The invention relates to a disc filter used in a wastewater treatment plant, and more particularly, to a disc filter having a filter support configuration which enables venting of said disc filter.
Large water filtration systems frequently include one or more stages of filtration that clean the influent (typically water) to a sufficient level to allow for the discharge of the influent into a natural body of water such as a lake or river. In regions where water is scarce, it may be desirable to further filter the water to allow for “reuse” of the water.
Many wastewater treatment plants utilize a disc filter system to filter water. Such systems typically include a plurality of discs each including a plurality of filter segments. Each filter segment includes a pair of filter panels which are spaced apart and arranged on an outer surface of a drum. A cap is attached to the top of each pair of filter panels to thus form a cavity for receiving water. Each filter panel includes filter media, such as finely woven cloth for filtering water.
In operation, the drum is rotated and the water to be filtered is introduced into the drum. The water then exits through ducts in the drum and flows into one or more filter segment cavities. The water in the filter segment cavities is then filtered through the media of the filter panels to provide filtered water. The filtered water is then collected in a chamber and exits the disc filter through an effluent pipe. Particulates which are filtered out by the filter panels remain within the filter segments on the inside surface of the filter media of the filter panels. A spray device is used to spray the panels with water to dislodge the particulates and clean the filter media. The particulates are then collected onto a trough and are removed from the disc filter system.
Each filter panel is attached to the drum by a filter support arrangement. Each filter support holds at least a side portion of an associated filter panel. The filter supports do not have openings and thus do not allow fluid communication between adjacent filter segments. Further, the characteristics of filter media in the filter panels is such that air cannot readily pass through the filter media when the filter media is wet. Therefore, air cannot be readily vented from the filter cavity during the filtering process. As a result, a vacuum is formed as each filter segment transitions from being submerged in water to being positioned out of the water. As the drum continues to rotate, air from drum headspace rushes in to the filter segment and creates turbulence that washes off particulates captured by the filter media. The particulates then undesirably fall back into the drum, resulting in dirtier water. Therefore, there is a need to relieve the vacuum that is formed in the filter segment during the filtering process.
A filter device having a vent device for inhibiting formation of a vacuum in the filter device is disclosed. The filter device includes a drum for receiving the liquid wherein the drum includes a drum headspace. The filter device also includes filter sets for filtering the liquid. The drum is rotated to enable cleaning of the filter media. The filter device also includes a frame having spaced apart supports for supporting each of the filter sets. A fluid passageway extends between the supports, wherein the fluid passageway provides fluid communication between the tank headspace and a filter set to vent a filter set.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. For example, the teachings of this invention apply not only to disc filters, but also may be adapted to drum type and other type filters that are used to filter high volume, high solids content fluids. The teachings apply not only to “inside-out” type filters using liquid head difference as a filtration driving force, but also apply to vacuum type filters, including “outside-in” type filters, and filters that operate in an enclosed vessel under pressure. Such type filters are exemplified and described in more detail in the brochures titled REX MICROSCREENS published by Envirex and dated 08/89, REX Rotary Drum Vacuum Filters published by Envirex, and REX MICROSCREENS Solids Removal For Lagoon Upgrading, Effluent Polishing, Combined Sewer Overflows, Water Treatment, Industrial Wastewater Treatment and Product Recovery published by Envirex in 1989 which are hereby incorporated herein by reference in their entirely. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
While the invention illustrated herein is described as being employed in a waste water treatment setting, and particularly as a tertiary treatment system, other uses and arrangements are possible. Other wastewater treatment applications include use as a primary or secondary clarifier in a municipal wastewater treatment plant as well as detrashing sludge.
In addition to wastewater treatment uses, the present invention can be used in pulp and paper applications. For example, the invention can be used for white water filtration, improving water quality after save-all filters, fiber recovery, raw water screening in the production of mechanically purified process water, prefiltration in conjunction with a sand filter in the production of chemically purified water, treatment of sealing water for pumps, recirculating the water in wood rooms, thickening pulp and paper stock, and/or replacing Vacuum filters, such as those commonly used in the pulp and paper industry (outside-in flow).
Still other applications include but are not limited to, dewatering coal, taconite processing, service water treatment, cooling water treatment, treating wastewater from galvanization processes, separation of tobacco particles from wastewater, and/or food industry wastewater filtration.
