The present invention relates generally to electronic circuits, and more particularly to digital circuits for processing and/or storing digital values.
Electronic circuits, typically incorporated within integrated circuit (IC) devices, determine the function of various electronic systems, ranging from large systems (such as computer server “farms” that enable the wide variety of Internet services and businesses, and can include hundreds or even thousands of server computers), to the small portable electronic devices such as cellular telephones.
Electronic circuits typically include transistors interconnected to one another to a same integrated circuit substrate and/or package. An integrated circuit (IC) substrate may be a single semiconductor substrate (e.g., die created by dividing a fabricated “wafer”) that includes circuit elements of the electronic circuit. An integrated circuit package may present a set of external connections, but include one or more ICs substrates and circuit components having conductive interconnections to one another.
Digital electronic circuits (hereinafter digital circuits) may form all or a portion of a large majority of circuits included within ICs. Digital circuits may receive and output digital values, typically binary values that vary between low and high logic levels.
Continuing goals for circuits (including digital circuits) include reductions in power consumption, improvements in performance, and reductions in area occupied by the circuit. Because ICs may employ vast numbers (up to millions) of digital circuits, even incremental reductions in power consumption may translate into significant power savings of devices or systems employing such circuits. In the case of large systems, reductions in power consumption can reduce power costs of an enterprise. In the case of portable electronic devices, reductions in power consumption can advantageously lead to longer battery life and/or the ability to provide additional functions for a given amount of charge.
Performance may include various aspects of circuit operation, including but not limited to: the speed at which data values transmitted and/or accessed by digital circuits. Improvements in signal propagation time (e.g., speed) may enable a device to increase the speed at which data is transmitted between locations of a device, thus reducing the time for the device to execute operations. In devices where data is stored, the speed at which data is written and/or read from storage locations may likewise improve device performance. Performance may also include circuit stability. Stability may be the ability of a circuit to provide a sufficient response under particular operating conditions.
Reductions in circuit size may directly translate into cost savings. In the case of ICs, reductions in size may allow more devices to fit on a fabrication substrate: As understood from above, digital circuits may occupy substantially all of the substrate area for some devices, and significant amount of are for others.
As device fabrication technologies approach limits to scaling (i.e., the ability to reduce circuit element sizes) the ability to further advance any of the goals noted above has grown increasingly costly or technically challenging.
Various embodiments of the present invention will now be described in detail with reference to a number of drawings. The embodiments show digital circuits and related methods that may be included in integrated circuit devices to provide improved performance over conventional digital circuit approaches.
In the various embodiments below, like items are referred to by the same reference character but the leading digits corresponding to the figure number.
Referring now to
In the embodiment shown, circuit section 102-2 may be a digital circuit block that includes one or more digital circuits, one shown as 104. A digital circuit 104 may generate output signals on one or more output nodes (e.g., 108) in response to input signals received on one or more input nodes (e.g., 110). It is noted that in some embodiments, an output node and input node may be the same node.
Referring still to
DDC transistors included within a digital circuit may include n-channel transistors, p-channel transistors or both. N-channel DDC transistors will be represented in this disclosure by the symbol shown as 106-0 in
Specifically referring now to
A screening layer 216 may be doped to an opposite conductivity type of the transistor channel type (e.g., an n-channel DDC transistor will have a p-doped screening layer). A screening layer 216 doping concentration may be greater than a concentration of a body region 218.
Referring to
In this way, a digital circuit may be formed with one or more DDC transistors.
Referring now to
In the embodiment of
In this way, an inverter may include one or more DDC transistors with or without separately biased bodies.
Referring now to
Digital circuits employing DDC transistors as described herein, and equivalents, may provide a wider range of performance modulation than conventional approaches. As noted above, in various logic circuits shown herein, bodies of DDC transistors may be biased with a voltage other than a logic high or logic low voltage. Such body biasing of DDC transistors may provide for greater variation in transistor threshold voltage per applied body bias, as compared to doped channel devices. One very particular example of such bias variation is shown in
Digital circuits employing DDC transistor as described herein, may vary operations with body biasing. For example, higher body bias may be utilized to reduce power in standby states. Such body biasing may also vary with changes in logic levels, which may be a power supply voltage in some embodiments (e.g., VHI=VDD, VLO=VSS).
