The invention relates to systems and methods for directionally controlling expansion of an expandable device useful for providing cavities in interior body regions for diagnostic or therapeutic purposes.
Certain diagnostic or therapeutic procedures require provision of a cavity in an interior body region. For example, as disclosed in U.S. Pat. Nos. 4,969,888 and 5,108,404, a balloon may be deployed to form a cavity in cancellous bone tissue, as part of a therapeutic procedure that fixes fractures or other abnormal bone conditions, both osteoporotic and non-osteoporotic in origin. The balloon or other expandable body may compress the cancellous bone to form an interior cavity. A filling material, such as a bone cement, may be inserted into the cavity in order to provide interior structural support for cortical bone.
This procedure can be used to treat cortical bone, which—due to osteoporosis, avascular necrosis, cancer, trauma, or other disease—is fractured or is prone to compression fracture or collapse. These conditions, if not successfully treated, can result in deformities, chronic complications, and an overall adverse impact upon the quality of life.
As a balloon is expanded during such a procedure, it may not expand in the direction desired by a user of the device. Thus, a demand exists for systems and methods capable of directionally controlling expansion of an expandable device useful for providing cavities in interior body regions.
Embodiments of the present invention provide systems and methods for directionally controlling expansion of an expandable device useful for providing cavities in interior body regions. One illustrative embodiment comprises a device having an expandable body comprising a wall having two portions. The first wall portion comprises a high elasticity material. The second wall portion comprises a material having an elasticity lower than the elasticity of the material in the first wall portion. When the expandable body is expanded, expansion of the second wall portion is constrained more than expansion of the first wall portion. As a result, expansion of the expandable body is directed outwardly from the high elasticity first wall portion.
In an illustrative embodiment, the expandable body is coupled to the distal end of an elongate member. A cannula is introduced into an interior body region. The elongate member is inserted through the cannula such that the expandable body is positioned for expanding in a selected direction in the interior body region. The body is then expanded, and the first wall portion expands in the selected direction. As a result, the directed expansion creates a cavity within the interior body region. The cavity can then be filled with a filler material.
Features of a directionally controlled expandable device and methods for use of the present invention may be accomplished singularly, or in combination, in one or more of the embodiments of the present invention. As will be realized by those of skill in the art, many different embodiments of a directionally controlled expandable device and methods for use according to the present invention are possible. Additional uses, advantages, and features of the invention are set forth in the illustrative embodiments discussed in the detailed description herein and will become more apparent to those skilled in the art upon examination of the following.
Embodiments of the present invention provide systems and methods for directionally controlling expansion of an expandable device useful for providing cavities in interior body regions. The systems and methods embodying the invention can be adapted for use in many suitable interior body regions, wherever the formation of a cavity within or adjacent one or more layers of tissue may be required for a therapeutic or diagnostic purpose. The illustrative embodiments show the invention in association with systems and methods used to treat bones. In other embodiments, the present invention may be used in other interior body regions or types of tissues.
Referring now to the figures,
The system 10 comprises a cannula 30 comprising a proximal end and a distal end 31. The cannula 30 may be fabricated from a material selected to facilitate advancement and rotation of an elongate member 40 movably disposed within the cannula 30. The cannula 30 can be constructed, for example, using standard flexible, medical grade plastic materials, such as vinyl, polyamides, polyolefins, ionomers, polyurethane, polyether ether ketone (PEEK), polycarbonates, polyimides, and polyethylene tetraphthalate (PET). The cannula 30 can be constructed as a bi-layer or a tri-layer of one or more of these materials. The cannula 30 can also comprise more rigid materials to impart greater stiffness and thereby aid in its manipulation and torque transmission capabilities. More rigid materials useful for this purpose include stainless steel, nickel-titanium alloys (such as Nitinol), and other metal alloys.
