The present disclosure relates generally digital microphone and other sensor assemblies and more particularly to digital sensor assemblies having improved dynamic range and reduced distortion.
Digital microphones having a transducer that converts sound into an electrical signal conditioned or processed by an integrated circuit are known generally and integrated with cell phones, personal computers, smart speakers and internet of things (IoT) devices, among other host devices. Such microphones and other sensors often comprise a delta-sigma analog-to-digital converter (ADC) having a digital-to-analog converter (DAC) in a feedback path of the ADC. The dynamic range of the processing circuit is related to the number of DAC elements available to produce the signal fed back to the input of the ADC. However mismatch among the DAC elements due to PVT variation and other causes distorts the feedback signal. Classic mismatch shaping algorithms such as data weighted averaging (DWA) that are used to address this problem produce undesirable spectral anomalies that adversely impact the performance of the sensor. Thus there is a need for improved mismatch shaping in digital microphone and other sensor assemblies.
The objects, features and advantages of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. The drawings depict only representative embodiments and are therefore not considered to limit the scope of the disclosure, the description of which includes additional specificity and detail.
Those of ordinary skill in the art will appreciate that the figures are illustrated for simplicity and clarity and therefore may not be drawn to scale and may not include well known features, that the order of occurrence of actions or steps may be different than the order described or be performed concurrently unless specified otherwise, and that the terms and expressions used herein have the meaning understood by those of ordinary skill in the art except where different meanings are attributed to them herein.
The present disclosure relates generally to digital microphone and other sensor assemblies including a transducer and a delta-sigma analog-to-digital converter (ADC) with digital-to-analog converter (DAC) element mismatch shaping and more particularly to sensor assemblies and electrical circuits therefor comprising a dynamic element matching (DELM) entity configured to select DAC elements based on data weighted averaging (DWA) and a randomized shift in successive sample periods.
The sensor assembly generally comprises a transducer and an electrical circuit disposed in a housing configured to interface with a host device.
In some sensor assemblies, like microphones, the housing includes an aperture (also called a “port” herein) connecting an interior of the housing to the external environment. In
In one embodiment, the sensor assembly is a microphone configured to detect atmospheric acoustic signals and generate an electrical signal representative of the detected acoustic signals. In other embodiments, the sensor assembly is configured to detect and generate electrical signals representative of acoustic vibrations, pressure, acceleration, humidity or temperature among others. The transducer may be a capacitive, piezoelectric, optical or other transduction device implemented as a microelectromechanical systems (MEMS) device or as some other known or future device.
The electrical circuit generally comprises a processing circuit configured to process the electrical signal produced by the transducer and to provide the processed output signal at the host interface of the sensor assembly. In
The processing circuit comprises a delta-sigma analog-to-digital converter (ADC) including a digital-to-analog converter (DAC) in a feedback path between the output of the ADC and input thereto. The ADC can be a multi-bit current or voltage delta-sigma modulator. In
In some embodiments the processing circuit optionally includes a signal conditioning circuit between the transducer and the ADC. In
In
The electrical circuit also comprises a dynamic element matching (DELM) entity coupled between the digital output of the ADC and the input to the DAC. In
The DELM entity is configured to sequentially select a subset of DAC elements based on the digital signal output by the ADC for each sample period using data weighted averaging (DWA) combined with a randomized shift from one sample period to the next. The modified DWA sequential selection scheme is also referred to herein as “dithered DWA selection”. The dithered DWA selection is always unidirectional. In one implementation, the randomized shift is based on a positive integer number between zero and an absolute value threshold (inclusive), where the threshold corresponds to a percentage of a number of DAC elements N from which the subset of DAC elements is selected, rounded to a closest integer. In one implementation, the percentage is 10%. The randomized shift can be obtained from an uncorrelated Gaussian process or some other probability density function. In practice, the randomized shift can be generated using a pseudorandom generator, for example, a linear feedback shift register (LFSR) or some other low complexity pseudorandom generator. It suffices for the LFSR length to be at least ROUND (LOG 2(k×N)), where k is an integer equal to or greater than 10.
In the sensor assembly operational process 500 of
Noise in the digital signal output by the ADC can be shifted outside the frequency band of interest by applying the modified DWA to a digital signal obtained by quantizing an oversampled analog signal input to the ADC. The DWA selection scheme combined with a randomized shift reduces spectral artifacts associated with variation in the DAC elements. Prior art
In
A DWA selection scheme combined with a randomized shift can be implemented by a low complexity algorithm with low hardware overhead (i.e., a small IC area requirement), compared to higher order spectral noise shaping solutions having greater complexity. In one implementation the modified DWA selection is unidirectional and the randomized shift occurs in a direction that prevents overlapping selection of DAC elements for adjacent sample periods (i.e., the randomized shift occurs in the same direction as the unidirectional DWA selection). Implementation of an LSFR for this purpose adds little marginal complexity to a DWA selection scheme.
The DELM functionality can be implemented as an algorithm in the DAC, for example, the DAC 220 in
While the disclosure and what is presently considered to be the best mode thereof has been described in a manner establishing possession and enabling those of ordinary skill in the art to make and use the same, it will be understood and appreciated that there are many equivalents to the select embodiments described herein and that myriad modifications and variations may be made thereto without departing from the scope and spirit of the invention, which is to be limited not by the embodiments described but by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
7190038 | Dehe et al. | Mar 2007 | B2 |
7473572 | Dehe et al. | Jan 2009 | B2 |
7781249 | Laming et al. | Aug 2010 | B2 |
7795695 | Weigold et al. | Sep 2010 | B2 |
7825484 | Martin et al. | Nov 2010 | B2 |
7829961 | Hsiao | Nov 2010 | B2 |
7856804 | Laming et al. | Dec 2010 | B2 |
7903831 | Song | Mar 2011 | B2 |
20050207605 | Dehe et al. | Sep 2005 | A1 |
20070278501 | Macpherson et al. | Dec 2007 | A1 |
20080175425 | Roberts et al. | Jul 2008 | A1 |
20080267431 | Leidl et al. | Oct 2008 | A1 |
20080279407 | Pahl | Nov 2008 | A1 |
20080283942 | Huang et al. | Nov 2008 | A1 |
20090001553 | Pahl et al. | Jan 2009 | A1 |
20090180655 | Tien et al. | Jul 2009 | A1 |
20090224953 | Seo | Sep 2009 | A1 |
20100046780 | Song | Feb 2010 | A1 |
20100052082 | Lee et al. | Mar 2010 | A1 |
20100128914 | Khenkin | May 2010 | A1 |
20100183181 | Wang | Jul 2010 | A1 |
20100246877 | Wang et al. | Sep 2010 | A1 |
20100290644 | Wu et al. | Nov 2010 | A1 |
20100322443 | Wu et al. | Dec 2010 | A1 |
20100322451 | Wu et al. | Dec 2010 | A1 |
20110013787 | Chang | Jan 2011 | A1 |
20110075875 | Wu et al. | Mar 2011 | A1 |
20190387326 | Hansen | Dec 2019 | A1 |
20200010315 | Tingleff et al. | Jan 2020 | A1 |
Entry |
---|
U.S. Appl. No. 16/874,503, filed May 14, 2020. |
U.S. Appl. No. 17/096,499, filed Nov. 12, 2020. |
Number | Date | Country | |
---|---|---|---|
20220209789 A1 | Jun 2022 | US |