Referring now to
Such digital circuits that include stages with DDC transistors may have various advantageous features over conventional digital circuits as would be understood by those skilled in the art in light of the various discussions herein. However, in particular embodiments, digital circuits that employ DDC devices may have less variation in response. Consequently, when such digital circuits include stages, as shown in
In this way, digital circuits having series connected stages may include DDC devices to reduce signal propagation time.
While embodiments may include DDC transistors that drive nodes between high and/or a low logic levels, other embodiments may serve to pass signals from one node to another. One such embodiment is shown in
Referring now to
It is understood that either (or both) transistors may be DDC transistors. Further, either or both transistors (regardless of whether they DDC transistors or not), may have bodies driven by high or low logic levels (VHI or VLO), or bodies static or dynamically biased to different voltages.
Embodiment may also include passgate and logic combinations. One such particular embodiment is shown in
Referring now to
Any of passgates 830-0/1 may take the form of those passgate embodiments shown herein, or equivalents. Similarly, any of inverters 830-0/1 may take the form inverter embodiment shown herein, or equivalents. Accordingly, any or both of passgates 830-0/1 may include DDC transistors, or may have separately biased bodies. Further, any or all of inverters 830-0/1 may include one or more DDC transistors, with any such DDC transistor having a bodies tied to a logic level, or biased to some other voltage.
Embodiments like those of
Referring now to
While
In some embodiments, a precharge transistor 936, an evaluation transistor 938, or both, may be DDC transistors. In addition or alternatively, a logic section 934 may include one or more DDC transistors. As in other embodiments above, DDC transistors may have logic level tied bodies, or bodies statically or dynamically biased to other levels.
Referring now to
Referring to
Referring to
One skilled in the art could arrive at various other logic functions according to teachings set forth.
In this way, dynamic logic circuits may include one or more DDC devices.
From the above examples, one skilled in the art would recognize that digital circuits according to the embodiments may include logic circuit conventions beyond static and dynamic approaches. As but one example, other embodiments may include “current steering” logic approaches. In a current steering embodiment, an output logic level may be determined by steering current from two current paths according to received input signals. Particular current steering logic circuit embodiments are shown in
Referring now to
In the particular embodiment of
Referring now to
Referring to
Referring to
In this way, current steering logic circuits may include one or more DDC devices.
While the flip-flop embodiments shown above may store data values, embodiments may include more compact digital data storage circuits. In particular, embodiments may include latches, and in particular embodiments, latches and memory cells with symmetrical matching devices.
Referring now to
Driver transistors 1354-0/1 may be DDC transistors, and in particular embodiments, matching DDC transistors. DDC driver transistors may have bodies driven to logic levels, or to some other bias voltage, dynamically and/or statically.
A latch 1300 may store a data value on complementary data nodes 1352-0/1, and may form part of various memory cell types, including but not limited to four transistor (4T), 6T, and 8T static random access memory (SRAM) cells, to name but a few. Further, while
In this way, a latch circuit may include DDC driver devices.
Referring now to
As will be described in more detail below, DDC transistors, by employing a substantially undoped channel, may provide less threshold variation than conventional transistors, as such channels are less (or not) susceptible to random doping fluctuation (RDF). Consequently, a symmetrical latching structure may provide performance advantages over conventional latch circuits having doped channels subject to RDF.
Referring now to
Referring now to
As noted in conjunction with
Referring to
As shown in
In a very particular embodiment, a DDC transistor 1760 may be an n-channel transistor having a gate length 1778 of 28 nm or less. The screening layer 1716 may have a carrier concentration of greater than about 5×1018 donors/cm3, while an overlying Vt set layer 1770 may have a carrier concentration of about 5×1017 to about 5×1018 donors/cm3. A substantially undoped channel region 1714 may have a carrier concentration of less than about 5×1017 donors/cm3. It is understood that the above noted carrier concentrations are provided by way of example only and alternate embodiments may include different concentrations according to desired performance in a digital circuit.
A DDC transistor according to a further embodiment is shown in
As noted above, some embodiments may include DDC transistors and conventional doped channel transistors.
Referring to
In this way, an IC device having digital circuits may include both DDC transistors and non-DDC transistors. Alternatively, selective masking to block out areas of a die for manufacture of DDC or non-DDC transistors can be employed, or any other conventional technique for manufacturing die having at least some DDC transistors. This is particularly useful for mixed signal die having multiple transistors types, including high speed digital logic and analog transistors, as well as power efficient logic and/or memory transistors.
