1. Field of the Invention
The illustrative embodiments of the invention relate generally to a pump for fluid and, more specifically, to a pump in which the pumping cavity is substantially cylindrically shaped having end walls and a side wall between them with an actuator disposed between the end walls. The illustrative embodiments of the invention relate more specifically to a disc pump having a valve mounted in the actuator and at least one additional valve mounted in one of the end walls.
2. Description of Related Art
The generation of high amplitude pressure oscillations in closed cavities has received significant attention in the fields of thermo-acoustics and pump type compressors. Recent developments in non-linear acoustics have allowed the generation of pressure waves with higher amplitudes than previously thought possible.
It is known to use acoustic resonance to achieve fluid pumping from defined inlets and outlets. This can be achieved using a cylindrical cavity with an acoustic driver at one end, which drives an acoustic standing wave. In such a cylindrical cavity, the acoustic pressure wave has limited amplitude. Varying cross-section cavities, such as cone, horn-cone, bulb have been used to achieve high amplitude pressure oscillations thereby significantly increasing the pumping effect. In such high amplitude waves the non-linear mechanisms with energy dissipation have been suppressed. However, high amplitude acoustic resonance has not been employed within disc-shaped cavities in which radial pressure oscillations are excited until recently. International Patent Application No. PCT/GB2006/001487, published as WO 2006/111775, discloses a pump having a substantially disc-shaped cavity with a high aspect ratio, i.e., the ratio of the radius of the cavity to the height of the cavity.
Such a pump has a substantially cylindrical cavity comprising a side wall closed at each end by end walls. The pump also comprises an actuator that drives either one of the end walls to oscillate in a direction substantially perpendicular to the surface of the driven end wall. The spatial profile of the motion of the driven end wall is described as being matched to the spatial profile of the fluid pressure oscillations within the cavity, a state described herein as mode-matching. When the pump is mode-matched, work done by the actuator on the fluid in the cavity adds constructively across the driven end wall surface, thereby enhancing the amplitude of the pressure oscillation in the cavity and delivering high pump efficiency. The efficiency of a mode-matched pump is dependent upon the interface between the driven end wall and the side wall. It is desirable to maintain the efficiency of such pump by structuring the interface so that it does not decrease or dampen the motion of the driven end wall thereby mitigating any reduction in the amplitude of the fluid pressure oscillations within the cavity.
The actuator of the pump described above causes an oscillatory motion of the driven end wall (“displacement oscillations”) in a direction substantially perpendicular to the end wall or substantially parallel to the longitudinal axis of the cylindrical cavity, referred to hereinafter as “axial oscillations” of the driven end wall within the cavity. The axial oscillations of the driven end wall generate substantially proportional “pressure oscillations” of fluid within the cavity creating a radial pressure distribution approximating that of a Bessel function of the first kind as described in International Patent Application No. PCT/GB2006/001487 which is incorporated by reference herein, such oscillations referred to hereinafter as “radial oscillations” of the fluid pressure within the cavity. A portion of the driven end wall between the actuator and the side wall provides an interface with the side wall of the pump that decreases dampening of the displacement oscillations to mitigate any reduction of the pressure oscillations within the cavity, that portion being referred to hereinafter as an “isolator” as described more specifically in U.S. patent application Ser. No. 12/477,594 which is incorporated by reference herein. The illustrative embodiments of the isolator are operatively associated with the peripheral portion of the driven end wall to reduce dampening of the displacement oscillations.
Such pumps also require one or more valves for controlling the flow of fluid through the pump and, more specifically, valves being capable of operating at high frequencies. Conventional valves typically operate at lower frequencies below 500 Hz for a variety of applications. For example, many conventional compressors typically operate at 50 or 60 Hz. Linear resonance compressors known in the art operate between 150 and 350 Hz. However, many portable electronic devices including medical devices require pumps for delivering a positive pressure or providing a vacuum that are relatively small in size and it is advantageous for such pumps to be inaudible in operation so as to provide discrete operation. To achieve these objectives, such pumps must operate at very high frequencies requiring valves capable of operating at about 20 kHz and higher. To operate at these high frequencies, the valve must be responsive to a high frequency oscillating pressure that can be rectified to create a net flow of fluid through the pump.
