The invention relates to the display of ball joints in the context of surgical procedures and, more particularly, to a device and method for displaying the orientation of an object on a ball joint.
The placement of medical ball joint implants, in particular the insertion of cavity implants for hip joints, can be assisted by medical navigation. Such medical navigation enables the position of the implant and/or the patient (and thus their relative positions) to be determined and tracked. This information can be provided to the physician performing the treatment via visual assistance (e.g., via a screen output).
As an aid for the surgeon, the position of a hip implant can be described by two angles that are output within the context of navigation data. The two angles can be the inclination and anteversion, and the deviation from one position to another may be described by a change in anteversion and a change in inclination.
A typical definition of anteversion is the angular movement when raising the leg forward direction, while movement in the opposite direction (e.g., when retracting the leg) is referred to as retroversion. Inclination and declination are movement directions opposite to each other and perpendicular to anteversion. The same definitions apply to the movement of the upper arm in the shoulder ball joint, for example.
A problem with the above terms is that the medical literature describes different ways of calculating inclination and anteversion angles. This can lead to misunderstandings with respect to positioning an implant, which are not tolerable in medical surgery. Additionally, outputting two angles, i.e., the angles for each of anteversion and inclination, is not particularly clear, which can make it difficult to correct for position errors, particularly if the physician performing the treatment does not have extensive experience.
The present invention optimizes the display of object orientations on ball joints used in the medical field. More specifically, an unmistakable representation of the object and/or ball joint can be provided that allows the position of the object to be simply and clearly rendered and corrected.
A method for displaying the orientation of an object on a ball joint in the field of medical technology includes:
The surgeon requires clear and comprehensible information on how the position of the implant has changed, for example, with respect to his original planning. The method described herein can separate this required information into an angular deviation (preferred direction/zero angle) and directional information (orientation relationship between the preferred direction and the anatomical directions). Since the angular information is displayed independent of the directional information, it is unambiguous and unmistakable. Further, displaying the directional information as a circumferential representation with proportional values of anatomical directions makes the corresponding deviation easily visible and comprehensible. When viewing the representation, the surgeon knows exactly how large the deviation is (e.g., as a magnitude in degrees) and in which direction it extends. Using such a visual assistance, a deviation can be simply corrected by a corresponding angular adjustment in exactly the opposite direction.
In a preferred embodiment, the anatomical directions are also angular directions, which lends itself to ball joints on the human body.
The preferred direction of the object can be defined by an axis or plane of the object. It is also possible, however, to define the preferred direction of the object using an axis or plane of an object attached to the object, for example a holder for the object.
The object can be an implant, in particular a joint cavity implant, and the preferred direction can be the axial direction of the implant holding and placing device.
The anatomical directions described above, as appropriate, can be any known and typical anatomical directions. An exemplary selection is given below:
A method can be configured such that the circumferential representation is an image of a closed circumference, in particular a circular or elliptical circumference (polygonal circumferences are also possible). The closed circumference can be sub-divided by two perpendicularly superimposed anatomical displays, in particular main direction displays. A pointer means can display the proportional value of the current anatomical angular direction for the object. The pointer means can include all possible shapes, e.g., that of an actual pointer/pointing arrow or also the shape of bars (also colored bars) that are separated by a delineation, the position of which can change depending on the position of the object.
Also provided herein is a program which, when it is running on a computer or is loaded onto a computer, causes the computer to perform a method such as described herein, and to a computer program storage medium comprising such a program.
Further, a medical displaying device for displaying the orientation of an object on a ball joint includes:
The forgoing and other features of the invention are hereinafter discussed with reference to the drawing.
In the example of
Instead of the typical medical information relating to just two angular deviations relative to ambiguously calculated angular directions, e.g., merely with deviations in inclination and anteversion, the deviation information of
The orientation deviation of the object, as can be seen in the example shown in
Another example may be a deviation of 100 percent in the anteversion direction, which would result in an arrow that points horizontally to the right-hand side with a display of 100 percent anteverted. Compared to a compass, this would be a direction extending exactly to the “east”.
It would in principle also be conceivable to make the arrow longer or shorter depending on the size of the angular deviation, such that separate zero angle deviation information is thus provided, in particular as additional information.
By separately rendering the angular deviation and directional deviation, the deviations can be quickly and specifically corrected, even by surgeons who do not yet have very extensive experience in the corresponding medical field.
Moving now to
A processor 40, such as an AMD Athlon 64® processor or an Intel Pentium IV® processor, combined with a memory 42 execute programs to perform various functions, such as data entry, numerical calculations, screen display, system setup, etc. The memory 42 may comprise several devices, including volatile and non-volatile memory components. Accordingly, the memory 42 may include, for example, random access memory (RAM), read-only memory (ROM), hard disks, floppy disks, optical disks (e.g., CDs and DVDs), tapes, flash devices and/or other memory components, plus associated drives, players and/or readers for the memory devices. The processor 40 and the memory 42 are coupled using a local interface (not shown). The local interface may be, for example, a data bus with accompanying control bus, a network, or other subsystem.
The memory may form part of a storage medium for storing information, such as application data, screen information, programs, etc., part of which may be in the form of a database. The storage medium may be a hard drive, for example, or any other storage means that can retain data, including other magnetic and/or optical storage devices. A network interface card (NIC) 44 allows the computer system 30 to communicate with other devices.
A person having ordinary skill in the art of computer programming and applications of programming for computer systems would be able in view of the description provided herein to program a computer system 30 to operate and to carry out the functions described herein. Accordingly, details as to the specific programming code have been omitted for the sake of brevity. Also, while software in the memory 42 or in some other memory of the computer and/or server may be used to allow the system to carry out the functions and features described herein in accordance with the preferred embodiment of the invention, such functions and features also could be carried out via dedicated hardware, firmware, software, or combinations thereof, without departing from the scope of the invention.
Computer program elements of the invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). The invention may take the form of a computer program product, which can be embodied by a computer-usable or computer-readable storage medium having computer-usable or computer-readable program instructions, “code” or a “computer program” embodied in the medium for use by or in connection with the instruction execution system. In the context of this document, a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium such as the Internet. Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner. The computer program product and any software and hardware described herein form the various means for carrying out the functions of the invention in the example embodiments.
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
Number | Date | Country | Kind |
---|---|---|---|
06015447 | Jul 2006 | EP | regional |
This application claims priority of U.S. Provisional Application No. 60/821,302 filed on Aug. 3, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60821302 | Aug 2006 | US |