1. Technical Field
The present invention relates to a display apparatus with a backlight, such as a liquid crystal display (LCD), and in particular, to both a display apparatus that uses a gas discharge tube as the backlight and a method of driving the gas discharge tube.
2. Related Art
A conventional LCD is usually provided with a backlight unit and a liquid crystal shutter placed on the backlight unit. The backlight unit is composed of various constituents including a straight tubular type or an L-shaped type of cold cathode discharge lamp, a light-guide plate, a reflection plate, and a polarization plate, thus emitting light of a certain luminance. The liquid crystal shutter is subjected to electrical control for adjusting its light transmittance. The light emitted from the backlight unit is used to display images of arbitrary gradations in response to light transmittances of the liquid crystal shutter.
However, in cases where such LCDs are used in monitor devices of televisions or personal computers, moving pictures are disturbed due to the liquid crystal shutter, because the shutter has a response speed as slow as the order of milliseconds. For displaying a moving picture, picture disturbances result in that image-pixel information which should be displayed during the last field remains at some pixels of an image to be displayed during the current field, even though those pixels should be excluded from luminescence during the current field. In such situations, image information is displayed erroneously with blurs and/or runs, which degrades image quality largely.
Meanwhile,
In addition, a conventional flat type of backlight for LCD units can be driven according to a technique shown in
When such an LCD is mounted on televisions or personal computers as their monitors, a poor response of the LCD will cause a problem, due to the fact that there is a certain level of luminescence during the luminescence-rest period. The response of the shutter incorporated in the LCD is generally limited to the range from a few milliseconds to several tens of milliseconds. Hence, to display moving pictures whose contents change every field (i.e., every period of 16.7 msec) is liable to being mixed with the image of the last field, thus blurs or runs still being present in images.
Further, when elongating the repetition time of both the lighting period and the luminescence-rest period to as large as 16.7 msec, the lighting is made unstable.
The present invention has been made with due consideration to the foregoing drawbacks. An object of the present invention is to provide higher-quality images even when moving pictures are displayed on display apparatuses such as LCD units.
A more practical first object of the present invention is to prevent or suppress information about an image indicative of the last field from being displayed erroneously in the period of the current field, thus improving image quality when moving pictures are displayed.
A more practical second object is to prevent an image from being deteriorated due to blurs or runs by stopping the luminescence during the luminescence-rest period.
A more practical third object is to gain a stable discharge start performance of the gas discharge tube, independently of amounts of space electric charges in a discharging space of the tube, thus leading to acquisition of higher-quality of images.
In order to achieve the above first object, as one example, a display apparatus according to the present invention comprises a shutter of which light transmittance is changeable; a gas discharge tubes for lightening the shutter; a shutter controller for controlling the light transmittance of the shutter on the basis of luminance information about an image to be displayed; and a discharge controller for controlling a discharge state of the gas discharge tube in accordance with a light transmittance state acquired when the shutter controls the light transmittance responsively to the luminance information.
It is preferred that the discharge controller includes: a field detector configured to detect a period of each field from the image to be displayed; a lighting period controller configured to control the period of each field so that the period of each field is divided in sequence into a luminescence-rest period during which the gas discharge tube is subjected to either one of a reduction of an intensity of light emitting therefrom and a rest of the luminescence thereof in cases where the light transmittance state of the shutter is out of a desired light transmittance range, a luminescence-preparing period during which the luminescence of the gas discharge tube is prepared, and a luminescence period during which the gas discharge tube performs the luminescence; and an applied-voltage generator configured to generate a voltage signal to be supplied to the gas discharge tube, the voltage signal being formed depending on a difference among the luminescence-rest, luminescence-preparing, and luminescence periods.
It is also preferred that the shutter controller includes a shutter control signal generator configured to generate a shutter control signal for controlling the light transmittance of the shutter from the luminance information about the image, and the discharge controller further includes a luminance detector configured to detect a luminance of the image from the shutter control signal, wherein the lighting period controller is configured to changeably control a length of the luminescence-rest period in accordance with the luminance of the image detected by the luminance detector.
