Distance determination method

Information

  • Patent Grant
  • 10795021
  • Patent Number
    10,795,021
  • Date Filed
    Friday, March 14, 2014
    10 years ago
  • Date Issued
    Tuesday, October 6, 2020
    4 years ago
Abstract
A method for determining a distance comprises: providing at least two phase measurements made with modulated light of different modulation wavelengths, each phase measurement being indicative of the distance up to an integer multiple of a respective modulation wavelength; providing a set of possible wraparound count combinations; for each one of the possible wraparound count combinations, calculating a combination of unwrapped phase hypotheses corresponding to the at least two phase measurements; and selecting a most plausible combination of unwrapped phase hypotheses among the combinations of unwrapped phase hypotheses and calculating the distance based upon the selected most plausible combination of unwrapped phase hypotheses.
Description
TECHNICAL FIELD

The present invention generally relates to a method for determining a distance based upon a plurality of phase measurements, made at different wavelengths, each of the phase measurements, taken individually, being ambiguous in the sense that it indicates the distance only up to an integer multiple of the respective wavelength.


BACKGROUND ART

Distance measuring equipment often relies on the time-of-flight (TOF) measurement principle. Distance (also: depth) information is in this case obtained by emitting modulated light into the direction of the target and measuring the phase shift of the modulation between the emitted and the reflected light. The measured phase is proportional to the distance between the measurement equipment and the target, modulo the wavelength of the modulation. This relationship may be expressed as:







φ
=

mod


(




d
·
4



π
·
f


c

,

2

π


)



,





where φ is the modulation phase in radians, d is the distance, f is the modulation frequency, and c is the speed of light. The modulation wavelength λ is given as λ=c/f. The extra factor 2 (4π instead of 2π) in the first argument of the mod function is due to the fact that the light travels twice the distance between the distance measuring equipment and the target. The above relationship expresses that the phase measurement is ambiguous, i.e. the distance value d′ calculated as d′=φ·c/(4π·f) may be different from the actual distance by an a priori unknown integer number of modulation wavelengths.


The distance du=c/(2·f) is called the “unambiguity range”, because if it is known beforehand that the measured distance is less than du, the modulo function may be inverted, yielding an unambiguous distance. However, if the target may be located at greater distances from the target than du, any phase measurement will be comprised in the interval [0, 2π[: one says that the measurements are “wrapped” into the unambiguity range. As a consequence, retrieving the actual distance from the ambiguous measurement, or, otherwise stated, determining the integer number of modulation wavelengths to add to the distance value d′ in order to arrive at the actual distance, is called “phase unwrapping”.


In a single-frequency system, the usable distance measurement range is bounded by the unambiguity range unless assumptions are made on the smoothness of the scene (neighbouring pixels) and on the smoothness of the evolution in time of a distance measurement. Such assumptions cannot be made in all circumstances and for all applications. Specifically, in an adaptive driver assistance system, such assumptions are normally not permitted. When operating a 3D TOF camera or other distance measuring equipment, the usable unambiguity range may not be sufficient when employing a single modulation frequency. To overcome that drawback, n (n>1) measurements of the same distance may be made with n different modulation frequencies. The usable distance measurement range can thereby be extended by combining the results of the different measurements and finding, or estimating (in the case of presence of measurement noise), the unknown distance by trying to invert the modulo function. When using two frequencies (n=2), the combination is easily performed by calculating the difference between the measured phases at the first and second modulation frequency, but when using three frequencies or more in order to further reduce the measurement error in presence of noise compared to using only two frequencies, a method which is as simple as calculating the phase difference does not exist.


The paper “Multi-frequency Phase Unwrapping for Time-of-Flight Cameras”, D. Droeschel, D. Holz and S. Behnke, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October 2010, discloses a probabilistic phase unwrapping approach, which takes into account the neighborhood of each pixel. The paper also mentions the possibility of using two modulation frequencies for detecting phase wrapping. It is proposed to compare the two distance values obtained from the two measured phases. If these distance values coincide, the distance lies in the unambiguity range; if they do not coincide, at least one of the phases has been wrapped into the [0,2π[interval and the phase has to be unwrapped.


Document DE 100 39 422 C2 discloses a photoelectronic mixing device (PMD) operating at plural frequencies for carrying out measurements of speed and/or distance.


U.S. Pat. No. 7,791,715 B1 relates to a method and system for dealiasing (unwrapping) in TOF systems. The system uses at least two close-together modulation frequencies f1 and f2 that are close to the maximum modulation frequency supported by the system. The distance Z is then calculated as:







Z
=



c
·
Δ






φ


4


π
·
Δ






f



,





where Δφ is the difference of the measured phases at f1 and f2, respectively, and where Δf=f1−f2. When more than two different frequencies are available, the phase measurements are combined in pairs and the same formula is applied.


