This disclosure relates generally to data processing and, more specifically, to distributing service sessions in service data networks.
The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Regular service load balancers such as server load balancers, application delivery controllers, and traffic managers, typically distribute a load among a plurality of servers providing network services such as web documents, voice calls, advertisements, enterprise applications, video streaming services, file transfers, gaming, or various broadband services. A network service is associated with an IP address. In an IP network, an IP address is assigned to a network device. Network routers and switches are designed to forward data packets addressed to the IP address to the assigned network computing device. However, currently, the same IP address cannot be assigned to multiple network computing devices connected with network routers and switches.
When a service provider deploys a network service, the service provider needs to take into account changes in client demand from high demand to low demand. In one scenario, a software vendor provides software patches on a regular basis. Normally, a single service load balancer is capable of handling software patch download demand.
For example, when a software vendor rolls out a major software update, the software vendor should anticipate a dramatic increase in download demand shortly after the major software update is released. To handle the increasing demand, the software vendor can plan to add two additional service load balancers and four more patch servers. The software vendor could use different IP addresses for the additional service load balancers. However, this solution would require the client devices to learn the new IP addresses before requesting the software update service.
After a day of the major software update release, the software vendor experiences a substantial decline in service demand. The software vendor can remove some added service load balancers and patch servers. The client devices need to re-acquire the IP address of the remaining service load balancer in order to use the software patch service.
It is therefore desirable that there is a need to provide a scalable dynamic service network to distribute service sessions to a plurality of service load balancers according to a service address.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The present disclosure is related to approaches for distributing service sessions in a service data network. Specifically, a method for distributing service sessions in a service data network may comprise receiving, by a forwarding node, a packet associated with the service session. The method can further include determining, by the forwarding node, whether the packet is matching a service address. The service address is associated with the service session being distributed. The method further includes selecting a servicing node from a plurality of servicing nodes based on a forwarding policy and sending the packet to the selected servicing node. Each of the plurality of servicing nodes is associated with the service address. The forwarding policy can include a criterion for selecting a forwarding node from among the forwarding nodes belonging to the service data networks.
The method for distributing service session can further proceed with the servicing node receiving the packet, and the servicing node determining whether the packet is a service request packet. Upon the determination, the method continues with the servicing node server selecting a server, wherein the server is configured to serve the service session, and sending the packet to the selected server. The selection of a server is carried out based on a service policy. The service policy can include criteria associated with selection of a server using information retrieved from the packet (such as, for example, a network address of a client device from which the packets of the service session are sent, a user identity, a HTTP cookie, a session identifier, or a pattern in a data packet).
In some embodiments, a forwarding node may be configured to receive packets from a gateway node. Before receiving the packet by the forwarding node, the method may include receiving, by the gateway node, a notification and the packet, determining whether the packet matches the service address associated with the service session, selecting the forwarding node based on the notification, and sending, by the gateway node, the packet to the forwarding node. The notification can include a source network address of the packet and a forwarding node address.
According to another approach of the present disclosure, there is provided a system for distributing service sessions in a service data network. The system may comprise a gateway node, one or more forwarding nodes, one or more servicing nodes, and a network controller. In some embodiments, the gateway node may receive a packet associated with a service session from a client device and a notification. The gateway node can further determine whether the packet matches a service address, with the service address being associated with the service session. The gateway node can select a forwarding node from the one or more forwarding nodes of the service data network based on the notification and send the packet to the selected forwarding node.
The forwarding node is configured to receive the packet, determine whether the packet matches the service address, select a servicing node from one or more servicing nodes of the service data network based on a forwarding policy, and send the packet to the selected servicing node. The forwarding policy may include criteria for selecting a forwarding node between the forwarding nodes belonging to the service data networks.
The servicing node can be configured to receive the packet, determine whether the packet is a service request packet, select a server from a plurality of severs based on a service policy, wherein the server is configured to serve the service session, and send the packet to the server. The service policy can include criteria for selecting a server using information retrieved from the packet (such as, for example, a network address of a client device from which the packets of the service session were sent, a user identity, a HTTP cookie, a session identifier, or a pattern in a data packet).
In some embodiments, the network controller can be configured to provide one or more of the following: a notification and forwarding policy to a gateway node, a forwarding policy to a forwarding node, and a service policy to a servicing node. In certain embodiments, the gateway policy and servicing policy may be stored in a memory storage associated with the corresponding network nodes.
In further example embodiments of the present disclosure, the method steps are stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the recited steps. In yet further example embodiments, hardware systems, or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.
Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements.
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
The techniques of the embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a disk drive, or computer-readable medium. It should be noted that methods disclosed herein can be implemented by a computer (e.g., a desktop computer, a tablet computer, a laptop computer, and a server), game console, handheld gaming device, cellular phone, smart phone, smart television system, and so forth.
The method of the current disclosure may include receiving, by a forwarding node, a packet of a service session, determining by the forwarding node whether the packet is matching a service address, with the service address being associated with the service session. Responsive to the determination, the method can proceed with selecting a servicing node from a plurality of servicing nodes based on a forwarding policy, wherein each of the plurality of servicing nodes is associated with the service address, and sending the packet to the selected servicing node. In some embodiments, the method may further include receiving the packet by the servicing node, determining whether the packet is a service request packet, selecting a server, with the server being configured to serve the service session, and sending the packet to the server. In certain embodiments, before receiving the packet by the forwarding node, the method can include receiving, by the gateway node, a notification and the packet, determining whether the packet matches the service address, selecting the forwarding node based on the notification, and sending the packet to the forwarding node.
Referring now to the drawings,
According to some embodiments, service data network 100 can include an Ethernet network, an ATM network, a cellular network, a wireless network, a Frame Relay network, an optical network, an IP network or data network utilizing other physical layers, link layer capability, or network layers to carry data packets.
In some embodiments, the service data network 100 is connected to at least one client device 200. The client device 200 can be a personal computer (PC), a laptop, a smartphone, a cell phone, a tablet, a personal digital assistant (PDA), a desktop, a notebook, a set top box, a network connected device, a computer, a network connecting computing device, a network element such as an Ethernet switch, a router, or any network computing device seeking a service from a server.
In some embodiments, service data network 100 is connected to one or more servers 400. The server 400 may include a Web server, a video server, a music server, an e-commerce server, an enterprise application server, a news server, a mobile broadband service server, a messaging server, an email server, a game server, an app server, an Internet radio server, a storage server, a social network services server, or a network computing device. The network computing device is operable to provide services to a service session 210 coming from client device 200.
In some embodiments, service network 200 is configured to serve service address 220. The service address 220 represents a network address for service session 210 between client 200 and a server 400. In certain embodiments, the service address 220 includes one or more of an IP address, a TCP port number, a UDP port number, a data link layer identity, a VLAN identity, a network identity, and a service identity.
In some embodiments, client device 200 conducts service session 210 with server 400. Service session 210 may be a web page access session; an e-commerce transaction session; a video playing session; a music playing session; a file transfer session; an image downloading session; a message chat session; a session to send a message, a picture, a video, or a file; a game playing session; or any data communication session between client device 200 and server 400.
In certain embodiments, service session 210 includes one or more data packets sent by client 200. Data packets can be processed by service network 100 prior to being delivered to server 400. In some embodiments, data packets are received by the gateway node 110. Gateway node 110 is configured to examine data packets and determine whether to forward the data packets to forwarding node 120. Forwarding node 120 is configured to receive data packets of service session 210 from the gateway node, examine the data packets, and determine whether to forward the data packets to servicing node 130. In one embodiment, servicing node 130 is configured to receive data packets of service session 210, process the data packets, select server 400 to handle the service session 210, and forward the data packets to selected server 400.
Referring now to
In some embodiment, network module 107 includes a network interface such as an Ethernet, optical network interface, a wireless network interface, T1/T3 interface, or a WAN or LAN interface. In certain embodiments, network module 107 includes a network processor.
