The present disclosure claims priority to Chinese Patent Application No. 201911043411.8, filed on Oct. 30, 2019, the content of which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of display technologies, and in particular, to a display method of a display panel, a display panel and a display device.
For display technologies in the related art, conventionally an under-screen optical element is used in which the optical element is arranged under a display area, thereby saving space of a non-display area and, thus, increasing a screen occupancy ratio to achieve a full screen. The under-screen optical element may be, for example, a camera, a fingerprint sensor, etc. Where the under-screen optical element is a camera as an example, when an image is normally displayed, such normal display can be performed in an area in which the camera is located. When the camera is enabled, light passes through the display panel and is then collected by the camera to achieve a function of imaging or photographing.
Since a light transmission area in the display area is limited, in order to improve light transmittance and optical performance of the under-screen optical element, a conventional arrangement reduces a sub-pixel density of the area in which the optical element is located. In other words, the display area of the display panel has different pixel densities. Some conventional display panels have a color shift problem during display, which affects a display effect thereof.
In view of this, embodiments of the present disclosure provide a display method for a display panel, a display panel, and a display device, so as to solve the problem of display color shift that occurs during display using conventional display panels.
In a first aspect, an embodiment of the present disclosure provides a display method of a display panel. The display panel has a display area, and the display area includes a first display area and a second display area, sub-pixels provided in the display area include first sub-pixels and second sub-pixels, the first sub-pixels are located in the first display area and the second sub-pixels are located in the second display area, and a sub-pixel density of the second display area is smaller than a sub-pixel density of the first display area; the display panel includes a pixel circuit electrically connected to the sub-pixels to drive the sub-pixels to perform display. The display method includes: in displaying one frame of image, performing display in the first display area and the second display area by using different display algorithms, wherein a sub-pixel rendering is used to perform display in at least one of the first display area and the second display area. A number of data signals provided to the first display area and a number of the first sub-pixels are identical, a number of data signals provided to the second display area and a number of the second sub-pixels are identical, and when the pixel circuit drives the sub-pixels to perform display, a voltage signal written by a data line to the pixel circuit is determined as a data signal.
In another aspect, an embodiment of the present disclosure further provides a display panel that performs display by using the display method described in any embodiment of the present disclosure.
In yet another aspect, an embodiment of the present disclosure further provides a display device including the display panel described in any embodiment of the present disclosure.
In order to more clearly illustrate technical solutions in embodiments of the present disclosure, the accompanying drawings used in the embodiments are briefly introduced as follows. It should be noted that the drawings described as follows are merely part of the embodiments of the present disclosure, other drawings can also be acquired by those skilled in the art without paying creative efforts.
For better illustrating technical solutions of the present disclosure, embodiments of the present disclosure will be described in detail as follows with reference to the accompanying drawings.
It should be noted that, the described embodiments are merely exemplary embodiments of the present disclosure, which shall not be interpreted as providing limitations to the present disclosure. All other embodiments obtained by those skilled in the art without creative efforts according to the embodiments of the present disclosure are within the scope of the present disclosure.
The terms used in the embodiments of the present disclosure are merely for the purpose of describing particular embodiments but not intended to limit the present disclosure. Unless otherwise noted in the context, the singular form expressions “a”, “an”, “the” and “said” used in the embodiments and appended claims of the present disclosure are also intended to represent plural form expressions thereof.
It should be understood that the term “and/or” used herein is merely an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate that three cases, i.e., A existing individually, A and B existing simultaneously, B existing individually. In addition, the character “/” herein generally indicates that the related objects before and after the character form an “or” relationship.
For a display panel using an under-screen optical element, in general, in order to increase an amount of light received by the optical element and improve its optical performances, a sub-pixel density of a display area corresponding to the optical element is reduced to increase light transmittance of this area.
