DIGITAL BIOMARKER

Information

  • Patent Application
  • 20220104729
  • Publication Number
    20220104729
  • Date Filed
    December 16, 2021
    3 years ago
  • Date Published
    April 07, 2022
    2 years ago
Abstract
Currently, assessing the severity and progression of symptoms in a subject diagnosed with a muscular disability, in particular SMA involves in-clinic monitoring and testing of the subject every 6 to 12 months. However, monitoring and testing a subject more frequently is preferred, but increasing the frequency of in-clinic monitoring and testing can be costly and inconvenient to the subject. Thus, assessing the severity and progression of symptoms via remote monitoring and testing of the subject outside of a clinic environment as described herein provides advantages in cost, ease of monitoring and convenience to the subject. Systems, methods and devices according to the present disclosure provide a diagnostic for assessing of the distal motor function of a subject having a muscular disability, in particular SMA by active testing of the subject.
Description
FIELD

Present invention relates to a medical device for improved subject testing and subject analysis. More specifically, aspects described herein provide diagnostic devices, systems and methods for assessing symptom severity and progression of a muscular disability, in particular spinal muscular atrophy (SMA) in a subject by active testing of the subject.


BACKGROUND

Spinal muscular atrophy (SMA) is an autosomal recessive disease also called proximal spinal muscular atrophy and 5q spinal muscular atrophy. It is a life-threatening, neuromuscular disorder with low prevalence associated with loss of motor neurons and progressive muscle wasting.


SMA has become a health problem and also a significant economic burden for their health systems. Since SMA is a clinically heterogeneous disease of the CNS, diagnostic tools are needed that allow a reliable diagnosis and identification of the present disease status and symptom progression and can, thus, aid an accurate treatment.


There are several standardized methods and tests for measuring the symptom severity and progression in subjects diagnosed with SMA. The test involves a doctor measuring the subject's abilities to perform the physical function. These standardized tests can provide an assessment of the various symptoms, in particular distal motor function, and can help track changes in these symptoms over time. Assessing symptom severity and progression using standardized methods and tests can, therefore, help guide treatment and therapy options.


Currently, assessing the severity and progression of symptoms in a subject diagnosed with a muscular disability, in particular SMA, involves in-clinic monitoring and testing of the subject every 6 to 12 months (http://www.motor-function-measure.org/user-s-manual.aspx, MFM004, MFM017, MFM018, MFM019, MFM020, MFM021, MFM022, MFM-17,18,19,22). While monitoring and testing a subject more frequently is ideal, increasing the frequency of in-clinic monitoring and testing can be costly and inconvenient to the subject.


BRIEF SUMMARY

The following presents a simplified summary of various aspects described herein. This summary is not an extensive overview, and is not intended to identify key or critical elements or to delineate the scope of the claims. The following summary merely presents some concepts in a simplified form as an introductory prelude to the more detailed description provided below. Aspects described herein describe specialized medical devices for assessing the severity and progression of symptoms for a subject diagnosed with a muscular disability, in particular SMA. Testing and monitoring may be done remotely and outside of a clinic environment, thereby providing lower cost, increased frequency, and simplified ease and convenience to the subject, resulting in improved detection of symptom progression, which in turn results in better treatment.


According to one aspect, the disclosure relates to a diagnostic device for assessing the distal motor function of a muscular disability, in particular SMA, in a subject. The device includes at least one processor, one or more sensors associated with the device, and memory storing computer-readable instructions that, when executed by the at least one processor, cause the device to receive a plurality of first sensor data via the one or more sensors associated with the device, extract, from the received first sensor data, a first plurality of features associated with the distal motor function of a muscular disability, in particular SMA, in the subject, and determine a first assessment of the distal motor function of a muscular disability, in particular SMA, based on the extracted first plurality of features.


Some embodiments are listed below:

    • E1 A diagnostic device for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the device comprising:
    • at least one processor;
    • one or more sensors associated with the device; and
    • memory storing computer-readable instructions that, when executed by the at least one processor, cause the device to:
    • receive a plurality of first sensor data via the one or more sensors associated with the device;
    • extract, from the received first sensor data, a first plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; and
    • determine a first assessment of the distal motor function of said subject based on the extracted first plurality of features.


E2 The device of E1, wherein the computer-readable instructions, when executed by the at least one processor, further cause the device to:

    • prompt the subject to perform the diagnostic tasks of squeezing as many tomatoes as possible by pinching them between thumb and index finger of the same hand in a time period of 30 s;
    • in response to the subject performing the diagnostic tasks, receive a plurality of second sensor data via the one or more sensors associated with the device;
    • extract, from the received second sensor data, a second plurality of features associated with the distal motor function of said subject; and
    • determine a second assessment of the distal motor function of said subject based on the extracted second plurality of features.


