Jun 2013 WO
WO2013088299 Jun 2013 WO
WO2013097823 Jul 2013 WO
WO2013098700 Jul 2013 WO
WO2013113548 Aug 2013 WO
WO2013113661 Aug 2013 WO
WO2013121347 Aug 2013 WO
WO2013132383 Sep 2013 WO
WO2013135527 Sep 2013 WO
WO2013156905 Oct 2013 WO
WO2013167419 Nov 2013 WO
Non-Patent Literature Citations (78)
Entry
Best Practice Guide—Commercial Office Buildings—Central HVAC System. [online], [Retrieved on Jan. 17, 2008] Retrieved from Flex Your Power Organization web page using Internet <URL: http://www.fypower.org/bpg/module.html?b=offices&m+Central HVAC Systems&s=Contr . . . >.
Airport International. Fly High With Intelligent Airport Building and Security Solutions [online], [retrieved on Oct. 24, 2008]. Retrieved from Airport International web page using Internet <URL: http://www.airport-int.com/categories/airport-building-and-security-solutions/fly-high-with-intelligent-airport-building-and-security-solutions.html>.
Cornell University. Light Canopy—Cornell University Solar Decathlon, [online], [retrieved on Jan. 17, 2008] Retrieved from Cornell University web page using Internet <URL: http://cusd.cornell.edu/cusd/web/index.php/page/show/section/Design/page/controls>.
D.N.A.-III, [online], [retrieved Mar. 10, 2009] Retrieved from the PLC Lighting Web Page using Internet <URL: http://www.plclighting.com/product—info.php?cPath=1&products—id=92>.
E20112-22 Starburst Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20112-22>.
E20116-18 Larmes Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20116-18>.
E20524-10 & E20525-10 Curva Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20524-10 & E20525-10>.
E20743-09 Stealth Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E20743-09>.
E22201-44 Esprit Collection, [online], [retrieved on Jul. 10, 2010] Retrieved from ET2 Contemporary Lighting using Internet <URL: http://www.et2online.com/proddetail.aspx?ItemID=E22201-44>.
Extended European Search Report for co-pending European Application No. 10 73 2124 mailed on Dec. 13, 2012 in 8 pages.
Extended European Search Report for co-pending European Application No. 09822425.6 mailed on Aug. 30, 2012 in 9 pages.
Extended European Search Report for co-pending European Application No. 10797596.3 mailed on Jan. 17, 2013 in 11pages.
Extended European Search Report for co-pending European Application No. 10736237.8 mailed on Oct. 19, 2012 in 5 pages.
Extended European Search Report for co-pending European Application No. 10738925.6 mailed on Oct. 1, 2012 in 7 pages.
Extended European Search Report for co-pending European Application No. 11760309 mailed on Sep. 30, 2013 in 7 pages.
Examination and Search Report mailed on Jul. 2, 2012 in cooresponding United Kingdom Application No. 1018896.9 in 4 pages.
Experiment Electronic Ballast. Electronic Ballast for Fluorescent Lamps [online], Revised Fall of 2007. [Retrieved on Sep. 1, 1997]. Retrieved from Virginia Tech Web Page using Internet <URL: http://www.ece.vt.edu/ece3354/labs/ballast.pdf.>.
Henson, Keith. The Benefits of Building Systems Integration, Access Control & Security Systems Integration, Oct. 1, 2000, Penton Media. [online], [retrieved on Oct. 24, 2008] Retrieved from Security Solutions Web page using Internet <URL: http://securitysolutions.com/mag/security—benefits—building—systems/>.
Hightower et al, “A Survey and Taxonomy of Location Systems for Ubiquitous Computing”, University of Washington, Computer Science and Engineering, Technical Report UW-CSE Jan. 8, 2003, IEEE, Aug. 24, 2001 in 29 pages.
International Search Report and Written Opinion dated Jan. 4, 2010 from the corresponding International Application No. PCT/US2009/044313 filed May 18, 2009.
International Search Report and Written Opinion dated Feb. 7, 2011 from the corresponding International Application No. PCT/US2010/039678 filed Jun. 23, 2010.
International Search Report and Written Opinion dated May 7, 2010 from the corresponding International Application No. PCT/US2009/057109 filed on Sep. 16, 2009.
International Search Report and Written Opinion dated Apr. 8, 2010 from the corresponding International Application No. PCT/2009/055114 filed on Aug. 27, 2009.
International Search Report and Written Opinion dated Feb. 8, 2011 from the corresponding International Application No. PCT/US2010/039608 filed Jun. 23, 2010.
International Search Report and Written Opinion dated Dec. 13, 2010 from the corresponding International Application No. PCT/US2010/037006 filed Jun. 2, 2010.
