For a more complete understanding of the disclosure, reference is made to the following detailed description and accompanying drawing figures, in which like reference numerals may be used to identify like elements in the figures.
The embodiments of the disclosed devices, systems and methods may assume various forms. Specific embodiments are illustrated in the drawing (and are hereafter described), with the understanding that the disclosure is intended to be illustrative, and is not intended to limit the invention to the specific embodiments described and illustrated herein.
Electronic device displays include backlight units with planar emission devices distributed across a plurality of separately controlled zones or regions. Separate control of the zones may allow the backlight brightness levels to vary across the display. Adjusting a regional or local brightness of the backlight unit is referred to as local dimming. The local dimming may save power, increase contrast, and/or provide other benefits, such as the opportunity to use lower cost liquid crystal display (LCD) components (e.g., with lower contrast ratios). Thermal management may also be improved, as the electrical to optical conversions are distributed across the viewable area of the display. The displays may thus be useful in connection with a wide variety of electronic devices, including but not limited to mobile and other devices in which minimizing power consumption is warranted. Minimizing power consumption may support the implementation of, for instance, highly power efficient, always-on devices. These and other benefits may be provided by the display architectures described herein.
In some cases, the brightness levels of the backlight unit are controlled to address distortions arising from defects in the backlight unit and/or a liquid crystal (LC) panel. For example, the brightness level of an emission device(s) (e.g., planar emission device(s)) in each respective zone may be adjusted to compensate for the distortions. The distortions may be further or alternatively addressed via adjustments to signaling generated to control the LC panel. The adjustments to the backlight unit brightness levels and/or the LC control signaling enhance the quality of the display of the electronic devices. A better display may thus be provided, despite the presence of mura and other defects.
The backlight unit may be disposed in a configurable zone arrangement. A number of aspects of the zone arrangement may be configurable. For instance, the number, size, shape, orientation of the zones may vary. In some examples, the boundaries of the zones may be modified to adjust the number of zones and/or the number of planar emission devices in each zone (the backlight zone granularity or resolution). The zones may be oriented and shaped relative to the pixel array of the display to minimize artifacts of the local dimming. In some cases, diamond-shaped zones are used.
The resolution of the backlight zone arrangement may be adjusted to attain appropriate cost levels for the display, such as the cost of the planar emission devices. Local dimming at a pixel-by-pixel level may be too expensive and/or may involve too many resources. The backlight resolution may thus be significantly lower than the display resolution. For example, zone arrangements involving, for instance, a 30 by 30 zone matrix or about 10 to about 30 planar emission device pixels per inch (ppi) may be used. In contrast, the liquid crystal pixel resolution of the display may be one or more orders of magnitude higher. The configurability of the zone arrangement may thus provide local dimming in a manner that addresses a cost-benefit tradeoff. Other cost-benefit tradeoffs may also be addressed. For example, adjusting the number of zones also affects the level of computing resources used to control the zones, including, for instance, processing and memory resources. Multiple neighboring planar emission devices may be grouped into a zone to decrease the demand for computing resources. Coarser zones may thus also address the tradeoff between device cost and performance. An optimized number of zones may be selected for a given electronic device and processing resource environment.
The brightness level of each backlight zone is determined as a function of the tone or brightness of the image to be displayed. Frame data for the image is processed to determine the brightness level of the backlight zone. The frame data for each zone may be processed separately from the frame data for the other zones. Separate processing of the frame data may reduce the computational load presented by the local dimming relative to procedures in which the entire frame is processed (global processing) to determine the individual zone brightness levels.
The planar emission devices may be disposed on a film. In some cases, organic light emitting diode (OLED) films are used. The displays may thus have a suitable thickness for thin form factor devices, such as mobile phones, tablets, and other handheld electronic devices. The displays may thus achieve thicknesses similar to (e.g., thinner than) other mobile device displays in which the light sources of the backlight unit are disposed along an edge of the display.
The displays may be useful with a variety of handheld and other electronic devices. Examples of electronic devices include, but are not limited to, mobile phones, tablets, laptops, computer monitors, televisions, and other computing and non-computing devices having a display. The size and form factor of the electronic device may thus vary. For example, the size of the display may range from the size of a handheld or wearable computing device to the size of a wall-mounted display or other large format display screen. In some cases, the display includes a touch-sensitive surface. The displays may or may not be associated with touchscreens. The electronic devices may or may not be battery powered.
The configurability of the zone arrangement allows a variety of different light source technologies to be used in the backlight unit. Notwithstanding the description herein of displays and electronic devices with OLED devices, other types of planar emission devices may be used as light sources for the displays. The planar emission devices may be or include currently existing light sources, such as OLED devices, light sources under development, such as III-V semiconductor LED technologies and quantum-based light sources, and future developed light sources.
