The present invention relates generally to integrated circuits and more specifically, an integrated circuit having one or more digital signal processing elements.
The introduction of the microprocessor in the late 1970's and early 1980's made it possible for Digital Signal Processing (DSP) techniques to be used in a wide range of applications. However, general-purpose microprocessors such as the Intel x86 family were not ideally suited to the numerically-intensive requirements of DSP, and during the 1980's the increasing importance of DSP led several major electronics manufacturers (such as Texas Instruments, Analog Devices and Motorola) to develop DSP chips—specialized microprocessors with architectures designed specifically for the types of operations required in DSP. Like a general-purpose microprocessor, a DSP chip is a programmable device, with its own native instruction set. DSP chips are capable of carrying out millions or more of arithmetic operations per second, and like their better-known general-purpose cousins, faster and more powerful versions are continually being introduced.
Traditionally, the DSP chip included a single DSP microprocessor. This single processor solution is becoming inadequate, because of the increasing demand for more arithmetic operations per second in, for example, the 3G base station arena. The major problem is that the massive number of arithmetic operations required are concurrent and must be done in real-time. The solution of adding more DSP microprocessors to run in parallel has the same disadvantage of the past unsuccessful solution of adding more general-purpose microprocessors to perform the DSP applications.
One solution to the increasing demand for more real-time, concurrent arithmetic operations, is to configure the programmable logic and interconnect in a Programmable Logic Device (PLD) with multiple DSP elements, where each element includes one or more multipliers coupled to one or more adders. The programmable interconnect and programmable logic, are sometimes referred to as the PLD fabric, and are typically programmed by loading a stream of configuration data into SRAM configuration memory cells that define how the programmable elements are configured.
While the multiple DSP elements configured in the programmable logic and programmable interconnect of the PLD allow for concurrent DSP operations, the bottleneck, then becomes the fabric of the PLD. Thus in order to further improve DSP operational performance, there is a need to replace the multiple DSP elements that are programmed in the PLD by application specific circuits.
The present invention relates generally to integrated circuits and more specifically, a digital signal processing circuit having a pattern detector circuit that is used for both static and dynamic convergent rounding. An exemplary embodiment of the invention has an integrated circuit (IC) for convergent rounding. The IC includes; an adder circuit configured to produce a summation; a comparison circuit configured to bitwise compare the summation with an input pattern, bitwise mask the comparison using a mask, and combine the masked comparison to produce a comparison bit; and rounding circuitry for rounding the summation based at least in part on the comparison bit.
In one aspect the above IC can further include a multiplier circuit producing a product, where the adder circuit is configured to produce the summation by adding together the product, a carry-in bit, and a data input.
Another embodiment includes a method for convergent rounding. The method in includes the steps of: multiplying two numbers together to produce a product; adding the product, a carry-in bit, and a data input to produce a summation; selecting an input pattern; bitwise comparing the summation with the input pattern, bitwise masking the comparison using a mask, and combining the masked comparison to produce a comparison bit; and convergent rounding the summation based at least in part on the comparison bit.
These and various other advantages and features of novelty which characterize the invention are pointed out with particularity in the claims annexed hereto and form a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to accompanying descriptive matter, in which there are illustrated and described specific examples in accordance with the invention.
Accompanying drawing(s) show exemplary embodiment(s) in accordance with one or more aspects of the invention; however, the accompanying drawing(s) should not be taken to limit the invention to the embodiment(s) shown, but are for explanation and understanding only.
In the following description, numerous specific details are set forth to provide a more thorough description of the specific embodiments of the invention. It should be apparent, however, to one skilled in the art, that the invention may be practiced without all the specific details given below. In other instances, well known features have not been described in detail so as not to obscure the invention.
While some of the data buses are described using big-endian notation, e.g., A[29:0], B[17:0], C[47:0], or P[47:0], in one embodiment of the present invention. In another embodiment, the data buses can use little-endian notation, e.g., P[0:47]. In yet another embodiment, the data buses can use a combination of big-endian and little-endian notation.
In some FPGAs, each programmable tile includes a programmable interconnect element (INT 111) having standardized connections to and from a corresponding interconnect element in each adjacent tile. Therefore, the programmable interconnect elements taken together implement the programmable interconnect structure for the illustrated FPGA. The programmable interconnect element (INT 111) also includes the connections to and from the programmable logic element within the same tile, as shown by the examples included at the top of
For example, a CLB 102 can include a configurable logic element (CLE 112) that can be programmed to implement user logic plus a single programmable interconnect element (INT 111). A BRAM 103 can include a BRAM logic element (BRL 113) in addition to one or more programmable interconnect elements. Typically, the number of interconnect elements included in a tile depends on the height of the tile. In the pictured embodiment, a BRAM tile has the same height as five CLBs, but other numbers (e.g., four) can also be used. A DSP tile 106/117 can include a DSP logic element (DSPE 114/118) in addition to an appropriate number of programmable interconnect elements. An IOB 104 can include, for example, two instances of an input/output logic element (IOL 115) in addition to one instance of the programmable interconnect element (INT 111). As will be clear to those of skill in the art, the actual I/O pads connected, for example, to the I/O logic element 115 typically are not confined to the area of the input/output logic element 115.
In the pictured embodiment, a columnar area near the center of the die (shown shaded in FIGS. 1A/B) is used for configuration, clock, and other control logic. Horizontal areas 109 extending from this column are used to distribute the clocks and configuration signals across the breadth of the FPGA.
Some FPGAs utilizing the architecture illustrated in FIGS. 1A/B include additional logic blocks that disrupt the regular columnar structure making up a large part of the FPGA. The additional logic blocks can be programmable blocks and/or dedicated logic. For example, the processor block PROC 110 shown in FIGS. 1A/B spans several columns of CLBs and BRAMs.
Note that
There are three external data inputs into DSPE 114-1, port A 212, port B 210, and port C 217. Mux 320 selects either the output of register C 218 or port C 217 by bypassing register C 218. The output 216 of Mux 320 is sent to Y-Mux 250-2 and Z-Mux 250-3. There are two internal inputs, BCIN 214 (from BCOUT 276) and PCIN 226 (from PCOUT 278) from DSPE 114-2. Port B 210 and BCIN 214 go to multiplexer 310. The output of multiplexer 310 is coupled to multiplexer 312 and can either bypass both B registers 232 and 234, go to B register 232 and then bypass B register 234 or go to B register 232 and then B register 234. The output of Mux 312 goes to multiplier 240 and X-Mux 250-1 (via A:B 228) and BCOUT 220. Port A 212 is coupled to multiplexer 314 and can either bypass both A registers 236 and 238, go to A register 236 and then bypass A register 238, or go to A register 236 and then A register 238. The output of Mux 314 goes to multiplier 240 or X-Mux 250-1 (via A:B 228). The 18 bit data on port A and 18 bit data on port B can be concatenated into A:B 228 to go to X-Mux 250-1. There is one external output port P 224 from the output of Mux 318 and two internal outputs BCOUT 220 and PCOUT 222, both of which go to another DSP element (not shown).
