This invention relates to thermal management of semiconductor devices and, more particularly, to thermal management of semiconductor devices by direct cooling.
Light-emitting diodes (LEDs) consist of a PN junction formed by two dissimilarly doped semiconductors as shown in
The wavelength of the light depends on the bandgap energy of the materials used in the PN junction. By adjusting the materials used, as well as the doping, a wide range of wavelengths is possible, including wavelengths in the ultraviolet (UV) and infrared (IR) portion of the electromagnetic spectrum. Other electrical components can be made using PN or similar junctions using semiconductors. In all these devices the electrical current and voltage required for operation (whether an LED or not) represent power, and the amount of power in a DC circuit is:
P=V×I
where P is the power, V is the voltage, and I is the current. In an LED, the conversion from electrical power to optical power is not 100% efficient. Therefore, power that is not released as photons may be absorbed as heat by the LED and the substrate material it is mounted on. The heat generated by the LED leads to a decrease in the output optical power and/or to damage of the device if the temperature is not maintained below a certain level.
While typically less important for operating individual LEDs, thermal management issues tend to be a significant, and often limiting, aspect of the design that goes into large high-power LED arrays.
Furthermore, the interface between an LED and the surface to which it is mounted presents heat transfer difficulties. Due to imperfections in materials, the LED and the surface may seem to be in intimate contact while actually being generally separated by a microscopically thin interface. Generally, that interface typically contains one or more undesirable materials, such as, e.g., air. Because air is a very poor thermal conductor, the interface typically is intentionally filled with a selected, thermally conductive material, such as, e.g., epoxy or grease, thereby displacing the undesirable material(s) and improving thermal transport across this interface. Even so, compared with the thermal conductivity of the substrate (and, if used, a heat sink attached to the substrate), this interface may still exhibit relatively low thermal conductivity, leading to undesirably high thermal gradients during the transport of heat energy.
Regardless of the particular characteristics of the thermal path from the backside of the LED into and through the substrate, the heat effectively travels through a thermal circuit that generally has a substantial thermal resistance. Subject to that thermal resistance, the temperature of the LED rises. Moreover, the LED's temperature tends to reach a substantial value in overcoming the thermal resistance and achieving typical heat flow.
Another problem encountered in LED systems that effects thermal management is the efficiency of light transmission. For example, light that is produced within an LED must exit through the LED face. This face represents an optical interface where the index of refraction changes. That change causes reflection of light back toward the LED. Reflected light may be absorbed by the LED, causing it to operate less efficiently. Larger changes in the index of refraction across an interface result in a greater amount of reflection and lessen the amount of transmission. Since LEDs are commonly made of materials with a high index of refraction, the transmission loss at the interface can be significant.
The equation for normal reflection at an optical interface is:
where n1 and n2 are the indices of refraction across the interface, and R is the power reflection at normal incidence. For example, if light travels through air (index=1) and strikes a glass surface at normal incidence (n=1.5), then the amount of reflection will be 0.040, or 4%, and the amount of transmission will be 1−R (for lossless interfaces) or 96%.
The material used in the construction of LEDs typically has a very high index of refraction. For example, Cree, Inc. (Durham, N.C.) makes an LED that is constructed of silicon carbide, which has an index of refraction of about 2.8 at short wavelengths near the upper end of the ultraviolet as seen in
What is needed is a system to provide efficient thermal management of a semiconductor device. In another aspect, what is needed is a system that efficiently manages heat generated by an LED so as to increase the operational efficiency and/or lifetime of the LED. In another aspect, what is needed is a system that efficiently manages heat generated by an LED so as to provide for enhanced transmission of light through the LED interface.
The present invention provides a cooling system for semiconductor devices that applies a coolant directly to a semiconductor device to efficiently remove heat.
In one embodiment, a coolant directly cools a semiconductor device, thus removing waste heat from the device. Since heat is removed directly from the semiconductor device, heat removal is relatively efficient compared to other heat removal configurations, e.g., heat removal through the substrate. Accordingly, if the semiconductor device is driven at a fixed input power, the semiconductor device will generally run cooler using direct cooling, than if other heat removal configurations are used. In such case, because the optical output of the semiconductor device tends to increase with the decreased temperature of the semiconductor device, such direct cooling of the semiconductor device will result in a relative increase in its optical flux. However, because efficient heat removal provided by direct cooling delivers cooler operating temperatures, the semiconductor device may be operated at higher current (power), which increases optical output.