It should be noted that the term “filter media” should be interpreted broadly to cover any component that filters a fluid. Other terms included within the definition of filter media include membrane, element, filter device, and the like. As such, the term “filter media” should not be narrowly interpreted to exclude any component that filters fluid.
Referring to
The flow system 40, better illustrated in
The disc filter 10 of
FIGS. 3 and 16-18 illustrate a possible drum configuration 25 that is suitable for use with the invention. The illustrated drum 25 includes an outer surface 95 and two end surfaces 100 that cooperate to define the interior space 65. One end is open to permit flow and the other end is sealed against flow. Several drum apertures 105 are arranged in a series of axial rows with each row including a number of drum apertures 105 that extend circumferentially around a portion of the outer surface 95. The drum apertures 105 are rectangular although it is understood that other shapes may be suitable. Attachment apertures 110 are positioned on either side of each drum aperture 105. Each drum aperture 105 is associated with a set of attachment apertures 110.
As illustrated in FIGS. 3 and 16-18, the outer surface 95 of the drum 25 includes a number of flat planar surfaces 115 that contact one another to define a polygonal cross section. A circular cross section or a cylindrical or other shape could be employed in the invention if desired.
Referring to
Referring to
A trough 205 is positioned beneath the spray bar 190 between adjacent discs 30 to catch the spray water or backwash, including any particulate matter removed from the filter panels 125. The backwash and particles are then removed from the system 10 via the backwash pipe 90.
The cap 175 is preferably formed from extruded aluminum with other materials (e.g., plastic, stainless steel, etc.) and other construction methods (e.g., injection molding, forging, casting, etc.) also being possible. In the illustrated construction, straight extruded portions are welded together to define the cap 175.
FIGS. 11 and 19-22 illustrates another arrangement of a filter panel 125 that includes a one-piece pleated filter media disposed within a frame 210. The construction of FIGS. 11 and 19-22 is similar to the construction of
As illustrated in
To further stiffen the filter media 15, a series of stringers 215 extend across the opening in the frame. The stringers 215 include saw tooth cuts 238, illustrated in
As illustrated in
As previously described, the construction of
In still other constructions, reinforced cross bracing 220, such as that illustrated in
In still other constructions, two pleated filter media 15 pieces are positioned in a back to back relationship such that they provide support for one another.
Referring to
Referring to
As illustrated in
Referring to
Referring to
Referring to
Water to be filtered enters a filter panel set 300 through the drum aperture 105 and the aperture 275. The water in the filter panel set 300 is then filtered through the filter panels 125 to provide filtered water. The aperture 275 is of sufficient size relative to the drum aperture 105 such that trash or other debris which flows through the drum aperture 105 is not captured by the radial strut 270. In one embodiment, the aperture 275 is substantially equal in size to the drum aperture 105. In another embodiment, the aperture 275 is sized larger than the drum aperture 105. As a result, the amount of trash collected by the radial strut 270 is substantially reduced or eliminated, resulting in relatively unimpeded flow of water and air between filter panel sets 300 as the drum 25 rotates. This design feature minimizes water turbulence from water inertia and prevents air entrapment and subsequent release so that the undesirable wash off of solids already filtered from the water is substantially reduced. The radial strut 270 further includes ribs 305 which provide structural support.
Referring to
As previously described, the disc filter 10 may use filter panels 125 which are pleated, although it is understood that other types of panels may be used. An advantage with using pleated filter media 15 is that both the media pleats themselves, as well as the panel perimeter sidewalls such as those along the radial sides of the pleated panel 125, provide temporarily horizontal surfaces to which trash can cling more readily. As a result, rotating shelves are formed while submerged which are oriented at a favorable angle with respect to gravity until the trash is over the trough for eventual deposit thereon.
Referring to
In prior designs, seating of the panels is a two-step process. First, the filter panel with edge seal is slid down into the edge channels of a filter support. Then the cap is slid into place against the top edge gasket. During the both steps, sliding friction develops between the channel walls and the gasket. During the first step, the maximum panel seating force required can rise to a very large value unless a design compromise is made. Along the angled sides 255 of the trapezoidal panel, the friction force direction is opposite to the gasket insertion path, but is at a significantly oblique angle to the long direction of the gasket. Hence, the risk of sideways stretching or potentially distorting movement of the gasket relative to its original position and shape is high. Such distortion may result in leakage. In particular, the gasket can seal against higher pressure if under a higher compression force, but high compression force raises the risk of leakage due to distortion or stretching of the gasket during insertion into the angled side channels of a conventional design.