The display system 102 may be communicatively coupled to the processor 104 and/or the memories 106 to support the display of video or other images via the user interface. In the example of
In the example of
The backlight unit 114 includes a plurality of planar emission devices distributed over a viewable area of the display system 102. Each planar emission device may be an OLED device, another type of light emitting diode (LED), or another type of light source disposed along the plane of the viewable area (as opposed to along a display edge). Examples and exemplary features of the planar emission devices are described in connection with
The planar emission devices are arranged in in a plurality of zones 118 (or regions). Each zone 118 has at least one planar emission device. In some cases, each zone has multiple planar emission devices. The option to include multiple planar emission devices may provide flexibility in configuring the zone arrangement. Having multiple devices per zone may also provide redundancy and/or allow each constituent planar emission devices to share the brightness level burden and, thus, be driven at a lower intensity. Operation at lower intensities may help avoid performance decay arising from overdriving the devices. In one example, the planar emission devices are distributed across the viewable area in an array having 30 devices per inch, while the backlight unit 114 has only 10 zones per inch. Other device and zone resolutions may be used.
The zones 118 may be arranged in a matrix or array as shown in
The processor 108 is coupled to the backlight unit 114 to control the brightness level of the planar emission device(s) in each zone 118. In the example of
The processor 108 is configured to control the brightness level for each zone. In the example of
The backlight unit 114 may be configured to provide white light. Each planar emission device may thus be configured to emit white light. In other cases, the backlight unit 114 includes color planes (e.g., red, green, and blue addressable color planes) or other arrangements of color light sources. In such cases, the brightness of each color in a respective zone may be controlled separately from the other colors in the respective zone (in addition to being controlled separately from the emission devices in the other zones). The respective brightness levels of the colors may again be determined as a function of the image to be displayed. In some cases, the brightness of each backlight emission device may depend, in turn, on the intensities of the respective colors present in the image to be displayed. With the capability to address each color plane (or other color emission device) individually, further power savings may be achieved.
The liquid crystal layer 116 is disposed adjacent or proximate to the backlight unit 114. One or more intervening layers may be present. In some cases, the backlight unit 114 and the liquid crystal layer 116 are contiguous with each other. Alternatively, one or more transparent layers are disposed between the backlight unit 114 and the liquid crystal layer 116. For example, an adhesive film may be disposed between the backlight unit 114 and the liquid crystal layer 116. The light sources of the backlight unit 114 may be configured and arranged such that the backlighting is sufficiently spreadable across the viewable area without a diffuser or other light spreader between the backlight unit 114 and the liquid crystal layer 116. A diffusing or other layer or element may nonetheless be disposed between the backlight unit 114 and the liquid crystal layer 116 in some cases.
The liquid crystal layer 116 is configured to selectively filter light generated by the plurality of planar emission devices. The liquid crystal layer 116 may be or include one or more layers arranged in a liquid crystal panel. For example, respective layers may be provided in the liquid crystal panel for separate color filtering. The liquid crystal panel (or layer thereof) 116 defines an array 124 of pixels addressable by the processor 108. As shown in
The processor 108 individually controls each pixel to determine the extent to which light from the planar emission device(s) passes through the liquid crystal layer 116. In this example, the processor 108 is configured to control the liquid crystal layer 116 in accordance with liquid crystal (LC) control instructions 122. The processor 108 may be configured to adjust the image tone levels for the pixel array 124 of the liquid crystal layer 116 to coordinate the filtering of the light with the brightness levels of the planar emission devices. For example, the amount of filtering may be adjusted along a boundary between adjacent zones 118 with different brightness levels. If the pixels on either side of the boundary are intended to have similar image tone levels, the pixels in the zone 118 with the brighter backlighting are directed to filter more light relative to the pixels in the other zone 118 with the dimmer backlighting. The filtering of a respective pixel of the liquid crystal layer 116 may thus be controlled in a manner that takes into account the brightness level of the planar emission device(s) of the zone 118 in which the pixel is disposed. The brightness level of the backlight unit 114 and the amount of filtering are thus two controllable variables that combine to achieve a desired tone or brightness for each pixel.
The arrangement of zones 118 may be configurable. In some cases, the configurability of the zone arrangement may be relative to the pixel array 124. For example, the zone arrangement may be configurable to dispose a specified number of pixels in each zone 118. Alternatively or additionally, the zone arrangement may be configurable to specify the number of planar emission devices in each zone 118. The boundaries of the zones 118 may thus be configurable. The configurability of the zone arrangement may specify the shape, size, orientation, position, and/or other parameters of the zones 118. The total number of zones 118 may also be configurable.
Data indicative of a specification or other definition 126 of the zone arrangement may be stored in the memories 110. The processor 108 may then access the memory 110 to obtain the data of the definition 126 in connection with determining the respective brightness level of each planar emission device. For example, the processor 108 may use the data to determine the locations of the zones 118, to identify the planar emission device(s) associated with each zone 118, and/or to determine whether any planar emission devices are to be driven at a common level due to, for instance, being disposed in a common zone.
The processor 108 processes the frame data to determine the brightness level of the planar emission devices disposed in the backlight zone arrangement. In some cases, the frame data for each zone 118 is processed separately from the frame data for other zones 118. The brightness level may thus be determined for each respective zone without having to process the frame data for the entire viewable area of the display system 102. Instead, the brightness level for each zone 118 is based on frame data local to the respective zone 118, rather than global frame data for the entire viewable area.
