1. Field of the Invention
The present invention relates to a display device and a display system which provide a unit for brightness adjustment in accordance with illuminance of an installation environment and contents of display images.
2. Description of the Background Art
In a conventional display device, a system which performs brightness adjustment of a display is configured as shown in
Here, screen brightness is appropriately set by a user in accordance with input setting by an external communication unit such as a remote controller, a push button or the like, and a setting value thereof is stored in a nonvolatile memory inside a controller.
In this case, when illuminance around the display changes under use environment due to an effect of outside light or the like, eyes of a person are adapted to surrounding environment, which results in a decrease in visibility. In addition, when brightness is increased more than necessary, power is consumed uselessly.
As measures against the above-mentioned problems, there are a system which measures brightness around a display on a front side to automatically adjust brightness of a display (for example, see Japanese Patent Application Laid-Open No. 09-146073 (1997)), a system which measures an illuminance by a remote controller in addition to an illuminance of a liquid crystal display panel to use those illuminances for control (for example, see Japanese Patent Application Laid-Open No. 2006-72255), and a system which uses a plurality of sensors, which are installed around a screen, for control (for example, see Japanese Patent Application Laid-Open No. 2007-310096).
In the above-mentioned systems, illuminance sensors are provided on a display surface of the display or around the display surface, and there is provided a unit which directly measures light entering the display surface of the display or measures illuminance of a place apart from the display surface of the display. However, it is conceivable as shown in
Accordingly, in a case where sensors are installed on a display surface of a display, it may be difficult to perform accurate control adapted to a change of outside light in some cases.
For example, as shown in
Therefore, there arises a problem that a conventional display device cannot accurately obtain an effect of ambient light and be adapted thereto.
Further, in a case where displays individually perform an operation of correcting outside light in a system in which a single large screen is formed using a plurality of display devices, there arises a problem that differences (variations) are caused in brightness control for displays due to variations in sensor for measuring outside light or differences in setting position.
The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a display device which accurately obtains an effect of ambient light, performs control in accordance with the effect, and performs brightness control free from brightness unevenness of a display.
A display device according to the present invention includes a display surface, a first measuring unit and a first control unit. The display surface is provided on a front surface of the display device, on which images are displayed. The first measuring unit is provided on a rear surface of the display device and measures illuminance on the rear surface. The first control unit performs brightness control on the images displayed on the display surface in accordance with a measurement result of the first measuring unit.
The display device includes the first measuring unit which measures the illuminance on the rear surface and the first control unit which performs the illuminance control on the images displayed on the display surface in accordance with the measurement result of the first measuring unit. Accordingly, it is possible to measure light entering the rear surface of the display, perform brightness control adapted thereto, and perform brightness control corresponding to an adaptation state of eyes of an observer.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
(A-1. Configuration)
In
The illuminance sensor 2 is installed on the rear surface of the display, and as in the case of the illuminance sensor 1, includes a conversion section 2b (calculation expression or table) which converts a physical measurement value of a sensor section 2a into an illuminance value.
The switching unit 4 as a second switching unit is provided for switching a destination to which measurement results of the sensors 1 and 2 on the front and rear surfaces, respectively, are applied and for turning off a measurement function.
The brightness main reference table 5a and the brightness sub-reference table 5b are provided for referring to a correction coefficient of backlight brightness from the brightness or illuminance value on the front surface or the rear surface, and a correspondence between the brightness main reference table 5a and the illuminance sensors 1 and 2 and a correspondence between the brightness sub-reference table 5b and the illuminance sensors 1 and 2 vary in accordance with a state of operation setting.
The black level main reference table 6a and the black level sub-reference table 6b are provided for referring to a correction coefficient of a black level of a display from the brightness or illuminance value of the front surface or the rear surface, and a correspondence between the black level main reference table 6a and the illuminance sensors 1 and 2 and a correspondence between the black level sub-reference table 6b and the illuminance sensors 1 and 2 vary in accordance with the state of the operation setting.
The saturation main reference table 7a and the saturation sub-reference table 7b are provided for referring to a correction coefficient of saturation of a display from the brightness or illuminance value of the front surface or the rear surface, and a correspondence between the saturation main reference table 7a and the illuminance sensors 1 and 2 and a correspondence between the saturation main reference table 7b and the illuminance sensors 1 and 2 vary in accordance with the state of the operation setting.
