Directional input devices may be employed in a variety of systems including computer systems, game systems, simulators, specialized vehicles, controllers, and remote control applications, to name a few examples. Examples of directional input devices include joysticks and joypads.
A directional input device may include a shaft that may be manipulated by a user. A movement of a shaft may be used to provide a directional input for a computer system, game console, controller, etc. For example, a shaft of a directional input device may be moved to the left to indicate a “left” input. Similarly, a shaft of a directional input device may be moved to the right, up, or down, to provide corresponding directional inputs.
A directional input device may include a sensor surface for sensing the movements of its shaft. For example, a sensor surface may include a set of structures that make physical contact with a shaft and form electrical circuits that indicate the up, down, left, right, etc., positions of the shaft. Unfortunately, the cumulative effects of physical contact between a moving shaft and a sensor surface may cause wear and tear in the structures on the sensor surface and the shaft. The wear and tear of a sensor surface and a shaft may cause failures when detecting movements of a shaft with consequential failures in detecting directional inputs from a user.
A directional input device with a light directing shaft is disclosed that avoids wear and tear caused by physical contact between a shaft and a sensor surface. A directional input device according to the present teachings includes a light emitter and a shaft having a surface that reflects light from the light emitter. A directional input device according to the present teachings further includes a set of light sensing elements that are positioned to detect a position of the shaft by sensing light reflected from the shaft.
Other features and advantages of the present invention will be apparent from the detailed description that follows.
The present invention is described with respect to particular exemplary embodiments thereof and reference is accordingly made to the drawings in which:
a-1b show a top view and a side view, respectively, of a directional input device according to the present teachings;
a-1b show a top view and a side view, respectively, of a directional input device 10 according to the present teachings. The directional input device 10 includes a shaft 12 having a reflecting surface 14, e.g. a reflective coating, that enables the shaft 12 to direct light emitted from a light emitter 30 back onto a sensor surface 18 in response to manipulation of the shaft 12 by a user.
The sensor surface 18 includes a set of light sensing elements 20-23, e.g. photodiodes. The light sensing elements 20-23 are placed at selected positions with respect to a set of x-y axes of the sensor surface 18. The positions of the light sensing elements 20-23 are selected to detect movements of the shaft 12 with respect to the x-y axes by detecting light from the light emitter 30 that is reflected by the reflecting surface 14.
A tilting movement of the shaft 12, e.g. a tilting movement indicated by an arrow 16, causes reflected light from the light emitter 30 to illuminate one of the light sensing elements 20-23 depending on the movement of the shaft 12. A pair of amplifiers 40-42 detect which of the light sensing elements 20-23 is illuminated by detecting the high or low signal states of the light sensing elements 20-23.
Similarly, the light sensing element 22 functions as a −X sensor, e.g. for a “Left” movement of a joypad or joystick, because it is illuminated when the shaft 12 is moved to the left. Likewise, the light sensing elements 21 and 23 function as −Y (Down) and +Y (Up) sensors for movements of the shaft 12.
Table 1 summarizes the signal states of the light sensing elements 20-23 in response to a set of predetermined positions of the shaft 12.
For example, a movement of the shaft 12 to the far right, i.e. the far +X direction, illuminates the light sensing element 50. As a consequence, the light sensing element 50 functions as a Far +X sensor (e.g. Accelerate Right). Similarly, the light sensing element 52 functions as a Far −X sensor (e.g. Accelerate Left) because it is illuminated when the shaft 12 is moved to the far left. Likewise, the light sensing elements 51 and 53 function as Far −Y (e.g. Accelerate Down) and Far +Y (e.g. Accelerate Up).
Table 2 summarizes the signal states of the light sensing elements 20-23 and 50-53 in response to a set of predetermined positions of the shaft 12.
The foregoing detailed description of the present invention is provided for the purposes of illustration and is not intended to be exhaustive or to limit the invention to the precise embodiment disclosed. Accordingly, the scope of the present invention is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4459022 | Morey | Jul 1984 | A |
4686361 | Bard | Aug 1987 | A |
5065146 | Garrett | Nov 1991 | A |
5530576 | Jackson et al. | Jun 1996 | A |
5943233 | Ebina et al. | Aug 1999 | A |
20020134925 | Grenlund | Sep 2002 | A1 |
20030193415 | Fo et al. | Oct 2003 | A1 |
20050162389 | Obermeyer et al. | Jul 2005 | A1 |
20050163509 | Kobayashi et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070194215 A1 | Aug 2007 | US |