The present disclosure relates to respiratory therapy systems. In particular, the disclosure relates to interface assemblies for use in respiratory therapy and portions thereof.
The treatment of respiratory ailments or conditions with therapies such as non-invasive ventilation (NIV), Bi-level or continuous positive airway pressure (CPAP) therapy involves the delivery of pressurized air to the airways of a human via a conduit and an interface (e.g., a mask). Some types of interfaces create at least a substantial “seal” on or around the nose and/or the mouth of the user.
The result of creating this “seal” is that the combination of the enclosure area of the interface and its internal pressure creates a resulting force (a “blow off” force) that attempts to push the mask off the face. To restrain this force it is normal to use a headgear arrangement having one or more straps that pass around the back of the head.
The strap(s) require some form of adjustment to account for variation in head size, this adjustment mechanism is typically provided via an adjustment loop between the mask body and the head gear. The adjustment loop can have a hook-and-loop or similar fastener that permits an end of the strap to be passed through a mounting location on the mask or through a clip that attaches to the mask and then attached to another section of the strap. Such an arrangement permits adjustment of the headgear by positioning the end of the strap at a desired location on the other section of the strap to vary a size of the adjustment loop.
These types of mechanism are one solution to providing an adjustment mechanism for the headgear and, thus, the interface assembly. Such systems also require a reasonable level of user interaction and, as a result, is prone to misuse or mis-adjustment (e.g., over-tightening). As a practical matter, micro-adjustment of such systems is difficult and time-consuming to accomplish. The creation of practical and not so practical solutions to this has been the subject of considerable development effort from a number of organisations, which has resulted in numerous patents.
The systems, methods and devices described herein have innovative aspects, no single one of which is indispensable or solely responsible for their desirable attributes. Without limiting the scope of the claims, some of the advantageous features will now be summarized.
In some configurations, a directional lock includes a housing defining an interior space, a first opening and a second opening. Each of the first and second openings communicates with the interior space. A sleeve is movably coupled to the housing and includes a catch element. The sleeve is displaceable between a first displacement position and a second displacement position. At least one lock element is disposed within the housing. The lock element has a first aperture configured to receive a core element and a second aperture to cooperate with the catch element. The lock element is movable between a first position, in which the aperture is aligned with the first opening and the second opening, and a second position, in which the aperture is not aligned with the first opening and the second opening. Displacement of the sleeve from the first displacement position to the second displacement position causes the catch element to at least assist or initiate movement of the lock element from the first position toward the second position at least to an intermediate position.
In some configurations, the lock element is a lock washer.
In some configurations, the lock element is pivotally coupled to the housing for rotation about a fixed pivot axis.
In some configurations, a pivot axis of the lock element is movable relative to the housing.
In some configurations, the sleeve is disposed within the housing.
In some configurations, the sleeve comprises a conduit portion through which the core can pass.
In some configurations, the catch element comprises a catch arm and a catch end.
In some configurations, the catch end of the catch element is round.
In some configurations, a surface of the catch end that contacts the lock element is non-planar.
In some configurations, the catch end is configured to catch or engage the lock element when the sleeve is displaced from the first displacement position to the second displacement position.
In some configurations, the catch arm is narrower in width than the second aperture of the lock element.
In some configurations, the catch end is wider in width than the second aperture of the lock element.
In some configurations, the sleeve includes at least one stop-guide.
In some configurations, the stop-guide is configured to engage the housing so as to stop displacement of the sleeve at the second displacement position.
In some configurations, the stop-guide is configured to engage the housing so as to stop displacement.
In some configurations, the stop-guide is positioned on the conduit portion.
In some configurations, the sleeve includes a cuff.
In some configurations, the sleeve is displaceable from the second displacement position to the first displacement position.
In some configurations, the sleeve is displaced from the first displacement position to the second displacement position during donning.
In some configurations, the housing includes a displacement slot.
In some configurations, the displacement slot is an elongate slot.
In some configurations, the displacement slot includes at least a first stop end.
In some configurations, the first stop end limits displacement of the sleeve.
In some configurations, the stop-guide abuts or engages the first stop end in the second displacement position.
In some configurations, the displacement slot includes a second stop.
In some configurations, a difference between the first displacement position and the second displacement position is a displacement distance.
In some configurations, the displacement distance is an initial displacement.
In some configurations, a distance between the first displacement position and the second displacement position is a linear distance.
In some configurations, the lock element is angularly movable.
In some configurations, the difference between the first position and the second position of the lock element is an angular distance or rotation.
In some configurations, linear displacement of the sleeve translates to angular movement of the lock element.
In some configurations, the difference between the first position and the second position of the lock element is a function of the difference between the first displacement position and the second displacement position.
In some configurations, the angular distance is a function of the displacement distance.
In some configurations, the intermediate position of the lock element is between the first and second positions.
In some configurations, the intermediate position is the same as the second position.
In some configurations, the lock element does not contact the catch element in the second position.
In some configurations, the lock element contacts the catch element in the second position.
In some configurations, the catch end moves along the elongate slot during displacement.
In some configurations, the catch end catches or pulls the lock element into activation with the core element.
In some configurations, the catch end catches or pushes the lock element into activation with the core element.
In some configurations, the catch end abuts the locking element during movement between the first position and the intermediate position.
In some configurations, a first difference between the first position and the intermediate position is less than a second difference between the intermediate position and the second position.
In some configurations, a ratio of second difference to first difference is 3:1.
In some configurations, a ratio of second difference to first difference is one of: 5:1, 4:1, 3:1, 2:1.
In some configurations, a ratio of second difference to first difference is one of: 2.1 to 3.9:1, or 1.1 to 4.9:1.
In some configurations, a ratio of second difference to first difference is one of: 1 to 5:1, 2 to 5:1, 3 to 5:1, 2 to 4:1, 1 to 4:1, 1 to 3:1.
In some configurations, a headgear assembly includes a directional lock according to any of the preceding claims, and a biasing element connected to the sleeve.
In some configurations, the sleeve is displaced from the first displacement position to the second displacement position during donning.
In some configurations, the sleeve is displaced during an initial extension of the biasing element.
In some configurations, the sleeve is displaced from the first displacement position to the second displacement position during an initial extension of the biasing element.
In some configurations, the sleeve is displaced from the second displacement position to the first displacement position when the biasing element retracts.
In some configurations, the sleeve is displaced from the second displacement position to the first displacement position when the biasing element is fully retracted.
In some configurations, a directional lock includes a core element, at least one lock element, the lock element having an aperture through which the core element passes, and a lock activator configured to activate, promote, or assist movement of the lock element.
In some configurations, the lock activator is configured to activate, promote or assist movement of the lock element during initial displacement or elongation of the headgear.
In some configurations, the lock activator is configured to activate prior to any elongation of the headgear.
In some configurations, a directional lock includes a housing, a rack and pinion mechanism and a brake. The housing has an interior space, a first opening and a second opening. Each of the first and second openings communicates with the interior space. The rack and pinion mechanism includes a pinion positioned within the interior space and rotatable relative to the housing. The pinion is configured to move between a first displacement position and a second displacement position. The rack and pinion mechanism includes a rack engaged with the pinion and configured to move through the first and second openings of the housing. The brake is attached to the housing. The pinion is rotatable in the first displacement position and the rack is movable in a direction toward the first displacement position relative to the second displacement position. The pinion engages the brake in the second displacement position and the brake inhibits rotation of the pinion which inhibits movement of the rack in a direction toward the second displacement position relative to the first displacement position.
In some configurations, the pinion further includes a gear, and the rack further comprises a plurality of teeth that mesh with the gear.
In some configurations, the pinion further includes flanges positioned on opposite sides of the gear, wherein the brake engages the flanges to inhibit rotation of the pinion.
In some configurations, the pinion has an axle that engages slots within the housing, and the axle moves laterally within the slots between the first and second displacement positions.
In some configurations, a directional lock includes a housing, a rack and pinion mechanism and a brake.
In some configurations, a directional lock includes a housing, at least one roller, a filament and at least one bearing surface. The housing defines an interior space, a first opening and a second opening. Each of the first and second openings communicates with the interior space. At least one roller is positioned within the interior space and rotatable relative to the housing. The at least one roller is configured to move between a first displacement position and a second displacement position. The filament is engaged with the at least one roller, the filament configured to move through the first and second openings of the housing. At least one bearing surface is positioned within the housing and configured to engage the at least one roller. The at least one roller is rotatable in the first position and the filament is movable in a direction toward the first displacement position relative to the second displacement position. The at least one roller engages the at least one bearing surface in the second position and the at least one bearing surface inhibits rotation of the at least one roller which inhibits movement of the filament in a direction toward the second displacement position relative to the first displacement position.
In some configurations, the at least one roller includes a pair of rollers, and the filament travels between the pair of rollers.
In some configurations, the at least one roller further comprising a tread positioned on an outer surface of the at least one roller being formed from at least one of an elastomeric, compressible or tactile material.
In some configurations, the pinion has an axle that engages slots within the housing, and the axle moves laterally within the slots between the first and second displacement positions.
Throughout the drawings, reference numbers can be reused to indicate general correspondence between reference elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Embodiments of systems, components and methods of assembly and manufacture will now be described with reference to the accompanying figures, wherein like numerals refer to like or similar elements throughout. Although several embodiments, examples and illustrations are disclosed below, it will be understood by those of ordinary skill in the art that the inventions described herein extends beyond the specifically disclosed embodiments, examples and illustrations, and can include other uses of the inventions and obvious modifications and equivalents thereof. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being used in conjunction with a detailed description of certain specific embodiments of the inventions. In addition, embodiments of the inventions can comprise several novel features and no single feature is solely responsible for its desirable attributes or is essential to practicing the inventions herein described.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “above” and “below” refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “left,” “right,” “rear,” and “side” describe the orientation and/or location of portions of the components or elements within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the components or elements under discussion. Moreover, terms such as “first,” “second,” “third,” and so on may be used to describe separate components. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
Some embodiments disclosed herein involve a headgear system and/or an interface assembly incorporating a headgear system that upon fitment to the head of a user automatically adjusts to the correct size and, once in use, transforms in properties from an elasticated “stretchy” strap/strapping configuration to an “inelastic” strap/strapping configuration. In some configurations, the headgear (alone or as integrated in an interface assembly) exhibits a relatively small contraction force that tends to shorten the headgear. When coupled to a mask, the headgear and mask cooperate to define a perimeter of the interface assembly, which is reduced in length as a result of the contraction force toward or to a minimum perimeter length. Although not likely to be perfectly circular, the perimeter length is often referred to as a “circumference.” Thus, with such an arrangement, the interface assembly can be positioned on the user's head and will automatically contract to or very near a proper head size, in a manner similar to an elasticated or “stretchy” headgear. The contraction force preferably is sufficient to support the weight of the interface assembly and at least substantially keep the interface assembly in place on the user's head at the smallest head size or minimum useful perimeter length of the interface assembly, which may or may not coincide with the minimum perimeter length. In some configurations, the retraction force can be sufficient to support the weight of a nasal cannula or other small interface, which can have a weight of about 50 grams, for example. In other configurations, the retraction force can be between about 0.5 Newtons and about 5.2 Newtons, or between about 1 Newton and about 2.6 Newtons, or between about 1 Newton and about 1.5 Newtons, including any value and sub-range within these ranges. In other configurations, the retraction force may be insufficient to support the weight of the interface and may require manual assistance to move the interface to a sealed position on the user's face. However, preferably, once the headgear is sufficiently retracted, it is then held in place by, for example, the directional lock(s). In some configurations, the contraction force is only sufficient or is configured to support the weight of the headgear.
