DLL3 targeting chimeric antigen receptors and binding agents

Information

  • Patent Grant
  • 11673953
  • Patent Number
    11,673,953
  • Date Filed
    Thursday, February 27, 2020
    4 years ago
  • Date Issued
    Tuesday, June 13, 2023
    a year ago
Abstract
Provided herein are DLL3 binding agents and chimeric antigen receptors (CARs) comprising a DLL3 binding molecule that specifically binds to DLL3; and immune cells comprising these DLL3-specific CARs, e.g., CAR-T cells. Also provided are methods of making and using DLL3-specific CARs, and immune cells comprising DLL3-specific CARs.
Description
FIELD

This disclosure relates to DLL3 binding agents and chimeric antigen receptors (CARs) comprising an antigen binding molecule which binds to DLL3, polynucleotides encoding the same, and methods of treating a cancer in a patient using the same.


SEQUENCE LISTING

This application is being filed electronically via EFS-Web and includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled “AT-019_03 US_SL” created on Feb. 4, 2020, and having a size of 1,026,798 bytes. The sequence listing contained in this .txt file is part of the specification and is incorporated herein by reference in its entirety.


BACKGROUND

Small cell lung cancer (SCLC) is an aggressive form of lung cancer with a poor prognosis and limited therapeutic options. SCLC represents about 10-15% of all new diagnosed lung cancers. The American Cancer Society estimates that about 234,000 new cases of lung cancer will be diagnosed in 2018. Estimated 5-year relative survival rates for SCLC are 31% (for stage I), 19% (for stage II), 8% (for stage III) and 2% (for stage IV). Survival rates for SCLC have remained low for several decades in a large part due to the lack of new therapies to combat this form of lung cancer. Conventional therapeutic treatments for cancer include chemotherapy and radiotherapy. Patients typically respond well to the current front-line therapy, which includes etoposide and cisplatin, but invariably quickly relapse with chemoresistant disease. Prognosis in the relapsed refractory setting is extremely poor, with rapid disease progression and short median survival of less than six months. There remains therefore a great need to develop more targeted and potent therapies for proliferative disorders.


Adoptive transfer of immune cells genetically modified to recognize malignancy-associated antigens is showing promise as a new approach to treating cancer (see, e.g., Brenner et al., Current Opinion in Immunology, 22(2): 251-257 (2010); Rosenberg et al., Nature Reviews Cancer, 8(4): 299-308 (2008)) Immune cells can be genetically modified to express chimeric antigen receptors (CARs), fusion proteins comprised of a DLL3 antigen recognition moiety and T cell activation domains (see, e.g., Eshhar et al., Proc. Natl. Acad. Sci. USA, 90(2): 720-724 (1993), and Sadelain et al., Curr. Opin. Immunol, 21(2): 215-223 (2009)) Immune cells that contain CARs, e.g., CAR-T cells (CAR-Ts), are engineered to endow them with antigen specificity while retaining or enhancing their ability to recognize and kill a target cell.


DLL3 is a non-canonical Notch ligand, functioning in a cell autonomous manner to inhibit Notch signaling, thus blocking cell to cell interactions and internalization of Notch in the target cell. Delta-like ligand 3 (DLL3) is an SCLC tumor marker and has been found to be associated with cancer stem cells. Other indications that implicate DLL3 include melanoma, low grade gliomas, glioblastoma, medullary thyroid cancer, carcinoids, dispersed neuroendocrine tumors in the pancreas, bladder and prostate, testicular cancer, and lung adenocarcinomas with neuroendocrine features. There is a need for treatments for cancer and in particular malignancies involving aberrant expression of DLL3. Provided herein are methods and compositions addressing this need.


SUMMARY

Provided herein are chimeric antigen receptors (CARs) comprising a DLL3 antigen binding domain that specifically binds to DLL3; and immune cells comprising these DLL3-specific CARs, e.g., CAR-T cells. Also provided are methods of making and using these DLL3-specific CARs, and immune cells comprising these DLL3-specific CARs. The DLL-3 targeting CAR T cells described herein demonstrate good transduction efficiency, in vitro phenotype and potent in vitro and in vivo anti-tumor activity.