Whereas it is known from the prior art to combine plural frequencies in order to achieve a greater (combined) unambiguity range, the known methods have drawbacks when measurement noise comes into play. Furthermore, the computational effort necessary to carry these methods out may be too important for low-cost implementations.


BRIEF SUMMARY

A practically implementable method is provided herein for estimating the unknown distance when using two or more modulation frequencies.


According to the invention, a method for determining a distance comprises

    • providing at least two phase measurements made with modulated light of different modulation wavelengths, each phase measurement being indicative of the distance up to an integer multiple of a respective modulation wavelength;
    • providing a set of possible wraparound count combinations;
    • for each one of the possible wraparound count combinations, determining a combination of unwrapped phase hypotheses corresponding to the at least two phase measurements; and
    • selecting a most plausible combination of unwrapped phase hypotheses among the combinations of unwrapped phase hypotheses and determining the distance based upon the selected most plausible combination of unwrapped phase hypotheses.


The distance may e.g. be determined, for example by calculating as an average over the distance values associated with the unwrapped phase hypotheses of the most plausible combination of unwrapped phase hypotheses.


According to preferred possible embodiment the selecting of the most plausible combination of unwrapped phase hypotheses among the combinations of unwrapped phase hypotheses comprises

    • for each combination of unwrapped phase hypotheses, calculating a combination of distance values associated with the unwrapped phase hypotheses of the respective combination of unwrapped phase hypotheses,
    • for each combination of unwrapped phase hypotheses, calculating a variance or standard deviation of the respective combination of distance values, and
    • selecting as the most plausible combination of unwrapped phase hypotheses the one for which the variance or standard deviation is smallest.


According to a preferred embodiment of the invention, the selecting of the most plausible combination of unwrapped phase hypotheses among the combinations of unwrapped phase hypotheses comprises

    • for each combination of unwrapped phase hypotheses, calculating a gap between a point having the respective unwrapped phase hypotheses as coordinates and an origin-crossing straight line having a direction vector with coordinate representation [1/λ1, . . . , 1/λn], where λ1, . . . , λn designate the different modulation wavelengths, and
    • selecting as the most plausible combination of unwrapped phase hypotheses the one for which the gap is smallest.


The distance may advantageously be calculated as












φ


est




·
c


4


π
·



u







,





where {right arrow over (φ)}′est is an orthogonal projection onto the origin-crossing straight line of a point having the most plausible combination of unwrapped phase hypotheses as coordinates, and {right arrow over (u)} is the direction vector [c/λ1, . . . , c/λn].


Yet more advantageously, the calculating of the gap may be carried out in a rotated coordinate system, in which the origin-crossing straight line is a coordinate axis. In this case, the distance is preferably calculated as calculated as









(


φ


j_opt


)

1

·
c


4


π
·



u











where ({right arrow over (φ)}″j_opt)1 is a coordinate of the point having the most plausible combination of unwrapped phase hypotheses as coordinates in the rotated coordinate system, and a is the direction vector [c/λ1, . . . , c/λn].


A preferred aspect of the invention concerns a computer program, comprising computer-implementable instructions, which, when executed by a computer, cause the computer to carry out the method described hereinabove.


Another preferred aspect of the invention relates to a time-of-flight distance-measuring device, comprising an electronic control unit with a memory, the memory having stored therein a computer program as described hereinabove, the electronic control unit being configured to execute the computer program when determining a distance.


Yet another preferred aspect of the invention relates to a to a time-of-flight distance-measuring device, comprising an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) configured and arranged to carry out the method described hereinabove.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred, non-limiting, embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings in which:



FIG. 1 is a graph illustrating phase couples (φ1, φ2) obtainable through ideal phase measurements at two different modulation frequencies for distances between 0 and a maximum distance;



FIG. 2 is a graph illustrating phase triples (φ1, φ2, φ3) obtainable through ideal phase measurements at three different modulation frequencies for distances between 0 and a maximum distance;



FIG. 3 is a schematic flowchart of a first embodiment of a method for estimating the unknown distance from n phase measurements made at n different frequencies;



FIG. 4 is a schematic flowchart of a second embodiment of a method for estimating the unknown distance from n phase measurements made at n different frequencies;



FIG. 5 is a schematic flowchart of a third embodiment of a method for estimating the unknown distance from n phase measurements made at n different frequencies;



FIG. 6 is a schematic illustration of a preferred embodiment of a 3D-TOF camera





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Embodiments of the invention are going to be discussed, for illustration purposes, in the context of a 3D TOF camera that delivers, for each of its pixels, a phase information φ in rad which is indicative of the distance d in meters between the camera and the target, and is given by:







φ
=

mod


(




d
·
4



π
·
f


c

,

2

π


)



,





where mod is the modulo function (which returns the remainder of the division of the first argument by the second argument), f is the modulation frequency in Hz, and c is the speed of light in m/s. The modulation wavelength λ is given as λ=c/f.