E3 The device of any one of E1-E2, wherein the device is a smartphone.


E4 The device of any one of E1-E3, wherein the diagnostic tasks are associated with at least one of a muscle function test.


E5 A computer-implemented method for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the method comprising:

    • receiving a plurality of first sensor data via one or more sensors associated with a device;
    • extracting, from the received first sensor data, a first plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; and
    • determining a first assessment of the distal motor function of a subject with a muscular disability, in particular SMA, based on the extracted first plurality of features.


E6 The computer-implemented method of E5, further comprising:

    • prompting the subject to perform one or more diagnostic tasks;
    • in response to the subject performing the one or more diagnostics tasks, receiving, a plurality of second sensor data via the one or more sensors;
    • extracting, from the received second sensor data, a second plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; and
    • determining a second assessment of the distal motor function of a subject with a muscular disability, in particular SMA, based on at least the extracted second sensor data.


E7 The computer-implemented method of any one of E5-E6, whereby the subject's distal motor function is assessed based on an active task, in particular the amount of squeezed tomatoes obtained by pinching them between thumb and index finger of the same hand in a time period of 30 s.


E8 The device of any one of E1-E4 or the computer-implemented method of any one of E5-E7, wherein the subject is human.


E9 A non-transitory machine readable storage medium comprising machine-readable instructions for causing a processor to execute a method for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the method comprising:

    • receiving a plurality of sensor data via one or more sensors associated with a device;
    • extracting, from the received sensor data, a plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; and
    • determining an assessment of the distal motor function of a subject with a muscular disability, in particular SMA based on the extracted plurality of features.


E10 A method assessing a muscular disability, in particular SMA, in a subject comprising the steps of:

    • determining the usage behavior parameter from a dataset comprising usage data for a device according to any one of E1-E4 within a first predefined time window wherein said device has been used by the subject; and
    • comparing the determined at least one usage behavior parameter to a reference, whereby a subject with a muscular disability, in particular SMA, will be assessed.


E11 A method of identifying a subject for having a subject with a muscular disability, in particular SMA, comprising

    • i) scoring a subject on the diagnostic tasks of squeezing as many tomatoes as possible by pinching them between thumb and index finger of the same hand in a time period of 30 s,
    • ii) comparing the determined score to a reference, whereby a muscular disability, in particular SMA, will be assessed.


E12 The method of E11, further comprising administering a pharmaceutically active agent to the subject to decrease likelihood of progression of a muscular disability, in particular SMA, in particular wherein the pharmaceutically active agent is suitable to treat


SMA in a subject, in particular a m7GpppX Diphosphatase (DCPS) Inhibitors, Survival Motor Neuron Protein 1 Modulators, SMN2 Expression Inhibitors, SMN2 Splicing Modulators, SMN2 Expression Enhancers, Survival Motor Neuron Protein 2 Modulators or SMN-AS1 (Long Non-Coding RNA derived from SMN1) Inhibitors, more particular Nusinersen, Onasemnogene abeparvovec, Risdiplam or Branaplam.


E13 A combination of the method according to E12, whereby a determined at least one parameter being better compared to the reference parameter of said patient before said subject received treatment with the pharmaceutical agent.


E14 A method according to E12-E13, whereby the subject is human.


E15 A method according to E12-E14, whereby the agent is Risdiplam.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of aspects described herein and the advantages thereof may be acquired by referring to the following description in consideration of the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 is a diagram of an example environment in which a diagnostic device for assessing distal motor function of a muscular disability, in particular SMA, in a subject is provided according to an example embodiment.



FIG. 2 is a flow diagram of a method for assessing the distal motor function of a muscular disability, in particular SMA, in a subject based on active testing of the subject according to an example embodiment.



FIG. 3 illustrates one example of a network architecture and data processing device that may be used to implement one or more illustrative aspects described herein.



FIG. 4 depict an example illustrating the diagnostic application according to one or more illustrative aspects described herein.



FIG. 5 are plots illustrating the sensor feature results according to example 1.





DETAILED DESCRIPTION

In the following description of various aspects, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration various embodiments in which aspects described herein may be practiced. It is to be understood that other aspects and/or embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the described aspects and embodiments. Aspects described herein are capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. Rather, the phrases and terms used herein are to be given their broadest interpretation and meaning. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. The use of the terms “mounted,” “connected,” “coupled,” “positioned,” “engaged” and similar terms, is meant to include both direct and indirect mounting, connecting, coupling, positioning and engaging.