Hence, the response speed of the shutter (for instance, a liquid crystal shutter) is detected to obtain the light transmittance thereof. Depending on the obtained light transmittance of the shutter, the discharge actions of the gas discharge tube are controlled. Even if moving pictures are displayed on an LCD unit, information about images which should be displayed in the period of the last field is suppressed or removed from being displayed erroneously. Thus blurs or runs are removed from images, which provides higher-quality images on the LCD unit.
In order to achieve the above second and third objects, by way of example, the present invention provides a method of driving a gas discharge tube having a plurality of glass substrates placed to form a discharging spacing with which a rare gas is filled, one or more pairs of sustaining electrodes embedded in a dielectric layer, and an auxiliary electrode placed insulatedly apart from the sustaining electrodes, the method comprising the steps of: performing a luminescence rest by applying two voltages whose amplitudes are the same and constant to two sustaining electrodes composing each pair among the paired sustaining electrodes, so that the sustaining electrodes rest the discharge; performing a luminescence preparation during a predetermined time of period, after the luminescence-rest step, by not only applying two voltage pulses whose phases are the same to the two sustaining electrodes composing each pair but also applying a voltage to cause a preparatory discharge to the auxiliary electrode; and performing a luminescence of the gas discharge tube, after the luminescence-preparing step, by applying two voltage pulses whose phases are mutually shifted to the two sustaining electrodes composing each pair, so that the sustaining electrodes cause discharge for the luminescence.
Thus, the discharge is first initiated using the auxiliary electrode, that is, between the sustaining and auxiliary electrodes during the luminescence-preparing step. This preparation step allows an arbitrary-length luminescence-rest step to be placed before a lightening period. Therefore, independently of amounts of electric charges that is present in the tube, the performance for staring the discharge can be made stable.
Further, the light-adjusting range of the gas discharge tube can be widened noticeably. Still, the luminescence from the tube can be made zero, field by field, during the luminescence-rest period. Both the luminescence and luminescence-rest periods can therefore be set to any proper lengths according to the response performance of a shutter of the liquid crystal display. Thus, even if moving pictures are displayed, blurs or runs induced from the last field, on account of a limited response speed of the liquid crystal shutter, can be suppressed from appearing in an image of the current field.
It is preferred that the two voltage pulses applied to the two sustaining electrodes composing each pair are mutually shifted in phases by half a cycle of each voltage pulse. By way of example, during the luminescence step, a summed voltage of the two voltage pulses is applied to the auxiliary electrode.
It is also preferred that during the luminescence step, each of the two voltage pulses applied to the two sustaining electrodes composing each pair is set to have a duty ratio ranging from approximately 10 to 90 percents. This configuration makes it possible to drive the tube with a lower-frequency signal (i.e., a wider pulse width), so that both of power consumption and heat generated from a drive circuit can be saved. In particular, it is preferred that during the luminescence step, the two voltage pulses applied to the two sustaining electrodes composing each pair are adjusted in the phases so that a pulsed waveform of voltage generated in the discharging spacing is adjusted in pulse width.
Preferably, the two voltage pulses applied to the two sustaining electrodes composing each pair during the luminescence-preparing step are different in a cycle from the two voltage pulses applied to the two sustaining electrodes composing each pair during the luminescence step.
Still preferably, voltage pulses from a first voltage pulse to a desired number of voltage pulses in a pulse sequence of each of the two voltage pulses applied to the two sustaining electrodes composing each pair during the luminescence-preparing step are different in a duty ratio from the two voltage pulses applied to the two sustaining electrodes composing each pair during the luminescence step.
By way of example, the luminescence-rest step is omitted during a predetermined period of time in an initial start state immediately after power of the display apparatus is put on.
It may also be configured that the driving method further comprises a step of performing a preparation for initial-start luminescence by not only applying two voltage pulses whose phases are the same to the two sustaining electrodes composing each pair but also applying a voltage to cause a preparatory discharge to the auxiliary electrode, in an initial start state immediately after power of the display apparatus is put on, the initial-start luminescence-preparing step being followed by the luminescence step.