Direct cooling of the semiconductor device preferably is implemented to provide thermal management, and to increase optical output, by reducing the amount of light that is reflected back toward the semiconductor device at its face. Specifically, the coolant may be selected, among other bases, based on its index of refraction relative to the index associated with the semiconductor device. Through this index-based selection of the coolant, reflection at the semiconductor face may be reduced and, indeed, the more the indexes converge, the more reflection at this face is reduced, toward being eliminated or, at least minimized. By so addressing reflection, the optical output power typically is increased beyond the gains associated with heat removal alone.
In another aspect, light from a semiconductor device is directed through a window with optics that collect, condense, and/or collimate the light so as to provide additional optical output. Such optics preferably include an array of micro-lenses that are integrated into such window. Typically, such window provides for containment of the coolant.
In another embodiment, the semiconductor device is one or more LEDs that are mounted in a housing that includes a channel through which a coolant flows. In so flowing, the coolant directly cools the LEDs.
In another embodiment, one or more LEDs may be mounted in a housing that includes plural channels through which one or more coolants flow, directly cooling selected one or more surfaces of one or more LEDs.
In another embodiment, one or more LEDs are mounted on a substrate in a housing that includes plural channels through which one or more coolants flow, directly cooling the LEDs on a first side of the substrate and, as well, cooling an opposite side of the substrate.
Direct cooling of LEDs also provides the possibility of mounting the LEDs on substrates with complex shapes (bound by a complementary shaped window or optic) and directly cooling the LEDs with a coolant. The substrate may be fabricated from various materials, including thin plastic.
A thermal management system is provided for cooling a semiconductor device that includes a housing enclosing a semiconductor device with at least one channel formed in the housing adjacent to the semiconductor device, and a coolant supply for directing a coolant through the housing to flow through the at least one channel to directly cool the semiconductor device.
A method of directly cooling a semiconductor device is provided wherein the semiconductor device is at least one LED, the method comprising applying a coolant directly to the at least one LED. The coolant is selected from any of various appropriate material(s), preferably being a fluid, e.g., including one ore more gases or one or more liquids.
These and other embodiments are described in more detail in the following detailed descriptions and the figures.
The foregoing is not intended to be an exhaustive list of embodiments and features of the present invention. Persons skilled in the art are capable of appreciating other embodiments and features from the following detailed description in conjunction with the drawings.
Representative embodiments of the present invention are shown in
In this embodiment, the coolant 35 generally flows among and/or across the LEDs 32, 34, 36 and, preferably, comes into actual contact with one or more of the LEDs 32, 34, 36, so as to provide direct cooling of such semiconductor devices. However, it is understood that direct cooling in accordance with the invention does not require actual contact with the semiconductor device; rather, direct cooling is understood to embrace cooling by the coolant when the coolant cannot actually contact the semiconductor device due to interposed structure (e.g., one or more layers of material, such as dielectric or other protective layer(s), metallization or other interconnect, other materials, or combinations of any of these). However, it is also understood that direct cooling is present if the coolant makes some substantial contact with the semiconductor devices, including through actual contact with such interposed structure. Substantial contact is present when the interposed structure is substantially less thick than a typical substrate or otherwise presents a thermal barrier that is substantially smaller than the thermal barrier associated with a typical substrate.
In this embodiment, the coolant 35 circulates, flowing between substrate 38 and window 40 so as to flow across and among LEDs 32, 34, 36. Generally, such circulation may be constant, or may run at a selected duty cycle, or may be intermittent (running or not based, e.g., on the operation of a controller responsive to various thermal conditions associated with the LEDs).
Coolant flow will tend to be associated with some turbulence. Such turbulence will generally have characteristics based on various factors, including the type of coolant employed, the flow rate and other parameters associated with the coolant itself (e.g., temperature and pressure), the topology of the LEDs, the barriers presented to the flow (e.g., the cross-sectional shapes of the volumes through which the coolant flows), and the materials employed in constructing the volumes through which the coolant flows. In any case, and based on such factors, turbulence preferably is optimized so as to enhance heat removal while minimizing undesirable effects, e.g., any relating to light transmission, particularly any loss of such transmission.