Systems, methods and devices described herein provide a diagnostic for assessing the distal motor function of a muscular disability, in particular SMA, in a subject. In some embodiments, the diagnostic may be provided to the subject as a software application installed on a mobile device, in particular a smartphone.


In some embodiments, the diagnostic obtains or receives sensor data from one or more sensors associated with the mobile device as the subject performs activities of daily life. In some embodiments, the sensors may be within the mobile device like a smartphone or wearable sensors like a smartwatch. In some embodiments, the sensor features associated with the symptoms of a muscular disability, in particular SMA, are extracted from the received or obtained sensor data. In some embodiments, the assessment of the symptom severity and progression of a muscular disability, in particular SMA, in the subject is determined based on the extracted sensor features.


In some embodiments, systems, methods and devices according to the present disclosure provide a diagnostic for assessing a muscular disability, in particular SMA, in a subject based on active testing of the subject. In some embodiments, the diagnostic prompts the subject to perform diagnostic tasks. In some embodiments, the diagnostic tasks are anchored in or modelled after established methods and standardized tests. In some embodiments, in response to the subject performing the diagnostic task, the diagnostic obtains or receives sensor data via one or more sensors. In some embodiments, the sensors may be within a mobile device or wearable sensors worn by the subject. In some embodiments, sensor features associated with the symptoms of a muscular disability, in particular SMA, are extracted from the received or obtained sensor data. In some embodiments, the assessment of the symptom severity and progression of a muscular disability, in particular SMA, in the subject is determined based on the extracted features of the sensor data.


Assessments of symptom severity and progression of a muscular disability, in particular SMA, using diagnostics according to the present disclosure correlate sufficiently with the assessments based on clinical results and may thus replace clinical subject monitoring and testing.


Example diagnostics according to the present disclosure may be used in an out of clinic environment, and therefore have advantages in cost, ease of subject monitoring and convenience to the subject. This facilitates frequent, in particular daily, subject monitoring and testing, resulting in a better understanding of the disease stage and provides insights about the disease that are useful to both the clinical and research community. An example diagnostic according to the present disclosure can provide earlier detection of even small changes in the distal motor function of a muscular disability, in particular SMA, in a subject and can therefore be used for better disease management including individualized therapy.



FIG. 1 is a diagram of an example environment in which a diagnostic device 105 for assessing the distal motor function of a muscular disability, in particular SMA, in a subject 110 is provided. In some embodiments, the device 105 may be a smartphone, a smartwatch or other mobile computing device. The device 105 includes a display screen 160. In some embodiments, the display screen 160 may be a touchscreen. The device 105 includes at least one processor 115 and a memory 125 storing computer-instructions for a symptom monitoring application 130 that, when executed by the at least one processor 115, cause the device 105 to assess the distal motor function of a muscular disability, in particular SMA. The device 105 receives a plurality of sensor data via one or more sensors associated with the device 105. In some embodiments, the one or more sensors associated with the device is at least one of a sensor disposed within the device or a sensor worn by the subject and configured to communicate with the device. In FIG. 1, the sensors associated with the device 105 include a first sensor 120a that is disposed within the device 105 and a second sensor 120b that is disposed within another device configured to be worn by the subject 110. The device 105 receives a plurality of first sensor data via the first sensor 120a and a plurality of second sensor data via the second sensor 120b as the subject 110 performs activities.


The device 105 extracts, from the received first sensor data and second sensor data, features associated with the distal motor function of a muscular disability, in particular SMA, in the subject 110. In some embodiments, the symptoms of a muscular disability, in particular SMA, in the subject 110 may include a symptom indicative of a distal motor function of the subject 110, a symptom indicative of the distal motor function of the subject 110.


In some embodiments, the sensors 120 associated with the device 105 may include sensors associated with Bluetooth and WiFi functionality and the sensor data may include information associated with the Bluetooth and WiFi signals received by the sensors 120. In some embodiments, the device 105 extracts data corresponding to the density of Bluetooth and WiFi signals received or transmitted by the device 105 or sensors, from the received first sensor data and second sensor data. In some embodiments, an assessment of the distal motor function of the subject 110 may be based on the extracted Bluetooth and WiFi signal data (e.g., an assessment of subject sociability may be based in part on the density of Bluetooth and WiFi signals picked up).