As can be seen, the phase φ repeats itself periodically with the distance, implying that there is a limited unambiguity range of the distance measurement. The unambiguity range is given by:







d
u

=


c

2





f


.





The usable distance measurement range is bounded by the unambiguity range. When performing n measurements with n different frequencies of the same scene, the usable distance measurement range can be extended by combining the results of the different measurements and finding, or estimating in the case of presence of measurement noise, the unknown distance by “inverting” the modulo function.


A first problem that needs to be addressed is how to select the frequency values so as to maximize the allowed measurement noise when a defined usable distance measurement range is required. When sufficient noise is present, the modulo function inversion leads to a distance estimation error.


To illustrate this problem for a 2-frequency measurement, FIG. 1 shows the relation between ideally measured (i.e. not affected by noise) phases φ1 and φ2, respectively corresponding to modulation frequencies f1 and f2, when the unknown distance ranges between 0 and the required usable distance measurement range. For FIG. 1, f1 and f2 have been assumed to be 10 MHz and 11 MHz, respectively, and the maximum usable distance measurement range has been set to 100 m. It can be seen that φ1 and φ2 “wrap around” each time they arrive at 2π (illustrated by dashed lines). If no noise is present on the measurements, the point (φ1, φ2) defined by the measured phases φ1 and φ2 lies on one of the line segments shown in FIG. 1. However, if noise is present on the phase measurements, the measured point ({tilde over (φ)}1, {tilde over (φ)}2) may differ from the a priori unknown ideal point (φ1, φ2) and be located in the “forbidden areas” between the line segments. If the noise is sufficiently high, the measured point ({tilde over (φ)}1, {tilde over (φ)}2) may be closer to a line segment that corresponds to a distance that is completely different from the actual distance. Therefore, the distance between the line segments shown on FIG. 1 must be maximized for a given required usable distance measurement range by appropriately selecting the frequencies f1 and f2. The same applies for an n-frequency measurement. For the illustration of a 3-frequency measurement, FIG. 2 shows a graph similar to the one of FIG. 1 for the frequencies 10 MHz, 11 MHz and 13 MHz. The three frequencies result in a 3D plot.


The maximization of the distances between the line segments may be achieved by a brute force approach. The range in which the modulation frequencies can lie is known beforehand, and is defined for example by the maximum operating frequency of the active illumination and by the minimum frequency which still yields an acceptable imager noise level. Within this range all n frequencies are varied, for example by linearly sweeping or randomly selecting. For each set of n frequencies, (frequency n-tuple), the distance trajectories are drawn in the n-dimensional phase space, and the minimum distance between each possible line segment pair is searched. Finally, the optimal frequency n-tuple that achieves the maximum of the minimum line segment distances is kept and used for the application. The minimum line segment distance value h1 for the optimal frequency n-tuple is also kept and is used in the application to check the confidence level of the measured phase n-tuple.


In the following, the n frequencies are assumed to be known. For illustration purposes, they will be given certain values, but it shall be understood that these frequencies are not necessarily optimal with regard to the above criterion of maximal separation between the line segments.


A first embodiment of a method for estimating the unknown distance from n phase measurements at n different frequencies will now be described, with reference to FIG. 3. In a first step, the modulation frequencies f1, . . . , fn are fixed (step 301) and for the unknown distance ranging between zero and the usable distance measurement range, a list with all the possibly occurring distinct combinations of phase wraparound counts of each of the n phases is established (step 302). For example, using a 3-frequency measurement with the same parameters as for FIG. 2 (frequencies f1=10 MHz, f2=11 MHz and f3=13 MHz) the following table results:




































nwrap1
0
0
0
1
1
1
2
2
2
3
3
3
3
4
4
4
5
5
5
6
6
6


nwrap2
0
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
5
6
6
6
7


nwrap3
0
1
1
1
2
2
2
3
3
3
4
4
5
5
5
6
6
7
7
7
8
8










where nwrap1 is the wraparound count of φ1 for frequency f1, nwrap2 the wraparound count of φ2 for frequency f2 and nwrap3 the wraparound count of φ3 for frequency f3. It is worthwhile noting that each column in the above table corresponds to one segment in FIG. 2. The table of phase wraparound counts can be calculated offline, that is to say only once during the configuration of the measurement system, and its results can be permanently stored in the application's non volatile memory, as the only information needed are the n frequencies and the required usable distance measurement range, which are known beforehand.


For each row i and column j in the table, a distance hypothesis may be calculated as:







d
ij

=



(


φ
i

+



nwrap
ij

·
2


π


)

·
c


4


π
·

f
i








During the measurement, a phase n-tuple [φ1, . . . , φn] is measured (step 303). Using the wraparound count table above, a distance hypothesis is estimated for each cell in the table using the above formula for dij (step 304).