The multiplier 240, in one embodiment, receives two 18 bit 2's complement numbers and produces the multiplicative product of the two inputs. The multiplicative product can be in the form of two partial products, each of which may be stored in M registers 242. The M register can be bypassed by multiplexer 316. The first partial product goes to the X-Mux 250-1 and the second partial product goes to Y-Mux 250-2. The X-Mux 250-1 also has a constant 0 input. The Y-Mux 250-2 also receives a C input 216 and a constant 0 input. The Z-Mux receives C input 216, constant 0, PCIN 226 (coupled to PCOUT 278 of DSPE 114-2), or PCIN 226 shifted through a 17 bit, two's complement, right shifter 244, P 264, and P shifted through a 17 bit, two's complement, right shifter 246. In another embodiment either the right shifter 244 or right shifter 246 or both, can be a two's complement n-bit right shifter, where n is a positive integer. In yet another embodiment, either the right shifter 244 or right shifter 246 or both, can be an m-bit left shifter, where m is a positive integer. The X-Mux 250-1, Y-Mux 250-2, and Z-Mux 250-3 are connected to the adder/subtracter 254. In adder mode, A:B 228 is one input to adder 254 via X-Mux 250-1 and C input 216 is the second input to adder 254 via Z-Mux 250-3 (the Y-Mux 250-2 inputs 0 to the adder 254). In multiplier mode (A*B), the two partial products from M registers 242 are added together in adder 254 (via X-Mux 250-1 and Y-Mux 250-2). In addition, in multiplier mode A*B can be added or subtracted from any of the inputs to Z-Mux 250-3, which included, for example, the C register 218 contents.
The output of the adder/subtracter 254 is stored in P register 260 or sent directly to output P 224 via multiplexer 318 (bypassing P register 260). Mux 318 feeds back register P 260 to X-Mux 250-1 or Z-Mux 250-3. Also Mux 318 supplies output P 224 and PCOUT 222.
Listed below in Table 1 are the various opmodes that can be stored in opmode register 252. In one embodiment the opmode register is coupled to the programmable interconnect and can be set dynamically (for example, by a finite state machine configured in the programmable logic, or as another example, by a soft core or hard core microprocessor). In another embodiment, the opmode register is similar to any other register in a microprocessor. In a further embodiment the opmode register is an instruction register like that in a digital signal processor. In an alternative embodiment, the opmode register is set using configuration memory cells. In Table 1, the opmode code is given in binary and hexadecimal. Next the function performed by DSPE 114-1 is given in a pseudo code format. Lastly the DSP mode:
Adder_Subtracter mode (no multiply), or Multiply_AddSub mode (multiply plus addition/subtraction) is shown.
Further details of DSP 106 in
In
In general in an exemplary embodiment,
In another embodiment the 17-bit shifter 244 is replaced by an n-bit shifter and the 17-bit shifter 246 is replaced by an m-bit shifter, where “n” and “m” are integers. The n- and m-bit shifters can be either left or right shifters or both. In addition, in yet a further embodiment, these shifters can include rotation.
First, while the 25×18 multiplier 241 in
The opmode settings of opmode register 252 for
An Opmode [6:0] “1001000” for DSPE 118-2 is a special setting which automatically extends the multiply-accumulate (MACC) operation of DSPE 118-1 (e.g., DSPE 118-1 has opmode [6:0] 0100101) to form a 96 bit output (see
Like in
To continue with the differences between
In addition to the B cascade (BCIN 214, Mux 310, B register block 294, and BCOUT 220), there is an A cascade (ACIN 215, Mux 312, A register block 296, and ACOUT 221).
The Sum (S) output 388 along with the Carry (C) output 389 is input to multiplexer 372 which is controlled by ALUMode[3]. Multiplexer 374 selects between the Carry (C) output 389 and a constant 0 input, via control ALUMode[2]. The outputs of multiplexers 372 and 374 are added together via carry propagate adder 380 to produce output 223 (which becomes P 224 via Mux 318). Carry lookahead adder 380 receives ALUMode[1], which inverts the output P 223, when ALUMode[1]=1 (there is no inversion, when ALUMode[1]=0). Because
Z−(X+Y+Cin)=
Inverting Z[47:0] 386 and adding it to Y[47:0] 384 and X[47:0] 382 and then inverting the sum produced by adder 380 is equivalent to a subtraction.
The 4-bit ALUMode [3:0] controls the behavior of the ALU 292 in
Table 3 below gives the arithmetic (plus or minus) and logical (xor, and, xnor, nand, xnor, or, not, nor) functions that can be performed using
As an example of how
As ALUMode [3]=1, Mux 372 selects C 389, and as ALUMode [2]=1, Mux 374 selects 0. Adding C 389+0 in carry look ahead adder 380 gives Sum=01000, which is the correct answer for 11001 AND 01100 (i.e. X AND Z).
As another example, for Opmode [3:2]=“00”, Y=>zeros and ALUMode [3:0]=0100, the logic function is X XOR Z. The bitwise add is the same as X AND Z above. As ALUMode [3]=0, Mux 372 selects S 388, and as ALUMode [2]=1, Mux 374 selects 0. Adding S 388+0 in carry look ahead adder 380 gives Sum=10101, which is the correct answer for 11001 XOR 01100.
The ALUmode register 290 in
Table 4 below gives the settings for CarryInSel 410 and their functions according to one embodiment of the present invention. Note for rounding, the C register has a rounding constant.
The multiplexing circuitry 250 includes an X multiplexer 250-1 dynamically controlled by two low-order OpMode bits OM[1:0], a Y multiplexer 250-2 dynamically controlled by two mid-level OpMode bits OM[3:2], and a Z multiplexer 250-3 dynamically controlled by the three high-order OpMode bits OM[6:4]. OpMode bits OM[6:0] thus determine which of the various input ports present data to ALU 292. The values for OpMode bits are give in table 2 above.
With reference to
Adder 912 is coupled to Mux 926-1, which can optionally invert the sum depending upon select control ALUMode[1] via register 920, to produce P[47:36] via register 936. Adder 912 is also coupled to Mux 930-1, which can optionally invert a first bit of Carrybits 624 depending upon select control determined by AND gate 924 to produce Carryout[3] 520-4 via register 934. AND gate 924 ANDs together ALUMode[1] via register 920 with ALUMode[0] via register 922. Carryout[3] 520-4 goes to Mux 954, which can optionally invert the Carryout[3] bit depending upon select control from the output of AND gate 924 via register 950, to produce CCout1221. A second bit of the Carrybits 624 is sent to register 932. The output of register 932 is CCout2552 or can be optionally inverted via Mux 952 controlled by register 950, to produce Carryout3_msb. Carryout3_msb is sent to the programmable interconnect of, for example, the PLD.