The device 105 determines an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features of the received first and second sensor data. In some embodiments, the device 105 send the extracted features over a network 180 to a server 150. The server 150 includes at least one processor 155 and a memory 161 storing computer-instructions for a symptom assessment application 170 that, when executed by the server processor 155, cause the processor 155 to determine an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features received by the server 150 from the device 105. In some embodiments, the symptom assessment application 170 may determine an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features of the sensor data received from the device 105 and a subject database 175 stored in the memory 160. In some embodiments, the subject database 175 may include subject and/or clinical data. In some embodiments, the subject database 175 may include in-clinic and sensor-based measures of the distal motor function at baseline and longitudinal from a muscular disability, in particular SMA, subjects. In some embodiments, the subject database 175 may be independent of the server 150.


In some embodiments, the server 150 sends the determined assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 to the device 105. In some embodiments, the device 105 may output the assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 In some embodiments, the device 105 may communicate information to the subject 110 based on the assessment. In some embodiments, the assessment of the distal motor function of a muscular disability, in particular SMA, may be communicated to a clinician that may determine individualized therapy for the subject 110 based on the assessment.


In some embodiments, the computer-instructions for the symptom monitoring application 130, when executed by the at least one processor 115, cause the device 105 to assess the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on active testing of the subject 110. The device 105 prompts the subject 110 to perform one or more tasks. In some embodiments, prompting the subject to perform the one or more diagnostic tasks includes prompting the subject to transcribe pre-specified sentences or prompting the subject to perform one or more actions. In some embodiments, the diagnostic tasks are anchored in or modelled after well-established methods and standardized tests for evaluating and assessing a muscular disability, in particular SMA.


According to the disclosed embodiments herein, sensors can be, for example, motion sensors.


In response to the subject 110 performing the one or more diagnostic tasks, the diagnostic device 105 receives a plurality of sensor data via the one or more sensors associated with the device 105. As mentioned above, the sensors associated with the device 105 may include a first sensor 120a that is disposed within the device 105 and a second sensor 120b that is disposed within another device configured to be worn by the subject 110. The device 105 receives a plurality of first sensor data via the first sensor 120a and a plurality of second sensor data via the second sensor 120b. In some embodiments, the one or more diagnostic tasks may be associated with the distal motor function measurement, in particular measure of the time difference between fingers touching glass (double touch asynchronicity) when performing the task.


The device 105 extracts, from the received plurality of first sensor data and the received plurality of second sensor data, features associated with the distal motor function of a muscular disability, in particular SMA, in the subject 110. The symptoms of a muscular disability, in particular SMA, in the subject 110 may include a symptom indicative of the distal motor function of the subject 110.


The device 105 determines an assessment of the distal motor function of a muscular disability, in particular SMA in the subject 110 based on the extracted features of the received first and second sensor data. In some embodiments, the device 105 sends the extracted features over a network 180 to a server 150. The server 150 may include at least one processor 155 and a memory 161 storing computer-instructions for a symptom assessment application 170 that, when executed by the server processor 155, cause the processor 155 to determine an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features received by the server 150 from the device 105. In some embodiments, the symptom assessment application 170 may determine an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features of the sensor data received from the device 105 and a subject database 175 stored in the memory 160. In some embodiments, the subject database 175 may include subject and/or clinical data. In some embodiments, the subject database 175 may include measures of the distal motor function at baseline and longitudinal from a muscular disability, in particular SMA subjects. In some embodiments, the subject database 175 may include data from subjects at other stages of a muscular disability, in particular SMA. In some embodiments, the subject database 175 may be independent of the server 150. In some embodiments, the server 150 sends the determined assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 to the device 105. In some embodiments, the device 105 may output the assessment of the distal motor function of a muscular disability, in particular SMA. In some embodiments, the device 105 may communicate information to the subject 110 based on the assessment. In some embodiments, the assessment of the distal motor function of a muscular disability, in particular SMA, may be communicated to a clinician that may determine individualized therapy for the subject 110 based on the assessment.



FIG. 2 illustrates an example method for assessing the distal motor function of a muscular disability, in particular SMA in a subject based on active testing of the subject using the example device 105 of FIG. 1. While FIG. 2 is described with reference to FIG. 1, it should be noted that the method steps of FIG. 2 may be performed by other systems. The method includes prompting the subject to perform one or more diagnostic tasks (205). The method includes receiving, in response to the subject performing the one or more tasks, a plurality of sensor data via the one or more sensors (step 210). The method includes extracting, from the received sensor data, a plurality of features associated with the distal motor function of a muscular disability, in particular SMA (215). The method includes determining an assessment of the distal motor function of a muscular disability, in particular SMA, based on at least the extracted sensor data (step 220).



