The present application claims priority from Japanese Patent Application No. 2007-114161 filed on Apr. 24, 2007, Japanese Patent Application No. 2007-164248 filed on Jun. 21, 2007, Japanese Patent Application No. 2007-164782 filed on Jun. 22, 2007, Japanese Patent Application No. 2007-248314 filed on Sep. 26, 2007, the contents of which are hereby incorporated by reference into this application.
The present invention relates to a display device and a drive circuit thereof having a light source whose light amount is controllable and performing the display by controlling a transmissivity control element for controlling the transmissivity of light arranged on a front surface of the light source. More particularly, it relates to a display device using a liquid crystal element and a drive circuit thereof (for example, LSI).
It is important to suppress the power consumption in a small liquid crystal display used in a cellular phone or the like. In a liquid crystal display, a liquid crystal screen whose light transmissivity is controllable is illuminated with a backlight from the back and an image is displayed with a transmitted light. Since most of the power in the liquid crystal display is consumed by the backlight, it is very effective to suppress the power consumption of the backlight for reducing the power consumption of the liquid crystal display.
For its achievement, Japanese Patent Application Laid-Open Publication No. 11-65531 has proposed a method, in which the maximum value of the grayscale of a display image: x is acquired, the data of the entire image is extended so that the maximum value of the grayscale of the display image: x becomes the maximum grayscale of the liquid crystal display screen (255 grayscale in 8-bit RGB), and the light amount of the backlight is lowered so that a luminance value in the maximum grayscale (255 grayscale) becomes the luminance value of the maximum value of the grayscale of the display image, thereby reducing the power consumption.
Further, in order to reduce the power consumption, Japanese Patent Application Laid-Open Publication No. 11-65531 provides a method, in which a histogram of the grayscale of a display image is acquired, image data is extended with using a grayscale value P1, at which a cumulative value of the histogram from the maximum grayscale of the display image is equivalent to the predetermined number of pixels, as the maximum grayscale, and the light amount of the backlight is lowered so that the luminance value in the maximum grayscale (255 grayscale) display becomes the luminance value of the grayscale value P1, thereby reducing the power consumption.
In the technique of Japanese Patent Application Laid-Open Publication No. 11-65531, however, in the method of performing the data extension and the backlight control using the maximum value of the grayscale of the display image: x, if even one pixel of the maximum grayscale (255 grayscale) of the liquid crystal display device is contained in the display data of one frame or if the grayscale value very close to the maximum grayscale is contained, the light amount of the backlight cannot be lowered. Since the maximum grayscale of the liquid display screen or a value very close thereto is contained in most display images, the effects to be obtained are limited.
Further, in the method of performing the data extension and the backlight control using the grayscale value P1 at which a cumulative value of the histogram from the maximum grayscale of the display image is equivalent to the predetermined number of pixels, all the grayscale values equal to or larger than P1 of the display image are aligned to the maximum grayscale (255 grayscale) of the liquid crystal display device, and thus fine patterns represented by the grayscales equal to or higher than P1 disappear (hereinafter, referred to as whiteout).
An object of the present invention is to reduce the power consumption and eliminate the whiteout in a display device and a display driver having a power-saving function by the backlight control.
For the solution of the above problems, in the present invention, when the grayscale of the display image data is smaller than a specific grayscale, the contrast is increased by converting the display image to be extended in accordance with a linear function, and when the grayscale of the display image data is equal to or higher than the specific grayscale, the cumulative value of the number of pixels of each grayscale equal to or higher than the specific grayscale of the display image is calculated to make a conversion to the grayscale in accordance with the cumulative value, thereby ensuring the contrast even in the grayscale of the display image data equal to or higher than the specific grayscale.
Further, in the present invention, a calculation circuit for measuring the number of pixels of each grayscale of the display image and calculating the threshold grayscale at which the cumulative value from the maximum grayscale reaches a predetermined proportion of the total number of pixels is provided, and a register for setting a ratio of the difference between the specific grayscale and the threshold grayscale and the difference between the specific grayscale and the maximum grayscale of the display device is disposed, so that the specific grayscale is automatically defined in accordance with the display image, and extension rate suitable for the display image can be obtained.
Further, in the present invention, in a display device having a light source whose light amount is controllable and performing the display by controlling a transmissivity control element for controlling the transmissivity of light arranged on a front surface of the light source, a light amount control circuit for controlling the light amount of the light source is provided, and the light amount control circuit controls the light amount in accordance with the threshold grayscale, so that the power consumption by the backlight can be reduced without degrading the image quality and without changing the display luminance of the entire screen.
Further, in the present invention, a calculation circuit for measuring the number of pixels of each grayscale of the display image and calculating the threshold grayscale at which the cumulative value from the maximum grayscale reaches a predetermined proportion of the total number of pixels is provided, conversion (extension) is performed with a linear function when the grayscale equal to or lower than the threshold grayscale is input, the linear function is a linear function outputting a second specific grayscale when the threshold grayscale is input, and a register for setting a ratio of the difference between the threshold grayscale and the second specific grayscale and the difference between the threshold grayscale and the maximum grayscale of the display device is disposed, so that the second specific grayscale is automatically defined in accordance with the display image, and the extension rate suitable for the display image can be obtained.
Further, in the present invention, a function to switch the conversion method for a grayscale of pixel of the display image equal to or higher than the specific grayscale between the conversion in accordance with the cumulative value of the number of pixels of each grayscale equal to or higher than the specific grayscale and the conversion by a linear function is provided, whereby a stable and appropriate display can be performed even if the number of pixels of each grayscale equal to or higher than the specific grayscale is unstable depending on frames.
Further, in the present invention, the display image is divided into a plurality of regions, a histogram of each region is generated to calculate the threshold grayscale for each region, and the grayscale value at which the image grayscale extension method is switched is calculated from the maximum value of the threshold grayscale for each region, so that the grayscale extension method more suited for the display image can be obtained.
Further, in the present invention, the number of pixels of each grayscale of the display image in which difference from the adjacent pixel is equal to or larger than a predetermined value is measured, a second threshold grayscale is calculated with using the number of pixels as a second histogram, and the grayscale value at which the image grayscale extension method is switched is calculated from the second threshold grayscale, so that the extension method more suited for the display image can be obtained.
Further, in the present invention, the display image is divided into a plurality of regions, the number of pixels of each grayscale of the display image in which difference from the adjacent pixel is equal to or larger than a predetermined value is measured for each region, the threshold grayscale for each second region is calculated with using the number of pixels as a second histogram, and the grayscale value at which the image grayscale extension method is switched is calculated from the maximum one of the grayscale values for each second region, so that the extension method more suited for the display image can be obtained.
Further, in the present invention, in the extension method in which the image grayscale extension method is switched by the threshold grayscale, a grayscale of a pixel of the display image of equal to or lower than the threshold grayscale is converted (extended) by using a linear function, the output grayscale when the threshold grayscale is input to the linear function is a specific grayscale, and the light amount of the backlight is controlled in accordance with the ratio of the difference between the maximum grayscale and the threshold grayscale value and the difference between the specific grayscale and the threshold grayscale, so that the power consumption by the backlight can be reduced without degrading the image quality and without changing the display luminance of the entire screen.
Further, in the present invention, the number of pixels of each grayscale of the display image in which difference from the adjacent pixel is equal to or larger than a predetermined value is measured, a second threshold grayscale is calculated with using the number of pixels as a second histogram, the grayscale value at which the image grayscale extension method is switched is calculated from the second threshold grayscale, and the conversion (extension) is performed with a linear function even for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
Further, in the present invention, the display image is divided into a plurality of regions, the number of pixels of each grayscale of the display image in which difference from the adjacent pixel is equal to or larger than a predetermined value is measured for each region, the threshold grayscale for each second region is calculated with using the number of pixels as a second histogram for each region, the grayscale value at which the image grayscale extension method is switched is calculated from the maximum grayscale value of the threshold grayscale for each second region, and the conversion (extension) is performed with a linear function even for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
Further, in the present invention, the display image is divided into a plurality of regions, a histogram is generated for each region, the grayscale value at which the image grayscale extension method is switched is calculated from a maximum value of the threshold grayscale value for each region where a cumulative value from the maximum grayscale obtained for each region reaches a predetermined value, and the conversion (extension) is performed with a linear function even for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
Further, in the present invention, the display image is divided into a plurality of regions, a histogram is generated for each region, the grayscale value at which the image grayscale extension method is switched is calculated from a maximum value of the threshold grayscale value for each region in which a cumulative value from the maximum grayscale obtained for each region reaches a predetermined value, and the conversion to the maximum grayscale of the display device is performed for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
Further, in the present invention, the grayscale value at which the image grayscale extension method is switched is calculated from the threshold grayscale value obtained from a histogram calculated from the grayscale of the display image in which the difference from the adjacent pixel is equal to or larger than a predetermined value, and the conversion to the maximum grayscale of the display device is performed for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
Further, in the present invention, the display image is divided into a plurality of regions, a histogram calculated from the grayscale of the display image in which difference from the adjacent pixel is equal to or larger than a predetermined value is generated for each region, the grayscale value at which the image grayscale extension method is switched is calculated from a maximum value of the edge threshold grayscale value for each region in which a cumulative value from the maximum grayscale obtained for each region reaches a predetermined value, and the conversion to the maximum grayscale of the display device is performed for a grayscale of a pixel of the display image of equal to or larger than the grayscale value at which the image grayscale extension method is switched, so that the extension method more suited for the display image can be obtained with a simpler circuit.
According to the present invention, in an image grayscale extension circuit for performing the extension of the grayscale provided for the purpose of enhancing the contrast of the display image, the slope of the linear function is set to 1 or more for the grayscale equal to or lower than a specific grayscale. By this means, the contrast of the display image can be enhanced.
Further, according to the present invention, in an image grayscale extension circuit for performing the extension of the grayscale provided for the purpose of enhancing the contrast of the display image, the histogram equalization is performed for the grayscale equal to or higher than the specific grayscale. By this means, the contrast of the display image can be enhanced.
Further, according to the present invention, the luminance value of the backlight of the image in which the contrast is raised as described above is suppressed by the raised amount of the contrast. By this means, the power consumption of the backlight can be reduced.
Further, according to the present invention, the specific grayscale and the backlight luminance corresponding to the display image can be automatically adjusted based on the grayscale value of upper several % of the histogram of the image. Therefore, the suitable display corresponding to the display image can be performed.
Further, according to the present invention, the specific grayscale and the backlight luminance corresponding to the display image can be automatically adjusted by using the histograms of the divided regions and histogram information of the edge. Therefore, more suitable display corresponding to the display image can be performed.
Further, according to the present invention, the conversion method for the grayscale equal to or higher than the specific grayscale can be switched between the histogram equalization and the linear function. Therefore, the stable conversion can be performed by switching the conversion method for the grayscale equal to or higher than the specific grayscale to the linear function even in an image in which the distribution of the histograms of the specific grayscale or higher changes in each frame.
In many television images and others, an outstanding peak is present at the maximum grayscale (255 grayscale) in the histogram of the grayscale and other grayscales are smoothly changed as shown in
In order to solve the above problems, the present invention provides means which performs the calculation while eliminating the pixels of a plurality of grayscales including a predetermined grayscale (for example, maximum grayscale) from an object to be cumulated and excludes a predetermined proportion to be cumulated at the time of pixel grayscale extension, when calculating the histogram cumulative value from the maximum grayscale.
