The present disclosure is generally related to the field of compressors, and more particularly is directed to a distributed thrusters driven gas compressor. The term “distributed thrusters” refers to a group of thrusters distributed over an area or volume of a continuous structure, such as a substrate, though multiple such structures can be used in conjunction with a single device. This group contains at least 2 but depending on application preferably at least 25, or at least 250, or at least 1000 thrusters. Each thruster contains the means to create a gas flow. An example of distributed thrusters is Nano Molecular Solid-state Electrodynamic Thrusters (NMSETs).
Compressors are generally powered by an electric motor and turbine or the like and apply compressive work to a working fluid, such as air or refrigerant to elevate the pressure of the working fluid. Compressors are widely used in a variety of applications, from electric home appliances such as air conditioners, refrigerators and the like to industrial plants.
This invention takes advantage of the phenomena that a gas current will move from a higher pressure area to a lower pressure area and incorporates the advantages of a plurality of thrusters to produce a novel distributed thrusters driven gas compressor.
In accordance with an exemplary embodiment, a distributed thrusters driven compressor, the compressor comprises: an enclosed housing having an aperture exposed to a source of ambient gas; a first pressure producing device formed over the aperture and adapted to produce a pressure, the pressure producing device being formed of distributed thrusters such as NMSET; a control unit coupled to the first pressure producing device; and wherein the control unit controls the first pressure producing device to produce the pressure to cause the ambient gas to be compressed into the housing.
In accordance with a further exemplary embodiment, further including: a second pressure producing device adapted to produce a pressure, the second pressure producing device being positioned over and fully enclosing the first pressure producing device with a first space there between; wherein the second pressure producing device being exposed to the ambient gas and being controlled by the control unit; wherein the control unit controls the second pressure producing device to produce the pressure to cause ambient gas to be compressed within the first space; wherein the control unit controls the first pressure producing device to cause the compressed gas within the first space to be further compressed into the housing; and wherein the second pressure producing device is formed of distributed thrusters such as NMSET.
In accordance with a further exemplary embodiment, a method of using a distributed thrusters driven gas compressor, which includes exposing the compressor to the source of ambient gas at an ambient temperature and pressure and activating the means the distributed thrusters use to create a pressure difference such that the ambient gas is propelled through the aperture.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
The present methods, devices and systems will now be described by way of exemplary embodiments to which the invention defined by the claims appended hereto are not limited. The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and the drawings, and from the claims.
Overview
In preferred embodiments, one example of distributed thrusters, is an apparatus described herein that may be referred to as a Nano Molecular Solid-state Electrodynamic Thruster (NMSET). The basis of operation of NMSET makes it possible to apply NMSET in the fields of, for example, propulsion, adhesion, compression and refrigeration, depending on the manner in which an NMSET is employed. In preferred embodiments, NMSET and related distributed thrusters devices provide lightweight, compact, energy-efficient creation of a gas pressure differential with adjustable flow velocity.
Propulsion
In some embodiments, distributed thrusters such as NMSET can offer one or more of the following improvements in the field of gas propulsion:
Adhesion
In some embodiments, distributed thrusters, such as, for example, NMSET, may be used as a lightweight mechanical adhesive that adheres to a surface through suction. The process can be reversible, as the only step required to reverse the adhesion is to cut power to the system in some embodiments. Using such a system can provide further benefit over electrostatic adhesion in that such a system does not require a material to be adhered to be flat or conductive, and does not leave behind residue. Compared to other mechanical adhesion processes, using such a system may not require a surface being adhered to be pretreated.
Gas Compression
Because distributed thrusters, such as, for example, NMSET, can be arranged to drive gas flow through a surface, all or part of a pressurized vessel may function to provide gas compression. Thus, in some arrangements, separated pumping and pressurized containment may not be required. Moreover, because, the action of such a system generally occurs over a short distance, it is possible, in some embodiments, to use such a system as a highly compact compressor by stacking multiple stages of distributed thrusters. Conventional gas propulsion systems generally operate over length scales of centimeters and sometimes meters. Thus, stacking conventional propulsion systems tends to be a complex and expensive proposition. By contrast, distributed thrusters can be packaged to operate over smaller scales, down to, for example, micrometers. Furthermore, the versatility of such systems means that such a system can be readily adapted to function as a high-pressure pump, a standard atmospheric pump, or with a sufficient number of stages, as a high vacuum pump.
NMSET Design
In one aspect and embodiment, NMSET and some related devices described here may be thought of as functioning by reducing entropy in gas in contact with the system. Optionally, such device may add energy, in addition to the energy lost through inefficiencies in the system, e.g. thermal energy, to the gas. In another aspect and embodiment, the geometry of NMSET and some related devices can affect gas flow direction and convenience of use. Several embodiments of NMSET and some related devices may be further distinguished from previous thermal transpiration devices and the like by the combined application of scale parameters, materials having advantageous molecular reflection properties, geometries, design, construction and arrangement of elements that provide significant increase in efficiency, and or capabilities to operate at higher ambient pressures and/or produce higher flow rates. Described herein are various exemplary embodiments of NMSET with discussion of these and other parameters that, in preferred embodiments, can create a strong gas flow in a particular direction with minimal thermodynamic loss, and or operate at higher ambient pressures and or produce higher flow rates.
Reduction of entropy in a gas by NMSET may be represented by a transformation A in the momentum space k of the gas. A can be expressed in a matrix once a set of suitable bases is chosen for the momentum space k. If the expectation value of the transformed momentum space Ak is nonzero, the NMSET receives a net momentum in the opposite direction of the expectation value due to the conservation of momentum.
The geometry of NMSET may be optimized for more efficient functioning. The geometry of NMSET affects the transformation matrix A. A geometry that produces a matrix A essentially equal to an identity matrix I does not create a net momentum bias (i.e. will not make the transformed momentum space Ak have a nonzero expectation value). Rather, gas vortexes may be generated. Geometries that result in larger eigenvalues of A tend to imply a more efficient function, e.g., that more momentum is carried by gas particles moving in a particular direction.