In the related art, considering an influence of a manufacturing process of the display panel, a certain spacing must be kept between two adjacent sub-pixels in the display panel, and resolution of the display panel is limited. In order to further improve a display effect of the display panel, a Sub-Pixel Rendering (SPR) is used to control the display panel to perform display. By making adjacent pixels share some sub-pixels, a sensory resolution is improved without changing the arrangement density of sub-pixels. The inventor believes that in the related art, when display is performed in an entirety of the display area using the SPR manner, a problem of display color shift will occur in the second display area AA2′, thereby affecting the display effect. Taking one SPR manner as an example, as shown in
Based on the problem existing in the related art, the embodiments of the present disclosure provide a display method of a display panel, a display panel, and a display device. When a sub-pixel density of a first display area is different from a sub-pixel density of a second display area (an area corresponding to the optical element in the display device), the first display area and the second display area respectively use different display algorithms for displaying, and meanwhile, during display, a number of data signals provided to the first display area is the same as a number of first sub-pixels, and a number of data signals provided to the second display area is the same as a number of second sub-pixels. After the display algorithm is applied, no matter whether pixel sharing is applied to display in the first display area and the second display area, the data signals corresponding to sub-pixels of different colors of each pixel unit constituting the displayed image during display are complete, thereby avoiding the problem of display color shift of the pixel unit and thus improving the display effect.
An embodiment of the present disclosure provides a display method of a display panel.
The display method provided by this embodiment of the present disclosure includes following steps.
In displaying a frame of image, different display algorithms are used in the first display area AA1 and the second display area AA2 to perform display, and a sub-pixel rendering is applied in at least one of the first display area AA1 and the second display area AA2 to perform display. Here, the number of data signals provided to the first display area AA1 is the same as the number of first sub-pixels 1sp, and the number of data signals provided to the second display area AA2 is the same as the number of second sub-pixels 2sp. When the pixel circuit drives the sub-pixels to perform display, a voltage signal written by a data line into the pixel circuit is determined as a data signal.
In an example, the sub-pixel rendering is used to perform display in the first display area AA1, and the sub-pixel rendering is not used to perform display in the second display area AA2. As another example, the sub-pixel rendering is used to perform display in the first display area AA1, and the sub-pixel rendering is also used to perform display in the second display area AA2. As a further example, the sub-pixel rendering is not used to perform display in the first display area AA1, and the sub-pixel rendering is used to perform display in the second display area AA2. Implementation manners will be described in following embodiments.
A difference between using the sub-pixel rendering and not using the sub-pixel rendering to perform display will be described as follows. When performing display in the sub-pixel rendering, one sub-pixel may be shared two or more times by other sub-pixels to constitute pixel units, and the pixel unit mentioned here is a pixel unit in a picture of the displayed image and is not a pixel formed by dividing an actual pixel arrangement of the display panel. In this case, a number of pixel units in the displayed image is larger than a number of pixels formed by actually dividing the display panel. When performing display not in the sub-pixel rendering, the number of pixel units in the displayed image is the same as the number of pixels formed by actually dividing the display panel, that is, during display, one sub-pixel only participates in forming one-pixel unit and is not involved in two or more pixel units at the same time.
In the display method provided in this embodiment of the present disclosure, during a process in which the pixel circuit drives the sub-pixel to perform display, a voltage signal written by the data line into the pixel circuit is determined as a data signal. An explanation will be made by taking a specific pixel circuit as an example.
As shown in
With reference to the sequence diagram shown in
When the pixel circuit drives the sub-pixel to perform display, in the data writing phase, the data line provides a voltage signal to the pixel circuit, and this voltage signal is determined as a data signal. That is, in one frame of an image, one sub-pixel uses one data signal for light-emitting display. In this embodiment of the present disclosure, when displaying one frame of image, the number of data signals provided to the first display area AA1 is the same as the number of first sub-pixels 1sp, that is, the data signals correspond to the first sub-pixels 1sp in one-to-one correspondence. All of data signals inputted to the first display area AA1 are received by the first sub-pixels 1sp. The data signals corresponding to the first sub-pixels of different colors in the pixel units constituted by the first sub-pixels 1sp are complete, and there is no loss of data signals. Therefore, the pixel unit displays colors accurately and the problem of color shift in the first display area AA1 is avoided. Similarly, the number of data signals provided to the second display area AA2 is the same as the number of the second sub-pixels 2sp, that is, the data signals provided to the second display area AA2 correspond to the second sub-pixels 2sp in one-to-one correspondence. All of data signals inputted to the second display area AA2 are received by the second sub-pixel 2sp. The data signals corresponding to the second sub-pixels of different colors in the pixel units constituted by the second sub-pixels 2sp are complete, and there is no loss of data signals. Therefore, the pixel unit displays colors accurately and the problem of color shift in the second display area AA2 is avoided.
