1. Technical Field
The present disclosure relates to a display device, an electronic apparatus, and a method for driving a display device.
2. Description of the Related Art
In recent years, a demand for display devices for use in, for example, mobile devices such as a mobile phone and electronic paper has increased. In a display device, one pixel includes a plurality of sub-pixels, each of which emits light of a different color. The single pixel displays various colors by switching on and off display of the sub-pixels. Such display devices have been improved year after year in display properties such as resolution and luminance. However, an increase in the resolution reduces an aperture ratio, and thus increases necessity for an increase in luminance of a backlight to achieve high luminance, which causes a problem of an increase in power consumption of the backlight. To address the problem, there is a technique (such as Japanese Patent Application Laid-open Publication No. 2010-33014) in which a white pixel as a fourth sub-pixel is added to the conventional sub-pixels of red, green, and blue. This technique reduces the current value of the backlight because the luminance is increased by the white pixel, and thereby reduces the power consumption.
Japanese Patent Application Laid-open Publication No. 2010-44389 (JP-A-2010-44389) discloses a light source local dimming control method for controlling dimming of a light source module including a plurality of light source blocks each having a light source providing light to a corresponding image section, the method comprising: primarily determining duty ratios for a first light source and a second light source by using a first target luminance of a first image section adjacent to the first light source and a second target luminance of a second image section adjacent to the second light source that is next to the first light source, respectively; compensating the primarily determined duty ratios by using a target luminance of the remaining image sections excluding the first image section and the second image section among image sections that receive light from the first light source and the second light source; and driving the first light source and the second light source by using driving signals the primarily determined duty ratios of which are compensated.
When the technology disclosed in JP-A-2010-44389 is used in an edge-lit light source including a plurality of light sources aligned at positions facing a plane of incidence that is at least one side surface of the light guide plate, the luminance distribution of the backlight changes complexly, so that power may be wastefully consumed.
For the foregoing reasons, there is a need for a display device, an electronic apparatus, and a method for driving a display device that are capable of reducing the power consumption of each light source included in an edge-lit light source, when controlling the luminance independently for each light source.
According to an aspect, a display device includes an image display panel; a planar light source including a light guide plate and an edge-lit light source, the light guide plate illuminating the image display panel from a back side, the edge-lit light source including a plurality of light sources arranged facing a plane of incidence that is at least one side surface of the light guide plate; and a controller that controls luminance of each of the light sources independently. The controller sets luminance determination blocks by virtually dividing the image display panel in a light-source-arrangement-direction in which the light sources are aligned and in an incidence direction that is perpendicular to the light-source-arrangement-direction, identifies a luminance determination block with a highest luminance in the incidence direction, when an image is displayed on the image display panel based on information of an input signal of the image, among luminance determination blocks at a same position in the light-source-arrangement-direction, identifies a luminance determination block the luminance of which is to be corrected by referring to luminance information of the light sources, and controls a light quantity of each of the light sources in such a manner that luminance of the identified luminance determination block is achieved.
According to another aspect, an electronic apparatus comprises the display device.
According to another aspect, a method for driving a display device that includes an image display panel and a planar light source including a light guide plate and an edge-lit light source, the light guide plate illuminating the image display panel from a back side, the edge-lit light source including a plurality of light sources arranged facing a plane of incidence that is at least one side surface of the light guide plate, includes: setting luminance determination blocks by virtually dividing the image display panel in a light-source-arrangement-direction in which the light sources are aligned and in an incidence direction that is perpendicular to the light-source-arrangement-direction, identifying a luminance determination block with a highest luminance in the incidence direction, when an image is displayed on the image display panel based on information of an input signal of the image, among luminance determination blocks at a same position in the light-source-arrangement-direction, identifying a luminance determination block the luminance of which is to be corrected by referring to luminance information of the light sources; and controlling a light quantity of each of the light sources in such a manner that luminance of the identified luminance determination block is achieved.
Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.
An embodiment for implementing the present disclosure will be described in detail with reference to the accompanying drawings. The embodiment described below is not intended to limit the scope of the present disclosure in any way. The elements described below include those that are substantially the same with those that can be easily thought of by those skilled in the art. The elements described below may also be combined as appropriate.