As an example, consider a heat pump 100 immersed in a gas, shown in
While the geometry of the heat pump 100 in
These problems all relate to a single core issue, very little of the gas has any direct surface contact. Thus, a more complex geometry can be advantageous. Exemplary embodiments with three different geometries are described herein.
Principles of Operation
Although many different geometries of NMSET or related devices are possible, the principle of operation of NMSET remains the same. While not wanting to be limited to any particular theory, operation uses energy to reduce entropy on some device surfaces and transfer reduced entropy to a gas in contact with the surface. The device can optionally donate energy to the gas by raising the gas temperature. The function of NMSET may be therefore divided into three areas: the means by which entropy on surfaces of the device is reduced, the means by which the reduced entropy is transferred to the gas, and the optional means other than the inefficiency of the Carnot cycle of the heat pump by which the gas temperature is increased.
Temperature Differential
A temperature differential between layers of material or more precisely, between two opposing surfaces is generally required for NMSET or related device to operate. In preferred embodiments described herein, a temperature differential can be established in a solid-state electrodynamic mechanism, i.e., the “SE” of NMSET. However, the devices and methods described here are not limited to electronic or purely solid state devices. For example, a temperature differential may be established by conduction of heat from combustion using a fluid coolant, exothermic chemical reaction, or other chemical source. A temperature differential may be established by simple resistive heating, by the Peltier effect, by thermionic emission, by the thermo-tunneling enhanced Peltier effect, or by any other suitable means, such as explained below. A means by which the temperature differential is established between two objects can be phenomenologically described by two characteristics: entropy-reduction (heat transfer between the two objects), and diabaticity (total heat transfer between environment and the two objects).
In one embodiment, the Peltier effect can be used to establish a temperature differential. The Peltier effect occurs when an electric current is applied through a loop composed of two materials with different Peltier coefficients joined at two junctions. Depending on the direction of the electric current, heat flows from one junction to the other, causing a temperature differential to be established between the junctions. The Peltier effect can be understood as follows: Heat capacity of charge carriers in a material is characterized by the Peltier coefficient Π, which is the amount of heat carried per unit charge carriers in the material. When an electric current I flows through a junction of material A with Peltier coefficients ΠA and material B with Peltier coefficient ΠB, the amount heat carried by charge carriers to the junction in a unit time is I×(ΠA−ΠB).
An ideal Peltier effect reduces entropy locally and is adiabatic. Assuming Joule heating and or Carnot cycle inefficiencies can be ignored, in the Peltier effect, heat is transferred from one junction to another, but no heat is added into the loop of the two materials. This entropy reduction can provide for advantages in the stackability of NMSET and related devices. Consequently, the Peltier effect lends itself particularly well to some embodiments.
In this embodiment, a power source drives an electric current between two surfaces. Charge carriers such as electrons and/or holes carry heat as they flow in the electric current, and thus create a temperature differential between the two surfaces. Entropy is reduced as the temperature differential is established.
Phonon flow reduces the temperature differential established by the Peltier effect. If phonons are permitted to flow freely (i.e., infinite thermal conductivity or zero heat capacity), their flow will cancel the temperature differential established by the Peltier effect. Efficiency of the Peltier effect can be increased by reducing electrical resistance and thermal conductance.
One way to reduce thermal conductance is to place a narrow vacuum gap in the path of the electric current. Phonons cannot easily pass the vacuum gap but charge carriers can do so under a voltage across the vacuum gap. This is called thermo-tunneling enhanced Peltier effect (or thermotunnel cooling).
The thermo-tunneling enhanced Peltier effect is generally only significant at high temperatures or voltages, unless enhanced by choice of surface geometry and materials that can restrict behavior of charge carriers near the vacuum gap and increase tunneling probability. For example, suitable surface coatings and structures can function as a filter that do not allow low energy states of charge carriers but only high energy states of charge carriers near the vacuum gap.
In another embodiment, a temperature differential can be created and maintained by field-enhanced thermionic emission. Thermionic emission is a heat-induced flow of charge carriers over a potential-energy barrier. The charge carriers can be electrons or ions (i.e., thermions). In a simple approximation, the potential-energy barrier acts like a dam, in that it withholds carriers with thermal energy less than its height and allows carriers with thermal energy greater than its height to flow over. When the overflowing carriers pass the potential-energy barrier, heat is carried away with them. The carriers left behind the potential-energy barrier re-thermalize (redistribute in energy) to a lower temperature. Thermionic emission typically requires an operating temperature of several hundred degrees Celsius so that a non-negligible fraction of the carriers has thermal energies great enough to overcome the potential-energy barrier. An electrical field can assist thermionic emission by reducing the height of the potential-energy barrier and reducing the required operating temperature.
A temperature differential in NMSET or related device can also be established by using resistive heating (explained below) and/or by suitable chemical processes. In order to maintain the temperature differential without raising the overall temperature of the device, some cooling means can also be provided, such as a heat sink exposed to atmosphere. No matter what cooling means is used, the temperature differential is more pronounced if warmer surfaces of the device are not cooled as efficiently as cooler surfaces, which can be achieved, for example, by thermal insulation.
Force Generation
In one aspect, the production of net thrust may be thought of as the transfer of the reduced entropy from an established temperature differential to a gas. Without wishing to be bound by theory, consider a single device operating in a gas, as an adiabatic process. In this example, a temperature differential between a hot and a cold layer can be established by a suitable means such as the Peltier effect. For simplicity, assume no net heat transfer between the gas and the device. Particles of the gas will impact the hot and cold layers with equal probabilities, and their interaction with these layers will have consequences on local momentum space of the gas near surfaces of the hot and cold layers. The local momentum space of the gas very close to a surface of the hot and cold layers has nonzero expectation value when the gas and the surface have different temperatures. Assuming also that no gas particles penetrate the surface, the gas particles rebound from the surface with momenta different from their incident momenta, which skews the momentum space along the surface normal, and the magnitude of the skew is directly related to the temperature difference between the surface and the gas.
