This invention relates to direct metal printing with stereolithography.
Stereolithography, also known as optical fabrication, is a three-dimensional (3D) printing technique developed recently as a form of additive manufacturing technology. In principle, stereolithography applies programmable light projection to build up designed structure in a layer-by-layer fashion.
Stereolithography has many advantages compared to other printing methods, including the potential of high printing resolution determined by the diffraction limit of optics, rapid printing speed, suitability for a wide range of materials, and the ability to print objects in a wide range of dimensions without the need for solid supports. Stereolithography has been used to print mainly polymeric materials by photo-polymerization, by which light triggers free radical polymerization to link organic monomers together, forming continuous polymer chains. Resulting 3D objects can be tens of centimeters in overall size, printed at resolutions as high as 10 μm.
Despite advantages associated with stereolithography, there are still some limitations of stereolithography in its current form. For example, most stereolithography processes are limited to the formation of soft materials such as polymers and hydrogels.
Current metal printing mainly relies on thermal/laser assisted metal fusion or ink-jet printing of metal powders. The metal fusion process typically requires extreme conditions, which is generally incompatible with organic materials. The ink-jet printed metal powders typically undergo a post-fabrication annealing process before they can form continuous structures. This process usually employs high power laser or high temperature, which may also damage organic materials. Thus, printing metals as well as other types of materials (e.g., organic polymers) with a single platform has been difficult to achieve. In addition, current metal printing techniques have limited resolution, and therefore may not be suitable for electronic device applications.
As described herein, continuous metallic structures of various shapes can be directly printed with stereolithography printers under ambient conditions from aqueous printing media. The aqueous printing media allows fabrication of continuous metal structures using photochemical processes, and the metal structures can be chemically bound to non-metallic materials, such as polymers and hydrogels. The printed metal structures have electrical conductivity that is comparable to that of bulk metals. The resolution of the resulting metal patterns can be up to 2.5 μm, which readily allows for the deposition of electronic circuits at the surface of 3D objects. The metal printing process occurs at ambient conditions, and post-fabrication treatments are not needed to yield the final product. No template or mold is involved in the fabrication process. The metal patterns can be bound to soft materials, such as polymers and hydrogels, through chemical interactions during fabrication. As such, metal-organic hybrid materials can be fabricated using a single stereolithography platform.
In a general aspect, additive manufacturing includes fabricating a substrate from a polymerizable composition by a stereolithographic process, and contacting the reactive surface with an aqueous solution including a metal precursor. The metal precursor includes a metal, and the polymerizable composition includes a multiplicity of multifunctional components. Each multifunctional component includes a reactive moiety extending from a surface of the substrate to form a reactive surface. An interface between the reactive surface and the aqueous solution is selectively irradiated in a desired pattern to form nanoparticles including the metal in the desired pattern. The nanoparticles are chemically coupled to the reactive surface by reactive moieties, thereby forming a metallic layer on the surface of the substrate.
Implementations of the general aspect may include one or more of the following features.
The substrate is typically an organic polymer or a hydrogel. The multifunctional component includes allylamine, and the reactive moiety includes amine. The polymerizable composition may include an acrylate monomer (e.g., a diacrylate monomer, such as 1,6-hexanediol diacrylate). In some cases, the polymerizable composition includes a photoinitiator (e.g., phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide). The metal is typically a transition metal (e.g., silver, gold, palladium, copper, or the like). In some cases, the aqueous solution includes a chelating agent (e.g., citrate).
Some implementations include forming an additional metallic layer on the surface. In some cases, a conductance of the metallic layer is the same order of magnitude as a conductance of the metal in bulk form. In certain cases, the metallic layer forms a continuous film on the substrate. The continuous film may include a multiplicity of nanoparticles, nanoparticle aggregates, or both. In some cases, a dimension of the continuous film exceeds a dimension of the nanoparticles by at least a factor of 1000.
The metallic layer is typically formed under ambient conditions. In one example, a dimension of the metallic layer is at least 1 cm. A resolution of the metallic layer can be up to 10 μm.
Applications of the stereolithography printing methods described herein include formation of prototype electronic devices and deposition of electronic circuits onto vulnerable materials, including hydrogels and biological samples. Resulting devices are suitable for soft robotics, biochemical sensors, responsive coatings, solar harvesting devices, intelligent electromagnetic devices (e.g., antennas, photo-modulators), smart biomedical devices, and energy storage and conversion devices. The high resolution allows precise deposition of conductive materials, which can be used to fabricate semiconductor devices that contain many small domains of two-dimensional (2D) materials (e.g., MoS2).
Methods and materials for direct stereolithographic printing of metal structures by ligand-assisted optical metal deposition are described. The process includes metal nanoparticle (MNP) generation and growth or interconnection of the MNPs.