The local frame data may be sufficient for determining the brightness level for each zone 118 because the backlight unit 114 may be configured in a manner that minimizes light spreading between zones 118. For example, the planar nature, or thin form factor, of the light sources of the backlight unit 114 may lead to zero, little, or limited light spreading. In some cases, light spreading may also be limited by the configuration of the display system 102, such as the lamination or other bonding of the backlight unit 114 and the liquid crystal layer 116. These aspects of the display architecture are in contrast to other systems in which a diffuser is used to spread point-like LED sources to an extent that light overlaps or mixes between zones. As a result of such spreading, overlapping, and mixing, the entire dataset for an image frame may be used to determine respective brightness levels of the LED devices. Processing the entire image frame may involve considerably more memory, processing power, and other resources, relative to the zone-by-zone frame data processing of the display system 102.
In some cases, the local frame data is processed by the processor 108 to determine a zone brightness level that is then subject to further processing before use in driving the backlight unit 120. In the example of
The BLU drive instructions 120, the LC control instructions 122, and the zone arrangement definition 126 may be arranged in discrete software modules or instruction sets in the memories 110. Alternatively, two or more of the instructions or definitions 120, 122, 126 may be integrated to any desired extent. The instructions or definitions 120, 122, 126 may alternatively or additionally be integrated with other instructions, definitions, or specifications stored in the memories 110. Additional instructions, modules, or instruction sets may be included. For instance, one or more instruction sets may be included for processing touch inputs in cases in which the display system 102 includes a touchscreen or other touch-sensitive surface.
In some cases, display defect data is stored in the memories 110. The display defect data may be indicative of one or more defects in the backlight unit 114 and/or the liquid crystal layer 116, and/or other layer or component of the display system 102. Left uncompensated, the defect(s) may result in a dimmer region of the viewable area. Such defects in the liquid crystal layer 116 may be referred to as mura, but other types of defects may be addressed. The defect data may be used by the processor 108 to adjust the backlight level for one or more of the zones 118 and/or to adjust the control signaling generated for the liquid crystal layer 116. The adjustments may be directed to compensating for the distortions arising from the defect(s). The defect data may thus be taken into account when determining the brightness levels of the zones 118. In some cases, the adjusted backlight level(s) may compensate for the defect by increasing the brightness of one or more of the zones 118 to a level higher than otherwise warranted (e.g., by the frame data to be displayed). Alternatively or additionally, the compensation may involve decreasing the brightness of one or more of the ones 118 to a level lower than otherwise warranted (e.g., by the frame data to be displayed).
In the example of
The distortion compensation instructions 130 may cause the processor 108 to access one or more tables of compensation factors for the backlight brightness levels and/or the LC control signaling. In the example of
The compensation factors for the backlight brightness levels may be provided on a zone-by-zone basis. The lookup table 132 may include a respective backlight compensation factor for each zone. For example, the processor 108 may be configured (e.g., via the instructions 130) to decrease the backlight brightness level of each zone in accordance with the respective backlight compensation factor. An example is described and shown in connection with
The compensation factors for the LC control signal may be provided on a pixel-by-pixel basis. The LC control signaling adjustments may thus be considered a fine-tune adjustment relative to the more coarse, zone-based adjustment of the backlight brightness levels. The lookup table 134 may include a respective pixel compensation factor for each pixel in the viewable display area. For example, each pixel compensation factor may be indicative of a respective decrease in transmittance for the respective pixel. An example is described and shown in connection with
The distortion compensation may be implemented after the implementation of the local dimming procedure described above. The distortion compensation instructions 130 may be implemented by the processor 108 after implementation of the BLU drive instructions 120 and/or the LC control instructions 122. For example, the backlight brightness level determined via execution of the BLU drive instructions 120 may be adjusted (e.g., decreased) as a result of the distortion compensation. The adjustments may also occur after application of the low pass filter 128 to smooth brightness variations between neighboring zones for, e.g., anti-halo purposes, as described above. The image tone levels for the LC layer 116 determined via execution of the LC control instructions 122 may also be adjusted (e.g., decreased) as a result of the distortion compensation. In other cases, the distortion compensation may be implemented concurrently with, or before, implementation of the BLU drive instructions 120 and/or the LC control instructions 122.
The compensation factors may be based on one or more measurements directed to detecting the distortions arising from the display defects. Each measurement may involve detecting the output of the display for a given (or known) display image, such as a uniform grey image. The measurement may detect differences in the output intensity across the viewable display area. The measurement data may then be used to generate the compensation factors and thereby calibrate the device 100 to generate a more uniform output.
An example of the measurement and calibration process for the distortion compensation is shown in
Each backlight zone is assigned a BLU intensity level in accordance with the BLU intensity curve 700. The assigned levels are indicated by horizontal segments within each backlight zone. In this example, the BLU intensity level corresponds with the maximum BLU intensity within each zone. Each assigned level is then used to determine a compensation factor for the respective backlight zone. In this example, the compensation factor for each backlight zone corresponds with the offset (or difference) between the maximum BLU intensity level 702 and the assigned level. An example of an offset is indicated at 704 in connection with one of the zones of the backlight unit.