FIG. 2 sets forth an example method for assessing the distal motor function of a muscular disability, in particular SMA, based on active testing of the subject 110 using the example device 105 in FIG. 1. In some embodiments, active testing of the subject 110 using the device 105 may be selected via the user interface of the symptom monitoring application 130.


The method begins by proceeding to step 205, which includes prompting the subject to perform the diagnostic task. The device 105 prompts the subject 110 to perform one or more diagnostic tasks. In some embodiments, prompting the subject to perform the one or more diagnostic tasks includes prompting the subject to perform one or more actions. In some embodiments, the diagnostic tasks are anchored in or modelled after well-established methods and standardized tests for evaluating and assessing a muscular disability, in particular SMA.


In some embodiments, the diagnostic tasks may include squeeze the tomato as often as possible within 30 seconds.


The term “Test” as used herein describe a test where a subject is asked to perform the diagnostic task as described herein.


The method proceeds to step 210, which includes in response to the subject performing the one or more diagnostics tasks, receiving, a plurality of second sensor data via the one or more sensors. In response to the subject 110 performing the one or more diagnostic tasks, the diagnostic device 105 receives, a plurality of sensor data via the one or more sensors associated with the device 105. As mentioned above, the sensors associated with the device 105 include a first sensor 120a that is disposed within the device 105 and a second sensor 120b that is disposed within another device configured to be worn by the subject 110. The device 105 receives a plurality of first sensor data via the first sensor 120a and a plurality of second sensor data via the second sensor 120b.


The method proceeds to step 215 including extracting, from the received sensor data, a second plurality of features associated with the distal motor function of a muscular disability, in particular SMA. The device 105 extracts, from the received first sensor data and second sensor data, features associated with the distal motor function of a muscular disability, in particular SMA in the subject 110. The symptoms of a muscular disability, in particular SMA, in the subject 110 may include a symptom indicative of the distal motor function of the subject 110. In some embodiments, the extracted features of the plurality of first and second sensor data may be indicative of symptoms of a muscular disability, in particular SMA, such as deviations from normal values for the distal motor function.


The method proceeds to step 220 which includes determining an assessment of the distal motor function of a muscular disability, in particular SMA, based on at least the extracted sensor data. The device 105 determines an assessment of the distal motor function of a muscular disability, in particular SMA, in the subject 110 based on the extracted features of the received first and second sensor data. In some embodiments, the device 105 may send the extracted features over a network 180 to a server 150. The server 150 includes at least one processor 155 and a memory 160 storing computer-instructions for a symptom assessment application 170 that, when executed by the processor 155, determine an assessment of the distal motor function of a muscular disability, in particular SMA in the subject 110 based on the extracted features received by the server 150 from the device 105. In some embodiments, the symptom assessment application 170 may determine an assessment of the distal motor function of a muscular disability, in particular SMA in the subject 110 based on the extracted features of sensor data received from the device 105 and a subject database 175 stored in the memory 160. The subject database 175 may include various clinical data. In some embodiments, the second device may be one or more wearable sensors. In some embodiments, the second device may be any device that includes a motion sensor with an inertial measurement unit (IMU). In some embodiments, the second device may be several devices or sensors. In some embodiments, the subject database 175 may be independent of the server 150. In some embodiments, the server 150 sends the determined assessment of the distal motor function of a muscular disability, in particular SMA in the subject 110 to the device 105. In some embodiments, such as in FIG. 1, the device 105 may output an assessment of the distal motor function of a muscular disability, in particular SMA, on the display 160 of the device 105.


As discussed above, assessments of symptom severity and progression of a muscular disability, in particular SMA, using diagnostics according to the present disclosure correlate sufficiently with the assessments based on clinical results and may thus replace clinical subject monitoring and testing. Diagnostics according to the present disclosure were studied in a group of subject with a muscular disability, in particular SMA subjects. The subjects were provided with a smartphone application that included a distal motor function test, in particular a test called “Squeeze the tomato”.



FIG. 3 illustrates one example of a network architecture and data processing device that may be used to implement one or more illustrative aspects described herein, such as the aspects described in FIGS. 1 and 2. Various network nodes 303, 305, 307, and 309 may be interconnected via a wide area network (WAN) 301, such as the Internet. Other networks may also or alternatively be used, including private intranets, corporate networks, LANs, wireless networks, personal networks (PAN), and the like. Network 301 is for illustration purposes and may be replaced with fewer or additional computer networks. A local area network (LAN) may have one or more of any known LAN topology and may use one or more of a variety of different protocols, such as Ethernet. Devices 303, 305, 307, 309 and other devices (not shown) may be connected to one or more of the networks via twisted pair wires, coaxial cable, fiber optics, radio waves or other communication media.


