The present application claims priority under 35 U.S.C. § 119(a) to Korean patent application no. 10-2019-0024131, filed on Feb. 28, 2019 in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference herein in its entirety.
Exemplary embodiments of the inventive concept relate to a display device and a driving method thereof.
With the development of information technologies, the importance of a display device as a connection medium between a user and information increases. Accordingly, display devices such as liquid crystal display devices, organic light emitting display devices, and plasma display devices are increasingly used.
An organic light emitting display device includes a plurality of pixels, and allows organic light emitting diodes of the plurality of pixels to emit lights to correspond to a plurality of grayscale values constituting an image frame, thus displaying the image frame.
In general, in the organic light emitting display device, grayscale voltages are set to exhibit a luminance according to a gamma curve preferred by white color light emitted when pixels of different colors emit lights with the same luminance.
Therefore, when mixed color light or single color light instead of the white color light is emitted using the set grayscale voltages, the luminance of the mixed color light or single color light does not accurately correspond to the above-described gamma curve. In addition, lateral leakage may occur where, when the single color light is emitted, holes of driving current flowing through a corresponding pixel are leaked to adjacent pixels having small resistance through a P-doped Hole Injection Layer (PHIL) that is a layer shared by the organic light emitting diodes. Therefore, light may not be emitted with a desired luminance.
According to an exemplary embodiment of the inventive concept, a display device may include a processor, and a display panel configured to receive observation grayscale values from the processor. The display panel includes a data driver configured to apply data voltages to data lines, a target pixel coupled to at least one of the data lines, and observation pixels each coupled to at least one of the data lines, and located adjacent to the target pixel. The display panel applies a first data voltage to the target pixel, when the observation grayscale values for the observation pixels exceed a reference value, the display panel applies a second data voltage to the target pixel, when at least one of the observation grayscale values does not exceed the reference value, and the first data voltage and the second data voltage are different from each other.
No other pixels may exist between the target pixel and the observation pixels.
The target pixel may emit light of a first color. Some of the observation pixels may emit light of a second color different from the first color, and the others of the observation pixels may emit light of a third color different from the first color and the second color.
When a driving transistor of the target pixel is a P-type transistor, the first data voltage may be larger than the second data voltage.
When a driving transistor of the target pixel is an N-type transistor, the first data voltage may be smaller than the second data voltage.
According to an exemplary embodiment of the inventive concept, a display device may include a target pixel emitting light of a first color, second color observation pixels located adjacent to the target pixel, and emitting light of a second color different from the first color, third color observation pixels located adjacent to the target pixel, and emitting light of a third color different from the first color and the second color, and a grayscale corrector configured to convert an input grayscale value corresponding to the target pixel, with reference to second color observation grayscale values corresponding to the second color observation pixels and third color observation grayscale values corresponding to the third color observation pixels. The grayscale corrector includes a light emitting pixel counter configured to provide a second color light emitting pixel number by counting a number of the second color observation grayscale values that exceed a reference value, and provide a third color light emitting pixel number by counting a number of the third color observation grayscale values that exceed the reference value, and a grayscale converter configured to provide a converted grayscale value obtained by converting the input grayscale value, based on the second color light emitting pixel number and the third color light emitting pixel number.
The grayscale corrector may further include a single color offset provider configured to provide single color offset values. When the second color light emitting pixel number is 0 and the third color light emitting pixel number is 0, the grayscale converter may generate the converted grayscale value by adding a corresponding offset value among the single color offset values to the input grayscale value.
The grayscale corrector may further include a double mixed color offset provider configured to provide double mixed color offset values. When the second color light emitting pixel number is greater than 0 and the third color light emitting pixel number is 0, the grayscale converter may generate the converted grayscale value by adding a corresponding offset value among the double mixed color offset values to the input grayscale value.
The grayscale corrector may further include a triple mixed color offset provider configured to provide triple mixed color offset values. When the second color light emitting pixel number is greater than 0, the third color light emitting pixel number is greater than 0, and the second color light emitting pixel number and the third color light emitting pixel number are not respectively equal to a number of the second color observation pixels and a number of the third color observation pixels, the grayscale converter may generate the converted grayscale value by adding a corresponding offset value among the triple mixed color offset values to the input grayscale value.
The grayscale converter may determine the input grayscale value as the converted grayscale value, when the second color light emitting pixel number is equal to the number of the second color observation pixels and the third color light emitting pixel number is equal to the number of the third color observation pixels.
The single color offset provider may include a single color reference offset provider configured to receive an input maximum luminance value, and provide reference offset values corresponding to the input maximum luminance value, and a single color total offset generator configured to generate the single color offset values by interpolating the reference offset values.
The single color reference offset provider may include a single color preset determiner configured to pre-store preset offset values corresponding to preset maximum luminance values, and determine whether the input maximum luminance value corresponds to any one of the preset maximum luminance values. When the input maximum luminance value corresponds to any one of the preset maximum luminance values, the single color preset determiner may provide the corresponding preset offset values as the reference offset values.
When the input maximum luminance value does not correspond to any one of the preset maximum luminance values, the single color preset determiner may provide the preset offset values corresponding to at least two preset maximum luminance values, and the single color reference offset provider may further include a single reference offset generator configured to generate the reference offset values by interpolating the preset offset values corresponding to the at least two preset maximum luminance values.
The preset maximum luminance values may include a maximum value and a minimum value of the receivable input maximum luminance value.
The preset maximum luminance values may further include a first intermediate maximum luminance value, and when the input maximum luminance value is a value between the maximum value and the first intermediate maximum luminance value, a grayscale voltage corresponding to the converted grayscale value may be adjusted corresponding to the input maximum luminance value.
When the input maximum luminance value is a value between the minimum value and the first intermediate maximum luminance value, an emission period of the target pixel may be adjusted corresponding to the input maximum luminance value.
The preset maximum luminance values may further include a second intermediate maximum luminance value that is a value between the first intermediate maximum luminance value and the minimum value.
According to an exemplary embodiment of the inventive concept, for a method for driving a display device, the display device may include a target pixel configured to emit light of a first color, second color observation pixels located adjacent to the target pixel, and configured to emit light of a second color different from the first color, and third color observation pixels located adjacent to the target pixel, and configured to emit light of a third color different from the first color and the second color. The driving method may include receiving an input grayscale value corresponding to the target pixel, second color observation grayscale values corresponding to the second color observation pixels, and third color observation grayscale values corresponding to the third color observation pixels, determining a second color light emitting pixel number by counting a number of the second color observation grayscale values that exceed a reference value, determining a third color light emitting pixel number by counting a number of the third color observation grayscale values that exceed the reference value, and generating a converted grayscale value by converting the input grayscale value, based on the second color light emitting pixel number and the third color light emitting pixel number.
In the generating of the converted grayscale value, the converted grayscale value may be generated by adding a single color offset value to the input grayscale value, when the second color light emitting pixel number is 0 and the third color light emitting pixel number is 0.
In the generating of the converted grayscale value, the converted grayscale value may be generated by adding a double mixed color offset value to the input grayscale value, when the second color light emitting pixel number is greater than 0 and the third color light emitting pixel number is 0.
In the generating of the converted grayscale value, the converted grayscale value may be generated by adding a triple mixed color offset value to the input grayscale value, when the second color light emitting pixel number is greater than 0, the third color light emitting pixel number is greater than 0, and the second color light emitting pixel number and the third color light emitting pixel number are not respectively equal to a number of the second color observation pixels and a number of the third color observation pixels.
In the generating of the converted grayscale value, the input grayscale value may be determined as the converted grayscale value, when the second color light emitting pixel number is equal to the number of the second color observation pixels, and the third color light emitting pixel number is equal to the number of the third color observation pixels.
The display panel may be further configured to receive an input grayscale value from the processor, and the display panel may apply the first data voltage and the second data voltage when the input grayscale value for the target pixel exceeds the reference value.
According to an exemplary embodiment of the inventive concept, a display panel may include a target pixel connected to a first scan line and a first data line, and configured to emit light of a first color, second color observation pixels located adjacent to the target pixel, connected to scan lines adjacent to the first scan line, and configured to emit light of a second color different from the first color, third color observation pixels located adjacent to the target pixel, connected to the first scan line or the first data line, and configured to emit light of a third color different from the first color and the second color, and a grayscale corrector configured to convert an input grayscale value corresponding to the target pixel to a converted grayscale value, based on whether the second color observation pixels and the third color observation pixels are in an emission state. A pixel is in the emission state when a corresponding grayscale value exceeds a reference value.
No other pixels may exist between the target pixel and the second color observation pixels and between the target pixel and the third color observation pixels.
A second color light emitting pixel number may be a number of the second color observation pixels in the emission state, a third color light emitting pixel number may be a number of the third color observation pixels in the emission state, and the converted grayscale value may be generated based on the second color light emitting pixel number and the third color light emitting pixel number.
The input grayscale value may be determined as the converted grayscale value, when the second color light emitting pixel number is equal to the total number of the second color observation pixels, and the third color light emitting pixel number is equal to the total number of the third color observation pixels.
The input grayscale value added with an offset value may be determined as the converted grayscale value, when the second color light emitting pixel number is not equal to the total number of the second color observation pixels, or the third color light emitting pixel number is not equal to the total number of the third color observation pixels.
The above and other features of the inventive concept will be more clearly understood by describing in detail exemplary embodiments thereof with reference to the accompanying drawings.
Exemplary embodiments of the inventive concept provide a display device capable of exhibiting a desired luminance even when single color light and mixed color light are emitted in addition to white color light, and a driving method of the display device.
Exemplary embodiments of the inventive concept will be described more fully hereinafter with reference to the accompanying drawings. Like reference numerals may refer to like elements throughout this application.