In an arrangement with random geometry (i.e. surface normals at different surface locations point to random directions), the weighted sum of expectation values of local momentum spaces of the gas is nearly zero, which results in almost no net thrust. In NMSET with an optimized geometry, however, the weighted sum of expectation values of local momentum spaces of the gas can be non-zero, which leads to a net thrust.
A trivial example of an arrangement that has non-zero net thrust is shown in
To simplify the description, it may be helpful to think about the system in terms of Newton's second law and the kinetic theory of gases. Around the heat pump 100 in
In another embodiment, the heat pump 100 can have at least one through hole between the layer 101 and 102. Gas spontaneously flows from the layer 101 to the layer 102 through the hole which enables higher heating rate of the gas. Such preferential flow of gas is referred to as thermal transpiration. Assuming gas near the layer 101 has temperature of Tc and pressure of Pc, and gas near the layer 102 has temperature of Th and pressure of Ph, thermal transpiration causes the gas to flow from the layer 101 to the layer 102 through the hole, if the following equation is satisfied:
In order to improve efficiency, it is helpful to understand where the classical limit exists within gas flows. Convective descriptions of gas flow break down at around length scales where the Knudsen number appears. As a result, in some aspects, the mean free path of a gas becomes a useful parameter in determining advantageous geometries of NMSET.
For instance, consider a gas at a particular pressure having a mean free path of 10 nm. If a cloud of such gas is trapped in a two dimensional square 20 nm by 20 nm box as shown in
For this reason, in some embodiments, the characteristic scale of individual features of NMSET and related devices may be nanoscale, i.e., the “NM” of NMSET. However, it must be understood that the methods and devices described here are not limited to nanoscale embodiments. The mean free path parameter is dependent on gas density so that in some embodiments and uses, larger scale features may be employed. Furthermore, as described herein, pluralities of NMSET and related device elements can be combined to provide action over a large surface. For example, distributed thrusters such as NMSET may advantageously be arranged in arrays and or arrays of arrays to provide directed movement of gas over across large surfaces, for example, as illustrated in
Surface Interaction
Interaction between surfaces can affect the momentum space transformation matrix A. If nearby surfaces can easily exchange phonons via gas particles, then the entropy at these surfaces will locally increase at a higher rate than surfaces which cannot easily exchange phonons via development of vortexes. This will generally reduce the efficiency of a system.
One method by which phonon exchange may be reduced is to limit or eliminate any shared bases between surfaces. For instance, consider gas particles in the box 300 in
As a practical matter, surfaces are usually not perfectly specular. However, specular surface properties exist very strongly in some materials so that there are angles for which convective flows in corners may be reduced. This effect is generally observed when the Knudsen numbers are large, which is a preferred condition for NMSET and related devices, particularly in nanoscale embodiments. The Knudsen number (Kn), named after Danish physicist Martin Knudsen (1871-1949), is a dimensionless number defined as the ratio of the molecular mean free path to a representative physical length scale. In NMSET or the related devices discussed here, the representative physical length scale is taken to be the order of magnitude of the aperture diameter of the device, i.e., the representative physical scale length is, for example, a nanometer if the aperture is measured in nanometers and a micrometer if the aperture is measured in micrometers. In preferred methods of using the devices disclosed herein the Knudsen number is preferably greater than 0.1, or greater than 1, or greater than 10.
Methods of Optimizing NMSET and Related Devices
Modeling
Performance of NMSET with a specific geometry can be simulated by a Monte-Carlo method for optimization. Specifically, a simulation for NMSET or related device with any given geometry starts with a group of gas particles with random initial positions and momenta around the device. Positions and momenta of these particles after a small time interval are calculated from the initial positions and momenta, using known physical laws, parameters such as temperature, pressure, chemical identity, geometry of the device, interaction between surfaces of the device and the gas particles. The simulation is run through a chosen number of iterations and simulation results are analyzed. The geometry of the device can be optimized using simulation results. In preferred embodiments, a device is constructed using the results of the simulation analysis.
In a preferred embodiment, a simulation can be represented in the following table:
A perturbation model M is evolved through a number (k) of iterations. First, M is initialized to an empty set, indicating no solution knowledge. Then, a loop is started in which the search parameters generate an arbitrary element from the definite search space P and the prior learned knowledge M is used to perturb P. The specific algorithm used to perturb as an implementation detail.
If run in a grid computing environment, M should ideally be identical among all nodes, but this is not necessary due to the inherently stochastic nature of the process. The step of EVOLVE_MODEL which actually runs the Monte-Carlo simulation is the most computationally expensive of all by far and offers a lot of time to synchronize M.
Specific parameters depend on the environment. The parameters that the user can specify include the following:
In a stationary simulation, the Monte-Carlo simulation can be run with periodic bounds in all axes. In the y axis, however, particles encountering the periodic bound are stochastically thermostatted according to temperature and pressure settings in order to simulate ambient conditions. In the x axis, particle velocities are unmodified in order to simulate a periodic ensemble of identical device assemblies along that direction. The simulation may be run in two dimensions to reduce the computational complexity of the simulation. A three dimensional simulation should give similar results where the modeled device has cylindrical symmetry. Note that in general, a simulator does not have to use the periodicity as indicated here and may not specify any boundaries at all; they are only defined as a computational convenience.
In preferred embodiments, potential device geometries can be evaluated in consideration of the conditions under which a device will be used and known surface reflection properties of the material from which it will be constructed. Geometrical parameters can be optimized by analyzing results from simulation before the geometry is actually used in manufacture of NMSET and related devices.