Digital circuits according to embodiments shown herein, and equivalents, may provide improved performance over conventional circuits by operating with transistors (e.g., DDC transistors) having lower threshold voltage (Vt) variability. Possible improvements may include faster signal propagation times, as noted above.
Improved performance may translate into reductions in device size. As but one example, digital circuit transistors may be sized with respect to one another to achieve a particular response. Such sizing may take into account expected variations in Vts. Because DDC transistors have lower Vt variation, less sizing margin may be necessary to achieve a desired response. As but one very particular example, SRAM cells may have a predetermined sizing between access transistors and driver transistors. SRAM cells according to the embodiments may lower a relative size scaling between such devices, relative to comparably sized conventional transistors. As SRAM cells may be repeated thousands, or even millions of times in a device, reductions in size by extend beyond expected limits presented by conventional arrays incorporating SRAM cells with doped channels.
In addition, such improvements may include lower operating voltages. In the embodiments, digital circuit switching voltages, established by transistor Vts, may be subject to less variability. Accordingly, a “worst” switching point may be lower, allowing for an operating voltage to be correspondingly lower. In some embodiments, operating voltages (Vsupply) may be no greater than 1 V, and a threshold voltage may be no greater than 0.6*Vsupply.
As noted above, in some embodiments digital circuits may include DDC transistors body bias connections driven with a bias voltage different than a logic high or low voltage. A screening layer within such transistors may enable higher body effect for modulating threshold voltage. In such embodiments, a variation in threshold utilizing a body effect may be achieved with a lower body bias voltage than conventional transistors. Body effect modulation may enable bodies to be driven to reduce threshold voltage, and hence reduce leakage.
Digital circuits according to embodiments may have lower power consumption than circuits employing conventional doped channels. As noted above, because a worst case threshold voltage variation may be low, a power supply voltage may be reduced, which may reduce power consumption. In addition, substantially undoped channels in DDC devices may have improved mobility as compared to some conventional transistors, and hence provide lower channel resistance.
It should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the detailed description are hereby expressly incorporated into this detailed description, with each claim standing on its own as a separate embodiment of this invention.
It is also understood that the embodiments of the invention may be practiced in the absence of an element and/or step not specifically disclosed. That is, an inventive feature of the invention may be elimination of an element.
Accordingly, while the various aspects of the particular embodiments set forth herein have been described in detail, the present invention could be subject to various changes, substitutions, and alterations without departing from the spirit and scope of the invention.
This application is a continuation application of U.S. patent application Ser. No. 15/480,550 filed Apr. 6, 2017 which is a divisional application of U.S. patent application Ser. No. 14/867,506 filed Sep. 28, 2015 which is a divisional of U.S. patent application Ser. No. 13/891,929 filed May 10, 2013 which is a continuation application of U.S. patent application Ser. No. 13/030,939 filed Feb. 18, 2013 which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen et al. | Dec 1985 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4780748 | Cunningham et al. | Oct 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
4885477 | Bird et al. | Dec 1989 | A |
4908681 | Nishida et al. | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou et al. | Sep 1990 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert et al. | Dec 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5426328 | Yilmaz et al. | Jun 1995 | A |
5444008 | Han et al. | Aug 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5622880 | Burr et al. | Apr 1997 | A |
5624863 | Helm et al. | Apr 1997 | A |
5625568 | Edwards et al. | Apr 1997 | A |
5641980 | Yamaguchi et al. | Jun 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura et al. | Jun 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5899714 | Farremkopf et al. | May 1999 | A |
5918129 | Fulford, Jr. et al. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin et al. | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6043139 | Eaglesham et al. | Mar 2000 | A |
6060345 | Hause et al. | May 2000 | A |
6060364 | Maszara et al. | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6153920 | Gossmann et al. | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6198157 | Ishida et al. | Mar 2001 | B1 |
6218892 | Soumyanath et al. | Apr 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6221724 | Yu et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6232164 | Tsai et al. | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6268640 | Park et al. | Jul 2001 | B1 |
6271070 | Kotani et al. | Aug 2001 | B2 |
