The present invention relates to a disk system, and particularly to a disk system capable of achieving space-saving even in the case where the disk system is configured that a disk containing position is different from a disk reproducing position.
In
In this disk system, to take off a plurality of the disks 8 contained in the magazine 1, the disk rotating portion 2 is moved in the direction B in the figures by interlocking of the driving shaft 9, tilting plate cam 10 and upper and lower guide plates 11, to be positioned at a desired disk position in the magazine 1.
In this way, according to the related art disk system, since disks contained in the magazine 1 are perfectly independent from a disk rotated on the disk rotating portion 2 side within a plane region, there occurs a problem that a length, that is, a dimension D of the disk system becomes larger.
To solve the above problem, for example, Japanese Patent Laid-open No. Sho 63-200354 has proposed a disk system.
In
Reference numeral 26 indicates a disk roller for feeding a disk 25 fed by a driving lever 24 driven by a driving means (not shown) to a disk rotating portion, and 27 is a driven roller disposed opposite to the disk roller 26.
Reference numeral 32 indicates a pair of tilting plate cams which are engaged with a plurality of trays 31 in the magazine 19. When the disk 25 selected by a magazine moving means (not shown) is moved in the direction of the plane of the disk, the pair of tilting plate cams 32 provide a space E more than at least a plate thickness of the disk in the rotating axis of the disk 25 with respect to the disk rotating portion 20.
Here, the disk rotating portion 20 includes the disk rotating motor 21, disk clamp hub 22, disk damper 23, driving lever 24, disk 25, disk roller 26, drive roller 27, and tilting plate cams 32.
Next, operation of the above disk system will be described.
To take off one of a plurality of the disks 25 contained in the magazine 19, the magazine 19 is moved in the direction F in the figures by the driving means to be positioned at a desired disk position in the magazine 19.
The disk 25 slides along a disk guide portion 35 in the magazine 19 by operation of the driving lever 24 in the magazine 19, and a leading end of the disk 25 is bitten between the disk roller 26 and the driven roller 27 of the disk rotating portion 20. Then, the disk 25 is carried to the disk damper 23 and the disk clamp hub 22 provided on the shaft of the disk rotating motor 21 by turning of the disk roller 26. The clamp position of the disk 25 is checked by a disk detecting means (not shown), and the disk damper 23 and also the disk roller 26 and the driven roller 27 are moved in the direction of the disk clamp hub 22 by the driving means, to clamp the disk 25.
At the same time when the driven roller 27 is moved toward the disk clamp hub 22, a pair of the tilting plate cams 32 provided on the disk rotating portion 20 are moved on the magazine 19 side by the driving means, to tilt the tray 31 for forming a suitable space E as shown in
The related art disk system configured as described above requires a magazine case, and consequently, it presents problems that disks cannot be selectively inserted in or ejected from the disk rotating portion one by one and that it is enlarged in size.
Further, since the related art disk system employs a portable magazine case, it is technically difficult to disassemble racks containing disks from each other in the disk system. As a result, to form a gap between a desired disk to be reproduced and a disk facing to the desired disk, only one-ends of the disks can be opened. In other words, to form a large gap between the disks, a space corresponding to the large gap must be provided in the system, thus causing a problem that the disk system is enlarged in size.
Further, since the related art disk system employs a portable magazine case, it is very difficult to separate racks containing disks from each other in the disk system while tilting each rack.
Additionally, to ensure a space in the disk system, there occurs a problem that the disk system is enlarged in size.
To solve the above-described problems, the present invention has been made, and an object of the present invention is to provide a disk system capable of being miniaturized, even in the case where the disk system is configured that a plurality of disks are contained without the need of provision of any removable magazine and are each operated, that is, each disk is selectively inserted, ejected, and operated, for example, reproduced.
Another object of the present invention is to provide a disk system capable of achieving space-saving even in the case where the disk system is configured that a disk containing position is different from a disk reproducing position.
A further object of the present invention is to provide a disk system capable of preventing a disk being damaged by holding the disk upon insertion or ejection of the disk and moving both roller portions holding the disk upon reproducing or exchange of the disk.
The present invention provides a disk system including: a disk clamper portion for holding a disk, the disk clamper portion being provided in such a manner as to be movable substantially in parallel to a disk carrying path on which the disk is carried in a range from one end to the other end of the disk carrying path; and a disk operating portion for rotating the disk, the disk operating portion being provided in such a manner as to be movable substantially in parallel to the disk carrying path in a range from one end to the other end of the disk carrying path. With this configuration, since both the disk damper portion and the disk operating portion can be moved, the disk R can be certainly held and also moving spaces of the disk damper portion and the disk operating portion can be shared. This makes it possible to make small a space in the disk system and hence to miniaturize the entire disk system.
The present invention, preferably, further includes a movement control means or movement control for moving, on the basis of a command for carrying the disk, the disk damper portion and the disk operating portion substantially in parallel to the disk carrying path. With this configuration, when the disk is carried, the disk damper portion and the disk operating portion can be moved to positions substantially parallel to the disk carrying path. Accordingly, it is possible to certainly hold the disk and hence to improve the reliability of the disk system.
The movement control means, preferably, moves the disk damper portion and the disk operating portion in such a manner that the disk damper portion and the disk operating portion are interlocked with each other. With this configuration, it is possible to more certainly hold the disk and hence to further improve the reliability of the disk system.
According to the present invention, preferably, when the disk is carried, it is held between the disk damper portion and the disk operating portion. With this configuration, it is possible to prevent the disk from slipping off the disk operating portion when the disk is carried, and hence to improve the reliability of the disk system.
The movement control means, preferably, moves the disk clamper portion and the disk operating portion independently from each other. With this configuration, since the driving portion for movement can be shared, the number of parts can be reduced. Accordingly, it is possible to reduce the cost and hence to realize an inexpensive disk system.
The movement control means, preferably, moves the disk clamper portion after the disk operating portion is moved. With this configuration, since the disk operating portion can be previously moved to a disk operating position before the disk is moved to the disk operating position, the disk can be certainly operated at a specific position. As a result, it is possible to prevent malfunction and the like and hence to improve the reliability of the disk system.