The coolant 35 generally is selected from any of various appropriate material(s). Preferably, the coolant 35 is a fluid, e.g., including one ore more gases or one or more liquids (such as a mixture of liquids). The coolant typically is selected based on one or more various factors. These factors include, as examples: index of refraction; thermal capacity; thermal conductivity; transparency to selected wavelength(s) of light (e.g., selected light of the visible and/or UV spectra); performance (e.g., viscosity) under operating conditions expected for a particular implementation (e.g., ranges of temperatures, pressures, flow rates, etc.); stability and performance over time (e.g., tending not to break down or otherwise have substantial degradation in performance based on use in the system, including exposure to light, heat, and mechanical forces, over time); and reactivity (e.g., preferably, substantially inert; that is, not tending to react, chemically or otherwise, with or on any components or materials of the system and, to the extent some reaction occurs, such reaction causes insubstantial degradation of any system component or material, or system performance, over time). The coolant may be a commercially available material such as liquids marketed by Cargille Laboratories (Cedar Grove, N.J.), having product numbers 5610 (index of refraction between 1.46 and 1.54) and S1056 (index of refraction between 1.398 and 1.46). In addition, the coolant can be modified by adding organic components (such as, for example, Freon), where such components preferably are inert and where such modification is directed to achieve some desired performance, e.g., thermal capacities/conductivities and/or refractive indexes.
The coolant may include polar liquids, such as water (alone or in some selected combination). Polar liquids generally are characterized by a relatively high dipole moment (i.e., in chemistry, a polar material has centers of positive and negative charge distribution that do not converge). Polar liquids tend to have relatively high heat capacities, which is desirable in coolants. However, polar liquids also tend to have relatively high reactivities and, as coolants, they tend to damage unprotected components and materials in the system. Accordingly, polar liquids may be used as coolants, provided that the LED array, metallic surfaces, and other components and materials are protected, e.g., using one or more appropriate, durable dielectric or other protective layers.
Oils, such as olive oil, may also be used, alone or in some selected combination, provided performance is achieved.
As stated above, coolant 35 may be selected, among other bases, based on its index of refraction. This basis responds to the desirability of having the system enhance optical output by reducing the amount of light that is reflected (rather than transmitted) in interfaces between the coolant and materials of the system. As is understood by those skilled in the art, such reflection is due to differences in the indexes of refraction between the coolant and the materials. This selection of coolants is based on consideration of the coolant's index of refraction relative to the index of refraction of the other material associated with a particular interface. This selection may be directed to matching or substantially matching such indexes or to maintaining the index differences within selected ranges. (In any case, selection by refractive indexes and resulting performance is referred to generally as “optical coupling.”)
Optical coupling preferably is provided at the interface of the coolant and the light-emissive face of the semiconductor device. Optical coupling preferably is further provided at the interface of the coolant and one or more optical components disposed subsequently in the optical path (e.g., window 40). As an example, where optical coupling is provided between the coolant and each of the device face and such one or more optical components, it is preferred that such couplings are stepped, i.e., the coolant's index of refraction is the same as an index of either the face or optics or is selected to be between the indexes of such face and optics.
Through this optical coupling, reflection at the interfaces may be reduced. Indeed, the more the indexes converge, the more reflection is reduced, toward being eliminated or, at least minimized. It is understood that reflection at the semiconductor device's face may be reduced/minimized/eliminated, while still having index-of-refraction based reflection within the system, e.g., at other interfaces, such as the interface between the coolant and the window and the between the window and the exterior environment. Even so, any such reflection from such index differences will tend to be less degrading than reflection at the semiconductor device's face, in that the reflected light at these later interfaces will tend to be more scattered and, thus, less likely to be reflected back into the semiconductor device itself.
In this embodiment, coolant 45 is directed to flow between substrate 50 and window 52 so as to flow among and across, and preferably in actual contact with, LEDs 44, 46, 48. Preferably, the coolant 45 is selected, among other bases, based on its index of refraction relative to the index of refraction associated with the LEDs, as described above. In combination with the operation of the micro-lenses 54, such coolant selection tends to further optimize the optical power density output and, thus, available for application to the work surface.
Light emitting end portion 60 further includes a window 66 that may incorporate an array of diffractive and/or reflective optics to collect and collimate light emitted from the LED array 64 to be applied to a work surface (not shown). A seal 68 (
Preferably, the coolant is supplied from a supply (not shown). The coolant is directed out of housing 58 through outlet 80 to a heat dissipation system (not shown). With dissipation of thermal energy it has carried from the semiconductor device, the coolant is re-circulated through housing 58. The heat dissipation system typically is constructed to enable proper dissipation of the thermal energy from the coolant to the environment or location thermally remote from the semiconductor device, so that the dissipated energy is sufficiently remote from the semiconductor device so as to be unlikely to return to the semiconductor device in an appreciable amount.