The brightness calculating unit 11 is provided for performing weighted addition on the backlight brightness correction coefficients determined by the brightness main reference table 5a and the brightness sub-reference table 5b to determine a backlight brightness correction value.
The black level calculating unit 12 is provided for performing weighted addition on the black level correction coefficients determined by the black level main reference table 6a and the black level sub-reference table 6b to determine a black level correction value.
The saturation calculating unit 13 is provided for performing weighted addition on the saturation correction coefficients determined by the saturation main reference table 7a and the saturation sub-reference table 7b to obtain a saturation correction value.
The APL measuring unit 8 is provided for measuring the average picture luminance (APL) gradation level of display image data to be input to the display device. The light environment APL reference table 9a and the dark environment APL reference table 9b are reference tables or calculation expressions for determining a backlight brightness correction parameter based on the measurement result of the APL measuring unit 8, and a plurality thereof are provided in the display device. The selection unit 10 selects any of a plurality of reference tables 9a and 9b or invalidates the unit itself. The brightness calculating unit 14 is provided for multiplying an output of the selection unit 10 and an output of the brightness calculating unit 11 together to determine the backlight brightness correction value.
The brightness calculating unit 15 is provided for determining the backlight brightness correction value from an output of the brightness calculating unit 14 and a backlight control parameter for user adjustment.
The black calculating unit 16 is provided for determining the black level correction value from an output of the black level calculating unit 12 and a black level control parameter for user adjustment.
The saturation calculating unit 17 is provided for determining a saturation correction value from an output of the saturation calculating unit 13 and a saturation control parameter for user adjustment.
(A-2. Operation)
(A-2-1. Operation of Display Device)
Next, an operation of the display device according to the first preferred embodiment will be described.
When, for example, the display device is installed, the user uses an OSD menu 50 as shown in
In this operation, the operations in processing modes (MODE1 to MODE5 of
First, ON/OFF setting of the front surface sensor, which has been set in the ON/OFF switching 53 of the illuminance sensor 1 on the front surface, is checked (Step ST1). The process proceeds to Step ST2 if the front surface sensor is ON. Meanwhile, if the front surface sensor is OFF, the process proceeds to Step ST9 and ON/OFF setting of the illuminance sensor 2 on the rear surface, which has been set in the ON/OFF switching 54, is checked. If it is determined in Step ST2 that the rear surface sensor is OFF, the process proceeds to Step ST8, and an operation mode is set as MODE3, and a processing in MODE3 is performed. If it is determined in Step ST2 that the rear surface sensor is ON, the presence/absence of the light source behind the display device is checked in the outside light setting 51 in Step ST3, and if there is the light source behind the display, the process proceeds to Step ST4, and a processing in MODE1 is performed. If it is determined in Step ST3 that there is no light source behind the display device, the process proceeds to Step ST5, and the distance setting between the rear surface of the display and the wall surface, which has been set in the distance setting 52, is determined. If the distance is large, the process proceeds to Step ST6, and a processing in MODE2 is performed, while if the distance is small, the process proceeds to Step ST7, and the processing in MODE1 is performed.
If it is determined in Step ST9 that the rear surface sensor is ON, the process proceeds to Step ST10, and a processing in MODE4 is performed. On the other hand, if it is determined that the rear surface sensor is OFF, the process proceeds to Step ST11, and a processing in MODE5 is performed.
If the respective processings in MODE1 to MODE5 are finished, the process proceeds to Step ST12, and a brightness correction processing is performed in accordance with an input APL gradation level of an image. Then, in Step ST13, an output processing for setting brightness and black level and saturation control, which is in accordance with the respective correction parameters determined in the above-mentioned processing, is performed.
(A-2-2. Operations in Respective Processings)
The contents of the respective processings (in MODE1 to MODE5) will be described below.
In this case, a measurement value of the illuminance sensor 1 on the front surface is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, reflection brightness on the display surface of the display is determined using the illuminance value obtained in Step ST4-2 and a luminous reflectance on the display surface of the display (Step ST4-3).