Referring to
The processor 9 may provide grayscale values and control signals with respect to an image frame. The processor 9 may be an application processor, a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), etc. The processor 9 may provide grayscale values to be matched to a structure (e.g., a pentile structure or an RGB stripe structure) of the pixel unit 14. For example, the processor 9 may provide grayscales to correspond one-to-one to pixels RPij included in the pixel unit 14. The processor 9 may also provide grayscale values regardless of the structure of the pixel unit 14. The processor 9 may provide a red grayscale value, a green grayscale value, and a blue grayscale value with respect to one dot. A number of the grayscale values may be different from that of the pixels included in the pixel unit 14.
The timing controller 11 may receive grayscale values and control signals with respect to an image frame from the processor 9. When the processor 9 provides grayscale values to be matched to the structure of the pixel unit 14, the timing controller 11 may provide the received grayscale values to the grayscale corrector 16. When the processor 9 provides grayscale values regardless of the structure of the pixel unit 14, the timing controller 11 may generate grayscale values rendered to correspond one-to-one to the pixels included in the pixel unit 14 by rendering the received grayscale values, and provide the rendered grayscale values to the grayscale corrector 16.
The grayscale corrector 16 may provide converted grayscale values by correcting grayscale values.
The timing controller 11 may provide such converted grayscale values and control signals to the data driver 12. Additionally, the timing controller 11 may provide a clock signal, a scan start signal, etc. to the scan driver 13.
The data driver 12 may generate data voltages to be provided to data lines DL1, DL2, DL3, . . . , and DLn by using the converted grayscale values and the control signals, which are received from the timing controller 11. For example, the data driver 12 may sample the converted grayscale values by using a clock signal, and apply data voltages corresponding to the converted grayscale values to the data lines DL1 to DLn in units of pixel rows. Here, n may be an integer greater than 0. The data voltages may correspond to grayscale voltages RV0 to RV255, GV0 to GV255, and BV0 to BV255 provided from the grayscale voltage generator 15.
In other words, different data voltages may be generated based on the converted grayscale values. The grayscale values for pixels may be compared to a reference value to determine an emission state of the pixels. Different grayscale values result in different converted grayscale values. As such, for example, a first data voltage may be generated and applied to a target pixel, when an input grayscale value for the target pixel exceeds the reference value and the grayscale values for observation pixels adjacent to the target pixel exceed the reference value. A second data voltage different from the first data voltage may be generated and applied to the target pixel, when the input grayscale value exceeds the reference value and at least one of the grayscale values for the observation pixels does not exceed the reference value. This will be described in further detail below with reference to
The scan driver 13 may generate scan signals to be provided to scan lines SL1, SL2, SL3, . . . , and SLm by receiving the clock signal, the scan start signal, etc. from the timing controller 11. For example, the scan driver 13 may sequentially provide scan signals having a pulse of a turn-on level to the scan lines SL1 to SLm. For example, the scan driver 13 may be configured in a shift register form, and generate scan signals in a manner that sequentially transfers the scan start signal in the form of a pulse of a turn-on level to a next scan stage circuit in response to the clock signal. Here, p may be an integer that is not 0. Here, m may be an integer greater than 0.
The pixel unit 14 includes pixels. Each pixel RPij may be coupled to a corresponding data line and a corresponding scan line. Here, i and j may be integers greater than 0. The pixel RPij may refer to a pixel coupled to an ith scan line and a jth data line.
The pixel unit 14 may include pixels emitting light of a first color, pixels emitting light of a second color, and pixels emitting light of a third color. The first color, the second color, and the third color may be colors different from one another. For example, the first color may be one color among red, green, and blue colors, the second color may be another color different from the first color among the red, green, and blue colors, and the third color may be another color different from the first color and the second color among the red, green, and blue colors. In addition, magenta, cyan, and yellow colors may be used instead of the red, green, and blue colors as the first to third colors. However, for convenience of description, a case is described where the red, green, and blue colors are used as the first to third colors, the magenta color is expressed as a combination of the red and blue colors, the cyan color is expressed as a combination of the green and blue colors, and the yellow color is expressed as a combination of the red and green colors.
Hereinafter, a case where the pixel unit 14 is disposed in a diamond pentile structure is assumed and described. However, even if the pixel unit 14 is disposed in another structure, e.g., an RGB-stripe structure, an S-stripe structure, a real RGB structure, a normal pentile structure, etc., those skilled in the art may implement the inventive concept by appropriately setting a target pixel and observation pixels, which will be described later.
Hereinafter, the position of the pixel RPij is described with respect to the position of each light emitting diode (particularly, an emitting layer). The position of a pixel circuit coupled to each light emitting diode may not correspond to that of the light emitting diode, and the pixel circuit and the light emitting diode may be appropriately disposed so as to achieve space efficiency.
The grayscale voltage generator 15 may receive an input maximum luminance value DBVI, and provide the grayscale voltages RV0 to RV255 with respect to the pixels of the first color, the grayscale voltages GV0 to GV255 with respect to the pixels of the second color, and the grayscale voltages BV0 to BV255 with respect to the pixels of the third color, which correspond to the input maximum luminance value DBVI. Hereinafter, for convenience of description, a case is described where a total of 256 grayscales from grayscale 0 (minimum grayscale) to 155 (maximum grayscale) exist. However, when a grayscale value is expressed with eight bits or more, a larger number of grayscales may exist.
A maximum luminance value may be a luminance value of light emitted from pixels, corresponding to the maximum grayscale. For example, the maximum luminance value may be a luminance value of white color light generated when a pixel of the first color emits light corresponding to the grayscale 255, a pixel of the second color emits light corresponding to the grayscale 255, and a pixel of the third color emits light corresponding to the grayscale 255. The pixel of the first color, the pixel of the second color, and the pixel of the third color constitute one dot. The unit of the luminance value may be nit.
Therefore, the pixel unit 14 may display a partially (spatially) dark or bright image frame, but the maximum brightness of the image frame is limited to the maximum luminance value. Such a maximum luminance value may be manually set by manipulation of a user with respect to the display panel 10, or be automatically set by an algorithm associated with an illumination sensor, etc. The set maximum luminance value is expressed as an input maximum luminance value.
The maximum luminance value may vary depending on products. However, for example, the maximum value of the maximum luminance value may be 1200 nits, and the minimum value of the maximum luminance value may be 4 nits. When the input maximum luminance value DBVI varies with respect to the same grayscale value, the grayscale voltage generator 15 provides other grayscale values RV0 to RV255, GV0 to GV255, and BV0 to BV255, and therefore, the light emitting luminance of the pixel varies.
The grayscale corrector 16 may correct an input grayscale value to a converted grayscale value as described above. The grayscale corrector 16 will be described in detail with reference to
In the above-described exemplary embodiment, a case where the grayscale corrector 16 is a component separate from the timing controller 11 is illustrated. However, in exemplary embodiments of the inventive concept, a portion or the whole of the grayscale corrector 16 may be integrally configured with the timing controller 11. For example, a portion or the whole of the grayscale corrector 16 may be configured together with the timing controller 11 in an integrated circuit form. In exemplary embodiments of the inventive concept, a portion or the whole of the grayscale corrector 16 may be implemented in a software manner in the timing controller 11.
In an exemplary embodiment of the inventive concept, a portion or the whole of the grayscale corrector 16 may be configured together with the data driver 12 in an integrated circuit form. In exemplary embodiments of the inventive concept, a portion or the whole of the grayscale corrector 16 may be implemented in a software manner in the data driver 12. Therefore, the timing controller 11 may provide input grayscale values to the data driver 12, and the grayscale corrector 16 or the data driver 12 may autonomously correct the input grayscale values to converted grayscale values.
In an exemplary embodiment of the inventive concept, a portion or the whole of the grayscale corrector 16 may be configured together with the processor 9 in an integrated circuit form. In an exemplary embodiment of the inventive concept, a portion or the whole of the grayscale corrector 16 may be implemented in a software manner in the processor 9. Therefore, the timing controller 11 may directly receive converted grayscale values from the processor 9.
The pixel RPij may be a pixel emitting light of the first color. Pixels emitting light of the second color or the third color include components substantially identical to those of the pixel RPij except a light emitting diode R_LD1, and therefore, overlapping descriptions will be omitted.
The pixel RPij may include a plurality of transistors T1, and T2, a storage capacitor Cst1, and the light emitting diode R_LD1.
Although a case where the transistors are implemented with a P-type transistor, e.g., a PMOS transistor, is illustrated in the present exemplary embodiment, those skilled in the art may implement a pixel circuit that performs substantially the same function, using an NMOS transistor.
A gate electrode of the transistor T2 is coupled to a scan line SLi, one electrode of the transistor T2 is coupled to a data line DLj, and the other electrode of the transistor T2 is coupled to a gate electrode of the transistor T1. The transistor T2 may be referred to as a scan transistor, a switching transistor, etc.
The gate electrode of the transistor T1 is coupled to the other electrode of the transistor T2, one electrode of the transistor T1 is coupled to a first power line ELVDD, and the other electrode of the transistor T1 is coupled to an anode of the light emitting diode R_LD1. The transistor T1 may be referred to as a driving transistor.
The storage capacitor Cst1 couples the one electrode and the gate electrode of the transistor T1 to each other.
