What is disclosed herein relates to a display device.
Display devices that display images using micro-light-emitting diodes (LEDs) are known (for example, Japanese Patent Application Laid-open Publication No. 2020-187180).
A peak of a spectrum of light of a micro-LED may change with an amount of current applied thereto. In particular, when a micro-LED for emitting light having a spectrum having a peak at a wavelength of red is used as a red sub-pixel, the chromaticity of reproduced red may change depending on the light emission intensity. This is because the degree of mixture of a spectrum of green changes between a low-luminance state where the micro-LED is lit up by a relatively small current and a high-luminance state where the micro-LED is lit up by a relatively large current. Such a change in the chromaticity of red is required to be reduced.
For the foregoing reasons, there is a need for a display device capable of reducing the change in the chromaticity caused by change in level of the light emission intensity.
According to an aspect, a display device includes a pixel including a first sub-pixel configured to emit light having a peak in a spectrum of red, a second sub-pixel configured to emit light having a peak in a spectrum of green, and a third sub-pixel configured to emit light having a peak in a spectrum of blue. The first sub-pixel, the second sub-pixel, and the third sub-pixel are inorganic light-emitting diodes. A light emission intensity of the second sub-pixel is increased at a predetermined ratio with respect to a light emission intensity of the first sub-pixel when the first sub-pixel emits light at a light emission intensity within a low-luminance range equal to or lower than a predetermined level of luminance.
The following describes an embodiment of the present disclosure with reference to the drawings. What is disclosed herein is merely an example, and the present disclosure naturally encompasses appropriate modifications easily conceivable by those skilled in the art while maintaining the gist of the disclosure. To further clarify the description, the drawings may schematically illustrate, for example, widths, thicknesses, and shapes of various parts as compared with actual aspects thereof. However, they are merely examples, and interpretation of the present disclosure is not limited thereto. The same component as that described with reference to an already mentioned drawing is denoted by the same reference numeral through the specification and the drawings, and detailed description thereof may be omitted where appropriate.
As illustrated in
The pixels Pix are arranged in a first direction Dx and a second direction Dy in the display area AA of the substrate 21. The first direction Dx and the second direction Dy are directions parallel to a surface of the substrate 21. The first direction Dx is orthogonal to the second direction Dy. However, the first direction Dx may non-orthogonally intersect the second direction Dy. A third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy. The third direction Dz corresponds to, for example, a direction normal to the substrate 21. Hereinafter, the term “plan view” refers to a positional relation when viewed from the third direction Dz.
The drive circuit 12 is a circuit that drives a plurality of gate lines (for example, a reset control signal line L5, an output control signal line L6, a pixel control signal line L7, and an initialization control signal line L8 (refer to
The drive IC 210 is a circuit that controls the display of the display device 1. The drive IC 210 is mounted as a chip on glass (COG) in the peripheral area GA of the substrate 21. The drive IC 210 is not limited to this configuration and may be mounted as a chip on film (COF) on a flexible printed circuit board or a rigid circuit board coupled to the peripheral area GA of the substrate 21.
The cathode wiring 60 is provided in the peripheral area GA of the substrate 21. The cathode wiring 60 is provided so as to surround the pixels Pix in the display area AA and the drive circuit 12 in the peripheral area GA. The cathodes of a plurality of light-emitting elements 3 are coupled to the cathode wiring 60 that is common thereto, and are supplied with a fixed potential (such as a ground potential).
Each of the sub-pixels 49 includes a corresponding one of the light-emitting elements 3 and an anode electrode 23. Light-emitting elements 3R, 3G, and 3B included in the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B, respectively, emit light in different colors, whereby the display device 1 displays an image. The light-emitting element 3 is an inorganic light-emitting diode chip having a size of approximately 3 µm to 300 µm in the plan view, and is called a micro-LED. The display device 1 including the micro-LEDs in each of the pixels is also called a micro-LED display device. The term “micro” in the “micro-LED” does not limit the size of the light-emitting element 3.
The light-emitting elements 3 may emit light in four or more different colors. The arrangement of the sub-pixels 49 is not limited to the configuration illustrated in
The cathode (cathode terminal 32) of the light-emitting element 3 is coupled to a cathode power supply line L10. The anode (anode terminal 33) of the light-emitting element 3 is coupled to an anode power supply line L1 through the drive transistor DRT and the output transistor BCT. The anode power supply line L1 is supplied with an anode power supply potential PVDD. The cathode power supply line L10 is supplied with a cathode power supply potential PVSS through the cathode wiring 60. The anode power supply potential PVDD is a higher potential than the cathode power supply potential PVSS.