Adder 914 is coupled to Mux 926-2, which can optionally invert the sum depending upon select control ALUMode[1] via register 920, to produce P[35:24] 223-3 via register 940. Adder 914 is also coupled to Mux 930-2, which can optionally invert a carry bit depending upon the output of AND gate 924, to produce Carryout[2] 520-3 via register 938. Adder 916 is coupled to Mux 926-3, which can optionally invert the sum depending upon select control ALUMode[1] via register 920, to produce P[23:12] 223-2 via register 944. Adder 916 is also coupled to Mux 930-3, which can optionally invert a carry bit depending upon the output of AND gate 924, to produce Carryout[1] 520-2 via register 942. Adder 918 is coupled to Mux 926-4, which can optionally invert the sum depending upon select control ALUMode[1] via register 920, to produce P[11:0] via register 948. Adder 918 is also coupled to Mux 930-4, which can optionally invert First_carryout 960 bit depending upon the output of AND gate 924, to produce Carryout[0] 520-1 via register 946.
The CCout1 and Carryout[3] are the same for addition, when ALUMode[1:0]=00. Also, CCout2 and Carryout3_msb are the same for addition, when ALUMode[1:0]=00. When there is subtraction, i.e., ALUMode[1:0]=11, then CCout1=NOT(Carryout[3]) and CCout2=NOT(Carryout3_msb). Thus in the case of subtraction due to using Eqn 1, the cascade carryouts (CCout1 and CCout2) to the next DSPE are different than the typical carry outs of a subtraction (e.g., Carryout[3])]).
In another embodiment, four ternary SIMD Add/Subtracts can be performed, e.g., X[11:0]+Y[11:0]+Z[11:0] for ALU 826 to X[47:36]+Y[47:36]+Z[47.36] for ALU 820 but the Carryouts (Carryout[2:0]) are not valid for Adders 914, 916, and 918, when all 12 bits are used. However, the Carryouts (Carryout[3] and Carryout3_msb) for Adders 912 is valid. If the numbers added/subtracted are 11 or less bits, but sign -extended to 12-bits, then the carry out (e.g., Carryout[3:0]) for each of the four ternary SIMD Add/Subtracts is valid.
The four ALUs 820-828 in
As a detailed illustration, the slice 826 associated with inputs X[11:0], Y[11:0], and Z[11:0], and outputs P[11:0] and Carryout[0] in
As another detailed illustration, the slice 824 associated with inputs X[23:12], Y[23:12], and Z[23:12], and outputs P[23:12] and Carryout[1] in
More specifically, adder 712′-1 is configured to add [0, S[11:8]]+C[12:8]+0 and adder 712′-2 is configured to add [0, S[11:8]]+C[12:8]+1. Mux 722 is controlled by G7:0 and selects from the output of adders 712′-1 and 712′2 to produce Sum[11:8] and First-carryout 960. Adder 710-1 is configured to add S[7:4]+C[7:4]+0 and adder 712′-2 is configured to add S[7:4]+C[7:4]+1. Mux 720 is controlled by G3:0 and selects from the output of adders 710-1 and 710-2 to produce Sum[7:4]. Adder 708 is configured to add S[3:0]+[C[3:1], Cin]+0 and produces Sum[3:0]. These G carry look ahead parameters are described in U.S. patent application Ser. No. 11/019,783, which is incorporated by reference.
Adder 916 (
Adder 914 (
Adder 912 (
Thus in one embodiment an integrated circuit (IC) includes many single instruction multiple data (SIMD) circuits, and the collection of SIMD circuits forms a MIMD (multiple-instruction-multiple-data) array. The SIMD circuit includes first multiplexers, for example, 250-1, 250-2, and 250-3 (see
The carry look ahead circuit element of the carry look ahead circuit elements in a first group of the K groups can include in one embodiment: 1) a first m-bit carry look ahead adder (for example, m=4, in
The carry look ahead circuit element of the carry look ahead circuit elements in the last group of the K groups can include at least in one embodiment a next to last m-bit carry look ahead adder (for example, m=4, in
Thus FIGS. 15 and 16-1 illustrate another embodiment that includes an IC having a SIMD circuit. The SIMD circuit includes first and second multiplexers coupled to arithmetic unit elements (e.g., ALU elements 820-826 in FIG. 15 and 842-844 in
Similarly, A:B[47:24] is added to C[47:24] via ALU 842′ in SIMD 850′, the output P[47:24] 1722 becomes PCIN[47:24] 1840, which is added to A:B[47:24] via ALU 842 in SIMD 850 to give P[47:24] 1744, which is a cascaded summation of the second 24 bits (P[47:24] 1744 =A:B[47:24] 1820+C[47:24] 1810+A:B[47.24] 1830). In
Thus the first SIMD circuit 850′ is coupled to a second SIMD circuit 850 in an embodiment of the present invention. The first SIMD circuit 850′ includes first and second multiplexers coupled to arithmetic unit elements (e.g., ALU and 842′ and 844′ used in the arithmetic mode, i.e., addition or subtraction), where the function of the plurality of arithmetic unit elements is determined by an instruction, which includes, for example, ALUMode[3:0] in 16-1; a first output of the first multiplexer (e.g., 250′-1) comprising a first plurality of data slices (e.g., A:B[23:0] and A:B[47:24]); a second output of the second multiplexer comprising a second plurality of data slices (e.g., C[23:0] and C[47:24]); a first output slice (e.g., P[23:0] 1720) of a first arithmetic unit element (e.g., 844′), where the first output slice is produced from inputting a first slice (e.g., A:B[23:0] 1752) from the first plurality of data slices and a first slice (e.g., C[23:0] 1750) from the second plurality of data slices into the first arithmetic unit element (e.g. 844′); and a second output slice (e.g., P[47:24] 1722) of a second arithmetic unit element (e.g., 842′), where the second output slice is produced from at least inputting a second slice (e.g., A:B[47:24]) from the first plurality of data slices (e.g., A:B[47:0]) and a second slice (e.g., C[47:24]) from the second plurality of data slices (e.g., C[47:0]) into the second arithmetic unit element (e.g., 842′).