Specifically, a display driver according to the present invention controls a light source whose light amount is controllable and a transmissivity control element for controlling the transmissivity of light arranged on a front surface of the light source, wherein the display driver measures the number of pixels of each grayscale of a display image, extends a grayscale of a pixel of the display image data with using the threshold grayscale, at which a cumulative value from the maximum grayscale of the cumulating target reaches a predetermined proportion of the total number of pixels, as the maximum grayscale, and controls the light source so as to obtain the same luminance as the display luminance of the threshold grayscale at the time of maximum grayscale display.
The highest grayscale of the display image may be excluded from the cumulating target of the display driver. Also, the highest grayscale of the display image may be included in the cumulating target. As the combination thereof, whether or not the maximum grayscale of the display image is included as the cumulating target may be switched.
The display driver according to the present invention drives a light source and a display device. And said display driver includes: a histogram cumulative value calculating circuit calculating the histogram of the display image of one frame; a coefficient calculating circuit for calculating a histogram extension coefficient; and a pixel extension circuit, wherein the histogram cumulative value calculating circuit sums the number of pixels of each grayscale of display image of one frame from the maximum grayscale and then outputs the same, the coefficient calculating circuit obtains the pixel extension coefficient from the total value of each grayscale and then outputs the obtained pixel extension coefficient, and the pixel extension circuit extends the grayscale of the display image of one frame so that the grayscale equal to or lower than the pixel extension coefficient becomes the entire grayscale.
The histogram cumulative value calculating circuit of the display driver may be that does not output the number of pixels of the highest grayscale of the display image or may be that outputs the number of pixels of the highest grayscale. Further, the histogram cumulative value calculating circuit may include a mode switching register and output the number of pixels of the highest grayscale in accordance with the setting of the mode switching register.
The histogram cumulative value calculating circuit of the display driver may simultaneously output the number of pixels of each grayscale by different signal lines. Further, the histogram cumulative value calculating circuit of the display driver may sequentially output the number of pixels of each grayscale by the same signal line.
The coefficient calculating circuit of the display driver includes a threshold determination value storage register for holding a threshold determination value, and the coefficient calculating circuit sequentially adds the number of pixels of each grayscale from the high grayscale and determines the pixel extension coefficient for each display image of one frame by comparing with the threshold determination value.
Alternatively, the coefficient calculating circuit of the display driver obtains the pixel extension coefficients for each of the display images of plurality of frames and outputs an average value thereof as the pixel extension coefficient.
The pixel extension circuit of the display driver linearly extends the grayscale equal to or lower than the pixel extension coefficient.
The display driver further includes a CPU and an illumination sensor, wherein the CPU rewrites the value of the threshold determination value storage register in accordance with the illumination acquired by the illumination sensor.
The display driver further includes a backlight controller, and the backlight controller may control the backlight in accordance with the obtained pixel extension coefficient.
Application to a display device or electronic equipment characterized by including such display driver is also possible.
Further, according to the present invention, the power consumption can be significantly reduced by eliminating the number of pixels of the maximum grayscale of the light source which is not important in terms of an image in the screen (sun and fluorescent lamp).
According to the present invention, when the number of pixels of the maximum grayscale is equal to or larger than a predetermined value, by performing the calculation by putting the number of pixels of the maximum grayscale into the cumulative value of the histogram, the reduction in luminance at a high-luminance display location in a binary image is prevented and excellent display can be achieved.
According to the present invention, an image does not degrade even if the image is entirely whitish like cloud because the grayscale immediately below the maximum grayscale has a large number of pixels.
A drive circuit of a display device of the present invention has a mode register for determining whether or not the number of pixels of a predetermined grayscale is included in the cumulative value of the histogram in the display driver. As a result, according to the present invention, when displaying images mainly containing natural images such as moving images, the CPU determines the application and excludes the maximum grayscale from the histogram, and when displaying images mainly containing binary images such as document files, since the maximum grayscale can be included in the histogram, the image can be displayed more clearly.
In the drive circuit of the display device of the present invention, the threshold value of the number of pixels of the maximum grayscale for determining whether or not the number of pixels of the maximum grayscale is included in the histogram cumulative value can be set by the CPU. As a result, according to the present invention, the optimum threshold value can be set by the grayscale luminance characteristics of the liquid crystal or the like, and the image display can be made clearer.
Further, according to the present invention, the threshold value of the number of pixels of the maximum grayscale for determining whether or not the number of pixels of the maximum grayscale is included in the histogram cumulative value can be set by the CPU. As a result, even if the reduction in luminance or the like occurs due to aging of the backlight, the image can be displayed clearly by setting an optimum threshold value.
In addition, in the backlight control method using the histogram disclosed in Japanese Patent Application Laid-Open Publication No. 11-65531, the image quality degradation cannot be avoided. However, in order to suppress the image quality degradation to an acceptable range within a predetermined level, the histogram of the display image is analyzed so that the area of the region where luminance resolution is diminished and the image quality degrades due to the extension of the display data is restricted to several % or less of the entire screen, and the control of a reduction rate of the backlight emission amount and the extension rate of the display data is performed, thereby reducing the power consumption.
Here, it is assumed that there is a natural image in which the backlight emission amount can be reduced by 30% by using the backlight control method disclosed in Japanese Patent Application Laid-Open Publication No. 11-65531. In other words, it is assumed that there is a natural image in which the luminance of the pixels at the position of upper several % of the histogram of the display image is 70%. When an icon that is an artificial image symbolically representing a function button and information is overlapped and displayed on the natural image, since high luminance colors such as white, red, green, blue, and the like are often used for icons, the pixels of the icon region occupy upper several % of the histogram, and the luminance of the pixels at the position of upper several % becomes higher than 70%. As a result, the amount capable of reducing the backlight emission amount is decreased to less than 30%, compared with the case where only the natural images are displayed.
On the display screen of the cellular phone, digital camera, and the like, the natural image and the icon including a large number of high-luminance pixels are often displayed simultaneously as described above, and the expected power consumption reduction effect cannot be achieved in some cases by the conventional backlight control method.
Therefore, an object of the present invention is to provide, in an image display device in which image quality degradation for pixels is allowed to a certain extent and the backlight emission amount is correspondingly reduced to achieve the power saving, a drive circuit of an image display device and an image display method capable of enhancing a power consumption reduction effect while maintaining a display quality, by distinguishing a region where the influence on the display quality is high or low in a display screen, for example, a portion such as an icon formed by a painted figure in which a large number of high-luminance pixels are present and the influence on the display quality is low even when the luminance resolution diminishes, from other regions, and appropriately controlling the backlight emission amount while taking into account the influence on the display quality.
For its achievement, the present invention provides a drive circuit of an image display device and an image display method for displaying an image by irradiating a backlight to a display screen, and has following features.
That is, the drive circuit includes a backlight control unit comprising: a histogram counting unit for acquiring a histogram by counting display data in units of one or plural image frames and calculating a value of the display data at a specific upper position of the histogram; a display data extension unit for extending each display data based on the value of the display data at the specific position; and a backlight adjustment unit for adjusting a light emission amount of the backlight based on the value of the display data at the specific position, wherein the histogram counting unit includes a weighting coefficient calculating unit for outputting a weighting coefficient corresponding to a display position on the display screen of each display data, and counts the display data while adding the weighting coefficient to each display data, thereby acquiring the histogram.
Further, according to the present invention, the influence on the display quality by the display position of each pixel can be matched with the influence on the backlight emission amount control, and the influence on the display quality can be accurately managed compared to the conventional technique. Therefore, the backlight emission amount can be further reduced while maintaining the display quality, and further power reduction can be achieved.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference numbers throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.
First, the outline of an image grayscale extending process performed in the display driver according to a first embodiment of the present invention will be described briefly with reference to
In the present embodiment, the difference 1702 between the grayscale t and the grayscale z is controlled to be a constant multiple of the difference 1701 between the grayscale t and the maximum grayscale (255 grayscale). If the difference 1701 between the grayscale t and the maximum grayscale (255 grayscale) is a, the difference 1702 between the grayscale t and the grayscale z is represented as ka by using a constant k. The constant k is desirably 0 or more and 1 or less, but may be 1 or more depending on the system.
Here, a slope of a linear function 1703 connecting coordinates (0, 0) and (t, maximum grayscale (255 grayscale)) of
When the grayscale value of the pixel of the display image is equal to or lower than the grayscale z, the pixel extending circuit of the present embodiment performs the conversion by using the linear function 1703. The linear function is expressed by equation 2.
When the grayscale value of the pixel of the display image is equal to or larger than z, the conversion is performed by using a method referred to as histogram equalization.
The conversion method for an input value equal to or larger than the grayscale z will be described in detail below. The reference number 1706 of
The reference number 1705 is a total number of pixels from the grayscale z+1 to the 255 grayscale and is expressed as the equation 4.
The difference 1704 between the output value of the linear function 1703 at the grayscale z and the maximum grayscale (255) is expressed as αka by using the slope α of the linear function 1703, the constant k, and the difference a between the grayscale t and the maximum grayscale (255 grayscale). At this time, the output grayscale for the input value x equal to or larger than the grayscale z+1 is expressed as the equation 5.
When the backlight luminance 1707 when extension process is not performed is defined as B, even if the backlight luminance (equation 6) is reduced to 1708, the similar display as before the conversion can be performed with respect to the input value equal to or lower than the grayscale z, and the grayscale equal to or higher than the grayscale z can be displayed while maintaining a contrast.
By the conversion as described above, compared to the conventional conversion method in which the pixels of the display image are converted by the linear function 1703 connecting the coordinates (0, 0) and (t, maximum grayscale (255)) when the grayscale value of the pixel of the display image is equal to or lower than the threshold grayscale t301, and all the grayscales equal to or higher than the threshold grayscale t301 are converted to the maximum grayscale (255), the whiteout can be prevented. Also, preferable display can be obtained without degrading the contrast for the portion equal to or higher than the grayscale z.
A display device according to the first embodiment of the present invention will be described below.
In
The display driver 101 is configured by including an input/output interface circuit 105, a histogram counting circuit 106, a coefficient calculating circuit 107, a backlight controller 108, a pixel extending circuit 109, a liquid crystal controller 110, a whiteout compensation parameter setting register 1801, a threshold grayscale setting parameter setting register 116, a memory 113, a timing control circuit 114, and a pixel extending method switching register 1102. The pixel extending circuit 109 changes the operation in accordance with the value of the pixel extending method switching register 1102.
The operation of the display device of the first embodiment will be described below. When displaying data on the liquid crystal screen, the CPU 102 sets the value of the ratio k of the difference 1702 between z and t and the difference 1701 between maximum grayscale (255) and t shown in
Further, the value p312 of p % shown in
In the display start mode, the timing control circuit 114 of the display driver 101 outputs a frame SYNC signal indicating the start position of the display data, and the display data is output from the memory 113 to the histogram counting circuit 106 and the pixel extending circuit 109 in synchronization with the SYNC signal.