The movement control means, preferably, allows the disk clamper portion and the disk operating portion to hold the disk when the disk operating portion operates the disk. With this configuration, since the disk can be held between the disk clamper portion and the disk operating portion during operation of the disk, the disk can be certainly held. As a result, it is possible to prevent slip-off of the disk and hence to improve the reliability of the disk system.
a to 6d are front views of an essential portion of the disk loading mechanism of the disk system shown in
a to 7d are top views of the essential portion of the disk loading mechanism of the disk system shown in
a to 8d are upper side views of the essential portion of the disk loading mechanism of the disk system shown in
a to 9d are lower side views of the essential portion of the disk loading mechanism of the disk system shown in
a and 10b are a top view and a sectional front view respectively, showing a configuration of a disk clamper portion of the disk system shown in
a and 11b are views showing an operational state of a side surface of an essential portion of the disk clamper portion of the disk system shown in
a and 12b are a view showing an operating state of the disk clamper portion of the disk system shown in
a and 13b are a view showing an operating state of the disk clamper portion of the disk system shown in
a and 14b are a view showing an operating state of the disk clamper portion of the disk system shown in
a and 15b are a view showing an operating state of the disk clamper portion of the disk system shown in
a to 16c are views each showing an operational state of the essential portion of the disk clamper portion of the disk system shown in
a and 17b are a top view and a sectional side view respectively, showing a configuration of an essential portion of a disk reproducing portion of the disk system shown in
a and 18b are a top view and a sectional front view respectively, showing a configuration of a mechanism for moving the essential portion of the disk reproducing portion shown in
a and 20b are side views showing an operating state of an essential portion of the disk system shown in
a and 23b are a top view and a sectional front view respectively, showing an operational state of the mechanism for moving the essential portion of the disk reproducing portion shown in
a to 25c are side views each showing an operational state of an essential portion of the disk system shown in
a to 26c are side views each showing an operational state of the essential portion of the disk system shown in
a to 27c are side views each showing an operational state of the essential portion of the disk system shown in
a to 28c are side views each showing an operational state of the essential portion of the disk system shown in
a is a top view and
a to 38g are exploded views each showing an essential portion of the disk containing mechanism shown in
a to 39c are views each illustrating an operation of the essential portion of the disk containing mechanism shown in
a to 42e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 43e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 44e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 45e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 46e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 47e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 48e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 49e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 50e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 51e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 52e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 53e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 54e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 55e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 56e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 57e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 58e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 59e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 60e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 61e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 62e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 63e are views showing an operational state of the essential portions of the disk containing mechanism shown in
a and 64b are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 65d are views showing an operational state of the essential portions of the disk containing mechanism shown in
a to 66c are views showing an operational state of the essential portions of the disk containing mechanism shown in
a and 67b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 68b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 69b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 70b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 71b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 72b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 73b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 74b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 75b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 76b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 77b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 78b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 79b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 80b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 81b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 82b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 83b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 84b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 85b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 86b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 87b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 88b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 89b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 90b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 91b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 92b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 93b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 94b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 95b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 96b are a top view and a sectional side view respectively, showing a basic operation of the entire disk system shown in
a and 97b are front views showing a configuration of an essential portion of a disk loading mechanism of a disk system in Embodiment 2, showing an operational state thereof;
a and 98b are top views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
a and 99b are upper side views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
a and 100b are front views showing a configuration of an essential portion of the disk loading mechanism of the disk system in Embodiment 2, showing an operational state thereof;
a and 101b are top views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
a and 102b are lower side views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
a and 103b are front views showing a configuration of an essential portion of a disk loading mechanism of a disk system in Embodiment 3, showing an operational state thereof;
a and 104b are lower side views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
a and 105b are side views showing a configuration of the essential portion of the disk loading mechanism of the disk system shown in
The present invention will be described in detail with reference to the accompanying drawings.
The disk system is basically divided into the following three mechanism:
The first mechanism is a disk carrying-in/carrying-out mechanism for carrying a disk inserted in the disk system to and from a specific position; a second mechanism is a disk containing mechanism including a plurality of containing portions for containing disks, wherein upon reproducing of a disk or the like, the containing portions are disposed at specific positions with specific gaps put therebetween; and the third mechanism is a disk holding/reproducing mechanism for holding and reproducing a disk at a specific position.
Here, a basic operation of the disk system will be described below.
First, when the disk carrying-in/carrying-out mechanism carries a disk in the system, the disk containing mechanism is operated, automatically or on the basis of a command, to move a disk containing portion to a position adjacent to the disk carrying-in/carrying-out mechanism and disposed it at the position and to contain the disk in the disk containing portion. At this time, since the disk containing portion is adjacent to the disk carrying-in/carrying-out mechanism, the disk is contained in the disk containing portion only by the operational force of the disk carrying-in/carrying-out mechanism.
Next, after the disk is contained in the disk containing mechanism, the disk containing portion is moved to the original position and it waits for supply of an operational command such as a reproducing command or it is automatically shifted to the next operation.
When an operational command such as a reproducing command is supplied to the disk system, the disk holding mechanism and the disk containing mechanism are operated each other, so that the disk containing portion of the disk containing mechanism is moved, while holding the disk, up to a specific operational position, that is, a disk operational position, such as a disk reproducing position, to start the operation of the disk.
Next, when operation of the disk is completed during operation of the disk, the disk holding/reproducing mechanism and the disk containing mechanism move the disk from the disk operational position into the disk containing mechanism while holding the disk, and it waits for supply of an operational command such as a reproducing command or it is automatically shifted to the next operation.
Further, when a disk ejection command is supplied to the disk system, the disk containing mechanism moves an automatically selected or designated disk containing portion up to a position adjacent to the disk carrying-in/carrying-out mechanism, and the disk carrying-in/carrying-out mechanism ejects the disk received from the disk containing portion out of the disk system.
Hereinafter, a general configuration of the disk system carrying out the above-described basic operation will be first described and then the above-described three mechanisms will be described in detail.
[1. General Configuration of Disk System]
In
Reference numeral 200 indicates a disk loading portion for inserting or ejecting a disk in or from the housing 100. The disk loading portion 200 includes an upper disk roller 201 provided at a position facing to a label face of a disk; and a lower disk roller 202 provided at a position opposite to the upper disk roller 201 with the disk put therebetween.
Reference numeral 300 indicates a disk clamper portion which functions as follows. A disk R, which is pulled in the disk system by the disk loading portion 200 and is once contained in a disk containing mechanism (which will be described later), is placed at a reproducing position on the basis of a command allowing reproducing supplied from an operating portion (not shown). At this time, the disk clamper portion 300 holds the disk R placed at the reproducing position while pressing the disk R from the upper side to a disk reproducing portion 400 (which will be described later).
The disk clamper portion 300 includes a clamper 301 for press-holding a disk; a clamper arm 302 turnable in the direction C or D to be moved to a disk reproducing position for bringing the clamper 301 in contact with a disk; and a lift arm 303 for holding a knob portion 3012 of the clamper 301 and lifting the clamper 301 upward.
Reference numeral 400 indicates a disk reproducing portion for rotating a disk and reading-out information stored in the disk. The disk reproducing portion 400 includes a disk turn table 401 provided with a portion on which a disk is mounted; a disk driving motor 402 for rotating a disk mounted on the disk turn table 401; and a pick-up portion 403 for reading-out information stored in the disk.
Reference numeral 500 indicates a disk containing mechanism for containing a disk inserted by the disk roller portion 200. The disk containing mechanism 500 is composed of four stockers 501 to 504 (hereinafter, referred to as “first stocker 501, second stocker 502, third stocker 503, and fourth stocker 504) for containing a plurality (four pieces in Embodiment 1) of disks. The stockers 501 to 504 are disposed substantially in parallel to a plane of a disk inserted from the insertion port 101.
Each of the first stocker 501 to fourth stocker 504 is allowed to contain one disk. The stockers also contains disks in a state in which rotational axial lines of the disks are substantially aligned to each other.