When the sub-pixel rendering is used to perform display in both the first display area and the second display area, a visual resolution of the display panel can be improved as a whole. The number of data signals provided to the first display area is the same as the number of first sub-pixels, and the number of data signals provided to the second display area is the same as the number of second sub-pixels. Since the sub-pixel density of the first display area is different form the sub-pixel density of the second display area, at this time, different sub-pixel renderings are adopted in the first display area and the second display area. In this embodiment of the present disclosure, when both the first display area and the second display area adopt a sub-pixel sharing manner to form pixel units for displaying, the data signals corresponding to sub-pixels of different colors in the pixel units in the respective displayed images are complete, and there is no loss of data signals. Therefore, display of accurate colors can be achieved in both the first display area and the second display area, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the two areas for performing display.
When the sub-pixel rendering is used to perform display in the first display area and is not used in the second display area to perform display, the number of data signals provided to the first display area is the same as the number of first sub-pixels. When the sub-pixel sharing manner is used in the first display area to form pixel units for displaying, the data signals corresponding to sub-pixels of different colors in the pixel units are complete, and there is no loss of data signals. Therefore, display of accurate colors can be achieved in the first display area, thereby avoiding the problem of color shift. Meanwhile, the number of data signals provided to the second display area is the same as the number of second sub-pixels, after the original image data corresponding to the second display area is processed by the display algorithm, all of the data signals provided to the second display are can be received by the second sub-pixels, and no data signal will be aligned to a position where no sub-pixel is arranged. The data signals corresponding to sub-pixels of different colors in the pixel units of the second display area are also complete, and there is no loss of data signals. This can avoid the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying.
When the sub-pixel rendering is not used to perform display in the first display area and is used in the second display area to perform display, the number of data signals provided to the first display area is the same as the number of first sub-pixels, after the original image data corresponding to the first display area is processed by the display algorithm, all of data signals provided to the first display area can be received by the first sub-pixels, the data signals corresponding to sub-pixels of different colors in the pixel units of the first display area are also complete, and there is no loss of data signals. Meanwhile, the number of data signals provided to the second display area is the same as the number of second sub-pixels, when the sub-pixel sharing manner is used in the second display area to form pixel units for displaying, the data signals corresponding to sub-pixels of different colors in the pixel units are complete, and there is no loss of data signals. In view of this, display of accurate colors can be achieved in both the first display area and the second display area, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying. Moreover, since the sub-pixel density of the second display area is smaller than the sub-pixel density of the first display area, a resolution of the second display area is smaller than that of the first display area. The sub-pixel rendering is not used to perform display in the first display area and is used in the second display area to perform display, so that the visual resolution of the second display area can be improved, thereby reducing a difference in visual resolution between the first display area and the second display area and thus improving the display effect.
In the display method provided by this embodiment of the present disclosure, different display algorithms are adopted in the first display area and the second display area with different sub-pixel densities for displaying, and the sub-pixel rendering is used to perform display in at least one display area. After the original image data corresponding to each of the first display area and the second display area is processed by the corresponding display algorithm, the number of data signals provided to the first display area is the same as the number of first sub-pixels, and the number of data signals provided to the second display area is the same as the number of second sub-pixels, so that the data signals corresponding to sub-pixels of different colors in the pixel units in an image displayed by the first display area and an image displayed by the second display area are complete, and there is no loss of data signals. This can avoid the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area.
At step S101, original image data is obtained. Here, an original image is constituted by multiple pixels, so the original image data includes data information corresponding to each pixel unit in the original image. After the original image data is processed by a display algorithm, a data signal can be outputted to the display area accordingly, so that the display panel can display an image. For the display method in which different display algorithms are used in the first display area and the second display area for displaying, when processing the original image, first it needs to be divided into original data corresponding to the first display area and original data corresponding to the second display area, then in a subsequent data processing, the original data is processed by using respective display algorithms.
At step S102, the original data corresponding to the first display area and the original data corresponding to the second display area are determined. The data corresponding to the first display area in the original image data is determined as first area original image data, and the data corresponding to the second display area in the original image data is determined as second area original image data.
At step S103, the first area original image data is processed by using a first display algorithm, and the second area original image data is processed by using a second display algorithm. After the original image is processed, different display algorithms are used in the first display area and the second display area to perform display. Therefore, there are different corresponding processing processes for the original image data of the first display area and the second display area. After calculation in this step, the sub-pixel rendering is used in both the first display area and the second display area to perform display; or, the sub-pixel rendering is used in the first display area to perform display and is not used in the second display area to perform display; or, the sub-pixel rendering is not used in first display area to perform display but used in the second display area to perform display. Different data processing processes corresponding to different display manners will be described in following embodiments.