In one aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises at least one of: (a) a variable heavy chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, and 460; (b) a variable heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ NOs: 2, 11, 20, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128, 137, 146, 155, 164, 173, 182, 191, 200, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 416, 425, 434, 443, 452, 461, and 695; (c) a variable heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs 3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 102, 111, 120, 129, 138, 147, 156, 165, 174, 183, 192, 201, 210, 219, 228, 237, 246, 255, 264, 273, 282, 291, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 399, 408, 417, 426, 435, 444, 453, and 462; (d) a variable light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 13, 22, 31, 40, 49, 58, 67, 85, 94, 103, 112, 121, 130, 139, 148, 157, 166, 175, 184, 193, 202, 211, 220, 229, 238, 247, 256, 265, 274, 283, 292, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391, 400, 409, 418, 427, 436, 445, 454, 463, and 696; (e) a variable light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 446, 455, and 464; and (f) a variable light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, and 465.


In another aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises: (a) a variable heavy chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, and 460; (b) a variable heavy chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ NOs: 2, 11, 20, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128, 137, 146, 155, 164, 173, 182, 191, 200, 209, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 416, 425, 434, 443, 452, and 695461; and (c) a variable heavy chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 12, 21, 30, 39, 48, 57, 66, 75, 84, 93, 102, 111, 120, 129, 138, 147, 156, 165, 174, 183, 192, 201, 210, 219, 228, 237, 246, 255, 264, 273, 282, 291, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 399, 408, 417, 426, 435, 444, 453, and 462.


In one aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises: (a) a variable light chain CDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 13, 22, 31, 40, 49, 58, 67, 85, 94, 103, 112, 121, 130, 139, 148, 157, 166, 175, 184, 193, 202, 211, 220, 229, 238, 247, 256, 265, 274, 283, 292, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391, 400, 409, 418, 427, 436, 445, 454, 463, and 696; (b) a variable light chain CDR2 comprising an amino acid sequence selected from the group consisting of SEQ NOs: 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 446, 455, and 464; and (c) a variable light chain CDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, and 465.


In another aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises at least one of: (a) a variable heavy chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 7, 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133, 142, 151, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 259, 268, 277, 286, 295, 304, 313, 322, 331, 340, 349, 358, 367, 376, 385, 394, 403, 412, 421, 430, 439, 448, 457, 466; and (b) a variable light chain comprising an amino acid sequence selected from the group consisting of SEQ NOs: 8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, 143, 152, 161, 170, 179, 188, 197, 206, 215, 224, 233, 242, 251, 260, 269, 278, 287, 296, 305, 314, 323, 332, 341, 350, 359, 368, 377, 386, 395, 404, 413, 422, 431, 440, 449, 458, and 467, wherein the variable heavy chain and the variable light chain is linked by at least one linker.


In a further aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises: (a) a variable heavy chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 7, 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133, 142, 151, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 259, 268, 277, 286, 295, 304, 313, 322, 331, 340, 349, 358, 367, 376, 385, 394, 403, 412, 421, 430, 439, 448, 457, and 466; and (b) a variable light chain comprising an amino acid sequence selected from the group consisting of SEQ NOs: 8, 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134, 143, 152, 161, 170, 179, 188, 197, 206, 215, 224, 233, 242, 251, 260, 269, 278, 287, 296, 305, 314, 323, 332, 341, 350, 359, 368, 377, 386, 395, 404, 413, 422, 431, 440, 449, 458, and 467, wherein the variable heavy chain and the variable light chain is linked by at least one linker.


In one aspect, the present disclosure provides a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and wherein the antigen binding domain comprises a sequence selected from the group consisting of those scFvs presented in Table 1d.


In another aspect, the present disclosure provides, a chimeric antigen receptor that specifically binds to DLL3, wherein the chimeric antigen receptor comprises an amino acid sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to any one of SEQ ID NOs: 482 to 533 and 632-683. In some embodiments, the chimeric antigen receptor comprises an amino acid sequence of any one of SEQ ID NOs: 482 to 533 and 632-683.


In some embodiments, the present disclosure provides, a chimeric antigen receptor that specifically binds to DLL3, wherein the chimeric antigen receptor comprises an amino acid sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to any one of SEQ ID NOs: 482 to 533 and 632-683, with or without a signal sequence. In some embodiments, the chimeric antigen receptor comprises an amino acid sequence of any one of SEQ ID NOs: 482 to 533 and 632-683, with or without a signal sequence.