Then, the optimal column jopt in the table is searched for. This column corresponds to the most plausible combination of phase wraparound counts. According to the first embodiment of the method, the optimal column is the one for which the variance or the standard deviation of the n distances dij in the column is minimal. The variance σj2 of each wraparound count combination j may be calculated (step 305) as:







σ
j
2

=



1
n






i
=
1

n







d
ij
2



-


1
n






i
=
1

n







d
ij









and the minimum variance be determined (step 306).


The ratio of the standard deviation (found for j_opt) to the minimum line segment distance h1 can be used as an indicator of the confidence level of the distance measurement (the smaller the ratio the better).


Finally, the mean (average)









d
j_opt



=


1
n






i
=
1

n







d
ij_opt








of the distances dij_opt of the column j_opt serves as an estimation of the unknown distance (step 307).


A second embodiment of the method for estimating the unknown distance from n phase measurements at n different frequencies will now be described with reference to FIG. 4. This embodiment takes advantage from the fact that the actual required distance measurement range is typically smaller than the target detection range from which no folding back into the required distance measurement range must occur, but where the actual target distance does not need to be measured. In many application it is necessary only that the TOF measurement device is able to measure the unknown distance over a restricted range. Targets beyond this range and still within the range where the TOF measurement device detects a target must not fold back into the required distance measurement range, but their distance does not need to be known. For example, in an automotive ‘advanced driver assistance system’, only the distances to targets which are within, e.g. 20 m in front of the car shall be measured, but at the same time highly reflective targets up to 100 m in front of the car must not be folded back into the required distance measurement range. For this example, the detection range is 100 m, but the required distance measurement range is only 20 m. This implies that the frequency selection process (step 401) takes into account

  • 1) the distances between any two line segments representing distances within the required measurement range,
  • 2) the distances between any pair of one line segment representing a distance within the required measurement range and one line segment representing a distance that is outside the required measurement range but still within the equipment's detection range


    but does not take into account the distances between any two line segments representing distances, which are outside the required measurement range but still within the equipment's detection range. The minimum line segment distance value (hereinafter noted h2) that is found (step 403) is kept and used in the application to check the confidence level of the measured phase n-tuple.


For the unknown distance ranging between zero and the required measurement range, a list with all the possibly occurring distinct combinations of phase wraparound counts of each of the n phases is established. For example, using 3-frequency measurement with the same parameters as for FIG. 2 and a wanted measurement range of 20 m, the following table results:






















nwrap1
0
0
0
1
1



nwrap2
0
0
1
1
1



nwrap3
0
1
1
1
2











where nwrap1 is again the wraparound count of φ1 for frequency f1, nwrap2 the wraparound count of φ2 for frequency f2 and nwrap3 the wraparound count of φ3 for frequency f3. The set of frequencies and the table of wraparound count can be calculated offline (steps 401 and 402), that is only once during the configuration of the measurement system and its results can be permanently stored in the application's non volatile memory, as the only information needed are the n frequencies, the wanted measurement range and the required extended unambiguity distance, which are known beforehand.


Using the wraparound count table above, the column which best unwraps the n-tuple of measured phases [(φ1, . . . , φn], leading to an optimal estimation of the unknown distance, is searched for.


The online calculation starts with the providing of the phase measurements (step 405), which may be represented as phase n-tuple [φ1, . . . , φn] or vector {right arrow over (φ)}. For each row i and column j in the list and for a combination of measured phases (n-tuple [(φ1, . . . , φn]), the unwrapped phase is calculated (step 406) using the formula:

φ′ij=+nwrapij·2π.


Then, for each column j, the gap gj in the n-dimensional phase space between the unwrapped phase n-tuple [φ′ij, . . . φnj] and the origin-crossing straight line having the direction vector

{right arrow over (u)}=[f1, . . . , fn]=[c/λ1, . . . , c/λn]

is calculated (step 407). This can for example be done by calculating the length of the vector cross product of the unwrapped phase n-tuple [(φ′1j, . . . , φnj], which we will designate by {right arrow over (φ)}′j for simplicity, and the normalized vector {right arrow over (u)}:







g
j

=





φ


j


×


u





u













where x designated the vector cross product and ∥.∥ the length of vector a vector. It is worthwhile noting that the vector a is preferably determined beforehand (step 404).


Then, the smallest gj (hereinafter denoted gj_opt) is searched among all the gj, (step 408) and then the unwrapped phase n-tuple {right arrow over (φ)}′j_opt=[φ′1j_opt, . . . , φ′nj_opt] corresponding to gj_opt is selected.


gj_opt is compared (step 409) with h2/2 found in the frequency selection process described above. If gj_opt<h2/2, then the distance to be determined lies within the required measurement range, if gj_opt≥h2/2, then it lies outside the required measurement range (but within the detection range, for otherwise there would be no phase measurement values) and is not considered a valid distance (step 410).


Preferably, the squares of the gj are computed instead because doing this is computationally less expensive. gj_opt2 is then compared with the offline computed parameter h22/4.