At step S104, the sub-pixel rendering is used in at least one of the first display area and the second display area to perform display. After the first area original image data and the second area original image data are respectively processed by using different display algorithms, a number of data signals provided to the first display area is the same as a number of first sub-pixels and a number of data signals provided to the second display area is the same as a number of second sub-pixels. The data signals corresponding to sub-pixels of different colors in the pixel units in the image displayed by the first display area and the image displayed by the second display area are complete, and there is no loss of data signals, thereby avoiding the problem of display color shift. Further, an embodiment of the present disclosure provides an implementation for determining original data corresponding to the first display area and original data corresponding to the second display area.
At step S201, a sub-pixel density of the first display area is determined as a preset sub-pixel density. The sub-pixel density of the first display area is larger than the sub-pixel density of the second display area. Generally, when an under-screen optical element scheme is adopted, a display area corresponding to the under-screen optical element occupies a small area in the overall display area, that is, a total area of the first display area is larger than a total area of the second display area. Thus, the sub-pixel density of the first display area is set to be the preset sub-pixel density, and a correspondence between the display area and the original image data is calculated by taking the sub-pixel density of the first display area as a standard.
At step S202, a mapping rule between the display area and the original image data is generated based on the preset sub-pixel density. Here, one frame of image displayed on the display panel corresponds to an original image, and the original image itself also has a sub-pixel density. For a display panel that performs display not in the sub-pixel rendering, the sub-pixel density of the original image corresponding to one frame of image is the same as the sub-pixel density of the actual arrangement in the display area. For a display panel that uses the sub-pixel rendering for display, the sub-pixel density of the original image corresponding to one frame of image is larger than the sub-pixel density of the actual arrangement in the display area, thereby achieving improvement in the visual resolution.
With the display method provided by this embodiment of the present disclosure, the sub-pixel density of the first display area that is larger is determined as the preset sub-pixel density, and a mapping rule between the display area and the original image data can be generated based on a relationship between the preset sub-pixel density and the sub-pixel density of the original image itself.
At step S203, the first area original image data and the second area original image data are obtained based on the mapping rule, that is, the original image data can be divided into original image data corresponding to the first display area and original image data corresponding to the second display area based on the mapping rule.
In an example, a principle of the display method in the embodiment of
In an actual display panel, positions of the first display area and the second display area relative to the overall display area (i.e., the display area) are unchanged, that is, there is a first positional relationship between the first display area and the display area, and there is a second positional relationship between the second display area and the display area. In another embodiment, after a mapping relationship between the display area and the original image data is generated, the first area original image data is determined in the original image data based on the first positional relationship, and the second area original image data is determined in the original image data based on the second positional relationship.
In some implementations, in the display method provided by this embodiment of the present disclosure, the sub-pixel rendering are adopted in both the first display area and the second display area to perform display.
At step S301, original image data is obtained.
At step S302, original data corresponding to the first display area and original data corresponding to the second display area are determined. Data corresponding to the first display area in the original image data is determined as first area original image data, and data corresponding to the second display area in the original image data is determined as second area original image data.
At step S303, the first area original image data is processed by using a first sub-pixel rendering to obtain first image data, if a number of data signals in the first image data is the same as a number of first sub-pixels, a number of data signals provided to the first display area is the same as the number of first sub-pixels; the second area original image data is processed by using a second sub-pixel rendering to obtain second image data, if a number of data signals in the second image data is the same as a number of second sub-pixels, a number of data signals provided to the second display area is the same as the number of second sub-pixels.
In the display method provided by this embodiment, display is performed in the first display area by using the first sub-pixel rendering, and display is performed in the second display area by using the second sub-pixel rendering.
In some implementations, in the display method provided by this embodiment of the present disclosure, the sub-pixel rendering is used to perform display in the first display area, and is not used to perform display in the second display area.
At step S401, original image data is obtained.
At step S402, original data corresponding to the first display area and original data corresponding to the second display area are determined, data corresponding to the first display area in the original image data is determined as first area original image data, and data corresponding to the second display area in the original image data is determined as second area original image data.
