Distributed and optimized garbage collection of exported data objects

Information

  • Patent Grant
  • 10642829
  • Patent Number
    10,642,829
  • Date Filed
    Monday, April 3, 2017
    7 years ago
  • Date Issued
    Tuesday, May 5, 2020
    3 years ago
Abstract
Described are methods, systems and computer readable media for distributed and optimized garbage collection of remote and exported object handle links to update propagation graph nodes.
Description

Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for providing optimized garbage collection of remote table handle links.


In an environment where a query server can have multiple remote clients, multiple links can be set up to tables on the query server from each remote client. There can be a system cost for maintaining all of these links, or from maintaining the data sources referenced by the links. As remote clients disconnect from from the query server or as remote clients stop using a particular table, links can still be registered for the remote clients on the query server. The number of links that need to be managed by the query server can continue to grow with new remote client connections and query operations against query server tables. If the links are not properly garbage collected after use, the amount of system resources to manage the increasing number of links and the data sources referenced by the links may also increase.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a system for managing distributed client-server object handles, the system comprising a remote client computer containing a first one or more hardware processors, a server computer containing a second one or more hardware processors, and the remote client computer containing a first computer readable data storage device coupled to the first one or more hardware processors, the first computer readable data storage device having stored thereon software instructions that, when executed by the first one or more hardware processors, cause the first one or more hardware processors to perform operations. The operations can include creating a remote object handle manager. The operations can also include establishing a connection with a remote query processor on the server computer. The operations can further include establishing a liveness indication system with the remote query processor. The operations can also include receiving from the remote query processor, exported object handle information for use in constructing a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object. The operations can include the remote object handle manager constructing a remote object handle. The operations can also include the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly on the exported object's dependencies. The operations can include the remote object handle manager sending a release notification to the remote query processor including an exported object identifier, after no client objects depend on the exported object. The operations can also include the server computer containing a second computer readable data storage device coupled to the second one or more hardware processors, the second computer readable data storage device having stored thereon software instructions that, when executed by the second one or more hardware processors, cause the second one or more hardware processors to perform operations. The operations can include creating a remote query processor, the remote query processor performing operations.


The operations can include creating an exported object handle manager. The operations can also include sending the exported object handle information, including an exported object identifier from an exported object handle manager to the remote client computer. The operations can further include preserving a liveness of the exported object at least until the first of the following events: receipt of a release notification from the remote table handle manager; and the liveness indication system determines the remote client computer is not connected.


The remote query processor operations can include the remote query processor receiving a transmitted user query task from the remote client computer. The remote query processor operations can also include executing the transmitted user query task. The remote query processor operations can further include upon executing an instruction from the user query task to export an object, creating an exported object handle.


The remote query processor operations can include publishing a list of objects available for export to the remote client computer.


The operations can include wherein the remote object handle manager monitoring of client object liveness comprises maintaining a remote object handle reference count on the remote object handle. The operations can also include decrementing the remote object handle reference count after a dependent client object no longer depends on the remote object handle. The operations can further include when the remote object handle reference count after decrementing is zero, sending a digital message to the remote query processor to release an associated exported object handle.


The operations can include wherein the exported object handle maintains a strong reference to one or more components of an update propagation graph created on the server computer.


The operations can include wherein the relationship between a remote object handle and its associated exported object extends an update propagation graph across at least one of multiple remote query processors and multiple clients.


The operations can include wherein the remote object handle invokes one or more methods on an exported object and delivers return values as copied objects or remote object handles of exported objects.


The operations can include wherein the remote client computer and the server computer are different computers.


The operations can include wherein the remote object handle manager monitoring of client object liveness comprises the remote object handle manager monitoring a handle cleanup reference queue and after a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method. The operations can further include the handle cleanup reference cleanup method removing the handle cleanup reference from a set of handle cleanup references monitored by the remote object handle manager, thereby eliminating all strong references to the handle cleanup reference. The operations can further include the handle cleanup reference cleanup method sending a digital message to the remote query processor to release an associated exported object handle.


The operations can include wherein the remote object handle manager monitoring of client object liveness comprises the remote object handle manager monitoring a handle cleanup reference queue and after a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method. The operations can also include the handle cleanup reference cleanup method decrementing a remote object handle reference count on a remote object handle associated with the handle cleanup reference. The operations can further include the handle cleanup reference cleanup method removing the handle cleanup reference from a set of handle cleanup references monitored by the remote object handle manager. The operations can include when the remote object handle reference count after decrementing is zero, sending a digital message to the remote query processor to release an associated exported object handle.


The operations can include wherein the remote query processor preserving a liveness of the exported object comprises maintaining a reference count associated with the exported object. The operations can also include decrementing the reference count associated with the exported object after receipt of a release notification from the remote table handle manager. The operations can further include decrementing the reference count associated with the exported object after the liveness indication system determines the remote client computer is not connected. The operations can also include when the remote object handle reference count after decrementing is zero, removing a strong reference to the exported object from the exported object handle. The operations can include when the remote object handle reference count after decrementing is greater than zero, maintaining a strong reference to the exported object from the exported object handle.


Some implementations can include a method for managing distributed client-server object handles, the method comprising creating a remote object handle manager. The method can also include establishing a connection with a remote query processor on a server computer. The method can further include establishing a liveness indication system with the remote query processor. The method can also include receiving from the remote query processor, exported object handle information for use in constructing a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object. The method can include the remote object handle manager constructing a remote object handle. The method can also include the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly on the exported object's dependencies. The method can include the remote object handle manager sending a release notification to the remote query processor including an exported object identifier, after no client objects depend on the exported object. The method can also include creating a remote query processor, the remote query processor performing operations.


The operations can include creating an exported object handle manager. The operations can also include sending the exported object handle information, including an exported object identifier from an exported object handle manager to a remote client computer. The operations can further include preserving a liveness of the exported object until receipt of a release notification from the remote table handle manager or until the liveness indication system determines the remote client computer is not connected.


The remote query processor operations can further include the remote query processor receiving a transmitted user query task from a remote client computer. The operations can also include executing the transmitted user query task. The operations can further include upon executing an instruction from the user query task to export an object, creating an exported object handle.


The remote query processor operations can include publishing a list of objects available for export to the remote client computer.