Example Geometries
Four embodiments with different geometries are particularly discussed below. These four geometries will be referred to as Straight, Parabolic, Triangular, and Sawtooth. It must be noted that the geometries of the NMSET and related devices described here can vary considerably and these examples should be taken only as illustrations for the purpose of discussing the effects of certain design choices on system efficiencies.
Straight
Preferably, a total length 1910L (i.e. a distance from one entrance to the other entrance) of the straight through hole 1910 is up to 10 times, up to 5 times or up to 2 times of the mean free path of a gas in which the device 1900 is immersed. The mean free path of air at the standard atmosphere pressure is about 55 nm. At higher altitude, the mean free path of air increases. For atmospheric applications, the total length 1910L is preferably not greater than 1500 nm, and depending on application more preferably not greater than 550 nm, not greater than 275 nm or not greater than 110 nm. A temperature differential between the hot layer 1902 and the cold layer 1901 is preferably at least 0.5° C., more preferably at least 30° C., more preferably at least 50° C., and most preferably at least 100° C.
The hot layer 1902 and the cold layer 1901 may be separated by a gap therebetween for thermal isolation. The gap preferably is a vacuum gap and/or contains a thermal insulator. In one example, the gap contains a plurality of thin pillars made of a good thermal insulator such as silicon dioxide.
The device 1900 has preferably at least 10 straight through holes per square centimeter. A total perimeter length of all the straight through holes of the device 1900 per square centimeter is preferably at least two centimeters.
Parabolic
Although the parabolic geometry is effective in NMSET or related device, a drop in gas pressure puts an upper bound on the size of the lower aperture. In general, any adiabatic device in which the gas being moved undergoes a change in volume will suffer in its efficiency.
If the temperature differential in a device with the parabolic geometry is established by a diabatic means (i.e. the device raises the overall temperature of the gas), then the NMSET with the parabolic geometry may not suffer in its efficiency from the gas undergoing a change in volume, as long as the amount of heat added to the gas is sufficient to prevent the formation of vortexes. However, such a device suffers in its efficiency from higher total entropy, i.e., the eigenvectors of the momentum space of the gas are not as far apart if the gas has to expand, but supplying heat at small scales is typically easier than carrying it away.
Triangular
The triangular geometry detailed in
The momentum space of this triangular geometry is more efficiently biased, as is illustrated in
Sawtooth
The relationships of the chamfer angles described here are preferred limitations, not hard boundaries. In general for materials exhibit perfectly specular molecular reflection properties, the relationships of the chamfer angles can be slightly relaxed. For materials exhibit less than perfectly specular molecular reflection properties, the relationships shall be stringent. The chamfer geometries are preferably arranged so as to minimize shared bases. The surface normals of the specularly reflecting chamfer surfaces can thus preferably be orthogonal. Deviations from orthogonality can incur a penalty in efficiency as a cosine function. For engineering reasons, the hot and cold surfaces of the sawtooth arrangement may not come to a fine point.
In the illustrated device, the through holes 1103 in all layers in the stack 1100 are aligned. Temperatures of the hot layers 1102 in each device in the stack 1100 do not increase monotonically from one side of the stack to the other side. Temperatures of the cold layers 1101 in each device in the stack 1100 do not decrease monotonically from one side of the stack 1100 to the other side. Each cold layer 1101 is colder than its immediate adjacent hot layers 1102 and each hot layer 1102 is hotter than its immediate adjacent cold layers 1101.
The sawtooth geometry shown in
Furthermore, because the hot layers 1102 have a lower exposed surface area than the cold layers 1101, and because the cold layers 1101 are preferably oriented at a shallower angle relative to the center axis of the through hole 1103 than in the triangular geometry, the sawtooth geometry is capable of reducing the entropy in the gas (and thereby causing it to do more work) more efficiently than the triangular geometry. The momentum space of this sawtooth geometry is more efficiently biased than the momentum space of the triangular geometry, as is illustrated in
In the triangular configuration, device slices on opposite sides of a cross section have a magnitude of 1/√{square root over (5)}, in the y axis because their separation angle 90 degrees. This limits the efficiency of entropy reduction, as some of the entropy is going to be neutralized in direct inter-surface interaction.
In the sawtooth configuration, however, the hot layers 1102 not only share no basis with the adjacent cold layers 1101, but also share very little basis with hot and cold layers across the through hole 1103. This combined property makes the sawtooth geometry more efficient than the triangular geometry.
After NMSET or related device is powered (i.e. temperature differential is established), gas particles rebounding from cold layers have a reduced net velocity, while gas particles rebounding from hot layers have higher net velocity.
Means for Establishing Temperature Differential
Internal Peltier
According to one embodiment, each element in the device geometry acts both as a particle director and as the entropy reducer. In a Peltier device, the hot and cold plates are made of materials with different Peltier coefficients. Electrical current is made to flow between the cold and hot plates. This flow of current carries with it Peltier heat, establishing the temperature differential necessary to operate the device. In some embodiments, piezoelectric spacers can be disposed between device elements to maintain the separation gaps therebetween.
A cross section of NMSET or related device according to an embodiment with an internal Peltier arrangement is detailed in
NMSET or related device with the internal Peltier arrangement can make it easier to reduce the size of the device. A single stack such as the one shown in
Field-Enhanced Thermionic Emission
In another embodiment, the temperature differential can be generated by field-enhanced thermionic emission. As shown in
External Peltier
In another embodiment, the temperature differential can be generated by a heat pump, such as a Peltier device external to NMSET or related device. This Peltier device arranged in a checker board fashion is thermally coupled to NMSET or related device stack 1500 via interface layers 1510 and 1520 as detailed in
A device with an external Peltier device has the benefit of separating the materials used to generate gas flow from the materials used to generate the temperature differential. From an engineering standpoint this may be desirable, as the materials suitable for a heat pump may not be suitable for microstructures, or vice versa. In addition, an external heat pump can be made larger and more efficient, and may require less current to establish a sufficient temperature differential.