It is also preferred that during the luminescence-rest step, in which the sustaining electrodes are arranged so as to divide a discharging area of the gas discharge tube into a plurality of sub-areas, sustaining electrodes located in a sub-area subjected to the luminescence are grounded and sustaining electrodes located in a sub-area subjected to non-luminescence are given voltage of a predetermined amplitude.
According to another aspect of the present invention, a gas discharge tube driven by the driving method is also provided.
Other objects and aspects of the present invention will become apparent from the following description and embodiments with reference to the accompanying drawings in which:
Referring to the accompanying drawings, various preferred embodiments of the present invention will now be described.
Referring to
The field detector 81 detects the start timing of each field from the inputted image signal to form a field start signal, where the field start signal is outputted to the gas discharge controller 16. On the other hand, the shutter control signal generator 83 produces, from the inputted image signal, a shutter control signal for each field, and provides it to both the luminance detector 82 and the liquid crystal shutter 11. The luminance detector 82 computes, based on the shutter control signal, the luminance of an image (that is, a brighter image or a darker image) to be displayed. The computed luminance is formed as a screen luminance signal, and this signal is sent to the discharge controller 16. In the present embodiment, the luminance of an image is computed as a mean value over an entire image. Alternatively, the luminance of an image may be calculated based on part of an image. Still, a maximum luminance of an image is an alternative for such value. Still alternatively, the luminance detector 82 may be configured so that it receives an image signal to calculate the luminance of the image.
Based on the computed mean screen luminance, the light-emitting operations of the gas discharge tube 14 are controlled. Practically, when the mean screen luminance is lower compared to a predetermined value, the gas discharge controller 16 operates to shorten a luminescence-rest period for the gas discharge tube 14. Thus the luminescence from the gas discharge tube 14 is increased, whereby a change amount of luminance per one luminescence gradation being made larger. In contrast, when the mean screen luminance is higher compared to the predetermined value, the gas discharge controller 16 controls the gas discharge tube 14 so as to make the luminescence-rest period. Hence the luminance of the gas discharge tube 14 is reduced, thereby lessening the luminance saturation in a higher part of the gradations.
The liquid crystal shutter 11 receives the shutter control signal from the shutter controller 12 to change light transmittances at arbitrary pixel positions. The light emanating from the gas discharge tube 14 can therefore be transmitted through the shutter 11 of which arbitrary pixel portions are controlled, so that an image is visualized in a luminance-controlled manner.
The gas discharge controller 16, which is provided with a lighting period controller 84 and an applied-voltage producer 85, receives both of the field start signal and the screen luminance signal, which are sent from the shutter controller 12. Both of such signals are inputted to the lighting period controller 84, in which changeable timings of a lighting period and a luminescence-rest period that compose a period of each field is calculated using both of the signals to produce and output a lighting period signal. On the other hand, the applied-voltage producer 85 is configured to receive the lighting period signal to control the gas discharge tube 14 such that the producer 85 provides the tube 14 with a voltage signal of both a controlled frequency and a controlled pulse width. Alternatively the above lighting period controller 84 may be located within the shutter controller 12, instead of being placed within the discharge controller 16.
The timing charts in
As described above, in the case of the LCD according to the present embodiment, timings to turn on or off the back light of the gas discharge tube 14 is controlled depending on the response speed of the liquid crystal shutter 11. Specifically, the gas discharge tube 14 is turned off during an early part of period of each field, while it is turned on during the remaining period of time of each field. Hence, a given early part of period of each field, which is undesirable in displaying an image having a specified intensity due to the fact that the shutter 11 has a certain response time, is disregarded by turning off the tube 14. This disregard makes it possible that the gradations of pixels to be displayed during each field come closer to their desired gradations. In addition, even if moving pictures are displayed, the above way of disregarding an early part of period of time prevents image information that should be displayed during the last field from influencing the current field. It is therefore possible to provide the LCD capable of showing higher-quality images with less disturbances.