The second SIMD circuit (e.g., 850) includes: third and fourth multiplexers (e.g., 250-1 and 250-3) coupled to a second plurality of arithmetic unit elements (e.g., ALU 842 and ALU 844 used in the arithmetic mode, i.e., addition or subtraction); an output of the third multiplexer (e.g., 250-1) comprising a third plurality of data slices (e.g., A:B[23:0] 1756 and A:B[47:24] 1830); an output of the fourth configurable multiplexer (e.g., 250-3) comprising a fourth plurality of data slices (e.g., PCIN[23:0] 1730, PCIN[23:47] 1840), where the fourth plurality of data slices comprises the first output slice (e.g., P[23:0] 1720) of the first arithmetic unit element (e.g., ALU 844′) and the second output slice (e.g., P[47:24] 1722) of the second arithmetic unit element (e.g., ALU 842′); a third output slice (e.g., P[47:24] 1744) of a third arithmetic unit element (e.g., ALU 842) of the second plurality of arithmetic unit elements, the third output slice (e.g., P[47:24] 1744) produced from at least inputting a first slice (e.g., A:B[47:24] 1830) from the third plurality of data slices (e.g., A:B[47:0] 1732] and a first slice (e.g., PCIN[47:24] 1840, i.e., P[47:24] 1722) of the fourth plurality of data slices (e.g., PCIN[47:0] 1730) into the third arithmetic unit element (e.g., ALU 842); and a fourth output slice (e.g., P[23:0] 1742) of a fourth arithmetic logic unit element (e.g., 844) of the second plurality of arithmetic unit elements, the fourth output slice (e.g., P[23:0] 1742) produced from at least inputting a second slice (e.g., A:B[23:0] 1756) from the third plurality of data slices (e.g., A:B[47:0] 1732) and a second slice (e.g., PCIN[23:0] 1754, i.e., P[23:0] 1720) from the fourth plurality of data slices (e.g., PCIN[47:0] 1730) into the fourth arithmetic unit element (e.g., ALU 844). While
As seen in
The Table A below shows how CCout11111 and CCout21113 at time n+1 in
Thus an aspect of the invention includes an IC having a plurality of digital signal processing (DSP) circuits for performing an extended multiply accumulate (MACC) operation. The IC includes: 1) a first DSP circuit (e.g., 118-2) having: a multiplier (e.g., 1022) coupled to a first set of multiplexers (e.g., 1110, 1112, 1114); and a first adder (e.g., 1026) coupled to the first set of multiplexers, the first adder producing a first set of sum bits and a first and a second carry-out bit (e.g., CCout11112 and CCout21110), the first set of sum bits stored in a first output register (e.g., 1030), the first output register coupled to a multiplexer (e.g., 1114) of the first set of multiplexers; and 2) a second DSP circuit (e.g., 118-1) having: a second set of multiplexers (e.g., 250-1, 250-2, 250-3) coupled to a second adder (e.g., 292′), the second adder coupled to a second output register (e.g., 260) and the first carry-out bit (CCout11112), the second output register (e.g., P 260) coupled to a first subset of multiplexers (Z 250-3) of the second set of multiplexers; a second subset of multiplexers (e.g., Y 250-2) of the second set of multiplexers receiving a first constant input (e.g., all 1's); and a third subset of multiplexers (e.g., X 250-1) of the second set of multiplexers, wherein a multiplexer (e.g., xmux—1 1142) of the third subset of multiplexers is coupled to an AND gate (e.g. 1134), the AND gate receiving a special opmode (e.g., Opmode[6:4]=100 1130) and the second carry-out bit (e.g., CCout21110), and the other multiplexers of the third subset receiving a second constant input (e.g., 0's).
While
Thus letting “i” be a positive integer value from 1 to L, where in this example L=48, the formula for determining the pattern detect bit 225 is:
((ALU_Output[1] XNOR Pattern[1]) OR Mask[1])
AND
((ALU_Output[2] XNOR Pattern[2]) OR Mask[2])
AND
. . .
((ALU_Output[i] XNOR Pattern[i]) OR Mask[i])
AND
. . .
((ALU_Output[L] XNOR Pattern[L]) OR Mask[L]) [Eqn 2]
The PATTERN_B_DETECT 1220 value, is normally “1” when, after masking, the inverse of pattern 1276 matches the ALU output 296. The formula for detecting the pattern_b detect bit 1220 is:
(ALU_Output[1] XNOR
AND
((ALU_Output[2] XNOR
AND
. . .
((ALU_Output[i] XNOR
AND
. . .
((ALU_Output[L] XNOR
In another embodiment the formula for detecting the pattern_b detect bit 1220 is:
(ALU_Output[1] XOR Pattern[1]) OR Mask[1])
AND
((ALU_Output[2] XOR Pattern[2]) OR Mask[2])
AND
. . .
((ALU_Output[i] XOR Pattern[i]) OR Mask[i])
AND
. . .
((ALU_Output[L] XOR Pattern[L]) OR Mask[L]) [Eqn 4]
The first masked comparison (1 means all bits match) 1230 is stored in the P1 register 261 and then output from DSPE 118-1 as Pattern_Detect 225. A P2 register 1232 stores a first masked comparison output bit of a past clock cycle and outputs from DSPE 118-1 a Pattern_Detect_Past 1234. Comparator 295 also compares the data output of the ALU 296 with an inverted selected pattern 1276 (Pattern_bar). The second equality output bit (1 means all bits match) 1212 is stored in the P3 register 1214 and then output from DSP 118-1 as Pattern_B_Detect 1220. A P4 register 1216 stores a second equality output bit of a past clock cycle and outputs from DSPE 118-1 a Pattern_B_Detect_Past 1218. While the comparator 295 is a masked equality comparison of the ALU output 296 with the pattern 1276, in other embodiments the comparator 295 can have other comparison functions such as partially equal, a computation of the number of bits in the field that are equal and the like. The existing equality comparison in conjunction with the ALU subtracter can also be used to implement a >, >=, < or <= function.
The selected pattern 1276 sent to comparator 295 is selected by multiplexer 1270 by sel_pattern 1260 and is either a dynamic pattern in the C register 218-1 or a static pattern 1290 formed in a plurality of configuration memory cells in one embodiment of the present invention. The sel_pattern control 1260 is also set in configuration memory cells. In other embodiments either the pattern 1290 or the sel_pattern 1260 or both can be set using one or more registers or configuration memory cells or a combination thereof.