In some embodiments, the intracellular domain of the chimeric antigen receptor comprises at least one costimulatory domain.


In some embodiments, the costimulatory domain of the chimeric antigen receptor is a signaling region of CD28, OX-40, 4-1BB/CD137, CD2, CD7, CD27, CD30, CD40, programmed death-1 (PD-1), inducible T cell costimulator (ICOS), lymphocyte function-associated antigen-1 (LFA-1 (CD1 1a/CD18), CD3 gamma, CD3 delta, CD3 epsilon, CD247, CD276 (B7-H3), LIGHT, (TNFSF14), NKG2C, Ig alpha (CD79a), DAP-10, Fc gamma receptor, MHC class I molecule, TNF receptor proteins, an Immunoglobulin protein, cytokine receptor, integrins, Signaling Lymphocytic Activation Molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptors, ICAM-1, B7-H3, CDS, ICAM-1, GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL-2R beta, IL-2R gamma, IL-7R alpha, ITGA4, VLA1, CD49a, ITGA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 1d, ITGAE, CD103, ITGAL, CD1 1a, LFA-1, ITGAM, CD1 1b, ITGAX, CD1 1c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, TNFR2, TRANCE/RANKL, DNAMI (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, or any combination thereof.


In some embodiments, the costimulatory domain comprises a signaling region of CD28.


In some embodiments, the CD28 costimulatory domain comprises SEQ ID NO: 550.


In some embodiments, the costimulatory domain comprises a signaling region of 4-1BB/CD137.


In some embodiments, the 4-1BB/CD137 costimulatory domain comprises SEQ ID NO: 480.


In some embodiments, the intracellular domain comprises at least one activating domain.


In some embodiments, the activating domain comprises CD3.


In some embodiments, the CD3 comprises CD3 zeta.


In some embodiments, the CD3 zeta comprises SEQ ID NO: 481.


In some embodiments, the chimeric antigen receptor is encoded by the polynucleotide sequence of any one of SEQ ID NOs: 571-621 and 631.


In some embodiments, the chimeric antigen receptor further comprises a safety switch.


In some embodiments, the safety switch comprises a CD20 mimotope or a QBEND-10 epitope.


In some embodiments, the safety switch comprises one or more CD20 mimotopes or one or more QBEND-10 epitopes, or combinations thereof.


In some embodiments, the chimeric antigen receptor comprises one or more safety switch in the format of QR3, SR2, RSR, or R2S.


In some embodiments, the chimeric antigen receptor comprises the amino acid sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to any one of SEQ ID NOs: 622-628, 474-476, 565, and 684-694.


In some embodiments, the chimeric antigen receptor comprises the amino acid sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to any one of SEQ ID NOs: 622-628, 474-476, 565, and 684-694, with or without a signal sequence.


In some aspects, the present disclosure provides an isolated polynucleotide encoding any one of the chimeric antigen receptors described herein.


In another aspect, the present disclosure provides a vector comprising the polynucleotide encoding any one of the chimeric antigen receptors described herein.


In some embodiments, the vector is a retroviral vector, a DNA vector, a plasmid, a RNA vector, an adenoviral vector, an adenovirus associated vector, a lentiviral vector, or any combination thereof.


In another aspect, the present disclosure provides an engineered immune cell expressing a chimeric antigen receptors described herein.


In some aspects, the present disclosure provides an engineered immune cell expressing the polynucleotide or vector encoding any one of the chimeric antigen receptors described herein.


In some embodiments, the engineered immune cell is a T cell, tumor infiltrating lymphocyte (TIL), NK cell, TCR-expressing cell, dendritic cell, or NK-T cell.


In some embodiments, the engineered immune cell is an autologous T cell.


In some embodiments, the engineered immune cell is an allogeneic T cell.


In some embodiments, the engineered immune cell is TCR (e.g., TCRα, TCRβ) knocked out.


In one aspect, the present disclosure provides a pharmaceutical composition comprising the engineered immune cell expressing a chimeric antigen receptors described herein.