Piezoelectric spacers can be used between layers. Materials suitable for use in NMSET preferably are strong enough to mechanically withstand thermal expansion and contraction, and/or preferably have very small expansion coefficients. Otherwise, holes in the layers could become misaligned, which could reduce efficiency.
External Non-Peltier
According to yet another embodiment, a temperature differential is established by any suitable heat source and/or heat sinks. For example, the heat sources might be field-enhanced thermionic emission, resistive heaters, chemical reaction, combustion, and/or direct illumination of bright light or other forms of radiation. An illustration of such an embodiment is shown in
The capillaries 1750 illustrated in
Materials
NMSET and related devices may be constructed of a wide range of materials. In various aspects, properties of materials may be exploited in combination with desirable geometries.
Specular reflection of gas molecules is a preferred property of the materials which form the gas-exposed surfaces of NMSET or related device, e.g. the heated and cooled surfaces which are in contact with flowing gas. Specular reflection is the mirror-like reflection of light, or in this case gas particles, from a surface. On a specular surface, incoming gas particles at a single incident angle are reflected from the surface into a single outgoing angle. If the incoming gas particles and the surface have the same temperature, the incident angle and the outgoing angle with respect to the surface normal are the same. That is, the angle of incidence equals the angle of reflection. A second defining characteristic of specular reflection is that incident, normal, and reflected directions are coplanar. If the incoming gas particles and the surface are not at the same temperature and the reflection is diabatic (i.e. with heat exchange between the gas particles and the surface), the angle of reflection is a function of heat transferred between the surface and the gas particles.
The degree of specularity of a material may be represented by a reflection kernel (such as the Cercignani-Lampis kernel) which is defined as the probability density function of reflected state of the gas particles per unit volume of the phase space. Details of the reflection kernel are disclosed in “Numerical Analysis of Gas-Surface Scattering Effect on Thermal Transpiration in the Free Molecular Regime”, Vacuum, Vol. 82, Page 20-29, 2009, and references cited therein, all of which are hereby incorporated by reference.
Individual hot and cold layers may also be constructed of one or more structural elements which can comprise structural materials, e.g. a means for conferring rigidity, thermal conductive material, e.g. a means for heat transfer to and from a temperature differential generating means, and atomic reflection material, e.g. means for providing a desirable reflection kernel properties. In some embodiment, individual hot and cold layers may be constructed of layered composites of such materials.
Thus, the choice of materials is and composition is widely variable. In some embodiments, materials suitable for construction of NMSET or related device can include titanium, silicon, steel, and/or iron. Titanium is light weight and possesses a hexagonal crystalline structure. Interfaces of titanium may be created at orthogonal angles without crystalline warping and therefore no stress limit. Material costs of titanium are high. Silicon is inexpensive and has well understood properties and processes for machining. The crystalline structure of silicon is diamond cubic. Steel is cheaper than titanium, possesses a cubic crystalline structure, and is highly resistant to gaseous intrusion. Iron is cheaper than steel and has a crystalline form which makes it suitable for application in NMSET and related devices.
Exemplary Methods of Manufacturing NMSET or Related Device
According to one embodiment as shown in
According to another embodiment as shown in
Exemplary Thermal Transpiration Devices with Vacuum Layer
Though somewhat redundant,
Colder gas particles 2304, which have a mean free path (average distance traveled before hitting another particle) shown by radius 2305, enter the aperture 2308, or the edge thereof, and collide with other particles, thus exchanging energy. Hotter gas particles 2306, which have a mean free path shown by radius 2307, collide into the hotter layer 2301, thus gaining energy in the process and imparting a positive momentum force. The colder gas particles 2304 reduce the temperature of the hotter gas particles 2306, which collide back into the hotter layer 2301, thus gaining energy and imparting a positive momentum force and increased pressure on the hot layer 2301.
Apertures 2408 are provided in the device 2414, forming angled walls 2415 in the hotter layer 2401, in a manner as previously described. The apertures 2408, and/or edges thereof, aid in defining a hotter surface 2409, a colder surface 2410, an active area 2411 generally where thermal transpiration occurs, and a support area 2412. As shown in
While
Apertures 2608 are provided in the device 2615, and forming wet or dry etched walls 2614 in the hotter layer 2601 having a generally parabolic shape, in a manner as previously described. The apertures 2608, and/or edges thereof, aid in defining a hotter surface 2609, a colder surface 2610, an active area 2611 generally where thermal transpiration occurs, a support area 2612 and wet or dry etched surfaces 2614.
Reference number 2605 indicates the mean free path radius of colder gas particles 2604. Reference number 2607 indicates the mean free path radius (the average distance traveled before hitting other particles) of hotter gas particles 2606. The colder gas particles 2604, enter the aperture 2608, or the edge thereof, and collide with other particles, thus exchanging energy. The hotter gas particles 2606 collide into the hotter layer 2601 at the outer edge thereof or at the wet-etched surface 2614, thus gaining energy in the process and imparting a positive momentum force. The colder gas particles 2604 reduce the temperature of the hotter gas particles 2606, which collide back into the hotter layer 2601 thus gaining energy and imparting a positive momentum force and increased pressure on the hot layer 2601.
While
Apertures 2808 are provided in the device 2816, forming angled walls 2817 and 2818 in the hotter 2801 and colder 2802 layers, respectively, in a manner as previously described. The apertures 2808, and/or edges thereof, aid in defining a hotter surface 2809, a colder surface 2810, an active area 2811 generally where thermal transpiration occurs, a support area 2812 for the hotter layer 2801, and a support area 2815 for the colder layer 2802. As shown in
In an ideal thermal transpiration device, the total thickness of the active area of the device designed to operate in atmosphere should be less than 500 nm. For optimization purposes, the thickness between the hot and cold surfaces should be no greater than 100 nm. Such small thicknesses make the device extremely fragile and difficult to work with. If, for example, the device layers, or membranes, are made thicker in order to provide the required thickness for the stability and strength of the device, its overall thickness would increase to a point that it exceeds the ideal thickness, as discussed above.
