The invention relates to a digital decoder for television receiver, comprising an input for receiving a digital audio/video signal, means for demodulating and decoding the input signal into an output signal shaped for the television receiver, and a first buffer memory into which the input signal is diverted after demodulation when the decoder is placed in a so-called “live” mode of operation, the decoder having a so-called “playback” mode of operation in which the signal recorded in the first buffer memory constitutes the output signal from the decoder.
Such a decoder can form an integral part of a television receiver. The audio/video digital input signal can arrive at the decoder via cable, via satellite or via hertzian signal. When the decoder is placed in the “live” mode, the demodulated input signal is recorded continuously in the first buffer memory. Stated otherwise, at each instant this first buffer memory retains a portion of the current programme received on a channel by the decoder. This buffer memory operates while recording as a FIFO stack or as a circular shift register. The switching of the decoder from the “live” mode to the “playback” mode allows the user to play back one or more times, on the screen of the television receiver, a past portion of the programme received by the decoder. On completion of playback, the user can switch the decoder into the “live” mode so as to resume the playing of the current programme received by the decoder. It is understood however that during the playback of the past programme portion which is recorded in the buffer memory, the user loses a part of the current programme which is received live on the decoder.
The aim of the invention is to remedy this drawback and for this purpose, the subject of the invention is a digital decoder for television receiver, characterized in that it furthermore comprises a second buffer memory into which the input signal is diverted after demodulation while the decoder is placed in the “playback” mode, the signal recorded in the second buffer memory being a temporally compressed version of the input signal and constituting the output signal when the decoder is switched from the “playback” mode to another so-called “return to live” mode of operation. By using two buffer memories, the user loses no portion of the programme even when he activates the “playback” mode of the decoder. Moreover, in the “playback” mode of the decoder, the user can use navigation buttons like fast or slow forward and rewind, image freeze etc. so as to play in various ways the programme portion recorded in the first buffer memory. When the user switches the decoder from the “playback” mode to the “return to live” mode, the second buffer memory is read-scanned as a FIFO stack. At the same time, the demodulated and temporally compressed input signal continues to be recorded in the second buffer memory at the bottom of the FIFO stack. The programme portion corresponding to the signal produced by the second buffer memory, in read mode, is presented on the screen in a fraction of its normal duration of presentation. As the presentation of the programme portion read from the second buffer memory is performed at a faster speed than the speed of its recording in the second buffer memory, there will be a moment onwards of which the signal produced by the second buffer memory and the input signal will coincide in time. At this instant, the decoder can be switched automatically from the “return to live” mode to the “live” mode.
According to particular features of the decoder according to the invention, in “playback” mode of the decoder, the first memory can be read-scanned repetitively, or “loopwise”, so that the user can play back several times, without intervention on the decoder, the programme portion recorded in the first buffer memory. The decoder comprises a filter placed upstream of the second buffer memory so as to temporally compress the demodulated input signal before it is recorded in the second buffer memory. This filter may be designed to eliminate the audio components of the demodulated input signal and to allow only the data in the demodulated input signal which are representative of full images to pass through to the said second buffer memory. The decoder can also comprise a filter placed upstream of the said first buffer memory so as to temporally compress the demodulated input signal before it is recorded in the first buffer memory. Each buffer memory operates as a FIFO stack or a circular shift register. The duration of recording in the second buffer memory can be increased by adjusting the rate of temporal compression. To improve the convenience of use of the decoder, the filling of the second buffer memory, by the demodulated and temporally compressed input signal, is monitored in the decoder and the decoder produces an alarm signal when the second buffer memory is full. Moreover, to optimize the use of the resources available in the decoder, an analysis module acts on the filter so as to parametrize the latter in such a way as to adapt the rate of compression of the signal recorded in the first or the second buffer memory to the resources available in the decoder.
The decoder according to the invention and illustrated by the drawing will now be described in greater detail.
When the decoder 3 is placed in the “live” mode of operation, the signal SD which is transmitted to the decompressor 6 is also diverted at the output of the demultiplexer 5, through a filter 7, to the buffer memory 8. The buffer memory 8 operates in write mode as a FIFO stack or a circular shift register so as to permanently retain a certain current portion of the programme broadcast on the selected channel.
When the decoder 3 is placed in the “playback” mode, the output signal from the decoder consists of the signal recorded in the buffer memory 8. More particularly, the programme portion recorded in the memory 8 is sent to the input of the decompressor 6 so as to produce the output signal shaped for the television. The recording of the signal SD in the buffer memory 8 can be effected with or without temporal compression of the signal.
When the decoder is placed in the “playback” mode, the signal SD is diverted at the output of the demultiplexer 5, through the filter 7, to a second buffer memory 9 in which it is recorded after having undergone time compression. This second buffer memory 9 may also operate in write mode as a FIFO stack or a circular shift register so as to retain a certain current portion of the programme received on the selected channel of the decoder. The programme portion which is recorded in the buffer memory 9 represents a fraction of the normal programme portion so that the reading from the buffer memory 9 of this programme portion will be faster than the writing of this same programme portion to the memory 9.