The system shown in
The elongate member 40 shown is hollow, allowing for movement of a flowable material, for example, a liquid or a gas, through the elongate member 40. The elongate member 40 may comprise a handle (not shown) at its proximal end 41 to aid in gripping and maneuvering the elongate member 40. For example, in an embodiment, such a handle can be formed from a foam material and secured about the proximal end 41 of the elongate member 40.
The system shown in
The expandable body 50 may be expanded by movement of a flowable material through the hollow elongate member 40 and into the interior of the expandable body 50. In the embodiment shown in
The expandable body 50 is configured to constrain expansion in selected portions of the expandable body 50 as it expands. The expandable body 50 may comprise an inflatable balloon tube 51, as shown in
In an embodiment of such an expandable body 50, the high elasticity material 54 may comprise a low durometer (softer) material, and the low elasticity material 56 may comprise a high durometer (harder) material. Durometer is defined as a measure of material hardness or the relative resistance to indentation of various grades of polymers. A higher durometer material may be more resistant to elastic deformation than a lower durometer material. Accordingly, expansion of a high durometer wall material may be constrained more than expansion of a low durometer wall material such that expansion of the expandable body 50 is directed outwardly from the lower durometer wall portion. As a result, a differential in durometer of materials in selected wall portions can be used to control the direction and degree of expansion of the expandable body 50.
In one embodiment of the present invention, at least a portion of the elongate member 40 may comprise one or more radiographic markers (not shown). As shown in the embodiment in
The elongate member 40, and thereby the expandable body 50, may be in communication with a controller (not shown), such as a slide controller, a pistol grip controller, a ratcheting controller, a threaded controller, or any other suitable type of controller that can be configured to permit a user of the device to control the extent to which the expandable body 50 extends beyond the distal end 31 of the cannula 30. Such a controller may permit a user of the device 20 to provide rotational torque and thereby control rotation of the elongate member 40 and the expandable body 50.
In the embodiment shown in
Once a cavity is created in the target treatment area, the expandable body 50 may be contracted and removed from the interior body region through the cannula 30. After the expandable body 50 is removed, a material or filler, such as a bone cement, may then be used to fill the cavity provided by the system 10. Use of a filler material may be beneficial in certain treatment areas, for example, in a vertebra where the system 10 is used to restore height to a vertebral body (see
Referring now to
Due to various traumatic or pathologic conditions, such as osteoporosis, a vertebral body 61 can experience a vertebral compression fracture (VCF). In such conditions, cancellous bone 63 can be compacted, causing a decrease in height of the vertebra 60. In a VCF in particular, vertebral height is lost in the anterior region of the vertebral body 61. The user of the system 10 may utilize it to provide a cavity within the vertebral body 61, and to restore height to the vertebral body 61 lost when a fracture occurred.
Systems and methods according to the present invention are not limited in application to human vertebrae 60, and may be used to provide cavities within other parts of a living or non-living organism. For example, in embodiments, the system 10 can be deployed in other bone types and within or adjacent other tissue types, such as in a vertebral disc, an arm bone, a leg bone, a knee joint, etc.
The vertebral body 61 is in the shape of an oval disc. As
Systems and methods of the present invention comprise an expandable body 50, such as the inflatable balloon tube 51 shown in
Conventional inflatable balloons become essentially spherical when inflated, creating a generally spherical cavity. Filling a spherical cavity with filler material results in single points of contact on vertebral body 61 surfaces (similar to a circle inside a square, or a sphere inside a cylinder). As a result, such spherical shapes do not typically permit a filler material to support the spine adequately. The directionally-controlled expansion of an expandable body 50 of the present invention creates a preferred shape in a cavity which, when filled with filler material, desirably distributes the load transferred from the vertebral body 61 surfaces to the hardened filler material, ultimately strengthening the spine. Moreover, irregularly-shaped cavities 81 formed by embodiments of the present invention provide shapes, which when filled by filler material can reduce the opportunity for the filler material to shift or displace within the vertebral body 61 under compressive loading of the spine and thereby provide enhanced stability.