As shown in
A dielectric layer 2918 is deposited on top of the first metal layer 2917. The dielectric layer 2918 must be low stress and may be formed of a plastic or inorganic non-electrically conducting film material. The film (i.e., dielectric layer 2918) may be, in particular, low-stress (e.g., 60 MPa) plasma enhanced chemical vapor deposition oxynitride that is 2 microns thick. Other thicknesses are also contemplated.
An adhesion promoter layer 2919 may be deposited on dielectric layer 2918 to promote adhesion to the dielectric and or to act as an enhanced masking layer. Such material may be a chemical monolayer, such as HMDS, a thin film of organic resist, or a metal, in particular, 6 nm of chromium. The adhesion promoter layer 2919 may not be necessary on certain combinations of thin films and etching methods or etching chemicals.
The device is then etched, as is conventionally known, using a mask 2920 of approximately 1.3 microns SPR-3012, for example, with an unmasked area 2921.
Etching may be achieved by depositing the photoresist layer, or mask, 2920 over the adhesion promoter layer 2919, as is known to do by one of ordinary skill in the art. Such a photoresist is preferably Shipley SPR-3012; however, other photoresists may be utilized. The photoresist layer 2920 may then be exposed through a conventional mask to develop unmasked areas 2921. Exposure can be made, for example, using an appropriate wavelength of light. Contact lithography may also be used as would be understood by one of ordinary skill in the art. Once exposed, the photoresist layer 2920 may be developed in a solution appropriate for that purpose to form the unmasked areas 2921. Such a solution may be, for example, 0.26M tetramethylamonium hydroxide for SPR-3012 for approximately 60 seconds.
As shown in
The first metal layer 2917 may be etched with either wet or dry etching. In the case of aluminum, for example, an aluminum etch in a reactive ion etcher with chlorine and argon at low pressure may be used to etch the first metal layer 2917. An example of an etch for 40 nm of aluminum is 50 sccm BCl3, 20 sccm Cl2, 10 mTorr, with 300 W RF power.
A wet or vapor etch can be used to etch the substrate 2916, as long as the chemistry does not etch the first metal layer 2917, the dielectric layer 2918 or the second metal layer 2919. In the case of a silicon substrate with aluminum and oxynitride, the silicon may be etched, for example, with the gas XeF2. The substrate 2916 may also be treated to remove boron. One exemplary method of such a treatment is to use a fluorine based reactive ion plasma under the conditions of 35 sccm CF4, 20 mTorr, and 300 W RF power.
The substrate 2916 is then mounted to a carrier substrate (not shown) with the thin film stack facing the carrier. The mount material could be, for example, a double-sided tape, such as Revalpha thermal release tape. However, other tapes and materials, such as, for example, wax or photoresist, may be used as well.
The remaining silicon substrate 2916 is then removed with, for example, an XeF2 vapor etch. The small portions of the silicon dioxide layer 3224 and the second metal layer 3225 formed in the etched portion of the substrate 2916 are removed with the substrate 2916. Wet chemistry may also be used to remove the substrate 2916, as long as it does not etch the first and second metal layers 2917 and 3225. What is left, as shown in
Fault Tolerant Control System for Distributed Micro-Thrusters
In order to drive an object using distributed thrusters in a particular direction and or at a desired speed, a control system is needed. The control system is used to selectively activate and or adjust power levels to a distributed thruster or plurality of distributed thrusters to provide the desired force in the desired direction.
In accordance with the present control system, a control system for controlling the operation of distributed thrusters may be constructed as a grid of elements (each containing one or more thrusters) fed by at least a redundant two dimensional network of power distribution wiring. The distribution network is constructed as a plurality of loops comprised of horizontal and vertical lines or wires that are coupled to a plurality of horizontal rows and vertical columns of thrusters.
According to one embodiment of the present control system, each row and column loop meet or intersect in at least four locations, but alternating topologies may be designed to balance redundancy, number of loops, and the granularity of addressing. Alternate topologies may have a different number of crossings.
At least one power source may be supplied for each element in the grid or for a plurality of elements. One element may contain a plurality of thrusters. One terminal of the power source is connected to a horizontal line, and the other terminal of the power source is connected to a vertical line. This connection permits an element or group of elements to be addressed by connecting the terminals of a power source to the appropriate row and column.
In accordance with the general operation of the distributed thrusters such as NMSET, an electrical circuit is used to activate distributed thrusters by supplying and or regulating the amount of heat to the distributed thruster. An electrical circuit is formed by a loop comprised of the horizontal and vertical lines. Both ends of a given loop are driven at the same electrical potential. This means that a single cut anywhere in a given loop (as a result, for example, from damage to the array surface) will minimize a cascading loss of functionality. The heating or cooling caused by electrical circuit may be implemented by way of a heat pump, such as one driven by the Peltier effect using a Peltier slab. In this instance, the wiring are on either side of the distributed thrusters, and in a resistance embodiment explained below, they may be only on the hot side. In further embodiments of distributed thrusters, other methods of powering the distributed thrusters can be used.
At least one power supply 3406 provides power to selected distributed thrusters 3402 using a first plurality of power lines 3404 and a second plurality of powers lines 3405 which are coupled to the distributed thrusters in each of the horizontal rows and in each of the vertical columns, respectively. When one of the power lines 3404 is selected along with one of the power lines 3405, an electrical circuit is completed and at least one of the distributed thrusters is activated by the methods the distributed thrusters convert energy into thrust. A control unit 3403 controls the activation and or power levels of the selected power lines 3404 and 3405 for the desired thruster or group of thrusters.
As used in the present control system, the power supply 3406 may be a battery and the control unit 3403 may be a central processing unit. Further, thruster 3402 may comprise a plurality of thruster devices.