The anode of the light emitting diode R_LD1 is coupled to the other electrode of the transistor T1, and a cathode of the light emitting diode R_LD1 is coupled to a second power line ELVSS. The light emitting diode R_LD1 may be a device emitting light having a wavelength corresponding to the first color. The light emitting diode R_LD1 may be implemented with an organic light emitting diode, an inorganic light emitting diode, a quantum dot light emitting diode, etc. The pixel RPij shown in
When a scan signal of a turn-on level (low level) is supplied to the gate electrode of the transistor T2 through the scan line SLi, the transistor T2 couples the data line DLj and one electrode of the storage capacitor Cst1 to each other. Therefore, a voltage value according to the difference between a data voltage DATAij applied through the data line DLj and a first power voltage is stored in the storage capacitor Cst1. The data voltage DATAij may correspond to one of the grayscale voltages RV0 to RV255.
The transistor T1 allows a driving current determined according to the voltage stored in the storage capacitor Cst1 to flow from the first power line ELVDD to the second power line ELVSS. The light emitting diode R_LD1 emits light with a luminance corresponding to an amount of the driving current.
A display panel 10′ shown in
The emission driver 17 may generate emission signals to be provided to emission lines EL1, EL2, EL3, . . . , and ELo by receiving a clock signal, an emission stop signal, etc. from the timing controller 11. For example, the emission driver 17 may sequentially provide emission signals having a pulse of a turn-off level to the emission lines EL1 to ELo. For example, the emission driver 17 may be configured in a shift register form, and generate emission signals in a manner that sequentially transfers the emission stop signal in the form of a pulse of a turn-off level to a next scan stage circuit in response to the clock signal. Here, o may be a natural number.
The pixel unit 14′ may include pixels. Each pixel RPij′ may be coupled to a corresponding data line, a corresponding scan line, and a corresponding emission line.
Referring to
One electrode of the storage capacitor Cst2 is coupled to the first power line ELVDD, and the other electrode of the storage capacitor Cst2 is coupled to a gate electrode of the transistor M1.
One electrode of the transistor M1 is coupled to the other electrode of the transistor M5, the other electrode of the transistor M1 is coupled to one electrode of the transistor M6, and the gate electrode of the transistor M1 is coupled to the other electrode of the storage capacitor Cst2. The transistor M1 may be referred to as a driving transistor. The transistor M1 determines an amount of driving current flowing between the first power line ELVDD and the second power line ELVSS according to a potential difference between the gate electrode and a source electrode thereof.
One electrode of the transistor M2 is coupled to the data line DLj, the other electrode of the transistor M2 is coupled to the one electrode of the transistor M1, and a gate electrode of the transistor M2 is coupled to a current scan line SLi. The transistor M2 may be referred to as a switching transistor, a scan transistor, etc. When a scan signal of a turn-on level is applied to the current scan line SLi, the transistor M2 allows a data voltage of the data line DLj to be input to the pixel RPij′.
One electrode of the transistor M3 is coupled to the other electrode of the transistor M1, the other electrode of the transistor M3 is coupled to the gate electrode of the transistor M1, and a gate electrode of the transistor M3 is coupled to the current scan line SLi. When a scan signal of a turn-on level is applied to the current scan line SLi, the transistor M3 allows the transistor M1 to be diode-coupled.
One electrode of the transistor M4 is coupled to the gate electrode of the transistor M1, the other electrode of the transistor M4 is coupled to an initialization voltage line VINT, and a gate electrode of the transistor M4 is coupled to a previous scan line SL(i−1). In an exemplary embodiment of the inventive concept, the gate electrode of the transistor M4 may be coupled to another scan line. When a scan signal of a turn-on level is applied to the previous scan line SL(i−1), the transistor M4 initializes a quantity of electric charges of the gate electrode of the transistor M1 by transferring an initialization voltage to the gate electrode of the transistor M1.
One electrode of the transistor M5 is coupled to the first power line ELVDD, the other electrode of the transistor M5 is coupled to the one electrode of the transistor M1, and a gate electrode of the transistor M5 is coupled to an emission line ELi. The one electrode of the transistor M6 is coupled to the other electrode of the transistor M1, the other electrode of the transistor M6 is coupled to an anode of the light emitting diode R_LD2, and a gate electrode of the transistor M6 is coupled to the emission line ELi. The transistors M5 and M6 may be referred to as emission transistors. When an emission signal of a turn-on level is applied to the emission line ELi, the transistors M5 and M6 allow the light emitting diode R_LD2 to emit light by forming a driving current path between the first power line ELVDD and the second power line ELVSS.
One electrode of the transistor M7 is coupled to the anode of the light emitting diode R_LD2, the other electrode of the transistor M7 is coupled to the initialization voltage line VINT, and a gate electrode of the transistor M7 is coupled to the current scan line SLi. In an exemplary embodiment of the inventive concept, the gate electrode of the transistor M7 may be coupled to another scan line. For example, the gate electrode of the transistor M7 may be coupled to the previous scan line SL(i−1) or a previous scan line prior to the previous scan line SL(i−1), or a next scan line SL(i+1) or a next scan line posterior to the next scan line SL(i+1). When a scan signal of a turn-on level is applied to the current scan line SLi, the transistor M7 initializes a quantity of electric charges accumulated in the light emitting diode R_LD2 by transferring an initialization voltage to the anode of the light emitting diode R_LD2.
The anode of the light emitting diode R_LD2 is coupled to the other electrode of the transistor M6, and a cathode of the light emitting diode R_LD2 is coupled to the second power line ELVSS. The light emitting diode R_LD2 may be implemented with an organic light emitting diode, an inorganic light emitting diode, a quantum dot light emitting diode, etc. The pixel RPij′ shown in
First, a scan signal of a turn-on level (low level) is applied to the previous scan line SL(i−1). Since the transistor M4 is in a turn-on state, an initialization voltage is applied to the gate electrode of the transistor M1 such that the quantity of electric charges is initialized. Since an emission signal of a turn-off level is applied to the emission line ELi, the transistors M5 and M6 are in a turn-off state, and unnecessary emission of the light emitting diode R_LD2 in the process of applying the initialization voltage is prevented.
Next, a data voltage DATAij with respect to a current pixel row is applied to the data line DLj, and a scan signal of a turn-on level is applied to the current scan line SLi. Accordingly, the transistors M2, M1, and M3 are in a conducting state, and the data line DLj and the gate electrode of the transistor M1 are electrically coupled to each other. Thus, the data voltage DATAij is applied to the other electrode of the storage capacitor Cst2, and the storage capacitor Cst2 accumulates a quantity of electric charges corresponding to the difference between a voltage of the first power line ELVDD and the data voltage DATAij.
Since the transistor M7 is in the turn-on state, the anode of the light emitting diode R_LD2 and the initialization voltage line VINT are coupled to each other, and a quantity of electric charges corresponding to the difference between the initialization voltage of the light emitting diode R_LD2 and a voltage of the second power line ELVSS is precharged or initialized.
Subsequently, when an emission signal of a turn-on level is applied to the emission line ELi, the transistors M5 and M6 are in the conducting state, and an amount of driving current flowing through the transistor M1 is controlled according to the quantity of electric charges accumulated in the storage capacitor Cst2, so that the driving current flows through the light emitting diode R_LD2. The light emitting diode R_LD2 emits light until before an emission signal of a turn-off level is applied to the emission line ELi.
Referring to
The first grayscale voltage generator 151 may receive the input maximum luminance value DBVI, and provide the grayscale voltages RV0 to RV255 with respect to the pixels of the first color, which correspond to the input maximum luminance value DBVI.
The second grayscale voltage generator 152 may receive the input maximum luminance value DBV1, and provide the grayscale voltages GV0 to GV255 with respect to the pixels of the second color, which correspond to the input maximum luminance value DBVI.
The third grayscale voltage generator 153 may receive the input maximum luminance value DBV1, and provide the grayscale voltages BV0 to BV255 with respect to the pixels of the third color, which correspond to the input maximum luminance value DBVI.
Referring to
Each of the second grayscale voltage generator 152 and the third grayscale voltage generator 153 may include a configuration substantially identical to that of the first grayscale voltage generator 151, and therefore, overlapping descriptions will be omitted.
The selection value provider 1511 may provide selection values with respect to the multiplexers MX1 to MX12 according to the input maximum luminance value DBVI. The selection values according to the input maximum luminance value DBVI may be pre-stored in a memory device, e.g., a device such as a register.
The resistor string RS1 may generate intermediate voltages between a first reference voltage VH and a second reference voltage VL. The multiplexer M1 may output a third reference voltage VT by selecting one of the intermediate voltages provided from the resistor string RS1 according to a selection value. The multiplexer MX2 may output a 255-grayscale voltage RV255 by selecting one of the intermediate voltages provided from the resistor string RS1 according to a selection value.
The resistor string RS11 may generate intermediate voltages between the third reference voltage VT and the 255-grayscale voltage RV255. The multiplexer MX12 may output a 203-grayscale voltage RV203 by selecting one of the intermediate voltages provided from the resistor string RS11 according to a selection value.
The resistor string RS10 may generate intermediate voltages between the third reference voltage VT and the 203-grayscale voltage RV203. The multiplexer MX11 may output a 151-grayscale voltage RV151 by selecting one of the intermediate voltages provided from the resistor string RS10 according to a selection value.
The resistor string RS9 may generate intermediate voltages between the third reference voltage VT and the 151-grayscale voltage RV151. The multiplexer MX10 may output an 87-grayscale voltage RV87 by selecting one of the intermediate voltages provided from the resistor string RS9 according to a selection value.
The resistor string RS8 may generate intermediate voltages between the third reference voltage VT and the 87-grayscale voltage RV87. The multiplexer MX9 may output a 51-grayscale voltage RV51 by selecting one of the intermediate voltages provided from the resistor string RS8 according to a selection value.
The resistor string RS7 may generate intermediate voltages between the third reference voltage VT and the 51-grayscale voltage RV51. The multiplexer MX8 may output a 35-grayscale voltage RV35 by selecting one of the intermediate voltages provided from the resistor string RS7 according to a selection value.