The selected mask 1274 sent to comparator 295 is selected by multiplexer 1272 by sel_rounding_mask 1264. Multiplexer 1272 receives input from multiplexer 1278 which selects via control sel_mask 1262 either a dynamic mask in the C register 218-1 or a static mask 1292 formed in a plurality of configuration memory cells in one embodiment of the present invention. The multiplexer's controls sel_mask 1262 and sel_rounding_mask 1264 are also set in configuration memory cells. In addition to the output of multiplexer 1278, multiplexer 1272 can select between C_bar_shift_by—2 1266 (the contents of the C register 218-1 are inverted and then shifted left by 2 bits) and C_bar_shift_by—1 1268 (the contents of the C register 218-1 are inverted and then shifted left by 1 bit). The contents of the C register 218-1 in one embodiment can be inverted and left shifted (0's are shifted in) in the programmable logic and restored in the C register. In another embodiment where the 17-bit shifter 246 in
Thus, one embodiment of the present invention includes an integrated circuit (IC) for pattern detection. The IC includes; programmable logic coupled together by programmable interconnect elements; an arithmetic logic unit (ALU), e.g., 292 (see
Pattern detector 1210 has AND gates 1240 and 1242 which are used to detect overflow or underflow of the P register 260. AND gate 1240 receives pattern_detect_past 1234, an inverted pattern_b_detect 1220, and an inverted pattern_detect 225 and produces overflow bit 1250. AND gate 1242 receives pattern_b_detect_past 1218, an inverted pattern_b_detect 1220, and an inverted pattern_detect 225 and produces underflow bit 1252.
For example when the Pattern detector 1210 is set to detect a pattern 1290 of “48′b00000 . . . 0” with a mask 1292 of “48′b0011111 . . . 1” (the default settings), the overflow bit 1250 will be set to 1 when there is an overflow beyond P=“00111 . . . 1”. Because in equations 2-4 above the mask is bitwised OR'd with each of the comparisons, the pattern that is being detected for PATTERN_DETECT 225 in the ALU output 292 (the value stored in P register 260) is P=“00”XXX . . . XX, where X is “don't care”. The inverted pattern is “11111 . . . 1”, and the inverted pattern that is being detected for PATTERN_B_DETECT 225 in the ALU output 292 (the value stored in P register 260) is P=“11”XXX . . . XX, where X is “don't care”.
As an illustration let P=“00111 . . . 1” on a first clock cycle and then change to P=“01000 . . . 0”, i.e., P[47]=0 and P[46]=1, on a second clock cycle. On the first clock cycle as P=“00111 . . . 1” matches the pattern “00”XXX . . . XX, Pattern_Detect 225 is 1. As P=“00111 . . . 1” does not match the pattern “11”XXX . . . XX, Pattern_B_Detect 1220 is 0. Thus for the first clock cycle Overflow 1250 is 0. On the second clock cycle, a “1” is added to P 260 via ALU 292 to give P=“01000 . . . 0”, which does not match the pattern “00”XXX . . . XX, and Pattern_Detect 225 is 0. As P=“01000 . . . 0” does not match the pattern “11”XXX . . . XX, Pattern_B_Detect 1220 is 0. Thus for the second clock cycle, PATTERN_DETECT_PAST 1234 is “1”, PATTERN_B_DETECT 1220 is “0” and PATTERN_DETECT 225 is “0”. From
As another illustration let P=“110000 . . . 0” on a first clock cycle and then change to P=“100111 . . . 1”, i.e., P[47]=1 and P[46]=0, on a second clock cycle. On the first clock cycle as P=“110000 . . . 0” does not match the pattern “00”XXX . . . XX, and Pattern_Detect 225 is 0. As P=“110000 . . . 0” does match the pattern “11”XXX . . . XX, Pattern_B_Detect 1220 is 1. Thus for the first clock cycle Underflow 1252 is 0. On the second clock cycle, a “1” is subtracted from P 260 via ALU 292 to give P=“10111 . . . 1”, which does not match the pattern “00”XXX . . . XX, and Pattern_Detect 225 is 0. As P=“10111 . . . 1” does not match the pattern “11”XXX . . . XX, Pattern_B_Detect 1220 is 0. Thus for the second clock cycle, PATTERN_B_DETECT_PAST 1218 is “1”, PATTERN_B_DETECT 1220 is “0” and PATTERN_DETECT 225 is “0”. From
By setting the mask 1292 to other values, e.g., “48′b0000111 . . . ”, the bit value P(N) at which overflow is detected can be changed (in this illustration, N can be 0 to 46). Note that this logic supports saturation to a positive number of 2^M−1 and a negative number of 2^M in two's complement, where M is the number of 1's in the mask field. The overflow flag 1250 and underflow flag 1252 will only remain high for one cycle and so the values need to be captured in fabric and used as needed.
The overflow/underflow detection as shown by
If the autoreset_pattern_detect flag 1320 is set to 1, and the autoreset_polarity is set to 1 then the signal 1330 automatically resets the P register 260 one clock cycle after a Pattern has been detected (pattern_detect =1). For example, a repeating 9-state counter (counts 0 to 8) will reset after the pattern 00001000 is detected.
If the autoreset_polarity is set to 0 then the P register 260 will autoreset on the next clock cycle only if a pattern was detected, but is now no longer detected (AND gate 1312). For example, P register 260 will reset if 00000XXX is no longer detected in the 9-state counter. This mode of counter is useful if different numbers are added on every cycle and a reset is triggered every time a threshold is crossed.
In more detail
Thus disclosed above in one embodiment of the present invention is a programmable Logic Device (PLD) having pattern detection. The PLD includes: (a) an arithmetic logic unit (ALU) configured to produce an ALU output;
In another embodiment the PLD circuit can further include a first AND gate inputting the previous first comparison signal, an inverted second comparison signal, and an inverted first comparison signal and outputting an overflow signal. In addition the PLD can include a second AND gate inputting the previous second comparison signal, the inverted second comparison signal, and the inverted first comparison signal and outputting an underflow signal.
In yet another embodiment the PLD circuit can further include: a first AND gate receiving the previous first comparison signal and an inverted first comparison signal; a third multiplexer selecting an output from the first AND gate or the first comparison signal, using one or more configuration memory cells; and a second AND gate coupled to the third multiplexer and a predetermined autoreset pattern detect signal and outputting an auto-reset signal.
Different styles of rounding can be done efficiently in the DSP block (e.g., DSPE 118-1 in
There are different factors to consider while implementing a rounding function: 1) dynamic or static binary point rounding; 2) symmetric or random or convergent rounding; and 3) least significant bit (LSB) correction or carrybit (e.g., Cin) correction (if convergent rounding was chosen in 2) above.
In static binary point arithmetic, the binary point is fixed in every computation. In dynamic binary point arithmetic, the binary point moves in different computations. Most of the rounding techniques described below are for dynamically moving binary points. However, these techniques can easily be used for static binary point cases.