Hereinafter, each mechanism of the general configuration of the disk system having been schematically described above will be described in detail.
[2. Disk Carrying-in/Carrying-out Mechanism]
Referring to
Although in the above description, the upper disk roller 201 and the lower disk roller 202 are both rotated as shown in
The disk carrying-in/carrying-out mechanism will be described with reference to
With respect to the actual positional relationship with the disk R, the state upon holding of the disk R is shown in
Next, a configuration of a mechanism of operating the disk roller portion 200, and operation of the upper disk roller 201 and the lower disk roller 202 will be described in detail with reference to
a to 6d are front views of essential portions, each showing a configuration and an operational state of a front surface portion of the disk roller portion 200;
Each of
Reference numeral 203 indicates a roller open cam plate for adjusting a magnitude of a gap between the upper disk roller 201 and the lower disk roller 202. The roller open cam plate 203 is composed of a main body 2031 and a cam portion 2032.
Here, the main body 2031 of the roller open cam plate 203 has a sliding hole 20311 at one end on the upper disk roller 201 side or the lower disk roller 202 side, and a sliding hole 20312 at the other end. The sliding hole 20311 allows a sliding shaft composed of a base pin (not shown) provided in the housing 100 to slid therein in the direction A or B. The sliding hole 20312 allows a pin 2092 of a link portion 209 (both will be described later) to be slid therein in the direction C or D.
The cam portion 2032 of the roller open cam plate 203 has a tilting sliding hole 20321 and a tilting portion 20322. The sliding hole 20321 allows a pin 2041 provided on part of an upper roller arm 204 (both will be described later) to be slid therein. The tilting portion 20322 allows a pin 2022 formed at a leading end of the lower disk roller 202 to be brought in contact with part of a peripheral edge portion of the cam portion 2032.
Reference numeral 204 is the upper roller arm for holding one end 2011 of the upper disk roller 201. The upper roller arm 204 has the pin 2041 slid in the sliding hole 20321 of the cam portion 2032 of the roller open cam plate 203, and also has a shaft holding hole 2042 in which the base pin (not shown) provided in the housing 100 is fitted.
In this case, the one end 2011 of the upper disk roller 201 is formed separately from the pin 2041; however, the pin 2041 may be substituted for the one end 2011.
Reference numeral 205 indicates a lower roller arm having at its one end a lower roller holding portion 2051 and at the other end a shaft holding hole 2052. The lower roller holding portion 2051 holds part of an extension portion 2022 having a shaft portion formed at a leading end of the lower disk roller 202. In the shaft holding hole 2052 is fitted the base pin (not shown) provided in the housing 100.
Reference numeral 206 indicates an open link having at one end a pin 2061 fitted in the sliding hole 20312, a shaft holding hole 2062 in which the base pin (not shown) provided in the housing 100 is fitted, and at a peripheral edge of part of the other end a sliding contact portion 2063 with which a slider 304 (which will be described later) is brought in contact.
Next, operation of the above-described disk carrying-in/carrying-out mechanism will be described.
First, as shown in
At this time, since the pin 2041 of the upper roller arm 204 is positioned at the left end in the sliding hole 20321 as shown in
The extension portion 2022 of the lower disk roller 202 held by the lower roller holding portion 2051 is usually biased on the upper disk roller 201 side by an elastic member (not shown) because the position of the roller open cam plate 203 is not changed. As a result, the extension portion 2022 is brought in contact with the tilting portion 20322 at a position closest to the upper disk roller. That is, the lower disk roller 202 is located at such a position.
In this case, the closest gap between the upper disk roller 201 and the lower disk arm 202 is set to be slightly thinner (for example, 0.5 mm) than a general thickness (for example, 1.2 mm) of the disk R in order to absorb a variation in thickness of disks and to ensure a sufficient disk holding pressure for preventing a disk from being slipped off from the gap between the rollers.
Next, in the case where the disk R is inserted from the insertion port 101 in the above-described operational state, as shown by the operational states in
Other operations are similar to those described with reference to
The disk R, which is inserted by the operations shown in
b, 7b, 8b and 9b each shows the state being in the course of opening the rollers when the disk producing portion 400 is moved up to the disk reproducing position, particularly, a state being in the course of moving in the direction A the slider 304 connected to move the disk reproducing portion 400.
The slider 304 has contact portions 3041 and 3042 to be brought in contact with the contact portion 2063 provided on the open link 206. As shown in
In addition, since the roller open cam plate 203 is moved only in the direction A or B, of the rotating force of the open link 206 in the direction C, only a movement component in the direction A is transmitted to the roller open cam plate 203 to move the roller cam plate 203.
Further, as described above, since the roller open cam plate 203 is moved in the direction A, that is, moved in the direction E as shown in
Further, as described above, since the roller open cam plate 203 is moved in the direction A, that is, moved in the direction I as shown in
Accordingly, as shown in
Finally, when the slider 304 is moved, from the operational states shown in
Further, during movement of only the slider 304 in the direction A in a state in which the slider contact portion 2063 of the open link 206 is positioned in parallel to the contact portion of the slider 304 as shown in the figures, the open link 206 is no longer moved in the direction C, and even if the open link 206 is applied with a force for returning the opening link 206 in the direction d, the slider 304 is not applied with a force for returning the slider 304 in the direction B.
Accordingly, the roller open cam plate 203 is held at a final position in the direction A.
At this time, as shown in
Further, since the slider 304 is further moved in the direction A as shown in
The disk carrying-in/carrying-out mechanism having the above configuration can perform a series of operations shown in
It is assumed that a gap between the upper disk roller 201 and the lower disk roller 202 upon non-insertion of a disk as shown in
In summary, the change in gap from the state shown in
In the case of stopping reproducing of the disk R and ejecting the disk R, that is, in the case of performing operations reversed to those described above, the disk carrying-in/carrying-out mechanism is operated in the order of the states shown in
[3. Disk Holding/Reproducing Mechanism]
A disk holding/reproducing mechanism basically includes a disk clamper portion 300 for holding a disk by pressing down the disk; a disk reproducing portion 400 for mounting, rotating and reproducing a disk; and a moving mechanism portion for moving both the disk clamper portion 300 and the disk reproducing portion 400. A disk driving means is mainly constituted of the disk reproducing portion 400.
Hereinafter, the disk clamper portion 300 will be first described in detail, and then the disk reproducing portion 400 will be described in detail.
[3-1. Disk Clamper Portion]
A configuration of the disk clamper portion 300 will be described with reference to
a and 10b are views showing a configuration of the disk clamper portion 300 and its peripheral members, wherein
a and 11b are views showing an essential portion shown in
In
Reference numeral 302 indicates a clamper arm for supporting the clamper 301. The arm 302 includes a shaft holding hole 3021 in which a shaft portion 3061 (which will be described later) provided on a base portion 306 is rotatably inserted; a pin 3022 slidably inserted in a sliding hole 3034 (which will be described later) formed in the lift arm 303; and a sliding hole 3023 in which a pin 3051 (which will be described later) formed in the link portion 305 is slidably inserted.
