1. Field of the Invention
The present invention relates to packaging geometries for emissive lighting display modules and the corresponding support mechanisms that enable large-scale display applications. In particular, the present invention relates to an adaptable support framework and non-rectilinear display module packages that achieve non-orthogonal large-scale display geometries.
2. Discussion of the Related Art
Conventional incandescent lamps, fluorescent lamps, and neon tubes have long been used to illuminate many large-scale commercial and public signs. However, the market is now demanding cheaper and larger displays that have the flexibility to customize display sizes and colors, that have lighting, image and video capability, and that are easy to install, maintain and disassemble, especially for use in temporary venues; these are market specifications that are not possible with the older technologies. As a result, many displays now utilize emissive lighting modules, such as light emitting diodes (LEDs), or organic light emitting diodes (OLEDs), or other emissive display technologies. The emissive display modules are more advantageous than conventional lighting modules, because they consume less power, possess a much longer lifetime and have lower maintenance costs. However, the use of solid-state lighting is still relatively new in large-scale display applications; therefore, a need exists to provide a support framework for lighting modules for the purpose of creating integrated large-scale displays.
Emissive display technologies are currently being applied to modular large-scale display applications, such as outdoor or indoor stadium displays, large marketing advertisement displays, and mass-public informational displays. The configurations of these large-scale displays are often inflexible and have few display geometries and support frameworks and, therefore, result in standard rectilinear displays, such as billboards. Further, these displays are not always designed from the standpoint of easy assembly or maintenance and, at best, ready access of lighting elements is often considered late in the execution of the design. Thus, there exists a need to provide a support framework capable of being configured into a large variety of non-planar geometries. In addition, there is a need to provide lighting modules that have a variety of form factors and packaging geometries that can be fastened to a support framework in order to create a variety of large-scale displays with non-rectilinear peripheries.
An example of a configurable large-scale display is found in reference to U.S. Pat. No. 6,314,669, entitled “Sectional display system.” The U.S. Pat. No. 6,314,669 details a planar matrix of display units contained within a support framework that provides ready access to the internally located display modules and other components. This design allows for quick change-out of the modular display elements and other components. However, the U.S. Pat. No. 6,314,669 patent fails to provide a means of creating large-scale non-planar displays, such as vaulted shapes, saddle shapes, or other curved displays that may envelop interior or exterior walls and ceilings.
The U.S. Pat. No. 6,314,669 also requires that the lighting modules be uniformly populated, such that the spacing of display elements is constant and consistent along the length and breadth of the display system. This can be problematic for many display designs that require an irregular pitch for unique lighting effects or to minimize wind loads. Thus, a need exists to provide a support framework capable of being populated with lighting modules in a heterogeneous manner in order to achieve an irregular pitch.
The present invention relates to packaging geometries for emissive display modules and the accompanying support mechanism for use in large-scale display applications. In particular, the present invention relates to an adaptable support framework and non-rectilinear display module packages that together form non-orthogonal large-scale displays.
It is an object of this invention to provide a support framework for lighting modules for the purpose of creating integrated large-scale displays.
It is another object of this invention to provide a support framework capable of being configured into a large variety of non-planar geometries.
It is yet another object of this invention to provide lighting modules with a variety of form factors and packaging geometries that can be fastened to a support framework to create a variety of large-scale displays that have non-rectilinear peripheries.
It is yet another object of this invention to provide a support framework capable of being populated with lighting modules in a heterogeneous manner in order to achieve an irregular pitch.
To this aim, the present invention concerns a display comprising a support holding a number of emissive display modules of single or multiple types whereby the emissive display modules are provided of a mechanical packaging of non-rectilinear geometry, optionally a triangular, a rectangular, a pentagonal, a hexagonal or an octagonal geometry; and whereby said support can have a two or three dimensional shape, and optionally can be a display tile assembly, a brick assembly, a pole assembly, a cabled assembly, a strip assembly, a grid assembly, a direct-mount display assembly, a mounting curtain assembly section and/or a curtain bar mechanism.
The present invention is also about such a packaging and about emissive display modules provided of a packaging which can be used in a display as described above and where the packaging has a non-rectilinear geometry, optionally a triangular, a rectangular, a pentagonal, a hexagonal or an octagonal geometry.
The present invention also handles about a support which can be used in a display according to the invention, where such support can be a display tile assembly, a brick assembly, a pole assembly, a cabled assembly, a strip assembly, a grid assembly, a direct-mount display assembly, a mounting curtain assembly section and/or a curtain bar mechanism.
According to a preferred embodiment of the display, the emissive lighting modules held by the support can be distributed in a heterogeneous manner in order to achieve an irregular pitch.
In order to better show the characteristics of the invention, some preferred embodiments of a mechanical packaging and supports are shown which can be used in a display according to the invention, without being limitative in any way, with reference to the attached drawings, where:
A hexagonal display module 140 is a hexagon-shaped lighting module that contains an array of, for example seven emissive lighting elements 100. An octagonal display module 150 is an octagon-shaped lighting module that contains an array of, for example eleven emissive lighting elements 100.