In some embodiment, storage module 108 includes RAM, DRAM, SRAM, SDRAM or memory utilized by processor module 106 or network module 107. The storage module 108 can be configured to store data utilized by processor module 106.
In other embodiments, storage module 108 includes a hard disk drive, a solid state drive, an external disk, a DVD, a CD, or a readable external disk. Storage module 108 stores one or more computer programming instructions which when executed by processor module 106 and network module 107 implement one or more of the methods described in present disclosure.
In certain embodiments, the data packet 215 includes service address 220 as a destination network address. Gateway node 110 can be configured to retrieve and determine whether the destination network address of the data packet 215 matches the service address 220. Upon determining that data packet 215 matches service address 220, the gateway node 110 checks a forwarding policy 115 to determine where to forward the data packet 215. In particular embodiments, the forwarding policy 115 can include a forwarding table, a TCAM table, a hash table, a look-up table, an application programming interface (API), or a set of computer programming instructions.
If, for example, the gateway node 110 is connected to forwarding node 121, and forwarding policy 115 indicates that forwarding node 121 is selected, then the gateway node 110 forwards the data packet 215 to the forwarding node 121.
If, for example, the gateway node 110 is connected to the forwarding node 121 and forwarding node 122, and the forwarding policy 215 indicates that the forwarding node 121 is selected, then the gateway node 110 forwards the data packet 215 to the forwarding node 121.
In some embodiments, forwarding policy 115 can include a criterion for selecting a forwarding node between the forwarding node 121 and the forwarding node 122. The criterion in forwarding policy 115 can indicate that the selection is based on the source network address of data packet 215. The gateway node 110 is configured to retrieve a source network address, which can include one or more of an IP address, a transport layer address, a link layer address, and a network identity. The gateway node 110 can be further configured to make a decision based on the retrieved source network address and the criterion of forwarding policy 115. In certain embodiments, gateway node 110 applies a hashing function, according to the criterion, to the retrieved source network address. In other embodiments, the gateway node 110 looks up a table using the retrieved source network address. In another embodiment, gateway node 110 processes only a portion of the retrieved source network address to determine a forwarding node. After the gateway node 110 determines and selects forwarding node 121 or 122 in accordance to criterion of the forwarding policy 115, the data packet 215 is sent to the selected forwarding node.
In some embodiments, prior to receiving data packet 215, gateway node 110 may receive one or more indications that the forwarding node 121 and the forwarding node 122 are capable of handling data packets for service address 220. In other embodiments, the gateway node 110 can be configured to store a prior forwarding policy and update the prior forwarding policy with the indications to create forwarding policy 115. In certain embodiments, the gateway node 110 is configured to receive the forwarding policy 115 from a network controller 300.
In some embodiments, the gateway node 110 includes a routing module implementing a routing protocol, which may be an IP routing protocol such as Open Shortest Path First (OSPF), ISIS (Intermediate System to Intermediate System), Routing Information Protocol (RIP), Border Gateway Protocol (BGP), E-BGP or I-BGP. The gateway node 110 receives one or more indications through one or more routing protocols indicating forwarding node 121 or forwarding node 122 are capable of handling data packets for service address 220.
In certain embodiments, the gateway node 110 includes an aggregated link, a link aggregated group, or a group of links connecting to the forwarding node 121 and the forwarding node 122. The gateway node 110 creates forwarding policy 115 to support a plurality of forwarding paths for service address 220, such as paths to both the forwarding node 121 and the forwarding node 122. In some embodiments, gateway node 110 can create the forwarding policy 115 based on ECMP (Equal Cost Multi-Path) routing, configuration of LAG (link aggregation group) or MLAG (multi-link aggregation group) to support multiple forwarding paths.
In some embodiments, forwarding policy 115 includes a criterion that the same forwarding node should be selected for data packets of the same service session, or data packets from a same client. In further embodiments, forwarding policy 115 includes a criterion that the same forwarding path should be selected for data packets of the same service session or from the same client. Such criteria are useful to assure that data packets of the same service session or from a same client are delivered to the same forwarding node or the same forwarding path.
Referring now to
If, for example, the forwarding node 120 is connected to servicing node 131, and the forwarding policy 125 indicates to forward the data packet 215 to servicing node 131, then the forwarding node 120 sends the data packet 215 to the servicing node 131.
In other example embodiment, the forwarding node 120 is connected to the servicing node 131 and servicing node 132. If the forwarding policy 120 indicates that the servicing node 131 should be selected, then the forwarding node 120 forwards data packet 215 to the servicing node 131. In some embodiments, the forwarding policy 125 may indicate a criterion for selecting a servicing node between the servicing node 131 and the servicing node 132.
In some embodiments, the criterion of the forwarding policy 125 can indicate that the selection should be based on a source network address of the data packet 215. Forwarding node 120 retrieves a source network address of the data packet 215. The source network address may include one or more of an IP address, a transport layer address, and a link layer address. Forwarding node 120 is configured to make the selection based on the retrieved source network address.
In other embodiments, the forwarding node 120 applies a hashing function to the retrieved source network address in accordance to a criterion of the forwarding policy 125. In some embodiments, the forwarding node 120 is configured to look up a table based on the retrieved source network address. In certain embodiments, forwarding node 130 is configured to process only a portion of the retrieved source network address to determine a servicing node. After the forwarding node 120 determines and selects a servicing node based on the forwarding policy 125 criterion, the forwarding node 120 sends data packet 215 to the selected servicing node.
In some embodiments, prior to receiving data packet 215, the forwarding node 120 can receive one or more indications that either servicing node 131 or servicing node 132 are capable of handling data packets for the service address 220. In certain embodiments, the forwarding node 120 can include a prior forwarding policy and generate the forwarding policy 125 according to the indications and the prior forwarding policy.
In other embodiments, the forwarding node 120 is configured to receive the forwarding policy 125 from the network controller 300. In further embodiments, the forwarding node 120 stores the forwarding policy 125 to a storage module of the forwarding node 120 prior to applying the forwarding policy 125.
Referencing now to
In some embodiments, the data packet 215 includes a service request. The service request can include a HTTP request, an IP header, a HTTP cookie, a FTP command, a video/music/file service request, or a piece of data indicating a request for a service. The servicing node 120 processes the service request of the data packet 215 and uses service policy 135 to select a server (for example, server 401). The servicing node 130 sends the service request of the data packet 215 to the selected server 401.
In some embodiments, servicing node 130 can be connected to the server 401 and server 402, which are both capable of serving the service request of the data packet 215, and the servicing node 130 selects a server according to the service policy 135.
In some embodiments, the service policy 135 may indicate a selection criterion which is based on information of the client device 200, such as a network address of client device 200, a user identity, a HTTP cookie, a session identifier or a pattern in a data packet. The servicing node 130 extracts the necessary information from data packet 215 according to the selection criterion. In certain embodiments, the servicing node 130 does not select a server immediately after processing the service request of the data packet 215. In these embodiments, the servicing node 130 extracts additional information from data packets of a subsequent service session received from the client device 200 in order to apply the selection criterion. In one embodiment, servicing node 501 selects a server based on a server load balancing criterion indicated in service policy 135.
In some embodiments, the servicing node 130 can retrieve the service policy 135 from storage module. In other embodiments, the servicing node 130 receives the service policy 135 from the network controller 300.
In some embodiments, the forwarding node 123 is configured to receive a forwarding policy 125 from the network controller 300. The forwarding policy 125 can include the service address 220. In certain embodiments, the forwarding node 123 is configured with service address 220 prior to receiving forwarding policy 125. In some embodiments, the forwarding node 123 informs the gateway node 110 that forwarding node 123 has joined the service network 100. In other embodiments, the forwarding node 123 informs gateway node 110 based on the forwarding policy 125. The forwarding node 123 can process a routing protocol in conjunction with the gateway node 110, and the forwarding node 123 notifies the gateway node 110 using the routing protocol. The forwarding node 123 can includes the service address 220 in the notification to the gateway node 110.
