The relevant features of our co-pending application can be summarized as follows. A T-shaped raceway base of elongated configuration has uniformly spaced knock out openings provided between lines of weakening as shown in FIG. 16A of that co-pending application. Upper and lower raceway covers are provided for upper and lower wire-ways defined in part by the elongated T-shaped base and in part by the covers which are preferably L-shaped in cross section. Marginal edge portions of the elongated cover components of the raceway mate with a forward or leading edge of an integrally forming divider defined in the T-shaped base. Upper and lower marginal edges of the base mate with upper and lower marginal edges of the upper and lower cover components respectively. Thus, the base and the cover components define separated wire-ways having a divider wall therebetween.
Still with reference to the co-pending application, unique individual device brackets are designed for use with the U-shaped covers. Each device bracket has a generally U-shaped frame with flanges that are adapted to be received by projecting lips on the forward or leading edge of the divider wall. Each individual device bracket further includes a socket in the other leg of the U-shaped device bracket. This other leg is adapted to mate with the leading edge, or stem of the T-shaped raceway base. The other devices can then be provided in either the upper or lower wire-way, but need not be provided one above another. Thus, the outlet devices may comprise power outlets or data/communication outlets, and can be provided in any of the surfaces of the upper and lower L-shaped raceway cover components. When provided in a downwardly facing surface of the lower L-shaped raceway cover these devices are hidden, providing a protected location for the user's power cords and/or data cables which will ultimately be connected to these outlet devices. Moreover, the unique base and cover configuration allows for placement of outlet devices in either the upper or lower L-shaped raceway cover. Such placement flexibility offers advantages in raceway installations that are to be made behind a workstation or desk.
The present invention relates to a raceway system that includes an elongated raceway base, elongated raceway covers on said base and defining upper and lower wire-ways. An elongated dividing wall separates these upper and lower wire-ways so that relatively low voltage or data/communication cables can be accommodated in one of these wire-ways while nevertheless being electrically isolated from high voltage or power cables in the other of said wire-ways. The elongated divider wall includes spaced knockout openings, and these knockout openings are preferably provided between lines of weakening as described in our co-pending application and referred to briefly heretofor. The spaced knockout openings are designed to allow for cables in the upper raceway, for example, to cross over and to be accommodated by an outlet device provided in the adjacent or lower wire-way. A device bracket is adapted to be mounted in the lower wire-way in accordance with the invention so as to support such an outlet device in a downwardly facing relationship to the lower wire-way. The device brackets mates with an enclosure which is also provided inside the lower wire-way. The enclosure not only isolates the downwardly facing outlet device from cables running along the lower wire-way, but the enclosure also cooperates with the device bracket and with the base to define an enclosed isolated pathway for accommodating cables running from the upper wire-way across the divider wall and through the knockout opening for convenient connection to outlet devices facing downwardly in the lower wire-way. This result is achieved with minimal reduction in the lower section for the lower wire-way, allowing the cables to run past this enclosure without requiring any rerouting of cables in the lower wire-way.
Turning now to the drawings in greater detail, and referring specifically to the drawings from our prior co-pending application incorporated by reference herein,
More particularly,
Still with reference to the disclosure in our co-pending application referred to previously,
The outlet device 250 is supported in a bracket 370, the bracket being generally U-shaped as shown, having legs spaced one above the other. The lower leg serves as a mounting for the outlet device 250, and the upper leg is provided with an opening 370b that can be aligned with one of the knockout openings 606 in the web of the T-shaped base so as to accommodate cross over cables running from the upper wire-way to the lower wire-way.
Still with reference to
Still with reference to our prior co-pending case, an outlet device cover 400 is adapted to be assembled with the raceway as shown in
Turning next to a description of the installation of the various components described in the preceding paragraphs,
Finally,
Original drawings from our earlier filed case disclose only a power outlet device, which is located in the downwardly facing direction with respect to the lower wire-way. Other outlet devices, such as telephone or data communication jacks, for example, can be similarly arranged in downwardly facing relationship within the lower wire-way in a device bracket as shown in FIGS. 6,7, and 8. It is an important feature of the present invention that cabling of the fiber optic variety with limited bend radius requirements can be accommodated. Raceways generally require such cabling to be accommodated in restricted spaces, and this leads to limitations on the ability to locate data/communications outlet plugs in such raceways requiring the use of raceway of a much larger cross section than should be necessary.
The present invention affords the architect, and the consulting design engineer the opportunity to provide a relatively generous bend radius for cabling in the upper wire-way. The design allows fiber optic cable to pass through the wire-way divider wall into an adjacent wire-way where the outlet devices face downwardly, in a direction that makes it very convenient for the installer to connect cable ends to such cable jacks as are provided downwardly in the lower wire-way. The user can connect to these jacks in a way that renders such connecting cables relatively less obtrusive. The drawings presented, illustrate the generous radius of curvature for the cabling C. A generous radius of curvature is provided for the cable passing through the crossover pathway to the devices provided in downwardly facing relationship in the lower wire-way.
The drawings and description emphasize the advantages to orienting outlet devices “downwardly” in the raceway as shown. This orientation offers many advantages, but persons skilled in this art will appreciate that many of these advantages can also be realized when outlet devices are oriented “upwardly”, as would be the case at a work station coral for example. The outlet devices may also face forwardly, or rearwardly relative to the raceway dividing wall in the event the raceway is mounted on a horizontal surface. Thus, the term “downwardly” as used in the appended claims should be taken as meaning only that the orientation of the device bracket in the raceway results in a position for the outlet device that is perpendicular to the surface that the raceway itself is mounted to. The modifier “downwardly” is intended to mean only that the outlet device can be positioned parallel to the divider wall of the base, and perpendicular to the surface or wall structure on which the raceway is mounted. A vertical wall may be the preferred such structure, but other flat surfaces may also provide a support structure for the unique raceway design disclosed herein, and in our co-pending application Ser. No. 11/035477. In light of the above, it is therefore understood that within the scope of the appended claim, the invention may be practiced otherwise than as specifically claimed.
This application claims priority to a co-pending application entitled MODULAR RACEWAY WITH BASE AND INTEGRAL DIVIDER, Ser. No. 11/035,477, filed Jan. 13, 2005. That co-pending application is incorporated by reference herein, and the present application comprises a continuation-in-part, with the claims of this application directed principally to the downwardly facing receptacle feature disclosed in the prior application, but more particularly disclosed and claimed herein.
Number | Name | Date | Kind |
---|---|---|---|
594998 | Lyle | Dec 1897 | A |
6180878 | Gretz | Jan 2001 | B1 |
6259020 | Ashline et al. | Jul 2001 | B1 |
6284975 | McCord et al. | Sep 2001 | B1 |
6323421 | Pawson et al. | Nov 2001 | B1 |
6342675 | DeBartolo et al. | Jan 2002 | B1 |
6362420 | Bacouelle et al. | Mar 2002 | B1 |
6384336 | VanderVelde et al. | May 2002 | B1 |
D484469 | Thibault | Dec 2003 | S |
6664467 | de la Borbolla | Dec 2003 | B1 |
D486130 | Thibault | Feb 2004 | S |
6756544 | Handler | Jun 2004 | B2 |
6936766 | Galasso | Aug 2005 | B1 |
Number | Date | Country |
---|---|---|
2005229775 | Aug 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20060175086 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11035477 | Jan 2005 | US |
Child | 11322707 | US |