The unknown distance dest is finally computed by projecting the found unwrapped phase n-tuple {right arrow over (φ)}′j_opt=[φ′1j_opt, . . . , φ′nj_opt] onto the origin-crossing line with direction vector {right arrow over (u)} (step 411), measuring the distance of the projection to the origin.


Noting








φ


est


=


1




u




2




(



φ


j_opt


·

u



)



u








the projection of the found unwrapped phase n-tuple {right arrow over (φ)}′j_opt=[φ′1j_opt, . . . , φ′nj_opt] onto the origin-crossing line with direction vector {right arrow over (u)} (“•” designated the dot product between two vectors), the distance can be estimated (step 412) as:







d
est

=







φ


est




·
c


4


π
·



u







.





A preferred implementation of the second embodiment, which is computationally inexpensive will now be explained with reference to FIG. 5. This implementation is similar to the implementation of FIG. 4, except that the n-dimensional phase space is rotated around the origin in such a way that the vector {right arrow over (u)}=[f1, f2, f3] will be rotated into alignment with the x-axis unit vector {right arrow over (i)}=[1,0,0]. The y and z-axis unit vectors would allow the same inexpensive implementation, but for the sake of simplicity only the case for the x axis unit vector will be described. There is a virtually infinite number of ways to achieve this transformation, and for simplicity the rotation will be performed around the unity-length normal vector {right arrow over (n)} of the plane spanned by {right arrow over (u)} and {right arrow over (i)}, and the angle of rotation will be the angle α between {right arrow over (u)} and {right arrow over (i)}:


With {right arrow over (v)}={right arrow over (u)}/∥{right arrow over (u)}∥, {right arrow over (n)} may be expressed as:







n


=




v


×

i







v


×

i






.





The angle can be calculated as: α=arccos({right arrow over (v)}•{right arrow over (i)}).


The rotation matrix R, which performs the rotation operation described above is defined by:







R
=

(






n
1




n
1



(

1
-

cos





α


)



+

cos





α







n
2




n
1



(

1
-

cos





α


)



-


n
3


sin





α







n
3




n
1



(

1
-

cos





α


)



+


n
2


sin





α









n
1




n
2



(

1
-

cos





α


)



+


n
3


sin





α







n
2




n
2



(

1
-

cos





α


)



+

cos





α







n
3




n
2



(

1
-

cos





α


)



+


n
1


sin





α









n
1




n
3



(

1
-

cos





α


)



-


n
2


sin





α







n
2




n
3



(

1
-

cos





α


)



+


n
1


sin





α







n
3




n
3



(

1
-

cos





α


)



+

cos





α





)


,




with {right arrow over (n)}=(n1, n2, n3).


The offline computation comprises the selection of the modulation frequencies (step 501), the calculation of the wraparound count table (step 502) and the calculation of the rotation matrix R (step 503), as indicated above, and the calculation of the parameter h2 (step 505).


The online calculation begins with providing the n phase measurements (step 506). Instead of calculating, for each column j, the gap gj in the n-dimensional phase space between the unwrapped phase n-tuple (φ′1j, . . . , φ′nj) and the origin-crossing straight line having the direction vector {right arrow over (u)}=[f1, . . . , fn], in this implementation, one calculates, for each column j, the gap g′j between the rotated unwrapped phase n-tuple R[φ′1j, . . . φ′nj]=R{right arrow over (φ′)}j and the x-axis (i.e. the rotated origin-crossing straight line having {right arrow over (u)}=[f1, . . . , fn] as direction vector). Since the rotation does not change the measures, g′j=gj.


The rotated unwrapped phase n-tuple {right arrow over (φ)}″j may be calculated (step 507) as:

{right arrow over (φ)}″j=R{right arrow over (φ)}′j=R{right arrow over (φ)}+R{right arrow over (nwrap)}j·2π,

Where {right arrow over (nwrap)}j is the j-th column vector of the phase wraparound table. It is worthwhile noting that R{right arrow over (nwrap)}j·2π can be calculate upfront (as step 504 of the offline calculations), which means that this calculation does not take any processing time in the online calculations.


It shall also be noted that the gap gj depends only on the second and third coordinates of {right arrow over (φ)}″j, which we denote by ({right arrow over (φ)}″j)2 and ({right arrow over (φ)}″j)3. For the square of the gap gj, the following equation holds:

gj2=({right arrow over (φ)}″j)22+({right arrow over (φ)}″j)32.


The smallest gap is searched for among all the gj. The smallest gap found, gj_opt, is compared with h2/2 found in the offline frequency selection process. If gj_opt<h2/2, then the distance to be determined lies within the required measurement range, if tj_opt≥h2/2, then it lies outside the required measurement range (but within the detection range, for otherwise there would be no phase measurement values) and is not considered a valid distance. It is possible to compute only the squares of the gj (step 508). In this case, the smallest squared gap is searched for among all the gj2 (step 509), and the value found, gj_opt2, is compared with the offline computed parameter h22/4 (step 510). If gj_opt2≥(h2/2)2, the rotated unwrapped phase n-tuple {right arrow over (φ)}″j_opt is considered to represent the most plausible combination of unwrapped phase hypotheses, otherwise the target is considered to lie outside the measurement range (step 511).