The resistor string RS6 may generate intermediate voltages between the third reference voltage VT and the 35-grayscale voltage RV35. The multiplexer MX7 may output a 23-grayscale voltage RV23 by selecting one of the intermediate voltages provided from the resistor string RS6 according to a selection value.
The resistor string RS5 may generate intermediate voltages between the third reference voltage VT and the 23-grayscale voltage RV23. The multiplexer MX6 may output an 11-grayscale voltage RV11 by selecting one of the intermediate voltages provided from the resistor string RS5 according to a selection value.
The resistor string RS4 may generate intermediate voltages between the first reference voltage VH and the 11-grayscale voltage RV11. The multiplexer MX5 may output a 7-grayscale voltage RV7 by selecting one of the intermediate voltages provided from the resistor string RS4 according to a selection value.
The resistor string RS3 may generate intermediate voltages between the first reference voltage VH and the 7-grayscale voltage RV7. The multiplexer MX4 may output a 1-grayscale voltage RV1 by selecting one of the intermediate voltages provided from the resistor string RS3 according to a selection value.
The resistor string RS2 may generate intermediate voltages between the first reference voltage VH and the 1-grayscale voltage RV1. The multiplexer MX3 may output a 0-grayscale voltage RV0 by selecting one of the intermediate voltages provided from the resistor string RS2 according to a selection value.
The above-described grayscales 0, 1, 7, 11, 23, 35, 51, 87, 151, 203, and 255 may be referred to as reference grayscales. In addition, the grayscale voltages RV0, RV1, RV7, RV11, RV23, RV35, RV51, RV87, RV151, RV203, and RV255 generated from the multiplexers MX2 to MX12 may be referred to as reference grayscale voltages. A number of reference grayscales and grayscale numbers corresponding to the reference grayscales may be differently set depending on products. Hereinafter, for convenience of description, the grayscales 0, 1, 7, 11, 23, 35, 51, 87, 151, 203, and 255 are described as reference grayscales.
The grayscale voltage output unit 1512 may generate all grayscale voltages RV0 to RV255 by dividing the reference grayscale voltages RV0, RV1, RV7, RV11, RV23, RV35, RV51, RV87, RV151, RV203, and RV255. For example, the grayscale voltage output unit 1512 may generate RV2 to RV6 by dividing the reference grayscale voltages RV1 and RV7.
Referring to
Pixels RP22, RP26, RP44, RP62, and RP66 may be pixels emitting light of the first color. Pixels GP11, GP13, GP15, GP17, GP31, GP33, GP35, GP37, GP51, GP53, GP55, GP57, GP71, GP73, GP75, and GP77 may be pixels emitting light of the second color. Pixels BP24, BP42, BP46, and BP64 may be pixels emitting light of the third color.
In exemplary embodiments of the inventive concept, data voltages corresponding to grayscale voltages may be alternately applied to data lines DL1, DL3, DL5, and
DL7 of a first group and data lines DL2, DL4, and DL6 of a second group.
For example, data voltages corresponding to the first color may be applied to the data lines DL1, DL3, DL5, and DL7 of the first group. When a scan signal of a turn-on level is applied to the scan line SL1, corresponding data voltages are written in the pixels GP11, GP13, GP15, and GP17. When a scan signal of a turn-on level is applied to the scan line SL3, corresponding data voltages are written in the pixels GP31, GP33, GP35, and GP37. When a scan signal of a turn-on level is applied to the scan line SL5, corresponding data voltages are written in the pixels GP51, GP53, GP55, and GP57. When a scan signal of a turn-on level is applied to the scan line SL7, corresponding data voltages are written in the pixels GP71, GP73, GP75, and GP77.
In addition, data voltages corresponding to the second color or the third color may be applied to the data lines DL2, DL4, and DL6 of the second group. When a scan signal of a turn-on level is applied to the scan line SL2, corresponding data voltages are written in the pixels RP22, BP24, and RP26. When a scan signal of a turn-on level is applied to the scan line SL4, corresponding data voltages are written in the pixels BP42, RP44, and BP46. When a scan signal of a turn-on level is applied to the scan line SL6, corresponding data voltages are written in the pixels RP62, BP64, and RP66.
Maximum luminance values of the white color light curves WC1 to WCk may be different from one another. For example, the maximum luminance (e.g., 4 nits) of the white color light curve WC1 may be lowest, and the maximum luminance value (e.g., 1200 nits) of the white color light curve WCk may be highest.
To generate white light, it is assumed that the pixels of the pixel unit 14 receive data voltages with respect to the same grayscale.
Imaginary dots illustrated on the white color light curves WC1 to WCk shown in
The pre-stored selection values may be set for each individual product through Multi-Time Programming (MTP). In other words, selection values may be set through repetitive measurements to be stored in a product, so that white color light with a desired luminance can be emitted with respect to grayscale values.
In other words, the pre-stored selection values may be values set with respect to the white color light. As described above, when mixed color light or single color light instead of the white color light is emitted using set grayscale voltages, the luminance of the mixed color light or the single color light does not accurately correspond to a desired gamma curve. The gamma curve may correspond to a white color light curve.
As described above, when single color light instead of the white color light is emitted using the set grayscale voltages, the luminance of the single color light does not accurately correspond to a desired gamma curve. The gamma curve may correspond to a white color light curve WC. In addition, low grayscale expression is uncertain since luminance differences between low grayscales are insufficient.
The gamma curve may generally follow the following Equation 1.
y=ax
GM
+b Equation 1
Here, x may be a grayscale value, y may be a luminance value, a and b may be arbitrary constants, and GM may be a gamma value.
Hereinafter, for convenience of description, the constants a and b are neglected, shapes of curves are described using the gamma value GM. When the gamma value corresponds to 1, a straight line instead of a curve is drawn, and a curve becomes convex adjacent to the x axis as the gamma value is greater than 1.
Therefore, a gamma value of a first single color light curve RWC may be greater than that of the white color light curve WC. In addition, a gamma value of a second single color light curve GWC may be greater than that of the white color light curve WC and be smaller than that of the first single color light curve RWC. In addition, a gamma value of a third single color light curve BWC may be smaller than that of the white color light curve WC. For example, a first color may be the red color, a second color may be the green color, and a third color may be the blue color.
Therefore, although the same input grayscale value is expressed when single color light is emitted and when the white color light is emitted, the selection values of the selection value provider 1511 are preferably different from one another. However, as described above, physical devices such as multiplexers are further required when the selection values of the selection value provider 1511 are directly increased, which is not preferable.
Accordingly, in the present exemplary embodiment, a method is provided for checking whether unit areas emit single color light, double mixed color light, triple mixed color light, or white color light, and correcting an input grayscale value to a converted grayscale value, if necessary. When such a method is used, it is unnecessary to modify the existing grayscale voltage generator 15, and thus the product configuration of the display device can be easily achieved.
The case shown in
Similarly, the gamma value of the second single color light curve GWC is decreased by correcting the input grayscale value, so that the second single color light curve GWC can be adjusted to become similar to the white color light curve WC. A decrement in the gamma value of the second single color curve GWC may be smaller than that in the gamma value of the first single color light curve RWC.
Similarly, the gamma value of the third single color light curve BWC is decreased by correcting the input grayscale value, so that the third single color light curve BWC can be adjusted to become similar to the white color light curve WC.
In accordance with the above-described exemplary embodiments, luminances of single color lights can be accurately expressed according a desired gamma curve. In addition, low grayscale expression can be further clarified.
The above-described contents may be equally applied to the cases of double mixed color light and triple mixed color light. Thus, the input grayscale value is corrected, so that the double mixed color light curve can be adjusted to become similar to the white color light curve WC. In addition, the input grayscale value is corrected, so that the triple mixed color light curve can be adjusted to become similar to the white color light curve WC.
However, in the case of the white color light, the selection values have already been set to be suitable for the white color light, and thus it is unnecessary to separately perform grayscale correction.
Referring to
The target pixel GP33 may emit light of the second color. First color observation pixels RP22 and RP44 are located adjacent to the target pixel GP33, and may emit light of the first color. Third color observation pixels BP24 and BP42 are located adjacent to the target pixel GP33, and may emit light of the third color.
A unit area OGA may be an area including the target pixel GP33 and the observation pixels RP22, BP24, BP44, and RP44. The observation pixels RP22, BP24, BP44, and RP44 may be set as pixels located at a most adjacent distance from the target pixel GP33. Therefore, no other pixels exist between the target pixel GP33 and the observation pixels RP22, BP24, BP44, and RP44. The most adjacent distance may refer to a distance between the centers of pixels.
Grayscale values constituting an image frame may be differently referred to as input grayscale values and observation grayscale values according to their usage. For example, a grayscale value of an image frame corresponding to the target pixel GP33 may be referred to as an input grayscale value. Grayscale values of an image frame corresponding to the first color observation pixels RP22 and RP44 may be referred to as first color observation grayscale values. In addition, grayscale values of an image frame corresponding to the third color observation pixels BP24 and BP42 may be referred to as third color observation grayscale values.
Referring to
Emission and non-emission may be sorted according to grayscale values. In other words, a pixel receiving a grayscale value that exceeds a reference value may be sorted as an emission pixel (the emission state), and a pixel receiving a grayscale value that is the reference value or less may be sorted as a non-emission pixel (the non-emission state). For example, the reference value may be grayscale 0 or a specific low grayscale. The reference value may be appropriately set depending on products.