However, in at least some configurations, the contraction force is less than is necessary to maintain the mask in sealed contact with the user's face during treatment/use. That is, the contraction force, alone, cannot resist the blow-off force. In some configurations, the contraction force is insufficient to resist the blow-off force throughout a range of usable perimeter lengths or headgear sizes. Therefore, the headgear and/or interface assembly also exhibits an inelastic behavior in response to forces tending to elongate the headgear or increase the perimeter length of the interface assembly. The headgear and/or interface assembly can have a locked mode that can produce a locking force tending to resist expansion, elongation or lengthening of the perimeter length. The locking force can be sufficient to resist elongation, or at least any significant elongation, of the perimeter length in response to blow-off forces. In some configurations, the locking force is sufficient to resist elongation in response to the highest blow-off forces expected with a variety of uses or treatments (e.g., Bi-Level or CPAP, NIV, etc.). In some configurations, the locking force may be selected for one or more particular uses/therapies, but may not be suitable for all uses/therapies. In some configurations, the locking force may be selected to resist elongation in response to forces in addition to blow-off forces, such as hose pull forces, for example. Such additional forces can be referred to collectively herein as “hose pull forces” and such additional resistance to elongation can be referred to herein as a “reserve.”
In some configurations, the headgear and/or interface assembly also exhibits a yield force, above which expansion or elongation of the perimeter length is permitted. Preferably, the yield force is greater than the expected blow-off force. In some configurations, the yield force is greater than the expected blow-off force and the hose pull force. Thus, such a headgear and/or interface assembly has a reserve. Preferably, the yield force is set low enough that a user can at least relatively conveniently apply an elongation force to the headgear and/or interface assembly sufficient to exceed the yield force in order to permit the interface assembly to lengthen and to be applied to the user's head. As described above, the contraction force reduces the perimeter length toward or to a proper head size.
In some configurations, the headgear and/or interface assembly automatically transitions between a contraction mode, a locked mode and a yield mode in response to the presence or absence of external forces. For example, the headgear and/or interface assembly moves toward or to the minimum perimeter length in the absence of external lengthening or expanding forces. A lengthening or expansion force that is greater than the yield force can be applied to increase the perimeter length of the headgear and/or interface assembly to a length sufficient to permit the interface assembly to be positioned on the user's head. Once the lengthening or expansion force is removed (or reduced to below the contraction force), the contraction force acts to automatically reduce the perimeter length to or substantially to the proper head size such that the interface assembly is supported on the user's head. Upon the start of treatment (application of blow-off force) and/or application of hose pull force, the headgear and/or interface assembly automatically transforms to the locked mode to resist elongation, or at least resist any significant elongation, or increase of the perimeter length. At the end of treatment, or at any time as desired, a force above the yield force can be applied to the headgear and/or interface assembly to increase the perimeter length and permit removal of the interface assembly from the user's head.
Advantageously, with such an arrangement, micro-adjustments of the perimeter length of the headgear and/or interface assembly can be accomplished quickly and conveniently. For example, during treatment or use, the mask can be manipulated to effect micro-adjustment of the perimeter length. For instance, in the event of a leak between the mask and the user's face, the mask can be wiggled or otherwise moved to effect a micro-adjustment of the perimeter length to address the leak. In some cases, the seal of the mask may be compressed against the user's face, which can allow the contraction force to automatically reduce the perimeter length. Upon release of the mask, the headgear and/or interface assembly locks at, or very near, the reduced perimeter length. Thus, such configurations permit the headgear and/or interface assembly to micro-adjust, or move to an adjusted perimeter length, as a result of small manipulations (e.g., wiggling) of the mask. Manipulation of other portions of the interface assembly (e.g., headgear or breathing tube/gases conduit) can similarly result in micro-adjustment. Because of the nature of the human head and/or the conditions under which interface assemblies are used, quick and convenient micro-adjustment can dramatically improve performance and user satisfaction of an interface assembly. Treatment often occurs at night and/or under other situations when the user is lying down. Thus, the headgear can be in contact with surface, such as a pillow or bed. Movement of the user's head relative to such surfaces can cause movement of the headgear, which can alter the fit of the headgear. For example, hair can move or “compress” beneath the headgear, which can alter the fit. The headgear straps may move up, down or rotationally on the head, which can alter the fit. Such alterations in fit can result in leaks between the mask and the user's face. The above-described adjustment technology can permit such changes in fit to be addressed automatically or with small manipulations of the mask or other portions of the interface assembly. Moreover, the interface assembly can be removed and reapplied and automatically adjust to at or very near a proper headgear size. In contrast, if conventional non-stretch headgear is moved from its desired adjustment position, such as by mistake or as a result of cleaning, it can be difficult and time-consuming to reestablish the desired adjustment position. Conventional elasticated headgear addresses the adjustment issue, but because the contraction force must resist the highest expected blow-off and hose pull forces at the smallest useable headgear size, elasticated headgear applies a relatively large pressure to the user's head that is only partially relieved by the application of blow-off force. Such pressure may be substantial for a user with a relatively large head size and low treatment pressure.
In some configurations, some amount of movement may occur in the headgear and/or interface assembly during transition from the elastic mode to the locked mode. For example, with some directional lock arrangements, the perimeter length may increase slightly during the transition from elastic mode to locked mode. In some cases, there exists a compromise between increased yield force and reduced perimeter length change during transition. Thus, references to any particular positions of the headgear and/or interface assembly or perimeter lengths can include such slight length changes during transition, if present.
The following example of the above-described adjustment technology is based on the delivery of CPAP. The series of graphs describe a typical operating envelope that a headgear system must be designed to operate over and how various current embodiments operate relative to that envelope. The envelope may comprise an entire CPAP treatment universe, that is, an entire range of typical, probable or possible CPAP pressures and an entire range of typical, probable or possible head sizes. Or, the envelope may comprise a subset of the CPAP treatment universe, such as a subset of pressures (e.g., low pressure or high pressure CPAP) or head (headgear or interface assembly) sizes (e.g., small, medium or large). The principles discussed in connection with CPAP treatment may apply to other treatments, as well.
The graph of
A graph containing an example force-deflection curve of an example headgear arrangement or interface assembly (referred to as “headgear” for convenience in the discussion of the graph) is illustrated relative to the example operating envelope 10. The curve originates at or near the origin of the graph, which may represent approximately zero force and a minimum circumference or perimeter length (referred to as “circumference” for convenience in the discussion of the graph) of the headgear. The minimum circumference is greater than zero, but typically at a value below a minimum head circumference (taking into consideration the interface, if any) of the intended user or range of users.
To place the headgear onto the user, typically, the headgear will be elongated to a circumference greater than the actual head circumference of the user. Typically, a rear portion of the headgear will be placed on the rear of the user's head and the user will grasp the front of the headgear (e.g., the mask or other interface) and apply a pulling force to elongate the headgear and move the mask or other interface over the crown of the head and toward the face.
As illustrated in the graph of
At some location above the maximum force of the operating envelope 10, the force-deflection curve transitions to a shallower pitch, in which the circumference increases a substantial amount with a relatively small increase in the force. This shallow pitch portion of the force-deflection curve can relate to a yield force of the retention arrangement of the headgear. Preferably, the shallow pitch portion, which can be referred to as an elongation portion 12b, of the force-deflection curve extends at or above the maximum force level of the operating envelope 10 along a portion or an entirety of the circumference range of the operating envelope 10. In some configurations, the elongation portion 12b extends beyond the maximum circumference level of the operating envelope 10. That is, the headgear can be configured to achieve a greater circumference than the intended maximum head circumference to allow the headgear to be conveniently placed onto a user having the maximum head circumference of the operating envelope 10 of the headgear. In use, especially with users having head sizes on the smaller end of the operating envelope 10, the headgear may not be elongated to a maximum circumference during donning and, in some cases, may not be elongated beyond the maximum circumference level of the operating envelope 10.
After the headgear has been elongated to the maximum circumference, to a circumference greater than the operating envelope 10 or, in use, to some other circumference sufficient to allow donning onto the user, the illustrated force-deflection curve drops steeply (initial retraction portion 14a) and then transitions to a relatively shallow portion, in which the circumference reduces substantially with a relatively small change in force. This shallow portion of the curve can be referred to as a retraction portion 14b. Preferably, in the retraction portion 14b, the headgear reduces in circumference at a relatively low force level until the headgear reaches or is substantially close to an appropriate circumference to fit the user's head. The headgear can be positioned on the user's head at this low force level (the left end of the retraction portion 14b or “fit point 16”) until therapy is initiated or until another force attempting to elongate the headgear is applied.
Advantageously, this relatively low force level allows the headgear to be comfortable for the user. In some configurations, the retraction portion 14b of the force-deflection curve is at or below the minimum force level of the operating envelope 10. Thus, in such an arrangement, the retraction force of the headgear can be lower than that necessary or desirable to resist minimum forces induced in the headgear by the therapy (e.g., a low CPAP level). Accordingly, even at low therapy levels, the headgear can be configured to produce only enough retention force to resist the therapy-induced forces because the minimum force level of the operating envelope 10 is above the retraction portion 14b of the force-deflection curve. In some configurations, as described below, the retraction portion 14b of the force deflection curve could fall within the operating envelope 10. Such an arrangement can be referred to as exhibiting “composite” behavior. However, preferably, the retraction portion 14b of a composite-behavior headgear force-deflection curve remains below the maximum force level of the operating envelope 10.