The backlight compensation factors may be determined in other ways. For instance, the average or minimum BLU intensity within each zone may be used to determine the offset from the maximum BLU intensity. Alternatively or additionally, the compensation factor may be determined from the offset in other ways, including, for instance, filtering the offsets to smooth differences between neighboring zones.
In cases in which LC panel compensation factors are also determined, the LC panel compensation factors may be either based on a further measurement of the display output, or computed from the data shown in
A computation may instead be used to determine the LC panel compensation factors, the measured intensity curve shown in
Additional measurements may be used to determine the distortion compensation factors. For instance, more than two measurements may be used to provide additional data for the compensation procedure. Additional measurements and/or computations may be directed to compensating for degradation or decay of backlight unit and/or LC panel unit performance over time. For example, the brightness of thin OLED backlight zones may decay at different rates based on the stress history of the zones. The stress histories and/or the decays may be measured, computed, or otherwise tracked to determine further display defect data, e.g., time dependent display defect data, to be used for future compensation and adjustment. For example, in some cases, the decays may be computed or otherwise determined from the tracked or measured stress histories. In other cases, the decays are measured directly. The time dependent display defect data may then be integrated or otherwise saved with the initial measured display defect data for use in the future adjustments. For example, integrating the time dependent display defect data may include modifying one or more compensation factors in accordance with the time dependent display defect data and, thus, the stress histories. The time dependent display defect data and the initial measured display defect data may thus be combined and used to compensate for both static and time dependent distortions using the above-described techniques.
The processing of the frame data and other aspects of the localized backlighting and distortion compensation techniques may be implemented by any combination of the processor 104, the processor 108, and/or one or more other processor(s), which may be collectively referred to as a processor. In other examples, the device 100 includes a single processor (e.g., either the processor 104, the processor 108, or a different processor) for purposes of obtaining and processing the frame data.
The plate 202 may be configured to provide structural support for the stack. The plate 202 may be rigid or flexible. In some cases, the plate 202 is configured as, or includes, a back cover of the electronic device. The plate 202 may have a lightweight construction that nonetheless protects the layers of the stack. For example, the plate 202 may be composed of carbon fiber, aluminum, or a plastic material. The composition of the plate 202 may vary. Other characteristics of the plate 202 may also vary, including, for instance, the thickness, construction (e.g., one-piece or composite), and lateral extent or coverage.
The planar emission devices 206 are disposed in a plane in parallel with the other layers of the stack. For example, the plane in which each planar emission device 206 is disposed runs in parallel with the plane of the liquid crystal layer 208. In the example of
In some cases, the planar emission devices 206 are released from a substrate during fabrication or assembly. The stack may thus not include the substrate 212 in some cases. The planar emission devices 206 may then be bonded or otherwise secured to another substrate or layer. For example, the planar emission devices 206 may be secured to the liquid crystal layer 208 or the plate 202.
The components of the backlight unit 204 are planar or flat structures. In the example of
With a thin backlight unit 204, the display assembly 200 may be useful in connection with handheld, portable, or other electronic devices. The backlight unit 204 may be considered thin if the backlight unit 204 has a thickness on the order of (or similar to) the thickness of one or more other layers of the stack. For example, the backlight unit 204 may be thin in cases in which the thicknesses of the backlight unit 204 and the liquid crystal layer 208 are similar (e.g., within 50% of each other). For example, the backlight unit 204 may have a thickness that falls within a range from about 1 micron to about a few thousand microns. Notwithstanding the foregoing, the dimensions of each planar emission device 206 may vary.
Each planar emission device 206 is a light emitting diode or other light source device, such as an OLED device. The OLED devices may be disposed in, or configured as, a film. The configuration, construction, materials, and other aspects of the light emitting devices 206 may vary. For instance, emission technologies other than OLED technologies may be used for the light emitting devices 206. For example, III-V semiconductor-based LED structures may be used to fabricate micron-sized LED devices. The small thickness of such structures allows the devices 206 to be disposed in planar arrangements (e.g., on or in planar surfaces) and thus, distributed across the viewable area of the display. Non-LED technologies, such as finely tuned quantum dot-based emission structures, may also be used. Other thin form factor emission technologies, whether developed, in development, or future developed, may be used.
The liquid crystal layer 208 may be configured in a passive matrix or an active matrix. Active matrix configurations may be used because the peak intensity of the backlight unit zones may be high. With a driver for each pixel (e.g., each zone), active matrix configurations may have a duty cycle at nearly 100%, so average brightness levels may not involve very high peak intensities.
Passive matrix configurations may also be used. With a passive matrix, the pixel(s) of each zone may not be activated simultaneously, but rather, for example, individually. So each pixel (e.g., each zone) may utilize only a fraction of the time slot for each image frame. The peak intensity of each zone may accordingly take into account the duty cycle of each zone. In other cases, a line scan scheme is used. The duty cycle may increase to the fraction corresponding to the numbers of rows (or columns) in the matrix, thereby lowering the maximum intensity warranted for each zone pixel. Relative to these passive matrix schemes, an active matrix may significantly lower the peak intensity demand for each zone.