The term “network” as used herein and depicted in the drawings refers not only to systems in which remote storage devices are coupled together via one or more communication paths, but also to stand-alone devices that may be coupled, from time to time, to such systems that have storage capability. Consequently, the term “network” includes not only a “physical network” but also a “content network,” which is comprised of the data—attributable to a single entity—which resides across all physical networks.


The components may include data server 303, web server 305, and client computers 307, 309. Data server 303 provides overall access, control and administration of databases and control software for performing one or more illustrative aspects described herein. Data server 303 may be connected to web server 305 through which users interact with and obtain data as requested. Alternatively, data server 303 may act as a web server itself and be directly connected to the Internet. Data server 303 may be connected to web server 305 through the network 301 (e.g., the Internet), via direct or indirect connection, or via some other network. Users may interact with the data server 303 using remote computers 307, 309, e.g., using a web browser to connect to the data server 303 via one or more externally exposed web sites hosted by web server 305. Client computers 307, 309 may be used in concert with data server 303 to access data stored therein, or may be used for other purposes. For example, from client device 307 a user may access web server 305 using an Internet browser, as is known in the art, or by executing a software application that communicates with web server 305 and/or data server 303 over a computer network (such as the Internet). In some embodiments, the client computer 307 may be a smartphone, smartwatch or other mobile computing device, and may implement a diagnostic device, such as the device 105 shown in FIG. 1. In some embodiments, the data server 303 may implement a server, such as the server 150 shown in FIG. 1.


Servers and applications may be combined on the same physical machines, and retain separate virtual or logical addresses, or may reside on separate physical machines. FIG. 1 illustrates just one example of a network architecture that may be used, and those of skill in the art will appreciate that the specific network architecture and data processing devices used may vary, and are secondary to the functionality that they provide, as further described herein. For example, services provided by web server 305 and data server 303 may be combined on a single server.


Each component 303, 305, 307, 309 may be any type of known computer, server, or data processing device. Data server 303, e.g., may include a processor 311 controlling overall operation of the rate server 303. Data server 303 may further include RAM 313, ROM 315, network interface 317, input/output interfaces 319 (e.g., keyboard, mouse, display, printer, etc.), and memory 321. I/O 319 may include a variety of interface units and drives for reading, writing, displaying, and/or printing data or files. Memory 321 may further store operating system software 323 for controlling overall operation of the data processing device 303, control logic 325 for instructing data server 303 to perform aspects described herein, and other application software 327 providing secondary, support, and/or other functionality which may or may not be used in conjunction with other aspects described herein. The control logic may also be referred to herein as the data server software 325. Functionality of the data server software may refer to operations or decisions made automatically based on rules coded into the control logic, made manually by a user providing input into the system, and/or a combination of automatic processing based on user input (e.g., queries, data updates, etc.).


Memory 321 may also store data used in performance of one or more aspects described herein, including a first database 329 and a second database 331. In some embodiments, the first database may include the second database (e.g., as a separate table, report, etc.). That is, the information can be stored in a single database, or separated into different logical, virtual, or physical databases, depending on system design. Devices 305, 307, 309 may have similar or different architecture as described with respect to device 303. Those of skill in the art will appreciate that the functionality of data processing device 303 (or device 305, 307, 309) as described herein may be spread across multiple data processing devices, for example, to distribute processing load across multiple computers, to segregate transactions based on geographic location, user access level, quality of service (QoS), etc.


One or more aspects described herein may be embodied in computer-usable or readable data and/or computer-executable instructions, such as in one or more program modules, executed by one or more computers or other devices as described herein. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The modules may be written in a source code programming language that is subsequently compiled for execution, or may be written in a scripting language such as (but not limited to) HTML or XML. The computer executable instructions may be stored on a computer readable medium such as a hard disk, optical disk, removable storage media, solid state memory, RAM, etc. As will be appreciated by one of skill in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, field programmable gate arrays (FPGA), and the like. Particular data structures may be used to more effectively implement one or more aspects, and such data structures are contemplated within the scope of computer executable instructions and computer-usable data described herein.



FIG. 4 depicts an example illustrating the diagnostic test according to one or more illustrative aspects described herein. The user needs to select “Start” to begin with the task.



FIG. 5 are plots illustrating the sensor feature results according to the example “Squeeze the tomato”, diagnostic test depicted in FIG. 4. Sensor feature (time difference between fingers touching the screen in seconds) results are in agreement with clinical anchor (mean of MFM004, MFM017, MFM018, MFM019, MFM020, MFM021, MFM022) in both studies.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as illustrative forms of implementing the claims.