Referring to
Although not shown in the drawing, in the unit area OGA, the target pixel GP33 may be in the emission state, the first color observation pixels RP22 and RP44 may be in the emission state, and the other observation pixels BP24 and BP42 may be in the non-emission state. The unit area OGA may emit double mixed color light of the yellow color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Although not shown in the drawing, in the unit area OGA, the target pixel GP33 may be in the emission state, the third color observation pixels BP24 and BP42 may be in the emission state, and the other observation pixels RP22 and RP44 may be in the non-emission state. The unit area OGA may emit double mixed color light of the cyan color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Referring to
Referring to
The target pixel RP44 may emit light of the first color. Second color observation pixels GP33, GP35, GP53, and GP55 are located adjacent to the target pixel RP44, and may emit light of the second color. Third color observation pixels BP24, BP42, BP46, and BP64 are located adjacent to the target pixel RP44, and may emit light of the third color.
In this example, the target pixel RP44 is connected to a scan line SL4 and a data line DL4. The second color observation pixels GP33, GP35, GP53, and GP55 are connected to scan lines SL3 and SL5 adjacent to the scan line SL4. The third color observation pixels BP24, BP42, BP46, and BP64 are connected to the same scan line or the same data line as the target pixel RP44. For example, the third color observation pixels BP24 and BP64 are connected to the data line DL4. The third color observation pixels BP42 and BP46 are connected to the scan line SL4.
A unit area ORA may be an area including the target pixel RP44 and the observation pixels BP24, GP33, GP35, BP42, BP46, GP53, GP55, and BP64. The second color observation pixels GP33, GP35, GP53, and GP55 may be set as second color pixels located at a most adjacent distance from the target pixel RP44. The third color observation pixels BP24, BP42, BP46, and BP64 may be set as third color pixels located at a most adjacent distance from the target pixel RP44. Therefore, no other pixels exist between the target pixel RP44 and the observation pixels BP24, GP33, GP35, BP42, BP46, GP53, GP55, and BP64.
Referring to
Referring to
Although not shown in the drawing, in the unit area ORA, the target pixel RP44 may be in the emission state, two or more second color observation pixels may be in the emission state, and the other observation pixels may be in the non-emission state. The unit area ORA may emit double mixed color light of the yellow color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Although not shown in the drawing, in the unit area ORA, the target pixel RP44 may be in the emission state, two or more third color observation pixels may be in the emission state, and the other observation pixels may be in the non-emission state. The unit area ORA may emit double mixed color light of the magenta color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Referring to
Referring to
The target pixel BP64 may emit light of the third color. First color observation pixels RP44, RP62, RP66, and RP84 are located adjacent to the target pixel BP64, and may emit light of the first color. Second color observation pixels GP53, GP55, GP73, and GP75 are located adjacent to the target pixel BP64, and may emit light of the second color.
A unit area OBA may be an area including the target pixel BP64 and the observation pixels RP44, GP53, GP55, RP62, RP66, GP73, GP75, and RP84. The first color observation pixels RP44, RP62, RP66, and RP84 may be set as first color pixels located at a most adjacent distance from the target pixel BP64. The second color observation pixels GP53, GP55, GP73, and GP75 may be set as second color pixels located at a most adjacent distance from the target pixel BP64. Therefore, no other pixels exist between the target pixel BP64 and the observation pixels RP44, GP53, GP55, RP62, RP66, GP73, GP75, and RP84.
Referring to
Referring to
Although not shown in the drawing, in the unit area OBA, the target pixel BP64 may be in the emission state, two or more first color observation pixels may be in the emission state, and the other observation pixels may be in the non-emission state. The unit area OBA may emit double mixed color light of the magenta color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Although not shown in the drawing, in the unit area OBA, the target pixel BP64 may be in the emission state, two or more second color observation pixels may be in the emission state, and the other observation pixels may be in the non-emission state. The unit area OBA may emit double mixed color light of the cyan color. However, a double mixed color light curve in this case may be different from that in the case shown in
Referring to
Referring to
Referring to
Hereinafter, a case where a target pixel emits light of the first color is assumed for convenience of description. The grayscale corrector 16 may convert an input grayscale value TIG corresponding to the target pixel with reference to second color observation grayscale values C2OG corresponding to second color observation pixels and third color observation grayscale values C3OG corresponding to third color observation pixels.
In a driving method of the display device, the grayscale converter 165 may receive the input grayscale value TIG corresponding to the target pixel, and the light emitting pixel counter 164 may receive the second color observation grayscale values C2OG and the third color observation grayscale values C3OG.
The light emitting pixel counter 164 may determine and provide a second color light emitting pixel number C2EN by counting a number of the second color observation grayscale values C2OG that exceed a reference value, and determine and provide a third color light emitting pixel number C3EN by counting a number of third color observation grayscale values C3OG that exceed the reference value. As described above, a pixel receiving a grayscale value that exceeds the reference value may be sorted as an emission pixel (the pixel is in an emission state). Thus, in other words, the second color light emitting pixel number is a number of the second color observation pixels in the emission state, and the third color light emitting pixel number is a number of the third color observation pixels in the emission state. The grayscale corrector 16 converts the input grayscale value TIG based on whether the second color observation pixels and the third color observation pixels are in an emission state.
For example, in the case shown in
The grayscale converter 165 may generate and provide a converted grayscale value TCG obtained by converting the input grayscale value TIG, based on the second color light emitting pixel number C2EN and the third color light emitting pixel number C3EN. For example, the grayscale converter 165 may generate the converted grayscale value TCG by adding an offset value to the input grayscale value TIG.
For example, when the second color light emitting pixel number C2EN is 0 and the third color light emitting pixel number C3EN is 0, the grayscale converter 165 may generate the converted grayscale value TCG by adding a corresponding offset value among single color offset values to the input grayscale value TIG (see
In addition, when the second color light emitting pixel number C2EN is greater than 0 and the third color light emitting pixel number C3EN is 0, the grayscale converter 165 may generate the converted grayscale value TCG by adding a corresponding offset value among double mixed color offset values to the input grayscale value TIG (see
In addition, when the second color light emitting pixel number C2EN is greater than 0, the third color light emitting pixel number C3EN is greater than 0, and the second color light emitting pixel number C2EN and the third color light emitting pixel number C3EN are not respectively equal to the number of second color observation pixels and the number of third color observation pixels, the grayscale converter 165 may generate the converted grayscale value TCG by adding a corresponding offset value among triple mixed color offset values to the input grayscale value TIG (see
In addition, when the second color light emitting pixel number C2EN is equal to the number of second color observation pixels and the third color light emitting pixel number C3EN is equal to the number of third color observation pixels, the grayscale converter 165 may determine the input grayscale value TIG as the converted grayscale value TCG. In other words, the offset value in this case may be 0 (see
A first single color offset provider 1611 may provide first single color offset values. The first single color offset values may be single color offset values for the first color, and vary depending on the input maximum luminance value DBVI.
A second single color offset provider 1621 may provide second single color offset values. The second single color offset values may be single color offset values for the second color, and vary depending on the input maximum luminance value DBVI.
A third single color offset provider 1631 may provide third single color offset values. The third single color offset values may be single color offset values for the third color, and vary depending on the input maximum luminance value DBVI.
A first double mixed color offset provider 1612 may provide first double mixed color offset values. The first double mixed color offset values may be double mixed color offset values for a mixed color (e.g., the yellow color) of the first color and the second color or a mixed color (e.g., the magenta color) of the first color and the third color, with respect to a target pixel of the first color.
A second double mixed color offset provider 1622 may provide second double mixed color offset values. The second double mixed color offset values may be double mixed color offset values for a mixed color (e.g., the yellow color) of the second color and the first color or a mixed color (e.g., the cyan color) of the second color and the third color, with respect to a target pixel of the second color.
A third double mixed color offset provider 1622 may provide third double mixed color offset values. The third double mixed color offset values may be double mixed color offset values for a mixed color (e.g., the magenta color) of the third color and the first color or a mixed color (e.g., the cyan color) of the third color and the second color, with respect to a target pixel of the third color.
A first triple mixed color offset provider 1613 may provide first triple mixed color offset values. The first triple mixed color offset values may be triple mixed color offset values for a mixed color of the first color, the second color, and the third color, with respect to a target pixel of the first color.
A second triple mixed color offset provider 1623 may provide second triple mixed color offset values. The second triple mixed color offset values may be triple mixed color offset values for a mixed color of the first color, the second color, and the third color, with respect to a target pixel of the second color.
A third triple mixed color offset provider 1633 may provide third triple mixed color offset values. The third triple mixed color offset values may be triple mixed color offset values for a mixed color of the first color, the second color, and the third color, with respect to a target pixel of the third color.
In exemplary embodiments of the inventive concept, the first single color offset provider 1611 may include a first single color reference offset provider 16111 and a first single color total offset generator 16112. The same description may be substantially applied to the second and third single color offset providers 1621 and 1631, and therefore, overlapping descriptions will be omitted.
The first single color reference offset provider 16111 may receive the input maximum luminance value DBVI, and provide first single color reference offset values RRO1, RRO2, RRO3, RRO4, RRO5, RRO6, RRO7, RRO8, and RRO9 corresponding to the input maximum luminance value DBVI.
When the second color light emitting pixel number is equal to the number of second color observation pixels and the third color light emitting pixel number is equal to the number of third color observation pixels, a converted grayscale value equal to the input grayscale value may be output by the grayscale converter 165 as described above. The relationship of converted grayscale values with respect to input grayscale values may follow a white color grayscale line RWL.
When the second color light emitting pixel number is 0 and the third color light emitting pixel number is 0, a converted grayscale value different from the input grayscale value may be output by the grayscale converter 165 as described above. In other words, the converted grayscale value may be generated by adding a corresponding offset value among first single color offset values RSO0 to RSO255 to the input grayscale value. The relationship of converted grayscale values with respect to input grayscale values may follow a first single color grayscale line RSL.