The anode power supply line L1 supplies the anode power supply potential PVDD serving as a drive potential to the sub-pixel 49. Specifically, the light-emitting element 3 ideally emits light by being supplied with a forward current (drive current) caused by a potential difference (PVDD - PVSS) between the anode power supply potential PVDD and the cathode power supply potential PVSS. That is, the anode power supply potential PVDD has a potential difference with respect to the cathode power supply potential PVSS to cause the light-emitting element 3 to emit light. The anode terminal 33 of the light-emitting element 3 is electrically coupled to the anode electrode 23, and the second capacitor Cs2 is coupled as an equivalent circuit between the anode electrode 23 and the anode power supply line L1.
The source electrode of the drive transistor DRT is coupled to the anode terminal 33 of the light-emitting element 3 through the anode electrode 23, and the drain electrode of the drive transistor DRT is coupled to the source electrode of the output transistor BCT. The gate electrode of the drive transistor DRT is coupled to the first capacitor Cs1, the drain electrode of the pixel selection transistor SST, and the drain electrode of the initialization transistor IST.
The gate electrode of the output transistor BCT is coupled to the output control signal line L6. The output control signal line L6 is supplied with an output control signal BG. The drain electrode of the output transistor BCT is coupled to the anode power supply line L1.
The source electrode of the initialization transistor IST is coupled to an initialization power supply line L4. The initialization power supply line L4 is supplied with an initialization potential Vini. The gate electrode of the initialization transistor IST is coupled to the initialization control signal line L8. The initialization control signal line L8 is supplied with an initialization control signal IG. That is, the gate electrode of the drive transistor DRT is coupled to the initialization power supply line L4 through the initialization transistor IST.
The source electrode of the pixel selection transistor SST is coupled to a video signal line L2. The video signal line L2 is supplied with a video signal Vsig. The gate electrode of the pixel selection transistor SST is coupled to the pixel control signal line L7. The pixel control signal line L7 is supplied with a pixel control signal SG.
The source electrode of the reset transistor RST is coupled to a reset power supply line L3. The reset power supply line L3 is supplied with a reset power supply potential Vrst. The gate electrode of the reset transistor RST is coupled to the reset control signal line L5. The reset control signal line L5 is supplied with a reset control signal RG. The drain electrode of the reset transistor RST is coupled to the anode electrode 23 (the anode terminal 33 of the light-emitting element 3) and the source electrode of the drive transistor DRT. A reset operation of the reset transistor RST resets voltages stored in the first capacitor Cs1 and the second capacitor Cs2.
The first capacitance Cs1 is provided as an equivalent circuit between the drain electrode of the reset transistor RST and the gate electrode of the drive transistor DRT. The pixel circuit PICA can use the first capacitance Cs1 and the second capacitance Cs2 to reduce fluctuations in gate voltage of the drive transistor DRT caused by parasitic capacitance and current leakage thereof.
In the following description, the anode power supply line L1 and the cathode power supply line L10 may each be simply referred to as a “power supply line”. The video signal line L2, the reset power supply line L3, and the initialization power supply line L4 may each be referred to as a “signal line”. The reset control signal line L5, the output control signal line L6, the pixel control signal line L7, and the initialization control signal line L8 may each be referred to as a “gate line”.
The gate electrode of the drive transistor DRT is supplied with a potential corresponding to the video signal Vsig (or gradation signal). That is, the drive transistor DRT supplies a current corresponding to the video signal Vsig to the light-emitting element 3 based on the anode power supply potential PVDD supplied through the output transistor BCT. In this manner, the anode power supply potential PVDD supplied to the anode power supply line L1 is reduced by the drive transistor DRT and the output transistor BCT. As a result, the anode terminal 33 of the light-emitting element 3 is supplied with a potential lower than the anode power supply potential PVDD.
One electrode of the second capacitor Cs2 is supplied with the anode power supply potential PVDD through the anode power supply line L1, and the other electrode of the second capacitor Cs2 is supplied with the potential lower than the anode power supply potential PVDD. That is, the one electrode of the second capacitor Cs2 is supplied with the potential higher than that of the other electrode of the second capacitor Cs2.