In the case of the present embodiment, the ratio between a turned-on period and a turned-off period of the gas discharge tube 14 is set to a ratio of “3 to 7,” but this ratio is not restricted to this value. Other ratios are also available for the period control and is able to provide the same advantages as the above.
Referring to
Making the duration of each voltage pulse applied in the luminescence-preparing period longer copes with the luminescence-rest period set longer. The presence of such luminescence-rest period allows the electric charges residing in a discharging space 52 (refer to
To resolve this problem, as stated above, the duration of each voltage pulse to be applied in the luminescence-preparing period is raised up to a length of 1.1 times as large as that in the luminescence period. The application of those voltage pulses lasts until at least the end of the discharge establishing process, even if the space electric charges remaining in the discharge space 52 is reduced. Therefore, it is possible that a steady discharge is generated during the luminescence period.
A modification of the second embodiment will now be described with reference to
In most cases, the space electric charges remaining in the discharging space 52 in the first field are reduced in amount. Even in such a state, the gas discharge tube 14 enables its discharge to start with steadiness thanks to the restless application of the voltage.
Referring to
The auxiliary electrodes 51 are grounded via resistors, so that no wall charges are accumulated on the sustaining electrodes 15 before the discharge is started, providing the grounded state of the electrodes 51. Thus, when applying voltage pules to an adjacent sustaining electrode, a discharge occurs between the sustaining and auxiliary electrodes. After completing the start of the discharge, the auxiliary electrodes 51 are separated from the ground by the resistors, thereby being equivalent in potential to the adjacent electrode. The auxiliary electrodes 51 no longer operate as auxiliary ones, and participate in performing the main discharging actions. The gas discharge tube 14 provides a luminous surface with a uniform luminance, with no specks of luminance therein.
Referring to
For example, for displaying images in which an object moves quickly at the central region, the lighting period of each field for the sustaining electrodes displaced at the central region is shortened to suppress disturbances in the images. But, each lighting period for the sustaining electrodes displaced at the peripheral regions is not shortened, with such electrodes allowed to discharge restlessly in the same manner as the conventional. Thus, when moving pictures are displayed on an LCD unit, its background images (in the right and left peripheral areas) are stable and images of the central area where moving objects are present are expressed with most disturbances removed.
The number of application times of voltage per field is adjusted to be equal for the electrodes disposed in both the central area and its peripheral areas. If not so, that is, such application number for the electrodes in the central area is different from that for the electrodes in its peripheral areas, the uniformity of luminance of the image fails. Thus, the cycle of application of voltage to the electrodes disposed in the peripheral areas is adjusted.
In addition, in cases where pixel values in the background are low and those in the central area are high, higher luminances coming from the gas discharge tube 14 cause the higher-value pixels to be expressed at blurred gradations. In contrast, lower luminances coming from the gas discharge tube 14 make it difficult to read the gradations at the lower-value pixel positions, losing freshness of images. To resolve this, the cycle of voltage applied to the divided groups of the electrodes 15 and the number of application times of voltage are adjusted. Practically, the number of application times for the electrodes residing in lower-luminance pixel positions is raised to reduce the application cycle, while the number of application times for the electrodes residing in higher-luminance pixel positions is reduced to increase the application cycle. It is therefore possible that the localized luminances emanated from the gas discharge tube 14 are adjusted within each field, area by area, based on what type of image is displayed.
Referring to
During the luminescence period, two types of pulsed voltages, whose phases are shifted by an amount of half of one cycle, are applied to the sustaining substrates 106 and 107, respectively. No voltage is applied to both the sustaining substrates 106 and 107 during the luminescence-rest period. Further, during the luminescence-preparing period, two types of pulsed voltages, whose phases agree with each other, are applied to the sustaining substrates 106 and 107, respectively.
With respect to the auxiliary substrate 108, a pulsed voltage formed by mutually summing the pulsed voltages applied to both the sustaining electrodes 106 and 107 is applied during the luminescence period. In both of the luminescence-rest and luminescence-preparing periods, a constant-amplitude voltage is applied to the auxiliary substrate 108, which is the ground level in this embodiment.