For example, in a case where it is assumed that the display surface of the display is a perfect diffusion surface (by nonglare treatment or the like) and that the luminous reflectance on the display surface is 5%, reflection brightness is approximated so that, for example, (reflectance brightness)=(measurement illuminance)/π×0.05 (for example, approximately 5 cd/m2 in a case of illuminance of 300 lux). In an actual operation, calculation is made by multiplying the above-mentioned expression by a certain correction coefficient.
Next, the process proceeds to Step ST4-4, and a backlight brightness correction coefficient 1 is determined using the brightness sub-reference table 5b in a case where the front surface is a sub-surface from the reflection brightness determined in Step ST4-3. In the same manner, a black level correction coefficient 1 is determined using the black level sub-reference table 6b in the case where the front surface is the sub-surface (Step ST4-5). In addition, a saturation correction coefficient 1 is determined using the saturation sub-reference table 7b in the case where the front surface is the sub-surface (Step ST4-6).
Next, the process proceeds to Step ST4-7, and measurement data of the illuminance sensor 2 on the rear surface is read. Then, in Step ST4-8, a measurement value is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, a backlight brightness correction coefficient 2 is determined using the brightness main reference table 5a in a case where the rear surface is a main surface from the illuminance determined in Step ST4-8 (Step ST4-9). In the same manner, a black level correction coefficient 2 is determined using the black level main reference table 6a in the case where the rear surface is the main surface (Step ST4-10). In addition, a saturation correction coefficient 2 is determined using the saturation main reference table 7a in the case where the rear surface is the main surface (Step ST4-11).
The processing in MODE1 is finished in this manner, and the process proceeds to Step ST12.
In this case, the measurement value of the illuminance sensor 1 on the front surface is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, the process proceeds to Step ST6-3, and the backlight brightness correction coefficient 2 is determined using the brightness main reference table 5a in the case where the front surface is the main surface from the illuminance determined in Step ST6-2. In the same manner, the black level correction coefficient 2 is determined using the black level main reference table 6a in the case where the front surface is the main surface (Step ST6-4). In addition, the saturation correction coefficient 2 is determined using the saturation main reference table 7a in the case where the front surface is the main surface (Step ST6-5).
Next, the process proceeds to Step ST6-6, and measurement data of the illuminance sensor 2 on the rear surface is read. Then, in Step ST6-7, the measurement value is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, the backlight brightness correction coefficient 1 is determined using the brightness sub-reference table 5b in the case where the rear surface is the sub-surface from the illuminance determined in Step ST6-7 (Step ST6-8). In the same manner, the black level correction coefficient 1 is determined using the black level sub-reference table 6b in the case where the rear surface is the sub-surface (Step ST6-9). In addition, the saturation correction coefficient 1 is determined using the saturation sub-reference table 7b in the case where the rear surface is the sub-surface (Step ST6-10).
The processing in MODE2 is finished in this manner, and the process proceeds to Step ST12.
In this case, the illuminance sensor 2 on the rear surface is OFF, and thus fixed values are respectively set so that the parameters to be controlled by the illuminance sensor 2 on the rear surface are not corrected.
First, the fixed value is set to the backlight brightness correction coefficient 1 in Step ST8-1, and then the fixed value is set to the black level correction coefficient 1 in Step ST8-2. Next, the fixed value is set to the saturation correction coefficient 1 in Step ST8-3.
Next, the process proceeds to Step ST8-4, and the measurement data of the illuminance sensor 1 on the front surface is read. Then, in Step ST8-5, the measurement value is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, the backlight brightness correction coefficient 2 is determined using the brightness main reference table 5a in the case where the front surface is the main surface from the illuminance determined in Step ST8-5 (Step ST8-6). In the same manner, the black level correction coefficient 2 is determined using the black level main reference table 6a in the case where the front surface is the main surface (Step ST8-7). Then, the saturation correction coefficient 2 is determined using the saturation main reference table 7a in the case where the front surface is the main surface (Step ST8-8).
The processing in MODE3 is finished in this manner, and the process proceeds to Step ST12.
In this case, the illuminance sensor 1 on the front surface is OFF, and thus fixed values are set so that the parameters to be controlled by the illuminance sensor 1 on the front surface are not corrected.