Symmetric Rounding can be explained with reference to
In symmetric rounding towards zero, the Cin bit is set to the sign bit of the result e.g., inverted P[47] 420 with CarrySel 410 set to “111” in
The rounding toward infinity of the output of ALU 292 for multiply-accumulate and add-accumulate operations can be done by setting CarryinSel 410 to “110” in
In random rounding, the result is rounded up or down. In order to randomize the error due to rounding, one can dynamically alternate between symmetric rounding towards infinity and symmetric rounding towards zero by toggling the Cin bit pseudo-randomly. The Cin bit in this case is a random number. The ALU adds either a number slightly smaller than 0.50 (e.g., 0.4999 . . . ) or 0.50 to the result before truncation. For example, 2.5 can round to 2 or to 3, randomly. Repeatability depends on how the pseudo-random number is generated. If an LFSR is used and the seed is always the same, then results can be repeatable. Otherwise, the results might not be exactly repeatable.
In convergent rounding, the final result is rounded to the nearest even number (or odd number). In conventional implementations, if the midpoint is detected, then the units-placed bit before the round needs to be examined in order to determine whether the number is going to be rounded up or down. The original number before the round can change between even/odd from cycle to cycle, so the Cin value cannot be determined ahead of time.
In convergent rounding towards even, the final result is rounded toward the closest even number, for example: 2.5 rounds to 2 and −2.5 rounds to −2, but 1.5 rounds to 2 and −1.5 rounds to −2. In convergent rounding towards odd, the final result is rounded toward the closest odd number, for example: 2.5 rounds to 3 and −2.5 rounds to −3, but 1.5 rounds to 1 and −1.5 rounds to −1. The convergent rounding techniques require additional logic such as configurable logic in the FPGA fabric in addition to the DSPE.
Thus one embodiment with reference to
There are two ways of implementing a convergent rounding scheme: 1) a LSB Correction Technique, where a logic gate is needed in fabric to compute the final LSB after rounding; and 2) a Carry Correction Technique where an extra bit is produced by the pattern detector that needs to be added to the truncated output of the DSPE in order to determine the final rounded number. If a series of computations are being performed, then this carry bit can be added in a subsequent fabric add or using another DSPE add.
First, the convergent rounding, LSB correction technique, of an embodiment of the present invention is disclosed. For dynamic convergent rounding, the Pattern Detector can be used to detect the midpoint case with C=0000.0111 for both Round-to-Odd and Round-to-even cases. Round to odd should use Cin=“0” and check for PATTERN_B_DETECT “XXXX.1111” (where the “X” means that these bits have been masked and hence are don't care bits) in the ALU output 296 of
For dynamic convergent rounding, the SEL_PATTERN 1260 (see
Note that while the PATTERN_DETECT searches for XXXX.0000, the PATTERN_B_DETECT searches for a match with XXXX.1111. The Pattern Detector is used here to detect the midpoint. In the case of round-to-even, xxxx.0000 is the midpoint given that C=0000.0111 and Cin=1. In the case of round-to-odd, xxxx.1111 is the midpoint given that C=0000.0111 and Cin=0. Examples of Dynamic Round to Even and Round to Odd are shown in Table 7 and Table 8, respectively.
Second, the dynamic convergent rounding carry correction technique of an embodiment of the present invention is disclosed. Convergent rounding using carry correction technique requires a check on the ALU output 296 LSB as well as the binary fraction in order to make the correct decision. The Pattern Detector is set to detect XXXX0.1111 for the round to odd case. For round to even, the Pattern Detector detects XXXX1.1111. Whenever a pattern is detected, a ‘1’ should be added to the P output 224 of the DSPE. This addition can be done in the fabric or another DSPE. If the user has a chain of computations to be done on the data stream, the carry correction style might fit into the flow better than the LSB correction style.
For dynamic rounding using carry correction, the implementation is different for round to odd and round to even. In the dynamic round to even case, when XXX1.1111 is detected, a carry should be generated. The SEL_ROUNDING_MASK 1264 should be set select mask 1274 to left shift by 2 C complement 1266. This makes the mask 1274 change dynamically with the C input decimal point. So when the C input is 0000.0111, the mask is 1110.0000. If the Pattern 1276 is all 1's by setting a User_Pattern 1290 set to all ones, then the PATTERN_DETECT 225 is a ‘1’ whenever XXX1.1111 pattern is detected in ALU output 296. The carry correction bit is the PATTERN_DETECT output 225. The PATTERN_DETECT should be added to the truncated P output in the FPGA fabric in order to complete the rounding operation.
Examples of dynamic round to even are shown in Table 9.
In the dynamic round to odd case, a carry should be generated whenever XXX0.1111 is detected. SEL_ROUNDING_MASK 1264 is set to select the mask 1274 to left shift by 1 C complement 1268. This makes the mask change dynamically with the C input decimal point. So when the C input is 0000.0111, the mask is 1111.0000. If the PATTERN 1276 is set to all ones, then the PATTERN_DETECT 225 is a ‘1’ whenever XXXX.1111 is detected. The carry correction bit needs to be computed in fabric, depending on the LSB of the truncated DSPE output P 224 and the PATTERN_DETECT signal 225. The LSB of P 224 after truncation should be a ‘0’ and the PATTERN_DETECT 225 should be a ‘1’ in order for the carry correction bit to be a ‘1’. This carry correction bit should then be added to the truncated P output of the DSPE in the FPGA fabric in order to complete the round. Examples of dynamic round to odd are shown in Table 10.
In another embodiment this scheme can be used with adder circuits to round add or accumulate operations, such as A:B+P (+C), where the C port is used for rounding the add operation using any of the schemes mentioned. In yet another embodiment both adds and multiplies or general computation operations can be rounded in this manner.
The set-up time and hold time for the input data is proportional to the input clock time (Tclk
Tholdα(Tclk
Tsetα-(Tclk
For example, one Thold is the clk 1420 time minus input 1421 time and a second Thold is the clk 1422 time minus input 1423 time. Because the delay for a clock 1422 to reach, for example, input registers 1411 from the interconnects INT 111 is substantially similar to the delay for input data 1423 to reach input registers 1411 from the interconnects INT 111, the Thold (also Tset) is small. Similarly, the Thold (also Tset) for the delay of clk 1420 minus the delay for input 1421 is small.
However, the clock-to-out time is proportional to the output clock time plus the output data time, i.e.,
Tckoα(Tclk
Thus for example, in determining, in part, the DSPE 114-1 clock-to-out time, the time clk 1424 takes to reach output registers 260 from the interconnects INT 111 is added to the time it takes the output data 1425 to go from the output registers 260 to the interconnects INT 111. As another example, the DSPE 114-2 clock-to-out time is determined, in part, from adding the time clk 1426 takes to reach output registers 1414 from the interconnects INT 111 to the time it takes the output data 1427 to go from the output registers 1414 to the interconnects INT 111. As can be seen the clock-to-out time for DSPE 114-1 can be substantial.