At step S403, the first area original image data is processed by using a first sub-pixel rendering to obtain first image data, and a number of data signals in the first image data is the same as a number of first sub-pixels; the second area original image data is processed by using a second operation rule to obtain second image data, and a number of data signals in the second image data is the same as a number of second sub-pixels, and after processing by using the second operation rule, no pixel sharing manner is applied in the second display area to perform display.
In the display method provided by this embodiment, the first sub-pixel rendering is used to perform display in the first display area, and no sub-pixel rendering is used to perform display in the second display area.
When no sub-pixel rendering is applied in the second display area to perform display, multiple data processing methods may be used to process the second original image data corresponding to the second display area, and some optional processing methods will be described in following embodiments.
At step S501, an image corresponding to the second area original image data is divided into a plurality of image blocks. The image data corresponding to one image block includes data for displaying red, data for displaying green, and data for displaying blue. One image block corresponds to three second sub-pixels in the second display area, and the three second sub-pixels include a red second sub-pixel, a green second sub-pixel, and a blue second sub-pixel.
According to the correspondence between the second area original image data and the second display area, after the image corresponding to the second area original image data is divided into a plurality of image blocks, each image block corresponds to three second sub-pixels in the second display area, and the second sub-pixels corresponding to each image block have different positions in the second display area. Since the sub-pixel density of the original image (the image corresponding to the original image data) is larger than an actual sub-pixel density of the display panel, after the original image is divided, one image block includes more than three sub-pixels.
As shown in
At step S502, the data for displaying a same color in the image data corresponding to the image block is summed up and then averaged to obtain average data for displaying red, average data for displaying green, and average data for displaying blue. As shown in
At step S503, the average data for displaying red, the average data for displaying green, and the average data for displaying blue corresponding to one image block are combined to form processed image block data. Taking the correspondence between the image block and the second display area shown in
At step S504, multiple pieces of processed image block data are integrated to obtain second image pixel data. After the divided image blocks are processed separately, multiple pieces of processed image block data are re-integrated into new image data (i.e., the second image pixel data) according to a previous division rule. At this time, a number of data signals in the second image data is the same as a number of second sub-pixels, and after being processed by using the second operation rule, no pixel sharing manner is applied in the second display area to perform display. All of the data signals provided to the second display area can be received by the second sub-pixels, and no data signal will be aligned to a position where no sub-pixel is arranged. Therefore, the data signals corresponding to sub-pixels of different colors in the pixel units of the second display area are complete, and there is no loss of data signals, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying. Moreover, in the display method provided by this embodiment, division of the image blocks is simple, and the data corresponding to the image blocks is processed merely by summing and averaging, and thus a calculation process thereof is simple.
At step S601, the image corresponding to the second area original image data is divided into a plurality of image blocks. One image block corresponds to three second sub-pixels in the second display area, and the three second sub-pixels include a red second sub-pixel, a green second sub-pixel, and a blue second sub-pixel.
According to the correspondence between the second area original image data and the second display area, after the image corresponding to the second area original image data is divided into a plurality of image blocks, each image block corresponds to three second sub-pixels in the second display area, and the second sub-pixels corresponding to each image block have different positions in the second display area. Since the sub-pixel density of the original image (the image corresponding to the original image data) is larger than an actual sub-pixel density of the display panel, after the original image is divided, one image block corresponds to more than three sub-pixels.
At step S602, the image data corresponding to the image block is processed by using a first sub-pixel rendering to obtain rendered image block data. One piece of rendered image block data includes data for displaying red, data for displaying green, and data for displaying blue. In the display panel, the sub-pixel density of the first display area is larger than the sub-pixel density of the second display area. A first sub-pixel rendering is used to perform display in the first display area, indicating that the sub-pixel density of the original image that the display panel needs to display is larger than the sub-pixel density of the first display area. In this implementation, after the image corresponding to the second area original image data is divided, first the image data corresponding to the image block is processed by using the first sub-pixel rendering, that is, at this time, first the image block is processed by using the same rendering algorithm as that of the first display area. The sub-pixel density of the image corresponding to the rendered image block data obtained after processing is the same as the sub-pixel density of the first display area. Subsequently, data processing is performed on the rendered image block data.
At step S603, the data for displaying a same color in the rendered image block data is summed up and then averaged to obtain average data for displaying red, average data for displaying green, and average data for displaying blue. For the calculation method for the average data, reference may be made to the description corresponding to
At step S604, the average data for displaying red, the average data for displaying green, and the average data for displaying blue corresponding to one image block are combined to form processed image block data.