First, the fixed value is set to the backlight brightness correction coefficient 1 in Step ST10-1, and then the fixed value is set to the black level correction coefficient 1 in Step ST10-2. Next, the fixed value is set to the saturation correction coefficient 1 in Step ST10-3.
Next, the process proceeds to Step ST10-4, and the measurement data of the illuminance sensor 2 on the rear surface is read. Then, in Step ST10-5, the measurement value is multiplied by a certain coefficient in which a gain or the like of an optical system or a detection (amplifier) circuit is taken into consideration, and the resultant is made an illuminance value.
Next, the backlight brightness correction coefficient 2 is determined using the brightness main reference table 5a in the case where the rear surface is the main surface from the illuminance determined in Step ST10-5 (Step ST10-6). In the same manner, the black level correction coefficient 2 is determined using the black level main reference table 6a in the case where the rear surface is the main surface (Step ST10-7). Then, the saturation correction coefficient 2 is determined using the saturation main reference table 7a in the case where the rear surface is the main surface (Step ST10-8).
The processing in MODE4 is finished in this manner, and the process proceeds to Step ST12.
In this case, the illuminance sensor 1 on the front surface and the illuminance sensor 2 on the rear surface are both OFF, and thus fixed values are set so that the parameters to be controlled by the both sensors are not corrected.
First, the fixed value is set to the backlight brightness correction coefficient 1 in Step ST11-1, and then the fixed value is set to the black level correction coefficient 1 in Step ST11-2. Next, the fixed value is set to the saturation correction coefficient 1 in Step ST11-3.
Next, the fixed value is set to the backlight brightness correction coefficient 2 in Step ST11-4, and then the fixed value is set to the black level correction coefficient 2 in Step ST11-5. Next, the fixed value is set to the saturation correction coefficient 2 in Step ST11-6.
The processing in MODE5 is finished in this manner, and the process proceeds to Step ST12.
In
If the APL control is set to be ON in the ON/OFF setting of APL control, an APL is measured in Step ST12-1.
Then, ON/OFF setting of the illuminance sensor 2 on the rear surface, which has been set in the ON/OFF switching 54, is referred to (Step ST12-2). The process proceeds to Step ST12-3 if the rear surface sensor is ON, and in a case where an illuminance value on the rear surface is equal to or more than a certain value, it is determined that the setting environment of the display device is the light environment, whereby the process proceeds to Step ST12-6. Meanwhile, in a case where the illuminance value on the rear surface is less than the certain value, it is determined that the setting environment of the display device is the dark environment, whereby the process proceeds to Step ST12-7.
If the rear surface sensor is OFF in Step ST12-2, the process proceeds to Step ST12-4, and the ON/OFF setting of the front surface sensor, which has been set in the ON/OFF switching 53 of the illuminance sensor 1 on the front surface of
In Step ST12-6, which is adapted to the light environment, the light environment APL reference table 9a is referred to based on the measurement result of the APL, to thereby determine the backlight brightness parameter.
In Step ST12-7, which is adapted to the dark environment, the dark environment APL reference table 9b is referred to based on the measurement result of the APL, to thereby determine the backlight brightness parameter.
The backlight brightness correction processing by the APL is finished as described above, and the process proceeds to Step ST13.
In Step ST13-1, a value to be set as a backlight brightness correction value is calculated from a calculation expression below, and a result thereof is set as an output of the brightness control unit.
BRIGHTNESS=(K1×BL—COR1+K2×BL—COR2)×APL—CON×USER_BRIGHTNESS
Here, BRIGHTNESS represents the backlight brightness correction value (value of 0 to 255), BL_COR1 represents the backlight correction coefficient 1, BL_COR2 represents the backlight correction coefficient 2, APL_CON represents the backlight control parameter by APL, USER_BRIGHTNESS represents the backlight control parameter for user adjustment, and K1 and K2 represent a constant.
In Step ST13-2, a value to be set as the black level correction value is calculated from a calculation expression below, and a result thereof is set as an output of the black level control unit.
BLK_LEVEL=(L1×BLK—COR1+L2×BLK—COR2)+USER—BLK_LEVEL
Here, BLK_LEVEL represents the black level correction value (value of 0 to 255), BLK_COR1 represents the black level correction coefficient 1, BLK_COR2 represents the black level correction coefficient 2, USER_BLK_LEVEL represents the black level control parameter for user adjustment, and L1 and L2 represent a constant.