The method can include the operations of the first one or more hardware processors further comprising the remote object handle manager monitoring a handle cleanup reference queue. The operations can also include after a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method. The operations can further include the handle cleanup reference cleanup method decrementing a remote object handle reference count on a remote object handle associated with the handle cleanup reference. The operations can also include the handle cleanup reference cleanup method removing the handle cleanup reference from a set of handle cleanup references monitored by the remote object handle manager. The operations can include when the remote object handle reference count after decrementing is zero, sending a digital message to the remote query processor to release an associated exported object handle. The operations can also include when the remote object handle reference count after decrementing is greater than zero, maintaining a strong reference to the remote object handle in order to ensure liveness for dependent client objects.


The method can include wherein the exported object handle maintains a strong reference to an update propagation graph created on the server computer.


The method can include wherein the relationship between a remote object handle and its associated exported object extends an update propagation graph across at least one of multiple remote query processors and multiple clients.


The method can include wherein the remote object handle invokes one or more methods on an exported object and delivers return values as copied objects or remote object handles of exported objects.


The method can include wherein the remote client computer and the server computer are different computers.


The method can also include wherein the preserving a liveness of the exported object comprises maintaining a reference count associated with the exported object. The method also includes decrementing the reference count associated with the exported object after receipt of a release notification from the remote table handle manager. The method further includes decrementing the reference count associated with the exported object after the liveness indication system determines the remote client computer is not connected. The method also includes when the remote object handle reference count after decrementing is zero, removing a strong reference to the exported object from the exported object handle. The method further includes when the remote object handle reference count after decrementing is greater than zero, maintaining a strong reference to the exported object from the exported object handle.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include creating a remote object handle manager. The operations can also include establishing a connection with a remote query processor on a server computer. The operations can further include establishing a liveness indication system with the remote query processor. The operations can also include receiving from the remote query processor, exported object handle information for use in constructing a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object. The operations can include the remote object handle manager constructing a remote object handle. The operations can also include the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly on the exported object's dependencies. The operations can include the remote object handle manager sending a release notification to the remote query processor including an exported object identifier, after no client objects depend on the exported object. The operations can also include the server computer containing a second computer readable data storage device coupled to the second one or more hardware processors, the second computer readable data storage device having stored thereon software instructions that, when executed by the second one or more hardware processors, cause the second one or more hardware processors to perform operations.


The operations can include creating a remote query processor, the remote query processor performing operations including creating an exported object handle manager. The remote query processor operations can also include sending the exported object handle information, including an exported object identifier from an exported object handle manager to the remote client. The remote query operations can further include preserving a liveness of the exported object until receipt of a release notification from the remote table handle manager or until the liveness indication system determines the remote client is not connected.


The operations can include the remote query processor receiving a transmitted user query task from the remote client computer. The operations can also include executing the transmitted user query task. The operations can further include upon executing an instruction from the user query task to export an object, creating an exported object handle.


The operations can include publishing a list of objects available for export to the remote client.


The operations can include the remote object handle manager monitoring a handle cleanup reference queue. The operations can also include after a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method. The operations can further include the handle cleanup reference cleanup method decrementing a remote object handle reference count on a remote object handle associated with the handle cleanup reference. The operations can also include the handle cleanup reference cleanup method removing the handle cleanup reference from a set of handle cleanup references monitored by the remote object handle manager. The operations can include when the remote object handle reference count after decrementing is zero, sending a digital message to the remote query processor to release an associated exported object handle. The operations can also include when the remote object handle reference count after decrementing is greater than zero, maintaining a strong reference to the remote object handle in order to ensure liveness for dependent client objects.


The operations can include wherein the exported object handle maintains a strong reference to an update propagation graph created on the server computer.


The operations can include wherein the relationship between a remote object handle and its associated exported object extends an update propagation graph across at least one of multiple remote query processors and multiple clients.


The operations can include wherein the remote object handle invokes one or more methods on an exported object and delivers return values as copied objects or remote object handles of exported objects.


The operations can include wherein the remote client computer and the server computer are different computers.


Some implementations can include a method for monitoring liveness of parent objects and child objects participating in an update propagation graph on a query processing computer having parent listener objects and child listener objects, the method comprising maintaining continued liveness of said parent objects so long as their child objects have continued liveness. The method can also include permitting termination of liveness of dependent child objects when their parent objects have continued liveness. The method can further include maintaining continued liveness of said parent listener objects so long as their child objects have continued liveness. The method can also include permitting termination of liveness of dependent child listener objects when their parent objects have continued liveness.


The method can include wherein the child objects are only weakly reachable from their parent objects and the parent objects are strongly reachable from their child objects.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device configured for remote query processor processing in accordance with some implementations.



FIG. 3A is a diagram of an example computing device configured for remote client processing in accordance with some implementations.



FIG. 4 is a diagram of an example update propagation graph in accordance with some implementations.



FIG. 4A is a diagram of an example update propagation graph with collected references in accordance with some implementations.



FIG. 5 is a diagram of an example remote query processor and remote clients in accordance with some implementations.



FIG. 5A is a diagram of an example remote table handle manager in accordance with some implementations.



FIG. 5B is a diagram of an example remote table handle manager in accordance with some implementations.



FIG. 5C is a diagram of an example remote table handle manager in accordance with some implementations.



FIG. 5D is a diagram of an example remote query processor and remote clients in accordance with some implementations.



FIG. 5E is a diagram of an example remote query processor and remote clients in accordance with some implementations.



FIG. 6 is a flowchart of an example remote table handle establishment in accordance with some implementations.



FIG. 7 is a flowchart of an example of loss of heartbeat reference collection in accordance with some implementations.



FIG. 8 is a flowchart of an example of non-loss of heartbeat reference collection in accordance with some implementations.





DETAILED DESCRIPTION

Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, a periodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects (e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.


It will be appreciated that the configuration shown in FIG. 1 is a typical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market open, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306 and network interface 308. The memory 306 can include remote query processor application 310 and a data section 312 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 302 may execute the application 310 stored in the memory 306. The remote query processor application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for distributed and optimized garbage collection of remote and exported table handle links to update propagation graph nodes in accordance with the present disclosure (e.g., performing one or more of 602-632; 702-708; 802-820 described below).


The remote query processor application program 310 can operate in conjunction with the data section 312 and the operating system 304.