According to an example embodiment, the forwarding node 123 can establish connections to the servicing node 131 and the servicing node 132. The forwarding node 123 can establish the connections to the servicing nodes 131 and 132 in accordance to forwarding policy 125. The forwarding policy 125 can include criteria for packet forwarding. In certain embodiments, the forwarding node 123 is configured to store the forwarding policy 125 in a storage module and to apply the forwarding policy 125 to select a servicing node, as described in
The forwarding node 123 may inform the gateway node 110 after establishing connections to servicing nodes 131 and 132. In some embodiments, the forwarding node 123 establishes a connection with gateway node 110 prior to informing gateway node 110. In other embodiments, the forwarding node 123 establishes a routing protocol session with gateway node 110 and informs the gateway node 110 using the routing protocol session.
In some embodiments, network controller 300 can configured to inform the gateway node 110 that forwarding node 123 is available. The gateway node 110 updates a prior forwarding policy after being made aware of the forwarding node 123 in order to include the forwarding node 123. For example, if prior to including the forwarding node 123, the gateway node 110 is connected to the forwarding nodes 121 and 122, then after connecting to forwarding node 123, the gateway node 110 updates the prior forwarding policy in such a manner that the updated forwarding policy includes the forwarding nodes 121, 122 and 123.
In some embodiments, the forwarding node 123 receives an indication to leave service network 100 from the network controller 300. The forwarding node 123 may inform gateway node 110 that the forwarding node 123 is no longer participating in service network 100. The forwarding node 123 can inform the gateway node 110 via a routing protocol session with the gateway node 110. In certain embodiments, the network controller 300 can inform the gateway node 110 that the forwarding node 123 is no longer available. The gateway node 110 updates a prior forwarding policy associated with the gateway node 110 to make sure that the forwarding node 123 is no longer selectable based on the updated forwarding policy. In some embodiments, the gateway node 110 removes a connection to the forwarding node 123 since the forwarding node 123 is no longer selectable.
In some embodiments, the forwarding node 123 may remove an existing connection to servicing node 130. In certain embodiments, the network controller 300 informs the servicing node 130 to remove an existing connection to the forwarding node 123.
In some embodiments, the forwarding node 120 is made aware of the presence of servicing node 132 upon receipt of forwarding policy 125 from the network controller 300. The forwarding node 120 can further establish a connection to the servicing node 132 according to the forwarding policy 125. In certain embodiments, the forwarding node 120 is connected to the servicing node 131 before it becomes aware of the servicing node 132 and includes a prior forwarding policy. Forwarding node 120 updates the prior forwarding policy to include forwarding policy 125 and servicing node 132. The forwarding policy 125 can include both the servicing node 131 and the servicing node 132. Forwarding node 120 replaces the prior forwarding policy with forwarding policy 125. The updated forwarding policy can be stored in storage module of the forwarding node 120 to be applied later.
In an example embodiment, the servicing node 132 receives an indication from network controller 300 to exit the service network 100. The servicing node 132 may further inform the forwarding node 120. In some embodiments, the network controller 300 informs the forwarding node 120 that servicing node 132 is no longer available in service network 100. In certain embodiments, the forwarding node 120 receives indication of service node 132 leaving upon receipt of forwarding policy 125. The forwarding node 120 removes an existing connection with servicing node 132 after receiving the indication. The forwarding node 120 can update a pre-stored forwarding policy with the forwarding policy 125 so that servicing node 132 cannot be selected using the updated forwarding policy.
In some embodiments, the network controller 300 indicates to the servicing node 131 that servicing node 132 is no longer available in service network 100. The network controller 300 can provide the indication to servicing node 131 via a service policy.
Referencing back to
In further embodiments, a forwarding node can include the functionality of a servicing node. Sending data packets from a forwarding node to a servicing node may be carried out over an internal system bus or network interface, or over a software interface or API. The network controller disables and enables the servicing node functionality of the forwarding node.
In other embodiments, a servicing node includes the functionality of a server. The network controller disables and enables the server functionality of a servicing node. In some embodiments, a first forwarding node connects to a second forwarding node, and the first forwarding node has a forwarding policy to send a data packet of the service address to the second forwarding node, which forwards the data packet to a servicing node.
In some embodiments, different servicing nodes may have different system capabilities. A forwarding policy of a forwarding node considers the different system capabilities of the servicing nodes. In certain embodiments, different forwarding nodes have different forwarding policies, while in other embodiments the different forwarding nodes have the same forwarding policy. The network controller can determine a forwarding policy based on the different system capabilities of the servicing nodes.
In certain embodiments, functionality of a network controller can be included in a gateway node, a forwarding node, or a servicing node.
In some embodiments, a service network is configured to start with a network node, wherein the network node has combined functionalities of a gateway node, a forwarding node, and a servicing node. The service network is configured subsequently to include additional forwarding nodes and servicing nodes as described herein.
In certain embodiments, the service network is configured to serve a second service address, where at least one or more of a gateway node, forwarding nodes, and servicing nodes would process service sessions for the second service address in addition to the above mentioned service address. In some embodiments, the service network may share one or more of a gateway node, forwarding nodes, and servicing nodes with a second service network serving a second service address.
Referring now to
In step 1002, a notification and the packet belonging to the service session are received by a gateway node of the service data network 100. The notification may contain a service address associated with the services session and an address associated with a forwarding node.
In step 1004, a forwarding node is selected by the gateway node based on the notification. In step 1006, the packet is sent to the selected forwarding node. In step 1008, the packet is received by the forwarding node.
In step 1010, the forwarding node determines whether the packet matches a service address, with the service address being associated with the service session. Responsive to the determination, in step 1012, a service node is selected by the forwarding node based on a forwarding policy. The forwarding policy may comprise an address associated with a service node or may contain a criterion as to how to select a service node from a plurality of the servicing nodes of the service data network 100.
In step 1014, the packet is sent by the forwarding node to the selected servicing node. In step 1016, the packet is received by the servicing node. In step 1018, the servicing node determines whether the packet is a service request packet. Responsive to the determination, in step 1020, a server configured to serve the service request packet is selected by the servicing node based on a service policy. The service policy may comprise a criterion for selecting the server based, for example, on service address, an address of a client service where the packets of the service session are sent from, and so forth. In step 1022, the packet is sent to the selected server.
The example computer system 1100 includes a processor or multiple processors 1102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), a main memory 1104, and a static memory 1106, which communicate with each other via a bus 1108. The computer system 1100 may further include a video display unit 1110 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system 1100 may also include an alphanumeric input device 1112 (e.g., a keyboard), a cursor control device 1114 (e.g., a mouse), a disk drive unit 1116, a signal generation device 1118 (e.g., a speaker), and a network interface device 1120.
The disk drive unit 1116 includes a non-transitory computer-readable medium 1122, on which is stored one or more sets of instructions and data structures (e.g., instructions 1124) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 1124 may also reside, completely or at least partially, within the main memory 1104 and/or within the processors 1102 during execution thereof by the computer system 1100. The main memory 1104 and the processors 1102 may also constitute machine-readable media.
The instructions 1124 may further be transmitted or received over a network 1126 via the network interface device 1120 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).
While the computer-readable medium 1122 is shown in an example embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the machine and that causes the machine to perform any one or more of the methodologies of the present application, or that is capable of storing, encoding, or carrying data structures utilized by or associated with such a set of instructions. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals. Such media may also include, without limitation, hard disks, floppy disks, flash memory cards, DVDs, RAM, read only memory (ROM), and the like.
The example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware. The computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems. Although not limited thereto, computer software programs for implementing the present method can be written in any number of suitable programming languages such as, for example, Hypertext Markup Language (HTML), Dynamic HTML, Extensible Markup Language (XML), Extensible Stylesheet Language (XSL), Document Style Semantics and Specification Language (DSSSL), Cascading Style Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), Wireless Markup Language (WML), Java™, Jini™, C, C++, Pea UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusion™ or other compilers, assemblers, interpreters or other computer languages or platforms.