In the histogram counting circuit 106, the maximum value from the values of R, G, B of one pixel, that is, the RGB maximum value is extracted, and the number of pixels of each grayscale is obtained from the display data for one frame by using the RGB maximum value, thereby obtaining the histogram. As one example, the histogram generated in the histogram counting circuit 106 corresponds to shown in
In the coefficient calculating circuit 107, the sum of the number of pixels from the highest grayscale (255 grayscale) to each grayscale is obtained. By using the value p312 of p % shown in
When the pixel extending method switching register is set to a value “0”, the data conversion (extension) shown in
The liquid crystal controller 110 converts a digital value provided from the pixel extending circuit 109 to an analog value for driving the liquid crystal screen 112, thereby displaying an image on the liquid crystal screen (PANEL).
Further, the backlight controller 108 converts the backlight luminance value 117 that is a digital value to a current for driving the backlight, thereby adjusting the luminance of the backlight 111.
By the operation as described above, the display device of the present embodiment can realize the conversion shown in
In the present embodiment, k is defined as a ratio of the difference 1702 between a certain grayscale value z and the threshold grayscale t and the difference 1701 between the maximum grayscale (255) and t, but it may be defined as a ratio of the grayscale z and the grayscale t or a ratio of the difference between threshold grayscale t and the maximum grayscale (255) and the difference between a certain grayscale value z and the maximum grayscale (255).
Further, it may be defined as a ratio of the difference between threshold grayscale t and the maximum grayscale (255) and 1704. Although various parameters can be used for determining a certain grayscale value z, any parameter can be used as long as it does not deviate from the scope of the present invention.
Next, when the pixel extension method switching register is set to a value “1”, in the pixel extending circuit 109, the grayscale is extended in accordance with the equation 2 when the grayscale of the display data transferred from the memory 113 is equal to or lower than the grayscale z, thereby performing the data conversion (extension) as shown in
By the operation as described above, the display can be stably performed even if the distribution of the histogram of than the grayscale z+1 or higher changes significantly in each frame. In the present embodiment, the histogram is generated by using the largest one of the three sub-pixels R, G, B, but the method of generating the histogram does not affect the patentability, and the histogram may be generated by using all the values of R, G and B.
Next, a display device according to a second embodiment of the present invention will be described with reference to
In the present embodiment, the portion between the grayscale z and the maximum grayscale 255 is divided into four equal intervals 1601, 1602, 1603, and 1604. The boundary of 1601 and 1602 is z1, the boundary of 1602 and 1603 is z2, and the boundary of 1603 and 1604 is z3. The cumulative value N1 of the histogram from the grayscale z+1 to the grayscale z1, the cumulative value N2 of the histogram from the grayscale z+1 to the grayscale z2, the cumulative value N3 of the histogram from the grayscale z+1 to the grayscale z3, and the cumulative value of the histogram from the grayscale z+1 to the grayscale 255 are counted by using four counters. N1, N2, and N3 are expressed as the equation 8.
In the pixel extending circuit 109, the conversion is performed by using a function (equation 9) complemented with these three points.
In this manner, the circuit required for generating the histogram of the grayscale z or higher can be configured of only four counters, and the circuit size can be significantly reduced.
Here, the portion between the grayscale z and the maximum grayscale 255 is divided into four portions to be counted, but it is obvious that the same configuration can be achieved even if the number of divisions is changed and the number does not affect the patentability of the present invention. Further, although the portion is divided equally, it is obvious that similar configuration can be obtained even if it is divided unequally.
Next, a display device according to a third embodiment of the present invention will be described with reference to
In the present embodiment, when the grayscale value of the pixel of the display image is equal to or lower than the threshold grayscale 301, the pixel of the display image is converted by the first linear function 308 connecting the coordinates (0, 0) and (t, z). The first linear function is expressed as the equation 10.
Here, when the ratio of the difference 307 between z and t and the difference 306 between the maximum grayscale (255) and t is defined as α, the equation 10 is replaced with the equation 11.
When the grayscale value of the pixel of the display image is equal to or higher than the threshold grayscale t301, the nonlinear arithmetic operation corresponding to the number of pixels of the histogram of the threshold grayscale t301 or higher is performed. Hereinafter, the nonlinear arithmetic operation will be described.
As shown in
In the present embodiment, since there is the difference between an input grayscale width and an output grayscale width such as 255-t and 255-z, the grayscale indicated in the equation 12 is assigned to the grayscale where the number of pixels of the histogram is v times the average value.
Further, the description will be made with reference to
As shown in
Further, since the number of pixels of the histogram of the grayscale 242 is 8×v1 and the average is 2×v1, the number of pixels of the histogram of the grayscale 242 is four times as large as the average. Therefore, four times×0.5 times=2 grayscales are assigned to the grayscale 242. Since the number of pixels of the histogram from the grayscale 243 to the grayscale 254 is ½ times the average, ½×0.5=¼ grayscale is assigned.
Therefore, the grayscale 243 to the grayscale 246 are assigned to the grayscale 251 of the output, the grayscale 247 to the grayscale 250 are assigned to the grayscale 252 of the output, and the grayscale 251 to the grayscale 254 are assigned to the grayscale 253 of the output. Since the number of pixels of the histogram of the grayscale 255 is 8×v1, the input/output conversion characteristics as shown in
In
By the conversion as described above, at the grayscale equal to or higher than the threshold grayscale t301 where the contrast is lowered, the contrast can be enhanced and the conversion can be preformed with more preferable image quality.
Further, the register 1102 is a register for switching the data conversion (extension) method in the threshold grayscale value or more. When the register 1102 is “0”, the pixel extending circuit 109 converts the data with the histogram equalization method described above. When the register 1102 is “1” and if the grayscale value of the pixel of the display image is equal to or lower than the threshold grayscale t301, the pixel of the display image is converted with the first linear function 308 connecting the coordinates (0, 0) and (t, z).
The first linear function is expressed as the equation 10. When the grayscale value of the pixel of the display image is equal to or higher than the threshold grayscale t301, the pixel of the display image is converted with a second linear function 309 connecting the coordinates (t, z) and (maximum grayscale (255), maximum grayscale (255)). The second linear function is expressed as the equation 13.
By the conversion as described above, compared to the conventional conversion method in which the pixels of the display image are converted by a third linear function 803 connecting the coordinates (0, 0) and (t, maximum grayscale (255)) when the grayscale value of the pixel of the display image is equal to or lower than the threshold grayscale t301, and all the grayscales equal to or higher than the threshold grayscale t301 are converted to the maximum grayscale (255), the whiteout can be prevented. The third linear function is expressed as the equation 14.
Here, if the ratio of the difference 307 between z and t and the difference 306 between the maximum grayscale (255) and t is set as α, the equations 10 and 13 can be replaced with the equations 11 and 15.
y=(1−α)x+Maximum grayscale (255)α Equation 15
In both cases where the value of the register 1102 is “0” and “1”, if the luminance of the backlight when image extension process is not performed is set as luminance 310 that realizes the luminance of the maximum grayscale (255), and it can be lowered to luminance 311 that realizes the luminance of the grayscale in which the linear function 308 reaches the maximum grayscale (255).
Here, if the luminance 310 is defined as B, the luminance 311 is expressed as the equation 16.
Further, by increasing the contrast using the first linear function, even if the luminance of the backlight is lowered, the image quality equal to the original display image can be maintained in the grayscales equal to or lower than the threshold grayscale. Also, when the value of the register 1102 is “0”, the preferable image quality having no whiteout can be displayed even in the grayscales equal to or higher than the threshold grayscale.
Further, when the value of the register 1102 is “1”, by the operation as described above, the stable display can be performed even if the distribution of the histogram of the grayscale z+1 or higher significantly changes in each frame.
The method of implementing the histogram equalization shown in the first embodiment and the method of implementing the histogram equalization shown in the third embodiment are equal in terms of results, and either method can be used in either embodiment.
In the present embodiment, α is defined as a ratio of the difference 307 between a certain grayscale value z and the threshold grayscale t and the difference 306 between the maximum grayscale (255) and t, but it may be defined as a ratio of an angle 1201 and an angle 1202 as shown in
Next, a display device according to a fourth embodiment of the present invention will be described with reference to
Even in the display image having a histogram concentrated on dark grayscales, if the extension rate is much increased (slope of the linear function 306 is made steep), the difference of the grayscales becomes obvious, and the image quality degrades. Therefore, in the present embodiment, a lower limit value t1 501 of the threshold grayscale value tr503 is set so that the extension rate becomes equal to or lower than a predetermined value even if the display image has a histogram concentrated on the dark grayscales.
As shown in
In this manner, when q is 0%, since there is no pixel where the whiteout occurs, the conversion is made with a straight line of 505, and the maximum contrast can be obtained. When q is p %, since α=0.5, the contrast can be obtained even at the threshold grayscale tr503. As described above, the optimum α can be automatically generated from the display image in the coefficient calculating circuit 107 with the configuration as shown in the second embodiment.
Next, a display device according to a fifth embodiment of the present invention will be described with reference to
In the fifth embodiment, as shown in
In
For example, in the example of
In this manner, when the maximum value of the threshold grayscale values of each region is sufficiently large compared to the threshold grayscale t301 obtained from the histogram of
When the maximum value of the threshold grayscale values of each region is equal to the threshold grayscale t301 obtained from the histogram (
As described above, the optimum a can be automatically generated in the coefficient calculating circuit 107 from the display image by the configuration of the present embodiment.
Next, a display device according to a sixth embodiment of the present invention will be described with reference to
In
Also in the present embodiment, similar to the fourth embodiment, the threshold grayscale setting parameter setting register 116 for setting the value p302 of p % determining the threshold grayscale t301 from the histogram and the threshold grayscale value lower limit value setting register 401 for setting the lower limit value of the threshold grayscale t301 are provided.
The register 701 is an edge minimum value setting register which defines a minimum value of the difference in grayscales to be counted when counting the edge histogram, and the register 702 is an edge maximum value setting register which defines a maximum value of the difference in grayscales to be counted when counting the edge histogram.
For example, when the total number of grayscales is 255, 8 is set in the edge minimum value setting register 701 in order to realize the difference of 8 or more grayscales where the human eyes can recognize the difference. The setting value of the edge minimum value setting register is Emin. A value such as 2×(255-t) where the whiteout cannot be observed even if the maximum whiteout occurs is set in the edge maximum value setting register 702.
The setting value of the edge maximum value setting register is Emax. Here, if the grayscales of the positions j and j+1 are g1 and g2, when g1-g2>Emax, the edge histogram counting circuit is not counted up. In the positions j+1 and j+2, when Emax≧g1-g3≧Emin, a histogram counter (not shown) corresponding to the higher grayscale g1 in the edge histogram counting circuit 703 is counted up by one.
When g3-g5>Emax, the edge histogram counting circuit 703 is not counted up. When g4-g5≦Emin, the edge histogram counting circuit 703 is not counted up. In this manner, the edge histogram counting circuit 703 counts the second histogram based on the edge information.
The register 704 is an edge histogram threshold grayscale setting parameter setting register which sets the value of pe % for determining the edge histogram threshold grayscale te from the edge histogram counted in the edge histogram counting circuit 703. Pe is referred to the edge histogram threshold grayscale setting parameter. When the cumulative value of the histogram from the maximum grayscale to a certain grayscale of the edge histogram counting circuit 703 is calculated in the coefficient calculating circuit 705 and the accumulate value is the pe % of the total number of pixels, the grayscale value thereof is referred to as edge threshold grayscale, and α402 is calculated by using the equation 19.