Reference numeral 303 indicates the lift arm for supporting the clamper portion 301. The lift arm 303 is usually biased upward by a spring 307 (which will be described later). The lift arm 303 includes the hook portion 3031 for hooking up the knob portion 3012 provided on the clamper 301; a shaft holding portion 3032 for allowing the lift arm 303 to be turned therearound with respect to the clamper arm 302; a sliding hole 3033 in which the shaft portion 3061 (which will be described later) provided on the base portion 306 is turnably inserted; the sliding hole 3034 in which the pin 3022 provided on the clamper arm 302 is slid; and a sliding hole 3035 in which the pin 3051 (which will be described later) formed on the link portion 305 is slidably inserted.
Reference numeral 304 indicates the slider. One end 3041 of the slider 304 is connected to the base portion 306 (which will be described later) so that the slider 304 is moved in the direction A or B. A pin 3042 is provided at the other end of the slider 304, and is slidably inserted in a sliding hole 3053 (which will be described in later) of the link portion 305.
Reference numeral 305 indicates the link portion which includes the pin 3051 slidably inserted in the sliding hole 3023 of the clamper arm 302 and in the sliding hole 3035 of the lift arm 303; a shaft holding hole 3052 for allowing the link portion 305 to be turned therearound with respect to the base portion 306 (which will be described later); and the sliding hole 3053 in which the pin 3042 provided on the slider 304 is slidably inserted.
Reference numeral 306 indicates the base portion provided in the vicinity of the disk roller portion 200 in such a manner as to be approximately parallel to the stoker 501 in a state containing no disk. The base portion 306 includes the shaft 3061 inserted in the shaft holding hole 3021 of the clamper 302 and the sliding hole 3035 of the lift arm 303; and a contact portion 3062 which is brought in contact with the one end 3041 of the slider 304 to move the slider 304.
Reference numeral 307 indicates the biasing portion formed of a spring. One end of the biasing portion 307 is connected to the clamper arm 302, and the other end of the biasing portion 307 is connected to the lift arm 303.
Next, operation of the disk clamper portion 300 will be described with reference to
a and 10b and
a is a top view showing a configuration, and
a, 13a, 14a and 15a are top views each showing an operational state; and
a to 16c are views showing operational states of an essential portion of the disk clamper portion 300, where on
First, in a state in which a command allowing reproducing is not supplied from the operating portion (not shown), the disk reproducing portion 400 (operation thereof will be described later) is not moved, so that the clamper arm 302 movable through the slider 304 and the link portion 305 based on the movement of the disk reproducing portion 400 is not moved. As a result, the state shown in
Next, when a command allowing reproducing is supplied from the operating portion, the disk reproducing portion is started to be moved in the direction A, and the slider 304 connected to part of the disk mounting portion is also moved in the direction A (which will be described in detail later).
At this time, the pin 3042 provided on one end of the slider 304 is similarly moved in the direction A in the sliding hole 3053 of the link portion 305. As a result, the link portion 305 is rotated in the direction B around the shaft portion 3052 of the link portion 305, so that the clamper arm 302 and the lift arm 303 are rotated in the direction C around the shaft portion 3061 through the pin 3051 of the link portion 305.
After the operation shown in
In addition, a configuration and an operation of the stocker will be described in detail later.
Next, as shown in
Then, as shown in
Further, after completion of the operation shown in
Here, there will be briefly described the state in which the disk R is held between the clamper 301 and the turn table 401 of the disk reproducing portion 400 with reference to
First, in the case where the disk R is not disposed at the reproducing position as shown in
Next, when the clamper arm 302 is disposed at the reproducing position of the disk R and the disk R is also disposed at the reproducing position as shown in
In such a state, the gap (d2) becomes smaller than the gap d1 shown in
Further, since an attracting force is generated between a surface 30111 to be magnetized, which is provided on the contact portion 3011 of the clamper 301, and a magnet 40111 provided on a disk mounting portion 4011 of the turn table 401 as shown in
In addition, in the case where the reproducing of the disk is completed and the disk R is contained in the disk containing mechanism 400, the disk clamper portion 300 is operated in accordance with operations reversed to those described above, that is, in the order of the states shown in
[3-2. Disk Reproducing Portion]
Next, a configuration of the disk reproducing portion 400 will be described with reference to
a and 17b are views showing a configuration of the disk reproducing portion 400, wherein
In
Reference numeral 402 indicates an optical pick-up driving portion for moving in the direction A an optical pick-up portion 403 for reading-out information recorded in a disk; 404 is an optical pick-up guiding portion for guiding the optical pick-up portion 403 in the direction A; and 405 is an optical pick-up feed screw turnable in the direction C or D on the basis of a driving force of the optical pick-up driving portion 402.
The optical pick-up portion 403 includes a pick-up 4031 for emitting a light source to a disk and reading-out information recorded in the disk; supporting portions 4032 and 4033 for supporting the optical pick-up guiding portion 404 in such a manner as to move the optical pick-up portion 403 in the direction A or B; and a screw portion 4034 to be screwed with a threaded portion of the optical pick-up feed screw portion 405.
When the optical pick-up feed screw portion 405 is rotated in the direction C or D on the basis of a rotating force of the optical pick-up driving portion 402, the screw portion 4034 converts the rotating force of the optical pick-up feed screw portion 405 into the movement in the direction A or B, to thereby move the optical pick-up portion 403 in the direction A or B.
Next, there will be described a configuration of an operating mechanism for operating the above-described disk reproducing portion 400 in the disk system with reference to
a and 18b are views showing a configuration of a moving mechanism portion 450 for moving the disk reproducing portion 400 in the direction E or F. In these figures, there is shown a state in which the disk R is contained in the stocker 501.
In addition,
In
In addition, the slider 304 is connected to the slider 456 to be integrated therewith.
Next, the functions of the above components will be described in detail.
First, reference numeral 451 indicates the base portion which is fixed to the base portion 306 and is connected to the disk reproducing portion 400 for supporting it and which is also movable in the direction E or F; 452 is the base driving portion for moving the slider 456 (which will be described later) in the direction E or F; 453 is the motor for moving the disk roller portion 200, disk clamper portion 300 and disk reproducing portion 400; and 454 is the gear portion for transmitting the rotating force of the motor 453 to the slider 456 (which will be described later).
Reference numeral 455 indicates the plate guide which is fixed on the base 451 and which has a groove for guiding the slider 456 and the disk reproducing portion 400; and 456 is the slider screwed with the gear portion 454 and moved in the direction E or F along with turning of the gear portion 454. The above slider 456 is part of the slider 456 slidably mounted on the plate guide 455 and the base 451.
Reference numeral 457 indicates the first link portion having at one end a pin 4571 slidably inserted in a sliding hole 4562 provided in part of the slider 456 and also having at the other end a shaft portion 4572 turnably fixed on the base portion 451; 458 is the second link portion having at one end a shaft portion 4581 for turnably supporting the slider 456 and also having at the other end a pin 4582 slidably inserted in a sliding hole 4511 formed in part of the base portion 451; and 459 is the shaft portion for connecting the first link portion 457 to the second link portion 458 and turnably supporting the first link portion 457 and the second link portion 458.