The decoder is designed to switch on command from the user from the “playback” mode to a so-called “return to live” temporary mode of operation according to which the content of the buffer memory 9 constitutes the output signal from the decoder. In the “return to live” mode, the user plays the programme portion recorded in the buffer memory 9 at the same time as the demodulated and temporally compressed signal SD continues to be recorded in the memory 9. As the playback of the programme portion recorded in the memory 9 is performed at a faster speed than the recording of this programme portion in the memory 9, at a moment the buffer memory 9 will have been completely read-scanned. At this instant, the signal which is produced at the output of the memory 9 coincides with the signal SD and the decoder 3 is switched automatically into the “live” mode.
The elements allowing the switching of the decoder 3 into the “live”, “playback” and “return to live” modes are represented in
More particularly, the first switch 10 which is upstream of the first buffer memory 8 can be in a state denoted N corresponding to the “live” mode in which it links the output of the demultiplexer 5, through the filter 7, to the input of the first buffer memory 8. This switch 10 can also be placed in a state indicated by the reference PB in
The second switch 11 which is upstream of the second buffer memory 9 can be placed in a state indicated by the reference N corresponding to the “live” mode in which the input of the second buffer memory 9 is disconnected from the output of the multiplexer 5. It may also be placed in a state indicated by the reference PB corresponding to the “playback” mode in which it links the output of the demultiplexer 5 to the input of the second buffer memory 9.
The third switch 12 which is situated downstream of the two buffer memories 8 and 9 can be placed in a state indicated by the reference PB corresponding to the “playback” mode in which it links the output of the first buffer memory 8 to the decompressor 6 through the switch 10 when the latter is in the PB state. It may also be placed in a state indicated by the reference PB2N corresponding to the “return to live” mode in which it links the output of the second buffer memory 9 to the decompressor 6 through the switch 10 when the latter is in the PB state. A fourth switch 15 directs towards the decompressor 6 either the signal at the output of the demultiplexer 5 (in the state N), or the signal at the output of the switch 10 (in the state PB).
A control button 13 of the decoder is represented in
As illustrated in
The two memories 8 and 9 may be different units with different recording capacities. It may also be a question of a partitioned file.
The time compression of the signal SD in particular for its recording in the memory 9 can consist firstly in discarding the audio component of the signal SD, this being achievable through the filter 7. The filter 7 can be designed to allow through only the data representative of full images (such as “intra” images in the MPEG-2 standard). As is known from the state of the art, in an MPEG stream around one image out of twelve is found to be encoded in full, that is to say independently of the images preceding it and following it. When a programme portion consisting solely of full images is played, the programme portion runs fast, that is to say the programme is played at a speed 12 times greater than the normal playing speed of the same programme when the decoder is in the “live” mode.
The signal recorded in the memory 8 may also be temporally compressed in the same way as the signal recorded in the memory 9.
The block 16 represents a module for analysing the resources available in the decoder, which is designed to automatically parametrize the filter 7 in such a way as to adjust the rate of compression with a view to optimizing the occupancy of the buffer memories 8 and 9.
Moreover, the filling of the memory 9 may be monitored in the decoder so as to allow the latter to produce an alarm signal for the user when the memory 9 is full. This alarm signal may for example take the form of a message displayed on the screen of the television.
Number | Date | Country | Kind |
---|---|---|---|
02 06012 | May 2002 | FR | national |
This application is a continuation of U.S. patent application Ser. No. 10/437,704, filed on May 14, 2003, which claims priority to French Application No. 0206012, filed on May 16, 2002.
Number | Name | Date | Kind |
---|---|---|---|
5371551 | Logan et al. | Dec 1994 | A |
5438423 | Lynch et al. | Aug 1995 | A |
5701383 | Russo et al. | Dec 1997 | A |
5724091 | Freeman et al. | Mar 1998 | A |
6012089 | Hasegawa et al. | Jan 2000 | A |
6018612 | Thomason et al. | Jan 2000 | A |
6233389 | Barton et al. | May 2001 | B1 |
6240244 | Ikeda | May 2001 | B1 |
6522693 | Lu et al. | Feb 2003 | B1 |
6922845 | Yap et al. | Jul 2005 | B2 |
6973667 | Fritscch | Dec 2005 | B2 |
6993787 | Kamel et al. | Jan 2006 | B1 |
7136571 | Dagtas | Nov 2006 | B1 |
8918823 | Fraleu | Dec 2014 | B2 |
20010014203 | Ito et al. | Aug 2001 | A1 |
20020026644 | Hatayama | Feb 2002 | A1 |
20030099457 | Takahashi et al. | May 2003 | A1 |
20060271979 | Hejna et al. | Nov 2006 | A1 |
20070009236 | Kovacevic | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
0711072 | May 1996 | EP |
0793355 | Sep 1997 | EP |
0901285 | Mar 1999 | EP |
1084574 | Dec 1999 | EP |
1143732 | Oct 2001 | EP |
1255404 | Nov 2002 | EP |
07107439 | Apr 1995 | JP |
07202933 | Aug 1995 | JP |
818932 | Jan 1996 | JP |
884302 | Mar 1996 | JP |
09224208 | Aug 1997 | JP |
10215437 | Aug 1998 | JP |
10322662 | Dec 1998 | JP |
2001119669 | Apr 2001 | JP |
2002123449 | Apr 2002 | JP |
100269398 | Jul 2000 | KR |
WO9838798 | Sep 1998 | WO |
WO9966721 | Dec 1999 | WO |
WO0160057 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20150304708 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10437704 | May 2003 | US |
Child | 14565007 | US |