For example, when the input grayscale value is 1, the converted grayscale value may become 1 by adding a first single offset value RSO1 that is 0 to the input grayscale value. When the input grayscale value 7, the converted grayscale value may become 24 by adding a first single color offset value RSO7 that is 17 to the input grayscale value. When the input grayscale value is 11, the converted grayscale value may become 64 by adding a first single offset value RSO11 that is 53 to the input grayscale value. When the input grayscale value is 23, the converted grayscale value may become 70 by adding a first single color offset value RSO23 that is 47 to the input grayscale value. When the input grayscale value is 35, the converted grayscale value may become 75 by adding a first single color offset value RSO35 that is 40 to the input grayscale value. When the input grayscale value is 51, the converted grayscale value may become 83 by adding a first single color offset value RSO51 that is 32 to the input grayscale value. When the input grayscale value is 87, the converted grayscale value may become 107 by adding a first single color offset value RSO87 that is 20 to the input grayscale value. When the input grayscale value is 151, the converted grayscale value may become 156 by adding a first single color offset value RSO151 that is 5 to the input grayscale value. When the input grayscale value is 203, the converted grayscale value may become 206 by adding a first single color offset value RSO203 that is 3 to the input grayscale value. When the input grayscale value is 255, the converted grayscale value may be 255. When the input grayscale value is 0, the converted grayscale value may be 0.
The first single offset values RSO1, RSO7, RSO11, RSO23, RSO35, RSO51, RSO87, RSO151, and RSO203 may correspond to the first single color reference offset values RRO1, RRO2, RRO3, RRO4, RRO5, RRO6, RRO7, RRO8, and RRO9.
The first single color total offset generator 16112 may generate the first single color offset values RSO1 to RSO255 by interpolating the first single color reference offset values RRO1 to RRO9. The interpolation method may use a conventional method such as linear interpolation, polynomial interpolation, or exponential interpolation.
For example, referring to
Thus, in accordance with the present exemplary embodiment, it is unnecessary to store all first total offset values RSO0 to RSO255, and accordingly, the configuration cost of a memory device, etc. can be reduced.
Referring to
The sign bit SBT may express whether the offset value RSO is a positive number or negative number. For example, referring to
Like the case shown in
When the offset value RSO has a decimal value, the corrected converted grayscale value cannot express a corresponding luminance, using only one of the grayscale voltages RV0 to RV255 (see
A first single color light curve RWC represents a luminance when pixels emit light of a first single color according to input grayscale values.
A first single color light correction curve RSC represents a luminance when the pixels emit light of the first single color according to converted grayscale values obtained by correcting the input grayscale values.
For example, in accordance with an exemplary embodiment of the inventive concept, the display panel 10 may include a first pixel emitting light of a first color, a second pixel emitting light of a second color different from the first color, and a third pixel emitting light of a third color different from the first color and the second color.
A first luminance of the first pixel in a first case where the first pixel, the second pixel, and the third pixel emit lights and a second luminance of the first pixel in a second case where only the first pixel emits light and the second pixel and the third pixel do not emit light may be different from each other.
Input grayscale values provided corresponding to the first pixel in the first case and the second case may be equal to each other.
In other words, the first luminance with respect to the input grayscale value in the first case may follow the first single color light curve RWC, and the second luminance with respect to the input grayscale value in the second case may follow the first single color light correction curve RSC.
A gamma value of the first single color light correction curve RSC may be smaller than that of the first single color light curve RWC. Accordingly, the luminance of the first single color can be accurately expressed according to a desired gamma curve. In addition, low grayscale expression can be further clarified.
The above described exemplary embodiment may be substantially applied to second single color light and third single color light, and therefore, overlapping descriptions will be omitted.
In exemplary embodiments of the inventive concept, the first single color reference offset provider 16111 may include a first single color preset determiner 161111 and a first single color reference offset generator 161112.
The first single color preset determiner 161111 may pre-store first preset offset values corresponding to preset maximum luminance values, and determine whether the input maximum luminance value DBVI corresponds to any one of the preset maximum luminance values.
For example, the preset maximum luminance values may include a maximum value (e.g., 1200 nits) and a minimum value (e.g., 4 nits) of the receivable input maximum luminance value DBVI.
Additionally, the preset maximum luminance values may further include a first intermediate maximum luminance value (e.g., 100 nits). When the input maximum luminance value is a value between the maximum value and the first intermediate maximum luminance value, a grayscale voltage corresponding to a converted grayscale value is adjusted corresponding to the input maximum luminance value DBVI, so that the luminance of a target pixel can be controlled. For example, the luminance of the target pixel in a section between 1200 nits and 100 nits may rely on a grayscale voltage control method. In addition, when the input maximum luminance value DBVI is a value between the minimum value and the first intermediate maximum luminance value, the emission period of the target pixel is adjusted corresponding to the input maximum luminance value DBVI, so that the luminance of the target pixel can be controlled. For example, the luminance of the target pixel in a section between 100 nits and 4 nits may rely on a duty ratio control method.
In addition, the preset maximum luminance values may further include a second intermediate maximum luminance value (e.g., 30 nits) that is a value between the first intermediate maximum luminance value and the minimum value.
The above-described four preset maximum luminance values (e.g., 1200 nits, 100 nits, 30 nits, and 4 nits) are merely an example, and other preset maximum luminance values may be set depending on products.
When the input maximum luminance value DBVI corresponds to any one of the preset maximum luminance values, the first single color preset determiner 161111 may provide corresponding first preset offset values DBVP1 as the first single color reference offset values RRO1 to RRO9. For example, first preset offset values DBVP1 for 1200 nits, 100 nits, 30 nits, and 4 nits may be pre-stored. Therefore, when the input maximum luminance value DBVI corresponds to one of 1200 nits, 100 nits, 30 nits, and 4 nits, the first single color reference offset values RRO1 to RRO9 may be provided without passing through the first single color reference offset generator 161112.
When the input maximum luminance value DBVI does not correspond to any one of the preset maximum luminance values, the first single color preset determiner 161111 may provide first preset offset values corresponding to at least two preset maximum luminance values.
For example, when the input maximum luminance value DBVI is 17 nits, the first single color preset determiner 161111 may provide first preset offset values DBVP1 corresponding to 4 nits and second preset offset values DBVP2 corresponding to 30 nits.
The first single color reference offset generator 161112 may generate the first single color reference offset values RRO1 to RRO9 by interpolating the first and second preset offset values DBVP1 and DBVP2 corresponding to the at least two preset maximum luminance values.
Referring to
Thus, in accordance with the present exemplary embodiment, it is unnecessary to store all offset values with respect to the receivable input maximum luminance value DBVI, and accordingly, the configuration cost of a memory device, etc. can be reduced.
Referring to
A first X2 double mixed color offset sub-unit 1612X2 may provide first X2 double mixed color offset values RX20 to RX2255 corresponding to when the second color light emitting pixel number is 2 and the third color light emitting pixel number is 0, with respect to a target pixel of the first color.
A first X4 double mixed color offset sub-unit 1612X4 may provide first X4 double mixed color offset values RX40 to RX4255 corresponding to when the second color light emitting pixel number is 4 and the third color light emitting pixel number is 0, with respect to a target pixel of the first color.
A first Y2 double mixed color offset sub-unit 1612Y2 may provide first Y2 double mixed color offset values RY20 to RY2255 corresponding to when the second color light emitting pixel number is 0 and the third color light emitting pixel number is 2, with respect to a target pixel of the first color.
A first Y4 double mixed color offset sub-unit 1612Y4 may provide first Y4 double mixed color offset values RY40 to RY4255 corresponding to when the second color light emitting pixel number is 0 and the third color light emitting pixel number is 4, with respect to a target pixel of the first color.
Referring to
The first X4 double mixed color reference offset provider 16121X4 may provide first X4 double mixed color reference offset values RX4R0 to RX4R255 corresponding to the input maximum luminance value DBVI.
The first X4 double mixed color total offset generator 16122X4 may generate the first X4 double mixed color offset values RX40 to RX4255 by interpolating first X4 double mixed color reference offset values RX4R1 to RX4R9.
A configuration and an operation of the first X4 double mixed color offset sub-unit 1612X4 are substantially identical to those of the first single color offset provider 1611 shown in
A first X1 double mixed color offset sub-unit 1612X1 may provide first X1 double mixed color offset values RX10 to RX1255 corresponding to when the second color light emitting pixel number is 1 and the third color light emitting pixel number is 0, with respect to a target pixel of the first color.
For example, the first X1 double mixed color offset sub-unit 1612X1 may generate the first X1 double mixed color offset values RX10 to RX1255 by interpolating the first single color offset values RSO0 to RSO255 and the first X2 double mixed color offset values RX20 to RX2255.
Additionally, for example, the first X1 double mixed color offset sub-unit 1612X1 may output the first X2 double mixed color offset values RX20 to RX2255 as the first X1 double mixed color offset values RX10 to RX1255.
A first X3 double mixed color offset sub-unit 1612X3 may provide double mixed color offset values RX30 to RX3255 corresponding to when the second color light emitting pixel number is 3 and the third color light emitting pixel number is 0, with respect to a target pixel of the first color.
For example, the first X3 double mixed color offset sub-unit 1612X3 may generate first X3 double mixed color offset values RX30 to RX3255 by interpolating the first X2 double mixed color offset values RX20 to RX2255 and the first X4 double mixed color offset values RX40 to RX4255.