In some aspects, the present disclosure provides a method of treating a disease or disorder in a subject in need thereof comprising administering to the subject the engineered immune cell or the pharmaceutical composition comprising the engineered immune cell expressing a chimeric antigen receptors described herein.


In some embodiments, the disease or disorder is cancer.


In some embodiments, the disease or disorder is small cell lung cancer.


In some aspects, the present disclosure provides an article of manufacture comprising the engineered immune cell or the pharmaceutical composition comprising the engineered immune cell expressing a chimeric antigen receptors described herein.


In some aspects, the present disclosure provides an anti-DLL3 binding agent disclosed herein.


In some embodiments, the anti-DLL3 binding agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof, optionally, a F(ab′)2 fragment, a Fab′ fragment, a Fab fragment, a Fv fragment, a scFv fragment, a dsFv fragment, or a dAb fragment.


In some embodiments, the binding agent is a monoclonal antibody comprising an IgG constant region.


In some embodiments, the anti-DLL3 binding agent comprises a variable heavy (VH) chain sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to a VH sequence provided in Table 1b.


In some embodiments, the anti-DLL3 binding agent comprises a variable light (VL) chain sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to a VL sequence provided in Table 1c.


In some embodiments, the anti-DLL3 binding agent comprises a sequence that is at least about 80%, 85%, 90%, 95%, 96%, 98%, 99% or 100% identical to an scFv sequence presented in Table 1d.


In some embodiments, the anti-DLL3 binding agent is a fusion protein comprising a scFv fragment fused to an Fc constant region.


In some aspects, the present disclosure provides a pharmaceutical composition comprising the anti-DLL3 binding agent disclosed herein and a pharmaceutically acceptable excipient.


In some aspects, the present disclosure provides a method of treating a disease or disorder in a subject in need thereof comprising administering to the subject an anti-DLL3 binding agent, or a pharmaceutical composition comprising the anti-DLL3 binding agent, as disclosed herein.


In some embodiments, the disease or disorder is cancer.


In some embodiments, the disease or disorder is small cell lung cancer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are a series of plots showing that purified anti-DLL3 antibodies described herein bind to three DLL3-expressing small cell lung cancer cell lines (SHP-77, DMS 273 and DMS 454). The solid line and dashed line represent staining with anti-DLL3 antibodies or mouse IgG2A isotype control antibody, respectively.



FIGS. 2A-2D show the results of epitope mapping experiments. FIG. 2A is a schematic representation of full length and truncated human DLL3 proteins expressed on CHO cells for epitope mapping, and all the proteins were fused at N-terminus with an HA tag for easy detection.



FIGS. 2B and 2C show the amino acid sequences of full length and truncated human DLL3 proteins shown in FIG. 2A. FIG. 2D is a series of plots showing the results of epitope mapping of anti-DLL3 antibodies, and examples of anti-DLL3 antibodies recognizing DSL, EGF1 and EGF3 domain, respectively; the x-axis depicts signals from PE channel and the y-axis depicts counts.



FIGS. 3A-3C are a series of plots and tables showing the structure, transduction efficiency of cells from two different donors and the cytotoxic activity of anti-DLL3 CARs. FIG. 3A is a schematic of a construct encoding an anti-DLL3 CAR comprising, from the N-terminus to the C-terminus: anti-DLL3 scFv, the hinge and transmembrane regions from human CD8a, the cytoplasmic region from human 41BB and the cytoplasmic region from human CD3. FIG. 3B depicts experimental data showing that anti-DLL3 CARs are expressed on the surface of primary T-cells and can recognize recombinant DLL3; the plots are gated on live CD3+ cells and the numbers on the plots are the percentage of cells expressing each anti-DLL3 CAR. FIGS. 3C and 3D show the transduction efficiency of anti-DLL3 CARs comprising the scFv sequences described herein.