When therapy is commenced, or another elongating force is applied to the headgear, the force deflection curve rises relatively steeply from the fit point 16 to a point within the operating envelope 10 at which the retention force of the headgear balances with the force induced by the therapy and/or other forces (e.g., hose pull forces) attempting to elongate the headgear. Such a point can be referred to as a balanced fit point 18. The force-deflection curve between the fit point 16 and the balanced fit point 18 can have substantially the same slope as the initial elongation portion 12a. The actual location of the balanced fit point 18 can be anywhere within the operating envelope 10 depending on the actual force induced by the therapy and the actual head size of the user. In any particular case, the force in the headgear, which is applied over an area related to headgear size as a pressure to the user, is substantially only the force necessary to counteract the forces induced by the therapy. Thus, in at least some configurations, the pressure applied to the user can be minimized for any particular headgear size and shape for the particular level of therapy utilized. The elongation portion 12b of the force-deflection curve can be spaced above the maximum force level of the operating envelope 10 to provide a reserve in which additional forces (e.g., hose pull forces) can be applied without elongation of the headgear. Once sufficient force is applied to the headgear to reach the elongation portion 12b of the force-deflection curve, elongation of the headgear can occur. However, the headgear can be designed or configured to have a force-deflection curve that accommodates expected or usual therapy forces and hose pull forces or any combination thereof.
As described above, in at least some configurations, the user can manipulate the headgear to cause a micro-adjustment of the perimeter length. Advantageously, such an arrangement allows the user to, for example, address leaks or tighten or loosen the headgear (reduce the perimeter length) to a desired level by simply grasping the mask or other interface and moving (e.g., wiggling) the mask or other interface relative to the user's face and a rear portion of the headgear. The mask or other interface can be moved or adjusted in a plurality of directions, including toward and away from the user's face or in a rotational manner (e.g., about a vertical or horizontal/lateral axis). Movement toward the face can result in a reduction of the perimeter length or tightening of the headgear to, for example, achieve a fit that is toward the tight end of the spectrum of an acceptable or desirable fit, which can be referred to as a “tight fit.” Movement away from the face can result in elongation of the perimeter length or loosening of the headgear to, for example, achieve a fit that is toward the loose end of the spectrum of an acceptable or desirable fit, which can be referred to as a “loose fit.” Rotational movement about a vertical axis can cause one side of the headgear to tighten and the other side to remain the same or loosen. Rotation about a horizontal or lateral axis can cause one of an upper or lower portion of the headgear to tighten and the other of the upper or lower portion to loosen.
As described above, it is not necessary in all configurations that the retraction portion 14b of the force-deflection curve be located below a minimum force level of the operating envelope 10. The headgear can be designed or configured to position the retraction portion 14b of the force-deflection curve within the operating envelope 10 and at a level that provides a sufficient degree of comfort to the user. In some cases, the user may desire that the headgear apply some degree of force in order to provide the user with some tactile feedback that provides a feeling of comfort that the headgear is securely holding the interface in place. Such force applied by the headgear may, for some users, fall within the operating envelope 10 of the particular therapy. Thus, with such an arrangement, under at least some conditions, the retraction force of the headgear may be sufficient to resist therapy forces at least as some lower therapy levels and/or certain larger head sizes.
The headgear assembly 1600 can be generally similar to the other headgear assemblies disclosed in Applicant's Application No. PCT/NZ2014/000074 (Publication No. WO2014/175752), the entirety of which is incorporated by reference herein. In particular, the illustrated headgear assembly 1600 includes a headgear rear portion 1604, the interface coupling portion 1602 and a length or circumference adjusting portion 1606 that is interposed between the headgear rear portion 1604 and the interface coupling portion 1602. The headgear rear portion 1604 is configured in use to contact a rear portion of the user's head. The interface coupling portion 1602 is configured in use to be coupled to an interface such that the headgear assembly 1600 can support the interface in an appropriate position on the face of the user. The length or circumference adjusting portion 1606 is configured in use to permit a position of the interface coupling portion 1602 to be adjusted relative to the headgear rear portion 1604 such that the headgear assembly 1600 can be adjusted to the head size of a particular user. Thus, the length or circumference adjusting portion 1606 can permit a perimeter length or circumference of the headgear to be adjusted to allow the headgear assembly 1600 to fit the head size of a particular user.
The headgear rear portion 1604 can be of any suitable arrangement, such as the same as or similar to any of those described herein or in Applicant's Application No. PCT/NZ2014/000074. Preferably, the headgear rear portion 1604 engages the user's head and provides a relatively stable platform for connection of the interface, such as utilizing the interface coupling portion 1602 and the circumference adjusting portion 1606. Thus, in at least some configurations, the headgear rear portion 1604 is substantially inelastic such that it holds its shape and effective length in response to applied forces within a range that is typical or expected for the intended application. The headgear rear portion 1604 can include a top strap portion 1608 that extends over the top of the user's head and a rear strap portion 1610 that extends around the back of the user's head. The top strap portion 1608 and rear strap portion 1610 can be separate or coupled in any suitable manner, such as by an intermediate connecting portion 1612.
The length or circumference adjusting portion 1606 can be of any suitable arrangement, such as the same as or similar to any of those described herein or in Applicant's Application No. PCT/NZ2014/000074. The circumference adjusting portion 1606 can comprise two pair of adjustment elements 1614 in which one pair of adjustment elements 1614 are positioned on each side of the headgear assembly 1600. Thus, the illustrated headgear arrangement 1600 can be generally described or categorized as a two retention plane headgear type. The headgear arrangement 1600 can be described as a two retention plane, forward converge headgear type or possibly a hybrid of a two retention plane, forward converge headgear type and a two retention plane, separated/angled headgear type.
Each pair of the adjustment elements 1614 can couple one side of the headgear rear portion 1604 with one side of the interface coupling portion 1602. The pair of adjustment elements 1614 one each side are coupled to the headgear rear portion 1604 at spaced locations. For example, one of the adjustment elements 1614 is coupled to the headgear rear portion 1604 at or near a portion of the top strap 1608 and the other of the adjustment elements 1614 is coupled the headgear rear portion 1604 at or near a portion of the rear strap 1610. In the illustrated arrangement, the upper adjustment elements 1614 are coupled to forward extensions of the headgear rear portion 1604 that extend in a forward direction from a portion of the top strap 1608 at or near a location above the user's car. The lower adjustment elements 1614 are coupled to ends of the rear strap 1610 of the headgear rear portion 1604.
The adjustment elements 1614 are adjustable in length between a retracted length and an extended length. In some configurations, the adjustment elements 1614 cooperate to provide all or substantially all of the adjustment of a circumference of the headgear assembly 1600. Each of the adjustment elements 1614 can also include an elastic element or biasing arrangement that biases the adjustment element 1614 toward one of the retracted or extended lengths. Preferably, the adjustment elements 1614 are biased toward a retracted length, such that the headgear assembly 1600 is biased toward its smallest circumference. Such an arrangement permits the headgear assembly 1600 to be extended and then automatically retract to fit the particular user under the biasing force of the elastic element or other biasing arrangement of the adjustment element(s) 1614. In addition, preferably, the adjustment elements 1614 define a hard stop at a maximum extended length to limit extension of the headgear 1600 and define a maximum circumference of the headgear 1600.
In some configurations, each of the adjustment elements 1614 comprises a braided element, which can extend or retract in length. The braided element can comprise one or more elastic elements in parallel with the braided element. The elastic elements can be separate from the braided element or incorporated in the braided element. In some configurations, the elastic elements are contained in internal spaces between filaments of the braided element. An example of suitable braided elements is described in connection with FIGS. 46-54 of Applicant's patent application no. PCT/NZ2014/000074. However, other suitable constructions or arrangements can also be used. Alternatively, elastic element(s) or biasing element(s) can be located within the interface coupling portion and can interact with the core members to pull the core members into the interface coupling portion.
The interface coupling portion 1602 of the headgear assembly 1600 can extend between the pair of adjustment elements 1614 that comprise the circumference adjusting portion 1606. In some configurations, the interface coupling portion 1602 can be relatively rigid. In some configurations, the interface coupling portion 1602 is coupled directly to the adjustment elements 1614. As described above, the interface coupling portion 1602 can facilitate connection of the headgear assembly 1600 to an interface. However, the interface coupling portion 1602 can also accommodate at least a portion of one or more directional locks 1616. In the illustrated arrangement, two pair of directional locks 1616 is provided, with one directional lock 1616 associated with each one of the adjustment elements 1614. Portions (e.g., housings 1810) of the directional locks 1616 can be located at each end of the interface coupling portion 1602. In some configurations, a core member 1830 associated with each of the directional locks 1616 is coupled to the headgear rear portion 1604, extends along or through the adjustment element 1614, through the housing 1810 of the directional lock 1616 and into a collection space 1622. The collection space 1622 can be defined by a collection tube or conduit, which can be a separate member from or can be incorporated into the interface coupling portion 1602. The housing 1810 of the directional lock 1616 can comprise one or more members or elements (e.g., lock washers or lock jaws) that interact with the core member 1830 to selectively allow retraction of the headgear assembly 1600 or lock the headgear assembly 1600 in a particular circumference and inhibit or prevent extension of the headgear at least at forces below the yield force provided by of the directional lock(s). Additional particulars of the operation of the directional locks 1616 are described herein and in Applicant's patent application no. PCT/NZ2014/000074.
In the illustrated arrangement, the directional locks 1616 on each side of the interface coupling portion 1602 are vertically stacked or positioned side-by-side. Although the directional locks 1616 are illustrated as separate units, in some configurations portions of the directional locks 1616 can be integrated. For example, a single housing could contain individual lock elements that interact with the separate core members of each adjustment element.
The interface coupling portion 1602 can be curved and the collection spaces 1622 (e.g., defined by collection tubes or channels) can be curved along with the interface coupling portion 1602. In the illustrated arrangement, a center portion of the interface coupling portion 1602 is located above end portions of the interface coupling portion 1602. Furthermore, when viewed from the front, side portions of interface coupling portion 1602 curve downwardly from the center portion. Thus, the interface coupling portion 1602 can complement or correspond to the shape of a body or shell portion of the full face mask interface 1650. The center portion of the interface coupling portion 1602 can be located above an elbow or other conduit connector of the mask 1650. Similarly, the interface coupling portion 1602 can be configured to complement or correspond to the shape of a body or shell portion of the nasal mask interface 1660. The center portion of the interface coupling portion 1602 can be located above an elbow or other conduit connector of the nasal mask 1660. The interface coupling portion 1602 can be configured to complement or correspond to the shape of a body of the nasal pillows/prongs mask 1670. The center portion of the interface coupling portion 1602 can be located above an elbow or other conduit connector of the nasal pillows/prongs mask 1670. In some configurations, the interface coupling portion 1602 can be located between the elbow or other conduit connector and the pillows/prongs of the nasal pillows/prongs mask 1670.