6271551 | Schmitz et al. | Aug 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6297132 | Zhang et al. | Oct 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6319799 | Ouyang et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6323525 | Noguchi et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6335233 | Cho et al. | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6432754 | Assaderaghi et al. | Aug 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6503805 | Wang et al. | Jan 2003 | B2 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6521470 | Lin et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang et al. | Apr 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6576535 | Drobny et al. | Jun 2003 | B2 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa et al. | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried et al. | Dec 2003 | B2 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya et al. | Jun 2004 | B1 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6760900 | Rategh et al. | Jul 2004 | B2 |
6770944 | Nishinohara et al. | Aug 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6794901 | Bernstein | Sep 2004 | B2 |
6797553 | Adkisson et al. | Sep 2004 | B2 |
6797602 | Kluth et al. | Sep 2004 | B1 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
6842046 | Tzartzanis | Jan 2005 | B2 |
6852602 | Kanzawa et al. | Feb 2005 | B2 |
6852603 | Chakravarthi et al. | Feb 2005 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jachne et al. | May 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6900519 | Cantell et al. | May 2005 | B2 |
6901564 | Stine et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6917237 | Tschanz et al. | Jul 2005 | B1 |
6927463 | Iwata et al. | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6995397 | Yamashita et al. | Feb 2006 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr et al. | Mar 2006 | B2 |
7015741 | Tschanz et al. | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7036098 | Eleyan et al. | Apr 2006 | B2 |
7038258 | Liu et al. | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto et al. | May 2006 | B2 |
7057216 | Ouyang et al. | Jun 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089513 | Bard et al. | Aug 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7091093 | Noda et al. | Aug 2006 | B1 |
7105399 | Dakshina-Murthy et al. | Sep 2006 | B1 |
7109099 | Tan et al. | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch et al. | Nov 2006 | B2 |
7169675 | Tan et al. | Jan 2007 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7176137 | Perug et al. | Feb 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7202706 | Plasterer | Apr 2007 | B1 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7230680 | Fujisawa et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris et al. | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski et al. | Aug 2007 | B2 |
7294877 | Rueckes et al. | Nov 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie et al. | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7380225 | Joshi et al. | May 2008 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7402207 | Besser et al. | Jul 2008 | B1 |
7402872 | Murthy et al. | Jul 2008 | B2 |
7416605 | Zollner et al. | Aug 2008 | B2 |
7427788 | Li et al. | Sep 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7449733 | Inaba et al. | Nov 2008 | B2 |
7462908 | Bol et al. | Dec 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7487474 | Ciplickas et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7496862 | Chang et al. | Feb 2009 | B2 |
7496867 | Turner et al. | Feb 2009 | B2 |
7498637 | Yamaoka et al. | Mar 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7503020 | Allen et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7531393 | Doyle et al. | May 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7562233 | Sheng et al. | Jul 2009 | B1 |
7564105 | Chi et al. | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko et al. | Aug 2009 | B2 |
7586322 | Xu et al. | Sep 2009 | B1 |
7592241 | Takao | Sep 2009 | B2 |
7595243 | Bulucea et al. | Sep 2009 | B1 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7604399 | Twerdochlib et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7644377 | Saxe et al. | Jan 2010 | B1 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7673273 | Madurawe et al. | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7681628 | Joshi et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithwaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7737472 | Kondo et al. | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho et al. | Jun 2010 | B2 |
7745270 | Shah et al. | Jun 2010 | B2 |
7750374 | Capasso et al. | Jul 2010 | B2 |
7750381 | Hokazono et al. | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755144 | Li et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759206 | Luo et al. | Jul 2010 | B2 |
7759714 | Itoh et al. | Jul 2010 | B2 |
7761820 | Berger et al. | Jul 2010 | B2 |
7795677 | Bangsaruntip et al. | Sep 2010 | B2 |
7808045 | Kawahara et al. | Oct 2010 | B2 |
7808269 | Matsudera | Oct 2010 | B2 |
7808410 | Kim et al. | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng et al. | Oct 2010 | B2 |
7818702 | Mandelman et al. | Oct 2010 | B2 |
7821066 | Lebby et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7831873 | Trimberger et al. | Nov 2010 | B1 |
7846822 | Seebauer et al. | Dec 2010 | B2 |
7855118 | Hoentschel et al. | Dec 2010 | B2 |
7859013 | Chen et al. | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888205 | Herner et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner et al. | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7926018 | Moroz et al. | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7941776 | Majumder et al. | May 2011 | B2 |
7945800 | Gomm et al. | May 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell et al. | Jun 2011 | B2 |
7989900 | Haensch et al. | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8004024 | Furukawa et al. | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8029620 | Kim et al. | Oct 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8051340 | Cranford, Jr. et al. | Nov 2011 | B2 |