A first Y1 double mixed color offset sub-unit 1612Y1 may provide double mixed color offset values RY10 to RY1255 corresponding to when the second color light emitting pixel number is 0 and the third color light emitting pixel number is 1, with respect to a target pixel of the first color.
For example, the first Y1 double mixed color offset sub-unit 1612Y1 may generate first Y1 double mixed color offset values RY10 to RY1255 by interpolating the first single color offset values RSO0 to RSO255 and the first Y2 double mixed color offset values RY20 to RY2255.
Additionally, for example, the first Y1 double mixed color offset sub-unit 1612Y1 may output the first Y2 double mixed color offset values RY20 to RY2255 as the first Y1 double mixed color offset values RY10 to RY1255.
A first Y3 double mixed color offset sub-unit 1612Y3 may provide double mixed color offset values RY30 to RY3255 corresponding to when the second color light emitting pixel number is 0 and the third color light emitting pixel number 3, with respect to a target pixel of the first color.
For example, the first Y3 double mixed color offset sub-unit 1612Y3 may provide first Y3 double mixed color offset values RY30 to RY3255 by interpolating the first Y2 double mixed color offset values RY20 to RY2255 and the first Y4 double mixed color offset values RY40 to RY4255.
In accordance with the present exemplary embodiment, when a unit area ORA displays a double mixed color (e.g., the magenta color and the yellow color), double mixed color light curves can be adjusted to become similar to a white color light curve.
Referring to
A first X1Y1 triple mixed color offset sub-unit 1613X1Y1 may provide first X1Y1 triple mixed color offset values RX1Y10 to RX1Y1255 corresponding to when the second color light emitting pixel number is 1 and the third color light emitting pixel number is 1, with respect to a target pixel of the first color.
For example, the first X1Y1 triple mixed color offset sub-unit 1613X1Y1 may generate the first X1Y1 triple mixed color offset values RX1Y10 to RX1Y1255 by using double mixed color offset values corresponding to a total sum (here, 2) of light emitting pixel numbers.
For example, the first X1Y1 triple mixed color offset sub-unit 1613X1Y1 may generate the first X1Y1 triple mixed color offset values RX1Y10 to RX1Y1255 by using the first X2 double mixed color offset values RX20 to RX2255 and the first Y2 double mixed color offset values RY20 to RY2255.
For example, the first X1Y1 triple mixed color offset values RX1Y10 to RX1Y1255 may be determined using the following Equation 2.
Here, RX1Y1 may be a first X1Y1 triple mixed color offset value corresponding to an input grayscale value, W_RX1Y1 may be a weighted value, X_RX1Y1 may be 1 as the second color light emitting pixel number, Y_RX1Y1 may be 1 as the third color light emitting pixel number, RX2 may be a first X2 double mixed color offset value corresponding to the input grayscale value, and RY2 may be a first Y2 double mixed color offset value corresponding to the input grayscale value. The weighted value W_RX1Y1 may be increased as the input grayscale value is increased. The weighted value W_RX1Y1 may be a real number that is 0 or more and is 1 or less. The weighted value W_RX1Y1 may vary depending on the input maximum luminance value DBVI.
A first X1Y2 triple mixed color offset sub-unit 1613X1Y2 may provide first X1Y2 triple mixed color offset values RX1Y20 to RX1Y2255 corresponding to when the second color light emitting pixel number is 1 and the third color light emitting pixel number is 2, with respect to a target pixel of the first color.
For example, the first X1Y2 triple mixed color offset sub-unit 1613X1Y2 may generate the first X1Y2 triple mixed color offset values RX1Y20 to RX1Y2255 by using double mixed color offset values corresponding to a total sum (here, 3) of light emitting pixel numbers.
For example, the first X1Y2 triple mixed color offset sub-unit 1613X1Y2 may generate the first X1Y2 triple mixed color offset values RX1Y20 to RX1Y2255 by using the first X3 double mixed color offset values RX30 to RX3255 and the first Y3 double mixed color offset values RY30 to RY3255.
For example, the first X1Y2 triple mixed color offset values RX1Y20 to RX1Y2255 may be determined using the following Equation 3.
Here, RX1Y2 may be a first X1Y2 triple mixed color offset value corresponding to an input grayscale value, W_RX1Y2 may be a weighted value, X_RX1Y2 may be 1 as the second color light emitting pixel number, Y_RX1Y2 may be 2 as the third color light emitting pixel number, RX3 may be a first X3 double mixed color offset value corresponding to the input grayscale value, and RY3 may be a first Y3 double mixed color offset value corresponding to the input grayscale value. The weighted value W_RX1Y2 may be increased as the input grayscale value is increased. The weighted value W_RX1Y2 may be a real number that is 0 or more and is 1 or less. The weighted value W_RX1Y2 may vary depending on the input maximum luminance value DBVI.
A first X2Y1 triple mixed color offset sub-unit 1613X2Y1 may provide first X2Y1 triple mixed color offset values RX2Y10 to RX2Y1255 corresponding to when the second color light emitting pixel number is 2 and the third color light emitting pixel number is 1, with respect to a target pixel of the first color. For example, the first X2Y1 triple mixed color offset sub-unit 1613X2Y1 may generate the first X2Y1 triple mixed color offset values RX2Y10 to RX2Y1255 by using the first X3 double mixed color offset values RX30 to RX3255 and the first Y1 double mixed color offset values RY30 to RY3255. Therefore, its overlapping description will be omitted.
A first X3Y1 triple mixed color offset sub-unit 1613X3Y1 may provide first X3Y1 triple mixed color offset values RX3Y10 to RX3Y1255 corresponding to when the second color light emitting pixel number is 3 and the third color light emitting pixel is 1, with respect to a target pixel of the first color. For example, the first X3Y1 triple mixed color offset sub-unit 1613X3Y1 may generate the first X3Y1 triple mixed color offset values RX3Y10 to RX3Y1255 by using the first X4 double mixed color offset values RX40 to RX4255 and the first Y4 double mixed color offset values RY40 to RY4255. Therefore, its overlapping description will be omitted.
A first X2Y2 triple mixed color offset sub-unit 1613X2Y2 may provide first X2Y2 triple mixed color offset values RX2Y20 to RX2Y2255 corresponding to when the second color light emitting pixel number is 2 and the third color light emitting pixel number is 2, with respect to a target pixel of the first color. For example, the first X2Y2 triple mixed color offset sub-unit 1613X2Y2 may generate the first X2Y2 triple mixed color offset values RX2Y20 to RX2Y2255 by using the first X4 double mixed color offset values RX40 to RX4225 and the first Y4 double mixed color offset values RY40 to RY4255. Therefore, its overlapping description will be omitted.
A first X1Y3 triple mixed color offset sub-unit 1613X1Y3 may provide first X1Y3 triple mixed color offset values RX1Y30 to RX1Y3255 corresponding to when the second color light emitting pixel number is 1 and the third color light emitting pixel number is 3, with respect to a target pixel of the first color. For example, the first X1Y3 triple mixed color offset sub-unit 1613X1Y3 may generate the first X1Y3 triple mixed color offset values RX1Y30 to RX1Y3255 by using the first X4 double mixed color offset values RX40 to RX4255 and the first Y4 double mixed color offset values RY40 to RY4255. Therefore, its overlapping description will be omitted.
A first X3Y3 triple mixed color offset sub-unit 1613X3Y3 may provide first X3Y3 triple mixed color offset values RX3Y30 to RX3Y3255 corresponding to when the second color light emitting pixel number is 3 and the third color light emitting pixel number is 3, with respect to a target pixel of the first color. For example, the first X3Y3 triple mixed color offset values RX3Y30 to RX3Y3255 may be determined using the following Equation 4.
Here, RX3Y3 may be a first X3Y3 triple mixed color offset value corresponding to an input grayscale value, W_RX3Y3 may be a weighted value, RX4Y4 may be a white color offset value corresponding to the input grayscale value, and RX2Y2 may be a first X2Y2 triple mixed color offset value corresponding to the input grayscale value. The weighted value W_RX3Y3 may be increased as the input grayscale value is increased. The weighted value W_RX3Y3 may be a real number that is 0 or more and is 1 or less. The weighted value W_RX3Y3 may vary depending on the input maximum luminance value DBVI. RX4Y4 may be 0.
A first X3Y2 triple mixed color offset sub-unit 1613X3Y2 may provide first X3Y2 triple mixed color offset values RX3Y20 to RX3Y2255 corresponding to when the second color light emitting pixel number is 3 and the third color light emitting pixel number is 2, with respect to a target pixel of the first color. For example, the first X3Y2 triple mixed color offset values RX3Y20 to RX3Y2255 may be determined using the following Equation 5.
Here, RX3Y2 may be a first X3Y2 triple mixed color offset value corresponding to an input grayscale value, RX3Y3 may be a first X3Y3 triple mixed color offset value corresponding to the input grayscale value, and RX3Y1 may be a first X3Y1 triple mixed color offset value corresponding to the input grayscale value.
A first X2Y3 triple mixed color offset sub-unit 1613X2Y3 may provide first X2Y3 triple mixed color offset values RX2Y30 to RX2Y3255 corresponding to when the second color light emitting pixel number is 2 and the third color light emitting pixel number is 3, with respect to a target pixel of the first color. For example, the first X2Y3 triple mixed color offset values RX2Y30 to RX2Y3255 may be determined using the following Equation 6.
Here, RX2Y3 may be a first X2Y3 triple mixed color offset value corresponding to an input grayscale value, RX3Y3 may be a first X3Y3 triple mixed color offset value corresponding to the input grayscale value, and RX1Y3 may be a first X1Y3 triple mixed color offset value corresponding to the input grayscale value.