Next, in Step ST13-3, the ON/OFF setting content of saturation correction, which has been set in the ON/OFF switching 55 for saturation correction of
SATURATION=(M1×SAT—COR1+M2×SAT—COR2)+USER_SATURATION
Here, SATURATION represents the saturation correction value (value of 0 to 255), SAT_COR1 represents the saturation correction coefficient 1, SAT_COR2 represents the saturation correction coefficient 2, USER_SATURATION represents the saturation control parameter for user adjustment, and M1 and M2 represent a constant.
The process proceeds to Step ST13-5 if the saturation correction is OFF in Step ST13-3, and a saturation correction value is calculated from a calculation expression below, whereby a result thereof is set as an output of the saturation control unit.
SATURATION=USER_SATURATION
Here, SATURATION represents the saturation correction value (value of 0 to 255), and USER_SATURATION represents the saturation control parameter for user adjustment.
(A-3. Effects)
According to the first preferred embodiment of the present invention, the display device includes the display 100 which is provided on the front surface of the display device and is the display surface on which the images are displayed, the illuminance sensor 2 which is provided on the rear surface of the display device and is the first measuring unit measuring illuminance on the rear surface, and the control unit 101 which is the first control unit performing brightness control on the images displayed on the display 100 in accordance with the measurement result of the illuminance sensor 2. Accordingly, incident light behind the display 100 is measured, and brightness control adapted to the incident light is performed, whereby it is possible to perform brightness control corresponding to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the illuminance sensor 1 which is provided on the front surface of the display device and is the second measuring unit measuring illuminance on the front surface, and the brightness control unit performs brightness control on the images displayed on the display 100 in accordance with the measurement result of at least one of the illuminance sensors 1 and 2. In this manner, the illuminance sensors 1 and 2 are installed on the front surface and the rear surface of the display device, respectively, and screen brightness is controlled in consideration of the illuminance sensors 1 and 2, whereby brightness control adapted to the setting adapted the installment environment is performed. Accordingly, it is possible to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, in the display device, the black level control unit performs black level control on the images displayed on the display 100 in accordance with the measurement result of at least one of the illuminance sensors 1 and 2. Accordingly, it is possible to control screen brightness mainly by the illuminance sensor 2 installed on the rear surface of the illuminance sensors 1 and 2 installed on the front surface and the rear surface of the display device, respectively. In addition, it is possible to correct a black level and screen brightness in accordance with reflection brightness of the display 100 mainly by, for example, the illuminance sensor 1 installed on the front surface.
Further, according to the first preferred embodiment of the present invention, the display device further includes the APL measuring unit 8 which is the unit measuring an average picture luminance gradation level of the images, and the brightness calculating unit performs brightness control on the images displayed on the display 100 in accordance with the average picture luminance gradation level. Accordingly, it is possible to realize brightness and image quality control adapted to an adaptation state of eyes of an observer, in which an APL is taken into consideration as well.