FIGS. 4A-4C are a series of plots showing killing data for some anti-DLL3 CARs. FIG. 4A depicts experimental data showing that anti-DLL3 CAR-T cells specifically killed HEK-293T cells expressing human DLL3 but not parental HEK-293T cells in a 3-day cytotoxicity assay at the indicated effector:target (E:T) ratios. T cells that did not express anti-DLL3 CARs (labelled “empty vector”) were used as negative control. FIG. 4B depicts experimental data showing that anti-DLL3 CAR-T cells killed SHP-77 and WM266.4 cells that express endogenous DLL3 in a 3-day cytotoxicity assay at indicated effector:target ratios. FIG. 4C depicts experimental data showing that anti-DLL3 CAR-T cells killed DMS 454 and DMS 273 small cell lung cancer cells that express endogenous DLL3 in a 3-day cytotox assay at indicated effector:target ratios. For all plots in FIGS. 4A-4C, One-glo assay system was used to assess target cell viability, n=3.



FIG. 5 is a series of bar graphs showing that anti-DLL3 CAR-T cells released cytokines after co-incubation with DLL3-expressing SHP-77 cell line when CAR-T cells and SHP-77 cells were incubated at 1:1 or 1:9 effector:target ratio for 24 hours. Supernatant was collected and IFN-γ, IL-2 and TNF-α levels were measured using proinflammory 9-plex kit from MSD, n=3.



FIGS. 6A-6B are plots showing experimental data of a serial killing assay after repeated exposure of anti-DLL3 CAR-T cells to DLL3+ cell lines. FIG. 6A depicts serial killing of anti-DLL3 CAR-T cells to DLL3+WM266.4 cells. Some of the clones remained active on day 12 of the assay. FIG. 6B depicts serial killing of anti-DLL3 CAR-T cells to DMS 454 and WM266.4 cells.



FIG. 6C depicts serial killing of anti-DLL3 CAR-Ts to DMS 273 small cell lung cancer line. For all plots in FIGS. 6A-6C, one-glo assay or CellTiter-glo system was used to assess target cell viability, n=3-5.



FIGS. 7A-7B are plots demonstrating that anti-DLL3 CAR-T cells eliminated established SHP-77 small cell lung cancer subcutaneous tumors in mice in a dose dependent manner.



FIG. 8 is a plot demonstrating that 10G1-K anti-DLL3 CAR-T cells inhibited the growth of established IV injected SHP-77 small cell lung cancer tumors in a dose dependent manner. Statistical analysis was done using ANOVA with repeated measures (Dunnett's multiple comparisons), day 14-day 28, n=4-5. *, p<0.05. **, p<0.01.



FIGS. 9A-9C depict the structure, transduction efficiency of primary T-cells and the cytotoxic activity of anti-DLL3 CARs with safety switch. FIG. 9A are schematics showing the structure of CAR designs with 4 different safety switches (QR3, SR2, RSR and R2S). FIG. 9B shows flow cytometry plots demonstrating that anti-DLL3 CARs with safety switches shown in FIG. 9A are expressed on the surface of primary T-cells and can recognize recombinant DLL3. The plots are gated on live CD3+ cells and the numbers on the plots indicate the percentage of cells expressing each anti-DLL3 CAR. FIG. 9C depicts experimental data showing that anti-DLL3 CARs with safety switches are active in serial killing assay.



FIG. 10A depicts plots showing that two small cell lung cancer patient-derived xenograft (PDX) models express DLL3 on cell surface. Solid line and dashed line represent staining with anti-DLL3 antibodies or fluorescence minus one (FMO), respectively. FIG. 10B shows experimental data showing anti-DLL3 CAR-Ts show cytotoxic activity against the same two PDX models.



FIGS. 11A-11B show safety switches allow detection and depletion of DLL3 CAR-T cells with rituximab. FIG. 11A shows 8E11-SR2 and 26C8-R2S anti-DLL3 CAR-T cells were stained with recombinant DLL3 and PE conjugated rituximab 14 days after expansion and analyzed using flow cytometry. Numbers in quadrants represent percentage of total T cells. FIG. 11B shows rituximab-mediated complement dependent cytotoxicity (CDC) of 8E11-SR2 and 26C8-R2S anti-DLL3 CAR-T cells. CAR-T cells were incubated for 3 hours with 25% baby rabbit complement and rituximab and cytotoxicity was assessed using flow cytometry.



FIGS. 12A-12B depict plots demonstrating that anti-DLL3 CAR-T cells with safety switches inhibited the growth of subcutaneous or IV injected small cell lung cancer tumors. FIG. 12A shows DLL3 CAR-T cells with safety switches eliminated established SHP-77 small cell lung cancer subcutaneous tumors in mice. FIG. 12B is a plot demonstrating that anti-DLL3 CAR-T cells inhibited the growth of IV injected DMS 273-DLL3 small cell lung cancer tumors.