Next, operation of the moving mechanism portion 450 will be described with reference to
As described above,
Here,
a and 20b are views showing a left side surface of the mechanism shown in
Next, when a command allowing reproducing is supplied to the disk system, the motor 453 is driven, and a driving force is transmitted to the slider 456 through the gear to move the slider 456 in the direction F, so that the disk reproducing portion 400 connected to the slider 456 is also moved in the direction F. Such a state is shown in FIG. 21.
In such a state, the disk roller mechanism 200 is opened up and down by the above-described mechanism as shown in
Further, the stocker 501 is moved in the direction E and the disk R is moved from a position R1 to a reproducing position R2.
The movement of the disk reproducing portion 400 is further progressed up to the reproducing position of the disk, and when the movement thereof is completed, the disk is held between the disk clamper portion 300 and the disk reproducing portion 400, to thus start reproducing of the disk R.
Such a state is shown in
In
In this way, the slider 456 is further moved in the direction E, and thereby the pin 4571 of the first link portion 457 is further slid in the sliding hole 4562 of the slider 456 in the direction G; however, when reaching an end portion of the sliding hole 4562 on the slider 304 side, the pin 4571 is prevented from being further moved in the direction G.
Like the pin 4571 of the first link portion 457, the pin 4582 of the second link portion 458 is further slid in the sliding hole 4511 of the base portion 451 in the direction G; however, when reaching an end portion of the sliding hole 4511 on the slider 304 side, the pin 4582 is prevented from being further moved in the direction G.
As a result, the movement of the first link portion 457 and the second link portion 458 are prevented, and the portions at which the movement of the link portions 457 and 458 is stopped are set at positions of reproducing the disk R. Thus, the link portions 457 and 458 can be easily set at the disk reproducing positions.
a to
a to 25c are sectional left side views, wherein
a to 26c are sectional left side views, wherein like
a to 27c are sectional right side views, wherein
a to 28c are sectional right side views, wherein like
[4. Disk Containing Mechanism]
Next, the disk containing mechanism will be described.
The disk containing mechanism 500 basically includes the stocker portions 501 to 504; a driving mechanism portion 510 driven for moving the stockers 501 to 504; and a moving mechanism portion 520 for giving a specific movement to each of the stockers 501 to 504 at each specific stage on the basis of a driving force of the driving mechanism portion 510.
In addition, a stocker moving means is composed of the driving mechanism portion 510 and the moving mechanism portion 520.
First, a configuration of the first stocker portion will be described with reference to
In the following description of the stocker portion as the essential portion, the stocker portion is represented by the first stocker 501 positioned at the uppermost stage.
In
Further, a rail sliding portion 5018 is formed on part of a peripheral edge portion of the stocker 501, and as shown in
Next, operation of the first stocker 501 described above will be described with reference to
Here,
As shown in
Next, when the disk R is carried or reproduced, that is, the disk is delivered to the disk loading portion 100 or delivered to the disk mounting portion 400 for reproducing of the disk R, prevention of the movement of the disk R shown in
In this case, as shown in
Here, a relationship between motions of the disk carrying-in/carrying-out mechanism 100, disk mounting portion 400, and disk containing mechanism 500 will be briefly described with reference to
First, as shown in
At this time, the locking portion 5013 is rotatable in the direction B because the rail portion 5019 is not brought in contact with the rail contact portion 50133.
Accordingly, the disk R rotates the locking portion 5013 in the direction B against a biasing force of the biasing portion 5015 by the rotating force of the upper disk roller 201, to be thus smoothly contained in the containing portion 5011 of the first stocker 501.
Next, as shown in
The state in which the above setting is completed is shown in FIG. 35.
Next, the driving mechanism portion 510 will be described with reference to FIG. 36.
The driving mechanism portion 510 is a mechanism for moving the stockers 501 to 504 in the vertical direction or the direction C or D by operating each arm portion, and for moving the base portion 451 in the vertical direction.
The mechanism for moving the first stocker 501 to the fourth stocker 504 in the direction C or D may be provided on the base portions 306 and 451.
In
Reference numeral 512 indicates a first arm portion which includes a shaft portion 5121 turnably supported by a portion (not shown) of the housing 100 located at a higher position; a pin 5122 connected to one end of a second cam plate (which will be described later); and a pin 5123 connected to the other end of the second cam plate; and a pin 5124 slidably inserted in the outer peripheral sliding hole 5112 of the cam portion 511.
The disk reproducing portion 400 has a mechanism in which the base portion 451L contained in and connected to the disk reproducing portion 400 is moved in the vertical direction.
The mechanism for moving the first stocker 501 to the fourth stocker 504 in the direction C or D may be provided on the base portions 306 and 451.
Reference numeral 513 indicates a second arm portion turnable around a shaft portion 5131. One side of the second arm portion 513 is branched into a cam arm 5132 and a plate arm 5133. At one end of the cam arm 5132 is formed a pin 51321 slidably inserted in the inner peripheral sliding hole 5113 of the cam portion 511. At one end of the plate arm 5133 is formed a pin 51331 connected to one end of the first cam plate (which will be described later). At a portion of the plate arm 5133 is formed a pin 51332 slid in a sliding hole 5143 (which will be described later) of a third arm portion 514.
Further, the other side of the second arm portion 513 has a pin 5134 connected to the other end of the first cam plate; a pin 5135 slid in a sliding hole 5153. (which will be described later) of a fourth arm portion 515; and a hole 5136 for preventing the contact with a turning shaft 5151 (which will be described later) of the fourth arm portion 515.
Reference numeral 514 indicates the third arm portion which is formed in such a manner as to be turnable around a turning shaft 5141. On end of the third arm portion 514 has a pin 5142 connected to one end of the third cam plate (which will be described later) and the sliding hole 5143 in which the pin 51332 of the second arm portion 512 is slid.
Reference numeral 515 indicates the fourth arm portion which is formed in such a manner as to be turnable around a rotating shaft 5151. On end of the fourth arm portion has a pin 5152 connected to one end of the third cam plate (which will be described later) and the sliding hole 5153 in which the pin 5135 of the second arm portion 512 is slid.
The above-described cam portion 511, first arm portion 512, second arm portion 513, third arm portion 514, and fourth arm portion 515 constitute the driving mechanism portion 510.
With the driving mechanism portion 510 having the above configuration, the first arm portion 512 to the fourth arm portion 515 are moved in the direction C or D by a turning force of the cam portion 511, and thereby they can be set at desired positions on the basis of a turning angle of the cam portion 511.
Next, the moving mechanism portion 520 will be described with reference to
a is a sectional top view showing an essential portion of the moving mechanism portion 520; and
The moving mechanism portion 520 is a mechanism for adjusting a height of each of the first stocker to the fourth stocker, a gap between the stockers, and the like on the basis of a driving force transmitted from the driving mechanism portion 510.