Another advantage of an embodiment of the present invention is that embodiments of an expandable body 50 can optimally expand to a desired shape rather than simply towards areas of lowest bone density. That is, expansion of the body 50 can be controlled even when encountering areas in the bone of varying resistance.
Certain injuries and/or diseases cause anatomical malformations along only portions of a spherical shape. For example, vertebral compression fractures often result in collapse of the affected vertebra 60 in a more or less vertical orientation. In reducing such a vertebral compression fracture, it may be desirable to compress cancellous bone 63 only in the direction of collapse. If a vertebral compression fracture is oriented in a vertical direction, expansion of an expandable body 50 according to the present invention can be limited to the vertical direction only. Such a directionally controlled expandable device 20 would allow most of the force of expansion to be directed toward the endplates between affected vertebral bodies 61, thereby increasing the mechanical capability of the expandable body 50 to reduce the fracture. Thus, another advantage of the present invention is that embodiments of an expandable body 50 can move the top and bottom of the vertebral bodies 61 (i.e., the upper and lower vertebral end plates) toward a more normal anatomical position to restore height.
Another advantage is that certain embodiments of the present invention can achieve directed expansion of an expandable body 50 into desired areas while avoiding expansion into areas that are not affected by injury or disease. For example, in a vertebral body 61, the expansion can be prevented from entering an area not affected by a compression fracture. As a result, the outer dimensions of the sides of the vertebral body 61 can be maintained by avoiding fracturing the cortical sidewalls of the vertebral body 61 or by moving already fractured bone in the sidewalls.
Embodiments of an expandable body 50 according to the present invention include wall portions 53, 55 having elasticities 54, 56 sufficiently different to allow the body 50 to differentially expand when under internal pressure. In use, such expandable bodies 50 are able to expand preferentially along one or more axes so as to deliver a greater force and/or displacement of cancellous bone 63 toward one direction versus another.
In one such embodiment, the expandable body 50 comprises a wall 52 having a first wall portion 53 comprising a high elasticity material 54 and a second wall portion 55 comprising a material 56 having an elasticity lower than the first wall portion 53 elasticity. In an illustrative embodiment, the high elasticity material 54 in the first wall portion 53 can comprise a low durometer material, and the lower elasticity material 56 in the second wall portion 55 can comprise a high durometer material. Reference to the durometer, or hardness, of one material is made relative to the durometer, or hardness, of another material. For example, in embodiments of an expandable body 50, a high durometer material wall portion has a higher durometer, or is harder and less pliable, relative to another wall portion comprising a lower durometer, or softer, material.
Polymers such as polyurethanes are available in different hardnesses, according to a hardness, or durometer, scale used in plastics. For example, a durometer of 90A is a degree of hardness on the “A” durometer scale. A material having 90B durometer rating would be harder than a material having a 90A durometer rating. The lower the durometer scale rating, the softer and more pliable the material. For example, the lower the durometer scale rating of a material used in wall portions 55 having higher durometer rated materials 56, the more the expandable body 50 would elongate along an axis 58 in the longitudinal direction. In addition, the amount of increase in expansion force on the softer portions 53 of the wall 52 relate to the durometer of the harder portions 55 of the wall 52. The higher the durometer of the harder portions 55, the greater the increase in expansion force on the softer portions 53.
The expandable body wall 52 can have one or more wall portions 55, or “stripes,” of less elastic material 56 disposed in the longitudinal direction along the elongated axis 58 of the device 20. When expanded, the portions 55 of the expandable body wall 52 comprising lower elasticity material 56 do not stretch as much as the portions 53 of the expandable body wall 52 comprising higher elasticity material 54. Thus, the “stripes,” or longitudinal portions 55 of less elastic material 56, in the expandable body wall 52 are constrained during expansion relative to the wall portions 53 of more elastic material 54. As a result, the direction of expansion about the circumference of the expandable body 50 can be controlled. Embodiments of the expandable body wall portions 55 made with low elasticity material 56 provide the advantage of greater torque control from the attached elongate member 40, or catheter, allowing easier radial, or rotational, movement of the expandable body 50.