The liquid crystal layer 208 may be or include a stack of constituent layers. For example, constituent layers in addition to the constituent layer having the liquid crystal may be included for electrodes, polarization, and/or other purposes. Various cell designs may be used for the liquid crystal layer 208, including, for instance, twisted nematic (TN), in-plane switching (IPS), super IPS (S-IPS), and other designs. Different material systems may be used in the drive circuitry, such as amorphous silicon, poly-silicon, metal oxides, or other semiconductor materials. The configuration, construction, and other characteristics of the liquid crystal layer 208 may vary in other ways.
The composition of the cover glass 210 may vary. For example, the cover glass 210 may be configured as a uniform glass block or a composite glass block having multiple, different glasses. In still other cases, the cover glass 210 may be replaced with a transparent plastic cover.
The layers of the display assembly stack may be laminated or bonded to one another. For example, the backlight unit film 204 may be bonded to the support plate 202. Alternatively or additionally, the backlight unit film 204 may be bonded to the liquid crystal layer 208. Various adhesive materials, such as index matching, transparent epoxy materials, may be used to bond the layers of the stack to one another. In some cases, the liquid crystal layer 208 may be used as a substrate or other support structure to support the backlight unit film 204.
The layers of the stack may be secured to one another in other ways. For example, the stack layers may be clamped.
Additional, fewer, or alternative films, layers, or devices may be provided. For example, one or more additional optical or structural layers may be included in the stack. Alternatively or additionally, other components of the electronic device may be disposed in or adjacent to the stack, such as circuit, battery, and/or other components.
The layers of the stack are depicted with similar thicknesses for ease in illustration. The relative thicknesses and other dimensions of the layers of the stack may differ widely from the examples shown.
The liquid crystal array has an orientation relative to the viewable area 302. In this example, the array is disposed in columns oriented along a vertical axis 304 and in rows oriented along a horizontal axis 306. Other orientations may be used for the liquid crystal array.
The zone arrangement 300 may be oriented differently than the orientation of the display pixels to minimize boundary conditions. In this example, the zone arrangement 300 is oriented in a manner other than the horizontal-vertical orientation of the display pixels. For instance, the zone arrangement 300 may have boundaries oriented diagonally. Several examples with diagonal boundaries are shown in
In one example, the zone arrangement includes a number of zones 308, 310. The zones 308, 310 are not oriented along the rows and columns of the viewable area 302. In this example, each of the boundaries of the zones 308, 310 is disposed along diagonal lines. The boundary lines are diagonally oriented relative to the axes 304, 306 of the liquid crystal array. The intersections of the boundary lines define a number of diamond-shaped zones 310 within interior areas of the viewable area 302. The zones 310 are diamond-shaped relative to the orientation of the liquid pixel array (e.g., the axes 304, 306). Along the outer border of the viewable area 302, the zones 308 may be triangular rather than diamond-shaped.
The diamond shape of the zones 310 may help prevent or reduce artifacts of the localized backlighting control. For example, artifacts may prevented or reduced due to the tendency of a viewer of the display to focus on objects oriented along the axes 304, 306, rather than along diagonal lines.
Other shapes may be used in addition or alternative to the diamond-shaped zones 310. The shapes may be non-rectilinear shapes despite the rectilinear shape of the viewable area 302. For example, the zone arrangement may include hexagonally shaped zones.
In other cases, not all of the zone boundaries are oriented diagonally. Two examples of alternative zone shapes are shown in
The method 400 may begin with one or more acts related to obtaining data indicative of the zone arrangement of the display. The data may be indicative of the number, size, location, and other characteristics of the zones. In one example, the zone arrangement data is indicative of the zone to which each planar emission device (e.g., OLED device) belongs. Groups of planar emission devices to be commonly controlled may thus be specified. In some cases, the zone arrangement data may be specified by a matrix of planar emission devices. For example, the planar emission devices may be disposed in rows and columns that may be used as indices in specifying the zones. The zone arrangement data may be configured in alternative ways and/or include additional information. For example, the zone arrangement data may be specified via liquid crystal pixel location data.
The zone arrangement data may be obtained by accessing one or more memories. For example, the memories 110 (
The zone arrangement data may be obtained at an initial operational time. For example, the processor 108 (
In act 404, frame data to be displayed is obtained. The frame data may be provided by the processor 104 (
The frame data is then processed in act 406 to determine a backlight brightness level for each zone. In some cases, the act 406 includes determining the maximum pixel brightness for the display pixels correlated to each zone. The backlight brightness level for the respective zone may then be determined as a function of the maximum pixel brightness. The function may vary. For example, in white backlight cases, the backlight brightness level may be proportional to the maximum pixel intensity. Other cases may involve more complex functions. For example, the zone brightness may be set to levels according to the average brightness of the display pixels correlated to the respective zone. Other factors may be used to determine brightness levels, including, for instance, image quality enhancement and/or display power consumption reduction.
The act 406 may be configured such that the brightness level for each zone is determined based on the frame data local to the respective zone, as shown in act 409. The frame data may thus be processed zone-by-zone. Processing only the local frame data for a respective zone may be useful in cases in which more complex functions are used to determine the brightness level. Alternatively, the frame data is globally processed to determine the zone brightness levels.