Alternatively, the region may be divided in the same manner as the fifth embodiment and the edge histogram for each region may be calculated. Also in this case, the calculation is performed by selecting the maximum threshold value of each of the divided regions is selected and set as the edge threshold grayscale value, whereby the similar calculation can be implemented. In this case, by dividing the region thinly, the edge detection sensitivity is enhanced, and more preferable image quality can be achieved.
The method of automatically setting α of the third embodiment according to the fourth to sixth embodiments can be used to the case where k is determined by setting k=1-α in the first and second embodiments.
Next, a display device according to a seventh embodiment of the present invention will be described with reference to
However, the seventh embodiment differs from the fifth embodiment in that, as shown in
Similar to the fifth embodiment, in the coefficient calculating circuit 107, in addition to the histogram of the display image of the entire screen, the display image is divided and the histogram is generated for each divided region. Then, the threshold grayscale value Tmax, which is larger one of the largest threshold grayscale 1301 of the threshold grayscales of each region and the threshold grayscale 301 obtained from the histogram of the display image of the entire screen, is used as the threshold grayscale and is output to the pixel extending circuit 109.
In the pixel extending circuit 109, conversion indicated by lines 1302 and 1303 of
Further, the coefficient calculating circuit 107 outputs a signal 117 to the backlight controller 108 so that the luminance of the backlight becomes 1305 relative to the backlight luminance 1304 at the time of no extension. By the operation described above, the reduction rate of the backlight power is lowered, but a brighter and more preferable display can be obtained.
Next, a display device according to an eighth embodiment of the present invention will be described with reference to
However, the eighth embodiment differs from the seventh embodiment in that the edge histogram shown in the sixth embodiment is used instead of using the threshold grayscale of a plurality of divided regions.
As shown in
Further, the backlight controller is controlled by the output of the comparison circuit 706.
By the operation as described above, the reduction rate of the backlight power is lowered, but a brighter and more preferable display can be obtained also in the eighth embodiment.
Next, the outline of an image extending process performed in the display driver according to a ninth embodiment of the present invention will be described with reference to
When the grayscale value of the pixel of the display image is equal to or larger than z, the conversion is performed by using the histogram equalization, but at this time, the pixel value is adjusted by the pixel value converter shown in
Here, X1 is mounted as the register 900, and an arbitrary value larger than z can be externally set. The conversion is performed for the adjusted pixel value by using used for histogram equalization.
The difference from the first embodiment with respect to the conversion method for the input value equal to or higher than the grayscale z in the display driver according to the ninth embodiment of the present invention will be described in detail with reference to
Similar to the first embodiment, assuming that the number of pixels of each grayscale can be represented by the function F(x), the cumulative value (total number of pixels) of the histogram from the grayscale z+1 to the grayscale x is expressed as the equation 20 by using F(x).
Since the function F(s) is converted so that the pixel of the grayscale does not exist at s>X1, the value becomes 0. Therefore, when x>X1, the cumulative value of the histogram becomes constant and becomes the cumulative value from z+1 to X1. Accordingly, the output grayscale with respect to the input value x equal to or higher than the grayscale z+1 is expressed as the equation 21.
In other words, in the region of x≦X1, equation is the same as that of the first embodiment, but in the region of x>X1, the output becomes constant at the maximum grayscale (255). The relationship of the input grayscale and the output grayscale in this case is as shown in
By the conversion as described above, for example, when GUI of high luminance is included in the display image as shown in
Next, the outline of an image extending process performed in a display driver according to a tenth embodiment of the present invention will be described. In the tenth embodiment, the pixel extending circuit of the second embodiment is modified in the following manner.
When the grayscale value of the pixel of the display image is equal to or larger than z, the conversion is performed by using the histogram equalization, but at this time, the pixel value is adjusted by the circuit shown in
The difference from the second embodiment with respect to the conversion method for the input value equal to or larger than the grayscale z in the display driver according to the tenth embodiment of the present invention will be described in detail with reference to
Similar to the second embodiment, assuming the number of pixels of each grayscale can be represented by the function F(x), N1, N2, and N3 counted by four counters are expressed as the equation 22. In the present embodiment, z2<X1≦z3 is satisfied.
Since the function F(s) is converted so that the pixel of the grayscale does not exist at s>X1, the value becomes 0. Therefore, in N3, the cumulative value of the histogram becomes constant and becomes the cumulative value from z+1 to X1. Accordingly, the output grayscale with respect to the input value x equal to or higher than the grayscale z+1 is expressed as the equation 23.
In other words, in the region of x≦Z3, equation is the same as that of the first embodiment, but in the region of x>Z3, the output becomes constant at the maximum grayscale (255). The relationship of the input grayscale and the output grayscale in this case is as shown in
By the conversion as described above, similar to the ninth embodiment, for example, when GUI of high luminance is included in the display image as shown in
The difference from the second embodiment with respect to the coefficient determining method in the display driver according to a seventeenth embodiment of the present invention will be described in detail with reference to
Of the operations of the seventeenth embodiment, the operation in the case where the display pixel value is rapidly changed will be described with reference to
Of the operations of the seventeenth embodiment, the operation in the case where the output of the histogram counting circuit 106 is finely and unstably changed will be described with reference to
In the foregoing, the invention made by the inventors of the present invention has been concretely described based on the embodiments. However, it is needless to say that the present invention is not limited to the foregoing embodiments and various modifications and alterations can be made within the scope of the present invention.
The present invention can be applied to a display device using a backlight and an element for controlling transmissivity of the liquid crystal and the like, for example, a television, a personal computer or a cellular phone using a liquid crystal display device.
An outstanding peak of the maximum grayscale (255 grayscale) is generated mainly due to the following two reasons.
(1) A light source or the like is displayed on a screen.
(2) All the portions having a luminance equal to or higher than the maximum grayscale (255 grayscale) are aligned at 255 grayscale when an original image having a wide luminance range is taken and digitized.
The case of (1) that a light source or the like is displayed on a screen is the case where a light source such as fluorescent bulb or the sun is in the screen as shown in
The case of (2) occurs when the portions having a luminance equal to or higher than the maximum grayscale are aligned at the maximum grayscale as shown in
To solve the problems described above, in the present invention, a calculation is performed while excluding a number of pixels of a predetermined grayscale (for example, maximum grayscale or its approximate grayscale) when calculating the accumulate value of the histogram from the maximum grayscale.
Next, the image extending process performed to enhance the contrast in the present invention will be described with reference to
In
The grayscale x of the pixel extension coefficient is assigned to 255 grayscale as shown in
In this manner, in the present invention described in this specification, the contrast is enhanced by extending the grayscales 0 to x to 0 to 255.
As described above, in the present invention, the grayscale x at which the number of pixels having the grayscale values of the grayscale x or higher and the maximum-γ (255-γ) grayscale or lower is y % of the total number of pixels is referred to as the pixel extension coefficient, and the image is extended by assigning the grayscale to the maximum (255) grayscale. The value of y % is defined as the threshold determination value in the present invention. The threshold determination value is a matter determined in a design stage and is appropriately determined by a circuit designer. It is desired that a number of the pixel of equal to or larger than the pixel extension coefficient of a display image is sufficiently small and inconspicuous with respect to the entire image is set as the threshold determination value.
On the other hand,
When the image information is concentrated on the low grayscale, the pixel extension coefficient x obtained in the above method is a small value. Thus, the extension magnification becomes too large as shown in
In the present specification, the data to be handled is described as 8-bit data of 255 grayscales, but it may be 10-bit data (1023 grayscales).
Based on the above premise, each embodiment of the present invention will be described with reference to the drawings.
A display device 2100 is configured of a display driver 2101, a central processing unit (CPU) 2102, a display memory 2103, an internal bus 2104, a backlight 2111, and a liquid crystal screen 2112.
The display driver 2101 is a circuit for driving the backlight 2111 and the liquid crystal screen 2112. The display driver 2101 is configured to include an input/output interface circuit 2105, a histogram cumulative value calculating circuit 2106, a coefficient calculating circuit 2107, a backlight controller 2108, a pixel extending circuit 2109, a liquid crystal controller 2110, a drive circuit memory 2113, and a timing control circuit 2114.
The CPU 102 is a processor for transmitting data to the display driver 2101 and causing the liquid crystal screen 2112 to display.
The memory 2103 is a memory for holding attributes on luminance, hue, and color saturation for the display on a liquid crystal screen. In the present invention, the memory is connected to the internal bus 2104 outside the display driver 2101. However, the memory may be directly connected to the display driver 2101 to be dedicated to the display driver 2101, or may be incorporated in the display driver 2101. Alternatively, it may be designed to be shared with the CPU 2102.
The internal bus 2104 is a bus used to transfer data between the modules in the display device 2100.
The backlight 2111 is a light source for enhancing visibility of the liquid crystal screen 2112 by irradiating the liquid crystal screen 2112 which does not emit light by itself.
The liquid crystal screen 2112 is an image display device incorporating liquid crystal elements.
Next, the modules inside the display driver 2101 will be described.
The input/output interface circuit (input/output IF circuit) 2105 is an interface unit for receiving data transmitted from the internal bus 2104. The input/output interface circuit 2105 includes a “display start register” (not shown) indicating whether or not the display driver 2101 is in a state for performing a display on the liquid crystal screen (display start mode).
The histogram cumulative value calculating circuit 2106 is a circuit which obtains the number of pixels of each grayscale from the highest grayscale (255 grayscale) to the lower limit value from the display data of one frame and forms a histogram thereof.
The coefficient calculating circuit 2107 obtains the sum of the number of pixels to each grayscale from the output of the histogram cumulative value calculating circuit 2106. The “grayscale x” which is the pixel extension coefficient is thereby obtained.
Note that, since the histogram cumulative value calculating circuit 2106 and the coefficient calculating circuit 2107 are characteristic points of the present invention, they will be described later in detail.
The backlight controller 2108 has a function to adjust the illumination or the like of the backlight 2111. This adjustment of illumination can reduce the power consumption of the backlight 2111.
The pixel extending circuit 2109 is a circuit for performing an extending process for the grayscale of the display image based on the pixel extension coefficient.
The liquid crystal controller 2110 is a controller for performing the display on the liquid crystal screen 2112 based on the output data of the pixel extending circuit 2109.
The drive circuit memory 2113 is a memory for temporarily storing the display data sent via the input/output interface circuit 2105. The capacity of the drive circuit memory 2113 differs depending on the system, but a system usually has a frame memory equivalent to one frame. In the present invention, a FIFO memory with several bytes may be used.
The timing control circuit 2114 outputs a SYNC signal indicating the start position of the display data with respect to the display data sent via the input/output interface circuit 2105. In synchronization with the SYNC signal, the display data is output from the drive circuit memory 2113 to the histogram cumulative value calculating circuit 2106 and the pixel extending circuit 2109.
Hereinafter, the operation of the display device will be described.
The CPU 2102 writes a value indicating the display start to the “display start register” (not shown) in the input/output interface circuit 2105 when displaying the data on the liquid crystal screen 2112. Thereafter, the display data is transferred from the display memory 2103 to the drive circuit memory 2113 via the input/output interface circuit 2105.