FIG. 13A shows a representative image of mouse DLL3 RNA expression in the brain of NSG mice. Circle indicates clusters of mouse DLL3 RNA. FIG. 13B shows anti-human CD3 staining of spleen, pituitary and brain samples of animals dosed with non-transduced T cells, 10G1-K DLL3 CAR-T cells or 2G1 DLL3 CAR-T cells. Arrows indicate CD3 positive cells in spleens.



FIGS. 14A-14F show the experimental design and results of a mouse safety study using subcutaneous LN229-mDLL3 tumor model. FIG. 14A shows the study groups and experiment design. FIG. 14B shows the timing of tissue harvest and tumor volume of animals that received either non-transduced T cells or DLL3 CAR-T cells. FIG. 14C is a table showing the human CD3 staining score of brain and pituitary samples. FIG. 14D is a table showing the histology analysis of harvested brain and pituitary samples. FIG. 14E shows images of pituitary samples stained with anti-vasopressin antibody. FIG. 14F shows images of pituitary samples stained with anti-oxytocin antibody.



FIGS. 15A-15D show the experimental design and results of a mouse safety study using intracranial LN229-mDLL3 tumor model. FIG. 15A shows the study groups and experiment design. FIG. 15B shows the timing of tissue harvest and tumor volume of animals that received non-transduced T cells, DLL3 CAR-T cells or EGFRvIII CAR-T cells. FIG. 15C is a table showing the human CD45 staining score of brain, pituitary and spleen samples. FIG. 15D is a table showing the histology analysis of brain and pituitary samples.



FIGS. 16A-16C show the experimental data of the in vitro cytotoxicity of dissociated mouse pituitary cells. FIG. 16A shows the cytotoxicity readout of the target cells after 3-day of co-culture with DLL3 CAR-T cells, demonstrating that DLL3 CARTs are not cytotoxic against mouse pituitary cells in vitro. FIG. 16B shows the flow cytometry analysis of the surface staining for activation markers CD25 and 41BB of the T cells co-cultured with the targets, demonstrating that mouse pituitary cells do not activate DLL3 CAR-Ts in vitro. FIG. 16C shows the cytokines secreted in the cell culture medium, analyzed by MSD, demonstrating that no cytokines are secreted after co-culturing DLL3 CAR-T cells with mouse pituitary cells in vitro for 3 days





DETAILED DESCRIPTION

Provided herein are DLL3-specific antibodies and chimeric antigen receptors (CARs). The DLL-3 specific CARs described herein, comprise an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3, and polynucleotides encoding these CARs. Also provided are immune cells comprising these DLL3-specific CARs, e.g., CAR-T cells, and pharmaceutical compositions comprising these immune cells. Methods of making and using these DLL3-specific CARs and immune cells comprising these DLL3-specific CARs are also disclosed, e.g., for the treatment of cancer.


I. DLL-3 Binding Agents


The present disclosure provides DLL-3 binding agents (e.g., molecules comprising a DLL3 antigen binding domain, DLL-3 antibodies or fragments thereof), that specifically bind to DLL-3. As used herein, the term “antibody” refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen (e.g., DLL-3). As is known in the art, intact antibodies as produced in nature are approximately 150 kD tetrameric agents comprised of two identical heavy chain polypeptides (about 50 kD each) and two identical light chain polypeptides (about 25 kD each) that associate with each other into what is commonly referred to as a “Y-shaped” structure. Each heavy chain is comprised of at least four domains (each about 110 amino acids long)—an amino-terminal variable (VH) domain (located at the tips of the Y structure), followed by three constant domains: CH1, CH2, and the carboxy-terminal CH3 (located at the base of the Y's stem). A short region, known as the “switch”, connects the heavy chain variable and constant regions. The “hinge” connects CH2 and CH3 domains to the rest of the antibody. Two disulfide bonds in this hinge region connect the two heavy chain polypeptides to one another in an intact antibody. Each light chain is comprised of two domains—an amino-terminal variable (VL) domain, followed by a carboxy-terminal constant (CL) domain, separated from one another by another “switch”. Those skilled in the art are well familiar with antibody structure and sequence elements, recognize “variable” and “constant” regions in provided sequences, and understand that there may be some flexibility in definition of a “boundary” between such domains such that different presentations of the same antibody chain sequence may, for example, indicate such a boundary at a location that is shifted one or a few residues relative to a different presentation of the same antibody chain sequence.