Configuration of Display Device
As illustrated in
The signal processing unit 20 is an arithmetic processing unit that controls the operations of the image display panel 30 and the planar-light-source-device 50. The signal processing unit 20 is coupled to the image-display-panel-drive-unit 40 for driving the image display panel 30 and to the planar-light-source-device-control-unit 60 for driving the planar-light-source-device 50. The signal processing unit 20 processes an externally supplied input signal, and generates output signals and a planar-light-source-device-control-signal. In other words, the signal processing unit 20 generates the output signals by converting input values (input signals) in an input HSV color space of the input signal into extended values (output signals) in an extended HSV color space extended with four colors of a first color, a second color, a third color, and a fourth color, and outputs the generated output signals to the image display panel 30. The signal processing unit 20 outputs the generated output signals to the image-display-panel-drive-unit 40 and the generated planar-light-source-device-control-signal to the planar-light-source-device-control-unit 60.
As illustrated in
The pixels 48 include first sub-pixels 49R, second sub-pixels 49G, third sub-pixels 49B, and fourth sub-pixels 49W. The first sub-pixels 49R display a first primary color (such as red). The second sub-pixels 49G display a second primary color (such as green). The third sub-pixels 49B display a third primary color (such as blue). The fourth sub-pixels 49W display a fourth color (specifically, white). In this manner, each of the pixels 48 arranged in a matrix on the image display panel 30 has a first sub-pixel 49R for displaying the first color, a second sub-pixel 49G for displaying the second color, a third sub-pixel 49B for displaying the third color, and a fourth sub-pixel 49W for displaying the fourth color. The first color, the second color, the third color, and the fourth color are not limited to the first primary color, the second primary color, the third primary color, and the white color, but may be any different colors, e.g., complementary colors. The fourth sub-pixel 49W for displaying the fourth color is preferably brighter, when illuminated with the same light quantity, than the first sub-pixel 49R for displaying the first color, the second sub-pixel 49G for displaying the second color, and the third sub-pixel 49B for displaying the third color. Hereinafter, the sub-pixels will be collectively called sub-pixels 49 when the first sub-pixels 49R, the second sub-pixels 49G, the third sub-pixels 49B, and the fourth sub-pixels 49W need not be distinguished from each other.
More specifically, the display device 10 is a transmissive color liquid crystal display device. As illustrated in
The image-display-panel-drive-unit 40 illustrated in
The planar-light-source-device 50 is disposed on the back side of the image display panel 30, and emits light to the image display panel 30 to illuminate the image display panel 30.
The planar-light-source-device-control-unit 60 controls, for example, the quantity of the light emitted from the planar-light-source-device 50. The planar-light-source-device-control-unit 60 is included in the controller according to the present embodiment. Specifically, the planar-light-source-device-control-unit 60 adjusts the current to be supplied to the planar-light-source-device 50 based on a planar-light-source-device-control-signal SBL received from the signal processing unit 20, thereby controlling the amount (intensity) of the light which illuminates the image display panel 30. The current to be supplied to the planar-light-source-device 50 is adjusted by adjusting the duty ratio of the voltage or the current to be applied to each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F, for example. In other words, the planar-light-source-device-control-unit 60 can control driving of each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F independently, that is, can control the on-off duty ratio of the voltage or the current to be applied to each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F, illustrated in
The light intensity distributions of the light emitted from the light source 56A or the light source 56F positioned near the end surfaces of the light guide plate 54 in the light-source-arrangement-direction LY are different from the light intensity distribution of the light emitted from the light source 56C, for example, positioned between the light source 56A and the light source 56F, because the light is reflected on the end surfaces in the light-source-arrangement-direction LY. The planar-light-source-device-control-unit 60 according to the present embodiment, therefore, needs to control the currents to be supplied to or the on-off duty ratios for the respective light sources 56A, 56B, 56C, 56D, 56E, and 56F illustrated in
Processing Operation of Display Device
As illustrated in
By including a fourth sub-pixel 49W that displays the fourth color (white) to a pixel 48, the display device 10 can increase a dynamic range of brightness in the HSV color space (extended HSV color space) as illustrated in
The image processing unit 22 of the signal processing unit 20 stores maximum values Vmax(S) of brightness with the saturation S serving as a variable in the HSV color space extended by the addition of the fourth color (white). In other words, with respect to the solid shape of the HSV color space illustrated in
Next, based on at least the input signal (signal value x1−(p, q)) and an extension coefficient α for the first sub-pixel 49R, the image processing unit 22 of the signal processing unit 20 calculates an output signal (signal value X1−(p, q)) for the first sub-pixel 49R, and outputs the output signal to the first sub-pixel 49R. Based on at least the input signal (signal value x2−(p, q)) and the extension coefficient α for the second sub-pixel 49G, the signal processing unit 20 calculates an output signal (signal value X2−(p, q)) for the second sub-pixel 49G, and outputs the output signal to the second sub-pixel 49G. Based on at least the input signal (signal value x3−(p, q)) and the extension coefficient α for the third sub-pixel 49B, the signal processing unit 20 calculates an output signal (signal value X3−(p, q)) for the third sub-pixel 49B, and outputs the output signal to the third sub-pixel 49B. Based on the input signal (signal value x1−(p, q)) for the first sub-pixel 49R, the input signal (signal value x2−(p, q)) for the second sub-pixel 49G, and the input signal (signal value x3−(p, q)) for the third sub-pixel 49B, the signal processing unit 20 calculates an output signal (signal value X4−(p, q)) for the fourth sub-pixel 49W, and outputs the output signal to the fourth sub-pixel 49W.