In the display start mode, the timing control circuit 2114 of the display driver 2101 outputs a frame SYNC signal indicating the start position of the display data. In synchronization with the frame SYNC signal, the display data is output from the drive circuit memory 2113 to the histogram cumulative value calculating circuit 2106 and the pixel extending circuit 2109.
The display data output from the drive circuit memory 2113 is formed into a histogram in the histogram cumulative value calculating circuit 2106. One example of the histogram is shown in
In
The histogram data obtained by the histogram cumulative value calculating circuit 2106 is transmitted to the coefficient calculating circuit 2107. The coefficient calculating circuit 2107 obtains the pixel extension coefficient from the histogram data.
The method of obtaining the pixel extension coefficient in the coefficient calculating circuit 2107 will now be described based on
First, the sum of the number of pixels of the grayscale 253 or lower and the variable a grayscale or higher is obtained. If the sum of the number of pixels is smaller than a predetermined threshold determination value, 1 is subtracted from the value a, and the sum of the number of pixels is obtained again. More specifically, a=251 in the example, and the sum of the number of pixels from the grayscale 251 to the grayscale 253 is obtained. This is repeated until the lower limit value is reached or the sum of the number of pixels becomes larger than the threshold determination value.
On the other hand, if the sum of the number of pixels is larger than the predetermined threshold determination value, a value obtained by adding 1 to the value a at that point is decided as the pixel extension coefficient. Further, if the variable a reaches the lower limit value without the sum of the number of pixels becoming larger than the predetermined threshold determination value, the lower limit value (2220 in
If the pixel extension coefficient is decided, the coefficient calculating circuit 2107 outputs the confirmed pixel extension coefficient to the backlight controller 2108 and the pixel extension circuit 2109.
Next, the operation of the backlight controller 2108 and the grayscale luminance characteristics of the liquid crystal screen 2112 will be described with reference to
The horizontal axis of
The luminance 2701 of
Further, the grayscale luminance characteristics when the maximum grayscale is 255 grayscale and the backlight luminance is 2701 are grayscale luminance characteristics 2704, the grayscale luminance characteristics of the liquid crystal or the like when the backlight luminance is 2702 are grayscale luminance characteristics 2705, and the grayscale luminance characteristics of the liquid crystal or the like when the backlight luminance is 2703 are grayscale luminance characteristics 2706.
In general, if the backlight luminance is lowered, the current consumption lowers. Also, in the present invention, it is advantageous in terms of power consumption to light the backlight with the luminance 2701 than with the luminance 2702, and it is further advantageous to light the backlight with the luminance 2703. The backlight controller of the present invention focuses on such an aspect and performs the following process.
More specifically, the backlight luminance is fixed to 2703 (luminance when highest grayscale is pixel extension coefficient B). Meanwhile, from the grayscale 0 to grayscale B, the grayscale luminance characteristics 2704 are used as the grayscale luminance characteristics of the liquid crystal or the like. Further, in the range from the grayscale B to the grayscale 255, the maximum grayscale is fixed so as to have the grayscale luminance characteristics 2709 in which the luminance 2710 equal to the luminance at the grayscale B of the grayscale luminance characteristics 2704 is the luminance of the highest grayscale. By the control as described above, the power consumption can be significantly reduced.
In the pixel extending circuit 2109, the conversion shown by the characteristics 2707 of
The characteristics 2708 of
In the pixel extending circuit 2109 of the present invention, the portions of the pixel extension coefficient (grayscale B) or higher of the display image are all processed as the grayscale 255, and only the portions of 0 or higher and the pixel extension coefficient (grayscale B) or lower are converted linearly as shown by the characteristics 2707.
The luminance displayed on the liquid crystal screen 2112 has the characteristics 2709 of
Incidentally, in the case of a method of using the cumulative value of the histogram including the highest grayscale, if the same determining method of the threshold determination value is used, the pixel extension coefficient shifts to the high grayscale side. This is because the peak is normally at the grayscale 255. In the case of the method of using the cumulative value of the histogram including the highest grayscale, the pixel extension coefficient shifts from B to A on the grayscale 255 side as shown in
Next, the detailed block diagram and the operation of the histogram cumulative value calculating circuit 2106 and the coefficient calculating circuit 2107 of the eleventh embodiment will be described with reference to
The histogram cumulative value calculating circuit 2106 is configured of an RGB maximum value extracting circuit 2501, the histogram boundary setting register 2502, a selector 2503, and a histogram counter 2504.
On the other hand, the coefficient calculating circuit 2107 is configured of a threshold value storage register 2521, a selector 2522, a threshold determination value storage register 2523, a selector 2524, adders 2525 to 2539, registers 2540, 2542, 2544 and 2546, adders 2541, 2543 and 2545, and a divider 2547.
The RGB maximum value extracting circuit 2501 is a circuit which selects the maximum grayscale value from the data of red (R), green (G), and blue (B) of one pixel transmitted from the input/output interface 2105, and outputs the same to the selector 2503.
The histogram boundary setting register 2502 is a register which is set by the CPU 2102 via the input/output interface 2105, and has a function to set which counter is to be counted up in accordance with the value of the output of the RGB maximum value extracting circuit 2501.
The selector 2503 is a selector which compares the output of the RGB maximum value extracting circuit 2501 and the output of the histogram boundary setting register 2502 to determine the output to the histogram counter 2504. In the present embodiment, the histogram counter 2504 is a counter configured of sixteen counters 2505 to 2520. Although the number of counters is sixteen here, the number of counters is determined in consideration of the lower limit value of the pixel extension coefficient and the count up range of
The threshold value storage register 2521 is a register which sets a threshold value for not adding the value of the counter 2505 to the histogram cumulative value when the value of the counter 2505 is smaller than the value of the threshold value storage register, and adding the value of the counter 2505 to the histogram cumulative value when the value of the counter 2505 is larger than the value of the threshold value storage register.
The selector 2522 is a selector which outputs “0” when the value of the counter 2505 is smaller than the value of the threshold value storage register 2521, and outputs the value of the counter 2505 when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521. Accordingly, if the cumulative value of the highest grayscale is equal to or lower than the predetermined value, the value can be ignored. To the contrary, if the value of the threshold value storage register 2521 is set to “0”, the highest grayscale is always output.
The threshold determination value storage register 2523 is a register for storing the threshold determination value.
The selector 2524 is a selector which compares the cumulative values 2526 to 2539 from the highest grayscale to the corresponding grayscale to be cumulated and the value of the threshold determination value storage register 2523, and outputs the grayscale value corresponding to the maximum grayscale from the cumulative values smaller than the value of the threshold determination value storage register 2523. The output of the selector 2524 corresponds to the pixel extension coefficient obtained from the display data for one frame.
The adder 2525 adds the output of the selector 2522 and the output of the register 2506 in the histogram counter 2504, and outputs to the selector 2524 and the adder 2526. More specifically, when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521, the sum of the values of the counter 2505 and the counter 2506 is output, and when the value of the counter 2505 is smaller than the value of the threshold value storage register 2521, the value of the counter 2506 is output.
Similarly, the values of the adders 2526 to 2539 become the cumulative value from the grayscale 255 to the grayscale corresponding to the corresponding counter when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521, and the values of the adders 2526 to 2539 become the cumulative value from the grayscale 253 to the grayscale corresponding to the corresponding counter excluding the grayscales 255 and 254 when the value of the counter 2505 is smaller than the value of the threshold value storage register 2521.
The registers 2540, 2542, 2544, and 2546 are registers for holding the cumulative value of the pixel extension coefficients for the most recent four frames. Further, the adders 2541, 2543 and 2545 and the divider 2547 are provided so as to take the average of the pixel extension coefficients of the most recent four frames.
The adder 2541 is an adder for adding the output of the selector 2524 and the output of the register 2540 and outputting the same to the register 2542. Also, the adder 2543 is an adder for adding the output of the selector 2524 and the output of the register 2542 and outputting the same to the register 2544, and the adder 2545 is an adder for adding the output of the selector 2524 and the output of the register 2544 and outputting the same to the register 2546.
In the present embodiment, the divider 2547 is a divider for dividing by four. The division by four is carried out so as to obtain the average value of the most recent four frames, and if it is intended to increase the target to be cumulated of the pixel extension coefficients of the most recent frame, the divider is increased accordingly.
Hereinafter, the operation of the histogram cumulative value calculating circuit 2106 will be described based on the circuit configuration mentioned above.
When the frame SYNC signal is input to the histogram cumulative value calculating circuit 2106, the histogram counter 2504 is reset. In other words, the sixteen counters 2505 to 2520 in the histogram counter 2504 become 0.
Next, the display data is transferred from the input/output interface circuit 2105 to the RGB maximum value extracting circuit 2501 by one pixel at a time. In the RGB maximum value extracting circuit 2501, the maximum value of the grayscales of the data of R (red), G (green), and B (blue) is selected and output to the selector 2503.
The selector 2503 compares the output of the RGB maximum value extracting circuit 2501 and the value of the histogram boundary setting register 2502. An example of setting the histogram boundary setting register 2502 will be described with reference to
After obtaining the output of the RGB maximum value extracting circuit 2501, the selector 2503 checks in which range of the count up value the output value exists. Then, the output signal is determined so as to count up the counter corresponding to the range.
In the setting of
On the other hand, when the output of the RGB maximum value extracting circuit 2501 is 253 or 252, the output 2553 of the selector 2503 becomes active, and other output signal lines 2552 and 2554 to 2563 do not become active. Thus, only the counter 2506 in the histogram counter 2504 is counted up.
Further, when the output of the RGB maximum value extracting circuit 2501 is smaller than “200” (minimum count up range of the counter 2520), any of the outputs 2552 to 2563 does not become active, and the counters 2505 to 2520 are not counted up.
As described above, the output of the selector 2503 is determined in accordance with the setting value of the histogram boundary setting register 2502 and the output of the RGB maximum value extracting circuit 2501. As a result, each counter in the histogram counter 2504 is appropriately counted up.
In this manner, the number of pixels for each boundary set in the histogram boundary setting register 2502 is accumulated in the histogram counter 2504 when the display data for one frame is input.
Next, the operation of the coefficient calculating circuit 2107 will be described.
The coefficient calculating circuit 2107 obtains the pixel extension coefficient by the calculating operation from the value of each counter obtained by the histogram cumulative value calculating circuit 2106. The detailed calculating operation method will be described below.
When the value of the counter 2505 is smaller than the value of the threshold value storage register 2521, the selector 2522 outputs “0”, and the selector 2522 outputs the value of the counter 2505 when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521. Thus, the output of the adder 2525 becomes the sum of the values of the counter 2505 and the counter 2506 when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521, and it becomes the value of the counter 2506 when the value of the counter 2505 is smaller than the value of the threshold value storage register 2521.
Similarly, the values of the adders 2526 to 2539 are the cumulative values of corresponding counter values from the grayscale 255 to the grayscale corresponding when the value of the counter 2505 is equal to or larger than the value of the threshold value storage register 2521, and the values of the adders 2526 to 2539 are the cumulative values of corresponding counter values from the grayscale 253 to the grayscale corresponding excluding the grayscales 255 and 254 when the value of the counter 2505 is smaller than the value of the threshold value storage register 2521.