In the display device 1, the drive circuit 12 (refer to
The sub-pixel 49 emits light at a light emission intensity based on a gradation value indicated by an input signal that serves as the source of the video signal Vsig. The input signal is a signal received by the display device 1 and is a signal corresponding to an image to be output. Taking a case as an example where a red-green-blue (RGB) image signal representing a gradation value of each of red, green, and blue using an 8-bit value is received as the input signal, the sub-pixel 49 is turned off when the gradation value is zero. In this example, when the gradation value exceeds zero, the light is emitted at a lower intensity as the gradation value is closer to zero and is emitted at a higher intensity as the gradation value is closer to the maximum value (255).
A reproduced color of each of the first sub-pixel 49R and second sub-pixel 49G may be changed depending on the level of the light emission intensity. The following describes a relation between the level of the light emission intensity and a reproduced color with reference to
Hereinafter, a first red Rmin denotes the color of red that is reproduced in a low-luminance state where a relatively small current flows to emit light at a low light emission intensity within a range of the light emission intensity adjustable by the level of current flowing into the first sub-pixel 49R, and a second red Rmax denotes the color of red that is reproduced in a high-luminance state where a relatively large current flows to emit light at a high light emission intensity. A first green Gmin denotes the color of green that is reproduced in a low-luminance state where a relatively small current flows to emit light at a low light emission intensity within a range of the light emission intensity adjustable by the level of current flowing into the second sub-pixel 49G, and a second green Gmax denotes the color of green that is reproduced in a high-luminance state where a relatively large current flows to emit light at a high light emission intensity.
As illustrated in
As illustrated in
The third sub-pixel 49B has light emission characteristics that reproduce blue Bcom in the chromaticity diagram illustrated in
When the relation between the first red Rmin and the second red Rmax, the relation between the first green Gmin and the second green Gmax, and the blue color Bcom are considered, a chromaticity range that can be reproduced when the first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B are all in the low-luminance state can be expressed as a first chromaticity range Tmin illustrated in
With reference to
As illustrated in
In
Reference Example 1 illustrates that the color of light reproduced by the first sub-pixel 49R lit up in accordance with the gradation value R1 serving as a gradation value of red indicated by the output signal can be represented by a gradation value Ra serving as a gradation value of red. In other words, the first red Rmin has the gradation value Ra when it is expressed by the gradation value of red. As illustrated in Reference Example 1, the color of light reproduced by the first sub-pixel 49R lit up in accordance with the gradation value R1 contains only a red component, and does not contain a green component or a blue component. However, when an output signal corresponding to a higher gradation value is applied, the hue of an R pixel as a reproduced color actually seen by humans shifts to a color containing a green component with respect to the output signal.
For example, Reference Example 2 illustrates that the color of light reproduced by the first sub-pixel 49R lit up in accordance with the gradation value R2 serving as a gradation value of red indicated by the output signal can be represented by a combination of a gradation value Rb serving as a gradation value of red and a gradation value Gb serving as a gradation value of green. Reference Example 3 illustrates that the color of light reproduced by the first sub-pixel 49R lit up in accordance with the gradation value R3 serving as a gradation value of red indicated by the output signal can be represented by a combination of a gradation value Rc serving as a gradation value of red and a gradation value Gc serving as a gradation value of green. In other words, when the second red Rmax is expressed by gradation values, the gradation values are a combination of the gradation value Rc and the gradation value Gc.
In addition, the ratio of the gradation value Gc to the gradation value Rc in Reference Example 3 is smaller than the ratio of the gradation value Gb to the gradation value Rb in Reference Example 2. That is, the influence of the green spectrum is stronger in Reference Example 3 than in Reference Example 2. As indicated by the above comparison of Reference Example 1, Reference Example 2, and Reference Example 3, the first sub-pixel 49R exhibits the light emission characteristics in which the green component in the color reproduced by light emission becomes stronger as the light emission intensity increases. Such light emission characteristics cause the difference between the first red Rmin and the second red Rmax as described with reference to
Therefore, the drive IC 210 of the embodiment performs signal processing to stabilize the chromaticity of red that is reproduced by the lighting of the pixels Pix regardless of the level of the gradation value of red indicated by the input signal.