The friction associated with gasket sliding in a filter support structure design having sidewall channels demands a compromise between reasonable insertion force and adequate compression of the gasket. Lower gasket compression results in lower sliding friction, but also reduces the pressure threshold for leakage. Conventional systems attempt to overcome this problem by “flocking” the outside sliding surfaces of the rubber gasket. While this helps, it does not eliminate the inherent problem.
In a preferred embodiment, a bottom channel is used. Since the bottom channel is relatively short the insertion force remains very low, even for reasonably high gasket compression. The likelihood of sideways stretching or potentially-distorting movement of the gasket due to oblique friction forces is substantially reduced for a bottom channel.
To assemble a filter panel 125, a molded gasket 500 that is slightly undersized is stretched around the outside of the filter panel 125 to create a gasketed panel 505 as illustrated in
In one embodiment, the filter support 245 includes a snap lock feature 520 (shown in
To complete the installation of the gasketed panels 505, the cap 295 is positioned on top of the filter support structure and cap hardware is installed. In preferred constructions, the cap hardware includes a nut and a bolt that connect the cap 295 to the adjacent cap 295. Each end of the cap 295 is connected to the adjacent cap 295 to define a complete ring of caps 295 around the outer perimeter of the disc 30.
In operation, water enters the disc filter 10 via the influent pipe 60. The contaminated influent water is separated from the clean filtered water using a wall 76 through which the drum is mounted with a rotating seal. The wall 76 forms an influent water chamber 77 and a filtrate water chamber 75. The influent enters the drum interior 65 and exits through drum apertures 105 in the drum 25 and flows into volume 182 as previously described. The water in volume 182 is then filtered through the pleated filter media 15 in at least one of the filter panels 125 and flows out (“inside out flow”) to provide filtered water. As the influent passes through the pleated filter media 15, particulates that are larger than the openings in the filter media 15 are retained within volume 182 and remain on an inside surface of the filter media 15. The effluent collects within the filtrate water chamber 75 outside of the discs 30 and exits the disc filter 10 via the effluent pipe 70. A system of weirs defines the effluent end of filtrate water chamber 75 and maintains the desired minimum liquid level in chamber 75 within the filter 10.
During operation, the drum 25 continuously or intermittently rotates such that filter panels 125 enter the liquid and filter influent only during a portion of the rotation. As previously described in relation to
Since discs 30 are never fully submerged, filter panels 125 enter the liquid and are available for filtering influent only during the bottom portion of the rotation arc. After filtering, and during rotation of drum 25, the filter panels 125 exit the liquid and pass the spray bars 190. During a backwash cycle, the spray device 85 is used to spray the filter panels 125 with high-pressure water or chemicals to dislodge the particulates and clean the filter media 15 as the drum 25 rotates. The water droplet impact vibration and penetration of the filter media 15 by a portion of the water removes debris that is caught on the upstream surface of the pleated filter media 15. The debris and water are collected in the trough 205 and transported out of the filter system 10 by pipe 90. During backwashing, filtration can continue as some of the filter panels 125 are disposed within the liquid, while others are above the liquid and can be backwashed
The filter panels 125 described herein provide for a greater flow area than prior art systems and are capable of operating at a substantially higher flow through a similar panel area. Specifically, the perimeter frame 210 defines a panel normal flow area 350, shown in
While the foregoing description should be read to include many variations of pleats, the following table illustrates the expected low end, the expected high end, and the expected nominal size of several parameters of the pleats. Of course variations in these parameters may be possible.
It should be noted that the low end pleat height is based on a micropleat design with thin panels having many tiny pleats, while the high end design is based on a thick panel design. In addition, the low end included angle is possible due to the unexpected finding that solids can be easily removed from the valleys, and that the risk of being unable to clean the valleys was very low. The velocity past the cleaning nozzles is at least partially a function of the size of the discs with smaller discs allowing for higher angular velocities.
While there are many variations of the design described herein, one filter has been field tested and produced a reduction in turbidity measured in Nephelometric Turbidity Units (NTU) as illustrated in the graph of
It should be noted that the invention described herein is also well-suited for existing applications. For example, an existing filter can be modified to incorporate the present invention. Such a modification would increase the flow rate and reduce the pressure drop through the filter without increasing the footprint of the filter. In this application, the existing non-pleated filter media is removed from the drum. Filter supports are coupled to the drum and pleated filter panels are inserted into the filter supports to complete the modification. In preferred constructions, the filter supports are molded from plastic with other materials (e.g., metal) also being suitable for use.