FIG. 3A is a diagram of an example computing device 350 in accordance with at least one implementation. The computing device 350 includes one or more processors 352, operating system 354, computer readable medium 356 and network interface 358. The memory 356 can include remote client application 360 and a data section 362 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 352 may execute the application 360 stored in the memory 356. The remote client application 360 can include software instructions that, when executed by the processor, cause the processor to perform operations for distributed and optimized garbage collection of remote and exported table handle links to update propagation graph nodes in accordance with the present disclosure (e.g., performing one or more of 602-632; 702-708; 802-820 described below).


The remote client application program 360 can operate in conjunction with the data section 362 and the operating system 354.


Remote clients can have multiple connections to a query server host including communications to conduct query operations on the query server host that can result in creating an update propagation graph to map out static and dynamic nodes that represent the query execution. In order to allow a remote client to interact with nodes in the update propagation graph on the server, e.g. for display, remote method invocation, or querying, an exported table handle can be created on the server side and a remote table handle on the client side to handle the links between the remote client and the update propagation graph tables on the server.



FIG. 4 is a diagram of an example update propagation graph with collected references in accordance with some implementations. Variables (401, 403, 409, 411, 419) can be table or object reference variables. For example, variable t7 can refer to the result of a join operation on the referents of variable t8 and variable t9 (not shown). Variable Var0401 can reference table object T0402, variable Var1403 can reference table object t1404, variable Var2409 can reference table object T2410, Var3411 can reference table object T3412, and Var4419 can reference table object T4420.


Table object T2410 can be a child node of table object T0402 and table object T3412 can be a child node of table object T1404. Table object T4420 can be a child node of a join operation on table object T2410 and table object T3412. L0,2406 can be a notification listener for propagating update notifications from table object T0 to table object T2410. L1,3408 can be a notification listener for propagating update notifications from table object T1404 to table object T3412. L2,4414 can be a notification listener for propagating update notifications from T2410 to a merge join listener 4418. L3,4 can be a notification listener for propagating update notifications from table object T3 also to merge join listener 4418. Merge join listener 4418 can be a notification listener for propagating join update notifications to table object T4420. FIG. 4 contains two types of arrows, an arrow with a broken line and an arrow with a solid line. In this example, the arrows with broken lines represent weak references in the direction of the arrow for propagating update notifications from a parent, such as T0402 to a child listener, such as L0,2406. Arrows with solid lines represent strong references in the direction of the arrow.


It will be appreciated that a weak reference does not prevent garbage collection of its referent, in this case a query update graph listener for propagating changes from a parent to a child node. A strong reference from a child node to a parent node serves to prevent garbage collection of the parent node until the child is no longer strongly reachable. Were the parent to hold strong references to the child listeners, this would prevent sub-graphs that are not externally reachable from being garbage collected.



FIG. 4A is a diagram of an example update propagation graph with collected references in accordance with some implementations. In this example, a query operation can re-assign a variable Var4 that previously referred to T4420 to be NULL 422, thereby rendering T4420 and its associated listeners Merge Join Listener 4418, L2,4414, and L3,4416 only weakly reachable. Accordingly, the garbage collector can remove (make finalizable, finalize, and reclaim) table object T4420 and listeners Merge Join Listener 4418, L2,4414, and L3,4416 from memory and thus from the update propagation graph.



FIG. 5 is a diagram of an example remote query processor 502 and remote clients 524, 530 in accordance with some implementations. A remote query processor 502 can contain one or more update propagation graphs 504 and one or more exported table handles (518, 520, 522). An update propagation graph 504 can contain parent object nodes, such as 506, 512, and children nodes that are downstream to the parent object nodes, such as 508, 514, 510, 516. Some object nodes such 508, 514 can serve as both a parent and a child. For example, t1 table object 506 can be a parent to child t2 table object 508, and t2 table object 508 can be a parent to child t3 table object 510. The arrows with broken lines between the nodes can be weak references in the direction of the arrow and the arrows with solid lines between the nodes can be strong references. A remote client 528, 530 can have one or more remote table handles 532, 534, 536.


A remote table handle 532, 534, 536 can be created on a remote client 528, 530 to maintain an active link to a corresponding exported table handle 518, 520, 522 on a remote query processor 502. An exported table handle 518, 520, 522 can be created in response to a query operation on table objects in an update propagation graph 504. For example, Remote client 1528 can send a query request in the form of t3=t2.select( ) to a remote query processor 502. In response, the remote query processor 502 can create table object t3510 in the update propagation graph with the appropriate weak and strong references between t3510 and t2508. The remote query processor 502 can then create an exported table handle 1518 with a strong reference to t3510 and send a stub with the exported table handle information, including an identifier for the exported table to be used in subsequent messages, e.g. a handle release message, or a remote method invocation message, to the remote client 1528. The remote client 1528 remote table handle manager (not shown) can then create a remote table handle 1532 to communicate with the exported table handle 518 on the remote query processor 502 for any further access to t3510. Remote table handles 532, 534, 536 can contain a remote table handle (RTH) reference count. A remote table handle 532, 534, 536 can remain alive as long as its RTH reference count remains greater than zero.


It will be appreciated in the example that as long as the strong reference from the exported table handle 1518 remains in place, t3510 cannot be garbage collected. But if the strong reference from the exported table handle 1518 is removed, t3510 can then be garbage collected because the only reference to t3510 would be a weak reference from the t3510 parent, t2508.


It will also be appreciated that the same exported table can be shared with multiple clients and that reference counting can occur on the exported table handle to track connected clients and to determine when to remove the exported table handles. It will also be appreciated that if the reference counting occurs on the exported table handle, then reference counting on the remote table handle may not be necessary.


A heartbeat signal 524, 526 can exist between each remote client 524, 526 and each remote query processor 502. A heartbeat signal 524, 526 can be used to determine whether a remote client 528, 530 is connected to a remote query processor 502 during period of remote client 528, 530 inactivity. It can be assumed by a remote query processor 502 that if a heartbeat signal 524, 526 is no longer detected from a remote client 528, 530 that the remote client has disconnected from the remote query processor 502.


It will be appreciated that a heartbeat signal and a monitoring of a heartbeat signal is just one example of a liveness indication system. Other methods may exist for determining the status of connections between processes and/or computers.


It will be appreciated that one or more remote query processors 502 can be connected to one or more remote clients. One remote query processor 502 can be connected to one or more clients and one client can be connected to one or more remote query processors 502.