Thus, methods and systems for distributing service sessions are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This patent application is a Continuation-in-Part of U.S. patent application Ser. No. 14/029,656, titled “Load Distribution in Data Networks,” filed Sep. 17, 2013, which claims the priority benefit of U.S. provisional patent application No. 61/705,618, filed Sep. 25, 2012; and is a Continuation-in-Part of U.S. patent application Ser. No. 13/716,128, titled “Configuration of a Virtual Service Network,” filed Dec. 15, 2012. The disclosure of each of the above referenced applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5218602 | Grant et al. | Jun 1993 | A |
5432908 | Heddes et al. | Jul 1995 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5781550 | Templin et al. | Jul 1998 | A |
5875185 | Wang et al. | Feb 1999 | A |
5931914 | Chiu | Aug 1999 | A |
5935207 | Logue et al. | Aug 1999 | A |
5958053 | Denker | Sep 1999 | A |
5995981 | Wikstrom | Nov 1999 | A |
6003069 | Cavill | Dec 1999 | A |
6047268 | Bartoli et al. | Apr 2000 | A |
6131163 | Wiegel | Oct 2000 | A |
6141749 | Coss et al. | Oct 2000 | A |
6167428 | Ellis | Dec 2000 | A |
6219706 | Fan et al. | Apr 2001 | B1 |
6259705 | Takahashi et al. | Jul 2001 | B1 |
6321338 | Porras et al. | Nov 2001 | B1 |
6324286 | Lai et al. | Nov 2001 | B1 |
6360265 | Falck et al. | Mar 2002 | B1 |
6363075 | Huang et al. | Mar 2002 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6389462 | Cohen et al. | May 2002 | B1 |
6415329 | Gelman et al. | Jul 2002 | B1 |
6459682 | Ellesson et al. | Oct 2002 | B1 |
6519243 | Nonaka et al. | Feb 2003 | B1 |
6535516 | Leu et al. | Mar 2003 | B1 |
6578066 | Logan et al. | Jun 2003 | B1 |
6587866 | Modi | Jul 2003 | B1 |
6658114 | Farn et al. | Dec 2003 | B1 |
6728748 | Mangipudi et al. | Apr 2004 | B1 |
6748414 | Bournas | Jun 2004 | B1 |
6772334 | Glawitsch | Aug 2004 | B1 |
6779017 | Lamberton et al. | Aug 2004 | B1 |
6779033 | Watson et al. | Aug 2004 | B1 |
6832322 | Boden et al. | Dec 2004 | B1 |
6952728 | Alles et al. | Oct 2005 | B1 |
7010605 | Dharmarajan | Mar 2006 | B1 |
7013338 | Nag et al. | Mar 2006 | B1 |
7013482 | Krumel | Mar 2006 | B1 |
7058718 | Fontes et al. | Jun 2006 | B2 |
7058789 | Henderson et al. | Jun 2006 | B2 |
7058973 | Sultan | Jun 2006 | B1 |
7069438 | Balabine et al. | Jun 2006 | B2 |
7076555 | Orman et al. | Jul 2006 | B1 |
7086086 | Ellis | Aug 2006 | B2 |
7111162 | Bagepalli et al. | Sep 2006 | B1 |
7143087 | Fairweather | Nov 2006 | B2 |
7167927 | Philbrick et al. | Jan 2007 | B2 |
7181524 | Lele | Feb 2007 | B1 |
7218722 | Turner et al. | May 2007 | B1 |
7228359 | Monteiro | Jun 2007 | B1 |
7234161 | Maufer et al. | Jun 2007 | B1 |
7236457 | Joe | Jun 2007 | B2 |
7254133 | Govindarajan et al. | Aug 2007 | B2 |
7266604 | Nathan et al. | Sep 2007 | B1 |
7269850 | Govindarajan et al. | Sep 2007 | B2 |
7277963 | Dolson et al. | Oct 2007 | B2 |
7284272 | Howard et al. | Oct 2007 | B2 |
7290050 | Smith et al. | Oct 2007 | B1 |
7301899 | Goldstone | Nov 2007 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7308710 | Yarborough | Dec 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7328267 | Bashyam et al. | Feb 2008 | B1 |
7334232 | Jacobs et al. | Feb 2008 | B2 |
7337241 | Boucher et al. | Feb 2008 | B2 |
7343399 | Hayball et al. | Mar 2008 | B2 |
7349970 | Clement et al. | Mar 2008 | B2 |
7370100 | Gunturu | May 2008 | B1 |
7370353 | Yang | May 2008 | B2 |
7373500 | Ramelson et al. | May 2008 | B2 |
7391725 | Huitema et al. | Jun 2008 | B2 |
7398317 | Chen et al. | Jul 2008 | B2 |
7406709 | Maher, III et al. | Jul 2008 | B2 |
7423977 | Joshi | Sep 2008 | B1 |
7430755 | Hughes et al. | Sep 2008 | B1 |
7441270 | Edwards et al. | Oct 2008 | B1 |
7451312 | Medvinsky et al. | Nov 2008 | B2 |
7463648 | Eppstein et al. | Dec 2008 | B1 |
7467202 | Savchuk | Dec 2008 | B2 |
7472190 | Robinson | Dec 2008 | B2 |
7492766 | Cabeca et al. | Feb 2009 | B2 |
7506360 | Wilkinson et al. | Mar 2009 | B1 |
7509369 | Tormasov | Mar 2009 | B1 |
7512980 | Copeland et al. | Mar 2009 | B2 |
7516485 | Lee et al. | Apr 2009 | B1 |
7529242 | Lyle | May 2009 | B1 |
7533409 | Keane et al. | May 2009 | B2 |
7552323 | Shay | Jun 2009 | B2 |
7568041 | Turner et al. | Jul 2009 | B1 |
7583668 | Mayes et al. | Sep 2009 | B1 |
7584262 | Wang et al. | Sep 2009 | B1 |
7584301 | Joshi | Sep 2009 | B1 |
7590736 | Hydrie et al. | Sep 2009 | B2 |
7591001 | Shay | Sep 2009 | B2 |
7603454 | Piper | Oct 2009 | B2 |
7613193 | Swami et al. | Nov 2009 | B2 |
7613822 | Joy et al. | Nov 2009 | B2 |
7673072 | Boucher et al. | Mar 2010 | B2 |
7675854 | Chen et al. | Mar 2010 | B2 |
7703102 | Eppstein et al. | Apr 2010 | B1 |
7707295 | Szeto et al. | Apr 2010 | B1 |
7711790 | Barrett et al. | May 2010 | B1 |
7716369 | Le Pennec et al. | May 2010 | B2 |
7739395 | Parlamas et al. | Jun 2010 | B1 |
7747748 | Allen | Jun 2010 | B2 |
7751409 | Carolan | Jul 2010 | B1 |
7765328 | Bryers et al. | Jul 2010 | B2 |
7779130 | Toutonghi | Aug 2010 | B1 |
7792113 | Foschiano et al. | Sep 2010 | B1 |
7808994 | Vinokour et al. | Oct 2010 | B1 |
7826487 | Mukerji et al. | Nov 2010 | B1 |
7881215 | Daigle et al. | Feb 2011 | B1 |
7908651 | Maher | Mar 2011 | B2 |
7948952 | Hurtta | May 2011 | B2 |
7965727 | Sakata et al. | Jun 2011 | B2 |
7970934 | Patel | Jun 2011 | B1 |
7983258 | Ruben et al. | Jul 2011 | B1 |
7990847 | Leroy et al. | Aug 2011 | B1 |
7991859 | Miller et al. | Aug 2011 | B1 |
8019870 | Eppstein et al. | Sep 2011 | B1 |
8032634 | Eppstein et al. | Oct 2011 | B1 |
8079077 | Chen et al. | Dec 2011 | B2 |
8090866 | Bashyam et al. | Jan 2012 | B1 |
8099492 | Dahlin et al. | Jan 2012 | B2 |