The unknown distance dest is computed by orthogonally projecting the rotated unwrapped phase n-tuple {right arrow over (φ)}″j_opt onto the x-axis (i.e. the rotated origin-crossing line with direction vector {right arrow over (u)}). Noting ({right arrow over (φ)}″j_opt)1 the first coordinate of {right arrow over (φ)}″j_opt, the projected point has (({right arrow over (φ)}″j_opt)1, 0, 0) as coordinates.


The distance can finally be estimated (step 512) as:







d
est

=





(


φ


j_opt


)

1

·
c


4


π
·



u







.





The difference between the computational efforts for the first implementation of the method described above, the second implementation and the computationally inexpensive version described above is now illustrated by means of an example. Only the online computation effort is estimated, since the offline computations do not consume any processing time during the measurements. Only the multiplications and square root operations are counted as they are the most expensive to implement.


When using the first implementation and using the parameters given as example, an initial scaling of [φ1, φ2, φ3] in order to reduce the computational effort in calculating the distance hypotheses dij requires 3 scalar multiplications for each column in the wraparound list (there are 22 columns in the example), one multiplication for the computation of the mean value, 3 multiplications for the variance (easier to compute than the standard deviation but fulfils the same purpose), and for the calculation of the final result (distance) one scalar multiplication, resulting in: 3+22*(1+3)+1=92 multiplications and no square root operation.


When using the second method described above and using the parameters given as example, for each column in the wraparound list (there are 5 columns), a vector cross product (6 multiplications), a vector squared length calculation (3 multiplications), and for the final result, a vector dot product (3 multiplications), a vector scalar product (3 multiplications), a vector length calculation (3 multiplications and a square root) and a scalar multiplication are required, resulting in: 5*(6+3)+3+3+3+1=55 multiplications and one square root operation.


When using the computationally inexpensive version described above and using the parameters given as example, the initial rotation requires 9 multiplications, for each column in the wraparound list (there are 5 columns), a 2-dimensional vector squared length calculation (2 multiplications), and for the final result, a scalar multiplication are required, resulting in: 9+5*2+1=20 multiplications and no square root operation.


In the above-disclosed distance estimation methods the actual value of the measurement phase noise is preferably known or estimated during the measurement. Indeed, if the phase noise is too large, it may happen that the noisy unknown distance n-tuple in the n-phase space jumps from the vicinity of the line segment, which the actual unknown distance phase n-tuple belongs to, into the vicinity of a completely different line segment in the phase space. Eventually, this leads to wrong distance estimation. Therefore, measurements, which have too large phase noise, are preferably declared invalid. The phase noise can be estimated or measured by measuring the amplitude, or by measuring the amplitude and intensity of the received modulated light and combing the amplitude and intensity. How this can be done is, for example, described in ‘3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology’ by R. Lange.



FIG. 6 shows a preferred embodiment of a 3D TOF camera, generally identified by reference numeral 10. The 3D TOF camera 10 comprises an illumination unit 12 emitting light onto a scene, and an imaging sensor 14 imaging the scene. The imaging sensor 14 comprises, in a manner known per se, the required optical accessories such as a focusing lens (not shown) and an electronic camera chip 16 executed in any suitable technology, such as CCD, CMOS, TFA or the like. The imaging sensor 14 comprises a two-dimensional array of individual lock-in pixel sensor cells 18, each of which receives light from a small portion of the scene to be imaged for creating a pixel-by-pixel image thereof.


The illumination unit 12 comprises several individual light emitting devices 20 such as light emitting diodes (LEDs), which are collectively driven by means of an illumination driver 22. A signal source 24 provides the input signals for the illumination driver 22 and a photo gate driver 26. The output of the photo gate driver 26 is connected to the imaging sensor 14. An evaluation unit 28 comprising a suitable electronic calculation device, e.g. a digital signal processor (DSP), is connected to the output of the imaging sensor 14.


When operating, the signal source 24 generates a modulation signal E1 on its output and feeds this modulation signal E1 to the illumination driver 22. The latter drives the illumination unit 12 with a drive signal E2 to emit an intensity-modulated light signal L1 into a target scene comprising an object 30 (for illustration purposes). The modulated light signal L1 is partially reflected by the object 30 so as to form a returning light signal L2 which is received as incident light by the imaging sensor 14. The modulation signal E1 is also fed to the photo gate driver 26, which provides a demodulation signal E3. The imaging sensor 14 receives this demodulation signal E3 and produces a phase information signal E4, which is fed to the evaluation unit 28. The signal source 24 cycles through the plurality of different modulation frequencies f1, . . . , fn.