In
Reference numeral 522 indicates a stocker base which includes a guide portion 5221 for guiding the projecting portions 505 of a first rail portion to a fourth rail portion in the direction B or C, that is, in the direction of the stocker; a guide portion 5222 for guiding the projecting portions 506 of the first stocker to the fourth stocker in the direction B or C like the guide portion 5221; a guide portion 5223 for guiding a pin 5234 (which will be described later) of the third cam plate 523 in the direction D or E; and a guide portion 5224 for guiding a pin 5235 (which will be described later) of the third cam plate 523 in the direction D or E.
Reference numeral 523 indicates the third cam plate which includes a connecting portion 5231 connected to the pin 5142 of the third arm 514 shown in
Reference numeral 524 indicates a stocker separating portion composed of a stocker separating portion 5241 and a stocker separating portion 5242. The stocker separating portion 5241 is contained in a containing portion 5254 (which will be described later) of a second cam plate 525 and is adapted to separate a desired stocker by movement of the second cam plate 525. Similarly, the stocker separating portion 5242 is contained in a containing portion 5255 of the second cam plate 525 and is adapted to separate a desired stocker by movement of the second cam plate 525.
Reference numeral 525 indicates the second cam plate includes a height adjusting portion 5252, part of which is formed in a comb-shape 52521, into which the projecting portions 505 of the first rail portion to the fourth rail portion are inserted for adjustment of heights of the projecting portions 505; a height adjusting portion 5253, part of which is formed in a comb-shape 52531, into which the projecting portions 506 of the first rail portion to the fourth rail portion are inserted for adjustment of heights of the projecting portions 506; the containing portion 5254 for containing the stocker separating portion 5241; and the containing portion 5255 for containing the stocker separating portion 5242.
Reference numeral 526 indicates a base portion which forms a side wall of the base portion 451. As illustrated in
Reference numeral 527 indicates the first cam plate which includes a connecting portion 5271 connected to a pin 51331 formed on the plate arm 5133 shown in
Reference numeral 528 indicates the side base portion which forms a side wall of the housing 100. The side base portion 528 includes the sliding hole 5281 in which the pin 5265 formed on the base portion 526 is inserted in such a manner as to be slidably moved in the direction F or G; the sliding hole 5282 in which the pin 5266 formed on the base portion 526 is inserted in such a manner as to be slidably moved in the direction F or G; the sliding hole 5283 in which the pin 5274 formed on the first cam plate 527 is inserted in such a manner as to be slidably moved in the direction D or E; and the sliding hole 5284 in which the pin 5275 formed on the first cam plate 527 is inserted in such a manner as to be slidably moved in the direction D or E.
In addition, the side base portion 528 is mounted on the housing 100.
The components described in the order of the rail portion 521 to the side base 527 are mounted from the inside to the outside of the disk system in the order of the rail portion 521, stocker base 522, third cam plate 523 including the stocker separating portion 524, second cam plate 525, base portion 526, first cam plate 527, and side base 528.
These rail portion 521, stocker base 522, third cam plate 523, stocker separating portion 524, second cam plate 525, base portion 526, first cam plate 527, and side base 528 constitute the moving mechanism portion 520.
With this moving mechanism portion 520 having the above configuration, the height of each stocker can be adjusted and also a desired stocker can be certainly separated by a plurality of the cam plates on the basis of the motion of the driving mechanism portion 510.
Next, there will be described an operational mode of the moving mechanism portion 520 on the basis of a relationship between the sliding holes formed in the first cam plate 527, second cam plate, and third cam plate 523, and the projecting portions formed on the rail portions, with reference to
a is a detail view illustrating the first cam plate 527;
a to
Each of
The operation of the moving mechanism portion 520 will be described with reference to
a shows setting positions for allowing specific operations of the disk system. As shown in this figure, eight setting positions “1” to “8” are formed by slidable movement of the pin 5265 provided on the base portion 526 in the sliding hole 5272 of the first cam plate 527.
b shows a setting position at which the disk system performs a specific operation. The height setting portion 5252 of the second cam plate 525 slidably moves a setting position of the projecting portion 505 of the rail portion 521 on the basis of the motion of the cam portion 511 of the driving mechanism portion 510, to determine the setting position “a”, “b”, “c” or “d”. The setting position “a” is set at the comb-shaped portion 52521; the setting position “d” is set at a separating hole 52411 of the stocker separating portion; and the setting position “b” or “c” is set in the height adjusting portion 5252.
c shows a setting position at which the disk system performs a specific operation. The tilting guide portion 5232 of the third cam plate 523 slidably moves the projecting portion 505 of the rail portion 521 on the basis of the motion of the cam portion 511 of the driving mechanism portion 510, to thereby determine either of five setting positions.
With respect to the table of
a to 63e show the first step (hereinafter, referred to as a “NO1”) to the 22th step (hereinafter, referred to as a “NO22”) shown in
Hereinafter, operation of the moving mechanism portion 520 will be described in order for each step with reference to
First, the step NO1 shows an operational mode for carrying a disk R1 into the first stocker 501. In third mode, as shown in
Accordingly, as shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated an angle corresponding to one step in the direction B in
The operating state at the step NO2 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO2, an angle corresponding to one step in the direction B in
The operating state at the step NO3 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO3, an angle corresponding to one step in the direction B in
The operating state at the step NO4 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO4, an angle corresponding to one step in the direction B in
The operating state at the step NO5 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO5, an angle corresponding to one step in the direction B in
The operating state at the step NO6 is shown in
In this operating state, the second cam plate 525 is left at the position “b”, and the first cam plate 527 is set at a position “3” and the third cam plate 523 is set at a position “C”.
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO6, an angle corresponding to one step in the direction B in
The operating state at the step NO7 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO7, an angle corresponding to one step in the direction B in
The operating state at the step NO8 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO8, an angle corresponding to one step in the direction B in
The operating state at the step NO9 is shown in
In this operating state, the second cam plate 525 is left at the position “b”, and the first cam plate 527 is set at a position “4” and the third cam plate 523 is set at a position “D”.
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO9, an angle corresponding to one step in the direction B in
The operating state at the step NO10 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO10, an angle corresponding to one step in the direction B in
The operating state at the step NO11 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO11, an angle corresponding to one step in the direction B in
The operating state at the step NO12 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO12, an angle corresponding to one step in the direction B in
The operating state at the step NO13 is shown in
Here, as shown in
In addition, tilting angles of both gaps between the stocker to be separated and the other stockers may be identical to or different from each other irrespective of the position of the stocker to be separated. For example, when the second stocker is separated from the other stockers, a tilting angle of a gap between the first stocker 501 and the second stocker 502 may be identical to or different from a tilting angle of a gap between the second stocker 502 and the third and fourth stockers 503 and 504.
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO13, an angle corresponding to one step in the direction B in
The operating state at the step NO14 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO14, an angle corresponding to one step in the direction B in
The operating state at the step NO15 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO15, an angle corresponding to one step in the direction B in
The operating state at the step NO16 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO16, an angle corresponding to one step in the direction B in
The operating state at the step NO17 is shown in
In the operating state thus set, the gaps between the projecting portions of the first stocker 501 to the fourth stocker 504 become narrow again.