8122116 | Matsunaga et al. | Feb 2012 | B2 |
8179809 | Eppstein et al. | May 2012 | B1 |
8185651 | Moran et al. | May 2012 | B2 |
8191106 | Choyi et al. | May 2012 | B2 |
8224971 | Miller et al. | Jul 2012 | B1 |
8244876 | Sollee | Aug 2012 | B2 |
8255644 | Sonnier et al. | Aug 2012 | B2 |
8266235 | Jalan et al. | Sep 2012 | B2 |
8291487 | Chen et al. | Oct 2012 | B1 |
8296434 | Miller et al. | Oct 2012 | B1 |
8312507 | Chen et al. | Nov 2012 | B2 |
8327128 | Prince et al. | Dec 2012 | B1 |
8332925 | Chen et al. | Dec 2012 | B2 |
8347392 | Chess et al. | Jan 2013 | B2 |
8379515 | Mukerji | Feb 2013 | B1 |
8387128 | Chen et al. | Feb 2013 | B1 |
8464333 | Chen et al. | Jun 2013 | B1 |
8499093 | Grosser et al. | Jul 2013 | B2 |
8520615 | Mehta et al. | Aug 2013 | B2 |
8539075 | Bali et al. | Sep 2013 | B2 |
8554929 | Szeto et al. | Oct 2013 | B1 |
8560693 | Wang et al. | Oct 2013 | B1 |
8584199 | Chen et al. | Nov 2013 | B1 |
8595383 | Chen et al. | Nov 2013 | B2 |
8595791 | Chen et al. | Nov 2013 | B1 |
8595819 | Chen et al. | Nov 2013 | B1 |
RE44701 | Chen et al. | Jan 2014 | E |
8675488 | Sidebottom | Mar 2014 | B1 |
8681610 | Mukerji | Mar 2014 | B1 |
8750164 | Casado et al. | Jun 2014 | B2 |
8782221 | Han | Jul 2014 | B2 |
8813180 | Chen et al. | Aug 2014 | B1 |
8826372 | Chen et al. | Sep 2014 | B1 |
8879427 | Krumel | Nov 2014 | B2 |
8885463 | Medved et al. | Nov 2014 | B1 |
8897154 | Jalan et al. | Nov 2014 | B2 |
8904512 | Chen et al. | Dec 2014 | B1 |
8914871 | Chen et al. | Dec 2014 | B1 |
8918857 | Chen et al. | Dec 2014 | B1 |
8943577 | Chen et al. | Jan 2015 | B1 |
8965957 | Barros | Feb 2015 | B2 |
8977749 | Han | Mar 2015 | B1 |
8990262 | Chen et al. | Mar 2015 | B2 |
9032502 | Chen et al. | May 2015 | B1 |
9094364 | Jalan et al. | Jul 2015 | B2 |
9106561 | Jalan et al. | Aug 2015 | B2 |
9118618 | Davis | Aug 2015 | B2 |
9118620 | Davis | Aug 2015 | B1 |
9124550 | Chen et al. | Sep 2015 | B1 |
9154577 | Jalan et al. | Oct 2015 | B2 |
9154584 | Han | Oct 2015 | B1 |
9215275 | Kannan et al. | Dec 2015 | B2 |
9219751 | Chen et al. | Dec 2015 | B1 |
9253152 | Chen et al. | Feb 2016 | B1 |
9270705 | Chen et al. | Feb 2016 | B1 |
9270774 | Jalan et al. | Feb 2016 | B2 |
9338225 | Jalan et al. | May 2016 | B2 |
9350744 | Chen et al. | May 2016 | B2 |
9356910 | Chen et al. | May 2016 | B2 |
9386088 | Zheng et al. | Jul 2016 | B2 |
9609052 | Jalan et al. | Mar 2017 | B2 |
20010015812 | Sugaya | Aug 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20020026531 | Keane et al. | Feb 2002 | A1 |
20020032777 | Kawata et al. | Mar 2002 | A1 |
20020046348 | Brustoloni | Apr 2002 | A1 |
20020053031 | Bendinelli et al. | May 2002 | A1 |
20020078164 | Reinschmidt | Jun 2002 | A1 |
20020091844 | Craft et al. | Jul 2002 | A1 |
20020103916 | Chen et al. | Aug 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20020138618 | Szabo | Sep 2002 | A1 |
20020141448 | Matsunaga | Oct 2002 | A1 |
20020143991 | Chow et al. | Oct 2002 | A1 |
20020178259 | Doyle et al. | Nov 2002 | A1 |
20020191575 | Kalavade et al. | Dec 2002 | A1 |
20020194335 | Maynard | Dec 2002 | A1 |
20020194350 | Lu et al. | Dec 2002 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030014544 | Pettey | Jan 2003 | A1 |
20030023711 | Parmar et al. | Jan 2003 | A1 |
20030023873 | Ben-Itzhak | Jan 2003 | A1 |
20030035409 | Wang et al. | Feb 2003 | A1 |
20030035420 | Niu | Feb 2003 | A1 |
20030065762 | Stolorz et al. | Apr 2003 | A1 |
20030065950 | Yarborough | Apr 2003 | A1 |
20030081624 | Aggarwal et al. | May 2003 | A1 |
20030088788 | Yang | May 2003 | A1 |
20030091028 | Chang et al. | May 2003 | A1 |
20030131245 | Linderman | Jul 2003 | A1 |
20030135625 | Fontes et al. | Jul 2003 | A1 |
20030135653 | Marovich | Jul 2003 | A1 |
20030152078 | Henderson et al. | Aug 2003 | A1 |
20030167340 | Jonsson | Sep 2003 | A1 |
20030195962 | Kikuchi et al. | Oct 2003 | A1 |
20030229809 | Wexler et al. | Dec 2003 | A1 |
20040054920 | Wilson et al. | Mar 2004 | A1 |
20040062246 | Boucher et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040078419 | Ferrari et al. | Apr 2004 | A1 |
20040078480 | Boucher et al. | Apr 2004 | A1 |
20040107360 | Herrmann et al. | Jun 2004 | A1 |
20040111516 | Cain | Jun 2004 | A1 |
20040128312 | Shalabi et al. | Jul 2004 | A1 |
20040139057 | Hirata et al. | Jul 2004 | A1 |
20040139108 | Tang et al. | Jul 2004 | A1 |
20040141005 | Banatwala et al. | Jul 2004 | A1 |
20040143599 | Shalabi et al. | Jul 2004 | A1 |
20040184442 | Jones et al. | Sep 2004 | A1 |
20040187032 | Gels et al. | Sep 2004 | A1 |
20040199616 | Karhu | Oct 2004 | A1 |
20040199646 | Susai et al. | Oct 2004 | A1 |
20040202182 | Lund et al. | Oct 2004 | A1 |
20040210623 | Hydrie et al. | Oct 2004 | A1 |
20040210663 | Phillips et al. | Oct 2004 | A1 |
20040213158 | Collett et al. | Oct 2004 | A1 |
20040243718 | Fujiyoshi | Dec 2004 | A1 |
20040268358 | Darling | Dec 2004 | A1 |
20050005207 | Herneque | Jan 2005 | A1 |
20050009520 | Herrero et al. | Jan 2005 | A1 |
20050021848 | Jorgenson | Jan 2005 | A1 |
20050027862 | Nguyen et al. | Feb 2005 | A1 |
20050027947 | Landin | Feb 2005 | A1 |
20050033985 | Xu et al. | Feb 2005 | A1 |
20050036501 | Chung et al. | Feb 2005 | A1 |
20050036511 | Baratakke et al. | Feb 2005 | A1 |
20050038898 | Mittig et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050050364 | Feng | Mar 2005 | A1 |
20050074001 | Mattes et al. | Apr 2005 | A1 |
20050074013 | Hershey et al. | Apr 2005 | A1 |
20050080890 | Yang et al. | Apr 2005 | A1 |
20050102400 | Nakahara et al. | May 2005 | A1 |
20050114492 | Arberg et al. | May 2005 | A1 |
20050125276 | Rusu | Jun 2005 | A1 |
20050135422 | Yeh | Jun 2005 | A1 |
20050144468 | Northcutt et al. | Jun 2005 | A1 |
