This application is also related to a commonly assigned application entitled “Dispenser,” filed on even date herewith, the disclosure of which is expressly incorporated herein by reference.
The invention relates to a dispenser for small quantities of liquids or solids, in particular a dispenser having one or more piezoelectric elements regulating the rate of dispensation.
Currently there are various methods used in control of pests on large domestic animals such as livestock. Commonly employed methods of pest control include ear tags or tapes, sprays and dusts, and back rubbers and dust bags.
Ear tags or tapes are pesticide-impregnated materials which are attached to animals by piercing the ear with a sharp post and corresponding locking receptacle or with adhesive. The pesticide slowly leaches from the carrier material and is deposited to the animal. The animal will then spread the material by moving its head from side to side and by rubbing alongside other animals.
This method of pesticide application tends to have a diminishing effect through its life cycle as the pesticide level eventually runs low enough that sub-lethal amounts of pesticide are deposited on the animal. This poses a serious problem, as sub-lethal applications of pesticide will allow pests to build a tolerance to the pesticide. Future generations of pests may subsequently become immune to what were once lethal exposures to the pesticide.
Sprays, dusts, and pour-on applications of pesticide involve the manual application of pesticide to the animal's back. Although this method can be effective, it requires additional herding and handling and may not be practical for large ranches or for free-range cattle.
Back rubbers and dust bags impregnated or filled with pesticide and suspended in a pasture in proximity to a salt lick, water supply or place where the animals are known to rest. The animals will make contact with the device in the normal course of their routine. In addition, the dust bag or back rubber may be located in a gateway which leads to a salt lick or water supply and which forces the animal to contact the device. Again, this method of insecticide application can be effective, but may not be practical for certain situations such as large ranches or free-range cattle.
It would be desirable to have an application method and dispenser that is capable of dosing a repeatable, prolonged, and lethal application of pesticide to an animal with no gradual decline, but rather, a sudden and complete cessation of exposure, and does not require further herding, handling or contact with the animal.
In one exemplary embodiment, the present invention provides a method of managing a group of animals. The method provides a plurality of dispensers, each dispenser containing a substance to be dispensed, a positioning device and an identification device. Each one of the identification devices is programmed with an identifier for a corresponding one of the animals, and each one of the dispensers is attached to the corresponding one of the animals and communicably linked to a monitoring station.
In another exemplary embodiment, a dispenser for dispensing a material is provided in accordance with the present invention. The dispenser comprises a reservoir containing a material to be dispensed, an actuable dispensing element located adjacent the reservoir or in the reservoir, an attachment member for attaching the dispenser to an animal, and an identifying device for remotely communicating information about the dispenser. The dispenser further comprises a positioning device adapted to transmit the position of the dispenser.
In yet another exemplary embodiment according to the present invention, a dispenser for dispensing a material comprises an attachment member for attaching the dispenser to an animal, a material to be dispensed contained within the container, and a remotely actuable dispensing element disposed about the dispenser.
The above-mentioned aspects of the present invention and the manner of obtaining them will become more apparent and the invention itself will be better understood by reference to the following description of the embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views.
The embodiments of the present invention described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may appreciate and understand the principles and practices of the present invention.
The device has a reservoir containing a material to be dispensed. The device also has one or more piezoelectric elements that act as a pump or as a valve to deliver prescribed and discrete measures of liquid or solid material. The piezoelectric elements may work in concert with other materials such as metal, plastic, ceramics, composite materials, etc. to form the complete pump/valve assembly. In addition, the piezoelectric element is coupled with an electronics array to control dose timing and actuation frequency. The electronics array will control dose timing and actuation frequency by controlling the supply of electrical energy to the piezoelectric element. There are several known methods for applying piezoelectric elements to fluid/liquid transfer, such as those used in some types of inkjet printers.
The dispenser may be designed to be attached to the surface of an animal, typically a domestic animal, in which case it will include an attachment member for maintaining the dispenser in position. Attachment members such as tissue piercing posts and grommets, tapes, adhesives, collars, harnesses, clamps, and staples or other such attachment members may be used.
The reservoir may be designed as a permanent component of the overall assembly or it may be removable and replaceable. In either case, the piezoelectric pump/valve will be coupled to the reservoir and the pesticide or other material will be transferred from the reservoir to the exterior of the device and eventually be deposited on the animal. The piezoelectric element may be adjacent to the reservoir or in the reservoir including in an opening of the reservoir.
The reservoir may include a one-way valve to allow air to enter the system as the pesticide or other material is transferred from the reservoir. In another embodiment, the reservoir may include an open cell foam sponge which will serve to keep the system primed by means of capillary action. The sponge will work in concert with a vent which is open to atmosphere. This technology is commonly applied to inkjet printing cartridges. In another embodiment, the reservoir may include a collapsible, flexible bladder to avoid drawing a vacuum as the pesticide or other material is transferred from the reservoir. The bladder design will also eliminate the entry of air to the liquid, which may disrupt the transfer of the pesticide or other material from the reservoir. Similarly, the reservoir may be designed along the lines of a syringe to accomplish the same task. As the pesticide or other material is transferred from the reservoir, the syringe piston will move to maintain a constant and predictable system pressure without the introduction of air to the liquid. In another embodiment, the device may dispense under vacuum. In this embodiment the piezoelectric pump or valve may be capable of dispensing the liquid as the system pulls a vacuum condition, eliminating the need for venting the reservoir.