The selector 2524 compares the cumulative values 2525 to 2539 from the grayscale 253 to the grayscale corresponding to the corresponding counter and the value of the threshold determination value storage register 2523, and outputs the grayscale value corresponding to the minimum grayscale from the cumulative values smaller than the value of the threshold determination value storage register 2523. The output of the selector 2524 becomes the pixel extension coefficient of the frame obtained from the display data for one frame.
However, if the pixel extension coefficient and the backlight luminance and the grayscale luminance characteristics obtained from the pixel extension coefficient are determined with only one frame, the fluctuation of the luminance occurs and the flickers occur in some cases.
Therefore, the pixel extension coefficients of the most recent four frames are added in the registers 2540, 2542, 2544 and 2546, and the average of each pixel extension coefficient is obtained in the divider 2547. By this means, the fluctuation of the luminance for each one frame reduces, the occurrence of the flickers is suppressed, and a satisfactory display state can be obtained.
The averaged pixel extension coefficient is output to the backlight controller 2108 and the pixel extending circuit 2109 as the final pixel extension coefficient.
The case where the circuit of the eleventh embodiment is applied to a binary image in which black characters are written on a white background will be considered. In the case of a binary value such as a monotone image, the histogram of
In an image in which the luminance is high and a slight shade is included such as an image of cloud or snow, the histogram of
In the present embodiment, in the case of the setting value of the threshold value storage register 2521 is set to “0”, the output of the selector 2522 always becomes the value of the register 2505 if a value of 1 or larger is in the register 2505. Therefore, the threshold value storage register 2521 can be used as a register for specifying whether or not the number of pixels of the grayscale 255 and the grayscale 254 is calculated.
Also, the configuration in which the CPU 2102 can rewrite the threshold value storage register 2521 of the present invention is possible. For example, in the case of the document data including many binary images, the value of the threshold value storage register 2521 is set relatively small, and in the case of an image including many light source projections such as a display of the television image, the value of the threshold value storage register 2521 is set relatively large. In this manner, the power reduction can be achieved without degrading the image quality.
Further, since the threshold determination value storage register 2523 can be rewritten by the CPU 2102, when the grayscale-luminance characteristics have an upper convex near the highest grayscale (255 grayscale) as shown in
Furthermore, even when the luminance of the backlight lowers due to aging, the luminance of the screen is prevented from being lowered too much by measuring the passage of time from the start of use and reducing the value of the threshold determination value storage register 2523 by the CPU at the point when predetermined time have passed.
In the present embodiment, the maximum value of the data of R, G, and B is selected in the RGB maximum value extracting circuit 2501 to obtain a histogram, but the present invention is not limited thereto. For example, the histogram may be calculated using the luminance calculated from the R, G, B data, or the histogram may be obtained using all the R, G, B data. Further, in accordance with the color properties of the display system, the histogram may be configured only by the color (usually G (green)) with which the color properties of high grayscale are visually influenced. The method of configuring the histogram does not restrict the present patent.
Further, in another configuration, the histogram is created for each of R, G, and B, and only for the color (usually B (blue)) with which the color properties of high grayscale are not visually influenced, the number of pixels of a specific grayscale including the highest grayscale may not be added to the cumulative value of the histogram. Alternatively, the color in which the number of pixels of a specific grayscale including the highest grayscale is not added to the cumulative value of the histogram may be plural in number (for example, B (blue) and R (red)). By the configuration as described above, the power consumption reduction suited to the display characteristics of the display device can be realized without affecting the image quality.
Next, a twelfth embodiment of the present invention will be described. The configuration of the entire display device of the present embodiment is similar to that of the eleventh embodiment. In the present embodiment, the configuration of the histogram cumulative value calculating circuit 2106 and the coefficient calculating circuit 2107 in the display driver 2101 is different from that of the eleventh embodiment. However, the input/output interface 2105, the pixel extending circuit 2109, the backlight controller 2108, the liquid crystal controller 2110, the drive circuit memory 2113, the timing control circuit 2114 and the like perform the same operation. Further, components other than the display driver 2101 also perform the same operation as the eleventh embodiment.
The detailed block diagram of the histogram cumulative value calculating circuit 21060 and the coefficient calculating circuit 21070 of the twelfth embodiment is shown in
The histogram cumulative value calculating circuit 21060 is configured of the RGB maximum value extracting circuit 2501 and the histogram counter 25040. Meanwhile, the coefficient calculating circuit 21070 is configured of the mode setting register 21101, the selector 21102, the adder 21103, the selector 21104, the counter 21105, the threshold determination value storage register 21106, and the averaging circuit 21107.
The RGB maximum value extracting circuit 2501 is a circuit which selects the maximum value from the data of red (R), green (G), and blue (B) of one pixel transmitted from the input/output interface circuit 2105, and outputs the same to the selector 2503, and it has the same circuit configuration as the eleventh embodiment.
The histogram counter 25040 creates a histogram from the display data for one frame. The histogram counter 25040 differs from the histogram counter 2504 of the eleventh embodiment in that the frame termination signal 21008 is output to the adder 21103 and the counter 21105 after terminating the creation of the histogram.
The mode setting register 21101 is a register which selects the mode of whether or not the count value of the maximum grayscale is included in the coefficient calculating operation. When the register is “1”, the count value of the maximum grayscale is not included in the histogram, and when the register is “0”, the count value of the maximum grayscale is included therein. The mode setting register 21101 is assumed to be rewritten with a register write signal used as a trigger.
The selector 21102 is a selector which outputs “0” when the mode register 21101 is at the mode “1” and the counter 21105 is 256, and outputs the histogram data 21109 as it is in other cases.
The adder 21103 is an adder which adds the output of the selector 21102 to the currently holding value, holds the same, and outputs the same with an internal clock (not shown) used as a trigger when the output of the selector 21104 is “0”.
The selector 21104 is a selector which outputs “0” when the output of the adder 21103 is smaller than the value of the threshold determination value storage register 21106, and outputs “1” when the output of the adder 21103 is equal to or larger than the value of the threshold determination value storage register 21106.
The counter 21105 is a decrement counter which is preset to 256 by the frame termination signal 21108, and is decremented by one in synchronization with the internal clock when the output of the selector 21104 is “0” and the frame termination signal 1108 is “1”. The counter 21105 operates with the rise of the internal clock used as the trigger.
The threshold determination value storage register 21106 is a register which stores a determination value for setting the minimum grayscale as the threshold grayscale when the histogram cumulative value is smaller than the value of the threshold determination value storage register 2523. The threshold determination value storage register 21106 has the same function as the threshold determination value storage register 2523 of the eleventh embodiment. Similar to the mode setting register 21101, the threshold determination value storage register 21106 is assumed to be rewritten with the register write signal as used a trigger.
The averaging circuit 21107 obtains the average value of the pixel extension coefficients of the most recent several frames so as to prevent flickers, and it has the configuration similar to the registers 2540, 2542, 2544 and 2546, the adders 2541, 2543 and 2545, and the divider 2547 of the eleventh embodiment.
The histogram counter 25040 outputs the frame termination signal 21108 when the creation of the histogram is completed. The histogram data 21109 is sequentially outputted by one grayscale at a time from the grayscale 255 in synchronization with the internal clock to the selector 21102.
The counter 21105 is preset to 256 by the frame signal and is decremented by one in synchronization with the internal clock when the output of the selector 21104 is “0” and the frame termination signal 21108 is “1”, as described above.
When the frame termination signal 21108 is active (“1”), the output of the selector 21104 is “0”. Therefore, when the frame termination signal 21108 becomes active (“1”), the counter 21105 starts to decrement by one from 256 at the timing of the rise of the internal clock.
In the operation condition of
When the output of the selector 21104 is “0”, the adder 21103 adds the output of the selector 21102 to the currently holding value, holds the same, and outputs the same. Therefore, the output of the adder 21103 increases in a manner such as the following: “0” because the output of the selector 21102 is “0” at the first clock; “254D” because the output of the selector 21102 is “254D” at the second clock; and “254D+253D” because the output of the selector 21102 is “253D” at the third clock.
It is assumed here that the value of the threshold determination value storage register 21106 is larger than “254D+253D+252D+251D+250D” and smaller than “254D+253D+252D+251D+250D+249D”. Since the selector 21104 has the operation condition when the output of the adder becomes “254D+253D+252D+251D+250D+249D”, it outputs “1”.
The operation condition of the counter 21105 is not satisfied due to the change in the output value of the selector 21104. Therefore, the counter 21105 stops decrementing. Also, the operation condition of the adder 21103 is not satisfied, either. Therefore, the addition is also stopped and the current value is maintained. The value of the counter 21105 (“249” in
The pixel extension coefficient for one frame is output to the averaging circuit 21107. The value of the average of the pixel extension coefficients of plural frames is output to the backlight controller 2108 and the pixel extending circuit 2109 of
By the operation as described above, in the twelfth embodiment, the CPU 2102 determines the application in the case of a binary image such a black character on a white background, so that “0” is written to the mode setting register 21101 and the pixel extension coefficient is determined while including the histogram value of the grayscale 255. Therefore, even in the binary image, a satisfactory image quality is maintained without lowering the luminance.
In the case of displaying images of a digital camera including many natural images, the CPU 2102 determines the application, so that “1” is written to the mode setting register 21101 and the pixel extension coefficient is determined while excluding the histogram value of the grayscale 255. Therefore, since the peak at the grayscale 255 is not taken in the calculation, power consumption can be reduced without greatly degrading the image quality.
Next, a thirteenth embodiment will be described.
The display device of the thirteenth embodiment differs from the eleventh embodiment in that an illumination sensor 21301 for measuring the illumination of the backlight 2111 and an illumination sensor control circuit 21302 for controlling the illumination sensor 21301 are provided in the display driver 2101.
In the thirteenth embodiment, the illumination of the backlight is acquired when the CPU 2102 issues a backlight illumination acquiring command through the input/output interface circuit 2105, and the illumination is notified to the CPU 2102. The CPU 2102 acquires the backlight illumination at the time of system activation or the like, and when the backlight illumination is large, the value of the threshold determination value storage register 2523 is increased to obtain a satisfactory power saving characteristics. Also, if the backlight illumination is lowered due to aging, the value of the threshold determination value storage register 2523 is decreased to prevent the illumination of the screen from being lowered too much.
In the foregoing, the invention made by the inventors of the present invention has been concretely described based on the embodiments. However, it is needless to say that the present invention is not limited to the foregoing embodiments and various modifications and alterations can be made within the scope of the present invention.
The present invention can be applied to a display device using a backlight and an element for controlling transmissivity of the liquid crystal and the like, for example, an electronic equipment such as a television, a personal computer or a cellular phone using a liquid crystal display device.
A liquid crystal display device will be described as an example of an image display device for displaying an image by irradiating a backlight on a display screen, but the application of the present invention is not limited thereto.
In recent years, even on a cellular phone 3101, a natural image such as a television image or a camera image and an icon region 3106 including an operation button, a battery remaining amount, wave reception sensitivity and time are simultaneously displayed on a liquid crystal panel 3104. A signal line drive circuit 3102 and a scanning line drive circuit 3103 for driving the liquid crystal panel 3104 and a backlight module 3105 equally handle even the display data in which the icon region 3106 and the other natural image display region coexist.