Such a valve is described more specifically in International Patent Application No. PCT/GB2009/050614 which is incorporated by reference herein. Valves may be disposed in either the first or second aperture, or both apertures, for controlling the flow of fluid through the pump. Each valve comprises a first plate having apertures extending generally perpendicular therethrough and a second plate also having apertures extending generally perpendicular therethrough, wherein the apertures of the second plate are substantially offset from the apertures of the first plate. The valve further comprises a sidewall disposed between the first and second plate, wherein the sidewall is closed around the perimeter of the first and second plates to form a cavity between the first and second plates in fluid communication with the apertures of the first and second plates. The valve further comprises a flap disposed and moveable between the first and second plates, wherein the flap has apertures substantially offset from the apertures of the first plate and substantially aligned with the apertures of the second plate. The flap is motivated between the first and second plates in response to a change in direction of the differential pressure of the fluid across the valve.
A design for an actuator-mounted valve is disclosed, suitable for controlling the flow of fluid at high frequencies under the vibration it is subjected to during operation when located within the driven end-wall of the pump cavity described above.
The general construction of a valve suitable for operation at high frequencies is described in related International Patent Application No PCT/GB2009/050614, which is incorporated herein by reference. The illustrative embodiments of the invention relate to a disc pump having a dual-cavity structure including a common interior wall between the cavities of the pump.
More specifically, one preferred embodiment of the pump comprises a pump body having a substantially elliptically shaped side wall closed by two end walls, and a pair of internal plates adjacent each other and supported by the side wall to form two cavities within said pump body for containing fluids. Each cavity has a height (h) and a radius (r), wherein a ratio of the radius (r) to the height (h) is greater than about 1.2.
This pump also comprises an actuator formed by the internal plates wherein one of the internal plates is operatively associated with a central portion of the other internal plate and adapted to cause an oscillatory motion thereby generating radial pressure oscillations of the fluid within each of the cavities including at least one annular pressure node in response to a drive signal being applied to the actuator when in use.
The pump further comprises a first aperture extending through the actuator to enable the fluid to flow from one cavity to the other cavity with a first valve disposed in said first aperture to control the flow of fluid through the first aperture. The pump further comprises a second aperture extending through a first one of the end walls to enable the fluid to flow through the cavity adjacent the first one of the end walls with a second valve disposed in the second aperture to control the flow of fluid through the second aperture.
The pump further comprises a third aperture extending through a second one of the end walls to enable the fluid to flow through the cavity adjacent the second one of the end walls, whereby fluids flow into one cavity and out the other cavity when in use. The pump may further comprise a third valve disposed in the third aperture to control the flow of fluid through the third aperture when in use.
Other objects, features, and advantages of the illustrative embodiments are disclosed herein and will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
The cylindrical wall 11 and the end plates 12, 13 may be a single component comprising the pump body as shown in
The interior plates 14, 15 of the pump 10 together form an actuator 40 that is operatively associated with the central portion of the end walls 22, 23 which are the internal surfaces of the cavities 16, 17 respectfully. One of the interior plates 14, 15 must be formed of a piezoelectric material which may include any electrically active material that exhibits strain in response to an applied electrical signal, such as, for example, an electrostrictive or magnetostrictive material. In one preferred embodiment, for example, the interior plate 15 is formed of piezoelectric material that that exhibits strain in response to an applied electrical signal, i.e., the active interior plate. The other one of the interior plates 14,15 preferably possess a bending stiffness similar to the active interior plate and may be formed of a piezoelectric material or an electrically inactive material, such as a metal or ceramic. In this preferred embodiment, the interior plate 14 possess a bending stiffness similar to the active interior plate 15 and is formed of an electrically inactive material, such as a metal or ceramic, i.e., the inert interior plate. When the active interior plate 15 is excited by an electrical current, the active interior plate 15 expands and contracts in a radial direction relative to the longitudinal axis of the cavities 16, 17 causing the interior plates 14, 15 to bend, thereby inducing an axial deflection of their respective end walls 22, 23 in a direction substantially perpendicular to the end walls 22, 23 (See
In other embodiments not shown, the isolator 30 may support either one of the interior plates 14, 15, whether the active or inert internal plate, from the top or the bottom surfaces depending on the specific design and orientation of the pump 10. In another embodiment, the actuator 40 may be replaced by a device in a force-transmitting relation with only one of the interior plates 14, 15 such as, for example, a mechanical, magnetic or electrostatic device, wherein the interior plate may be formed as an electrically inactive or passive layer of material driven into oscillation by such device (not shown) in the same manner as described above.