In one embodiment the piezoelectric element is a valve or pump located in an opening of the reservoir.
In one embodiment the piezoelectric element is located in or adjacent to either the reservoir or a chamber in fluid communication with the reservoir. By pulsing current through the piezoelectric element it is possible to expand the element, thereby reducing the space in the reservoir or chamber and forcing a small amount of liquid out of the reservoir or chamber. By pulsing current at a high frequency it is possible to expel a large number of droplets of fluid from the opening.
The device may also incorporate piezoelectric inchworm technology to eject a material from an element such as a syringe. In addition, the inchworm device could be used to advance a solid material through the end of a tube or similar device. Piezoelectric inchworm devices are comprised of several piezoelectric elements, which work together to produce a mechanical movement of the piezoelectric elements in a tube or along a rod or similar component. Alternatively, the piezoelectric elements may remain stationary while causing movement of another element such as a rod.
In another embodiment, the device may be entirely or partially implanted in an animal in a known manner in order to dose pesticides, therapeutic agents, growth hormones, medicines, drugs, etc. If the animal is a ruminant, the entire device may also be deposited to the animal's rumen with a balling gun. Intraruminal devices for dispensing drugs, medicine, hormones, etc. are disclosed in co-pending application Ser. No. 10/141,300, the contents of which are incorporated herein in their entirety. Such devices generally contain a housing with externally mounted retention device such as a pair of plastic “wings”, or else are weighted to prevent their being passed out of the rumen. The device may also be attached to the animal with only a small portion of the device implanted under the skin of the animal to act as a passage for the dosing of a desired material.
The device can dose a discrete amount of material on demand, on a prescribed timed interval or it may dose continuously and indefinitely over an extended time period until the insecticide or other material is exhausted.
In addition, since the primary delivery is not through diffusion and is not dependent on high solubility of a parasiticide in a polymer matrix, the fluid utilized in the present invention can be expanded to include previously unusable parasiticides and still include compounds previously dissolved in polymer matrices. These include, but are not limited to various avermectins, benzimidazoles, milbemycins, carbamates, organophosphates, phenylpyrazoles, amidines, insect growth regulators, juvenile hormones, nicotinoids, pyrroles and naturalytes (i.e., the spinosyn family). Representative compounds may include abamectin, doramectin, eprinomectin, selamectin, alphamethrin, amitraz, coumaphos, ivermectin, deltamethrin, cyhalothrin, diazinon, cyromazine, cypermethrin, milbemycin, cyfluthrin, cyloprothrin, famphur, fenthion, fenvalerate, flucythrinate, flumethrin, fipronil, hexaflumaron, imidacloprid, lindane, lufenuron, malathion, methoprene, metriphonate, moxidectin, pernethrin, pyrethrin, pyrethrum, phomet, pirimiphos, chlorvinphos, rotenone, propetamphos, tetrachlorvinphos, zetacypermethrin, chlorpyrifos and spinosad, among others.
In another embodiment, the actuation of the device may be controlled by a centrally located RF (radio frequency) transponder. Each device in this embodiment will incorporate a RF receiver which will allow an operator to transmit instructions to the electronics array. This RF technology could be used to deliver insecticide or other materials on demand or it could be used to change the program, dose frequency, dose amount, rate of delivery, etc. It would also be possible to use the RF signal as the power source for the device, thus greatly reducing the weight by avoiding the use of batteries. In further embodiments, the receiver may also transmit a signal to a remotely actuable dispensing element about the dispenser. In addition to radio frequency signal transmissions, the signal may also be delivered to the device by way of cellular communications, satellite signals, infrared radiation or the like.
The device may be activated initially by the user in a number of ways. In one embodiment, the user may remove an insulating strip located between an electrical contact and battery or between two electrical contacts. The strip may be removed by attaching it to an integral component of the device, such as a piercing post, such that any attempt to use the post to mount the device would necessarily force the user to remove the strip. The strip may also be attached to the packaging of the device. As the device is removed from the package, the strip is pulled out and the device is activated. In another embodiment, the device may be activated with a push button or a similar device. In another embodiment, the device may be delivered to the user with an integral part, such as the piercing post, inserted into the device, such that the integral part holds a circuit in the open position. When the user removes the integral part prior to making use of the device, the circuit would close. In the alternative, the part may make momentary contact with a circuit to initiate a pre-programmed response of activating the device.