Further, according to the first preferred embodiment of the present invention, the display device further includes the light environment APL reference table 9a and the dark environment APL reference table 9b which are the first and second reference tables used in setting of the backlight brightness correction parameter being a first control value corresponding to an average picture luminance gradation level, respectively. The light environment APL reference table 9a and the dark environment APL reference table 9b are selected in accordance with the measurement result of at least one of the illuminance sensors 1 and 2 which are the first and second measuring units. The brightness control unit of the control unit 101 being the first control unit performs brightness control on the images displayed on the display 100 being the display surface also in accordance with the backlight brightness correction parameter set in the selected light environment APL reference table 9a and dark environment APL reference table 9b. Accordingly, it is possible to realize brightness, saturation and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, in the display device, the saturation control unit of the control unit 101 being the first control unit performs saturation control on the images displayed on the display 100 in accordance with the measurement result of at least one of the illuminance sensors 1 and 2. Accordingly, it is possible to realize brightness, saturation and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the brightness main reference table 5a, the black level main reference table 6a and the saturation main reference table 7a being the third reference table, and the brightness sub-reference table 5b, the black level sub-reference table 6b and the saturation sub-reference table 7b being the fourth reference table. The third table and the fourth table are used in setting of the backlight brightness correction coefficients 1 and 2, the black level correction coefficients 1 and 2 and the saturation correction coefficients 1 and 2 which are the second control value when at least any of the brightness control, black level control and saturation control is controlled. The illuminance sensors 1 and 2 are made to correspond to the reference tables 5a, 6a and 7a and the reference tables 5b, 6b and 7b in an exchangeable manner, and the control unit 101 being the first control unit controls at least any of brightness, black level and saturation by the backlight brightness correction coefficients 1 and 2, the black level correction coefficients 1 and 2 and the saturation correction coefficients 1 and 2 which are set in the reference tables 5a, 6a and 7a and the reference tables 5b, 6b and 7b. Accordingly, it is possible to realize brightness, saturation and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the calculating unit 3 which calculates reflection brightness on the front surface from the measurement result of the illuminance sensor 2 which is the second measuring unit, and the control unit 101 which is the first control unit controls brightness, black level and saturation of the images displayed on the display 100 in accordance with the result of at least one of the illuminance sensor 1 and the calculating unit 3. Accordingly, it is possible to realize brightness, saturation and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the ON/OFF switching 53 for the illuminance sensor 1 on the front surface and the ON/OFF switching 54 for the illuminance sensor 2 on the rear surface, which are the first switching unit switching between ON and OFF of a function of at least one of the illuminance sensors 1 and 2. Accordingly, the sensors can be used correspondingly to various environments, and it is possible to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, in the display device, fixed values set in advance are set to the backlight brightness correction coefficients 1 and 2, the black level correction coefficients 1 and 2 and the saturation correction coefficients 1 and 2, which are control values corresponding to the illuminance sensors 1 and 2 set to be OFF in the ON/OFF switching 53 for the illuminance sensor 1 on the front surface and the ON/OFF switching 54 for the illuminance sensor 2 on the rear surface being the first switching unit. Accordingly, the sensors can be used correspondingly to various environments, and it is possible to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the outside light setting 51 and the distance setting 52 as the setting units which set information indicating a positional relationship between the display 100 and an external lighting source. Accordingly, it is possible to change contributions or the like of the sensors correspondingly to various environments, and to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, in the display device, the outside light setting 51 and the distance setting 52 also set information indicating the distance between the display 100 and the outer wall. Accordingly, it is possible to realize brightness and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, the display device further includes the switching unit 4 as the second switching unit which switches the operation mode of the brightness control unit, the black level control unit and the saturation control unit and the control settings of the main and sub-reference tables (5a and 5b to 7a and 7b) in accordance with the positional relationship between the display 100 and the external lighting source and the distance between the display 100 and the outer wall. Accordingly, it is possible to switch to the suitable reference table adapted to various environments, and to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
Further, according to the first preferred embodiment of the present invention, in the display device, the above-mentioned control settings are control settings for switching the correspondence between the illuminance sensor 1 and the reference tables 5a, 6a and 7a which are the third reference table and the reference tables 5b, 6b, and 7b which are the fourth reference table and a correspondence between the illuminance sensor 2 and the reference tables 5a, 6a and 7a which are the third reference table and the reference tables 5b, 6b, and 7b which are the fourth reference table. Accordingly, it is possible to switch to the suitable reference table adapted to various environments, and to realize brightness and image quality control adapted to an adaptation state of eyes of an observer.
(B-1. Configuration)
A second preferred embodiment of the present invention relates to a display system including a plurality of the display devices according to the first preferred embodiment. The respective display devices are capable of performing outside light correction processing in a similar manner to the display device according to the first preferred embodiment, and a user selects one thereof as described below and sets the selected one as a master. In that case, other devices are set as slaves, and the plurality of display devices are capable of communicating with each other through a network.
(B-2. Operation)
First, the user selects one of the plurality of display devices and sets the selected one as a master (one display device of the plurality of display devices) in mode selection 61 of an OSD menu 60 shown in
Next, in Step ST16-3, setting parameters for respective operations set in
Next, in Step ST16-4, a switching command of a brightness correction mode is sent from the display device being as a master to the other display devices being as slaves, and the other display devices are caused to be in a remote mode. The display devices set to be in the remote mode use the measurement results of data on the front surface and the rear surface sent by the master in place of a measurement result of a built-in sensor.