EXAMPLE 1

Characteristics of the analyzed cohort of patients, collected in two different studies.


i) OLEOS Study (https://clinicaltrials.gov/ct2/showNCT02628743)


Participants analyzed: 20


Period for data analysis: smartphone data between last two clinical visits (176 days)


















Mean (SD)
Range









Age
12.4 (4.1) [years]
8.0 to 22.0



Gender
9 female, 11 male










ii) JEWELFISH Study


(https://clinicaltrials.gov/ct2/show/NCT03032172?term=BP39054)


Participants analyzed: 19


















Mean (SD)
Range









Age
23.2 (17.2) [years]
6.0 to 60.0



Gender
6 female, 13 male










Dataset acquisition using a computer-implemented test for determining synchronicity of 2 fingers (punch and index finger of the same hand) by measuring the lag time between first and second fingers touch the screen for all double contacts detected (Test: Squeeze the tomato), a distal motor function test





















Spearman
Spearman
P-
P-






correlation
correlation
values
value
N
ICC


feature

OLEOS
Jewelfish
OLEOS
Jewelfish
OLEOS
OLEOS






















DTA2
double touch
−0.751
−0.877
0
0
19
0.848



asynchronicity


DTA_0_152
double touch
−0.736
−0.877
0
0
19
0.841



asynchronicity in



first 15 s


DTA_S2
Double touching
−0.726
−0.882
0
0
19
0.838



asynchrony at



successful



pinchings


P_GAP_S2
Pinching gap time
−0.505
−0.858
0.027
0
19
0.748



at successful



pinchings


DTA1
double touch
−0.483
−0.8138
0.036
0
19
0.848



asynchronicity


DTA_0_153
double touch
−0.652
−0.812
0.002
0
19
0.841



asynchronicity in



first 15 s


DTA3
double touch
−0.657
−0.804
0.002
0
19
0.848



asynchronicity


DTA_S3
Double touching
−0.620
−0.8
0.005
0
19
0.838



asynchrony at



successful



pinchings


SUMP2
Total number of
0.532
0.783
0.019
0
19
0.801



pinching


DTA_S1
Double touching
−0.498
−0.797
0.03
0
19
0.838



asynchrony at



successful



pinchings


DTA_15_302
Double touching
−0.71610798
−0.789
0.001
0
19
0.853



asynchrony at



time 15-30 sec


DTA_F2
Double touching
−0.64245623
−0.768
0.003
0
19
0.785



asynchrony at



failed pinchings


DTA_F3
Double touching
0.580079038
−0.738
0.009
0.001
19
0.785



asynchrony at



failed pinchings


DTA_15_301
Double touching
0.456485164
−0.745
0.049
0.001
19
0.853



asynchrony at



time 15-30 sec


DTA_0_154
double touch
0.484765151
−0.681
0.035
0.003
19
0.841



asynchronicity in



first 15 s


DTA4
Double touching
0.545762091
−0.674
0.016
0.003
19
0.848



asynchrony


DTA_15_303
Double touching
0.634488872
−0.688
0.004
0.003
19
0.853



asynchrony at



time 15-30 sec


DTAS4
Double touching
0.586426717
−0.649
0.008
0.006
19
0.838



asynchrony


DTA_15_304
Double touching
0.541481604
−0.583
0.017
0.018
19
0.853



asynchrony at



time 15-30 sec


P_TP_0_153
Double touching
0.494076397
0.517
0.032
0.034
19
0.925



asynchrony at



time 0-15 sec





Covariate:



1MFM-17, 18, 19, 22;




2Mean of MFM004, MFM017, MFM018, MFM019, MFM020, MFM021, MFM022




3Total 32 = MFM total score;




4MFM-17



ICC: Intraclass Correlation Coefficient,


DTA: double touch asynchronicity,


P_GA: Pinching gap time,


SD = standard deviation






A test for double touching asynchronicity (DTA) was implemented on a mobile phone (iPhone). The patients shall squeeze as many tomatoes as possible within 30 seconds by pinching them between the thumb and index finger of the indicated hand. The phone needs to be placed on the table. The referred hand needs to be selected. The patient needs to play a game for 30 seconds.



FIG. 5 shows the correlation of the clinical anchor test and the results from the squeeze the tomato test (DTA). The sensor feature results are in agreement with the clinical anchor in both studies.