The assignment of amino acids to each of the framework, CDR, and variable domains is typically in accordance with numbering schemes of Kabat numbering (see, e.g., Kabat et al. in Sequences of Proteins of Immunological Interest, 5th Ed., NIH Publication 91-3242, Bethesda Md. 1991), Chothia numbering (see, e.g., Chothia & Lesk, (1987), J Mol Biol 196: 901-917; Al-Lazikani et al., (1997) J Mol Biol 273: 927-948; Chothia et al., (1992) J Mol Biol 227: 799-817; Tramontano et al., (1990) J Mol Biol 215(1): 175-82; and U.S. Pat. No. 7,709,226), contact numbering, or the AbM scheme (Antibody Modeling program, Oxford Molecular).


Accordingly, in some embodiments, the CDRs of the DLL3 binding agents presented herein are numbered according to the Kabat numbering scheme. In other embodiments, the CDRs of the DLL3 binding agents presented herein are numbered according to the Chothia numbering scheme. In other embodiments, the CDRs of the DLL3 binding agents presented herein are numbered according to the contact numbering scheme. In other embodiments, the CDRs of the DLL3 binding agents presented herein are numbered according to the AbM numbering scheme.


Intact antibody tetramers are comprised of two heavy chain-light chain dimers in which the heavy and light chains are linked to one another by a single disulfide bond; two other disulfide bonds connect the heavy chain hinge regions to one another, so that the dimers are connected to one another and the tetramer is formed. Naturally-produced antibodies are also glycosylated, typically on the CH2 domain. Each domain in a natural antibody has a structure characterized by an “immunoglobulin fold” formed from two beta sheets (e.g., 3-, 4-, or 5-stranded sheets) packed against each other in a compressed antiparallel beta barrel. Each variable domain contains three hypervariable loops known as “complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant “framework” regions (FR1, FR2, FR3, and FR4). When natural antibodies fold, the FR regions form the beta sheets that provide the structural framework for the domains, and the CDR loop regions from both the heavy and light chains are brought together in three-dimensional space so that they create a single hypervariable antigen binding site located at the tip of the Y structure. The Fc region of naturally-occurring antibodies binds to elements of the complement system, and also to receptors on effector cells, including for example effector cells that mediate cytotoxicity. As is known in the art, affinity and/or other binding attributes of Fc regions for Fc receptors can be modulated through glycosylation or other modification. In some embodiments, antibodies produced and/or utilized in accordance with the present invention include glycosylated Fc domains, including Fc domains with modified or engineered such glycosylation.


For purposes of the present invention, in certain embodiments, any polypeptide or complex of polypeptides that includes sufficient immunoglobulin domain sequences as found in natural antibodies can be referred to and/or used as an “antibody”, whether such polypeptide is naturally produced (e.g., generated by an organism reacting to an antigen), or produced by recombinant engineering, chemical synthesis, or other artificial system or methodology. In some embodiments, an antibody is polyclonal; in some embodiments, an antibody is monoclonal. In some embodiments, an antibody has constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies. In some embodiments, antibody sequence elements are humanized, primatized, chimeric, etc, as is known in the art.


Moreover, the term “antibody” as used herein, can refer in appropriate embodiments (unless otherwise stated or clear from context) to any of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation. For example, in some embodiments, an antibody utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgA, IgG, IgE or IgM antibodies; bi- or multi-specific antibodies (e.g., Zybodies®, etc); antibody fragments such as Fab fragments, Fab′ fragments, F(ab′)2 fragments, Fd′ fragments, Fd fragments, and isolated CDRs or sets thereof; single chain Fvs; polypeptide-Fc fusions; single domain antibodies (e.g., shark single domain antibodies such as IgNAR or fragments thereof); cameloid antibodies; masked antibodies (e.g., Probodies®); Small Modular ImmunoPharmaceuticals (“SMIPs™); single chain or Tandem diabodies (TandAb®); VHHs; Anticalins®; Nanobodies® minibodies; BiTE®s; ankyrin repeat proteins or DARPINs®; Avimers®; DARTs; TCR-like antibodies; Adnectins®; Affilins®; Trans-Bodies®; Affibodies®; TrimerX®; MicroProteins; Fynomers®, Centyrins®; and KALBITOR®s. In some embodiments, an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally. In some embodiments, an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload (e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc), or other pendant group (e.g., poly-ethylene glycol, etc).