When the first sub-pixel 49R emits light at a light emission intensity within a low-luminance range equal to or lower than a predetermined level of luminance, the drive IC 210 performs the signal processing to increase the light emission intensity of the second sub-pixel 49G at a predetermined ratio with respect to the light emission intensity of the first sub-pixel 49R. Specifically, the drive IC 210 performs the signal processing individually for each of the pixels Pix to add a green component to the output signal at a higher ratio with respect to the gradation value of red as the gradation value of red in the input signal is higher within the low-luminance range. In addition, the drive IC 210 causes a decrease in luminance of the first sub-pixel 49R corresponding to an increase in luminance of the pixel Pix caused by lighting of the second sub-pixel 49G resulting from the addition of the green component. Specifically, to reduce the luminance, the drive IC 210 performs the signal processing individually for each of the pixels Pix to lower the gradation value of red in the output signal to a value below the gradation value of red in the input signal. The output signal in Example 1 further includes a gradation value G1 serving as a gradation value of green, in addition to a gradation value Rd lower than the gradation value R1 included in the input signal in Example 1. The output signal in Example 2 further includes a gradation value G2 serving as a gradation value of green, in addition to a gradation value Re lower than the gradation value R2 included in the input signal in Example 2.
According to the output signals described above, the reproduced color of the pixel Pix in Example 1 is a color that can be represented by a combination of the gradation value Rd serving as a gradation value of red and a gradation value Gd serving as a gradation value of green. Also, the reproduced color of the pixel Pix in Example 2 is a color that can be represented by a combination of the gradation value Re serving as a gradation value of red and a gradation value Ge serving as a gradation value of green.
The output signal in Example 3 includes the gradation value R3 included in the input signal in Example 3 and does not include a green component. Thus, in the same manner as with the reproduced color of the first sub-pixel 49R in Reference Example 3, the reproduced color of the pixel Pix in Example 3 is a color that can be represented by a combination of the gradation value Rc serving as a gradation value of red and the gradation value Gc serving as a gradation value of green.
The ratios of the gradation value Rd to the gradation value Gd, the gradation value Re to the gradation value Ge, and the gradation value Rc to the gradation value Gc can be expressed as a common ratio α:β. That is, the reproduced color of the pixel Pix in Example 1, the reproduced color of the pixel Pix in Example 2, and the reproduced color of the pixel Pix in Example 3 are a common color in the chromaticity diagram. Specifically, the common color is the second red Rmax in
As described above, the output signal of Example 3 includes the gradation value R3 included in the input signal of the example and does not include a green component. This is because the drive IC 210 performs the signal processing so as to cause the reproduced color of the first sub-pixel 49R lit up at luminance lower than that of the first sub-pixel 49R that reproduces the second red Rmax to be the second red Rmax in the chromaticity diagram, using the influence of the green spectrum in the second red Rmax as a reference.
The correspondence between the level of the gradation value of red indicated by the input signal and the level of the gradation value of green to be added to the output signal is determined in advance.
In the graph of
As illustrated by the dashed graph in
In contrast, as illustrated by the dash-dot-dash graph, the gradation value of green to be added to the output signal has a peak in the middle between the minimum value and the maximum value of the gradation value of red indicated by the input signal. More specifically, assuming that the gradation value of red corresponding to the gradation value of green to be added to the output signal is a reference, the gradation value of green to be added to the output signal increases as the gradation value of red (R) indicated by the input signal increases so as to approach the reference from a gradation value of red lower than the reference. The gradation value of green to be added to the output value decreases as the gradation value of red (R) indicated by the input signal increases from the reference. That is, increasing the input gradation value of red reduces the degree of need for “intentional shift to green” by lighting the second sub-pixel 49G. Therefore, the graph Q2 indicates that, on the high-gradation side of “GRADATION VALUE OF RED IN INPUT SIGNAL” in the graph illustrated in
Among the items described with reference to
In the description given above with reference to
As described with reference to
To give a specific example of the processing, the drive IC 210 sets the gradation value of green before adjustment to the gradation value of green to be added to the output signal in the signal processing to stabilize the chromaticity of red, determined based on the description with reference to
The data indicated by the graph illustrated in
The drive IC 210 performs the gamma conversion processing based on the gradation value Rin. Specifically, based on the LUT (two-color LUT) corresponding to the data described above with reference to
The drive IC 210 also derives a gradation value GG of green from the gradation value Gin based on the data corresponding to the gamma curve described above. The gradation value GG of green is, for example, a value obtained by gamma conversion of the gradation value of green indicated by the input signal.