8053340 | Colombeau et al. | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8067280 | Wang et al. | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng et al. | Dec 2011 | B2 |
8097529 | Krull et al. | Jan 2012 | B2 |
8103983 | Agarwal et al. | Jan 2012 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow et al. | Feb 2012 | B2 |
8114761 | Mandrekar et al. | Feb 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143124 | Challa et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8169002 | Chang et al. | May 2012 | B2 |
8170857 | Joshi et al. | May 2012 | B2 |
8173499 | Chung et al. | May 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim et al. | May 2012 | B2 |
8179530 | Levy et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8185865 | Gupta et al. | May 2012 | B2 |
8187959 | Pawlak et al. | May 2012 | B2 |
8188542 | Yoo et al. | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III et al. | Jun 2012 | B2 |
8214190 | Joshi et al. | Jul 2012 | B2 |
8217423 | Liu et al. | Jul 2012 | B2 |
8225255 | Ouyang et al. | Jul 2012 | B2 |
8227307 | Chen et al. | Jul 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock et al. | Aug 2012 | B2 |
8255843 | Chen et al. | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui et al. | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8299562 | Li et al. | Oct 2012 | B2 |
8324059 | Guo et al. | Dec 2012 | B2 |
8542033 | Lee | Sep 2013 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020042184 | Nandakumar et al. | Apr 2002 | A1 |
20020043990 | Akita | Apr 2002 | A1 |
20020047727 | Mizuno | Apr 2002 | A1 |
20030047763 | Hieda et al. | Mar 2003 | A1 |
20030122203 | Nishinohara et al. | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030183856 | Wieczorek et al. | Oct 2003 | A1 |
20030215992 | Sohn et al. | Nov 2003 | A1 |
20040075118 | Heinemann et al. | Apr 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20040087090 | Grudowski et al. | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20040207433 | Lin | Oct 2004 | A1 |
20050106824 | Alberto et al. | May 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20050280075 | Ema et al. | Dec 2005 | A1 |
20060022270 | Boyd et al. | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Huilong et al. | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060197158 | Babcock et al. | Sep 2006 | A1 |
20060203581 | Joshi et al. | Sep 2006 | A1 |
20060220114 | Miyashita et al. | Oct 2006 | A1 |
20060223248 | Venugopal et al. | Oct 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070117326 | Tan et al. | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070212861 | Chidambarrao et al. | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080108208 | Arevalo et al. | May 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080237661 | Ranade et al. | Oct 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkusale et al. | Nov 2008 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090219053 | Masleid | Sep 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090309140 | Khamankar et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura et al. | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100038724 | Anderson et al. | Feb 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100148153 | Hudait et al. | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai et al. | Oct 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110095811 | Chi et al. | Apr 2011 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu et al. | Sep 2011 | A1 |
20110230039 | Mowry et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi et al. | Dec 2011 | A1 |
20110309447 | Arghavani et al. | Dec 2011 | A1 |
20120021594 | Gurtej et al. | Jan 2012 | A1 |
20120034745 | Colombeau et al. | Feb 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120065920 | Nagumo et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120132998 | Kwon et al. | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel et al. | Jun 2012 | A1 |
20120167025 | Gillespie et al. | Jun 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120223363 | Kronholz et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1450394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
WO2011062788 | May 2011 | WO |
Entry |
---|
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009. |
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009. |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009. |
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006. |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003. |
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993. |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996. |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003, Nov. 2012. |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798, Nov. 2006. |
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006. |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000. |
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004. |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999. |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forcase sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006. |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19. |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992. |
Number | Date | Country | |
---|---|---|---|
20180048311 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14867506 | Sep 2015 | US |
Child | 15480550 | US | |
Parent | 13891929 | May 2013 | US |
Child | 14867506 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15480550 | Apr 2017 | US |
Child | 15795912 | US | |
Parent | 13030939 | Feb 2011 | US |
Child | 13891929 | US |