The pump 10 further comprises at least one aperture extending from each of the cavities 16, 17 to the outside of the pump 10, wherein at least one of the apertures contain a valve to control the flow of fluid through the aperture. Although the apertures may be located at any position in the cavities 16, 17 where the actuator 40 generates a pressure differential as described below in more detail, one embodiment of the pump 10 shown in
The pump 10 further comprises at least one aperture extending between the cavities 16, 17 through the actuator 40, wherein at least one of the apertures contains a valve to control the flow of fluid through the aperture. Although these apertures may be located at any position on the actuator 40 between the cavities 16, 17 where the actuator 40 generates a pressure differential as described below in more detail, one preferred embodiment of the pump 10 shown in
The dimensions of the cavities 16, 17 described herein should each preferably satisfy certain inequalities with respect to the relationship between the height (h) of the cavities 16, 17 and their radius (r) which is the distance from the longitudinal axis of the cavities 16, 17 to the side walls 18, 19. These equations are as follows:
r/h>1.2; and
h2/r>4×10−10 meters.
In one embodiment of the invention, the ratio of the cavity radius to the cavity height (r/h) is between about 10 and about 50 when the fluid within the cavities 16, 17 is a gas. In this example, the volume of the cavities 16, 17 may be less than about 10 ml. Additionally, the ratio of h2/r is preferably within a range between about 10−6 and about 10−7 meters where the working fluid is a gas as opposed to a liquid.
Additionally, each of the cavities 16, 17 disclosed herein should preferably satisfy the following inequality relating the cavity radius (r) and operating frequency (f) which is the frequency at which the actuator 40 vibrates to generate the axial displacement of the end walls 22, 23. The inequality equation is as follows:
wherein the speed of sound in the working fluid within the cavities 16, 17 (c) may range between a slow speed (cs) of about 115 m/s and a fast speed (CO equal to about 1,970 m/s as expressed in the equation above, and k0 is a constant (k0=3.83). The frequency of the oscillatory motion of the actuator 40 is preferably about equal to the lowest resonant frequency of radial pressure oscillations in the cavities 16, 17 , but may be within 20% that value. The lowest resonant frequency of radial pressure oscillations in the cavity 11 is preferably greater than about 500 Hz.
Although it is preferable that each of the cavities 16, 17 disclosed herein should satisfy individually the inequalities identified above, the relative dimensions of the cavities 16, 17 should not be limited to cavities having the same height and radius. For example, each of the cavities 16, 17 may have a slightly different shape requiring different radii or heights creating different frequency responses so that the two cavities 14, 15 resonate in a desired fashion to generate the optimal output from the pump 10.
In operation, the pump 10 may function as a source of positive pressure adjacent the outlet valve 27 to pressurize a load (not shown) or as a source of negative or reduced pressure adjacent the inlet valve 26 to depressurize a load (not shown) as illustrated by the arrows. For example, the load may be a tissue treatment system that utilizes negative pressure for treatment. The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure where the pump 10 is located. Although the term “vacuum” and “negative pressure” may be used to describe the reduced pressure, the actual pressure reduction may be significantly less than the pressure reduction normally associated with a complete vacuum. The pressure is “negative” in the sense that it is a gauge pressure, i.e., the pressure is reduced below ambient atmospheric pressure. Unless otherwise indicated, values of pressure stated herein are gauge pressures. References to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
As indicated above, the pump 10 comprises at least one actuator valve 32 and at least one end valve, i.e., one of the end valves 28, 29. For example, the pump 70 may comprise only one of the end valves 28, 29 leaving the other one of the apertures 26, 27 open. Additionally, either one of the end walls 12, 13 may be removed completely to eliminate one of the cavities 16, 17 along with one of the end valves 28, 29. Referring more specifically to
With further reference to
As the actuator 40 vibrates about its centre of mass, the radial position of the annular displacement node 42 will necessarily lie inside the radius of the actuator 40 when the actuator 40 vibrates in its fundamental bending mode as illustrated in
The ring-shaped isolator 30 may be a flexible membrane which enables the edge of the actuator 40 to move more freely as described above by bending and stretching in response to the vibration of the actuator 40 as shown by the displacement at the peripheral displacement anti-node 43′ in
Referring to
Referring to
The retention plate 114 and the sealing plate 116 both have holes 118 and 120, respectively, which extend through each plate. The flap 117 also has holes 122 that are generally aligned with the holes 118 of the retention plate 114 to provide a passage through which fluid may flow as indicated by the dashed arrows 124 in
Referring also to
The operation of the valve 110 is a function of the change in direction of the differential pressure (ΔP) of the fluid across the valve 110. In
When the differential pressure across the valve 110 changes from a positive differential pressure (+ΔP) back to a negative differential pressure (−ΔP) as indicated by the downward pointing arrow in