The drive IC 210 handles the gradation value RR of red as a gradation value (R) of red and performs inverse gamma conversion processing on the gradation value (R) of red to derive the output Rout. In
The drive IC 210 performs the inverse gamma conversion processing on the gradation value (G) of green obtained by adding the gradation value RG of green to the gradation value GG of green. In
The drive IC 210 applies frame rate control (FRC) to reproduce the 10-bit green with the second sub-pixel 49G, the light emission intensity of which is controlled corresponding to an 8-bit gradation value of green. In the reproduction of green by the second sub-pixel 49G, a degree of change in the light emission intensity due to an increase in gradation value by one may be too excessive as an appropriate degree of change for adjusting the chromaticity of red. That is, even if the additional gradation value described above is set lowest (1), the “change in green that is reproduced by the second sub-pixel 49G” caused by the additional gradation value may be too excessive as an appropriate degree of change for adjusting the chromaticity of red. Therefore, in order to reduce such an excessive change in green and to obtain an appropriate change for adjusting the chromaticity of red, the drive IC 210 of the embodiment performs the FRC to reflect the additional gradation value in some of a plurality of frame images.
To give an example, in an image having a plurality of frames continuously output at a predetermined frame rate by the display device 1, the additional gradation value is reflected in one frame per two frames, and as a result, the “change in green that is reproduced by the second sub-pixel 49G” caused by the additional gradation value can be reduced to 50% of that in the case of not applying the FRC. Reflecting the additional gradation value in three frames per four frames can reduce the “change in green that is reproduced by the second sub-pixel 49G” caused by the additional gradation value to 75% of that in the case of not applying the FRC. Based on the same idea, reflecting the additional gradation value in q frames per p frames can reduce the “change in green that is reproduced by the second sub-pixel 49G” caused by the additional gradation value to q/p of that in the case of not applying the FRC. In this manner, the display device 1 can reproduce the 10-bit green with the second sub-pixel 49G, the light emission intensity of which is controlled corresponding to the 8-bit gradation value of green.
In the embodiment, the increase in gradability by FRC is applied only to the reproduction of green, and not applied to red or blue. The reason why the FRC is particularly necessary for the reproduction of green is that, in the case of a display device conforming to BT.709, the ratio of the luminance component of red to the luminance component of green is 0.3576:0.7152 when all the sub-pixels 49 are lit up at the maximum luminance. That is, the luminance of green is twice as high as the luminance of red. In order to fine-adjust green, which is thus seen by humans as a higher-luminance color than other colors, for adjusting the chromaticity of red, the output control accuracy needs to be ensured with a larger number of gradations. To ensure the output control accuracy, the FRC is employed. Note that, in the International Telecommunication Union Radiocommunication Sector (ITU), BT.709 is a reference, defined by the Radiocommunication Sector (ITU-R), for standardizing image encoding and signal characteristics in display devices.
The drive IC 210 handles the gradation value Bin as the output Bout as it is. In
The flow of the signal processing is not limited to that illustrated in
The drive IC 210A derives the output Rout corresponding to the gradation value Rin with reference to a dedicated LUT (LUT for R). The LUT for R indicates a relation between the input (gradation value Rin) and the output (output Rout) that allows derivation of the same result as that of the calculation for deriving the output Rout from the gradation value Rin, the calculation including the derivation of the gradation value RR of red in the process described with reference to
The drive IC 210A derives the output Gout corresponding to the gradation values Rin and Gin with reference to a dedicated LUT (LUT for G). The LUT for G indicates a relation between the input (gradation value Gin) and the output (output Gout) that allows derivation of the same result as that of the calculation for deriving the output Gout from the gradation value Gin, the calculation including the derivation of the gradation value RG of green and the gradation value GG of green in the process described with reference to
In the same manner as with the drive IC 210, the drive IC 210A handles the gradation value Bin as the output Bout as it is.
While the signal processing to stabilize the chromaticity of red that is reproduced by lighting of the pixel Pix has been described above, the signal processing may further include processing to stabilize the chromaticity of green.