System 30 may also include temperature-sensing device(s). The temperature sensing device(s) may be variously implemented. As an example, the temperature sensing device(s) may be implemented using thermistors. Moreover, the temperature sensing device(s) may be variously disposed in or throughout the system 30, so as to sense the temperature of system 30 at one or more selected locations. As examples, the temperature-sensing device(s) may be disposed so as to sense the temperature of one or more of the LED array 64 (at or proximate same, at one or more points thereof), the coolant, the environment to which the heat is removed (e.g., the air), or combination(s) of same.
The temperature sensing devices typically would be connected to one or more controllers (not shown), so as to provide data representative of the sensed temperature, whereby the controller(s) would interpret the data to assess the temperature characteristics in or throughout the system 30. Based on such interpretation, the controller(s) would typically also make one or more selected adjustments to system 30 (e.g., toward controlling the temperature thereof). To illustrate, if the temperature-sensing device(s) senses temperatures of system 30 reaching unacceptable level(s) at any one or more locations, one or more of the controller(s) typically would interpret data received from such temperature-sensing device so as to increase, e.g., the rate at which a pump that pumps the coolant through housing 58 or the action of other cooling components, such as a fan blowing air over a heat exchanger. Alternatively, one or more of the controller(s) may reduce power to, or turn off, the LED array 64 or to selected LEDs or groups of LEDs therein, with or without also increasing either or both of the pumping rate or action of other cooling components. Indeed, the controller(s) may shut down system 30, at least until the indicated temperature falls below a critical or other selected threshold level.
The invention can use a dielectric coating applied to the LED array. This coating generally will act as an insulator or protection layer, enabling use of electrically conductive or chemically active or coolants. Use of such coolants may be desirable in that they generally exhibit enhanced heat capacity or heat conductivity. Such dielectric coating may also be refractive index matched, as described above. Together with a dielectric coating (whether or not index matched), a metal may be applied in association with the LEDs, so as to enhance removal of heat directly from the LED and to provide such heat readily to the coolant (e.g., such coolant typically being circulated as described above). Examples of application of metal in association with an LED array (particularly to provide micro-reflectors) is shown and described in U.S. patent application Ser. No. 11/084,466, titled “MICRO-REFLECTORS ON A SUBSTRATE FOR HIGH-DENSITY LED ARRAY,” Attorney Docket number PHO-2.010.US, filed Mar. 18, 2005, claiming priority to U.S. Provisional Application Ser. No. 60/554,628, filed Mar. 18, 2004, the entire contents of which application are hereby incorporated by reference for all purposes.
In this embodiment, coolant is supplied from a source (not shown) to flow through an inlet 96 and through a supply flow chamber 98. Coolant then flows through both a top lateral channel 100 formed between window 94 and substrate 86 to directly cool LEDs 88 and through a bottom lateral channel 102 formed between substrate 86 and a flow divider 104 to cool the bottom of the substrate 86. Heated coolant then flows through discharge channel 106 and out to a remote location through outlet 108.
Although the embodiment of
The coolant removes heat from the LEDs so the heat can be transported to a remote location and/or released to the environment through a second stage cooling system (e.g., like forced air), thus cooling the coolant for reuse. In such a re-circulating system, the coolant typically passes through a radiator or other heat exchanger over which air is passed (or driven, e.g., via a fan), thus transferring the heat from the coolant to the air, cooling the coolant in the process and, after which, the coolant flows to and directly cools the LEDs again. For example, in a two-stage cooling system 110 such as the one shown in
For this system to work optimally, the system typically would be configured to account for a variety of factors. These factors include, e.g., the characteristics of the coolant, the type, number and arrangement of the semiconductor devices in the system, the application to which the system will be put, etc. To illustrate using a few applicable characteristics, the flow rate of the coolant preferably is linked (whether statically or dynamically) to the coolant's thermal heat capacity, the thermal output and temperature requirements in operation of the semiconductor device(s), and the capacity of the remote heat exchanger to dissipate the heat carried there from the semiconductor device by the coolant.
The use of heat pipes and air-cooled radiator as shown here could be replaced by other means by one skilled in the art and is not intended to be restrictive.