Specifically, the image processing unit 22 of the signal processing unit 20 calculates the output signal for the first sub-pixel 49R based on the extension coefficient α for the first sub-pixel 49R and on the output signal for the fourth sub-pixel 49W. The image processing unit 22 calculates the output signal for the second sub-pixel 49G based on the extension coefficient α for the second sub-pixel 49G and on the output signal for the fourth sub-pixel 49W. The image processing unit 22 calculates the output signal for the third sub-pixel 49B based on the extension coefficient α for the third sub-pixel 49B and on the output signal for the fourth sub-pixel 49W.
In other words, assuming χ as a constant depending on the display device, the signal processing unit 20 uses Equations (1) to (3) listed below to obtain the signal value X1−(p, q) serving as the output signal for the first sub-pixel 49R, the signal value X2−(p, q) serving as the output signal for the second sub-pixel 49G, and the signal value X3−(p, q) serving as the output signal for the third sub-pixel 49B. The output signals are to be output to the (p, q)th pixel (or, the (p, q)th set of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B).
X
1−(p, q)
=α·x
1−(p, q)
−χ·X
4−(p, q) (1)
X
2−(p, q)
=α·x
2−(p, q)
−χ·X
4−(p, q) (2)
X
3−(p, q)
=α·x
3−(p, q)
−χ·X
4−(p, q) (3)
The signal processing unit 20 obtains the maximum value Vmax(S) of brightness with the saturation S serving as a variable in the HSV color space extended by the addition of the fourth color, and based on the input signal values for the sub-pixels 49 in the pixels 48, obtains saturation values S and brightness values V(S) in the pixels 48.
The saturation S and the brightness V(S) are expressed as S=(Max−Min)/Max and V(S)=Max, respectively. The saturation S can have a value from 0 to 1, and the brightness V(S) can have a value from 0 to (2n−1). The exponent n is the number of display gradation bits. Max is the maximum value among the input signal value for the first sub-pixel 49R, the input value for the second sub-pixel 49G, and the input value for the third sub-pixel 49B, with respect to the pixels 48. Min is the minimum value among the input signal value for the first sub-pixel 49R, the input value for the second sub-pixel 49G, and the input value for the third sub-pixel 49B, with respect to the pixels 48. A hue H is expressed by a value from 0 degrees to 360 degrees as illustrated in
In the present embodiment, the signal value X4−(p, q) can be obtained based on the product of Min(p, q) and the extension coefficient α. Specifically, the signal value X4−(p, q) can be obtained based on Equation (4) given below. Although Equation (4) divides the product of Min(p, q) and the extension coefficient α by χ, the equation is not limited to this. The constant χ will be described later.
X4−(p, q)=Min(p, q)·α/χ (4)
In general, in the (p, q)th pixel 48, Equations (5) and (6) below can be used to obtain the saturation S(p, q) and the brightness V(S)(p, q) in the cylindrical HSV color space based on the input signal (signal value x1−(p, q)) for the first sub-pixel 49R, the input signal (signal value x2−(p, q)) for the second sub-pixel 49G, and the input signal (signal value x3−(p, q)) for the third sub-pixel 49B.