As illustrated by
Thus one embodiment of the invention includes a physical layout for a digital signal processing (DSP) block 117 in an integrated circuit. With reference to
Thus one embodiment of the present invention includes a Programmable Logic Device (PLD) having two cascaded DSP circuits. The first DSP circuit includes: a first pre-adder circuit (e.g., 1520) coupled to a first multiplier circuit (e.g., 241) and to a first set of multiplexers (e.g., 250), where the first set of multiplexers is controlled by a first opmode; and a first arithmetic logic unit (ALU) (e.g., 292) having a first adder circuit; and wherein the pre-adder circuit (e.g., 1520) has a second adder circuit. The second DSP circuit includes: a second pre-adder circuit coupled to a second multiplier circuit and to a second set of multiplexers, where the second set of multiplexers is controlled by a second opmode; and a second arithmetic logic unit (ALU) having a third adder circuit; and wherein the second pre-adder circuit comprises a fourth adder circuit and is coupled to the first pre-adder circuit (e.g., 1520).
One example of a use of DSP 106 as a wide multiplexer is X-mux 3110 selecting A:B 271 (Opmode[1:0]=11), Y-Mux 3112 selecting 0 (Opmode[3:2]=00, and Z-Mux 3114 selecting 0 (Opmode[6:4]=000), where Opmode[6:0] for DSPE 114-2 is stored in Opmode register 3113. The output P 280 of adder 3111 (A:B+0+0) is A:B, which is input via PCIN 226 (coupled to PCOUT 278) to Z-mux 250-3. The X,Y, and Z multiplexers 250 will select between inputs A:B 228, C 242, and PCIN 226 (A:B 271). From Table 2 above, when Opmode[6:0] 252 is “0010000” then PCIN 226 is selected and output as P 224; when Opmode[6:0] 252 is “0001100” then C 216 is selected and output as P 224; and when Opmode[6:0] 252 is “0000011” then A:B 228 is selected and output as P 224. Thus the wide multiplexer DSP 106 selects between A:B 271, C 216, and A:B 228. In another embodiment such as shown by
As illustrated by
Each of the four DSPEs 3220-1 to 3220-4 is the same as or similar to DSPE 118-1 of
One embodiment of the present invention includes a wide multiplexer circuit (e.g.,
Although the invention has been described in connection with several embodiments, it is understood that this invention is not limited to the embodiments disclosed, but is capable of various modifications, which would be apparent to one of ordinary skill in the art. Thus, the invention is limited only by the following claims.
This patent application is a continuation-in-part of and incorporates by reference, U.S. patent application Ser. No. 11/019,783, entitled “Integrated Circuit With Cascading DSP Slices”, by James M. Simkins, et al., filed Dec. 21, 2004, and is a continuation-in-part of and incorporates by reference, U.S. patent application, entitled “A Digital Signal Processing Element Having An Arithmetic Logic Unit” by James M. Simkins, et al., filed Apr. 21, 2006, and claims priority to and incorporates by reference, U.S. Provisional Application, Ser. No. 60/533,280, “Programmable Logic Device with Cascading DSP Slices”, filed Dec. 29, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4041461 | Kratz et al. | Aug 1977 | A |
4075688 | Lynch et al. | Feb 1978 | A |
4541048 | Propster et al. | Sep 1985 | A |
4638450 | Stoffers | Jan 1987 | A |
4639888 | Nussbaecher | Jan 1987 | A |
4665500 | Poland | May 1987 | A |
4680628 | Wojcik et al. | Jul 1987 | A |
4755962 | Mor | Jul 1988 | A |
4779220 | Nukiyama | Oct 1988 | A |
4780842 | Morton et al. | Oct 1988 | A |
5095523 | Delaruelle et al. | Mar 1992 | A |
5317530 | Toriumi | May 1994 | A |
5329460 | Agrawal et al. | Jul 1994 | A |
5339264 | Said et al. | Aug 1994 | A |
5349250 | New | Sep 1994 | A |
5359536 | Agrawal et al. | Oct 1994 | A |
5388062 | Knutson | Feb 1995 | A |
5450056 | Jens | Sep 1995 | A |
5450339 | Chester et al. | Sep 1995 | A |
5455525 | Ho et al. | Oct 1995 | A |
5506799 | Nakao | Apr 1996 | A |
5524244 | Robinson et al. | Jun 1996 | A |
RE35311 | Vassiliadis et al. | Aug 1996 | E |
5570306 | Soo | Oct 1996 | A |
5572207 | Harding et al. | Nov 1996 | A |
5600265 | El Gamal et al. | Feb 1997 | A |
5606520 | Gove et al. | Feb 1997 | A |
5630160 | Simpson et al. | May 1997 | A |
5642382 | Juan | Jun 1997 | A |
5724276 | Rose et al. | Mar 1998 | A |
5727225 | Guttag et al. | Mar 1998 | A |
5732004 | Brown | Mar 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5805913 | Guttag et al. | Sep 1998 | A |
5809292 | Wilkinson et al. | Sep 1998 | A |
5828229 | Ahanin et al. | Oct 1998 | A |
5835393 | Melanson et al. | Nov 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5880671 | Ranson et al. | Mar 1999 | A |
5883525 | Tavana et al. | Mar 1999 | A |
5896307 | Volkonsky | Apr 1999 | A |
5905661 | Volkonsky | May 1999 | A |
5914616 | Young et al. | Jun 1999 | A |
5923579 | Widigen et al. | Jul 1999 | A |
5933023 | Young | Aug 1999 | A |
5943250 | Kim et al. | Aug 1999 | A |
5948053 | Kamiya | Sep 1999 | A |
6000835 | Pan et al. | Dec 1999 | A |
6014684 | Hoffman | Jan 2000 | A |
6038583 | Oberman et al. | Mar 2000 | A |
6044392 | Anderson et al. | Mar 2000 | A |
6069490 | Ochotta et al. | May 2000 | A |
6100715 | Agrawal et al. | Aug 2000 | A |
6108343 | Cruickshank et al. | Aug 2000 | A |
6112019 | Chamdani et al. | Aug 2000 | A |
6125381 | Paysan | Sep 2000 | A |