Each of the first and second chambers 1840, 1842 has a pair of washer retainers 1850 that are aligned on opposing side walls 1816 of the housing 1810. Each pair of washer retainers 1850 is configured to pivotally retain one of the first or second lock washers 1820, 1822 within the respective first or second chamber 1840, 1842. The washer retainers comprise a circular bush 1852 and an elongate slot 1854, wherein circular bushes 1852 intersect with the bottom of the housing such that an entrance is formed. The entrance is configured to allow the first and/or second lock washers 1820, 1822 to be received into the washer retainers 1850. The slot 1854 extends radially from the circular bush 1852 towards the top of the housing 1810 and facilitate flexing of the housing 1810 to allow insertion of the lock washers 1820, 1822 into the bushes 1852.
The first and second washers 1820, 1822 comprise a cylindrical shaft 1824 and an arm 1826 that extends from the shaft 1824. The cylindrical shaft 1824 is substantially the same width W as the housing 1810 and the arm 1826 is narrower to fit within the first and second chambers 1840, 1842. In the illustrated arrangement, the arm 1826 comprises a first section 1872 and a second section 1874, wherein the first section 1872 extends radially or perpendicularly from the cylindrical shaft 1824 and the second section 1874 extends at an angle from the end of the first section 1872. The first section 1872 of the arm 1826 of the first washer 1820 is shorter than the first section 1872 of the arm 1826 of the second washer 1822. The angle between the first and second sections 1872, 1874 of the arm 1826 of the first washer 1820 is greater than the corresponding angle of the second washer 1822. The angles can be selected such that the second section 1874 of one or both of the first and second washers 1820, 1822 lies substantially flat against the corresponding wall (e.g., internal wall 1812 and end wall 1814, respectively) of the housing 1810 in one position of the washers 1820, 1822. The second section 1874 of the arm 1826 comprises a centrally located circular aperture 1876 configured to receive the core member 1830. The first and second chambers 1840, 1842 differ in size according to the size of the washer that is to be housed within it, i.e. the first chamber 1840 is smaller than the second chamber 1842 because the first washer 1820 is smaller than the second washer 1822.
The cylindrical shafts 1824 of the first and second lock washers 1820, 1822 have a diameter substantially the same as that of the circular bushes 1852 of the washer retainer 1850, and are configured to be received and retained by the circular bush 1852 in a snap-fit configuration. The snap-fit configuration is provided by the entrance of the circular bush 1852 being narrower than the diameter of the cylindrical shaft 1824. As described above, the slots 1854 of the washer retainers 1850 are configured to allow the entrance to be flexed open to increase the case with which the first and second lock washers 1820, 1822 can be pushed through the entrances and assembled to the housing 1810. Once assembled within the first and second chambers 1840, 1842 of the housing 1810, the first and second washers 1820, 1822 can pivot back and forward around a central axis that runs through the cylindrical shaft 1824.
The core member 1830 is configured to pass through the core openings 1860 of the housing 1810 and the apertures 1876 of the first and second washers 1820, 1822. Application of a tension force to the core member 1830 causes the first and second lock washers 1820, 1822 to pivot back and/or forward between a locked position and/or open position.
The directional lock 1616 of
In at least one embodiment, the directional lock 1616 may include a lock activator to ensure activation of the lock element. The lock activator is configured to activate, promote, or assist the lock element, such as, in particular, during initial displacement or elongation of the headgear. In some embodiments, the lock activator is configured to activate prior to any elongation of the headgear. In other words, the lock activator initiates or activates at a lower force than the biasing element of the headgear. This may be particularly beneficial, because the lock activator may reduce the manufacturing tolerances associated with the directional lock components and/or core. The directional lock 1616 of
In the illustrated arrangement, the lock washer 1822 is coupled to or carried by a first component and the catch arrangement 1900 is coupled to or carried by a second component that is movable relative to the first component. Relative movement of the first component and the second component can cause the catch arrangement 1900 to move the lock washer 1822 in the locking direction. In the illustrated arrangement, the first component is a housing 1810, which can be similar to the housing 1810 of
The illustrated sleeve 1910 defines a conduit portion 1912 and a cuff portion 1914. The cuff 1914 can surround and/or couple the sleeve 1910 to the braided element 1880 of the circumference adjusting portion 1606. A passage or sleeve interior space 1916 extends longitudinally through the sleeve 1910. The sleeve passage 1916 has a first opening and a second opening at opposing ends of the sleeve 1910. The core member 1830 passes through the sleeve passage 1916. The housing 1810 defines an interior passage or space 1860 that has an opening on each end of the housing 1810 and is configured to receive the sleeve 1910. In the illustrated arrangement, the conduit portion 1912 is received within the interior passage 1860 of the housing 1810.
As described above, the sleeve 1910 is movable relative to the housing 1810. In the illustrated arrangement, the movement between the sleeve 1910 and the housing 1810 is limited. For example, the conduit portion 1912 of the sleeve 1910 includes one or more stop guides 1920. In some configurations, the stop guide 1920 is an elongate protrusion that extends lengthwise along the conduit portion 1912. The stop guide or guides 1920 can be positioned in any suitable location on the conduit portion 1912. In
With reference to
With reference to
In
Although the pivot axis of the lock washer 1822 described in connection with
Rack and Pinion Mechanism
Housing
The rack and pinion mechanism 2010 of
A shaft aperture 2028 extends through each of the front and back walls 2026F, 2026BA of the housing 2012, and is configured to receive and retain the shaft 2016. The shaft aperture 2028 is stadium shaped with a height H that is approximately the same as the diameter of the shaft 2016 and has a length L that is longer than the diameter of the shaft 2016, such that the shaft 2016 may slide along the length of the shaft aperture 2028.
A rack aperture 2030 (i.e., first and second openings) extends through each of the left and right side walls 2026L, 2026R of the housing 2012. The rack apertures 2030 are square or rectangular and are large enough for the rack 2018 to pass through them. The rack aperture 2030 of the left wall 2026L is aligned with the rack aperture 2030 of the right wall 2026R such that the path of the rack 2018 is straight. The rack aperture 2030 is positioned such that the rack 2018 passes beneath the pinion 2014.
A brake aperture 2032 extends between the front and back walls 2026F, 2026BA and cuts into the right side wall 2026R. The brake aperture 2032 has a profile that matches the cross-section of the brake 2020 and is configured to receive and retain the brake 2020. The right side wall 2026E is thicker than the other walls to accommodate the thickness of the brake aperture 2032 and brake 2020.
Rack and Pinion
As shown in
The rack 2018 can be functionally similar to the above-described core member and may be referred to as a core member herein. The rack 2018 is elongate and comprises a plurality of teeth 2040 along one side that are configured to mesh with the teeth 2038 of the gear 2034, such that linear movement of the rack 2018 is translated into rotational movement of the pinion 2014. The rack 2018 has a free end 2042 and a fixed end 2044. When assembled with the housing 2012, the fixed end 2044 is proximal to the brake 2020 and the free end 2042 is proximal to the pinion 2014. The fixed end 2044 is configured to be integrally formed with or permanently joined to another mask component such as a frame or headgear arrangement. The free end 2042 is configured to remain unattached such that it may move relative to other mask components.
In some embodiments the fixed end 2044 of the rack 2018 is integrally formed or permanently joined with a headgear strap. This arrangement provides a strap element for the headgear that can be lengthened or shortened, relative to a frame or other mask component that includes the housing, thus allowing the headgear size to be adjusted. Alternatively, the fixed end of the rack may be integral with or permanently joined to a mask frame or other mask component and the housing may be fixed to a headgear strap.
Brake
As illustrated in
Retraction
During this retraction movement the linear movement of the rack 2018 causes the teeth 2040 of the rack 2018 to mesh with the teeth 2038 of the gear 2034 and rotate the pinion 2014 in a clockwise direction (relative to the page). This rotation also pushes the pinion 2014 towards the left side wall 2026L of the housing 2012, and keeps the shaft 2016 at the left end of the shaft aperture 2028. The internal surface of the left side wall 2026L is curved in a region immediately above the rack aperture 2030 to substantially match the outer diameter of the pinion 2014. This reduces friction between the pinion 2014 and the housing 2012 and allows the rack 2018 to move freely through the housing 2012. In this position, there is clearance between the pinion 2014 and the concave wall 2046 of the brake 2020.
In some embodiments the rack and pinion mechanism 2010 can be combined with a biasing means such as an elastic strap that provides a retraction force that biases the rack to move in the retraction direction without the user applying an external force.
There is a gap between the flanges 2036 and the left side wall 2026L of the housing 2012. This allows a low level of friction between the pinion 2014 and the rack 2018 during retraction. In alternative embodiments, the internal geometry of the left side wall 2026L can be different as it does not affect the functionality of the mechanism. In some cases, the left side wall 2026L need not exist.
Extension
During this extension movement the linear movement of the rack 2018 causes the teeth 2038 of the rack 2018 to mesh with the teeth 2038 of the gear 2034 and rotate the pinion 2014 in an anticlockwise direction (relative to the page). This rotation also pushes the pinion 2014 towards the right side wall 2026R of the housing 2012 and the brake 2020. The shaft 2016 slides towards the right side of the shaft aperture 2028 such that the flanges 2036 of the pinion 2014 contact the concave wall 2046 of the brake 2020 and compress the brake 2020. This provides friction between the pinion 2014 and the brake 2020 which prevents the rack 2018 from moving freely through the housing 2012. The concave wall 2046 of the brake 2020 allows the pinion 2014 to continue to rotate in response to the linear movement of the rack 2018, but a higher force is required to induce this.
When combined within a mask arrangement this results in a resistance to elongation of the headgear, which requires the user to intentionally apply a large enough force to overcome the friction between the pinion and brake, in order to increase the size of the headgear.
Roller Lock Mechanism
Housing
The roller lock mechanism 2110 of
The housing 2112 has axle slots or tracks 2128 that receive and retain the axles 2116 of the rollers 2114 such that the rollers 2114 can rotate about the axle 2116. The axle tracks 2128 comprise elongate rectangular slots that are cut into the inside of the front and back walls 2126F, 2126BA of the housing 2112. The axle tracks 2128 have a height H that is greater than the radius of the roller (Rr) plus the radius of the axle (Ra). That is, H>Rr+Ra. The axle tracks 2128 have a width W that is slightly wider than the diameter of the axle 2116.
The housing 2112 has a filament aperture 2130 that extends through the base portion 2150 of the housing 2112. The filament aperture 2130 is positioned such that it is half way between the two rollers 2114 and is configured to have the filament 2118 pass through it.