FIG. 5A is an example diagram of a remote client 1528 that can contain a remote table handle manager 540. A remote table handle manager 540 can create and manage one or more remote table handles 532, 534, one or more handle cleanup references (HCR) (542, 544, 546, 548, 550) per each remote table handle 532, 534, one or more proxy objects (552, 556) per each HCR (542-550), one or more column objects (554, 558) per each HCR (542-550), one or more widgets 560 per HCR (542-550), and a cleanup queue 562.


A remote table handle 532, 534 can contain a remote table handle (RTH) reference count for each link to a handle cleanup reference (542-550). For example, remote table handle manager 540 can create an HCR for each proxy, column, and/or widget that is part of a table referenced by remote table handle 1532. For example, if remote table handle 1532 references a table with 1 proxy and 1 column, remote table handle manager 540 can create HCR1, 1542 to reference the proxy 1552 and HCR1, 2 to reference the column 1, 2554. Continuing with the example, remote table handle 1532 can have an RTH reference count of 2 because remote table handle 1532 is connected to 2 HCRs, HCR1,1542 and HCR1,2544. Each of the connections can be a weak reference as represented by an arrow with a broken line. Similarly, remote table handle 2534 can have an RTH reference count of 3 because remote table handle 2534 is connected to 3 HCRs, HCR2, 1546, HCR2, 2548 and HCR2, 3550.


It will be appreciated that a table can have multiple proxies, columns and widgets. An HCR can be created for each proxy, column, and widget.


It will also be appreciated that a cleanup queue 562 can be empty or contain handle cleanup references that have been designated for cleanup. This concept is further described below.



FIG. 5B is an example diagram of a remote client 1528 that can contain a remote table handle manager 540 with a widget reference removed from a remote table handle 534. In this example, a widget has been removed from the table represented by the remote table handle 2534. The system garbage collection code (not shown) can then remove the HCR2, 3550 reference because the reference between the widget 2560 and the HCR2, 3550 is a weak reference as shown by the broken arrow, and a weak reference does not prevent garbage collection. The system garbage collection code can place the HCR2, 3 reference into the cleanup queue 562 because the link between the HCR2, 3550 and widget 2560 reference is a weak reference. The remote table handle manager 540 can monitor the cleanup queue 562. Next, the remote table handle manager 540 can dequeue HCR2, 3 from the cleanup queue 562 and can invoke an HCR cleanup method (not shown). The HCR cleanup method can then decrement the remote table handle 534 RTH reference count from 3 to 2 and remove HCR2, 3 from the set of HCRs being monitored by the remote table handle manager 540.


It will be appreciated that in this example, the remote table handle 2532 remains alive because the RTH reference count for the remote table handle 2532 remains at a value greater than zero.


It will also be appreciated that for the example where the reference counting occurs on the exported table handle instead of the remote table handle, then a separate exported table handle can be requested for each handle cleanup reference and dependent object on the client. It will also be appreciated that for the example of reference counting occurring on the exported table handle and not on the remote table handle, then cleanup references may not be used on the server side, except as an alternative to reference counting if a same object is exported multiple times. In this example, the server may not need to notify a client that an exported object is not reachable because the client may have already released the exported object.



FIG. 5C continues the example of FIG. 5B. A proxy 2556 and a column 2, 2558 can be removed from the table represented by the remote table handle 2534. The system garbage collection code (not shown) can then remove the HCR2, 1546 reference and the HCR2, 2 reference because the references are weak references as shown by the broken arrow, and a weak reference does not prevent garbage collection. The system garbage collection code can place the HCR2, 1546 reference and the HCR2, 2548 reference into the cleanup queue 562 because the link between the HCR2, 1546 reference and proxy 2556, and the link between the HCR2, 2548 reference and column 2, 2558 are weak references. The remote table handle manager 540 can continue monitoring the cleanup queue 562. Next, the remote table handle manager 540 can dequeue HCR2, 1 and HCR2, 2 from the cleanup queue 562 and can invoke their HCR cleanup methods (not shown). The HCR cleanup methods can then decrement the remote table handle 534 RTH reference count from 2 to 0 and remove HCR2, 1 and HCR2,2 from the set of HCRs being monitored by the remote table handle manager 540. Because the remote table handle 2534 now has a reference count of zero, the remote table handle manager 540 can remove the remote table handle 2534 and take further action as shown in FIG. 5D to start a cleanup of matching resources on the server side.



FIG. 5D is a diagram of an example remote query processor and remote clients in accordance with some implementations. Continuing the example from FIG. 5C, the remote table handle manager 540 on remote client 1528 can remove the remote table handle 2534 because the RTH reference count for remote table handle 2534 has been decremented to zero, thereby releasing client-side system sources that were used to maintain the remote table handle 2534. The remote table handle manager 540 can also send a message to the remote query processor 502 to remove the exported table handle 2520, thereby releasing server-side system resources that were used to maintain the exported table handle 2520. The communication link between the remote table handle 2534 and the exported table handle 2520 can also be torn down, which can release communication resources for the link, such as sockets on both the client-side and server-side. Nodes 514 and 516 can then also be garbage collected because 514 and 516 loses the strong references to 514 and 516.


It will be appreciated that a connection can also exist per remote client—remote query processor relationship in place of or in addition to a remote table handle—exported table handle relationship.



FIG. 5E is a diagram of an example remote query processor and remote clients in accordance with some implementations. In this example, a heartbeat 526 signal between the remote client 2530 and the remote query processor 502 has been lost. A remote query processor 502 can monitor the heartbeat 524, 526 between a remote query processor 502 and a remote client 528, 530. When a remote query processor 502 does not detect heartbeat 526 signal over a predetermined length of time, the remote client 530 can be determined to be either disconnecting or disconnected from the remote query processor 502. Steps can then be taken on both the client-side and the server side to cleanup resources that were freed up by the disconnection. For example, an exported table handle manager on the server side that is associated with the disconnected client can cleanup all of the exported table handles 522 associated with the disconnecting client 530. The strong references from the exported table handle to the update propagation graph 504 node 512 can also be removed. If the node 512 has no other strong references, the node can be made available for garbage collection. In this example, a strong reference still exists from node 514 to node 512, thus, node 512 can not be made available for garbage collection.