In another embodiment, a photovoltaic cell or similar device may be used to activate the device. The device may be activated as it is removed from its packaging and exposed to light. The device may be activated as a strip covering the photovoltaic cell or similar device is removed and exposed to light. The device may be activated as an integral component such as the male piercing post is removed from a section of the device to attach the device to an animal. The piercing post could be situated such that it covers the photovoltaic cell until it is removed for use.
The device may be activated as the piercing post is seated to the retention grommet. This action may complete a circuit or break a circuit or make momentary contact to initiate activation. The device may also be activated with a magnetic reed switch and a magnetic application tool.
The device may be powered with a battery or photovoltaic device and a voltage converter. In another embodiment, the device could be powered with another piezoelectric element such as a bender. The bender could be actuated through movement from the animal or from the animal's pulse and the produced voltage could be stored. The stored energy could then be used to power the piezoelectric element and associated electronics that control the pump/valve assembly. In another embodiment, the device could be powered by the animal's body temperature and a thermoelectric device or thermoelectric pile to generate a current. The produced current could be stored. The stored energy could then be used to power the piezoelectric element and associated electronics that control the pump/valve assembly.
In another embodiment, the device could be powered with a device similar to a self-winding watch mechanism where the mechanical energy derived from the concentric motion of the device is converted to electrical energy and stored. The stored energy could then be used to power the piezoelectric element and associated electronics that control the pump/valve assembly.
The pesticide or other material may be transferred directly to the surface of the animal, to its skin or fur. Another embodiment would direct the pesticide or other material to an absorbent material, sponge, felt, cloth or other absorbent or porous material in proximity to the animal's skin or fur. The material will be such that it can retain the liquid pesticide or other material without a measurable or significant portion being released in droplet form and falling to the ground. Through the animal's normal movements, the liquid would be rubbed off to the animal's skin or fur. In another embodiment, the external surface of the device would have an external capillary action means such as a series of grooves molded adjacent the outlet of the piezoelectric pump or valve. These grooves would capture and retain the expelled liquid on the exterior surface of the device, allowing it to eventually contact the animal. The capillary action means may be used in conjunction with the absorbent material, or by itself. Another embodiment would direct the pesticide or other material to a secondary and exterior reservoir or surface of the device, which would allow the insecticide to collect or pool and eventually roll onto the animal. The secondary reservoir or surface will be located such that there is a high probability that the collected pool of pesticide or other material will make contact with the animal and not be lost by dropping to the ground.
Once the pesticide or other material has reached the animal, it is spread further through the animal's normal movement and interaction with other animals. As the animal moves it head from side to side and rubs along other animals, the pesticide or other material is spread along the entire length of the animal.
While the device has been discussed in the context of large domestic animals such as ruminants, it would be equally suitable for use with smaller domestic animals, such as companion animals.
Dispensers embodied by the present invention may also be equipped with identification and tracking or positioning devices.
Dispenser 200 also includes a tracking device 204 that preferably includes a global positioning system (“GPS”) device and a communications device having antenna 206 that allows the communications device to transmit a signal to another device. For example, it is known in the art to combine cellular technology with GPS devices such that signals can be transmitted from the GPS device through the nearest cellular tower, from where the signal can be conventionally transmitted to a center for processing. In this manner, the location and other data contained in device 204 of a particular animal wearing dispenser 200 can be transmitted to a central location and monitored. Further, tracking device 204 may also include a receiver, such as the RF receiver described above, making device 204 a two-way communications device. An actuation signal can be sent to the receiver to dispense on demand, such that the dispenser can be remotely controlled.
In general, then, one of skill in the art would appreciate from these teachings that dispenser 200 can be equipped with a two-way communications device(s) as well as a GPS device or other tracking/positioning device that determines the location of dispenser 200. The dispenser may also be equipped with temperature, humidity, and other detection devices that can be transmitted to a monitoring station. These features when coupled with the inventive dispenser allow for a wide range of systems to manage a group of animals.
For example,
Still referring to
In another specific example, it is desirable to mate two particular cows. Monitoring station 230 can be employed for this task, tracking the particular two cows as described above. Once the monitoring station (or the person observing the cows' activity at the monitoring station) determines that the animals are sufficiently close, a signal can be sent to dispense a pheromone from one of the dispensers 200, thereby inducing the two animals to mate. One of ordinary skill in the art would readily recognize many other selection criteria for remotely activating dispenser 200. The dispenser can be configured with a simple binary switch coupled to the dispensing element and which can be remotely activated. Similarly, the dispenser can be equipped with more sophisticated electronics that would allow remotely controlling, e.g., dose size, dose frequency, etc., as described above. The remotely actuable dispensing element is disposed about the dispenser and may comprise a piezoelectric element like that described in detail above. Alternatively, one of skill in the art may adapt the novel methods just described with dispensers having other remotely actuable dispensing elements.
While exemplary embodiments incorporating the principles of the present invention have been disclosed hereinabove, the present invention is not limited to the disclosed embodiments. Instead, this application is intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/404,274, filed on Apr. 1, 2003, the disclosure of which is expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10404274 | Apr 2003 | US |
Child | 11226479 | Sep 2005 | US |