The third green Gtar denotes chromaticity located in a position of intersection between one side Tmin1 of the first chromaticity range Tmin connecting the first green Gmin to the first red Rmin (refer to
The chromaticity of the color reproduced by the second sub-pixel 49G is included in a chromaticity shift range between the first green Gmin in the low-luminance state and the second green Gmax in the high-luminance state, depending on the luminance. In
The input signal in Example 4 illustrated in
The input signal in Example 5 represents the input signal when the second sub-pixel 49G is lit up in an intermediate luminance state between the low-luminance state where the first green Gmin is reproduced and the high-luminance state where the second green Gmax is reproduced when the signal processing is not performed. In
The input signal in Example 6 represents the input signal when the second sub-pixel 49G is lit up in the high-luminance state where the second green Gmax is reproduced when the signal processing is not performed. In
As illustrated in
The drive IC 210 performs the signal processing individually for each of the pixels Pix to add a red component when the gradation value of green indicated by the input signal is the gradation value G4, add a blue component when the gradation value of green indicated by the input signal is the gradation value G6, and add red and blue components when the gradation value of green indicated by the input signal is a gradation value between the gradation values G4 and G6 (for example, the gradation value G5). In addition, the drive IC 210 causes a decrease in luminance in the second sub-pixel 49G corresponding to the increase in luminance of the pixel Pix caused by lighting of the first sub-pixel 49R and the third sub-pixel 49B resulting from the addition of at least one of the red component and the blue component. Specifically, to reduce the luminance, the drive IC 210 performs the signal processing individually for each of the pixels Pix to lower the gradation value of green in the output signal to a value lower than the gradation value of green in the input signal. As a result, the output signal in Example 4 further includes a gradation value R4 in addition to a gradation value Gk lower than the gradation value G4 included in the input signal in Example 4. The output signal in Example 5 further includes a gradation value R5 and a gradation value B5 in addition to a gradation value Gm lower than the gradation value G5 included in the input signal in Example 5. The output signal in Example 6 further includes a gradation value B6 in addition to a gradation value Gn lower than the gradation value G6 included in the input signal in Example 6.
According to the output signals described above, the reproduced color of the pixel Pix in Example 4 is a color that can be represented by a combination of a gradation value Rk serving as a gradation value of red, the gradation value Gk serving as a gradation value of green, and a gradation value Bk serving as a gradation value of blue. The blue component corresponding to the gradation value Bk is produced by the second sub-pixel 49G in the low-luminance state due to the light emission characteristics of the second sub-pixel 49G. The reproduced color of the pixel Pix in Example 5 is a color that can be represented by a combination of a gradation value Rm serving as a gradation value of red, the gradation value Gm serving as a gradation value of green, and a gradation value Bm serving as a gradation value of blue. The reproduced color of the pixel Pix in Example 6 is a color that can be represented by a combination of a gradation value Rn serving as a gradation value of red, the gradation value Gn serving as a gradation value of green, and a gradation value Bn serving as a gradation value of blue. The red component corresponding to the gradation value Rn is produced by the second sub-pixel 49G in the high-luminance state due to the light emission characteristics of the second sub-pixel 49G.
The ratio between the gradation value Rk, the gradation value Gk, and the gradation value Bk, the ratio between the gradation value Rm, the gradation value Gm, and the gradation value Bm, and the ratio between the gradation value Rn, the gradation value Gn, and the gradation value Bn can be expressed as a substantially common ratio γ:Δ:ε. That is, the reproduced color of the pixel Pix in Example 4, the reproduced color of the pixel Pix in Example 5, and the reproduced color of the pixel Pix in Example 6 are a common color in the chromaticity diagram. Specifically, the common color is the third green Gtar in
Although not illustrated in the drawings, in order also to stabilize the chromaticity of green, preparation is made in advance of data for the same purpose as that of the data for deriving the additional gradation value in correspondence with the relation between the gradation value of red and the gradation value of green indicated by the input signal, as described with reference to
With reference to
The drive IC 210B performs the gamma conversion processing based on the gradation value Rin. Specifically, in the same manner as with the drive IC 210, the drive IC 210B derives the gradation value RR of red and the gradation value RG of green from the gradation value Rin based on the LUT (two-color LUT) corresponding to the data described above with reference to
The drive IC 210B also performs the gamma conversion processing based on the gradation value Gin. Specifically, the drive IC 210B derives a gradation value GR of red, the gradation value GG of green, and a gradation value GB of blue from the gradation value Gin with reference to the above-described data for stabilizing the chromaticity of green. The gradation value GR of red and the gradation value GB of blue are gradation values to be added to the output signal in the signal processing to stabilize the chromaticity of green.