20050163073 | Heller et al. | Jul 2005 | A1 |
20050169285 | Wills et al. | Aug 2005 | A1 |
20050198335 | Brown et al. | Sep 2005 | A1 |
20050213586 | Cyganski et al. | Sep 2005 | A1 |
20050240989 | Kim et al. | Oct 2005 | A1 |
20050249225 | Singhal | Nov 2005 | A1 |
20050251856 | Araujo et al. | Nov 2005 | A1 |
20050259586 | Hafid et al. | Nov 2005 | A1 |
20050289231 | Harada et al. | Dec 2005 | A1 |
20060023721 | Miyake et al. | Feb 2006 | A1 |
20060031506 | Redgate | Feb 2006 | A1 |
20060036610 | Wang | Feb 2006 | A1 |
20060036733 | Fujimoto et al. | Feb 2006 | A1 |
20060062142 | Appanna et al. | Mar 2006 | A1 |
20060063517 | Oh et al. | Mar 2006 | A1 |
20060064440 | Perry | Mar 2006 | A1 |
20060064478 | Sirkin | Mar 2006 | A1 |
20060069774 | Chen et al. | Mar 2006 | A1 |
20060069804 | Miyake et al. | Mar 2006 | A1 |
20060077926 | Rune | Apr 2006 | A1 |
20060080446 | Bahl | Apr 2006 | A1 |
20060092950 | Arregoces et al. | May 2006 | A1 |
20060098645 | Walkin | May 2006 | A1 |
20060112170 | Sirkin | May 2006 | A1 |
20060126625 | Schollmeier et al. | Jun 2006 | A1 |
20060168319 | Trossen | Jul 2006 | A1 |
20060187901 | Cortes et al. | Aug 2006 | A1 |
20060190997 | Mahajani et al. | Aug 2006 | A1 |
20060195698 | Pinkerton et al. | Aug 2006 | A1 |
20060209789 | Gupta et al. | Sep 2006 | A1 |
20060227771 | Raghunath et al. | Oct 2006 | A1 |
20060230129 | Swami et al. | Oct 2006 | A1 |
20060233100 | Luft | Oct 2006 | A1 |
20060251057 | Kwon et al. | Nov 2006 | A1 |
20060277303 | Hegde et al. | Dec 2006 | A1 |
20060280121 | Matoba | Dec 2006 | A1 |
20070002857 | Maher | Jan 2007 | A1 |
20070011419 | Conti | Jan 2007 | A1 |
20070019543 | Wei et al. | Jan 2007 | A1 |
20070086382 | Narayanan et al. | Apr 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070118881 | Mitchell et al. | May 2007 | A1 |
20070124487 | Yoshimoto et al. | May 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070165622 | O'Rourke | Jul 2007 | A1 |
20070177506 | Singer et al. | Aug 2007 | A1 |
20070180226 | Schory et al. | Aug 2007 | A1 |
20070180513 | Raz et al. | Aug 2007 | A1 |
20070185998 | Touitou et al. | Aug 2007 | A1 |
20070195792 | Chen et al. | Aug 2007 | A1 |
20070230337 | Igarashi et al. | Oct 2007 | A1 |
20070245090 | King et al. | Oct 2007 | A1 |
20070259673 | Willars et al. | Nov 2007 | A1 |
20070283429 | Chen et al. | Dec 2007 | A1 |
20070286077 | Wu | Dec 2007 | A1 |
20070288247 | Mackay | Dec 2007 | A1 |
20070294209 | Strub et al. | Dec 2007 | A1 |
20070294694 | Jeter et al. | Dec 2007 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080034111 | Kamath et al. | Feb 2008 | A1 |
20080034419 | Mullick et al. | Feb 2008 | A1 |
20080040789 | Chen et al. | Feb 2008 | A1 |
20080101396 | Miyata | May 2008 | A1 |
20080109452 | Patterson | May 2008 | A1 |
20080109870 | Sherlock et al. | May 2008 | A1 |
20080134332 | Keohane et al. | Jun 2008 | A1 |
20080162679 | Maher et al. | Jul 2008 | A1 |
20080216177 | Yokosato et al. | Sep 2008 | A1 |
20080228781 | Chen et al. | Sep 2008 | A1 |
20080250099 | Shen et al. | Oct 2008 | A1 |
20080263209 | Pisharody et al. | Oct 2008 | A1 |
20080271130 | Ramamoorthy | Oct 2008 | A1 |
20080282254 | Blander et al. | Nov 2008 | A1 |
20080289044 | Choi | Nov 2008 | A1 |
20080291911 | Lee et al. | Nov 2008 | A1 |
20090049198 | Blinn et al. | Feb 2009 | A1 |
20090049537 | Chen et al. | Feb 2009 | A1 |
20090070470 | Bauman et al. | Mar 2009 | A1 |
20090077651 | Poeluev | Mar 2009 | A1 |
20090092124 | Singhal et al. | Apr 2009 | A1 |
20090106830 | Maher | Apr 2009 | A1 |
20090113536 | Zhang et al. | Apr 2009 | A1 |
20090138606 | Moran et al. | May 2009 | A1 |
20090138945 | Savchuk | May 2009 | A1 |
20090141634 | Rothstein et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090172093 | Matsubara | Jul 2009 | A1 |
20090210698 | Candelore | Aug 2009 | A1 |
20090213858 | Dolganow et al. | Aug 2009 | A1 |
20090222583 | Josefsberg et al. | Sep 2009 | A1 |
20090227228 | Hu et al. | Sep 2009 | A1 |
20090228547 | Miyaoka et al. | Sep 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090313379 | Rydnell et al. | Dec 2009 | A1 |
20100004004 | Browne-Swinburne et al. | Jan 2010 | A1 |
20100008229 | Bi et al. | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100036952 | Hazlewood et al. | Feb 2010 | A1 |
20100054139 | Chun et al. | Mar 2010 | A1 |
20100061319 | Aso et al. | Mar 2010 | A1 |
20100064008 | Yan et al. | Mar 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100083076 | Ushiyama | Apr 2010 | A1 |
20100094985 | Abu-Samaha et al. | Apr 2010 | A1 |
20100098417 | Tse-Au | Apr 2010 | A1 |
20100106833 | Banerjee et al. | Apr 2010 | A1 |
20100106854 | Kim et al. | Apr 2010 | A1 |
20100128606 | Patel | May 2010 | A1 |
20100162378 | Jayawardena et al. | Jun 2010 | A1 |
20100205310 | Altshuler et al. | Aug 2010 | A1 |
20100210265 | Borzsei et al. | Aug 2010 | A1 |
20100211669 | Dalgas et al. | Aug 2010 | A1 |
20100217793 | Preiss | Aug 2010 | A1 |
20100217819 | Chen et al. | Aug 2010 | A1 |
20100223630 | Degenkolb et al. | Sep 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100228878 | Xu et al. | Sep 2010 | A1 |
20100235507 | Szeto et al. | Sep 2010 | A1 |
20100235522 | Chen et al. | Sep 2010 | A1 |
20100235880 | Chen et al. | Sep 2010 | A1 |
20100238828 | Russell | Sep 2010 | A1 |
20100257278 | Gunturu | Oct 2010 | A1 |
20100265824 | Chao et al. | Oct 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100293296 | Hsu et al. | Nov 2010 | A1 |
20100312740 | Clemm et al. | Dec 2010 | A1 |
20100318631 | Shukla | Dec 2010 | A1 |
20100322252 | Suganthi et al. | Dec 2010 | A1 |
20100330971 | Selitser et al. | Dec 2010 | A1 |
20100333101 | Pope et al. | Dec 2010 | A1 |