S
(p, q)=(Max(p, q)−Min(p, q)/Max(p, q) (5)
V(S)(p, q)=Max(p, q) (6)
Max(p, q) is the maximum value of the input signal values (x1−(p, q), x2−(p, q), and x3−(p, q)) for the three sub-pixels 49. Min(p, q) is the minimum value of the input signal values (x1−(p, q), x2−(p, q), and x3−(p, q)) for the three sub-pixels 49. The present embodiment assumes that n=8. In other words, the number of display gradation bits is assumed to be eight (the display gradation having a value in 256 levels of gradation from 0 to 255).
The fourth sub-pixel 49W, which displays white color, is not provided with a color filter. The fourth sub-pixel 49W for displaying the fourth color is brighter than the first sub-pixel 49R for displaying the first color, the second sub-pixel 49G for displaying the second color, and the third sub-pixel 49B for displaying the third color, when illuminated with the same light quantity. Suppose that the first sub-pixel 49R is supplied with a signal having a value equivalent to the maximum signal value of the output signal for the first sub-pixel 49R, that the second sub-pixel 49G is supplied with a signal having a value equivalent to the maximum signal value of the output signal for the second sub-pixel 49G, and that the third sub-pixel 49B is supplied with a signal having a value equivalent to the maximum signal value of the output signal for the third sub-pixel 49B. In that case, a collective set of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B included in the pixel 48 or a group of the pixels 48 is assumed to have a luminance value of BN1-3. Furthermore, suppose that the fourth sub-pixel 49W included in the pixel 48 or a group of the pixels 48 is supplied with a signal having a value equivalent to the maximum signal value of the output signal for the fourth sub-pixel 49W. In that case, the fourth sub-pixel 49W is assumed to have a luminance value of BN4. In other words, the collective set of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B displays white color having a maximum luminance value, and the luminance of the white color is represented by BN1-3. Then, assuming x as a constant depending on the display device, the constant χ is expressed as χ=BN4/BN1-3.
Specifically, suppose that the luminance BN1-3 of the white color is obtained when the collective set of the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B is supplied with the input signals having the following values of the display gradation, that is, the signal value x1−(p, q)=255, the signal value x2−(p, q)=255. Furthermore, suppose that the luminance BN4 is obtained when the fourth sub-pixel 49W is supplied with the input signal having a value 255 of the display gradation. Then, the luminance BN4 has a value, for example, 1.5 times as large as the luminance BN1-3. In other words, χ=1.5 is satisfied in the present embodiment.
When the signal value X4−(p, q) is given by Equation (4) above, Vmax(S) can be expressed by Equations (7) and (8) given below.
When S≦S0,
Vmax(S)=(χ+1)−(2n−1) (7)
When S0<S≦1,
Vmax(S)=(2n−1)−(1/S) (8)
where S0=1/(χ+1).
The signal processing unit 20 stores, for example, as a kind of look-up table, the thus obtained maximum value Vmax(S) of brightness with the saturation S serving as a variable in the HSV color space extended by the addition of the fourth color. Otherwise, the signal processing unit 20 obtains the maximum value Vmax(S) of brightness with the saturation S serving as a variable in the extended HSV color space on a case-by-case basis.
A description will next be made of a method (extension process) of obtaining the signal values X1−(p, q), X2−(p, q), X3−(p, q), and X4−(p, q) serving as the output signals for the (p, q)th pixel 48. The following process is performed so as to keep a ratio among the luminance of the first primary color displayed by the (first sub-pixel 49R+fourth sub-pixel 49W), the luminance of the second primary color displayed by the (second sub-pixel 49G+fourth sub-pixel 49W), and the luminance of the third primary color displayed by the (third sub-pixel 49B+fourth sub-pixel 49W). The following process is performed so as to keep (maintain) a color tone. The following process is performed so as to keep (maintain) gradation-luminance characteristics (gamma characteristics, or γ characteristics). When all of the input signal values are zero or small in any of the pixels 48 or any group of the pixels 48, the extension coefficient α only needs to be obtained without including such a pixel 48 or such a group of the pixels 48.