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO17, an angle corresponding to one step in the direction B in
The operating state at the step NO18 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO18, an angle corresponding to one step in the direction B in
The operating state at the step NO19 is shown in
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO19, an angle corresponding to one step in the direction B in
The operating state at the step NO20 is shown in
In the operating thus set, the gaps between the projecting portions of the first stocker 501 to the fourth stocker 504 become narrow again.
When the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO20, an angle corresponding to one step in the direction B in
The operating state at the step NO21 is shown in
Finally, when the cam portion 511 of the driving mechanism portion 510 is rotated, from the operating state at the step NO21, an angle corresponding to one step in the direction B in
The operating state at the step NO22 is shown in
After completion of the operating step NO22, the next operating process is performed in the direction reversed to that described above, that is, in the order of the steps N22→NO21→NO20 . . . →NO1.
a and 64b show the first cam plate 527;
a shows a state in which the projecting portion of the rail portion 521 is set at the position “d” shown in
a shows a state in which the projecting portion of the rail portion 521 is set at the position “E” shown in
With the moving mechanism portion 520 having the above configuration, operation of each stocker can be certainly controlled by controlling a rotational angle of the cam portion 511 of the driving mechanism portion 510.
In accordance with operation of the stockers described above, each stocker is set at a desired setting position by way of the sequential operating steps. For example, to obtain the step NO10 from the step NO19, the step NO19 is shifted to the step NO10 in the order of NO19→NO18→NO17→ . . . →NO10.
[5. Description of Operation of Entire Disk System]
Hereinafter, there will be described three basic operations of the entire disk system shown in the Embodiment 1 descried above with reference to
Referring first to
a and 67b are views showing a state in which no disk is contained in the disk system;
a and 72b are views showing a state in which the stockers are entirely lifted a height corresponding to one stocker stage;
a and 77b are views showing a state in which a disk R3 is contained in the third stocker 503 and the third stocker 503 is returned to the original position, that is, the position shown in
a and 79b are views showing a state in which a command allowing reproducing of the disk R2 is supplied from the operating portion (not shown) and the second stocker 502 containing the disk R2 is separated from the other stockers, that is, the first stocker 501, third stocker 503 and fourth stocker 504; and
a and 81b are views showing a state in which the second stocker 502 is moved toward the insertion port; and
In addition, each of
First, as shown in
Further, the disk reproducing portion 400 and the disk clamper portion 300 are disposed closely to the upper disk roller 201 and the lower disk roller 202 disposed near the insertion port 101, and the disk system is ready for reception of a command allowing insertion of a disk from the operating portion (not shown) in a state in which a gap between both the disk rollers is kept at minimum.
Then, a specific command allowing the disk R1 to be contained in the first stocker 501 is supplied from the operating portion.
Next, the first stocker 501 is moved, by the above-described moving mechanism portion 520 for moving each stocker, from the position shown in
When the disk R1 is inserted from the insertion port 101 as shown in
Before insertion of the next disk R2, to adjust a height of the stocker 502 for containing the disk R2 to a height of the insertion port 101, the stockers are entirely lifted a height corresponding to one stocker stage by the above moving mechanism portion 520 (
Similarly, as shown in
In this case, as shown in
Next, when a command allowing reproducing of the disk R2 is supplied from the operating portion (not shown), as shown in
Then, the disk clamper portion 300 is inserted in the gap between the disks R1 and R2, and the disk reproducing portion 400 is moved in the direction A and is inserted in the gap between the disks R2 and R3, with the gap between the upper disk roller 201 and the lower disk roller 202 being enlarged (
Further, to reproduce the disk R2 as shown
Next, as shown in
Next, there will be described the operation (2), that is, the operational step of the entire disk system in which reproducing of the disk R2 is stopped and the disk R2 is contained in the second stocker 502 again, and the disk R3 contained in the third stocker 503 is reproduced, with reference to
a and 83b are views showing a state in which the disk R3 is contained in the third stocker 503 and the disk R2 is reproduced;
a and 87b are views showing a state in which the stockers are lifted while being separated from each other;
In addition, each of
First, when a command allowing reproducing of the disk R3 is supplied from the operating portion (not shown) in the state in which the disk R2 is held between the disk clamper portion 300 and the disk reproducing portion 400 as shown in
Next, the disk reproducing portion 400 releases the disk R2 and is slightly returned in the direction A (
The second stocker 502, which contains the disk R2 with its holding by the disk clamper portion 300 and the disk reproducing portion 400 being released, is moved in the direction A to be returned to the original position (
Next, to adjust the height of the third stocker 503 to the height of the insertion port 101, the second stocker 502 and the fourth stocker 503 are lifted while being separated from each other (
Further, the third stocker 503 containing the disk R3 is moved in the direction B up to a position at which the disk R3 can be reproduced (
After holding the disk R3, the gap between the upper disk roller 201 and the lower disk roller 202 is enlarged at maximum, and the third stocker 503 is moved in the direction A to be returned to the original position and releases the holding of the disk R3, to start reproducing of the disk R3.
Finally, there will be described the operation (3), that is, the operating in which the disk R2 is ejected during reproducing of the disk R3, with reference to
a and 91b are views showing a state being in the course of returning the disk reproducing portion 400 to the original position from the state shown in
In addition, each of
First, when a command allowing ejection of the disk R2 is supplied from the operating portion (not shown) in the state in which the disk R3 is held between the disk clamper portion 300 and the disk reproducing portion 400 as shown in
Then, the disk clamper portion 300 and the disk reproducing portion 400 are moved in the direction B and the gap between the upper disk roller 201 and the lower disk roller 202 is enlarged (
After the operating state shown in
Next, as shown in
Thus, as shown in
According to the disk system configured as described above, spaces in which a base plate of the driving mechanism portion 510 of the disk containing mechanism 500 and the like can be provided can be ensured in the housing at both a portion over the first stocker and a portion under the fourth stocker, it is possible to eliminate an unnecessary space and minimize the length of the disk carrying path as seen from top, and hence to miniaturize the disk system.
Further, it is possible to freely insert or eject disks one by one, and hence to improve usability of an operator.
Since the upper disk roller and the lower disk roller can be moved downward and upward respectively, a disk space necessary for reproducing a disk can be ensured in a gap between the upper disk roller and the lower disk roller. This makes it possible to reduce a space due to the disk space, and hence to miniaturize the disk system.
While the first embodiment has been described regarding reproducing of disks, the operational mode of disks to which the present invention is applicable is not limited thereto. For example, the same effect can be obtained even when the present invention is applied to other operational modes of disks such as recording of disks, and erasing of disks for erasing information recorded in disks.
Next, a disk system according to a second embodiment of the present invention will be described with reference to
Although in Embodiment 1 the disk loading mechanism 200 is so configured as shown in
a to 99b show an essential portion of a disk carrying mechanism 200 on an upper disk roller 201 side; wherein
a to 102b show an essential portion of the disk carrying mechanism 200 on a lower disk roller 202 side, wherein
First, a configuration and an operation of the upper disk roller portion will be described.