The above pulsed voltages, which are formed into rectangular pulses of which amplitudes are equal to each other, are used for pulsated excitation of the rare gas so that discharge is generated using dielectric barrier configurations.
The excitation of the gas discharge tube 100 is illustrated in
Thus, the discharge can be generated at first between the auxiliary electrode 108 and each of the sustaining electrodes 106 and 107, so that space electric charges can be produced before entering the luminescence period. Using the preparatory discharges, the sustaining discharges can easily be generated between the sustaining electrodes between the sustaining electrodes 106 and 107. Hence, the flat type of gas discharge tube 100 can be provided with the sustaining discharge provided with stability.
Applying to the substrates the voltage pulses of the waveforms shown in
The voltage pulses of the pulse widths shown in
As stated above, the present embodiment adopts the auxiliary electrode 108 firmly placed on the rear glass substrate 105, as part of on the gas discharge tube 100. An alternative is that the auxiliary electrode 108 may be separated by a distance of 10 cm or less from the body of the tube, that is, from the rear glass substrate 105. Such a configuration is also available to the present invention.
As described above, the fifth embodiment and its various modifications provide the flat type of gas discharge tube and how to control the luminescence, in which one or more pairs of sustaining electrodes 106 and 107 are arranged in parallel to each other. Specifically, each field of an arbitrary unit time is divided into, as described before, the luminescence-rest, luminescence-preparing, and luminescence periods. A third electrode, that is, the auxiliary electrode 108, is arranged to help the restart of the sustaining discharge. In addition, during the luminescence-preparing duration, no discharges occur between both the sustaining electrodes 106 and 107, while discharges occur between the auxiliary electrode 108 and each of the sustaining electrodes 106 and 107 with the amount of discharge current regulated. On completing this preparation period, the luminescence period starts, where the discharges are generated between the sustaining electrodes 106 and 107.
In other words, in cases where the space electric charges in the discharging space 101 are reduced because the luminescence has been rested during the luminescence-rest period, moderate discharges, which are at least not localized at a single position, are carried out between the auxiliary electrode 108 and each of the sustaining electrodes 106 and 107. Those preparatory discharges cause a proper map of the space electric charges within the discharging space 101. The preparatory discharges are followed by the primary discharges carried out between the sustaining electrodes 106 and 107. This enables the sustaining discharges to start with stability, while still having the luminescence-rest period that is continuous.
Referring to
As shown in
Accordingly, the conventional problem can be solved that no discharges are brought about because of the shortage of amount of applied voltages in cases where the luminescence-rest period (power off) is directly switched over to the luminescence period (power on). The direct switchover from the luminescence-rest period to the luminescence period causes fewer amounts of space electric charges in the discharging space 101. Frequently, such amounts of the space electric charges are not enough to cause discharge between the sustaining electrodes 106 and 107, thus giving rise to a delayed start of the discharge or unstable discharge actions.
In contrast, as shown in
The pulsed voltages shown in
As described so far, in the case that the space electric charges are insufficient when this flat type of gas discharge tube 100 is put into operation after a long time of rest, the discharge actions will be first started between each of the sustaining electrodes 106 and 107 and the auxiliary electrode 108. Since the distances between each of the sustaining electrodes 106 and 107 and the auxiliary electrode 108 are shorter that that between sustaining electrodes 106 and 107, each voltage pulse to start the discharge can be lowered in amplitude.
When the gas discharge tube 100 has been unused for a long time and put in the dark place, there are left only a small number of space electric charges in the discharging space 101, which is extremely reduced in number. Furthermore, the distances between the sustaining electrodes 106 and 107 are relatively longer. Because there are such disadvantages, the sustaining electrodes 106 and 107 are likely to be subjected to the voltage shortage and some other unfavorable conditions. Thus, not only a delayed start of the discharge actions due to the start in the dark place, called the dark start, but also unstable discharge actions are caused. These problems can be solved by the present invention, because there is interleaved the luminescence-preparing period between the luminescence-rest and luminescence periods. In the interleaved period, the discharge is first started between each of the sustaining electrodes 106 and 107 and the auxiliary electrode 108, the distance between such paired electrodes being shorter than that between the sustaining electrodes 106 and 107. Hence a voltage pulse of lower amplitude is still sufficient to start the discharge, providing a stable initial start without using a particular black-start voltage signal or a luminary element for starting the discharge.