It will be appreciated that a single remote client can have many remote table handles connected to many exported table handles on the server-side, numbering into the hundreds and thousands. The cleanup of these connections after the loss of a heartbeat can release a significant amount of system resources.



FIG. 6 is a flowchart of an example remote table handle establishment in accordance with some implementations. Processing begins at 602, when a remote client establishes a connection with a remote query processor. Processing continues to 604.


At 604, the remote client and remote query processor establish a bidirectional heartbeat connection. Processing continues to 606.


At 606, the remote client transmits a user query to the remote query processor. Processing continues to 608.


At 608, the remote query processor executes the user query. Processing continues to 610.


At 610, the execution of the query may result in one or more strong references being removed from one or more nodes. Processing continues to 612.


At 612, when live nodes are added to an update propagation graph, the parent nodes hold weak references to their respective child listener objects, which in turn hold strong references to their parent table node, their child table node, and any other data structures they need for update propagation. The child table node holds a strong reference to its parent listeners, which hold strong references to the parent table object(s).


It will be appreciated that “live nodes” can be dynamic nodes that can listen for updates and pass on the update information to lower child nodes. Processing continues to 614.


At 614, the query causes changes in variables referencing update propagation graph nodes.


It will be appreciated that variables can be a holder for a strong reference to a table, such as “t1.” The contents of a variable, such as t1, can change depending on how t1 is used in a query instruction. For example, t1 can initially be assigned as t1=t2.select( ) but can later be re-assigned as t1=t4.select. Processing continues to 616 and 618.


At 616, the remote query processor, during query execution, may explicitly create one or more export table handles. Processing continues to 624.


At 618, the remote query processor during execution of a query can publish the existence of tables that may be exported. Processing continues to 620.


At 620, client-side actions, either automatic or by user input, can request an exported table handle be created. Processing continues to 622.


At 622, the remote query processor creates an exported table handle on the remote query processor. Processing continues to 624.


At 624, the remote query processor sends a stub back to the remote client to use in constructing a remote table handle. Processing continues to 626.


At 626, a remote table handle is created on the remote client by a remote table handle manager. Processing continues to 628.


At 628, the remote table handle manager increments the remote table handle reference count and creates monitored handle cleanup references (HCR) for all objects that require the remote table handle and its corresponding exported table handle in order to remain active. Processing continues to 630.


At 630, the remote client establishes a link from the remote table handle to the exported table handle.


It will be appreciated that the link can be a logical link or a physical link. Processing continues to 632.


At 632, the remote query processor waits for the next query transmission from a remote client. Process returns to 606.



FIG. 7 is a flowchart of an example of loss of heartbeat reference collection 700 in accordance with some implementations. Processing begins at 702 when a remote query processor monitors for a heartbeat signal between the remote query processor and a remote client. Processing continues to 704.


At 704, a determination by the remote query processor is made as to whether a heartbeat signal the remote client is present. If the heartbeat is present, processing returns to 702 to continue monitoring for the heartbeat signal. If a heartbeat is not present, processing continues to 706.


At 706, an exported table handle manager on the remote query processor cleans up all of the exported table handles associated with the disconnecting or disconnected remote client. Processing continues to 708.


At 708, when no other strong links exist to the node that was connected to an exported table handle manager, the node is available for system initiated garbage collection.



FIG. 8 is a flowchart of an example of non-loss of heartbeat reference collection in accordance with some implementations. Processing begins at 802 and 804.


It will be appreciated that the two flows shown in FIG. 8 are shown without a direct connection between the two flows. The two flows in the example do not have a direct connection but do make use of a common queue, a handle cleanup reference (HCR) queue. One flow places objects into the HCR queue and the other flow retrieves the placed objects from the HCR queue. Steps of the first flow (802-810) are discussed first followed by step of the second flow (804-820).


At 802, a system garbage collector monitors object reachability, including the HCR's referent, which can be any object that requires the remote table handle and exported table handle to remain active. Processing continues to 806.


At 806, when the liveness-enforcing referent object of a handle cleanup reference becomes only weakly reachable, the HCR (as a weak reference) is cleared and the referent object is marked finalizable (eligible to be garbage collected by the system). Processing continues to 808.


At 808, the system garbage collection mechanism enqueues the HCR for the HCR queue. Processing continues to 810.


At 810, the system garbage collection mechanism finalizes and reclaims the liveness-enforcing referent that was previously weakly-reachable from the HCR.


At 804, a remote table handle manager monitors the HCR queue. Processing continues to 812.


At 812, the remote table handle manager dequeues an HCR and invokes an HCR cleanup method.


It will be appreciated that the term “method” here refers to a programming language construct or function, and can be any construct that is available in the programming language used to write the HCR cleanup function. Processing continues to 814.


At 814, the HCR cleanup method determines the remote table handle associated with the dequeued HCR and decrements that remote table handle reference count by one. Processing continues to 816.


At 816, the HCR cleanup method removes the HCR from the set of HCRs monitored by the remote table handle manager. Processing continues to 818.


At 818, the remote table handle manager determines whether the remote table handle reference count is zero. If the remote table handle count is greater than zero, processing returns to 804. If the remote table handle count is zero, processing continues to 820.