The amount of directionality provided by wall portions 55 of lower elasticity material 56 can be adjusted by making those wall portions 55 either more broad or more narrow. A broader wall portion 55 of low elasticity material 56 would force the expandable body 50 to expand less in the direction toward which that wall portion 55 is oriented than a more narrow wall portion 55 of material 56 having the same elasticity. Location of placement of low elasticity wall portions 55 at selected locations around the circumference of the expandable body 50 can provide additional directional control of expansion. For example, two wall portions 55 of low elasticity material 56 located on the same half of a tube circumference would allow expansion from that half of the tube only in the direction outward 57 from the higher elasticity material portion 53 between the two low elasticity material portions 55. In embodiments, multiple wall portion stripes 55 of low elasticity material 56 can be located about the circumference of the expandable body 50. In this way, expansion of the body 50 can be directed from multiple higher elasticity material wall portions 53 toward multiple and more discrete target areas. Directional control of expansion allows the expandable body 50 to expand into non-spherical shapes.
As shown in
Embodiments of an expandable body according to the present invention can achieve directionally-controlled expansion without using additional structures in the interior of the body. However, in embodiments, the expandable body 50 comprising wall portions 53, 55 comprising differential elasticities can be configured to include an internal restraint. For example,
Directionally-controlled expansion of an expandable body can be accomplished with a dual web internal restraint in which expansion control is bi-directional. For example, the Elevate™ inflatable balloon tamp (IBT), which includes a dual web balloon, is disclosed in U.S. Patent Publication No. 2003/0032963. This publication discloses such a dual-web IBT as comprising an uninflated cross-section having a round outer wall and two adjacent inner walls connecting the outer wall across the diameter of the circular shape. This configuration provides three hollow chambers inside the balloon. The two outer chambers have semi-circular shapes and are inflatable. When inflated, each semi-circular chamber moves in opposite directions. The inner walls, or webs, serve as internal expansion restraints during inflation. The internal walls undergo only limited elastic and/or plastic deformation during inflation, thereby maintaining the approximate original balloon diameter at the points where the inner walls are connected to the outer wall. However, the balloon outer wall is not as significantly restrained from expanding in the directions transverse to the internal walls. Thus, the balloon can expand substantially more in one direction than in a transverse direction, for example, more in the vertical direction than in the horizontal direction, resulting in a cross-sectional shape that is generally ovoid or somewhat similar to a “figure 8.”
Such a dual web internal restraint can control expansion in a bi-directional manner. Embodiments of an expandable body of the present invention provide further directional control of expansion not limited to two (opposite) directions. For example, as shown in
Internal restraints 70 can include, for example, mesh work, webbing, membranes, partitions or baffles, a winding, spooling or other material laminated to portions of the balloon body, and continuous or non-continuous strings across the interior of the expandable body 50 held in place at specific locations. In addition, as shown in
Embodiments of an expandable body of the present invention can be configured to function in a manner similar to expandable bodies having an external restraint. For example,
In another embodiment of an expandable body of the present invention,
As shown in
In another embodiment of the present invention, an expandable body 50 comprises one or more wall portions 53 comprising a high elasticity material 54 and having a thickness 77 (as shown in
The amount of low elasticity material 56 in wall portion(s) 55 should be controlled so as to not diminish the elasticity characteristics of the high elasticity material wall portions 53. That is, the total amount of low elasticity material 56 used to achieve a degree of inelasticity should be balanced with elasticity characteristics of the expandable body 50 in the high elasticity portions so that the body 50 can be expanded to a desired shape and dimension.