6131105 | Pajarre et al. | Oct 2000 | A |
6134574 | Oberman et al. | Oct 2000 | A |
6154049 | New | Nov 2000 | A |
6204689 | Percey et al. | Mar 2001 | B1 |
6223198 | Oberman et al. | Apr 2001 | B1 |
6243808 | Wang | Jun 2001 | B1 |
6249144 | Agrawal et al. | Jun 2001 | B1 |
6260053 | Maulik et al. | Jul 2001 | B1 |
6269384 | Oberman | Jul 2001 | B1 |
6282627 | Wong et al. | Aug 2001 | B1 |
6282631 | Arbel | Aug 2001 | B1 |
6288566 | Hanrahan et al. | Sep 2001 | B1 |
6298366 | Gatherer et al. | Oct 2001 | B1 |
6298472 | Phillips et al. | Oct 2001 | B1 |
6311200 | Hanrahan et al. | Oct 2001 | B1 |
6323680 | Pedersen et al. | Nov 2001 | B1 |
6341318 | Dakhil | Jan 2002 | B1 |
6347346 | Taylor | Feb 2002 | B1 |
6349346 | Hanrahan et al. | Feb 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6366943 | Clinton | Apr 2002 | B1 |
6370596 | Dakhil | Apr 2002 | B1 |
6374312 | Pearce et al. | Apr 2002 | B1 |
6385751 | Wolf | May 2002 | B1 |
6389579 | Phillips et al. | May 2002 | B1 |
6392912 | Hanrahan et al. | May 2002 | B1 |
6397238 | Oberman et al. | May 2002 | B2 |
6405298 | Zeng | Jun 2002 | B1 |
6421698 | Hong | Jul 2002 | B1 |
6434584 | Henderson et al. | Aug 2002 | B1 |
6438570 | Miller | Aug 2002 | B1 |
6448808 | Young et al. | Sep 2002 | B2 |
6449708 | Dewhurst et al. | Sep 2002 | B2 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6483343 | Faith et al. | Nov 2002 | B1 |
6496918 | DeHon et al. | Dec 2002 | B1 |
6519674 | Lam et al. | Feb 2003 | B1 |
6526430 | Hung et al. | Feb 2003 | B1 |
6526557 | Young et al. | Feb 2003 | B1 |
6530010 | Hung et al. | Mar 2003 | B1 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6539477 | Seawright | Mar 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6567835 | Blomgren et al. | May 2003 | B1 |
6573749 | New et al. | Jun 2003 | B2 |
6631508 | Williams | Oct 2003 | B1 |
6693455 | Langhammer et al. | Feb 2004 | B2 |
6732132 | Sogo | May 2004 | B2 |
6742013 | Griesemer | May 2004 | B2 |
6745319 | Balmer et al. | Jun 2004 | B1 |
6754689 | Bhushan et al. | Jun 2004 | B2 |
6820102 | Aldrich et al. | Nov 2004 | B2 |
6864714 | Digari | Mar 2005 | B2 |
6873182 | Mohan et al. | Mar 2005 | B2 |
6904446 | Dibrino | Jun 2005 | B2 |
6920627 | Blodget et al. | Jul 2005 | B2 |
6925480 | Duborgel | Aug 2005 | B2 |
6947916 | Luo et al. | Sep 2005 | B2 |
7116663 | Liao | Oct 2006 | B2 |
7124156 | Yang et al. | Oct 2006 | B2 |
7124160 | Saulsbury et al. | Oct 2006 | B2 |
7129762 | Vadi | Oct 2006 | B1 |
7142010 | Langhammer et al. | Nov 2006 | B2 |
7174432 | Howard et al. | Feb 2007 | B2 |
7178130 | Chuang et al. | Feb 2007 | B2 |
7193433 | Young | Mar 2007 | B1 |
7194598 | Jacob | Mar 2007 | B2 |
7194605 | Ranchandran | Mar 2007 | B2 |
7197686 | Box et al. | Mar 2007 | B2 |
7218139 | Young et al. | May 2007 | B1 |
7225279 | Scheuermann | May 2007 | B2 |
7249242 | Ramchandran | Jul 2007 | B2 |
7340562 | Ranchandran | Mar 2008 | B2 |
7353243 | Scheuermann | Apr 2008 | B2 |
7353516 | Heidari-Bateni et al. | Apr 2008 | B2 |
7433909 | Scheuermann | Oct 2008 | B2 |
7467175 | Simkins et al. | Dec 2008 | B2 |
7467177 | Simkins et al. | Dec 2008 | B2 |
7472155 | Simkins et al. | Dec 2008 | B2 |
7480690 | Simkins et al. | Jan 2009 | B2 |
7483420 | Esposito | Jan 2009 | B1 |
7502915 | Jacob | Mar 2009 | B2 |
7580963 | Kawano et al. | Aug 2009 | B2 |
7689640 | Renno et al. | Mar 2010 | B2 |
20020019925 | Dewhurst et al. | Feb 2002 | A1 |
20020138538 | Talwar et al. | Sep 2002 | A1 |
20020138716 | Master et al. | Sep 2002 | A1 |
20030033342 | Griesemer | Feb 2003 | A1 |
20030055861 | Lai et al. | Mar 2003 | A1 |
20030105793 | Guttag et al. | Jun 2003 | A1 |
20030105949 | Master et al. | Jun 2003 | A1 |
20030140077 | Zaboronski et al. | Jul 2003 | A1 |
20030154357 | Master et al. | Aug 2003 | A1 |
20040083250 | Kiuchi et al. | Apr 2004 | A1 |
20040158600 | Markstein et al. | Aug 2004 | A1 |
20040181614 | Furtek | Sep 2004 | A1 |
20050038984 | Heidari-Bateni et al. | Feb 2005 | A1 |
20050144210 | Simkins et al. | Jun 2005 | A1 |
20050187998 | Zheng et al. | Aug 2005 | A1 |
20060004902 | Simanapalli et al. | Jan 2006 | A1 |
20060015701 | Hogenanauer | Jan 2006 | A1 |
20060064449 | Nakamura et al. | Mar 2006 | A1 |
20060190516 | Simkins et al. | Aug 2006 | A1 |
20060190518 | Ekner et al. | Aug 2006 | A1 |
20060195496 | Vadi et al. | Aug 2006 | A1 |
20060206557 | Wong et al. | Sep 2006 | A1 |
20060212499 | New et al. | Sep 2006 | A1 |
20060218216 | Langhammer et al. | Sep 2006 | A1 |
20060230092 | Ching et al. | Oct 2006 | A1 |
20060230094 | Simkins et al. | Oct 2006 | A1 |
20060230095 | Simkins et al. | Oct 2006 | A1 |
20060230096 | Thendean et al. | Oct 2006 | A1 |
20060253516 | Gangwal et al. | Nov 2006 | A1 |
20060269054 | Dror et al. | Nov 2006 | A1 |
20060288069 | Simkins et al. | Dec 2006 | A1 |
20060288070 | Vadi et al. | Dec 2006 | A1 |
20060294175 | Koob et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
2 365 636 | Feb 2002 | GB |
2 373 883 | Oct 2002 | GB |
2 383 435 | Jun 2003 | GB |
WO 0189091 | Nov 2001 | WO |
WO 2005066832 | Jul 2005 | WO |
WO 2005110049 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060230093 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60533280 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11408364 | Apr 2006 | US |
Child | 11432847 | US | |
Parent | 11019783 | Dec 2004 | US |
Child | 11408364 | US |