International Search Report and Written Opinion dated Mar. 13, 2012 from the corresponding International Application No. PCT/US2011/052995 filed on Sep. 23, 2011.
International Search Report and Written Opinion dated May 14, 2010 from the corresponding International Application No. PCT/US2009/060085 filed Oct. 9, 2009.
International Search Report and Written Opinion dated Aug. 16, 2010 from the corresponding International Application No. PCT/US2010/021131 filed on Jan. 15, 2010.
International Search Report and Written Opinion dated Jul. 16, 2009 from the corresponding International Application No. PCT/US2008/084650 filed Nov. 25, 2008.
International Search Report and Written Opinion dated Aug. 17, 2010 from the corresponding International Application No. PCT/US2010/021489 filed on Jan. 20, 2010.
International Search Report and Written Opinion dated Jul. 17, 2009 from the corresponding International Application No. PCT/US2008/085118 filed Dec. 1, 2008.
International Search Report and Written Opinion dated Nov. 21, 2011 from the corresponding International Application No. PCT/US2011/029932 filed on Mar. 25, 2011.
International Search Report and Written Opinion dated Mar. 22, 2010 from the corresponding International Application No. PCT/US2009/053853 filed Aug. 14, 2009.
International Search Report and Written Opinion dated Nov. 23, 2011 from the corresponding International Application No. PCT/US2011/042761 filed on Jul. 1, 2011.
International Search Report and Written Opinion dated Nov. 23, 2011 from the corresponding International Application No. PCT/US2011/042775 filed on Jul. 1, 2011.
International Search Report and Written Opinion dated Dec. 24, 2010 from the corresponding International Application No. PCT/US2010/034635 filed May 13, 2010.
International Search Report and Written Opinion dated May 24, 2010 from the corresponding International Application No. PCT/2009/060083 filed Oct. 9, 2009.
International Search Report and Written Opinion dated May 24, 2010 from the corresponding International Application No. PCT/US2009/060087 filed Oct. 9, 2009.
International Search Report and Written Opinion dated Aug. 25, 2009 from corresponding International Application No. PCT/US2009/031049 filed Jan. 15, 2009.
International Search Report and Written Opinion dated Jan. 25, 2010 from the corresponding International Application No. PCT/US2009/048623 filed Jun. 25, 2009.
International Search Report and Written Opinion dated Feb. 26, 2010 from the corresponding International Application No. PCT/US2009/050949 filed Jul. 17, 2009.
International Search Report and Written Opinion dated Apr. 30, 2010 from the corresponding International Application No. PCT/US2009/057072 filed on Sep. 16, 2009.
International Search Report and Written Opinion dated Jul. 30, 2010 from the corresponding International Application No. PCT/US2010/021448 filed on Jan. 20, 2010.
International Search Report and Written Opinion dated Sep. 30, 2011 from the corresponding International Application No. PCT/US2011/029905 filed on Mar. 25, 2011.
International Search Report and Written Opinion dated Feb. 6, 2012 from the corresponding International Application No. PCT/US2011/043524 filed on Jul. 11, 2011.
International Search Report and Written Opinion dated Feb. 15, 2013 from the corresponding International Application No. PCT/US22012/052244 filed on Aug. 24, 2012.
International Search Report and Written Opinion dated Aug. 30, 2011 for the corresponding International Application No. PCT/US2011/029994 filed Mar. 25, 2011.
International Search Report and Written Opinion dated Aug. 13, 2013 for the corresponding International Application No. PCT/US2013/028669 filed Mar. 1, 2013.
International Search Report and Written Opinion dated Sep. 23, 2013 for the corresponding International Application No. PCT/US2013/049432 filed Jul. 5, 2013.
International Search Report and Written Opinion dated Oct. 10, 2013 for the corresponding International Application No. PCT/US2013/049427 filed Jul. 5, 2013.
Notification of Transmittal, the International Search Report and the Written Opinion of the International Searching Authority dated May 7, 2012, from the corresponding International Application No. PCT/US2011/064151.
Lawrence Berkeley National Labratory. Lighting Control System—Phase Cut Carrier. University of California, [online] [retrieved on Jan. 14, 2008] Retrieved from Lawrence Berkeley National Labratory web page using Internet <URL: http://www.lbl.gov/tt/techs/lbnl1871.html>.
LCD Optics 101 Tutorial [online]. 3M Corporation, [retrieved on Jan. 6, 2010]. Retrieved from the internet: <URL: http://solutions.3m.com/wps/portal/3M/en—US/Vikuiti1/BrandProducts/secondary/optics101/>.