Expandable bodies 50 of the present invention can comprise low elasticity wall portions 55 made from, for example, polyurethanes, polyolefins (polyethylenes, polypropylenes, etc.), polyamides, acrylics, polyvinyl compounds, polyesters, polyethers, polycarbonates, polyether therephthalate, polyketones, and any of these materials combined with a filler. An example of a low elasticity material 56 useful for making wall portions 55 is PEBAXT™, a polyether block amide available commercially from Archema. Other low elasticity rated engineered plastics may be used. As described herein, nanocomposites of such low elasticity materials 56 can be advantageously utilized in the wall 52 of expandable body 50. Low elasticity materials 56 can be reinforced materials such nanocomposites, filler filled materials, and irradiation crosslinked resins.
A high elasticity material 54 useful for making the wall 52 of expandable body 50 is the polyurethane TEXIN®, commercially available from Bayer MaterialScience in South Deerfield, Mass. Other materials such as silicone, rubber, thermoplastic rubbers, elastomers, and other medical balloon materials can be utilized to make high elasticity wall portions 53. Embodiments of the directionally controlled expandable body 50 can comprise a single lumen or a multi-lumen tubing of such high elasticity materials 54.
In directionally-controlled expandable bodies 50 of the present invention, distribution of pressure upon expansion is often uneven about the tubular circumference. This causes the expandable body 50 to tend to shift in a treatment area, for example, in a vertebral body 61, into regions of lower tissue density. Undesirable shifting and/or radial twisting of the expandable body 50 may also occur due to the higher elasticity of the wall 52 material. As a result, directional control of expansion can be compromised. Expandable bodies 50 having wall portions 55 of low elasticity material 56 provide greater rigidity to better maintain the expandable bodies 50 in the desired position in a treatment area. As such, expansion of bodies 50 having wall portions 55 of low elasticity material 56 can be more reliably maintained in desired locations and expanded in desired directions. As discussed herein, another advantage of wall portions 55 comprising low elasticity material 56 in a directionally-controlled expandable body 50 is greater torque control.
Moreover, the exposure of the expandable body 50 to cancellous bone 63 also typically requires materials having significant resistance to surface abrasion, puncture, and/or tensile stresses. For example, expandable bodies 50 incorporating elastomer materials, for example, polyurethane, which have been preformed to a desired shape, for example, by exposure to heat and pressure, can undergo controlled expansion and further distention in cancellous bone 63, without failure, while exhibiting resistance to surface abrasion and puncture when contacting cancellous bone 63.
Due to various pathologic or traumatic conditions, such as osteoporosis, a vertebral body 61 can compact cancellous bone 63 vertically downward and cause a decrease in height of the vertebra. A vertebral compression fracture (VCF) is a fracture occurring in a vertebra 60 which, in addition to being painful, changes the alignment of the spine. In such conditions, vertebral height is lost particularly in the anterior region of the vertebral body 60. Such a decreased height is less than the height 80 shown in
The user of the system 10, shown in
As shown in
As shown in
In various embodiments, the configuration of such an expandable body 50 can be defined by the surrounding cortical bone 62 and adjacent internal structures, and is designed to occupy up to 70-90% of the volume of the inside of the bone. However, expandable bodies 50 that are as small as about 40% (or less) and as large as about 99% are workable for fractures. In various other embodiments, the expanded body 50 size may be as small as 10% of the cancellous bone 63 volume of the area of bone being treated, such as for the treatment of avascular necrosis and/or cancer, due to the localized nature of the fracture, collapse, and/or treatment area. The fully expanded size and shape of the expandable body 50 is desirably regulated by low and high durometer materials, 54, 56, respectively, in selected portions of the body 50, as described.
In embodiments of the present invention, an expandable body 50 may comprise a nanocomposite plastic material. Nanocomposites include a resin matrix and a nano-sized reinforcing filler material. Commercially available nano-fillers include clays, silicas, and ceramics. Nanocomposites and nano-fillers are available commercially from the Foster Corporation, Putnam, Conn. These fillers are small enough to improve the strength of the resin matrix, while allowing a tube to be extruded in a thin walled film.