At step S605, multiple pieces of processed image block data are integrated to obtain second image pixel data.
This embodiment is applicable to a case where the sub-pixel density of the second display area is highly different from the sub-pixel density of the original image. First, the divided image blocks are processed by using the same rendering algorithm as that of the first display area, then the sub-pixel density of the image corresponding to the rendered image block data obtained after processing is the same as the sub-pixel density of the first display area. Then, the rendered image block data is processed, and the data for displaying a same color is summed up and then averaged to obtain the average data for displaying each color. Finally, multiple pieces of processed image block data are re-integrated into new image data (i.e., the second image pixel data) according to a previous division rule. At this time, a number of data signals in the second image data is the same as a number of second sub-pixels, and after being processed by using the second operation rule, no pixel sharing manner is applied in the second display area to perform display. All of the data signals provided to the second display area can be received by the second sub-pixels, and no data signal will be aligned to a position where no sub-pixel is arranged. Therefore, the data signals corresponding to sub-pixels of different colors in the pixel units of the second display area are complete, and there is no loss of data signals, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying.
At step S701, the image corresponding to the second area original image data is divided into a plurality of image blocks. The image data corresponding to one image block includes data for displaying red, data for displaying green, and data for displaying blue. One image block corresponds to three second sub-pixels in the second display area, and the three second sub-pixels include a red second sub-pixel, a green second sub-pixel, and a blue second sub-pixel. As shown in
At step S702, the data for displaying a same color in the image data corresponding to the image block is processed according to a weighted operation rule to obtain weighted data for displaying red, weighted data for displaying green, and weighted data for displaying blue. The weighted operation rule lies in that according to the correspondence between the image block and the second display area, the data for displaying the same color being closer to the second sub-pixel of the same color leads to the larger weight applied in the weighted operation.
After the image corresponding to the second area original image data is divided into a plurality of image blocks, each image block corresponds to a partial area of the second display area. The weighted operation rule used in this embodiment of the present disclosure will be described by using the correspondence between the image block K and the second display area AA2 shown in
At step S703, the weighted data for displaying red, the weighted data for displaying green, and the weighted data for displaying blue corresponding to one image block blue are combined to form processed image block data;
At step S704, multiple pieces of processed image block data are integrated to obtain second image pixel data.
In the display method provided by this embodiment, after the image corresponding to the second original image data is divided into image blocks, the data corresponding to the image block is processed by using the weighted operation rule according to the correspondence between the image block and the second display area. Since the sub-pixel density of the second display area is smaller than the sub-pixel density of the corresponding original image, and at this time the sub-pixel rendering is not used in the second display area to perform display, when forming the correspondence between the image block and the second display area, the second sub-pixels of various colors in the second display area can get their corresponding positions in the image block. Then, the respective weights in the weighted operation can be determined based on the respective distances to the corresponding positions, and the smaller the distance is, the larger the weight is. In this implementation for processing the second area original image data, an actual arrangement of the second sub-pixels in the second display area is involved, which can achieve that an image actually displayed in the second display area is very close to a display effect of the original image. At the same time, in this implementation, the number of data signals in the second image data is the same as the number of second sub-pixels, and after being processed by using the second operation rule, the pixel sharing manner is not used in the second display area to perform display. All of the data signals provided to the second display area can be received by the second sub-pixels, and no data signal will be aligned to a position where no sub-pixel is arranged. Therefore, the data signals corresponding to sub-pixels of different colors in the pixel units of the second display area are complete, and there is no loss of data signals, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying.
At step S801, the image corresponding to the second area original image data is divided into a plurality of image blocks, and one image block corresponds to three second sub-pixels in the second display area. The three second sub-pixels include a red second sub-pixel, a green second sub-pixel, and a blue second sub-pixel.
At step S802, the image data corresponding to the image block is processed by using a first sub-pixel rendering to obtain rendered image block data. One piece of rendered image block data includes data for displaying red, data for displaying green, and data for displaying blue. In this implementation, after the image corresponding to the second area original image data is divided, first the image data corresponding to the image block is processed by using the first sub-pixel rendering, that is, at this time, first the image block is processed by using the same rendering algorithm as that of the first display area. The sub-pixel density of the image corresponding to the rendered image block data obtained after processing is the same as the sub-pixel density of the first display area. Subsequently, data processing is further performed on the rendered image block data.