In some cases, the zone brightness levels resulting from the function are then applied to a low pass filter in act 410. The low pass filter may be configured to smooth brightness variations between neighboring zones. The low pass filter may thus be directed to avoid halo and other artifacts or adverse effects of the local dimming.
The low pass filter may be applied regardless of whether the zone brightness levels involve local or global frame data. However, the low pass filter may provide one way in which non-local frame data is taken into account without unduly slowing down the procedure used to determine the zone brightness levels initially.
Once the backlight zone brightness levels are determined, liquid crystal (LC) pixel tone levels may be generated in act 412. The pixel tone levels are generated based on the backlight zone brightness levels and the frame data. Tone levels (e.g., red, green, and blue tone levels) are generated for each pixel in a zone once the backlight brightness level for the respective zone is known.
In the embodiment of
The generation of the reference frame in act 412 may be considered a pre-compensation stage of the method 400. The pre-compensation stage may consume minimal computing resources and, thus, power, because only local frame data is used to determine the zone brightness levels and, in turn, the tone levels of the reference frame. Global optimizations may thus be avoided. Moreover, the computing load is scaled inversely to the number of backlight zones.
The iterative procedure may be based on a determination in act 414 of the impact on the resulting image of the local dimming. For instance, the act 414 may include the calculation in act 416 of the difference between the image resulting from the local dimming and the image resulting from constant (e.g., high) intensity backlighting to estimate the amount of image distortion. Knowing the extent of the difference may allow the process to compensate for, and thus, avoid, the image distortion. New pixel tone levels may then be generated in act 418 based on the impact or difference in the resulting images.
In some cases, a pre-compensation factor is applied to the difference between the images. For example, the factor may be applied as a multiplier to the difference between the images on a pixel-by-pixel basis. As a result, factors over 1.0 (e.g., 1.2) may provide over-compensation for faster convergence. The pre-compensation factor may be used to adjust the tradeoff between image quality and processing time.
The manner in which the tone levels are generated from the brightness levels may vary, as described hereinabove.
One or more additional iterations of the generation of image tone levels may be implemented. For example, the acts 412-418 may be repeated during each iteration. The method 400 of
The above-described pre-compensation technique and iterative procedure may be applied in the context of color backlight units. A pre-compensation or reference frame may be separately generated for each color plane (e.g., red, green, and blue).
In act 420, one or more display defect distortion compensation procedures are implemented. The distortion compensation procedures may include adjustments to the zone brightness levels and/or LC pixel tone levels. The adjustments may be implemented on a zone-by-zone basis for the zone brightness levels and a pixel-by-pixel basis for the LC pixel tone levels, as described above. One or more lookup tables or other data structures may be accessed to determine the adjustments. Each lookup table may include a set of compensation factors configured to compensate for the display defects and thereby provide a more uniform display. The act 420 may be implemented once the iterative local dimming process is complete or satisfactory image tone levels are otherwise generated. Alternatively, the distortion compensation procedure(s) are implemented concurrently with, or before, the local dimming process.
The images may be provided on the display in act 422. The act 422 may include a number of procedures, including, for instance, driving the emitters of the backlight unit at the updated (or otherwise determined) brightness levels for each zone and sending control signals to the liquid crystal layer in accordance with the pixel tone levels.
The order of the acts of the method may vary from the example shown. For example, in some cases, one or more acts related to defect compensation may be implemented before or concurrently with acts related to local dimming. Furthermore, acts may be implemented in parallel or concurrently while processing the frame data of different frames.
The above-described devices may provide local dimming and/or display defect distortion compensation with planar emission devices. The local dimming is provided in coordination with image tone adjustments to reduce or eliminate halo effects and/or other artifacts of the local dimming. The planar emission devices may be configured to satisfy form factor considerations of mobile and other electronic devices. For instance, the backlight units of the devices may have thicknesses similar to or better than displays with edge-coupled light-emitting diodes.
The local dimming is optimized by configuring a zone arrangement of the planar emission devices. The zone arrangement may be coarser than the pixel array of the display, which may make implementation of the backlight unit cost effective. The shapes, sizes, spacing, and other aspects of the zones may be varied to optimize one or more power savings-cost tradeoffs. The costs to be considered may include both manufacturing or component costs and processing/resource costs. In one example, power savings of 94% may be achieved with a backlight unit having a zone arrangement having a matrix of 30 by 30 zones. Eventually, the power savings may become saturated, as the number of zones increases. The number of zones may also increase resource costs. Thus, even if the manufacturing or component costs are low enough to allow additional planar emission devices, the planar emission devices may nonetheless be grouped into multiple-device zones to reduce or minimize the processing and/or memory resources involved in supporting the local dimming technique.