The natural image generally tends to have a dark image source, and if applying the backlight control method proposed in Japanese Patent Application Laid-Open Publication No. 11-65531 when displaying only the natural image, the backlight emission amount can be reduced by about 30 or 40 percent in many cases. However, when simultaneously displaying a natural image and an icon, since many high-luminance pixels are contained in the icon, the backlight emission amount cannot be reduced with the same backlight control method.
When simultaneously displaying a natural image and an icon, if the backlight emission amount is reduced by 30 or 40 percent in the same manner as the case where only a natural image is displayed, the display luminance of the icon including high-luminance pixels is lowered. However, there is no problem if the icon can be distinguished from another image in a practical use. Even if the image quality of the icon degrades by reducing the backlight emission amount, the influence on the entire image display quality is small.
In the embodiment of the present invention, not limited to the icon display region, a region where the influence on the display quality is high or low in a display screen is distinguished from other regions, and the backlight emission amount is appropriately controlled while taking into account the influence on the display quality. For example, a region where the influence on the display quality is low includes a region in which an image with painted figure, an image with small number of grayscales (number of luminance levels), and an image with small grayscale change (luminance change) are displayed.
A drive circuit of a liquid crystal display device of a fourteenth embodiment of the present invention will be described with reference to
The display luminance of the liquid crystal panel 3202 is controlled by the level of voltage applied from the liquid crystal drive circuit 3201 described later, and the liquid crystal panel 3202 is defined as an active matrix panel in which a TFT is arranged for each pixel and a signal line and a scanning line are laid in a matrix form with respect thereto.
The liquid crystal drive circuit 3201 applies a scanning pulse for turning ON the TFT to the scanning line in the liquid crystal panel 3202 in a line-sequential manner, and applies a grayscale voltage for controlling the display luminance to the pixel electrode connected to a source terminal of the TFT via the signal line. Note that the effective value on the liquid crystal molecule of the liquid crystal panel 3202 changes by the grayscale voltage applied to the pixel electrode, and thus the display luminance is controlled.
The backlight module 3203 determines the light emission amount by the current amount flowing to the light emitting element configuring the backlight, and the light emitting operation thereof is ON/OFF controlled by the pulse signal input from outside, for example, from the liquid crystal drive circuit 3201. The control processor 3204 creates the display data of the image and transfers the same to the liquid crystal drive circuit 201.
The liquid crystal drive circuit 3201 is configured to have a system interface 3205, a control register 3206, a timing generation circuit 3209, a graphic RAM 3210, a backlight control unit 3211, a grayscale voltage generation circuit 3212, a signal line drive circuit 3213, a scanning line drive circuit 3214, a PWM circuit 3215, and a backlight power supply circuit 3216.
The system interface 3205 receives the display data and instruction transferred from the control processor 3204 and performs the operation to output the same to the control register 3206 described later. The instruction mentioned here is information for determining the internal operation of the liquid crystal drive circuit 3201, and it includes various parameters such as frame frequency, the number of drive lines, the number of colors, weighting coefficients when counting the histogram described later, and others.
The control register 3206 incorporates a latch circuit and transfers the coordinate information of the icon region and the weighting coefficient of the icon region received from the system interface 3205 to the backlight control unit 3211 described later. The control register 3206 is configured to have an icon region coordinate setting register 3207 and an icon region weighting coefficient setting register 3208.
The icon region coordinate setting register 3207 is a register for specifying the position of the icon region in the display screen, and it specifies the coordinates of two points corresponding to opposing corners of a rectangular region. The configuration of specifying one vertex of the rectangular region and lengths of a long side and a short side of the rectangle is also possible. The icon region weighting coefficient setting register 3208 is a register for specifying the weighting coefficient at the time of counting the histogram for the pixels in the icon region. When the weighting of the pixels in the icon region is increased with respect to the natural image region, a value larger than 1 is set in the icon region weighting coefficient setting register 3208, and a value smaller than 1 is set therein when the weighting is decreased.
The timing generation circuit 3209 has a dot counter and generates a line clock by counting the dot clocks. The timing of the data transfer from the graphic RAM 3210 to the backlight control unit 3211 and the output timing of the scanning line drive circuit 3214 are defined based on the line clock. The graphic RAM 3210 accumulates the display data transferred from the system interface 3205 and transfers the same to the backlight control unit 3211 described later.
The backlight control unit 3211 is a block taking a leading part in the liquid crystal drive circuit 3201 of the fourteenth embodiment, and it receives the display data transferred from the graphic RAM 3210, executes the extending process of the display data, and transfers the same to the signal line drive circuit 3213 described later. Further, the backlight control unit 3211 calculates and outputs the backlight setting value for controlling the backlight emission amount. The grayscale voltage generation circuit 3212 generates an analog grayscale voltage level for realizing plural grayscale displays.
The signal line drive circuit 3213 functions as a DA converter which converts the digital display data transferred from the backlight control unit 3211 to an analog grayscale voltage level in the built-in decoder circuit, level shifter, and selector circuit. The analog grayscale voltage obtained here is applied to the liquid crystal panel 3202, thereby controlling the display luminance thereof.
The scanning line drive circuit 3214 generates a scanning pulse that is line sequential to the scanning line in the built-in shift register in synchronization with the line clock transferred from the timing generation circuit 3209. Further, after the built-in level shifter converts the scanning pulse of a Vcc-GND level transferred from the shift register to a VGH-VGL level, the scanning line drive circuit 3214 outputs the scanning pulse to the liquid crystal panel 3202. Note that VGH is the voltage level at which the TFT is turned ON, and VGL is the voltage level at which the TFT is turned OFF.
The PWM circuit 3215 modulates the backlight setting value transferred from the backlight control unit 3211 to a pulse width. More specifically, the PWM circuit 3215 counts the dot clock transferred from the timing generation circuit 3209 with the built-in counter, and compares the counter value and the above-described backlight setting value with the built-in comparator. By this means, the backlight control pulse that becomes a high voltage during the clock time equivalent to the backlight setting value is generated.
The backlight power supply circuit 3216 converts the backlight control pulse of the Vcc-GND level transferred from the PWM circuit 3215 to the operation voltage of the backlight module 3203 with the built-in level shifter. The backlight control pulse after the voltage conversion is input to the backlight module 3203, but the light amount thereof is not always constant and is controlled in accordance with the display data.
Next, the operation in the backlight control unit 3211 will be described.
The histogram counting unit 3301 is configured to have the histogram zone determining unit 3304, the weighting coefficient calculating unit 3305, the threshold value determining unit 3306, and counters 1 to 16 (3311 to 3326). The histogram counting unit 3301 acquires histogram by counting the display data in units of frame of the display image and performs a process of calculating the threshold value corresponding to the value of the display data at a specific upper position of the histogram.
The histogram zone determining unit 3304 determines the zone of the histogram in accordance with the grayscale value of the input display data.
The weighting coefficient calculating unit 3305 determines whether the input display data is the pixel belonging to the icon region on the display screen or the pixel belonging to the other region, and then it calculates the weighting coefficient corresponding to the belonging region and outputs the same to the counters 1 to 16 (3311 to 3326). The icon region is assumed to hold two points of coordinates which are specified by the icon region coordinate setting register 3207, define the region where the icon is displayed with a rectangular region, and are located at opposing corners of the rectangular region.
The coordinate information of the rectangular region set in the icon region coordinate setting register 3207 and the horizontal coordinate value and vertical coordinate value of the display data are input to the weighting coefficient calculating unit 3305, and the weighting coefficient calculating unit 3305 determines whether the display data is in the rectangular region which is the icon region. When the display data is in the icon region, a holding value α of the icon region weighting coefficient setting register 3208 is output, and when the display data is outside the icon region, the value of 1 is output.
If the influence of the icon region on the display quality is lower than other region, the value smaller than 1 is set to the holding value α of the icon region weighting coefficient setting register 3208, and if the influence of the icon region on the display quality is higher than other region, the value larger than 1 is set thereto.
The threshold value determining unit 3306 is a circuit which calculates the threshold value to be a reference for determining a data extension rate from the values of the counters 1 to 16 (3311 to 3326) holding the histograms of each grayscale zone. The threshold value is a grayscale value corresponding to the position of upper several % in the histogram of the display screen.
The threshold value determining unit 306 first calculates the total value of the values held in the counters 1 to 16 (3311 to 3326) and then outputs a value of 255 if the holding value of the counter 16 (3326) is larger than several % of the total value. In other cases, if the sum of the holding values of the counter 16 (3326) and the counter 15 (3325) is a value larger than several % of the total value, the threshold value determining unit 306 outputs a value of 239. By repeating the calculation as described above from a higher value of each grayscale zone toward a lower value, the grayscale value corresponding to the position of upper several % in the histogram of the display screen is calculated, and the calculated grayscale value is output as the threshold value.
The counters 1 to 16 (3311 to 3326) incorporate registers, and performs an operation of adding a numerical value input to a positive (+) terminal to the holding value in the register when an enable signal is input to an EN terminal. The counters 1 to 16 (3311 to 3326) correspond to a counter of dividing the grayscale of the display data to plural zones and counting the number of appearing pixels in the display data for each grayscale zone disclosed in the conventional technique of Japanese Patent Application Laid-Open Publication No. 11-65531. In the fourteenth embodiment, the number of appearing pixels is not simply counted, but the numerical value weighted in accordance with the influence of the display position on the display quality is added to the counter corresponding to each grayscale zone to which the display data belongs.
The register holding value of the counters 1 to 16 (3311 to 3326) is reset to 0 at the beginning of one frame period, and the addition process described above is repeated in each one frame period to count the histogram, but the addition process may be performed in plural frame periods.
The display data extending unit 302 is configured to have a data extension rate calculating unit 3307 and an multiplier 3308, and performs a process of extending each display data based on the threshold value.
The data extension rate calculating unit 3307 calculates the data extension rate, which is the coefficient for extending the display data, from the threshold value calculated in the threshold value determining unit 3306 of the histogram counting unit 3301 through an arithmetic operation of (maximum value of display data)/(threshold value). Therefore, when the input display data is the same value as the threshold value, the output of the multiplier 3308 described later becomes equal to the maximum value of the display data. The maximum value of the display data mentioned here is not the maximum value in the values of all pixels of the display image, but is a value such as 255 in the case of 8-bit grayscale or 63 in the case of 6-bit grayscale.
The multiplier 3308 calculates the product of the display data and the data extension rate and outputs the same to the signal line drive circuit 3213. When the product exceeds the above-mentioned maximum value of the display data, the maximum value of the display data is output. This is because even if the value exceeding the maximum value of the display data is input to the signal line drive circuit 3213, it is not displayable in the liquid crystal panel 3203.
The backlight adjusting unit 3303 performs a process of outputting a backlight setting value for determining the light emission amount of the backlight based on the threshold value. The backlight setting value is calculated so as to have the light emission amount that cancels out the extension of the display data in the display data extending unit 3302. The method of calculating the backlight setting value includes a method in which a table of the backlight setting value corresponding to the threshold value is defined in advance and the backlight setting value is calculated based on the table and a method in which the backlight setting value is calculated using a certain function having the threshold value as an input.