The drive IC 210B also derives a gradation value BB of blue from the gradation value Bin based on the data corresponding to the gamma curve described above. The gradation value GR of red, the gradation value GB of blue, and the gradation value BB of blue are, for example, 16-bit gradation values.
The drive IC 210B derives the gradation value (R) of red obtained by adding the gradation value RR of red to the gradation value GR of red. If the gradation value (R) of red exceeds the maximum value of the 16-bit linear gradation value, the gradation value (R) of red is adjusted to be the maximum value. This adjustment is made in a block “Limit” at the location of an adder (+) between RR (linear) and GR (linear) illustrated in
In the same manner as with the drive IC 210, the drive IC 210B derives the gradation value (G) of green obtained by adding the gradation value RG of green to the gradation value GG of green. If the gradation value (G) of green exceeds the maximum value of the 16-bit linear gradation value, the gradation value (G) of green is adjusted to be the maximum value. This adjustment is made in a block “Limit” at the location of an adder (+) between RG (linear) and GG (linear) illustrated in
The drive IC 210B also derives the gradation value (B) of blue obtained by adding the gradation value GB of blue and the gradation value BB of blue. If the gradation value (B) of blue exceeds the maximum value of the 16-bit linear gradation value, the gradation value (B) of blue is adjusted to be the maximum value. This adjustment is made in a block “Limit” at the location of an adder (+) between GB (linear) and BB (linear) illustrated in
The flow of the signal processing for stabilizing the chromaticity of red and green is not limited to that illustrated in
The drive IC 210C derives the output Rout corresponding to the gradation values Rin and Gin with reference to the dedicated LUT (LUT for R). The LUT for R indicates a relation between the inputs (gradation values Rin and Gin) and the output (output Rout) that allows derivation of the same result as that of the calculation for deriving the output Rout from the gradation values Rin and Gin, the calculation including the derivation of the gradation value RR of red and the gradation value GR of red in the process described with reference to
The drive IC 210C also derives the output Gout corresponding to the gradation values Rin and Gin with reference to the dedicated LUT (LUT for G). The LUT for G indicates a relation between the input (gradation value Gin) and the output (output Gout) that allows derivation of the same result as that of the calculation for deriving the output Gout from the gradation value Gin, the calculation including the derivation of the gradation values RG and GG of green in the process described with reference to
The drive IC 210C also derives the output Bout corresponding to the gradation values Gin and Bin with reference to a dedicated LUT (LUT for B). The LUT for B indicates a relation between the inputs (gradation values Gin and Bin) and the output (output Bout) that allows derivation of the same result as that of the calculation for deriving the output Bout from the gradation values Gin and Bin, the calculation including the derivation of the gradation values GB and BB of blue in the process described with reference to
As described above, according to the embodiment, the display device 1 includes the pixel Pix including the first sub-pixel 49R that emits the light having the peak in the red spectrum, the second sub-pixel 49G that emits the light having the peak in the green spectrum, and the third sub-pixel 49B that emits the light having the peak in the blue spectrum. The first sub-pixel 49R, the second sub-pixel 49G, and the third sub-pixel 49B are inorganic light-emitting diodes. When the first sub-pixel 49R emits light at a light emission intensity within the low-luminance range equal to or lower than the predetermined level of luminance, the light emission intensity of the second sub-pixel 49G is increased at the predetermined ratio with respect to the light emission intensity of the first sub-pixel 49R. This operation can adjust the spectrum of the light emitted from the first sub-pixel 49R lit up at the light emission intensity within the low-luminance range so as to match the spectrum of light of the first sub-pixel 49R produced in a high-luminance range outside the low-luminance range. Therefore, the chromaticity of red that is seen for each of the pixels Pix can be stabilized regardless of the light emission intensity of the first sub-pixel 49R. That is, the chromaticity can be restrained from being changed by the change in level of the light emission intensity.