With reference to
The computing environment 500 may be a general-purpose computer system or graphics- or display-based subsystem used to implement one or more of the acts described in connection with
The computing environment 500 has sufficient computational capability and system memory to enable basic computational operations. In this example, the computing environment 500 includes one or more processing unit(s) 510, which may be individually or collectively referred to herein as a processor. The computing environment 500 may also include one or more graphics processing units (GPUs) 515. The processor 510 and/or the GPU 515 may include integrated memory and/or be in communication with system memory 520. The processor 510 and/or the GPU 515 may be a specialized microprocessor, such as a digital signal processor (DSP), a very long instruction word (VLIW) processor, or other microcontroller, or may be a general purpose central processing unit (CPU) having one or more processing cores. The processor 510, the GPU 515, the system memory 520, and/or any other components of the computing environment 500 may be packaged or otherwise integrated as a system on a chip (SoC), application-specific integrated circuit (ASIC), or other integrated circuit or system.
The computing environment 500 may also include other components, such as, for example, a communications interface 530. One or more computer input devices 540 (e.g., pointing devices, keyboards, audio input devices, video input devices, haptic input devices, devices for receiving wired or wireless data transmissions, etc.) may be provided. The input devices 540 may include one or more touch-sensitive surfaces, such as track pads. Various output devices 550, including touchscreen or touch-sensitive display(s) 555, may also be provided. The output devices 550 may include a variety of different audio output devices, video output devices, and/or devices for transmitting wired or wireless data transmissions.
The computing environment 500 may also include a variety of computer readable media for storage of information such as computer-readable or computer-executable instructions, data structures, program modules, or other data. Computer readable media may be any available media accessible via storage devices 560 and includes both volatile and nonvolatile media, whether in removable storage 570 and/or non-removable storage 580.
Computer readable media may include computer storage media and communication media. Computer storage media may include both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may accessed by the processing units of the computing environment 500.
The localized backlighting techniques described herein may be implemented in computer-executable instructions, such as program modules, being executed by the computing environment 500. Program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The techniques described herein may also be practiced in distributed computing environments where tasks are performed by one or more remote processing devices, or within a cloud of one or more devices, that are linked through one or more communications networks. In a distributed computing environment, program modules may be located in both local and remote computer storage media including media storage devices.
The techniques may be implemented, in part or in whole, as hardware logic circuits or components, which may or may not include a processor. The hardware logic components may be configured as Field-programmable Gate Arrays (FPGAs), Application-specific Integrated Circuits (ASICs), Application-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs), Complex Programmable Logic Devices (CPLDs), and/or other hardware logic circuits.
The technology described herein is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the technology herein include, but are not limited to, personal computers, hand-held or laptop devices, mobile phones or devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The technology herein may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The technology herein may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
While the present invention has been described with reference to specific examples, which are intended to be illustrative only and not to be limiting of the invention, it will be apparent to those of ordinary skill in the art that changes, additions and/or deletions may be made to the disclosed embodiments without departing from the spirit and scope of the invention.
In one aspect, an electronic device includes a backlight unit configured to provide illumination across a viewable display area of the electronic device, the viewable display area including a plurality of zones. The electronic device further includes a liquid crystal layer disposed proximate to the backlight unit, the liquid crystal layer configured to selectively filter the illumination provided by the backlight unit. The electronic device further includes a processor coupled to the backlight unit and to the liquid crystal layer. The processor is configured to determine, based on data indicative of content to be displayed, a respective backlight brightness level of each zone of the plurality of zones and to generate liquid crystal control signaling for the liquid crystal layer. The processor is further configured to adjust the respective backlight brightness levels, the liquid crystal control signaling, or both the respective backlight brightness levels and the liquid crystal control signaling, to compensate for distortions arising from defects in the backlight unit, the liquid crystal layer, or both the backlight unit and the liquid crystal layer.
In another aspect, a display includes a backlight unit including a plurality of planar emission devices, the plurality of planar emission devices arranged to provide illumination across a plurality of zones, the plurality of zones collectively defining a viewable display area of the electronic device. The display further includes a liquid crystal panel disposed adjacent the backlight unit, the liquid crystal panel configured to selectively filter the illumination provided by the backlight unit. The display further includes a processor coupled to the backlight unit and to the liquid crystal panel, the processor configured to determine, based on data indicative of content to be displayed, a respective backlight brightness level of each zone of the plurality of zones and to generate control signaling for the liquid crystal panel. The processor is further configured to adjust the respective backlight brightness levels and the liquid crystal control signaling to compensate for distortions arising from defects in the backlight unit and the liquid crystal layer.
In yet another aspect, an electronic device includes a backlight unit configured to provide illumination across a viewable display area of the electronic device, the viewable display area including a plurality of zones. The electronic device further includes a liquid crystal panel disposed adjacent the backlight unit, the liquid crystal panel configured to selectively filter the illumination provided by the backlight unit. The electronic device further includes a memory in which backlight unit drive instructions, liquid crystal control instructions, and distortion compensation instructions are stored. The electronic device further includes a processor coupled to the backlight unit and to the liquid crystal panel. The processor is configured to execute the backlight unit instructions to determine, based on data indicative of content to be displayed, a respective backlight brightness level of each zone of the plurality of zones. The processor is configured to execute the liquid crystal control instructions to generate liquid crystal control signaling for the liquid crystal panel. The processor is configured to execute the distortion compensation instructions to adjust the respective backlight brightness levels and the liquid crystal control signaling to compensate for distortions arising from defects in the backlight unit and the liquid crystal layer.