20100333209 | Alve | Dec 2010 | A1 |
20110007652 | Bai | Jan 2011 | A1 |
20110019550 | Bryers et al. | Jan 2011 | A1 |
20110023071 | Li et al. | Jan 2011 | A1 |
20110029599 | Pulleyn et al. | Feb 2011 | A1 |
20110032941 | Quach et al. | Feb 2011 | A1 |
20110040826 | Chadzelek et al. | Feb 2011 | A1 |
20110047294 | Singh et al. | Feb 2011 | A1 |
20110060831 | Ishii et al. | Mar 2011 | A1 |
20110060840 | Susai et al. | Mar 2011 | A1 |
20110093522 | Chen et al. | Apr 2011 | A1 |
20110099403 | Miyata et al. | Apr 2011 | A1 |
20110110294 | Valluri et al. | May 2011 | A1 |
20110145324 | Reinart et al. | Jun 2011 | A1 |
20110145390 | Kakadia | Jun 2011 | A1 |
20110153834 | Bharrat | Jun 2011 | A1 |
20110178985 | San Martin Arribas et al. | Jul 2011 | A1 |
20110185073 | Jagadeeswaran et al. | Jul 2011 | A1 |
20110191773 | Pavel et al. | Aug 2011 | A1 |
20110196971 | Reguraman et al. | Aug 2011 | A1 |
20110276695 | Maldaner | Nov 2011 | A1 |
20110276982 | Nakayama et al. | Nov 2011 | A1 |
20110289496 | Steer | Nov 2011 | A1 |
20110292939 | Subramaian et al. | Dec 2011 | A1 |
20110302256 | Sureshehandra et al. | Dec 2011 | A1 |
20110307541 | Walsh et al. | Dec 2011 | A1 |
20110307606 | Cobb | Dec 2011 | A1 |
20120008495 | Shen et al. | Jan 2012 | A1 |
20120023231 | Ueno | Jan 2012 | A1 |
20120026897 | Guichard | Feb 2012 | A1 |
20120030341 | Jensen et al. | Feb 2012 | A1 |
20120066371 | Patel et al. | Mar 2012 | A1 |
20120084419 | Kannan et al. | Apr 2012 | A1 |
20120084460 | McGinnity et al. | Apr 2012 | A1 |
20120106355 | Ludwig | May 2012 | A1 |
20120117571 | Davis et al. | May 2012 | A1 |
20120144014 | Natham et al. | Jun 2012 | A1 |
20120144015 | Jalan et al. | Jun 2012 | A1 |
20120151353 | Joanny | Jun 2012 | A1 |
20120155495 | Clee et al. | Jun 2012 | A1 |
20120170548 | Rajagopalan et al. | Jul 2012 | A1 |
20120173759 | Agarwal et al. | Jul 2012 | A1 |
20120179770 | Jalan et al. | Jul 2012 | A1 |
20120191839 | Maynard | Jul 2012 | A1 |
20120215910 | Wada | Aug 2012 | A1 |
20120239792 | Banerjee et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120290727 | Tivig | Nov 2012 | A1 |
20120297046 | Raja et al. | Nov 2012 | A1 |
20120311116 | Jalan et al. | Dec 2012 | A1 |
20130046876 | Narayana et al. | Feb 2013 | A1 |
20130058335 | Koponen et al. | Mar 2013 | A1 |
20130074177 | Varadhan et al. | Mar 2013 | A1 |
20130083725 | Mallya et al. | Apr 2013 | A1 |
20130089099 | Pollock et al. | Apr 2013 | A1 |
20130100958 | Jalan et al. | Apr 2013 | A1 |
20130103817 | Koponen et al. | Apr 2013 | A1 |
20130124713 | Feinberg et al. | May 2013 | A1 |
20130136139 | Zheng et al. | May 2013 | A1 |
20130148500 | Sonoda et al. | Jun 2013 | A1 |
20130166762 | Jalan | Jun 2013 | A1 |
20130173795 | McPherson | Jul 2013 | A1 |
20130176854 | Chisu et al. | Jul 2013 | A1 |
20130191486 | Someya et al. | Jul 2013 | A1 |
20130191548 | Boddukuri et al. | Jul 2013 | A1 |
20130198385 | Han et al. | Aug 2013 | A1 |
20130227165 | Liu | Aug 2013 | A1 |
20130250765 | Ehsan et al. | Sep 2013 | A1 |
20130250770 | Zou et al. | Sep 2013 | A1 |
20130258846 | Damola | Oct 2013 | A1 |
20130262702 | Davis | Oct 2013 | A1 |
20130268646 | Doron et al. | Oct 2013 | A1 |
20130282791 | Kruglick | Oct 2013 | A1 |
20130311686 | Fetterman et al. | Nov 2013 | A1 |
20130315241 | Kamat et al. | Nov 2013 | A1 |
20130336159 | Previdi et al. | Dec 2013 | A1 |
20140012972 | Han | Jan 2014 | A1 |
20140089500 | Sankar et al. | Mar 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140169168 | Jalan et al. | Jun 2014 | A1 |
20140207845 | Han et al. | Jul 2014 | A1 |
20140226658 | Kakadia et al. | Aug 2014 | A1 |
20140235249 | Jeong et al. | Aug 2014 | A1 |
20140248914 | Aoyagi et al. | Sep 2014 | A1 |
20140258465 | Li | Sep 2014 | A1 |
20140258536 | Chiong | Sep 2014 | A1 |
20140269728 | Jalan et al. | Sep 2014 | A1 |
20140286313 | Fu et al. | Sep 2014 | A1 |
20140298091 | Carlen et al. | Oct 2014 | A1 |
20140325649 | Zhang | Oct 2014 | A1 |
20140330982 | Jalan et al. | Nov 2014 | A1 |
20140334485 | Jain et al. | Nov 2014 | A1 |
20140359052 | Joachimpillai et al. | Dec 2014 | A1 |
20150039671 | Jalan et al. | Feb 2015 | A1 |
20150047012 | Chen et al. | Feb 2015 | A1 |
20150098333 | Lin et al. | Apr 2015 | A1 |
20150156223 | Xu et al. | Jun 2015 | A1 |
20150215436 | Kancherla | Jul 2015 | A1 |
20150237173 | Virkki et al. | Aug 2015 | A1 |
20150281087 | Jalan et al. | Oct 2015 | A1 |
20150281104 | Golshan et al. | Oct 2015 | A1 |
20150296058 | Jalan et al. | Oct 2015 | A1 |
20150312268 | Ray | Oct 2015 | A1 |
20150333988 | Jalan et al. | Nov 2015 | A1 |
20150350048 | Sampat et al. | Dec 2015 | A1 |
20150350379 | Jalan et al. | Dec 2015 | A1 |
20160014052 | Han | Jan 2016 | A1 |
20160036778 | Chen et al. | Feb 2016 | A1 |
20160042014 | Jalan et al. | Feb 2016 | A1 |
20160043901 | Sankar et al. | Feb 2016 | A1 |
20160050233 | Chen et al. | Feb 2016 | A1 |
20160088074 | Kannan et al. | Mar 2016 | A1 |
20160094470 | Skog | Mar 2016 | A1 |
20160105395 | Chen et al. | Apr 2016 | A1 |
20160105446 | Chen et al. | Apr 2016 | A1 |
20160119382 | Chen et al. | Apr 2016 | A1 |
20160139910 | Ramanathan et al. | May 2016 | A1 |
20160156708 | Jalan et al. | Jun 2016 | A1 |
20160164792 | Oran | Jun 2016 | A1 |
20160173579 | Jalan et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1372662 | Oct 2002 | CN |
1449618 | Oct 2003 | CN |
1473300 | Feb 2004 | CN |
1529460 | Sep 2004 | CN |
1575582 | Feb 2005 | CN |
1714545 | Dec 2005 | CN |
1725702 | Jan 2006 | CN |
1910869 | Feb 2007 | CN |
1921457 | Feb 2007 | CN |
1937591 | Mar 2007 | CN |
101004740 | Jul 2007 | CN |
201094225 | Dec 2007 | CN |
101163336 | Apr 2008 | CN |
101169785 | Apr 2008 | CN |