The housing 2112 has bearing surfaces 2120 that form a part of the base portion 2150 of housing 2112. The bearing surfaces 2120 are positioned towards the lateral sides of the base portion 2150 and form a lower internal surface of the central channel 2124. The bearing surfaces 2120 are angled towards each other such that a cradle geometry is formed on the upper surfaces of the base portion 2150. The cradle has a shape and geometry that is configured to receive a lower portion of the rollers 2114.
Other geometry features (such as the notches and apertures in the base portion 2150) are provided for manufacturability.
Rollers
As shown in
The rollers 2114 have a tread 2134 that comprises an elastomeric, compressible and tactile material. Such materials increase friction between the rollers 2114 and the filament 2118 and/or housing. The tread 2134 surrounds the central portion 2154 of the axle 2116. The tread 2134 can be over-moulded onto the axle 2116 such that a mechanical and/or chemical connection is formed between the two. The material of the tread 2134 is configured to fill the hollow passages 2156 of the axle 2116 to provide a mechanical connection between the tread 2134 and the axle 2116. In some configurations, an outer surface of the roller 2114 may be formed from an elastomeric, compressible and tactile material to increase friction between the rollers 2114 and the filament 2118 and/or housing 2112.
Filament
The filament 2118 can be functionally similar to the above-described core member and can be referred to as a core member herein. The filament 2118 is elongate and may be integrally formed or permanently connected to a headgear structure or other mask component at a fixed end 2144. The filament 2118 has an opposing free end 2142 that provides a means for extending the length of a headgear strap or otherwise increasing the size of mask assembly. The filament 2118 can be a material such as nylon fishing line. The filament 2118 is configured to pass between and interact with the rollers 2114 and passes through the central channel 2124 and filament aperture 2130 in the housing 2112.
Roller Lock Operation
In the roller lock mechanism, there is deliberate interference between the tread 2134 and the filament 2118, even in the free rolling/retraction mode. This is to ensure the roller 2114 will traverse/slide in its track 2128 when the core changes direction. This movement activates or releases the lock. There is also deliberate play between the axle nubs 2152 and the axle tracks 2128, which allows the rollers 2114 to be forced together, by the bearing surfaces 2120, and increase the interference with the filament 2118.
In other configurations, the roller lock mechanism may include a single roller. In such an arrangement, the filament is supported on one side by the housing and is engaged with the roller on the other side. In a retraction mode, a bearing surface may force the roller towards the filament such that the filament is wedged between the roller and the housing. Accordingly, movement of the filament is inhibited.
Variations of Rack and Pinion Mechanisms
The rack and pinion mechanism 2010 in
In some embodiments, the rack and pinion mechanism 2310 can be arranged and/or oriented in a headgear such that the teeth of the rack face away from a user's face, in use. Accordingly, the rack 2018 is oriented such that the increased thickness of the rack 2018 inhibits or prevents upward and downward flexing of the rack 2018 relative to the user's head while allowing flexing of the rack 2018 towards or away from a user's face. This allows the headgear to be adaptable to different head shapes and sizes while providing increased support to a mask.
In some embodiments, the rack and pinion mechanism 2410 can be arranged and/or oriented in a headgear such that the teeth of the rack are normal to a user's face, in use. Accordingly, the rack 2018 is oriented such that the increased thickness of the rack 2018 inhibits or prevents upward and downward flexing of the rack 2018 relative to the user's head while allowing flexing of the rack 2018 towards or away from a user's face. This allows the headgear to be adaptable to different head shapes and sizes while providing increased support to a mask. This orientation may also reduce the distance that the rack and pinion mechanism 2410 and the headgear protrude outward and away from the head of the user, which may reduce bulkiness and provide the headgear with a lower profile.
In each of the rack and pinion mechanisms 2210, 2310, 2410, the housing 2012 has an open end 2026N that allows the length of the housing 2012 to be reduced. That is, in contrast to the rack and pinion mechanism 2010, the rack and pinion mechanisms 2210, 2310, 2410 do not include a left side wall 2026L. As shown, the housing 2012 is configured such that a circumferential edge of the pinion 2014 is substantially aligned with and tangent to the edge of the housing 2012. The open end 2026N reduces the length L and bulk of the housing 2012 and the amount of material used to manufacture the housing 2012, which provides a smaller, lighter and lower cost component.
In some configurations, the rack and pinion mechanisms 2210, 2310, 2410 may be oriented in different directions relative to the headgear that it is attached to or incorporated with. In some configurations, the thicknesses and widths of the housing and the rack may vary from the preferred embodiments according to the desired size and profile of the rack and housing, the load capacity and bending characteristics of the rack, etc.
In some configurations, the rack and pinion mechanism is arranged on the headgear such that the teeth of the rack are normal to the user's face when the width of the rack is greater than the thickness of the rack. In other configurations, the rack and pinion mechanism is arranged on the headgear such that the teeth of the rack face away from the user's face when the thickness of the rack is greater than the width of the rack. In some configurations, the rack and pinion mechanism is arranged on the headgear such that the width (length in cross-section) of the side of a user-facing portion of the rack is greater than the width of the side of a portion of the rack that is normal to the user's face. That is, the portion of the rack contacting the user's face is wider than the portion of the rack that is normal to the user's face.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of “including, but not limited to”. Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
The term “plurality” refers to two or more of an item. Recitations of quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics should be construed as if the term “about” or “approximately” precedes the quantity, dimension, size, formulation, parameter, shape or other characteristic. The terms “about” or “approximately” mean that quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting acceptable tolerances, conversion factors, rounding off, measurement error and the like and other factors known to those of skill in the art. Recitations of quantities, dimensions, sizes, formulations, parameters, shapes and other characteristics should also be construed as if the term “substantially” precedes the quantity, dimension, size, formulation, parameter, shape or other characteristic. The term “substantially” means that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide.
Numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also interpreted to include all of the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “1 to 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but should also be interpreted to also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3 and 4 and sub-ranges such as “1 to 3,” “2 to 4” and “3 to 5,” etc. This same principle applies to ranges reciting only one numerical value (e.g., “greater than 1”) and should apply regardless of the breadth of the range or the characteristics being described.
A plurality of items may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary. Furthermore, where the terms “and” and “or” are used in conjunction with a list of items, they are to be interpreted broadly, in that any one or more of the listed items may be used alone or in combination with other listed items. The term “alternatively” refers to selection of one of two or more alternatives, and is not intended to limit the selection to only those listed alternatives or to only one of the listed alternatives at a time, unless the context clearly indicates otherwise.
Reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that prior art forms part of the common general knowledge in the field of endeavour in any country in the world.
Where, in the foregoing description reference has been made to integers or components having known equivalents thereof, those integers are herein incorporated as if individually set forth.
The invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features.
It should be noted that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications may be made without departing from the spirit and scope of the invention and without diminishing its attendant advantages. For instance, various components may be repositioned as desired. It is therefore intended that such changes and modifications be included within the scope of the invention. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.
This application is a continuation application of U.S. patent application Ser. No. 18/171,159, filed Feb. 17, 2023, which is a continuation application of U.S. patent application Ser. No. 16/085,291, filed Sep. 14, 2018, now U.S. Pat. No. 11,607,518, which is a national stage application under 35 U.S.C. § 371 (c) of PCT Application No. PCT/IB2017/051522, filed Mar. 16, 2017, which is related to and claims priority from U.S. Provisional Patent Application No. 62/309,394, filed Mar. 16, 2016, and U.S. Provisional Patent Application No. 62/343,711, filed May 31, 2016, the entireties of which are hereby incorporated by reference herein and made a part of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
301111 | Genese | Jul 1884 | A |
472238 | Van Orden | Apr 1892 | A |
577926 | Miller | Mar 1897 | A |
718470 | Jones | Jan 1903 | A |
751091 | Moran | Feb 1904 | A |
770013 | Linn | Sep 1904 | A |
1364104 | Geer | Jan 1921 | A |
1635545 | Drager | Jul 1927 | A |
1942442 | Motsinger | Jan 1934 | A |
2199690 | Bullard | May 1940 | A |
2296150 | Dockson et al. | Sep 1942 | A |
2353643 | Bulbulian | Jul 1944 | A |
2359506 | Battley et al. | Oct 1944 | A |
2388604 | Eisenbud | Nov 1945 | A |
2390233 | Akerman et al. | Dec 1945 | A |
2508050 | Valente | May 1950 | A |
2586851 | Monro et al. | Feb 1952 | A |
2611897 | Adams | Sep 1952 | A |
2661514 | Ada | Dec 1953 | A |
2693800 | Caldwell | Nov 1954 | A |
2738788 | Matheson et al. | Mar 1956 | A |
2843121 | Hudson | Jul 1958 | A |
2859748 | Hudson | Nov 1958 | A |
3045672 | Croasdaile | Jul 1962 | A |
3156922 | Anderson | Nov 1964 | A |
3295529 | Corrigall et al. | Jan 1967 | A |
3416521 | Humphrey | Dec 1968 | A |
3457564 | Holloway | Jul 1969 | A |
3490452 | Greenfield | Jan 1970 | A |
3500474 | Austin | Mar 1970 | A |
3530031 | Loew | Sep 1970 | A |
3792702 | Delest | Feb 1974 | A |
3834682 | McPhee | Sep 1974 | A |
3850171 | Ball et al. | Nov 1974 | A |
3887968 | Lynam | Jun 1975 | A |
3972321 | Proctor | Aug 1976 | A |
3990757 | Gill | Nov 1976 | A |
3992720 | Nicolinas | Nov 1976 | A |
3994022 | Villari et al. | Nov 1976 | A |
4051556 | Davenport et al. | Oct 1977 | A |
4062068 | Davenport et al. | Dec 1977 | A |
4090510 | Segersten | May 1978 | A |
4106165 | Clowers et al. | Aug 1978 | A |
D250047 | Lewis et al. | Oct 1978 | S |
D250131 | Lewis et al. | Oct 1978 | S |
4127130 | Naysmith | Nov 1978 | A |
D252322 | Johnson | Jul 1979 | S |
4167185 | Lewis | Sep 1979 | A |
4201205 | Bartholomew | May 1980 | A |
4266540 | Panzik et al. | May 1981 | A |
4278082 | Blackmer | Jul 1981 | A |
4288891 | Boden | Sep 1981 | A |
4313437 | Martin | Feb 1982 | A |
4328605 | Hutchison et al. | May 1982 | A |
4354488 | Bartos | Oct 1982 | A |
4367735 | Dali | Jan 1983 | A |
4402316 | Gadberry | Sep 1983 | A |
4413382 | Siegmann | Nov 1983 | A |
4437462 | Piljay | Mar 1984 | A |
4453292 | Bakker | Jun 1984 | A |
4458373 | Maslow | Jul 1984 | A |
4477928 | Graff | Oct 1984 | A |
4606077 | Phillips | Aug 1986 | A |
D293613 | Wingler | Jan 1988 | S |
4734940 | Galet et al. | Apr 1988 | A |
4753233 | Grimes | Jun 1988 | A |
4782832 | Trimble et al. | Nov 1988 | A |
4817596 | Gallet | Apr 1989 | A |
4848334 | Bellm | Jul 1989 | A |
4853275 | Tracy et al. | Aug 1989 | A |
4856508 | Tayebi | Aug 1989 | A |
4915105 | Lee | Apr 1990 | A |
4941467 | Takata | Jul 1990 | A |
4944310 | Sullivan | Jul 1990 | A |
4947488 | Ashinoff | Aug 1990 | A |
D310431 | Bellm | Sep 1990 | S |
4971051 | Toffolon | Nov 1990 | A |
4986269 | Hakkinen | Jan 1991 | A |
5010925 | Atkinson et al. | Apr 1991 | A |
5016625 | Hsu et al. | May 1991 | A |
5042478 | Kopala et al. | Aug 1991 | A |
D320677 | Kumagai et al. | Oct 1991 | S |
5052084 | Braun | Oct 1991 | A |
D321419 | Wallace | Nov 1991 | S |
5065756 | Rapoport | Nov 1991 | A |
5074297 | Venegas | Dec 1991 | A |
5094236 | Tayebi | Mar 1992 | A |
5113857 | Dickerman et al. | May 1992 | A |
5148578 | Clarke | Sep 1992 | A |
5148802 | Sanders et al. | Sep 1992 | A |
5191882 | Vogliano | Mar 1993 | A |
5231979 | Rose | Aug 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
D340317 | Cole | Oct 1993 | S |
5269296 | Landis et al. | Dec 1993 | A |
D354128 | Rinehart | Jan 1995 | S |
D355484 | Rinehart | Feb 1995 | S |
5388743 | Silagy | Feb 1995 | A |
5438979 | Johnson et al. | Aug 1995 | A |
5477852 | Landis et al. | Dec 1995 | A |
5488948 | Dubruille | Feb 1996 | A |
5513634 | Jackson | May 1996 | A |
5529062 | Byrd | Jun 1996 | A |
5533506 | Wood | Jul 1996 | A |
5546605 | Mallardi | Aug 1996 | A |
5551419 | Froehlich et al. | Sep 1996 | A |
5566395 | Nebeker | Oct 1996 | A |
5595174 | Gwaltney | Jan 1997 | A |
5601078 | Schaller et al. | Feb 1997 | A |
D378610 | Reischel et al. | Mar 1997 | S |
5657752 | Landis et al. | Aug 1997 | A |
5724965 | Handke et al. | Mar 1998 | A |
5752510 | Goldstein | May 1998 | A |
5755578 | Contant et al. | May 1998 | A |
5774901 | Minami | Jul 1998 | A |
5823020 | Benda | Oct 1998 | A |
5884624 | Barnett et al. | Mar 1999 | A |
5921239 | McCall et al. | Jul 1999 | A |
5941245 | Hannah et al. | Aug 1999 | A |
5941856 | Kovacs et al. | Aug 1999 | A |
6017315 | Starr et al. | Jan 2000 | A |
6019101 | Cotner et al. | Feb 2000 | A |
6044844 | Kwok et al. | Apr 2000 | A |
6050260 | Daniell et al. | Apr 2000 | A |
6119694 | Correa et al. | Sep 2000 | A |
6192886 | Rudolph | Feb 2001 | B1 |
D440302 | Wolfe | Apr 2001 | S |
6256798 | Egolf et al. | Jul 2001 | B1 |
6272690 | Carey et al. | Aug 2001 | B1 |
6282725 | Vanidestine, Jr. | Sep 2001 | B1 |
6298850 | Argraves | Oct 2001 | B1 |
6338342 | Fecteau et al. | Jan 2002 | B1 |
6347631 | Hansen et al. | Feb 2002 | B1 |
D455891 | Biedrzycki | Apr 2002 | S |
6418928 | Bordewick et al. | Jul 2002 | B1 |
6422238 | Lithgow | Jul 2002 | B1 |
6431172 | Bordewick | Aug 2002 | B1 |
6435181 | Jones, Jr. et al. | Aug 2002 | B1 |
6439234 | Curti et al. | Aug 2002 | B1 |
6470886 | Jestrabek-Hart | Oct 2002 | B1 |
6478026 | Wood | Nov 2002 | B1 |
6491034 | Gunaratnam et al. | Dec 2002 | B1 |
6536435 | Fecteau et al. | Mar 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6561191 | Kwok | May 2003 | B1 |
6571854 | Palmer | Jun 2003 | B1 |
6581594 | Drew et al. | Jun 2003 | B1 |
6581601 | Ziaee | Jun 2003 | B2 |
6588424 | Bardel | Jul 2003 | B2 |
6631718 | Lovell | Oct 2003 | B1 |
6637434 | Noble | Oct 2003 | B2 |
6644315 | Ziaee | Nov 2003 | B2 |
6651658 | Hill et al. | Nov 2003 | B1 |
6659102 | Sico | Dec 2003 | B1 |
6662803 | Gradon et al. | Dec 2003 | B2 |
6679257 | Robertson et al. | Jan 2004 | B1 |
6679265 | Strickland et al. | Jan 2004 | B2 |
6772761 | Rucker, Jr. | Aug 2004 | B1 |
6851425 | Jaffre et al. | Feb 2005 | B2 |
6883519 | Schmidtke et al. | Apr 2005 | B2 |
6886564 | Sullivan et al. | May 2005 | B2 |
6892729 | Smith et al. | May 2005 | B2 |
6907882 | Ging et al. | Jun 2005 | B2 |
6951218 | Gradon et al. | Oct 2005 | B2 |
7004165 | Salcido | Feb 2006 | B1 |
D520140 | Chaggares | May 2006 | S |
7036508 | Kwok | May 2006 | B2 |
7062795 | Skiba et al. | Jun 2006 | B2 |
7066179 | Eaton et al. | Jun 2006 | B2 |
D526094 | Chen | Aug 2006 | S |
7096864 | Mayer et al. | Aug 2006 | B1 |
7096867 | Smith et al. | Aug 2006 | B2 |
7201169 | Wilkie et al. | Apr 2007 | B2 |
7207333 | Tohara | Apr 2007 | B2 |
7210481 | Lovell et al. | May 2007 | B1 |
7219669 | Lovell et al. | May 2007 | B1 |
7225811 | Ruiz et al. | Jun 2007 | B2 |
7318437 | Gunaratnam et al. | Jan 2008 | B2 |