When the differential pressure across the valve 110 reverses to become a positive differential pressure (+ΔP) as shown in
As indicated above, the operation of the valve 110 is a function of the change in direction of the differential pressure (ΔP) of the fluid across the valve 110. The differential pressure (ΔP) is assumed to be substantially uniform across the entire surface of the retention plate 114 because (1) the diameter of the retention plate 114 is small relative to the wavelength of the pressure oscillations in the cavity 115, and (2) the valve 110 is located near the centre of the cavities 16, 17 where the amplitude of the positive central pressure anti-node 45 is relatively constant as indicated by the positive square-shaped portion 55 of the positive central pressure anti-node 45 and the negative square-shaped portion 65 of the negative central pressure anti-node 47 shown in
The retention plate 114 and the sealing plate 116 should be strong enough to withstand the fluid pressure oscillations to which they are subjected without significant mechanical deformation. The retention plate 114 and the sealing plate 116 may be formed from any suitable rigid material, such as glass, silicon, ceramic, or metal. The holes 118, 120 in the retention plate 114 and the sealing plate 116 may be formed by any suitable process including chemical etching, laser machining, mechanical drilling, powder blasting, and stamping. In one embodiment, the retention plate 114 and the sealing plate 116 are formed from sheet steel between 100 and 200 microns thick, and the holes 118, 120 therein are formed by chemical etching. The flap 117 may be formed from any lightweight material, such as a metal or polymer film. In one embodiment, when fluid pressure oscillations of 20 kHz or greater are present on either the retention plate side or the sealing plate side of the valve 110, the flap 117 may be formed from a thin polymer sheet between 1 micron and 20 microns in thickness. For example, the flap 117 may be formed from polyethylene terephthalate (PET) or a liquid crystal polymer film approximately 3 microns in thickness.
Referring now to
Referring also to the relevant portions of
Referring more specifically to
Referring more specifically to
In the case where the inlet aperture 33 of the pump 80 is held at ambient pressure and the outlet aperture 27 of the pump 80 is pneumatically coupled to a load that becomes pressurized through the action of the pump 80, the pressure at the outlet aperture 27 of the pump 80 begins to increase until the outlet aperture 27 of the pump 80 reaches a maximum pressure at which time the airflow from the inlet aperture 33 to the outlet aperture 27 is negligible, i.e., the “stall” condition.
Referring now to
Referring more specifically to the relevant portions of
Referring more specifically to
Referring more specifically to
In the case where the inlet aperture 26 of the pump 70 is held at ambient pressure and the outlet aperture 27 of the pump 70 is pneumatically coupled to a load that becomes pressurized through the action of the pump 70, the pressure at the outlet aperture 27 of the pump 70 begins to increase until the pump 70 reaches a maximum pressure at which time the airflow at the outlet aperture 27 is negligible, i.e., the stall condition.
Because the pump 70 utilizes three valves with two cavities, the pump 70 is capable of increasing the differential pressure between the inlet aperture 26 and the outlet aperture 27 of the pump 70 to a maximum differential pressure of 4P, four times that of a single valve pump. Thus, under the conditions described in the previous paragraph, the outlet pressure of the two-cavity, three-valve pump 70 increases from ambient in the free-flow mode to a maximum differential pressure of 4P when the pump reaches the stall condition.
It should be understood that the valve differential pressures, valve movements, and airflow operational characteristics vary significantly between the initial free-flow condition and the stall condition described above where there is virtually no airflow (
It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.
The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/537,431, entitled “DISC PUMP AND VALVE STRUCTURE,” filed Sep. 21, 2011, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielson | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
8297947 | Van Rensburg et al. | Oct 2012 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20060232167 | Jordan | Oct 2006 | A1 |
20090087323 | Blakey et al. | Apr 2009 | A1 |
20100310397 | Janse Van Rensburg | Dec 2010 | A1 |
20100310398 | Janse Van Rensburg et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
550575 | Aug 1982 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 333 965 | Aug 1999 | GB |
2 329 127 | Aug 2000 | GB |
4129536 | Apr 1992 | JP |
2007092677 | Apr 2007 | JP |
71559 | Apr 2002 | SG |
WO 8002182 | Oct 1980 | WO |
WO 8704626 | Aug 1987 | WO |
WO 9010424 | Sep 1990 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9718007 | May 1997 | WO |
WO 9913793 | Mar 1999 | WO |
WO 2006111775 | Oct 2006 | WO |
WO 2009053027 | Apr 2009 | WO |
2010139916 | Dec 2010 | WO |
WO 2010139917 | Dec 2010 | WO |
Entry |
---|
WO 2009/053027 Machine Translation. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinović, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax, ”Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
International Search Report and Written Opinion for PCT/US2012/051937 filed Aug. 22, 2012. |
Number | Date | Country | |
---|---|---|---|
20130071273 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61537431 | Sep 2011 | US |