First Step
First, based on the input signal values for the sub-pixels 49 of the pixels 48, the signal processing unit 20 obtains the saturation S and the brightness V(S) with respect to the pixels 48. Specifically, with respect to the (p, q)th pixel 48, the signal processing unit 20 obtains S(p, q) and V(S)(p, q) by using Equations (7) and (8) based on the signal value X1−(p, q) serving as the input signal for the first sub-pixel 49R, the signal value x2−(p, q) serving as the input signal for the second sub-pixel 49G, and the signal value x3−(p, q) serving as the input signal for the third sub-pixel 49B. The signal processing unit 20 applies this process to all of the pixels 48.
Second Step
Next, the signal processing unit 20 obtains the extension coefficient α(S) based on Vmax(S)/V(S) obtained with respect to the pixels 48.
α(S)=Vmax(S)/V(S) (9)
Third Step
Subsequently, based on at least the signal values x1−(p, q), x2−(p, q), and x3−(p, q), the signal processing unit 20 obtains the signal value X4−(p, q) for the (p, q)th pixel 48. In the present embodiment, the signal processing unit 20 determines the signal value X4−(p, q) based on Min(p, q), the extension coefficient α, and the constant x. More specifically, the signal processing unit 20 obtains the signal value X4−(p, q) based on Equation (4) given above as described above. The signal processing unit 20 obtains the signal values X4−(p, q) for all of the P0×Q0 pixels 48.
Fourth Step
Thereafter, the signal processing unit 20 obtains the signal value X1−(p, q) for the (p, q)th pixel 48 based on the signal value x1−(p, q), the extension coefficient α, and the signal value X4−(p, q). The signal processing unit 20 obtains the signal value X2−(p, q) for the (p, q)th pixel 48 based on the signal value x2−(p, q), the extension coefficient α, and the signal value X4−(p, q). The signal processing unit 20 obtains the signal value X3−(p, q), for the (p, q)th pixel 48 based on the signal value x3−(p, q), the extension coefficient α, and the signal value X4−(p, q). Specifically, the signal processing unit 20 obtains the signal values X1−(p, q), X2−(p, q), and X3−(p, q) for the (p, q)th pixel 48 based on Equations (1) to (3) given above.
As indicated by Equation (4), the signal processing unit 20 extends the value of Min(p, q) according to the extension coefficient α. In this manner, the extension of Min(p, q) according to the extension coefficient α increases the luminance of the white display sub-pixel (fourth sub-pixel 49W), and also increases the luminance of the red display sub-pixel, the green display sub-pixel, and the blue display sub-pixel (corresponding to the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B, respectively) as indicated by Equations given above. This can avoid a problem of occurrence of dulling of colors. Specifically, the extension of the value of Min(p, q) according to the extension coefficient α increases the luminance of an entire image by a factor of a compared with a case in which the value of Min(p, q) is not extended. This allows, for example, a still image to be displayed at high luminance, which is desirable.
As illustrated in
The image analyzing unit 23 analyzes that a signal value X1−(p, q), a signal value X2−(p, q), a signal value X3−(p, q), and a signal value X4−(p, q) for the (p, q)th pixel 48 are extended by a factor of α. In order to achieve an image with the same luminance as that of the image resulting from the signal values not extended, based on the information of the image input signal SRGB, the display device 10 may reduce the quantity of light emitted from the planar-light-source-device 50 based on the extension coefficient α. Specifically, the light-source-drive-value-computing-unit 24 and the light-source-drive-value-determining-unit 26 may control the current or the on-off duty ratio for each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F independently so that the quantity of light emitted from the planar-light-source-device 50 is reduced by (1/α). In the present embodiment, to control the light quantity for each light source, the signal processing unit 20 computes an extension coefficient and an inverse value thereof for each luminance determination block described later, based on the input signal values for the pixels 48 in each luminance determination block. Hereinafter, the extension coefficient for each luminance determination block is represented as ab and the inverse value of the extension coefficient αb is represented as (1/αb).
Lookup Tables, which are used in a process described later, are explained below.
The lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF according to the present embodiment correspond to the light sources 56A, 56B, 56C, 56D, 56E, and 56F, respectively. The lookup tables according to the present embodiment may be stored for when each pair of the light sources 56A and 56B, the light sources 56C and 56D, and the light sources 56E and 56F emits light at the same time, for example. This configuration can reduce the process for creating the lookup tables and the storage capacity occupied in the light-source-data-storage-unit 25, so that the integrated circuit storing therein the light-source-data-storage-unit 25 can be reduced in size. Because these lookup tables LUTD, LUTE, and LUTF are line-symmetric to the tables LUTA, LUTB, and LUTC with respect to the center line, only the tables LUTA, LUTB, and LUTC positioned on one side of the center line of the light-source-arrangement-direction LY may be generated and stored without storing the lookup tables LUTD, LUTE, and LUTF.
The light-source-drive-value-computing-unit 24 refers to the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF in the light-source-data-storage-unit 25 to compute the light quantity of each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F by superimposing the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF over one another such that each light quantity is reduced by (1/αb) for each block. For example, the (i, j)th representative luminance (where 1≦i≦N, 1≦j≦M) obtained by superimposing lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF can be computed by Equation (10).
In this manner, the light-source-drive-value-computing-unit 24 can reduce the amount of computations, because the complex computation is replaced by a simple reference to the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF.
As mentioned earlier, to cause the image-display-panel-drive-unit 40 to make a display on the image display panel 30, a luminance distribution in units of the pixels 48 is required. The light-source-drive-value-determining-unit 26 computes a luminance distribution in units of the pixels 48 based on the light quantity of each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F emit light calculated at Step S13 and the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF (Step S14). To calculate the luminance distribution in units of the pixels 48, luminance information for each pixel 48 is computed by interpolation calculating. The resulting information in units of the pixels 48 would have an extremely large amount of information. However, in the present embodiment, because the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF are created using thinned representative values, the computational load can be reduced.
The luminance information for each pixel 48 changes steeply in the light-source-arrangement-direction LY while the change in the incidence direction LX is gentle.
After a group is set as the target group, in Step S21, the image analyzing unit 23 calculates (1/αb) value for each luminance determination block, which is included in the target group, in the above-mentioned manner. In Step S22, the light-source-drive-value-computing-unit 24 determines a target (1/αb) value for the target group. As illustrated in
If the (1/αb) value for the counter-incident block Lout of the target group, that is, the (1/αb) value for the counter-incident block Lout at the same position as the incident block Lin set at Step S32 in the light-source-arrangement-direction LY, is higher than the maximum value (Yes at Step S35), the light-source-drive-value-computing-unit 24 sets the (1/αb) value for the counter-incident block Lout as the maximum value (Step S36). If the (1/αb) value for the counter-incident block Lout of the target group is equal to or smaller than the maximum value (No at Step S35), the process proceeds to Step S37 without changing the maximum value.
The light-source-drive-value-computing-unit 24 temporarily sets and stores the maximum (1/αb) value as a light source drive value (Step S37).
Denoting the light source drive value by (1/αi·max), the light-source-drive-value-computing-unit 24 calculates luminance indices of the incident block Lin, the central block Lmid, and the counter-incident block Lout of the target group with Equations (11) to (13) below (Step S38). In the equation below, LUTm(P, Q) represent the data in the Pth row and the Qth column in a lookup table m. The data in the Pth row and the Qth column may be a piece of data for each pixel, a piece of data for each luminance determination block, or a piece of data for each of divided areas obtained by virtually dividing the image display panel 30 into predetermined areas.
LuminanceIndex of Lin=(1/αLin)/Σ{(1/αi max)×LUTm(P, Q)} (11)
LuminanceIndex of Lmid=(1/αLmid)/Σ{(1/αi−max)×LUTm(P, Q)} (12)
LuminanceIndex of Lout=(1/αLout)/Σ{(1/αi−max)×LUTm(P, Q)} (13)
The light-source-drive-value-computing-unit 24 identifies highest one of the luminance indices of the incident block Lin, the central block Lmid, and the counter-incident block Lout acquired at Step S38 (Step S39).
The light-source-drive-value-computing-unit 24 then stores the (1/αb) value corresponding to the luminance index identified at Step S39 as a target (1/αb) value and stores the position of an identified block that is one of the incident block Lin, the central blocks Lmid, and the counter-incident blocks Lout and corresponds to the identified luminance index (Step S40). In this manner, the identified block serves as a luminance determination block the luminance of which is corrected. The value of (1/αb) of the identified luminance determination block is used as the target (1/αb) value for the group to which the identified luminance determination block belongs.