A NMSET device may comprise an apparatus operable to propel a gas where the apparatus comprises at least a first layer and a second layer arranged in a stack and means for heating and/or cooling the first and second layers to form a hot layer and a cold layer wherein the cold layer has a lower temperature than the hot layer, and at least one through hole in the stack. A surface of each hot layer is exposed in an interior of the through hole, a surface of each cold layer is exposed in the interior of the through hole, and an entire length of the active area of the through hole is up to 10 times of a mean free path of a gas in which the apparatus is immersed and/or is not greater than 1500 nm, as explained above.
In a given NMSET device at least one through hole may have a straight geometry, a sawtooth geometry, a triangular geometry, a parabolic geometry, or any geometry that may be determined to be beneficial for the NMSET device, as explained above.
In one embodiment of the control system, in order to achieve redundancy and avoid system failure when a fault condition occurs in a power line, redundant path connections are provided as illustrated in
A capacitor bank voltage sensing technique may be used to detect a fault. By designing the capacitor bank to not discharge completely in a single pulse, and measuring the voltage charge before and after a power pulse has been sent to a thruster element or a group of thruster elements, it is possible to determine the power consumed by the thruster or group of thrusters and compare this to the expected power. If the drop is significantly smaller than expected, this is a sign of an open circuit; a significantly large drop indicates a short.
In-line current sensing may also be used to detect a fault. A shunt resistor may be placed in series with the power distribution lines in order to measure the instantaneous current being drawn by the array. If the current is usually low, some cells may be open. If the current is excessively high, there is a short. The primary disadvantage of this method is that it increases the series resistance between the power supply and the thrusters by a small (but nonzero) amount.
The significant advantage of this method over sensing the capacitor voltage after a pulse is that it is possible to design a system fast enough (most likely at a few MHz level sampling rate) to respond in real time to a short circuit and abort the pulse before enough energy has been released to cause serious damage to adjacent thrusters from arcing, or to the power supply from rapid discharge and consequently overheating. This system may also be applied to a distributed thrusters operated in the continuous-duty mode.
Once a portion of the distributed thrusters has been declared faulty by any of the above methods, or another method as recognized by one of ordinary skill in the art, corrective action must be taken to minimize loss of thrust and or prevent cascading failures.
When performing timing analysis of pulsed distributed thrusters during the design phase, it is prudent to allow more than the minimum required cool-down time between successive pulses to any section of thrusters. If this is done, the overall thrust may be maintained by removing the damaged thrusters or section of thrusters from the firing sequence and operating the remaining undamaged thrusters or sections at a slightly increased duty cycle.
An increase in duty cycle can only compensate for a maximum amount of damage to the system. If this threshold is exceeded, a reduction in available thrust is unavoidable; an array's control system can be designed to compensate for loss of thrust capacity on one side of a craft or other application using the distributed thruster by slightly reducing the thrust on the corresponding opposite panel to maintain a level trim.
Because it may be undesirable for the heating of one point to cause heating of adjacent points, another exemplary embodiment is illustrated in
Exemplary Resistive Temperature Gradient Formation
Reference is made to the section entitled “Principles of Operation” and subsection “Temperature Differential”, above, incorporated here by reference.
One terminal of power supply 4307 is connected to top surface 4302 of the colder layer 4301 and the other terminal of power supply 4307 is connected to one side of switch 4308. The other side of switch 4308 is connected to bottom surface 4303 of the hotter layer 4304. The hotter layer 4304 is made of or is a structure with sub-layers that include a layer of a resistive material that heats up through resistive or Joule heating when electrical current passes through it. In embodiments with sub-layers, one might be an insulating material with reduced thickness near the locations a thermal gradient is to be produced, and a metallization layer that is configured to heat at a greater rate at the thermal gradient locations.
The colder layer 4301 might be of a material less subject to Joule heating in the operative locations. The difference in resistive, Joule heating characteristics can be accomplished through selection of materials, configuration (e.g., the hotter layer being thinner at the sites where heat is to be generated when compared to an opposing location of the colder layer so that the electron density in the hotter layer promotes Joule heating at a greater extent that the colder layer) or other factors that permit one layer to heat up to a greater extent or faster than an adjacent layer, or combinations thereof of these characteristics, depending on a particular embodiment. For instance, the hotter layer can be made up of surface wires that thin or become more narrow or otherwise have smaller in cross-section at sites where heating is desired, e.g., at a NMSET structure or groups of NMSET structures, such that the charge carrier density/resistance is greater at those sites, and Joule heating is more apparent. The colder layer can be a thicker, less resistive material having a broader area (e.g., cover the entire surface of the hotter layer) to reduce carrier density. Whatever the mechanism, the current in one layer promotes Joule heating, and in the other layer does not, at least not to the same extent of Joule heating in the one layer.
Further, the mechanism for passing current from one layer to the other can follow any suitable method or mechanism, such as quantum tunneling, semiconductor conduction were the colder and hotter layers are P-type and N-type semiconductors forming a PN junction, with electrode formed thereon on opposing surfaces, transistors connected to address line, similar to the read/write and address lines of memory devices, that permit an adjacent electrode to heat on one surface, with the switch being much like the structure of an addressable memory site or pixel, but with the memory site or pixel structure being replaced with an electrode that thermally heats, or nearly any other type of structure that will selectively address thermal gradient devices or clusters of such devices.
Alternatively or additionally, the hotter layer can have an input side and an output side in the same layer, wherein current passes through from one side to the other, resistively heating the hotter layer. This embodiment can produce heat at selected sites, and less so elsewhere, when the hotter surface is not entirely covered by an electrically conductive material, but rather has conductive lines, wherein the lines have characteristics that permit heating at selected sites, such as NMSET structures of groupings. That is, the lines can be large enough is cross-section to not heat, but at selected sites have a reduced cross-section to selectively heat upon application of current.