Referring to
The drive elements 705 to 714, which are incorporated in the discharge controller 16 shown in
Of these constituents, the sustaining voltage drivers 706 and 713 are in charge of producing both of a sustaining voltage pulse and a pilot voltage pulse. One sustaining voltage driver 706 is connected to the circuitry directed to both of the sustaining electrodes 701 and 703, whereas the other sustaining voltage driver 713 is connected to the circuitry directed to both of the sustaining electrodes 702 and 704.
The rest-period controllers 705, 707, 712 and 714 are configured to control the potential required during the luminescence-rest period, respectively. The controller 705 is connected to the application voltage synthesizers 708 connected to the sustaining electrode 701. The controller 707 is connected to the application voltage synthesizers 709 connected to the sustaining electrode 703. Furthermore, the controller 712 is connected to the application voltage synthesizers 710 connected to the sustaining electrode 702. The controller 714 is connected to the application voltage synthesizers 711 connected to the sustaining electrode 704.
Each of the application voltage synthesizers 708 to 711 are configured to synthesize the sustaining voltage pulse, the pilot voltage pulse, and a rest-period voltage into a sequence of pulses aligning in the time axis.
Controlling the amplitude of the voltage applied during the luminescence-rest period allows the luminescence of the gas discharge tube 100 to be controlled. Hence, with no drivers arranged region by region, the light control is possible in a regionally divided manner. When the gas discharge tube 100 is used as a backlight of such a unit as an LCD, image data to be displayed can be subjected to light control according to their regional luminance characteristics, providing higher-quality images on an LCD unit.
The pulsed voltages shown in
As described above, the entire discharge region of the flat type of gas discharge tube 100 shown in
In the above seventh embodiment, the auxiliary electrodes 108 has received the voltage of the ground level or the same level as that of the sustaining voltage, but this can be modified. For example, the auxiliary electrodes 108 may receive two types of potentials as long as there is a potential difference of 50 Volts or more between the potentials.
Further, a modification with respect to the division of the display region can be provided. The division is not limited to the way to divide the region into tow sub-regions, but the discharge region can be divided into an arbitrary number of sub-regions.
The gas discharge tube 100 according to the foregoing fifth to seventh embodiments may be put into practice with a variety of modified forms, which will be described below.
There is provided an alternative modification concerning the layered structure of the flat type of gas discharge tube 100. As shown in
Alternatively, the auxiliary electrode 108 may be formed by a transparent electrode, in which the transparent auxiliary electrode 108 is arranged on the outer surface of the front glass substrate 103. This structure can also provide the foregoing operations and advantages.
Still, the sustaining electrodes 106 and 107 may be formed by transparent electrodes, in which the transparent sustaining electrodes 106 and 107, the dielectric member 109, and the fluorescent member 102 are laminated in this order on the inner surface of the front glass substrate 103. This creates the same or similar advantage as or to the above.
In the foregoing embodiments, the sustaining electrodes 106 and 107 have been disposed on the rear glass substrate 105, but it is possible that such electrodes 106 and 107 are formed on the wall members 104.
Still, the arrangement of the auxiliary electrode 108 is not limited to the example shown in
The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the present invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
2001-164470 | May 2001 | JP | national |
2002-055602 | Mar 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5461397 | Zhang et al. | Oct 1995 | A |
5907222 | Lengyel et al. | May 1999 | A |
6376994 | Ochi et al. | Apr 2002 | B1 |
6697036 | Yamada et al. | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
2001-125066 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20020180664 A1 | Dec 2002 | US |