7353826 | Sleeper et al. | Apr 2008 | B2 |
7353827 | Geist | Apr 2008 | B2 |
7814911 | Bordewick et al. | Oct 2010 | B2 |
7845352 | Sleeper et al. | Dec 2010 | B2 |
7861715 | Jones et al. | Jan 2011 | B2 |
7870860 | McCormick et al. | Jan 2011 | B2 |
7896003 | Matula et al. | Mar 2011 | B2 |
7913692 | Kwok | Mar 2011 | B2 |
7967014 | Heidmann | Jun 2011 | B2 |
8042539 | Chandran et al. | Oct 2011 | B2 |
8047893 | Fenske | Nov 2011 | B2 |
8074651 | Bierman et al. | Dec 2011 | B2 |
8104473 | Woodard et al. | Jan 2012 | B2 |
8132270 | Lang et al. | Mar 2012 | B2 |
8136524 | Ging et al. | Mar 2012 | B2 |
8209995 | Kieling et al. | Jul 2012 | B2 |
8297285 | Henry et al. | Oct 2012 | B2 |
8371302 | Ging et al. | Feb 2013 | B2 |
8443807 | McAuley et al. | May 2013 | B2 |
D686313 | Matula et al. | Jul 2013 | S |
8479741 | McAuley et al. | Jul 2013 | B2 |
8505538 | Amarasinghe | Aug 2013 | B2 |
8522785 | Berthon-Jones et al. | Sep 2013 | B2 |
8573201 | Rummery et al. | Nov 2013 | B2 |
8596271 | Matula, Jr. et al. | Dec 2013 | B2 |
8596274 | Hieber et al. | Dec 2013 | B2 |
8631793 | Omura et al. | Jan 2014 | B2 |
8636005 | Gradon et al. | Jan 2014 | B2 |
8636007 | Rummery et al. | Jan 2014 | B2 |
8636008 | Flory et al. | Jan 2014 | B2 |
8757157 | Price et al. | Jun 2014 | B2 |
8783257 | McAuley et al. | Jul 2014 | B2 |
8794239 | Gunaratnam | Aug 2014 | B2 |
8857435 | Matula, Jr. et al. | Oct 2014 | B2 |
8915251 | Lubke et al. | Dec 2014 | B2 |
8997742 | Moore et al. | Apr 2015 | B2 |
9032955 | Lubke et al. | May 2015 | B2 |
9044564 | Dravitzki et al. | Jun 2015 | B2 |
9103161 | Mader | Aug 2015 | B2 |
9138555 | McAuley et al. | Sep 2015 | B2 |
9149596 | Valcic et al. | Oct 2015 | B2 |
9265909 | Ho et al. | Feb 2016 | B2 |
9302065 | Smith et al. | Apr 2016 | B2 |
9320866 | McAuley et al. | Apr 2016 | B2 |
9333315 | McAuley et al. | May 2016 | B2 |
9339622 | McAuley et al. | May 2016 | B2 |
9480809 | Guney et al. | Nov 2016 | B2 |
9517320 | Barlow et al. | Dec 2016 | B2 |
9550038 | McAuley et al. | Jan 2017 | B2 |
9555943 | Breen, IV et al. | Jan 2017 | B2 |
9592336 | Nielsen et al. | Mar 2017 | B2 |
9656038 | Rummery et al. | May 2017 | B2 |
9744385 | Henry | Aug 2017 | B2 |
9782554 | Mazzone et al. | Oct 2017 | B2 |
9878118 | Formica | Jan 2018 | B2 |
D810277 | Amarasinghe | Feb 2018 | S |
9884160 | McAuley | Feb 2018 | B2 |
9901700 | McAuley et al. | Feb 2018 | B2 |
9925349 | Jablonski | Mar 2018 | B2 |
9974914 | McAuley | May 2018 | B2 |
9993606 | Gibson et al. | Jun 2018 | B2 |
10039665 | Blaszczykiewicz et al. | Aug 2018 | B2 |
10065010 | Smith et al. | Sep 2018 | B2 |
10071217 | Grashow | Sep 2018 | B2 |
10080856 | McLaren | Sep 2018 | B2 |
10137319 | Carr et al. | Nov 2018 | B2 |
10207072 | Dunn et al. | Feb 2019 | B2 |
10279138 | Ovzinsky | May 2019 | B2 |
10456546 | McLaren et al. | Oct 2019 | B2 |
10646680 | Huddart | May 2020 | B2 |
10675428 | Guney et al. | Jun 2020 | B2 |
10792451 | Allan et al. | Oct 2020 | B2 |
10828449 | Higgins et al. | Nov 2020 | B2 |
10828452 | Huddart et al. | Nov 2020 | B2 |
10874814 | Huddart et al. | Dec 2020 | B2 |
11000663 | Felix et al. | May 2021 | B2 |
11331449 | McLaren et al. | May 2022 | B2 |
11419999 | Patel et al. | Aug 2022 | B2 |
11607518 | Hammer et al. | Mar 2023 | B2 |
11648365 | Huddart et al. | May 2023 | B2 |
11701486 | Mashal et al. | Jul 2023 | B2 |
11752292 | McLaren et al. | Sep 2023 | B2 |
11806452 | McLaren et al. | Nov 2023 | B2 |
11813384 | Huddart et al. | Nov 2023 | B2 |
11819620 | Hammer | Nov 2023 | B2 |
11865263 | Smith et al. | Jan 2024 | B2 |
11878119 | McLaren et al. | Jan 2024 | B2 |
20020005198 | Kwok et al. | Jan 2002 | A1 |
20020020416 | Namey | Feb 2002 | A1 |
20020046755 | Voss | Apr 2002 | A1 |
20020052568 | Houser et al. | May 2002 | A1 |
20020053347 | Ziaee | May 2002 | A1 |
20020059935 | Wood | May 2002 | A1 |
20020096178 | Ziaee | Jul 2002 | A1 |
20020157668 | Bardel | Oct 2002 | A1 |
20030005933 | Izuchukwu | Jan 2003 | A1 |
20030051732 | Smith et al. | Mar 2003 | A1 |
20030079749 | Strickland et al. | May 2003 | A1 |
20030084903 | Fecteau et al. | May 2003 | A1 |
20030111080 | Olsen et al. | Jun 2003 | A1 |
20030121519 | Estes et al. | Jul 2003 | A1 |
20030164170 | Drew et al. | Sep 2003 | A1 |
20030172936 | Wilkie et al. | Sep 2003 | A1 |
20030196656 | Moore | Oct 2003 | A1 |
20030196659 | Gradon et al. | Oct 2003 | A1 |
20030196664 | Jacobson | Oct 2003 | A1 |
20030200970 | Stenzler et al. | Oct 2003 | A1 |
20040067333 | Amarasinghe | Apr 2004 | A1 |
20040211427 | Jones et al. | Oct 2004 | A1 |
20040226566 | Gunaratnam et al. | Nov 2004 | A1 |
20050011524 | Thomlinson et al. | Jan 2005 | A1 |
20050016067 | Pettit | Jan 2005 | A1 |
20050028822 | Sleeper et al. | Feb 2005 | A1 |
20050033247 | Thompson | Feb 2005 | A1 |
20050066976 | Wondka | Mar 2005 | A1 |
20050076913 | Ho et al. | Apr 2005 | A1 |
20050098183 | Nash et al. | May 2005 | A1 |
20050150497 | Eifler et al. | Jul 2005 | A1 |
20050161049 | Wright | Jul 2005 | A1 |
20050199239 | Lang et al. | Sep 2005 | A1 |
20050199242 | Matula et al. | Sep 2005 | A1 |
20050205096 | Matula | Sep 2005 | A1 |
20050235999 | Wood et al. | Oct 2005 | A1 |
20060060200 | Ho et al. | Mar 2006 | A1 |
20060081250 | Bordewick et al. | Apr 2006 | A1 |
20060096596 | Occhialini et al. | May 2006 | A1 |
20060107958 | Sleeper | May 2006 | A1 |
20060113147 | Harris | Jun 2006 | A1 |
20060118117 | Berthon-Jones et al. | Jun 2006 | A1 |
20060124131 | Chandran | Jun 2006 | A1 |
20060137690 | Gunaratnam et al. | Jun 2006 | A1 |
20060174887 | Chandran et al. | Aug 2006 | A1 |
20060174892 | Leksutin et al. | Aug 2006 | A1 |
20060196510 | McDonald et al. | Sep 2006 | A1 |
20060196511 | Lau et al. | Sep 2006 | A1 |
20060237018 | McAuley et al. | Oct 2006 | A1 |
20070000492 | Hansel et al. | Jan 2007 | A1 |
20070010786 | Casey et al. | Jan 2007 | A1 |
20070089749 | Ho et al. | Apr 2007 | A1 |
20070125385 | Ho et al. | Jun 2007 | A1 |
20070125387 | Zollinger et al. | Jun 2007 | A1 |
20070130663 | Lang et al. | Jun 2007 | A1 |
20070137653 | Wood | Jun 2007 | A1 |
20070163600 | Hoffman | Jul 2007 | A1 |
20070169777 | Amarasinghe et al. | Jul 2007 | A1 |
20070175480 | Gradon et al. | Aug 2007 | A1 |
20070209663 | Marque et al. | Sep 2007 | A1 |
20070215161 | Frater et al. | Sep 2007 | A1 |
20070235033 | Reier et al. | Oct 2007 | A1 |
20070295335 | Nashed | Dec 2007 | A1 |
20080041388 | McAuley et al. | Feb 2008 | A1 |
20080041393 | Bracken | Feb 2008 | A1 |
20080047560 | Veliss et al. | Feb 2008 | A1 |
20080052806 | McDaniel | Mar 2008 | A1 |
20080053450 | Van Kerkwyk et al. | Mar 2008 | A1 |
20080060648 | Thornton et al. | Mar 2008 | A1 |
20080060653 | Hallet et al. | Mar 2008 | A1 |
20080060657 | McAuley et al. | Mar 2008 | A1 |
20080065015 | Fiser | Mar 2008 | A1 |
20080083412 | Henry et al. | Apr 2008 | A1 |
20080092906 | Gunaratnam et al. | Apr 2008 | A1 |
20080099024 | Gunaratnam et al. | May 2008 | A1 |
20080110464 | Davidson et al. | May 2008 | A1 |
20080134480 | Shiue | Jun 2008 | A1 |
20080196728 | Ho | Aug 2008 | A1 |
20080230068 | Rudolph | Sep 2008 | A1 |
20080230069 | Valcic et al. | Sep 2008 | A1 |
20080264422 | Fishman | Oct 2008 | A1 |
20080302366 | McGinnis et al. | Dec 2008 | A1 |
20080314388 | Brambilla et al. | Dec 2008 | A1 |
20090000624 | Lee et al. | Jan 2009 | A1 |
20090014007 | Brambilla et al. | Jan 2009 | A1 |
20090032026 | Price et al. | Feb 2009 | A1 |
20090044808 | Guney et al. | Feb 2009 | A1 |
20090044809 | Welchel et al. | Feb 2009 | A1 |
20090120442 | Ho | May 2009 | A1 |
20090133697 | Kwok et al. | May 2009 | A1 |
20090145429 | Ging et al. | Jun 2009 | A1 |
20090173349 | Hernandez et al. | Jul 2009 | A1 |
20090178680 | Chang | Jul 2009 | A1 |
20090183739 | Wondka | Jul 2009 | A1 |
20090211583 | Carroll | Aug 2009 | A1 |
20090250060 | Hacke et al. | Oct 2009 | A1 |
20090320187 | Petzl et al. | Dec 2009 | A1 |
20100000538 | Edwards et al. | Jan 2010 | A1 |
20100000544 | Blaszczykiewicz et al. | Jan 2010 | A1 |
20100018534 | Veliss et al. | Jan 2010 | A1 |
20100037897 | Wood | Feb 2010 | A1 |
20100154798 | Henry et al. | Jun 2010 | A1 |
20100224199 | Smith et al. | Sep 2010 | A1 |
20100258132 | Moore | Oct 2010 | A1 |
20100258136 | Doherty et al. | Oct 2010 | A1 |
20100282265 | Melidis et al. | Nov 2010 | A1 |
20100307502 | Rummery et al. | Dec 2010 | A1 |
20100313532 | Stjernfelt et al. | Dec 2010 | A1 |