In the embodiment of
The temperature of surface 4403 when switch 4406 is closed follows a similar but delayed pattern 4507 as the heat from layer 4402 begins to migrate toward surface 4403 through layer 4401 as indicated by plot 4502. The temperature of surface 4403 continues to rise even slightly after the switch 4406 in
Thus, the temperature gradient between temperature 4504 of surface 4404 and the temperature 4505 of surface 4403 at a given time is represented in
As
With reference again to
For example, the control unit 4600 shown in
Using
As can be seen, the disclosed embodiments can have many applications for creating and maintaining thermal gradients. In particular, though not limited thereto, the thermal gradient structures can be in heat pumps to drive distributed thrusters, and even more particularly distributed thrusters driven by NMSET of many forms and variations disclosed elsewhere herein.
In accordance with an exemplary embodiment, when the first pressure producing device 5104 is operated by the control unit 5130, ambient gas 5102 is compressed into the space 5106 between the first and second pressure producing devices 5104, 5108. When the second pressure producing device 5108 is operated by the control unit 5130, the compressed gas in space 5106 is compressed further into outlet aperture 5110. Thus, the compressor 5100 operates in a two stage fashion.
It can be appreciated that at each stage, the gas pressure is increased. For example, the pressure of the gas in space 5106 due to the operation of the first pressure producing device 5104 might be 1.5× the pressure of the surrounding ambient gas 5102, for example. The pressure of the gas in outlet aperture 5110 might also be 1.5× the pressure of the gas in space 5106 due to the operation of second pressure producing device 5108.
In accordance with an exemplary embodiment, the outlet aperture 5110 is preferably a closable opening, which can be connected to any convenient container for storing the compressed gas. In this regard, the outlet aperture 5110 can include for example, a threaded area to accommodate such a connection. The housing 5120 can further include a closable opening, which is adapted to receive a threaded closure. It can be appreciated that any type of connector can be used including but not limited to a threaded connector, a flange, which can be welded, brazed, taper threaded, or rolling and bending into recesses, and/or a welded connection. The outlet aperture 5110 can be adapted to receive a sealed container, such as a compressor tank and/or a gas hose.
Like the embodiment shown in
As described herein, for example, the invention may be embodied in software (e.g., a plug-in or standalone software), in a machine (e.g., a computer system, a microprocessor-based appliance, etc.) that includes software in memory, or in a non-transitory computer-readable storage medium configured to carry out the control schemes (e.g., in a self-contained silicon device, a solid state memory, an optical disc, or a magnetic disc, among others).
While the foregoing specification teaches the principles of the present disclosure, with examples provided for the purpose of illustration only, it will be appreciated by one skilled in the art from reading this disclosure that various changes and modifications in form and detail can be made, and equivalents employed, without departing from scope of the appended claims, which are to be given their full breadth.
This application contains references to U.S. Provisional Application Nos. 61/239,446, filed Sep. 3, 2009, 61/264,778, filed Nov. 27, 2009, 61/296,198, filed Jan. 19, 2010, and 61/448,583, filed Mar. 2, 2011, and PCT International Application No. US2010/002428, filed Sep. 3, 2010, the entire contents of which are hereby incorporated by reference herein. Priority is claimed to U.S. Provisional Application No. 61/448,583, filed Mar. 2, 2011.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/027320 | 3/1/2012 | WO | 00 | 1/3/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/118991 | 9/7/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4628704 | Kilby | Dec 1986 | A |
4802333 | Smith | Feb 1989 | A |
5290048 | Takahashi | Mar 1994 | A |
6263665 | Ketsdever | Jul 2001 | B1 |
6378292 | Youngner | Apr 2002 | B1 |
6533554 | Vargo et al. | Mar 2003 | B1 |
6984273 | Martin et al. | Jan 2006 | B1 |
7069733 | Lucas et al. | Jul 2006 | B2 |
7603028 | Yassour | Oct 2009 | B2 |
20040031259 | Baricos et al. | Feb 2004 | A1 |
20050022552 | Lucas et al. | Feb 2005 | A1 |
20060001569 | Scandurra | Jan 2006 | A1 |
20080134924 | Sawka | Jun 2008 | A1 |
20080159877 | Sugimoto et al. | Jul 2008 | A1 |
20090053076 | Vos | Feb 2009 | A1 |
20090257896 | Mulet Martinez | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
S63-056431 | Mar 1988 | JP |
H05-501026 | Feb 1993 | JP |
2 124 650 | Jan 1999 | RU |
2 339 884 | Nov 2008 | RU |
WO 0109063 | Feb 2001 | WO |
2005090795 | Sep 2005 | WO |
Entry |
---|
Rossi C et al. “Matrix of 10×10 addressed 1-16 solid propellant microthrusters: Review of the Technologies,” Sensors and Actuators A, Elsevier Sequoia S.A., Lausanne, Ch., vol. 126, No. 1, Published Jan. 26, 2006, pp. 241-252, ISSN: 0924-4247 (12 pages). |
Extended European Search Report Issued May 11, 2015 in corresponding European Patent Application No. 12752905.5 filed on Mar. 1, 2012 (7 pages). |
International Search Report (PCT/ISA/210) mailed on May 31, 2012, by the U.S. Patent Office as the International Searching Authority for International Application No. PCT/US2012/027320. |
Written Opinion (PCT/ISA/237) mailed on May 31, 2012, by the U.S. Patent Patent Office as the International Searching Authority for International Application No. PCT/US2012/027320. |
Japanese Office Action issued by the Japanese Patent Office on Aug. 23, 2016 in corresponding Japanese Application No. 2013-556869 with full English translation (8 pages). |
First Official Notification issued by the lsrael Patent Office on Aug. 30, 2016 in corresponding Israeli Application No. 228166 with unofficial translation (English summary) (10 pages). |
Notice of Reasons for Rejection issued by the Korean Intellectual Property Office on Sep. 5, 2016 in corresponding Korean Application No. 10-2015-7007235, with English translation (11 pages). |
Number | Date | Country | |
---|---|---|---|
20140161633 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61448583 | Mar 2011 | US |