In one embodiment, a first wall portion 53 of an expandable body 50 comprises a high elasticity material 54. A second wall portion 55 comprises a lower elasticity nanocomposite of the same material as the high elasticity wall portion 53. An advantage of using a nanocomposite material in a low elasticity wall portion 55 that is a nanocomposite of the same material used in a high elasticity wall portion 53 is that the nanocomposite material exhibits increased strength and stiffness relative to the non-reinforced material. Thus, the wall portion 55 comprising a low elasticity nanocomposite material is more resistant to stretching upon expansion of the expandable body 50 than the high elasticity wall portion 53. As a result, expansion of the expandable body 50 can be directed in desired directions according to the present invention. In an embodiment, a low elasticity, less compliant wall portion 55, or “stripe,” comprising a nanocomposite that is coextruded with a higher elasticity, more compliant wall portion 53 allows directed expansion of the expandable body 50, as described herein. In an alternative embodiment, the lower elasticity nanocomposite can be a material different than the high elasticity material 54.
Pre-determined amounts of nano-fillers in the nanocomposite can be used to selectively affect the elasticity, the degree of hardness, and the resistance to puncture, of the portions of the expandable body wall 52 comprising a nanocomposite. An advantage of using a nanocomposite material in an expandable body 50 is that relatively high elasticity resins can be used in one wall portion 53 and the same material reinforced with a nanocomposite can be used for a relatively lower elasticity wall portion 55.
In one embodiment, the entire circumference of the expandable body wall 52 is made from a nanocomposite resin. For example, a mono-layer of 100% nanocomposite resin can be extruded to make an expandable body wall 52. An expandable body 50 comprising a 100% nanocomposite resin has greater strength than an expandable body 50 made from the same resin that is not reinforced with the nanocomposite. The addition of nanocomposites to an expandable body 50 can affect the ability of the body 50 to elongate. Thus, the amount of nanocomposite used to lower the elasticity of an expandable body wall 52 should allow for sufficient elongation for achieving a desired expanded volume.
In another embodiment, an expandable body 50 is extruded as a bi-layer, comprising one layer of nanocomposite resin and the other layer of non-reinforced resin. When the outer layer of the coextruded bi-layer body 50, such as a balloon tubing 51, comprises a nanocomposite-reinforced material, the body 50 or tubing 51 is provided with increased puncture resistance. The advantage of a bi-layer extrusion is that it avoids having to use nanocomposites in 100% of the balloon tubing 51. When the entire body 50 or tubing 51 includes nanocomposites, elasticity characteristics can be affected. One way to maintain desired elasticity characteristics of a body 50 or tube 51 is to make an inner layer from a virgin material without nanocomposites and provide an outer layer, or coating, of the body 50 or tube 51 with a material comprising nanocomposites. In this way, the nanocomposite outer layer provides increased puncture resistance, while the inner layer maintains desired elasticity characteristics.
Using a nanocomposite material in the lower elasticity wall portion 55 that is a nanocomposite of the same material used in the higher elasticity wall portion 53 can improve the bond at the interface between the two wall portions 55, 53, as compared to a bond between two different materials. This provides the advantage of significantly decreasing the risk of delamination at the interface between the wall portions 55, 53. A nanocomposite provides the advantage of different material characteristics in different wall portions without compromising the interface bond between the two materials.
