This application is directed to a flow-regulating arrangement, particularly suited for use in an automated peritoneal dialysis system.
In an automated peritoneal dialysis system as disclosed, for example, in U.S. Pat. No. 9,861,733, incorporated herein by reference, there are a pair (at least) of fluid distribution manifolds. Each of the manifolds has an elongated configuration and two or more ports that permit fluid to flow into or out of a central chamber that runs the length of the manifold, and tubing through which various treatment fluids flow is connected to the various ports. One length of tubing extends from an outlet port of one manifold to an inlet port of the other manifold, passing through a peristaltic pump that drives fluid between the manifolds and hence throughout the various fluid-flow lines of tubing. This is illustrated, for example, in FIGS. 7A-7D and FIGS. 8A and 8D of U.S. Pat. No. 9,861,733 and the accompanying text.
Furthermore, U.S. Pat. No. 9,861,733 illustrates in FIG. 8D an arrangement in which the manifolds and peristaltic pump are housed within a clamshell-type cassette case, and the various lines of tubing leading to and from the manifolds pass across openings formed in the halves of the cassette case. As further explained in the patent, flow through the various lines of tubing may be permitted or prevented by means of a linear actuator (solenoid clamp, stepper and screw drive, pinching mechanism like a plier grip, or other kind of mechanism) that is able to access and selectively clamp each of the various lines of tubing through its respective opening.
Because the fluid distribution assembly is to be used for medical treatment, it is important that flow through the various lines of tubing be controlled (i.e., permitted or prevented) with assurance. Additionally, as a medical device that is intended to be disposed of, cost of manufacture is a consideration.
A disposable medical flow-regulating assembly includes flow-directing units, with multiple fluid-flow lines entering each of the flow-directing units. The flow-directing units are interconnected by a connecting fluid-flow line that extends between them. The fluid connecting flow line may be a pumping tube segment that is adapted to form a peristaltic pump in cooperation with a roller actuator. Each of the flow-directing units includes a rotational insert member that regulates which of multiple flow passages through the flow-directing unit is open and which are closed, based on the angular position of the insert member.
Objects and advantages of embodiments of the disclosed subject matter will become apparent from the following description when considered in conjunction with the accompanying drawings.
Embodiments will hereinafter be described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements. The accompanying drawings have not necessarily been drawn to scale. Where applicable, some features may not be illustrated to assist in the description of underlying features.
A flow-regulating system 100 in accordance with the disclosed subject matter is illustrated in
As shown in
Construction of the rotary flow-directing unit 104a (e.g., with tube-attachment fittings arranged as illustrated for the flow-directing unit 104a in
The porting housing 120 has a circular bottom wall 124 and a ring-shaped sidewall 126, with an open top. As best shown in
The insert member 122, on the other hand, has a generally puck-shaped body 136 and a circular positioning lip or flange 138 that extends circumferentially around the upper edge of the insert member 122. As shown in
Furthermore, the insert member 122 has a notch 140 formed at the edge 142 of the insert member 122, where the peripheral surface 144 of the insert member 122 meets the bottom surface 146 of the insert member. The notch 140 forms a passageway that permits fluid to pass between the bottom surface 146 of the insert member 122 from a selected one of the tube attachment fittings 110 into a space 148 and to the attachment fitting 111. One of the attachment fittings 110 is selected depending upon the rotational position of the insert member 122.
As further illustrated in
A drive-engagement feature 150 is provided at the upper surface 152 of the insert member 122. For example, as illustrated, the drive-engagement feature 150 could be a plus sign-shaped feature that stands proud relative to the upper surface 152 of the insert member. Alternatively, the drive-engagement feature could be a slot-shaped or cross-shaped recess; a post; a divot; gear teeth extending radially from the edge of the positioning flange 138; or any other feature that can be engaged by a driving mechanism (illustrated and described below) and used to rotate the insert member 122 to a desired angular position within the porting housing 120.
Additionally, a position-indicating feature 154 may also be provided on the upper surface 152 of the insert member 122. The position-indicating feature 154 could be encoder markings that are detected by an optical sensor (illustrated and described below). Alternatively, the position-indicating feature could be indexing slots; magnets; or any other feature that can be sensed by a sensor to determine the angular position of the insert member 122.