These principles can be shown concisely with the chart in
As an example consider an LED array that generates 1,000 watts of waste power. The waste power is efficiently removed with direct cooling of LEDs. Assuming the coolant is water and that the flow rate is just 2 liters per minute, the rise in water temperature will be slightly less than 10 Kelvins. This heat energy can then be transported to a relatively large radiator capable of raising the temperature of 20,000 liters (706 cubic feet) of air per minute by about 3 Kelvins.
Persons skilled in the art will recognize that many modifications and variations are possible in the details, materials, and arrangements of the parts and actions which have been described and illustrated in order to explain the nature of this invention and that such modifications and variations do not depart from the spirit and scope of the teachings and claims contained therein.
This application is a Divisional and claims the benefit of U.S. Non-Provisional patent application Ser. No. 11/083,525, filed Mar. 18, 2005, now U.S. Pat. No. 7,235,878 which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 60/554,632, filed Mar. 18, 2004, the contents of which are hereby incorporated by reference as if recited in full herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3586959 | Eccles et al. | Jun 1971 | A |
4011575 | Groves | Mar 1977 | A |
4435732 | Hyatt | Mar 1984 | A |
4530040 | Petterson | Jul 1985 | A |
4595289 | Feldman et al. | Jun 1986 | A |
4684801 | Carroll et al. | Aug 1987 | A |
5003357 | Kim et al. | Mar 1991 | A |
5067799 | Gold et al. | Nov 1991 | A |
5195102 | McLean et al. | Mar 1993 | A |
5296724 | Ogata et al. | Mar 1994 | A |
5397867 | Demeo | Mar 1995 | A |
5418384 | Yamana et al. | May 1995 | A |
5424544 | Shelton et al. | Jun 1995 | A |
5490049 | Montalan et al. | Feb 1996 | A |
5522225 | Eskandari | Jun 1996 | A |
5554849 | Gates | Sep 1996 | A |
5555038 | Conway | Sep 1996 | A |
5660461 | Ignatius et al. | Aug 1997 | A |
5782555 | Hochstein | Jul 1998 | A |
5785418 | Hochstein | Jul 1998 | A |
5806965 | Deese | Sep 1998 | A |
5857767 | Hochstein | Jan 1999 | A |
5892579 | Elyasaf et al. | Apr 1999 | A |
6049175 | Forsberg | Apr 2000 | A |
6058012 | Cooper et al. | May 2000 | A |
6088185 | Ratliff et al. | Jul 2000 | A |
6141040 | Toh | Oct 2000 | A |
6155699 | Miller et al. | Dec 2000 | A |
6163036 | Taninaka et al. | Dec 2000 | A |
6232659 | Clayton | May 2001 | B1 |
6291839 | Lester | Sep 2001 | B1 |
6318886 | Stopa et al. | Nov 2001 | B1 |
6366017 | Antoniadis et al. | Apr 2002 | B1 |
6367950 | Yamada et al. | Apr 2002 | B1 |
6373635 | Fujimoto et al. | Apr 2002 | B1 |
6419384 | Lewis et al. | Jul 2002 | B1 |
6420199 | Coman et al. | Jul 2002 | B1 |
6459919 | Lys et al. | Oct 2002 | B1 |
6480389 | Shie et al. | Nov 2002 | B1 |
6498355 | Harrah et al. | Dec 2002 | B1 |
6525335 | Krames et al. | Feb 2003 | B1 |
6534791 | Hayashi et al. | Mar 2003 | B1 |
6536923 | Merz | Mar 2003 | B1 |
6541800 | Barnett et al. | Apr 2003 | B2 |
6547249 | Collins, III et al. | Apr 2003 | B2 |
6554451 | Keuper | Apr 2003 | B1 |
6561640 | Young | May 2003 | B1 |
6573536 | Dry | Jun 2003 | B1 |
6578989 | Osumi et al. | Jun 2003 | B2 |
6607286 | West et al. | Aug 2003 | B2 |
6630689 | Bhat et al. | Oct 2003 | B2 |
6683421 | Kennedy et al. | Jan 2004 | B1 |