While most of the figures illustrate discs 30 that include filter panels 125 that are substantially aligned,
Thus, the invention provides, among other things, a new and useful filter panel 125 for use in a disc filter 10. The filter panel 125 includes pleated filter media 15 that increases the overall surface area per unit area that can be used for filtration, and retains the pleated shape of the media against the turbulent and viscous forces generated at high flow rates of liquid.
Referring to
The filter support 430 includes a fluid passageway 440 such as a hollow tube or duct which connects each filter set 300 to a headspace 470 of the drum 25 and not to another filter set 300. Referring to
Referring to
This application is a continuation of U.S. patent application Ser. No. 13/400,180 (now U.S. Pat. No. 8,808,542) filed on Feb. 20, 2012 which, in turn, is a continuation of U.S. patent application Ser. No. 12/173,559 (now U.S. Pat. No. 8,118,175) filed on Jul. 15, 2008 which, in turn, claims the benefit of priority to U.S. Provisional Patent Application Ser. Nos. 60/950,476 and 60/950,484 both filed on Jul. 18, 2007.
Number | Name | Date | Kind |
---|---|---|---|
1685118 | Campbell | Sep 1928 | A |
1712258 | Compain | May 1929 | A |
1804934 | Hoyt et al. | May 1931 | A |
1826485 | Thorne | Oct 1931 | A |
1833315 | Burhans | Nov 1931 | A |
2022069 | Bryan | Nov 1935 | A |
2076104 | Vinton | Apr 1937 | A |
2464223 | Genter | Mar 1949 | A |
2964194 | Oliver et al. | Dec 1960 | A |
3163601 | Erickson et al. | Dec 1964 | A |
3193105 | Putnam et al. | Jul 1965 | A |
3331512 | Vore | Jul 1967 | A |
3363770 | Glos, II | Jan 1968 | A |
3369688 | Glos, II | Feb 1968 | A |
3471026 | Riker et al. | Oct 1969 | A |
3485376 | Peterson et al. | Dec 1969 | A |
3610419 | Vallee et al. | Oct 1971 | A |
3643803 | Glos, II | Feb 1972 | A |
3692181 | Davis | Sep 1972 | A |
3948779 | Jackson | Apr 1976 | A |
4139472 | Simonson | Feb 1979 | A |
4162982 | Chesner | Jul 1979 | A |
4256580 | Rimmele | Mar 1981 | A |
4268385 | Yoshikawa | May 1981 | A |
4330405 | Davis et al. | May 1982 | A |
4346008 | Leighton et al. | Aug 1982 | A |
4617122 | Kruse et al. | Oct 1986 | A |
4639315 | Fuchs et al. | Jan 1987 | A |
4655920 | Ragnegard | Apr 1987 | A |
4710294 | Ziller | Dec 1987 | A |
4781835 | Bahr et al. | Nov 1988 | A |
4814093 | Frykhult | Mar 1989 | A |
4838910 | Stollenwerk et al. | Jun 1989 | A |
4865732 | Garrant et al. | Sep 1989 | A |
4950403 | Hauff et al. | Aug 1990 | A |
5037562 | Tarves, Jr. | Aug 1991 | A |
5076924 | Persson et al. | Dec 1991 | A |
5084174 | Perala et al. | Jan 1992 | A |
5087358 | Massignani | Feb 1992 | A |
5227065 | Strid | Jul 1993 | A |
5242590 | Thomson et al. | Sep 1993 | A |
5296143 | Frykhult | Mar 1994 | A |
5304304 | Jakobson et al. | Apr 1994 | A |
5330645 | Geldmacher | Jul 1994 | A |
5330646 | Frykhult | Jul 1994 | A |
5635062 | Cameron et al. | Jun 1997 | A |
5647982 | Haythornthwaite et al. | Jul 1997 | A |
5667680 | Haeffner | Sep 1997 | A |
5685983 | Frykhult | Nov 1997 | A |
5766466 | Peterson | Jun 1998 | A |
5792352 | Scheucher et al. | Aug 1998 | A |
5804071 | Haeffner | Sep 1998 | A |
5820756 | McEwen et al. | Oct 1998 | A |
5893972 | Peterson | Apr 1999 | A |