101189598 | May 2008 | CN |
101193089 | Jun 2008 | CN |
101247349 | Aug 2008 | CN |
101261644 | Sep 2008 | CN |
101495993 | Jul 2009 | CN |
101878663 | Nov 2010 | CN |
ZL 20078001807.5 | Feb 2011 | CN |
102143075 | Aug 2011 | CN |
102546590 | Jul 2012 | CN |
102571742 | Jul 2012 | CN |
102577252 | Jul 2012 | CN |
102918801 | Feb 2013 | CN |
103365654 | Oct 2013 | CN |
103428261 | Dec 2013 | CN |
103533018 | Jan 2014 | CN |
101878663 | Jun 2014 | CN |
103944954 | Jul 2014 | CN |
104040990 | Sep 2014 | CN |
104067569 | Sep 2014 | CN |
104106241 | Oct 2014 | CN |
104137491 | Nov 2014 | CN |
104796396 | Jul 2015 | CN |
102577252 | Mar 2016 | CN |
102918801 | May 2016 | CN |
102571742 | Jul 2016 | CN |
104067569 | Feb 2017 | CN |
1209876 | May 2002 | EP |
1482685 | Dec 2004 | EP |
1720287 | Nov 2006 | EP |
1770915 | Apr 2007 | EP |
1885096 | Feb 2008 | EP |
2575328 | Oct 2008 | EP |
2057552 | May 2009 | EP |
2215863 | Aug 2010 | EP |
2296313 | Mar 2011 | EP |
2577910 | Apr 2013 | EP |
2622795 | Aug 2013 | EP |
2647174 | Oct 2013 | EP |
2667571 | Nov 2013 | EP |
2760170 | Jul 2014 | EP |
2772026 | Sep 2014 | EP |
2575328 | Nov 2014 | EP |
2901308 | Aug 2015 | EP |
2760170 | Dec 2015 | EP |
2772026 | Feb 2017 | EP |
1182547 | Nov 2013 | HK |
1182560 | Nov 2013 | HK |
1183569 | Dec 2013 | HK |
1183996 | Jan 2014 | HK |
1188498 | May 2014 | HK |
1189438 | Jun 2014 | HK |
1190539 | Jul 2014 | HK |
1182547 | Apr 2015 | HK |
1198565 | May 2015 | HK |
1198848 | Jun 2015 | HK |
1199153 | Jun 2015 | HK |
1199779 | Jul 2015 | HK |
1200617 | Aug 2015 | HK |
3764CHENP2014 | Sep 2015 | IN |
261CHE2014 | Jul 2016 | IN |
1668CHENP2015 | Jul 2016 | IN |
H09097233 | Apr 1997 | JP |
1999096128 | Apr 1999 | JP |
H11338836 | Dec 1999 | JP |
2000276432 | Oct 2000 | JP |
2000307634 | Nov 2000 | JP |
2001051859 | Feb 2001 | JP |
2001298449 | Oct 2001 | JP |
2002091936 | Mar 2002 | JP |
2003141068 | May 2003 | JP |
2003186776 | Jul 2003 | JP |
2004350188 | Dec 2004 | JP |
2005-518595 | Jun 2005 | JP |
2005141441 | Jun 2005 | JP |
2006180295 | Jul 2006 | JP |
2006332825 | Dec 2006 | JP |
2006333245 | Dec 2006 | JP |
2007048052 | Feb 2007 | JP |
2008040718 | Feb 2008 | JP |
2009500731 | Jan 2009 | JP |
2011505752 | Feb 2011 | JP |
5480959 | Feb 2013 | JP |
2013059122 | Mar 2013 | JP |
2013070423 | Apr 2013 | JP |
2013078134 | Apr 2013 | JP |
2013528330 | Jul 2013 | JP |
5364101 | Sep 2013 | JP |
2014504484 | Feb 2014 | JP |
5579820 | Jul 2014 | JP |
5579821 | Jul 2014 | JP |
2014143686 | Aug 2014 | JP |
2015507380 | Mar 2015 | JP |
5855663 | Dec 2015 | JP |
5906263 | Apr 2016 | JP |
5913609 | Apr 2016 | JP |
5946189 | Jun 2016 | JP |
5963766 | Aug 2016 | JP |
1020080008340 | Jan 2008 | KR |
100830413 | May 2008 | KR |
1020130096624 | Aug 2013 | KR |
101576585 | Dec 2015 | KR |
101632187 | Jun 2016 | KR |
101692751 | Jan 2017 | KR |
I086309 | Feb 1996 | TW |
I109955 | Dec 1999 | TW |
I130506 | Mar 2001 | TW |
I137392 | Jul 2001 | TW |
WO2001013228 | Feb 2001 | WO |
WO2001014990 | Mar 2001 | WO |
WO2001045349 | Jun 2001 | WO |
2003073216 | Sep 2003 | WO |
2003103233 | Dec 2003 | WO |
WO2003103237 | Dec 2003 | WO |
WO2004084085 | Sep 2004 | WO |
2006065691 | Jun 2006 | WO |
WO2006098033 | Sep 2006 | WO |
2007076883 | Jul 2007 | WO |
WO2008053954 | May 2008 | WO |
WO2008078593 | Jul 2008 | WO |
2008021620 | Jun 2009 | WO |
2009073295 | Jun 2009 | WO |
WO2011049770 | Apr 2011 | WO |
WO2011079381 | Jul 2011 | WO |
WO2011149796 | Dec 2011 | WO |
WO2012050747 | Apr 2012 | WO |
WO2012075237 | Jun 2012 | WO |
WO2012083264 | Jun 2012 | WO |
WO2012097015 | Jul 2012 | WO |
WO2013070391 | May 2013 | WO |
WO2013081952 | Jun 2013 | WO |
WO2013096019 | Jun 2013 | WO |
WO2013112492 | Aug 2013 | WO |
WO2013189024 | Dec 2013 | WO |
WO2014031046 | Feb 2014 | WO |
WO2014052099 | Apr 2014 | WO |
WO2014088741 | Jun 2014 | WO |
WO2014093829 | Jun 2014 | WO |
WO2014138483 | Sep 2014 | WO |
WO2014144837 | Sep 2014 | WO |
WO2014179753 | Nov 2014 | WO |
WO2015153020 | Oct 2015 | WO |
Entry |
---|
Chiussi et al., “A Network Architecture for MPLS-Based Micro-Mobility”, IEEE WCNC 02, Orlando, Mar. 2002. |
Smith, M. et al; “Network Security Using NAT and NAPT”, 10th IEEE International Converence on Aug. 27-30, 2002, Piscataway, NJ, USA, 2012; Aug. 27, 2002; pp. 355-360. |
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999. |
Wang et al., “Shield: Vulnerability Driven Network Filters for Preventing Known Vulnerability Exploits”, SIGCOMM'04, Aug. 30-Sep. 3, 2004, Portland, Oregon, USA. |
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000. |
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009. |
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, The Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009. |
Goldszmidt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853, May 19, 1997. |
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18. |
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114. |
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30. |
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) to Increase Networking Performance,” nixCraft [online], Jul. 8, 2009 [retreived on Apr. 13, 2016], Retreived from the Internt: <URL:http://www.cyberciti.biz/faq/linux-tcp-tuning/>, 24 pages. |
FreeBSD, “tcp—TCP Protocol,” Linux Programmer's Manual [online], Nov. 25, 2007 [retreived on Apr. 13, 2016], Retreived from the Internet: <URL:https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20160044095 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61705618 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14029656 | Sep 2013 | US |
Child | 14279270 | US | |
Parent | 13716128 | Dec 2012 | US |
Child | 14029656 | US |