Next, the entire operation of the backlight control unit 3211 will be described in order. First, all the holding values of the registers of the counters 1 to 16 (3311 to 3326) are reset to 0 at the beginning of the one frame period.
When the display data is input to the backlight control unit 3211 with the horizontal coordinate value and the vertical coordinate value indicating the display position thereof, the weighting coefficient calculating unit 3305 determines whether or not the horizontal coordinate value and the vertical coordinate value are within the rectangular region which is the icon region specified by the icon region coordinate setting register 3207. Then, it outputs the weighting value set in the icon region weighting coefficient setting register 3208 to the counters 1 to 16 (3311 to 3326) if they are within the icon region, and outputs the value of 1 thereto if they are not within the icon region.
In the histogram zone determining unit 3304, the grayscale zone to which the display data belongs is determined from the grayscale value of the display data, and the enable signal for validating the addition process of the counter corresponding to the grayscale zone is output. Of the counters 1 to 16 (3311 to 3326), the counter which receives the enable signal adds the weighting coefficient output from the weighting coefficient calculating unit 305 to the register in the counter. By performing the calculation described above for each one pixel of the entire display screen, the histogram weighted in consideration of the influence on the display quality to the counters 1 to 16 (3311 to 3326) is acquired.
When the histogram is acquired, the threshold value determining unit 3306 calculates the grayscale value at a position of upper several % of the histogram, and outputs the same as the threshold value. The threshold value will be supplementary described here. The threshold value is used in the calculation of the extension rate of the display data in the data extension rate calculating unit 3307 of the display data extending unit 3302, and is used to control the backlight emission amount in the backlight adjusting unit 3303.
The data extension rate has the magnification at which the output from the multiplier 3308 of the display data extension rate 3302 becomes a maximum value of the display data when the grayscale value of the input display data is the same as the threshold value. Therefore, when the grayscale value of the input display data is equal to or lower than the threshold value, the luminance resolution remains even after the extension process in the multiplier 3308.
However, when the grayscale value of the input display data is equal to or larger than the threshold value, since the value larger than the maximum value of the display data cannot be input to the signal line drive circuit 3213, the output from the multiplier 3308 is fixed at the maximum value of the display data, and the luminance resolution disappears. Therefore, the threshold value is, of the grayscale values of the input display data, the boundary point between the region where the luminance resolution remains and the region where the luminance resolution disappears after the process in the backlight control unit 3211.
In the conventional technique, the grayscale value at the position of upper several % of the histogram is set as the threshold value, so that the ratio on the total number of pixels of the number of pixels (∝ area) at which the grayscale value becomes equal to or larger than the threshold value in the display screen also becomes the same percentage. By adjusting the percentage, the area in which the luminance resolution disappears in the display screen can be adjusted.
In the fourteenth embodiment, since weighting in consideration of the influence on the display quality by the display position is applied when counting the histogram, the percentage used in calculating the threshold value from the histogram is not equal to the percentage of the pixels having the grayscale value of the threshold value or larger (=pixel in which luminance resolution disappears after data extending process) on the total number of pixels.
However, if a high luminance icon whose display is not important exists in the display screen, since the drive circuit of the fourteenth embodiment calculates the threshold value to be lower than the case of using the conventional technique, the data extension rate is increased and the backlight emission amount is lowered, and the power consumption can be reduced. To the contrary, if many high-luminance pixels exist in the region whose display is important, since the drive circuit of the fourteenth embodiment calculates the threshold value to be higher, the data extension rate is decreased and the degradation of the display quality can be prevented.
Based on the threshold value having the features as described above, in the display data extending unit 3302, the extension rate of the display data is determined by the data extension rate calculating unit 3307 and the display data is extended by the multiplier 3308. Further, in the backlight adjusting unit 3303, the backlight setting value for controlling the backlight emission amount is calculated and output.
According to the configuration and the operation described above, the influence on the display quality by the display position can be reflected on the histogram counting process. As a result, the influence on the display quality of the entire display screen can be appropriately controlled and reflected on the control of the backlight emission amount. Therefore, the power consumption reducing effect by the backlight control can be further enhanced while maintaining the display quality.
In the example of the fourteenth embodiment described above, on the basis that the influence on the display quality is low even if the luminance resolution in the icon display region at the end portion of a screen is lowered by the backlight control, the control is performed so as to lower the influence on the histogram counting process by the display data in the rectangular region in which the icon at the end portion of the screen is displayed. However, the setting position of the rectangular region is not limited to the icon display region and the end portion of the screen. Further, it is also possible to perform the control so that the influence on the histogram counting process by the display data of the pixels in the rectangular region is increased.
Further, in the fourteenth embodiment, an example of a liquid crystal panel for a mobile telephone has been described. However, the invention can also be applied to any liquid crystal panel for other applications. In the fourteenth embodiment, a direct liquid crystal display device in which the backlight source is disposed on the rear face and a screen is viewed through the liquid crystal panel has been described. However, the invention can also be applied to a projection liquid crystal display device such as a liquid crystal projector.
A drive circuit of a liquid crystal display device of a fifteenth embodiment of the present invention will be described with reference to
The control register 3206 is configured to have an icon region A coordinate setting register 3501, an icon region A weighting coefficient setting register 3502, an icon region B coordinate setting register 3503, and an icon region B weighting coefficient setting register 3504.
The icon region A coordinate setting register 3501 is a register which specifies the position of a rectangular region of the icon region A501 in the display screen in
The horizontal coordinate value and the vertical coordinate value of the display data are input to the weighting coefficient calculating unit 3305, and the weighting coefficient calculating unit 3305 determines whether the input display data belongs to the icon region A3401 or the icon region B3402. If the display data is in the region of the icon region A3401 specified by the value of the icon region A coordinate setting register 3501, the weighting coefficient α stored in the icon region A weighting coefficient setting register 3502 is output. If the display data is in the region of the icon region B3402 specified by the value of the icon region B coordinate setting register 3503, the weighting coefficient β stored in the icon region B weighting coefficient setting register 3504 is output.
By the configuration as described above, when counting the histogram in the backlight control unit 3211, weighting can be performed using the respectively different weighting coefficients for the three regions of the icon region A3401, the icon region B3402, and the natural image region.
Although the case where the display screen is divided into two regions is shown in the fourteenth embodiment and the case where the display screen is divided into three regions is shown in the fifteenth embodiment, the display screen may be divided into four or more regions, and the number of regions is not limited thereto.
A drive circuit of the liquid crystal display device of a sixteenth embodiment of the present invention will be described with reference to
The weighting coefficient calculating unit 3305 is a function circuit to which the horizontal coordinate value x and the vertical coordinate value y of the display data are inputted and which calculates the weighting coefficient based on the value γ of the weighting coefficient calculating parameter setting register 3801. In the weighting coefficient calculating unit 3305, the distribution of the weighting coefficients shown in
In the equation 24, a Euclidean distance of the coordinate (x, y) of the display position and the coordinate (120, 160) of the center of the display screen is calculated and divided by the maximum distance to be normalized, and the resultant value is multiplied by the value γ held in the weighting coefficient calculating parameter setting register 3801, and then the resultant value is subtracted from 1. The weighting coefficient calculated by the equation 24 becomes smaller as the distance from the center point of the display screen increases, and the slope thereof can be externally adjusted by the value γ of the weighting coefficient calculating parameter setting register 3801.
Also, the equation 24 can be modified to the equation 25 so as to obtain the distribution of the weighting coefficients shown in
As described above, by adjusting the weighting coefficient to be lowered as the distant from the center point of the display screen increases, the probability that the luminance resolution disappears in the pixels at the end portion of the display screen and the image degradation occurs is increased when the histogram counting process is performed using the weighting coefficient to control the backlight emission amount. However, in the television image and the like, the focus is placed on the foreground of the central part of the screen, and the focus is not originally placed on the background of the end portion of the screen. Therefore, it does not matter in terms of display quality even if the image quality of the end portion of the screen degrades.
The sixteenth embodiment is characterized in that the weighting coefficient in counting the histogram is calculated by the function having the position coordinate of the display data as an input value. Therefore, the equation representing the function is not limited to the equation 24 and the equation 25, and any functions other than the equation 24 and the equation 25 can be used as long as the weighting coefficient is calculated by inputting the coordinate value of the display data.
By the configuration as described above, when counting the histogram of the display image in the backlight control unit 3211, the influence on the display quality of the entire display screen by the display position can be controlled in a finer unit and reflected on the control of the backlight emission amount. Therefore, the power consumption reducing effect by the backlight control can be further enhanced while maintaining the display quality.
Note that a series of processes such as counting of histogram, calculation of the threshold value, extension of the display data, control of the backlight emission amount and the like performed in the backlight control unit 3211 in the drive circuit of the fourteenth to the sixteenth embodiments can be performed through the arithmetic operation in an external processor such as the control processor 3204 of
In the foregoing, the invention made by the inventors of the present invention has been concretely described based on the fourteenth to sixteenth embodiments. However, it is needless to say that the present invention is not limited to the foregoing embodiments and various modifications and alterations can be made within the scope of the present invention.
The present invention can be applied to a technique for saving power by the backlight control while maintaining the display quality in an image display device such as a liquid crystal display and a projector. Also, the usable range thereof is not limited to the liquid crystal display for a mobile telephone, and the present invention can be used for other information equipments and televisions that use a liquid crystal display.
Number | Date | Country | Kind |
---|---|---|---|
2007-114161 | Apr 2007 | JP | national |
2007-164248 | Jun 2007 | JP | national |
2007-164782 | Jun 2007 | JP | national |
2007-248314 | Sep 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6498596 | Nakamura et al. | Dec 2002 | B1 |
6778183 | Nair et al. | Aug 2004 | B1 |
7034843 | Nair et al. | Apr 2006 | B2 |
7424148 | Goh | Sep 2008 | B2 |
7760961 | Moldvai | Jul 2010 | B2 |
20020024491 | Hosoyamada | Feb 2002 | A1 |
20040239698 | Kamada et al. | Dec 2004 | A1 |
20040258324 | Liang et al. | Dec 2004 | A1 |
20050104842 | Baik | May 2005 | A1 |
20050212726 | Namba et al. | Sep 2005 | A1 |
20060139270 | Hong et al. | Jun 2006 | A1 |
20060269129 | Tanigawa | Nov 2006 | A1 |
20070092139 | Daly | Apr 2007 | A1 |
20070146236 | Kerofsky et al. | Jun 2007 | A1 |
20080018800 | Kodavalla | Jan 2008 | A1 |
20090002285 | Baba et al. | Jan 2009 | A1 |
20100090938 | Kamada et al. | Apr 2010 | A1 |
20100103206 | Kamada et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
11-65531 | Mar 1999 | JP |
2004-163518 | Jun 2004 | JP |
2005-077950 | Mar 2005 | JP |
2005-107019 | Apr 2005 | JP |
2005-346032 | Dec 2005 | JP |
2006-120030 | May 2006 | JP |
10-2005-0047354 | May 2005 | KR |
550415 | Sep 2003 | TW |
I228615 | Mar 2005 | TW |
I251199 | Mar 2006 | TW |
Number | Date | Country | |
---|---|---|---|
20080272999 A1 | Nov 2008 | US |