5928396 | Choi | Jul 1999 | A |
6113783 | Strid et al. | Sep 2000 | A |
6231761 | Mohlin et al. | May 2001 | B1 |
6231764 | Wilkins | May 2001 | B1 |
6447617 | Bergmann | Sep 2002 | B1 |
6461507 | Ishigaki et al. | Oct 2002 | B1 |
D497660 | Danielsson et al. | Oct 2004 | S |
7255723 | Choi et al. | Aug 2007 | B2 |
7293659 | Grace | Nov 2007 | B2 |
7314556 | Sheets et al. | Jan 2008 | B2 |
7597805 | Danielsson et al. | Oct 2009 | B2 |
8118175 | Davis et al. | Feb 2012 | B2 |
8343248 | Suzuki et al. | Jan 2013 | B2 |
20020050283 | Bergmann | May 2002 | A1 |
20020195388 | Sierens et al. | Dec 2002 | A1 |
20040232076 | Zha et al. | Nov 2004 | A1 |
20050082217 | Hagg et al. | Apr 2005 | A1 |
20050121381 | Sheets et al. | Jun 2005 | A1 |
20110024347 | Larsson et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2023302 | Feb 1991 | CA |
2070341 | Dec 1992 | CA |
2149090 | Nov 1996 | CA |
1281378 | Jan 2001 | CN |
1557525 | Dec 2004 | CN |
1742133 | Mar 2006 | CN |
1753716 | Mar 2006 | CN |
1090665 | Apr 2001 | EP |
1596958 | Nov 2005 | EP |
2595957 | Sep 1987 | FR |
957991 | May 1964 | GB |
2002126800 | May 2002 | JP |
2008119608 | May 2008 | JP |
526692 | Oct 2005 | SE |
9112067 | Aug 1991 | WO |
9419088 | Sep 1994 | WO |
9735656 | Oct 1997 | WO |
9811972 | Mar 1998 | WO |
9930797 | Jun 1999 | WO |
0076620 | Dec 2000 | WO |
02085487 | Oct 2002 | WO |
03039712 | May 2003 | WO |
03051487 | Jun 2003 | WO |
2004076026 | Sep 2004 | WO |
Entry |
---|
Algas Fluid Technology Systems AS, Environmental Protection Made Profitable, Feb. 3, 2004, 4 pages, Moss Norway. |
Algas, Algas Thickener, Feb. 3, 2004, 4 pages, Moss, Norway. |
Algas, More than NOK 2 Million Measures, Feb. 3, 2004, 1 page. |
Algas, Raw Water Treatment, Feb. 3, 2004, 1 page. |
Envirex, Rex Microscreens, Bulletin—Product Features and Benefits, 1989, 12 pages, Waukesha, Wisconsin USA. |
Envirex, Rex Microscreens, Bulliten No. 315-31, 1989, 8 pages, Waukesha, Wisconsin, USA. |
Envirex, Rex Rotary Drum Vacuum Filters, at least as early as Aug. 1, 2005, 6 pages, Waukesha, Wisconsin USA. |
GL&V Dorr-Oliver, The American Disc Filter, Bulliten 7202, 2000, 7 pages. |
Hans Huber AG, Huber Technology, Rotafilt Cloth Filtration Plant, Aug. 1997, 5 pages, Germany. |
Material re: 1999 Hydrotech Installation at Anniston, AL Wastewater Treatment Plant, 5 pages. |
Material re: 2002 Hydrotech Installation (Filtertype HSF2110-2F; Serial No. 2931) at Casale Wastewater Treatment Plant, 9 Pages. |
Material re: 2002 Hydrotech Installation (Filtertype HSF3112-2F; Serial Nos. 3013 et seq.) at Pero Wastewater Treatment Plant, 13 Pages. |
Material re: Hydrotech Disc Filter (Filtertype HSF1702-1H; Serial No. 2351; 2000), 7 Pages. |
Material re: Hydrotech Disc Filter (Filtertype HSF2108-1F; Serial No. 2455; 2001), Pages. |
Nordic Water Products AB, Efficient Filtration with DynaDisc Filter, at least as early as Aug. 1, 2005, 8 pages, Sweden. |
Number | Date | Country | |
---|---|---|---|
20150008194 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
60950476 | Jul 2007 | US | |
60950484 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13400180 | Feb 2012 | US |
Child | 14340232 | US | |
Parent | 12173559 | Jul 2008 | US |
Child | 13400180 | US |