After the light-source-drive-value-computing-unit 24 determines the target (1/αb) value, the process illustrated in
Suppose that an incident block Lin has the maximum (1/αb) value and the maximum luminance index, for example, among the incident block Lin, the central block Lmid, and the counter-incident block Lout at the same position in the light-source-arrangement-direction LY. In this case, a curve Ua that represents an ideal light quantity illustrated in
If the calculated (1/αb) value for a block included in the target group is lower than the target (1/αb) value of the target group (Yes at Step S23), the difference between the calculated (1/αb) and the target (1/αb) value is calculated (Step S24). Next, the light-source-drive-value-computing-unit 24 calculates the scaling factor of the difference (Step S25). The light-source-drive-value-computing-unit 24 calculates how many times of the lookup table at the position the difference corresponds to.
The calculated difference is then added to the calculated (1/αb) value (Step S26). That is to say, if the calculated (1/αb) value is lower than the target (1/αb) value of the block, the difference is added to the calculated (1/αb) value. Thereby, the insufficient luminance of the block can be compensated. The process then proceeds to Step S27.
On the other hand, if the calculated (1/αb) value is equal to or higher than the target (1/αb) value of the target group (No at Step S23), Steps S24 to S26 are skipped and the process proceeds to Step S27. Next, if the (1/αb) value exceeds an upper limit (Yes at Step S27), the (1/αb) value is clipped to the (1/αb) value to the upper limit (Step S28). The process then proceeds to Step S29. On the other hand, if the (1/αb) value does not exceed the upper limit (No at Step S27), Step S28 is skipped and the process proceeds to Step S29. If all of the blocks included in the target group have not been checked and scanned (processed) yet (No at Step S29), the process is then returned to step S23 to process a block, which has not been scanned, of the target group. If all of the blocks included in the target group have been checked and scanned (Yes at Step S29), the process proceeds to step S30. If the scans with respect to all the groups have finished (Yes at Step S30), the process illustrated in
The light-source-drive-value-determining-unit 26 then sends the luminance information for each pixel 48, which is calculated in Step S14, to the image processing unit 22. The image processing unit 22 corrects the input signal SRGB based on the luminance information for each pixel 48 (Step S16), and performs a synchronizing process of computing an output signal SRGBW for outputting the signal value X1−(p, q), the signal value X2−(p, q), the signal value X3−(p, q), and the signal value X4−(p, q) for the (p, q)th pixel 48 (Step S15). Based on the synchronizing signal STM, the image-display-panel-drive-unit 40 displays an image on the image display panel 30 for each frame, and the planar-light-source-device-control-unit 60 drives each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F in the planar-light-source-device 50 independently.
As explained above, the display device 10 includes the image display panel 30 and the planar-light-source-device 50. The planar-light-source-device 50 is a planar light source and includes the light guide plate 54 and the edge-lit light source 52. The image-display-panel-drive-unit 40 and the planar-light-source-device-control-unit 60 serving as the controller operate synchronously based on the operations of the signal processing unit 20, and control the light quantity of each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F individually and independently, based on the information of the image input signal SRGB and the respective lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF. In this manner, the controller can control to reduce the total amount of light quantities of the light sources 56A, 56B, 56C, 56D, 56E, and 56F so that the power consumption can be reduced.
The luminance determination blocks are set by virtually dividing the image display panel 30 into a plurality of areas in the light-source-arrangement-direction LY and in the incidence direction LX. The controller then identifies which one of the luminance determination blocks at the same position in the light-source-arrangement-direction LY has the highest luminance in the incidence direction LX when an image is displayed on the image display panel based on the information of an input signal representing an image. The controller then identifies a luminance determination block the luminance of which is to be corrected by referring to the lookup tables LUTA, LUTB, LUTC, LUTD, LUTE, and LUTF that are luminance information of the light sources, and controls the light quantity of each of the light sources so that the luminance of the identified luminance determination block is achieved. In this manner, the controller can identify a luminance determination block the luminance of which is to be corrected taking the backlight property into consideration. The display device 10 then controls the light quantity of each of the light sources 56A, 56B, 56C, 56D, 56E, and 56F in the edge-lit light source 52 independently to achieve the luminance of the identified luminance determination block. As a result, the power consumption for each light source can be reduced, and the number of pixels 48 with insufficient luminance can be reduced.