The 3D TOF camera 10 further comprises a reference pixel 32 mounted in the illumination unit 12 contiguous to the light emitting devices 20 in such a way that it gathers light from the light emitting devices 18. The reference pixel 32 produces an output signal E5, which corresponds essentially to a modulation phase reference (comparable to a “zero” distance measurement). A reference subtraction stage 34 within the evaluation unit 28, outputs, for each pixel, phase information 9, in rad corresponding to the modulation frequency fi. The distance information for each camera pixel 18 is then calculated in a distance calculation stage 36, in accordance with the method of the present invention. The evaluation unit 28 comprises a non-volatile memory 38, in which the calibration data, in particular the parameters that may be calculated offline, are stored. The distance calculation stage 36 has access to these parameters for executing the method.


It is worthwhile noting that in an actual implementation of the evaluation unit 28, the phase subtraction stage 34 and the distance calculation stage 36 are not necessarily physically separate components. The different operations may, in particular, be carried out by a single (multi-purpose) processor.


While specific embodiments have been described in detail, those skilled in the art will appreciate that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.

Claims
  • 1. A method for determining a distance between a time-of-flight (TOF) measuring device and a target, wherein the time-of-flight measuring device is configured to generate a range image of the target and includes an illumination unit, an imaging sensor, and an evaluation unit coupled with a non-transitory memory, the method comprising: defining a usable distance measurement range within which the TOF measuring device determines a distance to the target;generating a table containing all possible wraparound count combinations for phase measurements at different modulation frequencies, wherein the table is stored in the non-transitory memory as part of the TOF measuring device configuration;emitting light from the illumination unit into a direction of the target, wherein the light is modulated at different modulation wavelengths;receiving at the imaging sensor the modulated light reflected from the target and generating a phase information signal based on the reflected light at the different modulation wavelengths;using the evaluation unit, determining for each pixel of the imaging sensor, phase measurements based on the phase information signal received from the imaging sensor, wherein each phase measurement is indicative of the distance up to an integer multiple of a respective modulation wavelength;using the evaluation unit, for each one of the possible wraparound count combinations in the table, determining a combination of unwrapped phase hypotheses based on the phase measurements;using the evaluation unit, determining a most plausible combination of unwrapped phase hypotheses among the combinations of unwrapped phase hypotheses by calculating, for each combination of unwrapped phase hypotheses, a gap between a point having the respective unwrapped phase hypotheses as coordinates and an origin-crossing straight line having a direction vector with coordinate representation [c/λ1, . . . , c/λn], where λ1, . . . , λn designate the different modulation wavelengths and c designates the speed of light, and selecting as the most plausible combination of unwrapped phase hypotheses the one for which the gap is smallest;calculating the distance to the target for each pixel of the image sensor based on the selected most plausible combination of unwrapped phase hypotheses; andgenerating a range image of the target using the distance calculated for each pixel.
  • 2. The method as claimed in claim 1, wherein the distance is determined as
  • 3. The method as claimed in claim 1, wherein the determining of the gap is carried out in a rotated coordinate system, in which the origin-crossing straight line is a coordinate axis.
  • 4. The method as claimed in claim 3, wherein the distance is determined as
  • 5. A computer program product, stored on a non-transitory computer readable medium, the computer program product comprising computer-implementable instructions, which, when executed by a processing unit, cause the processing unit to carry out the method as claimed in claim 1.
  • 6. Time-of-flight distance measuring device, comprising: an electronic control unit coupled to a memory,the memory having stored therein a computer program as claimed in claim 5,the electronic control unit being configured to execute the computer program when determining a distance,wherein the electronic control unit is the processing unit.