In operation, a plurality of display modules are interconnected within a support framework (not shown) to form a modular large-scale display (not shown) that is operated by means of a display control module (not shown).
In operation, a plurality of tile assemblies 200 are interconnected to form an overall large-scale floor display (not shown) that is operated by means of a display control module (not shown).
Faceplate 310 is a protective glass cover that encases rectangular display modules 120. Drive circuit PCBs 320 contains the electronic circuits that switch the individual emissive lighting elements 100 on and off and control the intensity of the display. Heat sink 330 and cooling fan 360 are the thermal management components that regulate the temperature within brick assembly 300. Service LED 340 is readable by user maintenance personnel and indicates a malfunction within brick assembly 300. Backup battery 350 provides auxiliary power, in the event of a power outage, to allow brick assembly 300 to store display configuration settings before power-down.
In operation, drive circuit PCBs 320 receives control signals from controller module (not shown) by means of data cables (not shown) and uses signals to activate and modulate the illumination of rectangular display modules 120 that create a portion of an overall display. A large-scale display is constructed from an array of brick assemblies 300, for example a large-scale wall display.
Pole assembly 400 can have rectangular display modules 120 mounted on more than one vertical surface of a pole. Additionally, a single vertical surface of a pole may contain more than one vertical stack of rectangular display modules 120 (not shown). The distances between the individual rectangular display modules 120 mounted on pole assembly 400 is variable. Pole assembly 400 is installed on site, for example, by securing one end into the ground. Other means of anchoring pole assembly 400 are also possible, as shown in
In operation, pole assembly 400 receives control signals from controller module (not shown) by means of data cables (not shown) that determine the illumination level of each emissive lighting elements of the display. Pole assembly 400 then illuminates to produce a pole assembly 400 viewable image.
In operation, grid assembly 800 receives control signals from controller modules (not shown) by means of data cables (not shown) that determine the illumination level of each emissive lighting element of the display. Grid assembly 800 then illuminates to produce a large-scale display.
Direct-mount display assembly 900 is formed of direct-mount display enclosure 910 mounted through hinge mechanism 912, which allows easy adjustment of the display angle for, for example ready maintenance or removal. Direct-mount display assembly 900 is anchored to building wall 916 through mounting attachment 914. Controller 918 can be mounted inside building wall 916 and contains the display control functionality and power supply required for the operation of display assembly 900.
In operation, a plurality of direct-mount display assemblies 900 receive control signals from controller 918 by means of data cables (not shown) that determine the illumination level of each emissive lighting element of the display. Direct-mount display assembly 900 then illuminates to produce a large-scale display.
The shape and dimensions of curtain 1010 can vary. In addition, any number of display modules, for example rectangular display modules 120, can be attached to the curtain, by the use of, for example, push buttons 1014. The display pitch can be modified by selectively populating curtain 1010 with rectangular display modules 120 at various distances. During installation display modules are fed through the curtain 1010 and the wires are concealed behind them. Alternatively, curtain 1010 can be of a “sandwiched” construction, for example, a second layer can be added with stitched channels where the cables (not shown) can be fed through to provide electrical interconnection for control signals and power.
In operation, a plurality of mounting curtain assembly sections 1000 receive control signals from controller assemblies by means of data cables (not shown) that determine the illumination level of each emissive lighting element of the display. Mounting curtain assembly sections 1000 then illuminate to produce a large-scale display.
The present invention is a number of packaging geometries for emissive lighting display modules and the corresponding support mechanisms. Therefore, support frameworks are provided for a variety of lighting modules for the purpose of creating integrated large-scale displays. The packaging geometries of the present invention include: a triangular display module 110, a rectangular display module 120, a pentagonal display module 130, a hexagonal display module 140, and an octagonal display module 150. Thus, lighting modules with a variety of form factors and packaging geometries are provided that can be fastened to a support framework to create a variety of large-scale planar or non-planar displays that have non-rectilinear peripheries. The support mechanisms of the present invention include: a display tile assembly 200, a brick assembly 300, a pole assembly 400, a cabled assembly 500, a strip assembly 600, fastening mechanisms 700, a grid assembly 800, a direct-mount display assembly 900, a mounting curtain assembly sections 1000, and a curtain bar mechanism 1100. Therefore, numerous support frameworks capable of being configured into a large variety of planar or non-planar geometries are provided, whereby the support mechanisms hold a large number of display modules of single or multiple types to create a large-scale display, and support framework capable of being populated with lighting modules in a heterogeneous manner to achieve an irregular pitch is demonstrated.
The invention is by no means restricted to the above described embodiment, represented in the accompanying drawings; on the contrary, such a mechanical packaging and support which can be used in a display according to the invention, can be made in all sorts of variants while still remaining within the scope of the invention.
Number | Date | Country | |
---|---|---|---|
60616200 | Oct 2004 | US |