LED Lights, Replacement LED lamps for any incandescent light, [online], [retrieved on Jan. 13, 2000] Retrieved from LED Lights Web Page using Internet <URL: http://www.ledlights.com/replac.htm>.
Ledtronics, Ledtronics Catalog, 1996, p. 10, Ledtronics, Torrance, California.
Phason Electronic Control Systems, Light Level Controller (LLC) case study. Nov. 30, 2004. 3 pages, Phason Inc., Winnipeg, Manitoba, Canada.
Philips. Sense and Simplicity—Licensing program for LED Luminaires and Retrofits, Philips Intellectual Property & Standards, May 5, 2009.
Piper. The Best Path to Efficiency. Building Operating Management, Trade Press Publishing Company May 2000 [online], [retrieved on Jan. 17, 2008]. Retrieved from Find Articles Web Page using Internet <URL:http://findarticles.com/p/articles/mi—qu3922/is—200005/ai—n8899499/>.
PLC-81756-AL “Fireball” Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http://www.arcadianlighting .com/plc-81756-al.html>.
PLC-96973-PC PLC Lighting Elegance Modern/Contemporary Pendant Light, [online], [retrieved on Feb. 27, 2009] Retrieved from the Arcadian Lighting Web Page using Internet <URL: http/www.arcadianlighting.com/plc-96978-pc.html>.
Saha et al, “Location Determination of a Mobile Device using IEEE 802.11 Access Point Signals”, May 5, 2002 in 20 pages.
Sensor Switch, nLight Lighting Control System, [online], [retrieved on Jan. 11, 2008] Retrieved from Sensor Switch web page using Internet <URL: http://www.sensorswitch.com>.
Six Strategies, [online], [retrieved on Jan. 11, 2008] Retrieved from Encelium Technologies Inc. Web Page using Internet <URL: http://www.encelium.com/products/strategies.html>.
Spencer, Eugene. High Sales, Low Utilization. Green Intelligent Buildings, Feb. 1, 2007. [online]. Retrieved from Green Intelligent Buildings web page using Internet <URL: http://www.greenintelligentbuildings.com/CDA/IBT—Archive/BNP—GUID—9-5-2006—A—10000000000000056772>.
Supplementary European Search Report for corresponding European Application No. 10797603.7 mailed Aug. 5, 2013 in 5 pages.
Supplementary European Search Report for corresponding European Application No. 09822381.1 mailed Jan. 4, 2013 in 5 pages.
Supplementary European Search Report dated Feb. 22, 2012 from European Patent Application No. 09822424.9.
Telecite Products & Services—Display Options, [online], [retrieved on Jan. 13, 2000] Retrieved from Telecite Web page using Internet <URL: http://www.telecite.com/en/products/options en.htm>.
Traffic Signal Products—Transportation Products Group, [online], [retrieved on Jan. 13, 2000] Retrieved from the Dialight Web Page using Internet <URL: http://www.dialight.com/trans.htm>.
Truck-Lite, LEDSelect—LED, Model 35, Clearance & Marker Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds14.html>.
Truck-Lite, LEDSelect—LED, Model 45, Stop, Turn & Tail Lighting [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds4.html>.
Truck-Lite, LEDSelect—LED, Super 44, Stop, Turn & Tail Lighting, [online], [retrieved on Jan. 13, 2000] Retrieved from Truck-Lite Web Page using Internet <URL: http://trucklite.com/leds2.html>.
Wolsey, Robert. Interoperable Systems: The Future of Lighting Control, Lighting Research Center, Jan. 1, 1997, vol. 2 No. 2, Rensselaer Polytechnic Institute, Troy, New York [online]. Retrieved Lighting Research Center Web Page using Internet <URL: http://www.lrc.rpi.edu/programs/Futures/LF-BAS/index.asp>.
Notification of Transmittal, the International Search Report and the Written Opinion of the International Searching Authority dated May 7, 2012 from the corresponding International Application No. PCT/US2011/058312.
Bose, “Modern Power Electronics, Evolution, Technology and Applications”, 1992, IEEE Press, pp. 14-15.
Kularatna, “Power Electronics Design Handbook, Low-power Components and Applications”, 1998, Newns, pp. 71-75.
Lighting Handbook, 8th Edition, Illuminating Engineering Society of North America, 1993, pp. 237-240.
Hodapp, “Chapter 6: Applications for High-Brightness Light-Emitting Diodes”, Hodapp, Academic Press, 1997, pp. 334-336, “High Brightness Light Emitting Diodes”, Stringfellow et al., volume editors.
Related Publications (1)
Number Date Country
20140268727 A1 Sep 2014 US
Provisional Applications (2)
Number Date Country
61783217 Mar 2013 US
61846712 Jul 2013 US