A first X4Y3 triple mixed color offset sub-unit 1613X4Y3 may provide first X4Y3 triple mixed color offset values RX4Y30 to RX4Y3255 corresponding to when the second color light emitting pixel number is 4 and the third color light emitting pixel number is 3, with respect to a target pixel of the first color. For example, the first X4Y3 triple mixed color offset values RX4Y30 to RX4Y3255 may be determined using the following Equation 7.
RX4Y3=RX3Y3+(RX3Y3−RX2Y3) Equation 7
Here, RX4Y3 may be a first X4Y3 triple mixed color offset value corresponding to an input grayscale value, RX3Y3 may be a first X3Y3 triple mixed color offset value corresponding to the input grayscale value, and RX2Y3 may be a first X2Y3 triple mixed color offset value corresponding to the input grayscale value.
A first X3Y4 triple mixed color offset sub-unit 1613X3Y4 may provide first X3Y4 triple mixed color offset values RX3Y40 to RX3Y4255 corresponding to when the second color light emitting pixel number is 3 and the third color light emitting pixel number is 4, with respect to a target pixel of the first color. For example, the first X3Y4 triple mixed color offset values RX3Y40 to RX3Y4255 may be determined using the following Equation 8.
RX3Y4=RX3Y3+(RX3Y3−RX3Y2) Equation 8
Here, RX3Y4 may be a first X3Y4 triple mixed color offset value corresponding to an input grayscale value, RX3Y3 may be a first X3Y3 triple mixed color offset value corresponding to the input grayscale value, and RX3Y2 may be a first X3Y2 triple mixed color offset value corresponding to the input grayscale value.
A first X2Y4 triple mixed color offset sub-unit 1613X2Y4 may provide first X2Y4 triple mixed color offset values RX2Y40 to RX2Y4255 corresponding to when the second color light emitting pixel number is 2 and the third color light emitting pixel number is 4, with respect to a target pixel of the first color. For example, the first X2Y4 triple mixed color offset values RX2Y40 to RX2Y4255 may be determined using the following Equation 9.
RX2Y4=RX3Y4+(RX3Y4−RX4Y4) Equation 9
Here, RX2Y4 may be a first X2Y4 triple mixed color offset value corresponding to an input grayscale value, RX3Y4 may be a first X3Y4 triple mixed color offset value corresponding to the input grayscale value, and RX4Y4 may be a white color offset value corresponding to the input grayscale value. RX4Y4 may be 0.
A first X4Y2 triple mixed color offset sub-unit 1613X4Y2 may provide first X4Y2 triple mixed color offset values RX4Y20 to RX4Y2255 corresponding to when the second color light emitting pixel number is 4 and the third color light emitting pixel number is 2, with respect to a target pixel of the first color. For example, the first X4Y2 triple mixed color offset values RX4Y20 to RX4Y2255 may be determined using the following Equation 10.
RX4Y2=RX4Y3+(RX4Y3−RX4Y4) Equation 10
Here, RX4Y2 may be a first X4Y2 triple mixed color offset value corresponding to an input grayscale value, RX4Y3 may be a first X4Y3 triple mixed color offset value corresponding to the input grayscale value, and RX4Y4 may be a first X4Y4 triple mixed color offset value corresponding to the input grayscale value.
A first X1Y4 triple mixed color offset sub-unit 1613X1Y4 may provide first X1Y4 triple mixed color offset values RX1Y40 to RX1Y4255 corresponding to when the second color light emitting pixel number is 1 and the third color light emitting pixel number is 4, with respect to a target pixel of the first color. For example, the first X1Y4 triple mixed color offset values RX1Y40 to RX1Y4255 may be determined using the following Equation 11.
RX1Y4=RX2Y4+(RX2Y4−RX3Y4) Equation 11
Here, RX1Y4 may be a first X1Y4 triple mixed color offset value corresponding to an input grayscale value, RX2Y4 may be a first X2Y4 triple mixed color offset value corresponding to the input grayscale value, and RX3Y4 may be a first X3Y4 triple mixed color offset value corresponding to the input grayscale value.
A first X4Y1 triple mixed color offset sub-unit 1613X4Y1 may provide first X4Y1 triple mixed color offset values RX4Y10 to RX4Y1255 corresponding to when the second color light emitting pixel number is 4 and the third color light emitting pixel number is 1, with respect to a target pixel of the first color. For example, the first X4Y1 triple mixed color offset values RX4Y10 to RX4Y1255 may be determined using the following Equation 12.
RX4Y1=RX4Y2+(RX4Y2−RX4Y3) Equation 12
Here, RX4Y1 may be a first X4Y1 triple mixed color offset value corresponding to an input grayscale value, RX4Y2 may be a first X4Y2 triple mixed color offset value corresponding to the input grayscale value, and RX4Y3 may be a first X4Y3 triple mixed color offset value corresponding to the input grayscale value.
Referring to
A second X1 double mixed color offset sub-unit 1622X1 may provide second X1 double mixed color offset values GX10 to GX1255 corresponding to when the first color light emitting pixel number is 1 and third color light emitting pixel number is 0, with respect to a target pixel of the second color.
A second X2 double mixed color offset sub-unit 1622X2 may provide second X2 double mixed color offset values GX20 to GX2255 corresponding to when the first color light emitting pixel number is 2 and third color light emitting pixel number is 0, with respect to a target pixel of the second color.
A second Y1 double mixed color offset sub-unit 1622Y1 may provide second Y1 double mixed color offset values GY10 to GY1255 corresponding to when the first color light emitting pixel number is 0 and third color light emitting pixel number is 1, with respect to a target pixel of the second color.
A second Y2 double mixed color offset sub-unit 1622Y2 may provide second Y2 double mixed color offset values GY20 to GY2255 corresponding to when the first color light emitting pixel number is 0 and third color light emitting pixel number is 2, with respect to a target pixel of the second color.
Referring to
The second X2 double mixed color reference offset provider 16221X2 may provide second X2 double mixed color reference offset values GX2R1 to GX2R9 corresponding to the input maximum luminance value DBVI.
The second X2 double mixed color total offset generator 16222X2 may generate the second X2 double mixed color offset values GX20 to GX2255 by interpolating the second X2 double mixed color reference offset values GX2R1 to GX2R9.
A configuration and an operation of the second X2 double mixed color offset sub-unit 1622X2 are substantially identical to those of the first single color offset provider 1611 shown in
Referring to
A second X1Y1 triple mixed color offset sub-unit 1623X1Y1 may provide second X1Y1 triple mixed color offset values GX1Y10 to GX1Y1255 corresponding to when the first color light emitting pixel number is 1 and the third color light emitting pixel number is 1, with respect to a target pixel of the second color. For example, the second X1Y1 triple mixed color offset values GX1Y10 to GX1Y1255 may be determined using the following Equation 13.
Here, GX1Y1 may be a second X1Y1 triple mixed color offset value corresponding to an input grayscale value, W_GX1Y1 may be a weighted value, GSO may be a second single color offset value corresponding to the input grayscale value, and GX2Y2 may be a white color offset value corresponding to the input grayscale value. The weighted value W_GX1Y1 may be increased as the input grayscale value is increased. The weighted value W_GX1Y1 may be a real number that is 0 or more and is 1 or less. The weighted value W_GX1Y1 may vary depending on the input maximum luminance value DBVI. GX2Y2 may be 0.
A second X1Y2 triple mixed color offset sub-unit 1623X1Y2 may provide second X1Y2 triple mixed color offset values GX1Y20 to GX1Y2255 corresponding to when the first color light emitting pixel number is 1 and the third color light emitting pixel number is 2, with respect to a target pixel of the second color. For example, the second X1Y2 triple mixed color offset values GX1Y20 to GX1Y2255 may be determined using the following Equation 14.
Here, GX1Y2 may be a second X1Y2 triple mixed color offset value corresponding to an input grayscale value, W_GX1Y2 may be a weighted value, GY2 may be a second Y2 double mixed color offset value corresponding to the input grayscale value, and GX2Y2 may be a white color offset value corresponding to the input grayscale value. The weighted value W_GX1Y2 may be increased as the input grayscale value is increased. The weighted value W_GX1Y2 may be a real number that is 0 or more and is 1 or less. The weighted value W_GX1Y2 may vary depending on the input maximum luminance value DBVI. GX2Y2 may be 0.
A second X2Y1 triple mixed color offset sub-unit 1623X2Y may provide second X2Y1 triple mixed color offset values GX2Y10 to GX2Y1255 corresponding to when the first color light emitting pixel number is 2 and the third color light emitting pixel number is 1, with respect to a target pixel of the second color. For example, the second X2Y1 triple mixed color offset values GX2Y10 to GX2Y1255 may be determined using the following Equation 15.
Here, GX2Y1 may be a second X2Y1 triple mixed color offset value corresponding to an input grayscale value, W_GX2Y1 may be a weighted value, GX2 may be a second X2 double mixed color offset value corresponding to the input grayscale value, and GX2Y2 may be a white color offset value corresponding to the input grayscale value. The weighted value W_GX2Y1 may be increased as the input grayscale value is increased. The weighted value W_GX2Y1 may be a real number that is 0 or more and is 1 or less. The weighted value W_GX2Y1 may vary depending on the input maximum luminance value DBVI. GX2Y2 may be 0.
Except that a target pixel is a pixel emitting light of the third color, the third double mixed color offset provider 1632 corresponds to the first double mixed color offset provider 1612 shown in
In the display device and the driving method thereof in accordance with exemplary embodiments of the inventive concept, the display device can exhibit a desired luminance even when single color light and mixed color light are emitted in addition to white color light.
While the inventive concept has been shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made thereto without departing from the spirit and scope of the inventive concept as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0024131 | Feb 2019 | KR | national |