At 820, the remote table handle manager sends a digital message to the remote query processor to cleanup the associated exported table handle on the remote query processor. Processing returns to 804.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for distributed and optimized garbage collection of remote and exported table handle links to update propagation graph nodes.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A system for managing distributed client-server object handles, the system comprising: a remote client computer containing a first one or more hardware processors;a server computer containing a second one or more hardware processors;the remote client computer containing a first computer readable data storage device coupled to the first one or more hardware processors, the first computer readable data storage device having stored thereon software instructions that, when executed by the first one or more hardware processors, cause the first one or more hardware processors to perform first operations including: creating a remote object handle manager;establishing a connection with a remote query processor on the server computer;establishing a liveness indication system with the remote query processor;receiving, from the remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;the remote object handle manager constructing the remote object handle;the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies;the remote object handle manager sending a release notification to the remote query processor including the exported object identifier, after no client objects depend on the exported object;the server computer containing a second computer readable data storage device coupled to the second one or more hardware processors, the second computer readable data storage device having stored thereon software instructions that, when executed by the second one or more hardware processors, cause the second one or more hardware processors to perform second operations including: creating a remote query processor, the remote query processor performing remote query processor operations including: creating an exported object handle manager;sending the exported object handle information including the exported object identifier from the exported object handle manager to the remote client computer; andpreserving a liveness of the exported object at least until any of the following events: receipt of the release notification from the remote object handle manager; andthe liveness indication system determines the remote client computer is not connected,the first operations further including: the remote object handle manager monitoring a handle cleanup reference queue;after a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method;the handle cleanup reference cleanup method decrementing a remote object handle reference count on a second remote object handle associated with the handle cleanup reference;the handle cleanup reference cleanup method removing the handle cleanup reference from a set of handle cleanup references monitored by the remote object handle manager;when the remote object handle reference count after decrementing is zero, sending a digital message to the remote query processor to release an associated exported object handle; andwhen the remote object handle reference count after decrementing is greater than zero, maintaining a strong reference to the second remote object handle in order to ensure liveness for dependent client objects.
  • 2. A system for managing distributed client-server object handles, the system comprising: a remote client computer containing a first one or more hardware processors;a server computer containing a second one or more hardware processors;the remote client computer containing a first computer readable data storage device coupled to the first one or more hardware processors, the first computer readable data storage device having stored thereon software instructions that, when executed by the first one or more hardware processors, cause the first one or more hardware processors to perform first operations including: creating a remote object handle manager;establishing a connection with a remote query processor on the server computer;establishing a liveness indication system with the remote query processor;receiving, from the remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;the remote object handle manager constructing the remote object handle;the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies;the remote object handle manager sending a release notification to the remote query processor including the exported object identifier, after no client objects depend on the exported object;the server computer containing a second computer readable data storage device coupled to the second one or more hardware processors, the second computer readable data storage device having stored thereon software instructions that, when executed by the second one or more hardware processors, cause the second one or more hardware processors to perform second operations including: creating a remote query processor, the remote query processor performing remote query processor operations including: creating an exported object handle manager;sending the exported object handle information including the exported object identifier from the exported object handle manager to the remote client computer; andpreserving a liveness of the exported object at least until any of the following events: receipt of the release notification from the remote object handle manager; andthe liveness indication system determines the remote client computer is not connected,wherein the preserving a liveness of the exported object comprises: maintaining a reference count associated with the exported object;decrementing the reference count associated with the exported object after receipt of the release notification from the remote object handle manager;decrementing the reference count associated with the exported object after the liveness indication system determines the remote client computer is not connected;when the reference count associated with the exported object after decrementing is zero, removing a strong reference to the exported object from the exported object handle; andwhen the reference count associated with the exported object after decrementing is greater than zero, maintaining the strong reference to the exported object from the exported object handle.
  • 3. A nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: creating a remote object handle manager;establishing a connection with a remote query processor on a server computer;establishing a liveness indication system with the remote query processor;receiving from the remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;the remote object handle manager constructing the remote object handle;the remote object handle manager monitoring liveness of all client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies;the remote object handle manager sending a release notification to the remote query processor including the exported object identifier, after no client objects depend on the exported object;creating a remote query processor, the remote query processor performing remote query processor operations including: creating an exported object handle manager;sending the exported object handle information including the exported object identifier from the exported object handle manager to a remote client; andpreserving a liveness of the exported object until receipt of the release notification from the remote object handle manager or until the liveness indication system determines the remote client is not connected,wherein the preserving a liveness of the exported object comprises: maintaining a reference count associated with the exported object;decrementing the reference count associated with the exported object after receipt of the release notification from the remote object handle manager;decrementing the reference count associated with the exported object after the liveness indication system determines the remote client computer is not connected;when the reference count associated with the exported object after decrementing is zero, removing a strong reference to the exported object from the exported object handle; andwhen the reference count associated with the exported object after decrementing is greater than zero, maintaining the strong reference to the exported object from the exported object handle.
  • 4. A system comprising: one or more hardware processors; anda computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations including:receiving, from a remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;constructing the remote object handle;monitoring liveness of client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies, the monitoring including: maintaining a remote object handle reference count on the remote object handle, anddecrementing the remote object handle reference count after a dependent client object no longer depends on the remote object handle;when the remote object handle reference count is zero after the decrementing, sending a release notification to the remote query processor to release an associated exported object handle, the release notification including the exported object identifier, after no client objects depend on the exported object;monitoring a handle cleanup reference queue; andafter a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method, the handle cleanup reference being associated with the remote object handle, the handle cleanup reference cleanup method performing cleanup operations including: performing the decrementing of the remote object handle reference count on the remote object handle associated with the handle cleanup reference, andremoving the handle cleanup reference from a plurality of handle cleanup references being monitored.
  • 5. The system of claim 4, wherein the operations further include: transmitting a user query task to the remote query processor, the user query task including an instruction to export the exported object.
  • 6. The system of claim 4, wherein the operations further include: receiving, from the remote query processor, a publication of a list of objects available for export.
  • 7. The system of claim 4, wherein the operations further include: when the remote object handle reference count is greater than zero after the decrementing, maintaining a strong reference to the remote object handle in order to ensure liveness for dependent client objects.