Further still, a circumferential recess 156 is suitably formed in the peripheral surface 144 of the insert member 122, just under the positioning flange 138. A sealing member 158 such as an O-ring made from medical-grade material fits within the circumferential recess 156 and bears against the radially inner surface 160 of the sidewall 126 to seal the interior of the flow-directing unit 104. Additionally, means to secure the insert member 122 within the porting housing 120 (not illustrated) may also be provided. Such means may include clamps; a circumferential flange extending from the peripheral surface 144 of the insert member that engages with a corresponding circumferential groove formed in the radially inner surface 160 of the sidewall 126; etc.
Use of the porting cassette 102 is illustrated in
The flow-porting section of the automated peritoneal dialysis system includes a controller 170, which receives a flow path command from the system to establish a desired combination of incoming fluid path and outgoing fluid path. The controller 170 then commands stepper motors 172a, 172b to drive the drive members 166a, 166b to commanded angular positions to achieve the desired flow path. Furthermore, position sensors 174a, 174b detect the position-indicating features 154 on the flow-distribution units 104a, 104b. In this manner, the controller 170 is provided with the necessary information to control the positions of the insert members 122 of the flow-distribution units 104a, 104b and hence to control the overall fluid-flow pathway.
Given the relatively compact design of the fluid-distribution units, they can be fabricated relatively inexpensively. This is beneficial for medical components that are to be disposed of. Additionally, the design reduces complexity of the overall peritoneal dialysis system in that the settings for just two components—namely, the angular positions of the insert members of the two flow-distribution units—needs to be regulated instead of the actuation states of clamping devices on each of the various fluid-flow lines. Further still, the design affords high assurance that flow will be prevented or allowed through the various lines.
Another configuration of a flow-directing unit 200 is illustrated in
According to embodiments, the disclosed subject matter includes a disposable medical flow-regulating device having a pair of cylindrical flow-directing units, with each of the flow-directing units having a housing with tube attachment fittings directed approximately radially away from an axis of the flow-directing unit and a transfer fitting. A pumping tube segment extends from the transfer fitting on one of the flow-directing units to the transfer fitting on the other of the flow-directing units to establish a fluid flow path between the two flow-directing units. Each of the flow-directing units having a disc-shaped, rotary insert member rotates within a chamber to select one of the tube attachment fittings at a given angular position thereof to connect with respective one of the transfer fittings whereby a selectable channel from a first flow-directing unit tube attachment fitting to a second flow-directing unit tube attachment fitting is defined. Tubing elements from a fluid circuit are connected the tube attachment fittings of each of the flow-directing units such that selectable flow paths in the fluid circuit may be defined by rotating the rotary insert members.
In further variations of the embodiments, each of the rotary insert members seals to a respective housing using an O-ring. In further variations of the embodiments, a flow chamber is defined between each rotary insert member and a respective one of the housings. In further variations of the embodiments, there may be included a respective rotary actuator that engages with a respective one of the rotary insert members. In further variations of the embodiments, the pair of cylindrical flow-directing units and the pumping tube segment are partially enclosed in a support member to form a cartridge enclosure. In further variations of the embodiments, the support has openings to provide access to the rotary insert members and the pumping tube segment.
According to further embodiments, the disclosed subject matter includes a selector valve with first and second flow switches, each having a cylindrical chamber with a rotary element that selectively interconnects a common port with a selected one of a plurality of individual ports. The cylindrical chamber and rotary element forming a fluid passage defined by a hollow space between them. The common port of each of said pair being connected to a respective end of a pumping tube segment. A rotary actuator is provided for each of said rotary elements and a controller configured to rotate the rotary elements independently to define selected interconnections in a fluid circuit connected to the plurality of individual ports.
In variations thereof, the embodiments include ones in which each of the rotary elements seals to a respective one of the cylindrical chambers by means of an O-ring.
In variations thereof, the embodiments include ones in which the pair of flow switches and the pumping tube segment are partially enclosed in a support member to form a cartridge enclosure. In variations thereof, the embodiments include ones in which the support has openings to provide access to the rotary elements and the pumping tube segment.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/831,310 filed Apr. 9, 2019, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/027246 | 4/8/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62831310 | Apr 2019 | US |