The display device 10 replaces a (1/αb) value that exceeds the upper limit with the upper limit, so that the luminance can be increased within a permissible range.
First Modification
In one modification of the present embodiment, the processing routine as illustrated in
In Step S53, the light-source-drive-value-computing-unit 24 determined whether the calculated (1/αb) value for a block included in the target group is higher than the target (1/αb) value of the target group or not. If the calculated (1/αb) value for a block included in the target group is higher than the target (1/αb) value of the target group (Yes at Step S53), Steps S54 to S56 are performed. If the calculated (1/αb) value for a block included in the target group is equal to or lower than the target (1/αb) value of the target group (No at Step S53), Steps S54 to S56 are skipped. Because Steps S54 and S55 are substantially the same as Steps S24 and S25 described above, the explanations thereof are omitted herein. In Step S56, the light-source-drive-value-computing-unit 24 subtracts the difference acquired at Step S54 from the (1/αb) value.
Next, if the resulting (1/αb) value is higher than a lower limit (Yes at Step S57), the light-source-drive-value-computing-unit 24 clips the (1/αb) value to the lower limit (Step S58). On the other hand, if the (1/αb) value is not higher than the lower limit (No at Step S57), Step S58 is skipped and the process proceeds to Step S59. In Step S59, whether all the blocks included in the target group have been scanned or not is determined. If all the blocks included in the target group have been scanned (Yes at Step S59), the process proceeds to Step S70. If all the blocks included in the target group have not been scanned yet (No at Step S59), the process is returned to Step S53 to process (scan) a block, which has not been scanned, of the target group.
On the other hand, if the luminance determination blocks of the target group are not positioned at the left end in the light-source-arrangement-direction LY (No at Step S50), the process proceeds to Step S60. In Step S60, whether the luminance determination blocks of the target group are positioned at the right end in the light-source-arrangement-direction LY or not is determined. If the luminance determination blocks of the target group are not positioned at the right end in the light-source-arrangement-direction LY (No at Step S60), the process proceeds to Step S21 of
Next, in Step S69, whether all the luminance determination blocks of the target group have been scanned or not is determined. If all the luminance determination blocks of the target group have been scanned (Yes at Step S69), the process proceeds to Step S70. If all the luminance determination blocks of the target group have not been scanned (No at Step S69), the process is returned to Step S63 to process a block, which has not been scanned, of the target group. In Step S70, whether all the groups have been set as a target group and processed (scanned) or not is determined. If all the groups have not been scanned yet (No at Step S70), the next group is set as the target group and the process is then returned to step S50. If all the groups have been scanned (Yes at Step S70), the process of
The controller thus identifies a luminance determination block with the highest luminance in the incidence direction LX, among those at the right or the left end of the image display panel 30 in the light-source-arrangement-direction LY, and controls the light quantity of each of the light sources to a level below the luminance of the identified luminance determination block. In this manner, the luminance on the right or the left end of the image display panel 30 in the light-source-arrangement-direction LY can be reduced, so that the display device 10 can reduce power consumption.
Second Modification
Some application examples of the display device 10 explained in the first and the second embodiments, and modifications thereof will now be explained with reference to
The electronic apparatus illustrated in
The electronic apparatus illustrated in
The electronic apparatus illustrated in
The electronic apparatus illustrated in
The electronic apparatus illustrated in
The electronic apparatus illustrated in
Each of the display devices 571 illustrated in
In the example illustrated in
According to the present embodiment, it is possible to provide a display device, an electronic apparatus, and a method for driving a display device capable of reducing the power consumption for each light source included in an edge-lit light source, when controlling the luminance independently for each light sources.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-219697 | Oct 2013 | JP | national |
2014-214691 | Oct 2014 | JP | national |
The present application is a continuation application of U.S. patent application Ser. No. 14/519,766, filed on Oct. 21, 2014, which application claims priority to Japanese Priority Patent Application JP 2013-219697 filed in the Japan Patent Office on Oct. 22, 2013, and JP 2014-214691 filed in the Japan Patent Office on Oct. 21, 2014, the entire content of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14519766 | Oct 2014 | US |
Child | 15403626 | US |