Claims
  • 1. A diagnostic device for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the device comprising: at least one processor;one or more sensors associated with the device; andmemory storing computer-readable instructions that, when executed by the at least one processor, cause the device to:receive a plurality of first sensor data via the one or more sensors associated with the device;extract, from the received first sensor data, a first plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; anddetermine a first assessment of the distal motor function of said subject based on the extracted first plurality of features.
  • 2. The device of claim 1, wherein the computer-readable instructions, when executed by the at least one processor, further cause the device to: prompt the subject to perform the diagnostic tasks of squeezing as many tomatoes as possible by pinching them between thumb and index finger of the same hand in a time period of 30 seconds;in response to the subject performing the diagnostic tasks, receive a plurality of second sensor data via the one or more sensors associated with the device;extract, from the received second sensor data, a second plurality of features associated with the distal motor function of said subject; anddetermine a second assessment of the distal motor function of said subject based on the extracted second plurality of features.
  • 3. The device of claim 1, wherein the device is a smartphone.
  • 4. The device of claim 2, wherein the diagnostic tasks are associated with at least one of a muscle function test.
  • 5. A computer-implemented method for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the method comprising: receiving a plurality of first sensor data via one or more sensors associated with a device;extracting, from the received first sensor data, a first plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; anddetermining a first assessment of the distal motor function of a subject with a muscular disability, in particular SMA, based on the extracted first plurality of features.
  • 6. The computer-implemented method of claim 5, further comprising: prompting the subject to perform one or more diagnostic tasks;in response to the subject performing the one or more diagnostics tasks, receiving, a plurality of second sensor data via the one or more sensors;extracting, from the received second sensor data, a second plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; anddetermining a second assessment of the distal motor function of a subject with a muscular disability, in particular SMA, based on at least the extracted second sensor data.
  • 7. The computer-implemented method of any one of claim 6, whereby the subject's distal motor function is assessed based on an active task, in particular the amount of squeezed tomatoes obtained by pinching them between thumb and index finger of the same hand in a time period of 30 seconds.
  • 8. The device of claim 1, wherein the subject is human.
  • 9. A non-transitory machine readable storage medium comprising machine-readable instructions for causing a processor to execute a method for assessing the distal motor function of a subject with a muscular disability, in particular SMA, the method comprising: receiving a plurality of sensor data via one or more sensors associated with a device;extracting, from the received sensor data, a plurality of features associated with the distal motor function of a subject with a muscular disability, in particular SMA; anddetermining an assessment of the distal motor function of a subject with a muscular disability, in particular SMA, based on the extracted plurality of features.
  • 10. A method assessing a muscular disability, in particular SMA, in a subject comprising the steps of: determining the usage behavior parameter from a dataset comprising usage data for a device according to claim 1 within a first predefined time window wherein said device has been used by the subject; andcomparing the determined at least one usage behavior parameter to a reference, whereby a subject with a muscular disability, in particular SMA, will be assessed.
  • 11. A method of identifying a subject having a muscular disability, in particular SMA, comprising i) scoring the subject on the diagnostic tasks of squeezing as many tomatoes as possible by pinching them between thumb and index finger of the same hand in a time period of 30 s,ii) comparing the determined score to a reference, whereby a muscular disability, in particular SMA, will be assessed.
  • 12. The method of claim 11, further comprising administering a pharmaceutically active agent to the subject to decrease likelihood of progression of a muscular disability, in particular SMA, in particular wherein the pharmaceutically active agent is suitable to treat SMA in a subject, in particular a m7GpppX Diphosphatase (DCPS) Inhibitors, Survival Motor Neuron Protein 1 Modulators, SMN2 Expression Inhibitors, SMN2 Splicing Modulators, SMN2 Expression Enhancers, Survival Motor Neuron Protein 2 Modulators or SMN-AS1 (Long Non-Coding RNA derived from SMN1) Inhibitors, more particular Nusinersen, Onasemnogene abeparvovec, Risdiplam or Branaplam.
  • 13. The method according to claim 12, whereby at least one parameter determined after administering the pharmaceutically active agent is improved when compared to the reference parameter of the subject before the subject received treatment with the pharmaceutical agent.
  • 14. A method according to claim 12, whereby the subject is human.
  • 15. A method according to claim 12, whereby the agent is Risdiplam.
Priority Claims (1)
Number Date Country Kind
19181137.1 Jun 2019 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/EP2020/066663, filed Jun. 17, 2020, which claims priority to EP Application No. 19181137.1, filed Jun. 19, 2019, which are incorporated herein by reference in their entireties.

Continuations (1)
Number Date Country
Parent PCT/EP2020/066663 Jun 2020 US
Child 17553225 US