  • 7. Time-of-flight distance measuring device, comprising: an electronic control unit with an FPGA and/or an ASIC, said FPGA and/or ASIC configured and arranged to carry out the method as claimed in claim 1.
  • 8. The method as claimed in claim 1, wherein the usable distance measurement range is less than a target detection range of the TOF measuring device.
  • 9. The method as claimed in claim 1, further comprising determining whether the distance is a valid distance that lies within the usable distance measurement range based on a comparison of the smallest gap to a minimum line segment distance value.
Priority Claims (1)
Number Date Country Kind
92173 Mar 2013 LU national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/055068 3/14/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/146978 9/25/2014 WO A
US Referenced Citations (66)
Number Name Date Kind
6288776 Cahill Sep 2001 B1
7471376 Bamji Dec 2008 B2
7719662 Bamji May 2010 B2
7791715 Bamji Sep 2010 B1
7936449 Bamji May 2011 B1
8010316 Maltseff Aug 2011 B2
8184268 Seeger May 2012 B2
8209146 Maltseff Jun 2012 B2
8629976 Hui Jan 2014 B2
8648702 Pala Feb 2014 B2
8723924 Mirbach May 2014 B2
8970827 Bloom Mar 2015 B2
9030670 Warden May 2015 B2
9488722 Waligorski Nov 2016 B2
9538109 Forster Jan 2017 B2
9542749 Freedman Jan 2017 B2
9602807 Crane Mar 2017 B2
9702976 Xu Jul 2017 B2
9753128 Schweizer Sep 2017 B2
9864048 Hall Jan 2018 B2
9897699 Kadambi Feb 2018 B2
10024966 Patil Jul 2018 B2
10190983 Bhandari Jan 2019 B2
10571571 Ko Feb 2020 B2
10598783 Perry Mar 2020 B2
20020135775 De Groot Sep 2002 A1
20020159539 Alcock Oct 2002 A1
20040027585 Groot Feb 2004 A1
20040100626 Gulden et al. May 2004 A1
20040196177 Billington Oct 2004 A1
20060061772 Kulawiec Mar 2006 A1
20070127009 Chen Jun 2007 A1
20080007709 Bamji Jan 2008 A1
20090185159 Rohner Jul 2009 A1
20090219195 Brandwood Sep 2009 A1
20090322859 Shelton Dec 2009 A1
20100046802 Watanabe Feb 2010 A1
20100265489 Seeger Oct 2010 A1
20110018967 Mirbach Jan 2011 A1
20110188028 Hui Aug 2011 A1
20110260911 Sapp Oct 2011 A1
20110292370 Hills Dec 2011 A1
20110304841 Bamji Dec 2011 A1
20120008128 Bamji Jan 2012 A1
20120013887 Xu Jan 2012 A1
20120044093 Pala Feb 2012 A1
20120098935 Schmidt Apr 2012 A1
20120121165 Ko May 2012 A1
20120123718 Ko May 2012 A1
20120176476 Schmidt Jul 2012 A1
20130101176 Park Apr 2013 A1
20130222550 Choi Aug 2013 A1
20130228691 Shah Sep 2013 A1
20140049767 Benedetti Feb 2014 A1
20140211193 Bloom Jul 2014 A1
20140300700 Bamji Oct 2014 A1
20140313376 Van Nieuwenhove Oct 2014 A1
20150062558 Koppal Mar 2015 A1
20150120241 Kadambi Apr 2015 A1
20150124242 Pierce May 2015 A1
20150193938 Freedman Jul 2015 A1
20160116594 Xu Apr 2016 A1
20160334508 Hall Nov 2016 A1
20170016981 Hinderling Jan 2017 A1
20170212228 Van Nieuwenhove Jul 2017 A1
20180011195 Perry Jan 2018 A1
Foreign Referenced Citations (13)
Number Date Country
2397095 Jul 2001 CA
1466812 Jan 2004 CN
101449181 Jun 2009 CN
102253392 Nov 2011 CN
102445688 May 2012 CN
102667521 Sep 2012 CN
10039422 Feb 2002 DE
2966933 May 2012 FR
2017032342 Feb 2017 JP
20150007192 Jan 2015 KR
WO-9810255 Mar 1998 WO
WO2011076907 Jun 2011 WO
WO-2013104717 Jul 2013 WO
Non-Patent Literature Citations (13)
Entry
Electric Power Group v. Alstom (See Attached Case).
Machine Translation for FR2966933 (Year: 2012).
Machine Translation for JP2017032342 (Year: 2017).
Machine Translation for CN101449181 (Year: 2009).
Machine Translation for CN102253392 (Year: 2011).
Machine Translation for KR20150007192 (Year: 2015).
Fuchs, “Multipath Interference Compensation in Time-of-Flight Camera Images”; 2010 (https://www.robotic.de/fileadmin/robotic/fuchs/MPICornpensationICPR2010.pdf) (Year: 2010).
May et al, “Three-Dimensional Mapping with Time-of-Flight Cameras”; Journal of Field Robotics 26(11-12), 934-965 (2009). (Year: 2009).
Chinese Office Action, in Chinese with English translation, corresponding to CN application No. 201480016730.9, dated Apr. 26, 2016, 11 pages.
D. Droeschel et al. “Multi-frequency Phase Unwrapping for Time-of-Flight cameras”, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference; Oct. 18, 2010; pp. 1463-1469.
A. A. Dorrington et al. “Archieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera; sub-millimetre precision with a heterodyning range imaging camera” Measurement Science and Technology, vol. 18, No. 9, Jul. 20, 2007; pp. 2809-2816.
International Search Report and Written Opinion dated May 20, 2014 re: Application No. PCT/EP2014/055068; pp. 1-12.
Andrew D. Payne et al. “Multiple frequency range imaging to remove measurement ambiguity”, 9th conference on Optical 3-D Measurement Techniques, Jul. 1-3, 2009, pp. 139-148 XP002660844.
Related Publications (1)
Number Date Country
20160047913 A1 Feb 2016 US