  • 8. The system of claim 4, wherein the remote query processor is configured to maintain for the exported object a strong reference to one or more components of an update propagation graph.
  • 9. The system of claim 4, wherein a relationship between the remote object handle and its associated exported object extends an update propagation graph across the remote query processor and a plurality of clients.
  • 10. The system of claim 4, wherein the remote object handle invokes one or more methods on the exported object and delivers return values as one of one or more copied objects or one or more associated remote object handles of associated exported objects.
  • 11. The system of claim 4, wherein the remote query processor is executed on one or more second hardware processors.
  • 12. The system of claim 11, wherein the one or more hardware processors and the one or more second hardware processors are different hardware processors.
  • 13. A method comprising: receiving, from a remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;constructing the remote object handle;monitoring liveness of client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies, the monitoring including: maintaining a remote object handle reference count on the remote object handle, anddecrementing the remote object handle reference count after a dependent client object no longer depends on the remote object handle;determining that the remote object handle reference count is zero after the decrementing;in response to the determining, sending a release notification to the remote query processor to release an associated exported object handle, the release notification including the exported object identifier, after no client objects depend on the exported object;monitoring a handle cleanup reference queue;determining that a handle cleanup reference appears in the handle cleanup reference queue, the handle cleanup reference being associated with the remote object handle; andin response to the determining that the handle cleanup reference appears in the handle cleanup reference queue invoking a handle cleanup reference cleanup method, the handle cleanup reference cleanup method performing cleanup operations including: performing the decrementing of the remote object handle reference count on the remote object handle associated with the handle cleanup reference, andremoving the handle cleanup reference from a plurality of handle cleanup references being monitored.
  • 14. The method of claim 13, further comprising: transmitting a user query task to the remote query processor, the user query task including an instruction to export the exported object.
  • 15. The method of claim 13, further comprising: receiving, from the remote query processor, a publication of a list of objects available for export.
  • 16. The method of claim 13, wherein the remote query processor is configured to maintain for the exported object a strong reference to one or more components of an update propagation graph.
  • 17. The method of claim 13, wherein a relationship between the remote object handle and its associated exported object extends an update propagation graph across the remote query processor and a plurality of clients.
  • 18. The method of claim 13, wherein the remote object handle invokes one or more methods on the exported object and delivers return values as one of one or more copied objects or one or more associated remote object handles of associated exported objects.
  • 19. The method of claim 13, wherein a client computer receives the exported object handle information from the remote query processor on a server computer.
  • 20. The method of claim 19, wherein the client computer and the server computer are different computers.
  • 21. A nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: receiving, from a remote query processor, exported object handle information to construct a remote object handle, including an exported object identifier, the exported object identifier identifying an exported object;constructing the remote object handle;monitoring liveness of client objects that depend on the remote object handle, the remote object handle depending on the exported object and indirectly depending on the exported object's dependencies, the monitoring including: maintaining a remote object handle reference count on the remote object handle, anddecrementing the remote object handle reference count after a dependent client object no longer depends on the remote object handle;when the remote object handle reference count is zero after the decrementing, sending a release notification to the remote query processor to release an associated exported object handle, the release notification including the exported object identifier, after no client objects depend on the exported object;monitoring a handle cleanup reference queue; andafter a handle cleanup reference appears in the handle cleanup reference queue, invoking a handle cleanup reference cleanup method, the handle cleanup reference being associated with the remote object handle, the handle cleanup reference cleanup method performing cleanup operations including:performing the decrementing of the remote object handle reference count on the remote object handle associated with the handle cleanup reference, andremoving the handle cleanup reference from a plurality of handle cleanup references being monitored.
  • 22. The nontransitory computer readable medium of claim 21, wherein the operations further include: transmitting a user query task to the remote query processor, the user query task including an instruction to export the exported object.
  • 23. The nontransitory computer readable medium of claim 21, wherein the operations further include: receiving, from the remote query processor, a publication of a list of objects available for export.
  • 24. The nontransitory computer readable medium of claim 21, wherein the operations further include: when the remote object handle reference count is greater than zero after the decrementing, maintaining a strong reference to the remote object handle in order to ensure liveness for dependent client objects.
  • 25. The nontransitory computer readable medium of claim 21, wherein the remote query processor is configured to maintain for the exported object a strong reference to one or more components of an update propagation graph.
  • 26. The nontransitory computer readable medium of claim 21, wherein a relationship between the remote object handle and its associated exported object extends an update propagation graph across the remote query processor and a plurality of clients.
  • 27. The nontransitory computer readable medium of claim 21, wherein the remote object handle invokes one or more methods on the exported object and delivers return values as one of one or more copied objects or one or more associated remote object handles of associated exported objects.
  • 28. The nontransitory computer readable medium of claim 21, wherein the remote query processor is executed on one or more second processors.
  • 29. The nontransitory computer readable medium of claim 28, wherein the one or more processors and the one or more second processors are different processors.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (521)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787411 Groff et al. Jul 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5808911 Tucker Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5873075 Cochrane et al. Feb 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6160548 Lea et al. Dec 2000 A
6253195 Hudis et al. Jun 2001 B1
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6397206 Hill et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6519604 Acharya et al. Feb 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6801908 Fuloria et al. Oct 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Michael et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan et al. Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7047484 Becker et al. May 2006 B1
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7099927 Cudd et al. Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7219302 O'Shaughnessy et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7506055 McClain et al. Mar 2009 B2
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7542958 Warren et al. Jun 2009 B1
7552223 Ackaouy et al. Jun 2009 B1
7596550 Mordvinov et al. Sep 2009 B2
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7711788 Ran et al. May 2010 B2
7747640 Dettinger et al. Jun 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7895191 Colossi et al. Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Qazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8027293 Spaur et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8621424 Kejariwal et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8635251 Chan Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 MacIntyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo′ et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8788254 Peloski Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805875 Bawcom et al. Aug 2014 B1
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9122765 Chen Sep 2015 B1
9177079 Ramachandran et al. Nov 2015 B1
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9311357 Ramesh et al. Apr 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Cervantes et al. Jul 2016 B2
9477702 Ramachandran et al. Oct 2016 B1
9612959 Caudy et al. Apr 2017 B2
9613018 Zeldis et al. Apr 2017 B2
9613109 Wright et al. Apr 2017 B2
9619210 Kent, IV et al. Apr 2017 B2
9633060 Caudy et al. Apr 2017 B2
9639570 Wright et al. May 2017 B2
9672238 Wright et al. Jun 2017 B2
9679006 Wright et al. Jun 2017 B2
9690821 Wright et al. Jun 2017 B2
9710511 Wright et al. Jul 2017 B2
9760591 Caudy et al. Sep 2017 B2
9805084 Wright et al. Oct 2017 B2
9832068 McSherry et al. Nov 2017 B2
9836494 Caudy et al. Dec 2017 B2
9836495 Wright Dec 2017 B2
9847917 Varney Dec 2017 B2
9886469 Kent, IV et al. Feb 2018 B2
9898496 Caudy et al. Feb 2018 B2
9934266 Wright et al. Apr 2018 B2
10002153 Teodorescu et al. Jun 2018 B2
10002154 Kent, IV et al. Jun 2018 B1
10002155 Caudy et al. Jun 2018 B1
10003673 Caudy et al. Jun 2018 B2
10019138 Zeldis et al. Jul 2018 B2