At step S803, the data for displaying a same color in the rendered image block data is processed according to the weighted operation rule to obtain weighted data for displaying red, weighted data for displaying green, and weighted data for displaying blue. The weighted operation rule lies in that according to the correspondence between the image block and the second display area, the data for displaying the same color being closer to the second sub-pixel of the same color leads to the larger weight applied in the weighted operation. Reference can be made to the description corresponding to
At step S804, the weighted data for displaying red, the weighted data for displaying green, and the weighted data for displaying blue corresponding to one image block are combined to form processed image block data.
At step S805, multiple pieces of processed image block data are integrated to obtain second image pixel data.
This implementation is applicable to a case in which the sub-pixel density of the second display area is highly different from the sub-pixel density of the original image. First, the divided image blocks are processed by using the same rendering algorithm as that of the first display area, then the sub-pixel density of the image corresponding to the rendered image block data obtained after processing is the same as the sub-pixel density of the first display area. Then, the rendered image block data is processed by using the weighted operation rule to obtain the weighted data for displaying each color. Finally, multiple pieces of processed image block data are re-integrated into new image data (i.e., the second image pixel data) according to a previous division rule. At this time, a number of data signals in the second image data is the same as a number of second sub-pixels, and after being processed by using the second operation rule, no pixel sharing manner is applied in the second display area to perform display. All of the data signals provided to the second display area can be received by the second sub-pixels, and no data signal will be aligned to a position where no sub-pixel is arranged. Therefore, the data signals corresponding to sub-pixels of different colors in the pixel units of the second display area are complete, and there is no loss of data signals, thereby avoiding the problem of color shift in the related art due to the same display algorithm being adopted in the first display area and the second display area for displaying. Moreover, in this implementation for processing the second area original image data, an actual arrangement of the second sub-pixels in the second display area is involved, which can achieve that an image actually displayed in the second display area is very close to a display effect of the original image.
In some implementations, in the display method provided by an embodiment of the present disclosure, the sub-pixel rendering is not used in the first display area to perform display, and is used in the second display area to perform display.
At step S901, original image data is obtained.
At step S902, original data corresponding to the first display area and original data corresponding to the second display area are determined. Data corresponding to the first display area in the original image data is determined as first area original image data, and data corresponding to the second display area in the original image data is determined as second area original image data.
At step S903, a number of data signals in the first area original image data is the same as a number of first sub-pixels, and the first area original image data is determined as first image data; the second area original image data is processed by using a second sub-pixel rendering to obtain second image data, and a number of data signals in the second image data is the same as a number of second sub-pixels.
In this implementation, the sub-pixel rendering is not used in the first display area to perform display, and is used in the second display area to perform display.
In some implementations, the display method provided in an embodiment of the present disclosure further includes: performing gamma correction processing on the first image data to obtain first gamma image data, and providing the first gamma image data to the first display area; performing gamma correction processing on the second image data to obtain second gamma image data, and providing the second gamma image data to the second display area. In the display method provided in this implementation, for example, the first image data and the second image data may be corrected by using a same gamma correction curve or may be corrected by using different gamma correction curves. When different gamma correction curves are used for correction, brightness of the sub-pixels in the second display area can be compensated by gamma correction to increase the brightness of the second sub-pixels and thus increase brightness of the second display area, thereby reducing a brightness difference between the second display area and the first display area caused by the decreased density of the second display area.
An embodiment of the present disclosure further provides a display panel.
An embodiment of the present disclosure further provides a display device.
In some implementations, the display device further includes an optical element, and the optical element overlaps the second display area in a direction perpendicular to a plane where the display panel is located. Optionally, the optical element may be an optical sensor, a camera, or the like.
The above-described embodiments are merely preferred embodiments of the present disclosure and are not intended to limit the present disclosure. Any modifications, equivalent substitutions and improvements made within the principle of the present disclosure shall fall into the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201911043411.8 | Oct 2019 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20140168037 | Sakariya | Jun 2014 | A1 |
20170076654 | Wang | Mar 2017 | A1 |
20180136720 | Spitzer | May 2018 | A1 |
Number | Date | Country |
---|---|---|
108766347 | Nov 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20210134242 A1 | May 2021 | US |