6686581 | Verhoeckx et al. | Feb 2004 | B2 |
6708501 | Ghoshal et al. | Mar 2004 | B1 |
6796698 | Sommers et al. | Sep 2004 | B2 |
6815724 | Dry | Sep 2004 | B2 |
6800373 | Gorczyca | Oct 2004 | B2 |
6800500 | Coman et al. | Oct 2004 | B2 |
6822991 | Collins, III et al. | Nov 2004 | B2 |
6831303 | Dry | Dec 2004 | B2 |
6857767 | Matsui et al. | Feb 2005 | B2 |
6880954 | Ollett et al. | Apr 2005 | B2 |
6992335 | Ohkawa | Jan 2006 | B2 |
6995348 | Bradley et al. | Feb 2006 | B2 |
6995405 | Braddell et al. | Feb 2006 | B2 |
7009165 | Hehemann et al. | Mar 2006 | B2 |
7071493 | Owen et al. | Jul 2006 | B2 |
20010002120 | Bessendorf et al. | May 2001 | A1 |
20010030782 | Trezza | Oct 2001 | A1 |
20010046652 | Ostler et al. | Nov 2001 | A1 |
20020176250 | Bohler et al. | Nov 2002 | A1 |
20020187454 | Melikechi et al. | Dec 2002 | A1 |
20030038943 | Almarzouk et al. | Feb 2003 | A1 |
20030086454 | Nagano et al. | May 2003 | A1 |
20030128552 | Takagi et al. | Jul 2003 | A1 |
20030230765 | Dry | Dec 2003 | A1 |
20040000677 | Dry | Jan 2004 | A1 |
20040011457 | Kobayashi et al. | Jan 2004 | A1 |
20040026721 | Dry | Feb 2004 | A1 |
20040090794 | Ollett et al. | May 2004 | A1 |
20040113549 | Roberts et al. | Jun 2004 | A1 |
20040119084 | Hsieh et al. | Jun 2004 | A1 |
20040124002 | Mazzochette et al. | Jul 2004 | A1 |
20040134603 | Kobayashi et al. | Jul 2004 | A1 |
20040135159 | Slegel | Jul 2004 | A1 |
20040141326 | Dry | Jul 2004 | A1 |
20040166249 | Slegel | Aug 2004 | A1 |
20040188696 | Hsing Chen et al. | Sep 2004 | A1 |
20040196653 | Clark et al. | Oct 2004 | A1 |
20040201995 | Galli | Oct 2004 | A1 |
20040203189 | Chen et al. | Oct 2004 | A1 |
20040206970 | Martin | Oct 2004 | A1 |
20040222433 | Mazzochette et al. | Nov 2004 | A1 |
20040238111 | Siegel | Dec 2004 | A1 |
20050018424 | Popovich | Jan 2005 | A1 |
20050024834 | Newby | Feb 2005 | A1 |
20050024864 | Galli | Feb 2005 | A1 |
20050088964 | Hackman et al. | Apr 2005 | A1 |
20050098299 | Goodson et al. | May 2005 | A1 |
20050152146 | Owen et al. | Jul 2005 | A1 |
20050218468 | Owen | Oct 2005 | A1 |
20050230600 | Olson et al. | Oct 2005 | A1 |
20050231713 | Owen et al. | Oct 2005 | A1 |
20050253252 | Owen et al. | Nov 2005 | A1 |
20050285129 | Jackson, III et al. | Dec 2005 | A1 |
20060033205 | Sauciuc et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
146998 | Jul 1985 | EP |
1033229 | Sep 2000 | EP |
1467416 | Oct 2004 | EP |
1469529 | Oct 2004 | EP |
1502752 | Feb 2005 | EP |
2396331 | Jun 2004 | GB |
2399162 | Sep 2004 | GB |
2003268042 | Sep 2003 | JP |
WO03096387 | Nov 2003 | WO |
WO03096387 | Nov 2003 | WO |
WO2004009318 | Jan 2004 | WO |
WO2004011848 | Feb 2004 | WO |
WO2004038759 | May 2004 | WO |
WO2004038759 | May 2004 | WO |
WO2004045016 | May 2004 | WO |
WO2004078477 | Sep 2004 | WO |
WO2004078637 | Sep 2004 | WO |
WO2004078637 | Sep 2004 | WO |
WO2004082021 | Sep 2004 | WO |
WO2004097516 | Nov 2004 | WO |
WO2005041632 | May 2005 | WO |
WO2005043598 | May 2005 | WO |
WO2005043954 | May 2005 | WO |
WO2005091392 | Sep 2005 | WO |
WO2005094390 | Oct 2005 | WO |
WO2005100961 | Oct 2005 | WO |
WO2005101535 | Oct 2005 | WO |
WO2006072071 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060216865 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60554632 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11083525 | Mar 2005 | US |
Child | 11423918 | US |