10069943 Teodorescu et al. Sep 2018 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020129168 Kanai et al. Sep 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208484 Chang et al. Nov 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dellinger et al. Jan 2004 A1
20040015566 Anderson Jan 2004 A1
20040076155 Yajnik et al. Apr 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20040267824 Pizzo et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison et al. Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison Jun 2005 A1
20050138624 Morrison Jun 2005 A1
20050144189 Edwards Jun 2005 A1
20050149944 Morrison Jul 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20050228828 Chandrasekar et al. Oct 2005 A1
20060059253 Goodman et al. Mar 2006 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060131383 Battagin et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nori et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060253311 Yin et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070113014 Manolov et al. May 2007 A1
20070116287 Rasizade et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080034084 Pandya Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080097748 Haley et al. Apr 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080172639 Keysar et al. Jul 2008 A1
20080235238 Jalobeanu et al. Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090022095 Spaur et al. Jan 2009 A1
20090024615 Pedro et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090037500 Kirshenbaum Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090083215 Burger Mar 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100023952 Sandoval et al. Jan 2010 A1
20100036801 Pirvali et al. Feb 2010 A1
20100042587 Johnson et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100070721 Pugh et al. Mar 2010 A1
20100114890 Hagar et al. May 2010 A1
20100161555 Nica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110178984 Talius et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110219020 Oks et al. Sep 2011 A1
20110314019 Peris Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta et al. Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166551 Wong et al. Jun 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130173667 Soderberg et al. Jul 2013 A1
20130179460 Cervantes et al. Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140026121 Jackson et al. Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140046638 Peloski Feb 2014 A1
20140059646 Hannel et al. Feb 2014 A1
20140082470 Trebas et al. Mar 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Varney Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140289700 Srinivasaraghavan et al. Sep 2014 A1
20140292765 Maruyama et al. Oct 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Varney Nov 2014 A1
20140358892 Nizami Dec 2014 A1
20140359574 Beckwith et al. Dec 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Edward et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150032789 Nguyen et al. Jan 2015 A1
20150067640 Booker et al. Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150120261 Giannacopoulos et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150154262 Yang et al. Jun 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150205589 Dally Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20150317359 Tran et al. Nov 2015 A1
20150356157 Anderson et al. Dec 2015 A1
20160026383 Lee et al. Jan 2016 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160085772 Vermeulen et al. Mar 2016 A1
20160092599 Barsness et al. Mar 2016 A1
20160103897 Nysewander et al. Apr 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160147748 Florendo et al. May 2016 A1
20160171070 Hrle et al. Jun 2016 A1
20160179754 Borza et al. Jun 2016 A1
20160253294 Allen et al. Sep 2016 A1
20160316038 Jolfaei Oct 2016 A1
20160335281 Teodoresou et al. Nov 2016 A1
20160335304 Teodoresou et al. Nov 2016 A1
20160335317 Teodoresou et al. Nov 2016 A1
20160335323 Teodoresou et al. Nov 2016 A1
20160335330 Teodoresou et al. Nov 2016 A1
20160335361 Teodoresou et al. Nov 2016 A1
20170032016 Zinner et al. Feb 2017 A1
20170161514 Dettinger et al. Jun 2017 A1
20170177677 Wright et al. Jun 2017 A1
20170185385 Kent et al. Jun 2017 A1
20170192910 Wright et al. Jul 2017 A1
20170206256 Tsirogiannis et al. Jul 2017 A1
20170235794 Wright et al. Aug 2017 A1
20170235798 Wright et al. Aug 2017 A1
20170249350 Wright et al. Aug 2017 A1
20170270150 Wright et al. Sep 2017 A1
20170316046 Caudy et al. Nov 2017 A1
20170329740 Crawford et al. Nov 2017 A1
20170357708 Ramachandran et al. Dec 2017 A1
20170359415 Venkatraman et al. Dec 2017 A1
20180004796 Kent et al. Jan 2018 A1
20180011891 Wright et al. Jan 2018 A1
20180052879 Wright Feb 2018 A1
20180137175 Teodorescu et al. May 2018 A1
Foreign Referenced Citations (15)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2397906 Aug 2004 GB
2421798 Jun 2011 RU
2000000879 Jan 2000 WO
2001079964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
2016183563 Nov 2016 WO
Non-Patent Literature Citations (167)
Entry
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979.
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990.
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009.
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980.
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975.
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993.
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html.
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-ig-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn. microsoft.com/en-us/library/azure/dn376543.aspx.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999.
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980.
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995.
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996.
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2011 Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980.
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999.
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979.
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162.
Decision on Pre-Appeal Conference Request dated Nov. 20, 2017, in U.S. Appl. No. 15/154,997.
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006.
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997.
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975.
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012.
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010.
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032599 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appl. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appl. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appl. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appl. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appl. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appl. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appl. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appl. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appl. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appl. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appl. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appl. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appl. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appl. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appl. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appl. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appl. No. PCT/US2016/032606 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appl. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appl. No. PCT/US2016/032604 filed May 14, 2016.
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314.
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963.
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461.
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009.
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145.
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984.
Breitbart, Update Propagation Protocols for Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108.
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230.
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996.
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119.
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974.
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461.
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813.
Non-final Office Action dated Apr. 12, 2018, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127.
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230.
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836.
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112.
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119.
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777.
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574.
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006.
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012.
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142.
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145.
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995.
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314.
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547.
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,961.
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129.
Hartle, Thom, Conditional Formatting in Excel using CQG's RTD Bate Function (2011), http://news.cqg.com/blogs/exce/I2011/05/conditional-formatting-excel-using-cqgs-rtd-bate-function (last visited Apr. 3, 2019).
Azbel, Maria, How to hide and group columns in Excel AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/08/06/excel-hide-columns/ (last visited Jan. 18, 2019).
Dodge, Mark & Craig Stinson, Microsoft Excel 2010 inside out (2011).
Cheusheve, Svetlana, Excel formulas for conditional formatting based on another cell AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/06/10/excel-conditional-formatting-formulas/comment-page-6/(last visited Jan. 14, 2019).
Posey, Brien, “How to Combine PowerShell Cmdlets”, Jun. 14, 2013 Redmond the Independent Voice of the Microsoft Community (Year: 2013), pp. 1-10.
Related Publications (1)
Number Date Country
20170206229 A1 Jul 2017 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US
Continuations (1)
Number Date Country
Parent 15154983 May 2016 US
Child 15478212 US