Next, measurement results of data of the illuminance sensors 1 and 2 on the front surface and the rear surface are distributed by a distribution unit (not shown) from the master to all the slaves (Step ST16-5).
Step ST16-5 is repeated until brightness correction mode switching (from remote to local) is performed from the master to the slaves (Step ST16-6).
In
Next, the display device designated as a master sends a command for switching the mode of brightness correction control from LOCAL to REMOTE to the other all connected display devices (Step ST17-2).
Next, the display device designated as a master respectively reads measurement data of the illuminance sensor 1 on the front surface and measurement data of the illuminance sensor 2 on the rear surface thereof and an APL value (Step ST17-3).
Next, the display device designated as a master distributes related control setting parameters (such as position of a light source, distance with the wall surface and ON/OFF setting of a sensor) in addition to the measurement data of the sensors and APL value read in Step ST17-3 to the other all connected display devices (Step ST17-4).
Next, the display device designated as a master performs the outside light correction processing as described above based on the measurement result of the sensor thereof (Step ST17-5).
Next, the display device designated as a master checks whether or not master designation in a communication mode is canceled via OSD setting or a communication command. If the master designation is not canceled, the process returns to Step ST17-3 (Step ST17-6).
If the master designation is canceled in the above-mentioned Step ST17-6, the display device designated as a master sends a command for switching a mode of brightness correction control from REMOTE to LOCAL to the other all connected display devices (Step ST17-7).
As described above, according to the second preferred embodiment of the present invention, the display device designated as a master acts so that the other all connected display devices operate under the same condition.
Note that in the operation shown in
In
Next, the display device designated as a slave performs the outside light correction processing by a control unit (not shown) as a second control unit based on the parameters received in the above-mentioned Step ST18-1 (Step ST18-2). Note that it is assumed that in a case where the display device designated as a master includes the above-mentioned obtaining unit, sensor data is sent to the display device designated as a master, and the outside light correction processing, which is based on the setting parameter information such as the sensor data and the APL data measured by the first and second measuring units of the display device designated as a master and the other display device, is performed by a control unit (not shown) as a third control unit.
The above-mentioned control unit as the second control unit and control unit as the third control unit perforin the outside light correction processing by functions (brightness control unit, black level control unit, saturation control unit and the like) of the control unit 101 being the first control unit.
Next, it is checked whether or not the mode of the brightness correction control is canceled from REMOTE to LOCAL by a communication command, and if the remote mode is not canceled, the process returns to Step ST18-1 (Step ST18-3).
If the remote mode is canceled in Step ST18-3, the process is finished.
The display device according to the second preferred embodiment operates as described above.
(B-3. Effects)
According to the second preferred embodiment of the present invention, in the display system including a plurality of display devices, the display device designated as a master, which is one display device among the plurality of display devices, includes the distributing unit which distributes at least the measurement result on illuminance of the illuminance sensor 1 or the measurement results on illuminance of the illuminance sensors 1 and 2 of the display device designated as a master to the display devices designated as slaves, which are other display devices. In addition, the display devices designated as slaves among the plurality of display devices each include the second control unit which performs brightness control on the images displayed on the displays 100 of the display devices designated as slaves in accordance with the distributed measurement result on illuminance Accordingly, the display device designated as a master can distribute the measurement data and setting information of the optical sensors of a specific display device to the other devices using a communication function, and the other devices can perform the outside light correction operation based on the distributed information. As a result, there is performed brightness control corresponding to setting corresponding to an installation environment, to thereby realize brightness and image quality control adapted to an adaptation state of eyes of an observer. Further, it is possible to perform brightness control optimum to cases under various setting environments. Moreover, even in a case where a single screen is composed of a plurality of display device groups, measurement results on light and various setting contents of one display device are shared within the group, to thereby realize brightness control free from unevenness in the screen.