In connection with any one of the aforementioned aspects, the electronic device may alternatively or additionally include any combination of one or more of the following aspects or features. The electronic device further includes a memory in which a table of backlight compensation factors is stored. The table of backlight compensation factors includes a respective backlight compensation factor for each zone of the plurality of zones. The processor is configured to decrease each backlight brightness level in accordance with the respective backlight compensation factor in the table of backlight compensation factors. The electronic device further includes a memory in which a table of pixel compensation factors is stored, each pixel compensation factor in the table of pixel compensation factors being associated with a respective pixel of the viewable display area. The processor is configured to adjust the liquid crystal control signaling on a pixel-by-pixel basis in accordance with the table of pixel compensation factors. Each pixel compensation factor in the table of pixel compensation factors is indicative of a respective decrease in transmittance for the respective pixel of the viewable display area. The electronic device further includes a memory in which a table of backlight zone compensation factors is stored, and in which a table of pixel compensation factors is stored. The processor is configured to decrease each backlight brightness level in accordance with a respective backlight compensation factor in the table of backlight compensation factors. Each pixel compensation factor in the table of pixel compensation factors is associated with a respective pixel of the viewable display area. The processor is configured to adjust the liquid crystal control signaling on a pixel-by-pixel basis in accordance with the table of pixel compensation factors. The processor is configured to determine the respective backlight brightness levels in connection with a local dimming procedure. The processor is configured to adjust the respective backlight brightness levels to compensate for the distortions after implementing the local dimming procedure. The processor is configured to generate the liquid crystal control signaling by adjusting image tone levels for the liquid crystal layer in connection with the local dimming procedure. The processor is configured to further adjust the liquid crystal control signaling to compensate for the distortions after implementing the local dimming procedure. The processor is configured to apply a low pass filter to smooth brightness variations between neighboring zones of the plurality of zones in connection with the local dimming procedure. The processor is configured to adjust the respective backlight brightness levels to compensate for the distortions after application of the low pass filter. The backlight unit includes a plurality of planar emission devices distributed over the viewable display area. Each zone of the plurality of zones includes at least one planar emission device of the plurality of planar emission devices. Each zone of the plurality of zones includes multiple planar emission devices of the plurality of planar emission devices. The processor is configured to drive each of the multiple planar emission devices in each zone of the plurality of zones at a common brightness level. The processor is configured to compensate for the distortions using a plurality of compensation factors. The processor is configured to track a stress history of the backlight unit, the liquid crystal panel, or both the backlight unit and the liquid crystal panel. The processor is configured to modify the plurality of compensation factors in accordance with the tracked stress history.
The foregoing description is given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, as modifications within the scope of the invention may be apparent to those having ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
6388388 | Weindorf et al. | May 2002 | B1 |
8188957 | Hu et al. | May 2012 | B2 |
8552972 | Kurita | Oct 2013 | B2 |
8564528 | Chen | Oct 2013 | B1 |
9618758 | Park et al. | Apr 2017 | B2 |
20070132895 | Shen | Jun 2007 | A1 |
20070139957 | Haim et al. | Jun 2007 | A1 |
20070229448 | Lin | Oct 2007 | A1 |
20080252575 | Brown | Oct 2008 | A1 |
20110096101 | Lee | Apr 2011 | A1 |
20110141154 | Ahn | Jun 2011 | A1 |
20110279482 | Neal | Nov 2011 | A1 |
20120013601 | Park | Jan 2012 | A1 |
20120200800 | Kurita | Aug 2012 | A1 |
20120287182 | Botzas | Nov 2012 | A1 |
20130308068 | Xing et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
103325355 | Sep 2013 | CN |
2312567 | Apr 2011 | EP |
2014182291 | Sep 2014 | JP |
200737093 | Oct 2007 | TW |
2016032914 | Mar 2016 | WO |
Entry |
---|
Chang et al, “DLS: Dynamic Backlight Luminance Scaling of Liquid Crystal Display”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Aug. 2004, pp. 837-846, vol. 12, No. 8. |
J.-J. Lee et al., “High-Performance Light Emitting Diode Backlight Driving System for Large-Screen Liquid Crystal Display”, IET Electr. Power Appl., 2007, pp. 946-955, vol. 1, Issue 6. |
M. Anandan, “LED Backlight: Enhancement of Picture Quality of LCD Screen”, Proceedings of 9th Asian Symposium on Information Display, Oct. 8, 2006, pp. 130-134. |
“International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2016/025962”, dated Jul. 12, 2017, 17 Pages. |
Written Opinion Issued in PCT Application No. PCT/U52016/025962, dated Mar. 14, 2017, 15 Pages. |
“International Search Report and Written Opinion Issued in PCT Application No. PCT/US2016/025962”, dated Aug. 17, 2016, 23 Pages. |
“Second Office Action Issued in Chinese Patent Application No. 201680022368.5”, dated Jan. 15, 2020, 16 Pages. |
“First Office Action Issued in Chinese Patent Application No. 201680022368.5”, dated Aug. 8, 2019, 13 Pages. |
Number | Date | Country | |
---|---|---|---|
20160307523 A1 | Oct 2016 | US |