Utilization of a nanocomposite in an expandable body wall 52 can provide a more puncture-resistance body. Increased puncture-resistance of an expandable body 50 provides an advantage in anatomical treatment areas in which bone or other structures form sharp edges. The degree of hardness and the resistance to puncture of an expandable body wall 52 is affected by the amount of nano-fillers comprising materials different than the virgin material used in a nanocomposite. For example, if 10% of the nanocomposite comprises a nano-filler, 10% of the original molecule is replaced, causing the expandable body 50 to have 10% less of the characteristics imparted by the nanocomposite material. Inclusion of a larger percentage of nano-filler in the nanocomposite material will reduce the desired characteristics of the nanocomposite material by a proportionate larger percentage in the material. Thus, during manufacture, hardness and elasticity characteristics of a nanocomposite material in the expandable body 50 should be balanced with a desired amount of puncture-resistance.
Another advantage of the expandable body 50 of the present invention comprising a nanocomposite resin is that the very small particles of the nanocomposite allow smoother surfaces of the finished body wall 52, such as in a balloon tubing 51. In contrast, fiber-reinforced resins, which are larger, can cause imperfections in the balloon tubing 51 surface. Another advantage of the expandable body 50 of the present invention comprising a nanocomposite resin is that the body wall 52 can be thinner while achieving the same, or greater, hardness and similar elongation capabilities as in expandable bodies 50 having thicker walls 52.
As shown in the embodiment in
In an embodiment employing a plurality of radiographic markers 59, as shown in
Radiopaque materials useful for inclusion in the walls of the expandable body 50 include, for example, barium sulfate, tantalum, tungsten, and bismuth subcarbonate. A powder of such radiopaque materials can be compounded with selected low elasticity and/or high elasticity materials 56, 54 for making expandable bodies 50 and extruded together with the selected materials to form a tube. Alternatively, radiopaque materials can be extruded as wires and arranged in different lumens of the cannula 30 such that the expandable body 50 can be visualized under a fluoroscope.
In other embodiments, other means for radiographic visualization of the expandable body 50 can be used. For example, the location, size, and shape of the expandable body 50 can be visualized under fluoroscopy by expanding the body 50 with a radiopaque gas or liquid.
Embodiments of the present invention include methods for directionally controlling expansion of an expandable body 50 in a targeted treatment area. One such method 90 is shown in the flow chart in
In such an embodiment of the method 90, causing directed expansion (96) of the body 50 causes the first wall portion 53 to expand in a constrained manner (97) lengthwise along the elongated axis 58. In embodiments, the directed expansion (96) creates (98) a cavity 81 within the interior body region. The interior body region may comprise a bone, including, for example, a cancellous bone 63, which is compressed by the directed expansion (96). In an embodiment, the directed expansion (96) displaces a cortical bone 62. The directed expansion (96) may be utilized to intervene in other interior body regions. For example, the directed expansion (96) may be utilized to lift vertebral end plates, tibial plateau depressions, and proximal humerus depressions, as well as for other purposes.
In an embodiment, the method 90 includes contracting (99) the expandable body 50 and 4 removing the expandable body 50 from the interior body region. In another embodiment, the method 90 can include filling (100) the cavity 81 with a filler material.
The various embodiments of expandable bodies 50 disclosed herein are by no means limited in their utility to use in a single treatment location within the body. Rather, while each embodiment may be disclosed in connection with an exemplary treatment location, these embodiments can be utilized in various locations within the human body, depending upon the treatment goals as well as the anatomy of the targeted bone. For example, embodiments of an expandable body 50 may be used in the treatment of areas within the body other than the vertebra, including, for example, the ribs, the femur, the radius, the ulna, the tibia, the humerus, the calcaneus, or the spine. As an example, particular embodiments of such expandable bodies 50 may be utilized to lift, for example, tibial plateau depressions and proximal humeral depressions.
Although the present invention has been described with reference to particular embodiments, it should be recognized that these embodiments are merely illustrative of the principles of the present invention. Those of ordinary skill in the art will appreciate that a directionally controlled expandable device and methods of use of the present invention may be constructed and implemented in other ways and embodiments. Accordingly, the description herein should not be read as limiting the present invention, as other embodiments also fall within the scope of the present invention.