When the first sub-pixel 49R emits light at a relatively low luminance level within the low-luminance range described above, the first adjustment ratio is larger than that when the first sub-pixel 49R emits light at a relatively high luminance level. The first adjustment ratio is a ratio of the light emission intensity of the second sub-pixel 49G for adjusting the red that is reproduced by the pixel Pix to the light emission intensity of the first sub-pixel 49R. This ratio can adjust the light emission intensity of the second sub-pixel 49G so as to supplement the green component in the case of the low-luminance state, according to the light emission characteristics of the first sub-pixel 49R in which a green component in the high-luminance state is stronger than in the low-luminance state. Therefore, the chromaticity of red that is seen for each of the pixels Pix can be stabilized regardless of the light emission intensity of the first sub-pixel 49R. That is, the chromaticity can be restrained from being changed by the change in level of the light emission intensity.
The second sub-pixel 49G emits light at a light emission intensity corresponding to a value obtained by adding together the gradation value of green indicated by the input signal for the display device 1 and the additional gradation value based on the gradation value of red indicated by the input signal and the above-described first adjustment ratio. This configuration allows both the reproduction of green corresponding to the gradation value of green indicated by the input signal and the reduction in change in the chromaticity of red.
When the second sub-pixel 49G emits light at a relatively low luminance level, the second adjustment ratio is larger than that when the second sub-pixel 49G emits light at a relatively high luminance level. When the second sub-pixel 49G emits light at a relatively high luminance level, the third adjustment ratio is larger than that when the second sub-pixel 49G emits light at a relatively low luminance level. The second adjustment ratio is a ratio of the light emission intensity of the first sub-pixel 49R for adjusting the green that is reproduced by the pixel Pix to the light emission intensity of the second sub-pixel 49G. The third adjustment ratio is a ratio of the light emission intensity of the third sub-pixel 49B for adjusting the green that is reproduced by the pixel Pix to the light emission intensity of the second sub-pixel 49G. This ratio can adjust the light emission intensity of the first sub-pixel 49R so as to supplement the red component in the case of the low-luminance state and can adjust the light emission intensity of the second sub-pixel 49G so as to supplement the blue component in the case of the high-luminance state, according to the light emission characteristics of the second sub-pixel 49G in which a red component in the high-luminance state is stronger than in the low-luminance state and a blue component in the low-luminance state is stronger than in the high-luminance state. Therefore, the chromaticity of green that is seen for each of the pixels Pix can be stabilized regardless of the light emission intensity of the second sub-pixel 49G. That is, the chromaticity can be restrained from being changed by the change in level of the light emission intensity.
The first sub-pixel 49R emits light at a light emission intensity corresponding to a value obtained by adding together the gradation value of red indicated by the input signal for the display device 1 and the additional gradation value based on the gradation value of green indicated by the input signal and based on the second adjustment ratio. The third sub-pixel 49B emits light at a light emission intensity corresponding to a value obtained by adding together the gradation value of blue indicated by the input signal for the display device 1 and the additional gradation value based on the gradation value of green indicated by the input signal and based on the third adjustment ratio. This configuration allows all of the reproduction of red corresponding to the gradation value of red indicated by the input signal, the reproduction of blue corresponding to the gradation value of blue indicated by the input signal, and the reduction in change in the chromaticity of green.
The output gradability of green is greater than the output gradability of red and the output gradability of blue. Therefore, the output gradability of green required to adjust the chromaticity of red can be reliably ensured.
The output gradability of green is obtained by combining the output gradability of the second sub-pixel 49G with the FRC. This combination enables more reliable securement of the output gradability of green required to adjust the chromaticity of red, even when the output gradability of green required to adjust the chromaticity of red is difficult to be ensured by only adjusting the light emission intensity of the second sub-pixel 49G.
The FRC is not applied to increase of the output gradability of red nor increase of the output gradability of blue. As a result, the output of red and blue can be further stabilized over the entire frame period.
The numbers of bits for indicating the various signals and the number of gradations employed in the description above are merely examples, are not limited thereto, and can be changed as appropriate.
Other operational advantages accruing from the aspects described in the embodiment herein that are obvious from the description herein or that are appropriately conceivable by those skilled in the art will naturally be understood as accruing from the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2021-076509 | Apr 2021 | JP | national |
This application is a continuation of U.S. Patent Application No. 17/727,058, filed on Apr. 22, 2022, which claims the benefit of priority from Japanese Patent Application No. 2021-076509 filed on Apr. 28, 2021, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17727058 | Apr 2022 | US |
Child | 18137817 | US |