Further, according to the second preferred embodiment of the present invention, in the display system including a plurality of display devices, the display device designated as a master, which is one display device among the plurality of display devices, includes an obtaining unit (not shown) which obtains at least the measurement results on illuminance of the illuminance sensors 1 or the measurement results on illuminance of the illuminance sensors 1 and 2 of the display devices designated as slaves, which are the other display devices among the plurality of display devices, and a third control unit (not shown) which performs brightness control on the images displayed on the displays 100 of the plurality of display devices in accordance with the measurement results obtained by the obtaining unit and the measurement results of the illuminance sensors 1 and 2 of the display device designated as a master. Accordingly, the display device designated as a master can receive and distribute measurement data and various setting information of the optical sensors of a specific display device using a communication function, and the other display devices can respectively perform the outside light correction operation based on the distributed information. As a result, there is performed brightness control corresponding to setting corresponding to an installation environment, to thereby realize brightness and image quality control adapted to an adaptation state of eyes of an observer. Further, it is possible to perform brightness control optimum to cases under various setting environments. Moreover, even in a case where a single screen is composed of a plurality of display device groups, measurement results on light and various setting contents of the plurality of display devices are used within the group in a unified manner, to thereby realize brightness control free from unevenness in the screen.
(C-1. Configuration)
Note that though brightness, black level, gamma and saturation are described as examples of parameters for image control in the first to third preferred embodiments, other parameters such as sharpness may be described as an example.
A gamma main reference table 18a and a gamma sub-reference table 18b are provided for referring to a gamma correction coefficient of a display by a brightness value or illuminance value on the front surface or the rear surface, and a correspondence between the gamma main reference table 18a and the illuminance sensors 1 and 2 and a correspondence between the gamma main reference table 18b and the illuminance sensors 1 and 2 are changed in accordance with a state of operation setting.
A gamma calculating unit 19 is provided for performing weighted addition the gamma correction coefficients 1 and 2 determined by the gamma main reference table 18a and the gamma sub-reference table 18a together to determine the gamma correction value.
(C-2. Operation)
Based on the measurement results of the illuminance sensors 1 and 2 installed on the front surface and the rear surface, respectively, brightness and the like are controlled using the respective reference tables.
The gamma correction coefficients 1 and 2 are determined by a method similar to that of determining the correction coefficients (1, 2) using the reference tables 6a and 6b of black level according to the first preferred embodiment, to thereby determine the gamma correction value. Details thereof are similar to those of the first preferred embodiment, and their description will be omitted.
(C-3. Effects)
According to the third preferred embodiment of the present invention, in the display device, the gamma control unit of the control unit 101 as the first control unit performs gamma control on the images displayed on the display 100 in accordance with the measurement result of at least one of the illuminance sensors 1 and 2. As a result, screen brightness can be controlled mainly by the illuminance sensor 2 of the illuminance sensors 1 and 2 which are installed on the front surface and the rear surface of the display device, respectively, and further gamma control can be enabled. Accordingly, it is possible to perform brightness and gamma control adapted to an illuminance environment.
Further, according to the third preferred embodiment of the present invention, the display device further includes the gamma main reference table 18a as the third reference table and the gamma sub-reference table 18b as the fourth reference table which are used in setting of the gamma correction coefficients 1 and 2 which are the second control values in gamma control. In addition, the illuminance sensors 1 and 2 are made to correspond to the reference table 18a and the reference table 18b in an exchangeable manner, and the gamma control unit of the control unit 101 being the first control unit performs the gamma control by the gamma correction coefficients 1 and 2 set in the reference table 18a and the reference table 18b. Accordingly, it is possible to realize brightness, saturation and image quality control adapted to various environments and an adaptation state of eyes of an observer.
Further, according to the third preferred embodiment of the present invention, the display device further includes the calculating unit 3 which calculates reflection brightness on the front surface from the measurement result of the illuminance sensor 1 being the second calculating unit. In addition, the gamma control unit of the control unit 101 being the first control unit performs gamma control on the images displayed on the display 100 in accordance with the result of at least one of the illuminance sensor 1 and the calculating unit 3. Accordingly, it is possible to realize brightness, saturation and image quality control which adapted to various environments and an adaptation state of eyes of an observer.
As an application example of the present invention, the present invention is applicable to an on-vehicle display device (car navigation system), a household TV receiver and the like, in addition to a large display device (public display) used for public purpose.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2009-026967 | Feb 2009 | JP | national |