20100313891 | Veliss et al. | Dec 2010 | A1 |
20100319700 | Ng et al. | Dec 2010 | A1 |
20110048425 | Chang | Mar 2011 | A1 |
20110197341 | Formica | Aug 2011 | A1 |
20110220113 | Newman | Sep 2011 | A1 |
20110247628 | Ho | Oct 2011 | A1 |
20110259335 | Sullivan | Oct 2011 | A1 |
20110265791 | Ging et al. | Nov 2011 | A1 |
20110265796 | Amarasinghe et al. | Nov 2011 | A1 |
20120067349 | Barlow et al. | Mar 2012 | A1 |
20120125339 | Ho et al. | May 2012 | A1 |
20120132209 | Rummery | May 2012 | A1 |
20120138063 | Eves et al. | Jun 2012 | A1 |
20120174355 | Fraze | Jul 2012 | A1 |
20120222680 | Eves et al. | Sep 2012 | A1 |
20120285464 | Birch et al. | Nov 2012 | A1 |
20120304999 | Swift et al. | Dec 2012 | A1 |
20130000648 | Madaus et al. | Jan 2013 | A1 |
20130139822 | Gibson | Jun 2013 | A1 |
20130152918 | Rummery et al. | Jun 2013 | A1 |
20130152937 | Jablonski | Jun 2013 | A1 |
20130160769 | Ng et al. | Jun 2013 | A1 |
20130220327 | Barlow et al. | Aug 2013 | A1 |
20130319421 | Hitchcock et al. | Dec 2013 | A1 |
20140026888 | Matula | Jan 2014 | A1 |
20140026890 | Haskard et al. | Jan 2014 | A1 |
20140083428 | Rothermel et al. | Mar 2014 | A1 |
20140102456 | Ovizinsky | Apr 2014 | A1 |
20140137870 | Barlow | May 2014 | A1 |
20140158726 | Malara | Jun 2014 | A1 |
20140166019 | Ho et al. | Jun 2014 | A1 |
20140190486 | Dunn et al. | Jul 2014 | A1 |
20140209098 | Dunn | Jul 2014 | A1 |
20140209298 | Baldasaro et al. | Jul 2014 | A1 |
20140216452 | Miller et al. | Aug 2014 | A1 |
20140305439 | Chodkowski | Oct 2014 | A1 |
20140358054 | Capra | Dec 2014 | A1 |
20150000615 | Imran et al. | Jan 2015 | A1 |
20150005685 | Chetlapalli et al. | Jan 2015 | A1 |
20150028519 | Lang et al. | Jan 2015 | A1 |
20150033457 | Tryner et al. | Feb 2015 | A1 |
20150051000 | Henn | Feb 2015 | A1 |
20150090268 | Madaus et al. | Apr 2015 | A1 |
20150128953 | Formica et al. | May 2015 | A1 |
20150151070 | Capra et al. | Jun 2015 | A1 |
20150190262 | Capra et al. | Jul 2015 | A1 |
20150202397 | Pastoor | Jul 2015 | A1 |
20150217150 | Harris | Aug 2015 | A1 |
20150285337 | Dingley et al. | Oct 2015 | A1 |
20150290415 | Dunn | Oct 2015 | A1 |
20160022944 | Chodkowski et al. | Jan 2016 | A1 |
20160038707 | Allan et al. | Feb 2016 | A1 |
20160045700 | Amarasinghe | Feb 2016 | A1 |
20160082214 | Barlow et al. | Mar 2016 | A1 |
20160166793 | McLaren et al. | Jun 2016 | A1 |
20160178027 | Wetzel | Jun 2016 | A1 |
20160278463 | Stevenson | Sep 2016 | A1 |
20160375214 | Chodkowski et al. | Dec 2016 | A1 |
20170136269 | Jacotey et al. | May 2017 | A1 |
20170182276 | Hammer | Jun 2017 | A1 |
20170189636 | Gibson et al. | Jul 2017 | A1 |
20170216548 | Gerhardt | Aug 2017 | A1 |
20180214655 | Kooij et al. | Aug 2018 | A1 |
20180264218 | Chodkowski | Sep 2018 | A1 |
20190111227 | Veliss et al. | Apr 2019 | A1 |
20190151592 | Bornholdt | May 2019 | A1 |
20200230343 | Sims et al. | Jul 2020 | A1 |
20200338294 | McLaren et al. | Oct 2020 | A1 |
20220126049 | Amarasinghe | Apr 2022 | A1 |
20230347090 | Huddart et al. | Nov 2023 | A1 |
20240024606 | McLaren et al. | Jan 2024 | A1 |
20240033461 | Felix et al. | Feb 2024 | A1 |
20240077763 | Yoon et al. | Mar 2024 | A1 |
20240139456 | Freestone | May 2024 | A1 |
20240165360 | Smith et al. | May 2024 | A1 |
Number | Date | Country |
---|---|---|
996301 | Sep 1976 | CA |
1311662 | Dec 1992 | CA |
2172538 | Jul 1994 | CN |
2504493 | Aug 2002 | CN |
2562067 | Jul 2003 | CN |
1784250 | Jun 2006 | CN |
1901963 | Jan 2007 | CN |
201033204 | Mar 2008 | CN |
201171846 | Dec 2008 | CN |
101432039 | May 2009 | CN |
100502972 | Jun 2009 | CN |
101516427 | Aug 2009 | CN |
202822396 | Mar 2013 | CN |
103536996 | Jan 2014 | CN |
895692 | Nov 1953 | DE |
2706284 | Aug 1978 | DE |
3122034 | Dec 1982 | DE |
3907428 | Sep 1990 | DE |
10254399 | Jun 2004 | DE |
102006011151 | Sep 2007 | DE |
0 350 322 | Jan 1990 | EP |
0 401 307 | Aug 1995 | EP |
0 879 565 | Nov 1998 | EP |
0 982 049 | Mar 2000 | EP |
1 187 650 | Dec 2005 | EP |
2 060 294 | May 2009 | EP |
2 130 563 | Dec 2009 | EP |
2 517 757 | Oct 2012 | EP |
2 022 528 | Mar 2016 | EP |
2390116 | Mar 1938 | FR |
2618340 | Nov 1970 | FR |
825960 | Jan 1989 | FR |
2658725 | Aug 1991 | FR |
2749176 | Dec 1997 | FR |
2804421 | Aug 2001 | FR |
190224431 | Dec 1902 | GB |
339522 | Dec 1930 | GB |
826198 | Dec 1959 | GB |
880824 | Oct 1961 | GB |
1467828 | Mar 1977 | GB |
2133275 | Jul 1984 | GB |
2188236 | Sep 1987 | GB |
1211268 | Apr 2000 | GB |
2478305 | Sep 2011 | GB |
2491227 | Nov 2012 | GB |
2553475 | Mar 2018 | GB |
S46-12114 | Apr 1971 | JP |
46-016719 | Jun 1971 | JP |
S55-89072 | Jul 1980 | JP |
2004-016488 | Jan 2004 | JP |
2003-053874 | Sep 2004 | JP |
2009-125306 | Jun 2009 | JP |
2010-090973 | Apr 2010 | JP |
2000-102624 | May 2013 | JP |
2018-127729 | Aug 2018 | JP |
10-2011-0028950 | Mar 2011 | KR |
585295 | Dec 2011 | NZ |
WO 9512432 | May 1995 | WO |
WO 9732494 | Sep 1997 | WO |
WO 98003225 | Jan 1998 | WO |
WO 98018514 | May 1998 | WO |
WO 9904842 | Feb 1999 | WO |
WO 99058181 | Nov 1999 | WO |
WO 0050122 | Aug 2000 | WO |
WO 00069497 | Nov 2000 | WO |
WO 00074758 | Dec 2000 | WO |
WO 01041854 | Jun 2001 | WO |
WO 01097892 | Dec 2001 | WO |
WO 0244749 | Jun 2002 | WO |
WO 02047749 | Jun 2002 | WO |
WO 02074372 | Sep 2002 | WO |
WO 04039185 | May 2004 | WO |
WO 04041341 | May 2004 | WO |
WO 04073778 | Sep 2004 | WO |
WO 05021075 | Mar 2005 | WO |
WO 05032634 | Apr 2005 | WO |
WO 05046776 | May 2005 | WO |
WO 05051468 | Jun 2005 | WO |
WO 05063328 | Jul 2005 | WO |
WO 05118042 | Dec 2005 | WO |
WO 05123166 | Dec 2005 | WO |
WO 06130903 | Dec 2006 | WO |
WO 06138416 | Dec 2006 | WO |
WO 07022562 | Mar 2007 | WO |
WO 07041786 | Apr 2007 | WO |
WO 07068044 | Jun 2007 | WO |
WO 07125487 | Nov 2007 | WO |
WO 07147088 | Dec 2007 | WO |
WO 08007985 | Jan 2008 | WO |
WO 08060295 | May 2008 | WO |
WO 08070929 | Jun 2008 | WO |
WO 08106716 | Sep 2008 | WO |
WO 08148086 | Dec 2008 | WO |
WO 09026627 | Mar 2009 | WO |
WO 09038918 | Mar 2009 | WO |
WO 09052560 | Apr 2009 | WO |
WO 09059353 | May 2009 | WO |
WO 09092057 | Jul 2009 | WO |
WO 09108995 | Sep 2009 | WO |
WO 09139647 | Nov 2009 | WO |
WO 09148956 | Dec 2009 | WO |
WO 10066004 | Jun 2010 | WO |
WO 10081295 | Jul 2010 | WO |
WO 10131189 | Nov 2010 | WO |
WO 10139014 | Dec 2010 | WO |
WO 11072739 | Jun 2011 | WO |
WO 11077254 | Jun 2011 | WO |
WO 11112401 | Sep 2011 | WO |
WO 1207300 | Jan 2012 | WO |
WO 12045127 | Apr 2012 | WO |
WO 12069951 | May 2012 | WO |
WO 12071300 | May 2012 | WO |
WO 12143822 | Oct 2012 | WO |
WO 12154883 | Nov 2012 | WO |
WO 12177152 | Dec 2012 | WO |
WO 13006913 | Jan 2013 | WO |
WO 13026091 | Feb 2013 | WO |
WO 13026092 | Feb 2013 | WO |
WO 13064930 | May 2013 | WO |
WO 14020469 | Feb 2014 | WO |
WO 14025267 | Feb 2014 | WO |
WO 14031673 | Feb 2014 | WO |
WO 14075141 | May 2014 | WO |
WO 14077708 | May 2014 | WO |
WO 14110622 | Jul 2014 | WO |
WO 14110626 | Jul 2014 | WO |
WO 14129913 | Aug 2014 | WO |
WO 14175752 | Oct 2014 | WO |
WO 14175753 | Oct 2014 | WO |
WO 15033287 | Mar 2015 | WO |
WO 15043229 | Apr 2015 | WO |
WO 15070289 | May 2015 | WO |
WO 15079396 | Jun 2015 | WO |
WO 15083060 | Jun 2015 | WO |
WO 15151019 | Oct 2015 | WO |
WO 15187986 | Dec 2015 | WO |
WO 16043603 | Mar 2016 | WO |
WO 17030447 | Feb 2017 | WO |
WO 17059476 | Apr 2017 | WO |
WO 17150990 | Sep 2017 | WO |
WO 17158474 | Sep 2017 | WO |
WO 17158544 | Sep 2017 | WO |
WO 17160166 | Sep 2017 | WO |
WO 17216708 | Dec 2017 | WO |
WO 19003094 | Jan 2019 | WO |
Entry |
---|
cpap.com, InnoMed/Resp Care Bravo Nasal Pillow CPAP Mask with Headgear, (http://web.archive.org/web/*/https://www.cpap.com/productpage/bravo-nasal-interface/), downloaded Feb. 24, 2020, 5 pp. |
Pad A Cheek, LLC, Sleep apnea can make beautiful sleep elusive, (http://web.archive.org/web/20070701000000*/http://www.padacheek.com/;Wayback Machine), downloaded Feb. 24, 2020, 3 pp. |
Philips Respironics ‘System One Heated Humidifier—User Manual’, 2011, pp. 1-16, [retrieved on Nov. 25, 2013] from the internet: URL: http://www.cpapxchange.com/cpap-machines-biap- machines/system-one-60-series-cpap-humidifier-manual.pdf. |
Number | Date | Country | |
---|---|---|---|
20240181194 A1 | Jun 2024 | US |
Number | Date | Country | |
---|---|---|---|
62343711 | May 2016 | US | |
62309394 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18171159 | Feb 2023 | US |
Child | 18485076 | US | |
Parent | 16085291 | US | |
Child | 18171159 | US |