As depicted in
In one example, silver nanoparticles were formed by irradiating a solution formed by dissolving silver nitrate and sodium citrate. The solution was prepared by dissolving 204 mg silver nitrate and 134 mg sodium citrate dihydrate into 200 mL deionized (DI) water. This composition was selected to maintain a high Ag(I) concentration, maintain an excess of citrate ion, and avoid Ag(I) precipitation, and resulted in the rapid generation of a large amount silver nanoparticles. Formation of the silver nanoparticles occurs by photolysis of the silver complexes, in which several types of reducing agents are generated by irradiation of the solution with light, as depicted generally in
Allylamine (AAm) and polyallylamine (pAAm) are ligands and reducing agents for silver ions. The amine groups in AAm and pAAm form coordination complexes with Ag(I) ions. When added into the Ag(I)-citrate solution, they can partially replace the citrate capping layer on Ag nanoparticles. Since AAm and pAAm are electrically neutral, this leads to a lower surface charge density that can potentially increase MNP aggregation. This reaction pathway, however, is not photosensitive, meaning that it cannot be triggered by photo-illumination in the stereolithography. In addition, the mixture of Ag(I) ion and amines is not very stable owing to the alkalinity of the amine group. As such, AgOH may be formed.
Silver citrate photochemistry and the complexation between silver ions and pAAm was demonstrated by adding pAAm to a silver citrate solution formed as described previously. After irradiation, the solution turned yellow in approximately 3 min, and reflective coatings of metallic features were formed at the bottom surface of the microcentrifuge tube. Transmission electron microscopy (TEM) and spectral measurements revealed that when pAAm was added, individual silver nanoparticles started to aggregate into continuous structures. This aggregation was dependent on the initial concentration of amine groups in pAAm.
The formation of silver nanoparticle (AgNP) aggregates is believed to involve the following mechanism. First, individual AgNPs are formed through the photoreduction of Ag(I) by citrate. Next, AgNPs bind to pAAm by complexation and are forced to stay close to each other. Finally, further Ag(I) reduction happens due to continuous light irradiation. The composition of aggregates found in TEM has been examined by energy dispersive X-ray spectroscopy (EDX), as shown in
Taking advantage of the AgNP aggregation and Ag layer formation described previously, a substrate was fabricated with stereolithography. A photocurable precursor containing allylamine was used. The precursor was prepared by mixing 95 v/v % 1,6-hexanediol diacrylate (HDDA), 5 v/v % allylamine, and 0.1 wt % phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide. This reaction mixture was cured in 1 min to yield a stiff, transparent layer using stereolithography. Note allylamine was converted to poly(allylamine) during this step. The surface of the cured layer was abundant in —NH2 groups, which served as the ligand to capture Ag(0) and Ag(I). After the substrate was fabricated, a “silver ink” containing silver nitrate and sodium citrate was added to the printing reservoir. When no amine groups were involved, only a dark metal pattern 800 formed on the surface as shown in
Given the dynamic projection ability of stereolithography, it is possible to quickly switch light distributions and create a variety of silver patterns by forming selected areas with surface —NH2 groups. By adding proper objectives, ultra-fine metal patterns can be created, for example, to achieve a resolution of 10 μm. The continuity of the as-prepared silver patterns was also examined by conductivity testing. The measured conductance of a silver strip was 1.1E7 S/m, which is on the same order as the conductance of bulk silver (6.3E7 S/m).
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of disclosure. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation application of U.S. patent application Ser. No. 16/286,006 filed on Feb. 26, 2019 and entitled “DIRECT METAL PRINTING WITH STEROLITHOGRAPHY.” The Ser. No. 16/286,006 application claims priority to U.S. 62/635,907 entitled “DIRECT METAL PRINTING WITH STEREOLITHOGRAPHY” and filed on Feb. 27, 2018. Therefore, this application claims priority to both the Ser. No. 16/286,006 and 62/635,907 applications. The Ser. No. 16/286,006 and 62/635,907 applications are also hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
10494721 | Robinson et al. | Dec 2019 | B1 |
11135649 | Zhao | Oct 2021 | B2 |
20090206520 | Park | Aug 2009 | A1 |
20100105794 | Dietliker et al. | Apr 2010 | A1 |
20100233434 | Lahav | Sep 2010 | A1 |
20120244322 | Morhard et al. | Sep 2012 | A1 |
20160243263 | Zheng | Aug 2016 | A1 |
20180088462 | Vyatskikh et al. | Mar 2018 | A1 |
20200223999 | Malic et al. | Jul 2020 | A1 |
20200331196 | Dvash et al. | Oct 2020 | A1 |
20220275972 | Zhao | Sep 2022 | A1 |
Entry |
---|
Sato-Berru, R. et al. “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman Spectroscopy,” J. of Raman Spectroscopy, vol. 40, published online Oct. 20, 2008, pp. 376-380. |
Number | Date | Country | |
---|---|---|---|
20210323065 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62635907 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16286006 | Feb 2019 | US |
Child | 17365024 | US |