In
As shown in
Reference numeral 604 indicates a roller open cam plate having in a portion a sliding hole 6041 in which the pin 6011 formed on the upper roller arm 601 is slidably moved; and 605 is a spring having one end 6051 engaged with a portion 102 of a housing 100 and the other end 6052 engaged with the roller open cam plate 604, wherein the one end 6051 and the other end 6052 are compressed to each other.
The operation of the upper disk roller will be described below.
First, in the case other than reproducing the disk R, that is, in the case where the disk R is held between the upper disk roller 201 and the lower disk roller 202, the end portion 602 of the slider 304 presses the roller open cam plate 604 by the pin 6021 in the direction B shown in
Accordingly, the spring 605 is elongated longer than a usual length, and the open link 603 is in contact with the pin 6021 by a biasing force of the spring 605 exerted in the direction where the spring 605 is returned to the original length.
Next, in the case of reproducing the disk R, since the slider 304 is moved in the direction A shown in
As a result, the open link 603 locked in contact with the pin 6021 formed on the end portion 602 is made rotatable in the direction C, so that the roller open cam plate 604, which is connected and locked to the open link 603 and is biased by the spring 605 in the direction B, can be pulled in the direction B.
By pulling of the roller open cam plate 604 in the direction B, the pin 6011 formed on the upper roller am 601 is slid in the sliding hole 6041 formed in the roller open cam plate 604 up to a position shown in
Further, a configuration and an operation of the lower disk roller will be described.
In
Next, the operation of the lower disk roller will be described.
First, in the case other than reproducing of the disk R, that is, in the case where the disk R is held between the upper disk roller 201 and the lower disk roller 202, since the slider 304 is moved in the direction D, the contact portion 6111 of the lower roller arm 611 is not brought in contact with the projecting portions 6022 to 6024 formed on the end portion 602 of the slider 304 and the lower roller arm 611 is biased in the direction F by a biasing force of a biasing portion (not shown) for usually biasing it in the direction F.
Next, in the case of reproducing the disk R, since the slider 304 is moved in the direction E shown in
Accordingly, the projecting portions 6022 to 6024 formed on the end portion 602 of the slider 304 are brought in contact with the contact portion 6111 of the lower roller arm 611, so that the contact portion 6111 is turned in the direction H around a turning shaft 6112.
Accordingly, the lower disk roller connected to the lower roller arm is moved in the direction G.
With this configuration, the disk roller portion can be accurately operated with a simple structure, so that it is possible to further improve the reliability of the disk system.
In the disk roller portion 200 in Embodiment 2, the upper disk roller is shown in
a and 103b are front views of an essential portion of the combination of the upper and lower disk rollers, wherein
a and 104b are top views of the essential portion, wherein
a and 105b are sectional side views of the essential portion, wherein
Next, a disk system according to a third embodiment of the present invention will be described.
Although in Embodiment 2 the upper disk roller is so configured as shown in
Next, a disk system according to a fourth embodiment of the present invention will be described.
The disk loading mechanism 200 in Embodiment 1 may be disposed on either of the right and left sides and the disk loading mechanism 200 in Embodiment 2 may be disposed on the other side. Even in this embodiment, an effect similar to that in each of Embodiments 1 and 2 can be obtained.
Next, a disk system according to a fifth embodiment of the present invention will be described.
Although having been not described in Embodiment 1, the movement control means, that is, the moving mechanism portion 450 may move the disk clamper portion 300 and the disk reproducing portion 400 as the disk operating portion in such a manner that the disk clamper portion 300 and the disk reproducing portion 400 are interlocked with each other. Even in this embodiment, an effect similar to that in Embodiment 1 can be obtained.
Next, a disk system according to a sixth embodiment of the present invention will be described.
Although having been not described in Embodiment 1, when the disk R is carried, it may be held between the disk clamper portion 300 and the disk reproducing portion 400 as the disk operating portion. Even in this embodiment, an effect similar to that in Embodiment 1 can be obtained.
Next, a disk system according to a seventh embodiment of the present invention will be described.
Although having been not described in Embodiment 1, the movement control means, that is, the moving mechanism portion 450 may move the disk clamper portion 300 and the disk reproducing portion 400 as the disk operating portion independently from each other. Even in this embodiment, an effect similar to that in Embodiment 1 can be obtained.
Next, a disk system according to an eighth embodiment of the present invention will be described.
Although having been not described in Embodiment 1, the movement control means, that is, the moving mechanism portion 450 may move the disk clamper portion 300 after the disk operating portion, that is, the disk reproducing portion 400 is moved. Even in this embodiment, an effect similar to that in Embodiment 1 can be obtained.
A disk system according to a ninth embodiment of the present invention will be described.
Although having been not described in Embodiment 1, the movement control means, that is, the moving mechanism portion 450 may allow the disk clamper portion 300 and the disk reproducing portion 400 to hold the disk R when the disk operating portion, that is, the disk reproducing portion 400 operates the disk R. Even in this embodiment, an effect similar to that in Embodiment 1 can be obtained.
As described above, the disk system according to the present invention can achieve space-saving of the interior of the disk system even in the case where the disk system is configured that a disk containing position is different from a disk reproducing position, to be thus entirely miniaturized, and therefore, such a disk system is suitable to be used in a location with a small space.
Number | Date | Country | Kind |
---|---|---|---|
9-055156 | Mar 1997 | JP | national |
This application is the national phase under 35 U.S.C. §371 of prior PCT International Application No. PCT/JP98/00806 which has an International filing date of Feb. 27, 1998 which designated the United States of America, the entire contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP98/00806 | 2/27/1998 | WO | 00 | 10/22/1998 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO98/40887 | 9/17/1998 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4337533 | Ando et al. | Jun 1982 | A |
4387454 | Yamamura et al. | Jun 1983 | A |
4541086 | Tanaka | Sep 1985 | A |
4734813 | Bessho | Mar 1988 | A |
4796244 | Tsuruta et al. | Jan 1989 | A |
5027335 | Deis | Jun 1991 | A |
5053903 | Harney et al. | Oct 1991 | A |
5138591 | Ogawa et al. | Aug 1992 | A |
5166918 | Kamijo | Nov 1992 | A |
5528442 | Hisatomi | Jun 1996 | A |
5561658 | Nakamichi et al. | Oct 1996 | A |
5621713 | Sato et al. | Apr 1997 | A |
5682369 | Nakamichi | Oct 1997 | A |
5787066 | Choi | Jul 1998 | A |
5970042 | Fujimoto et al. | Oct 1999 | A |
5986981 | Takemasa et al. | Nov 1999 | A |
Number | Date | Country |
---|---|---|
19725169 | Dec 1997 | DE |
2160349 | Dec 1985 | GB |
63200354 | Aug 1988 | JP |
1-237952 | Sep 1989 | JP |
3-235251 | Oct 1991 | JP |
7-57369 | Mar 1995 | JP |
1021628 | Jan 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20010043519 A1 | Nov 2001 | US |