Antibodies include antibody fragments. Antibodies also include, but are not limited to, polyclonal monoclonal, chimeric dAb (domain antibody), single chain, Fab, Fa, F(ab)2 fragments, scFvs, and Fab expression libraries. An antibody may be a whole antibody, or immunoglobulin, or an antibody fragment.


As detailed above, whole antibodies consist of two pairs of a “light chain” (LC) and a “heavy chain” (HC) (such light chain (LC)/heavy chain pairs are abbreviated herein as LC/HC). The light chains and heavy chains of such antibodies are polypeptides consisting of several domains. In a whole antibody, each heavy chain comprises a heavy chain variable region (abbreviated herein as HCVR or VH) and a heavy chain constant region. The heavy chain constant region comprises the heavy chain constant domains CH1, CH2 and CH3 (antibody classes IgA, IgD, and IgG) and optionally the heavy chain constant domain CH4 (antibody classes IgE and IgM). Each light chain comprises a light chain variable domain VL and a light chain constant domain CL. The variable domains VH and VL can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 (Janeway, C. A., Jr, et al, (2001). Immunobiology, 5th ed., Garland Publishing; and Woof, J., Burton, D., Nat Rev Immunol 4 (2004) 89-99). The two pairs of heavy chain and light chain (HC/LC) are capable of specifically binding to the same antigen. Thus said whole antibody is a bivalent, monospecific antibody. Such “antibodies” include e.g., mouse antibodies, human antibodies, chimeric antibodies, humanized antibodies and genetically engineered antibodies (variant or mutant antibodies) as long as their characteristic properties are retained. In some embodiments, antibodies or binding agents are humanized antibodies, especially as recombinant human or humanized antibodies.


In some embodiments, the antibody or binding agent can be “symmetrical.” By “symmetrical” is meant that the antibody or binding agent has the same kind of Fv regions (e.g., the antibody has two Fab regions). In some embodiments, the antibody or binding agent can be “asymmetrical.” By “asymmetrical” is meant that the antibody or binding agent has at least two different kinds of Fv regions (e.g., the antibody has: Fab and scFv regions, Fab and scFv2 regions, or Fab-VHH regions). Various asymmetrical antibody or binding agent architectures are known in the art (Brinkman and Kontermann et al. 2017 Mabs (9)(2): 182-212).


As used herein, the term “antibody agent” refers to an agent that specifically binds to a particular antigen. In some embodiments, the term encompasses any polypeptide or polypeptide complex that includes immunoglobulin structural elements sufficient to confer specific binding. Exemplary antibody agents include, but are not limited to monoclonal antibodies or polyclonal antibodies. In some embodiments, an antibody agent may include one or more constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies. In some embodiments, an antibody agent may include one or more sequence elements are humanized, primatized, chimeric, etc, as is known in the art. In many embodiments, the term “antibody agent” is used to refer to one or more of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation. For example, an antibody agent utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgA, IgG, IgE or IgM antibodies; bi- or multi-specific antibodies (e.g., Zybodies, etc); antibody fragments such as Fab fragments, Fab′ fragments, F(ab′)2 fragments, Fd′ fragments, Fd fragments, and isolated CDRs or sets thereof; single chain Fvs; polypeptide-Fc fusions; single domain antibodies (e.g., shark single domain antibodies such as IgNAR or fragments thereof); cameloid antibodies; masked antibodies (e.g., Probodies®); Small Modular ImmunoPharmaceuticals (“SMIPs™); single chain or Tandem diabodies (TandAb®); VHHs; Anticalins®; Nanobodies® minibodies; BiTE®s; ankyrin repeat proteins or DARPINs®; Avimers; DARTs; TCR-like antibodies; Adnectins®; Affilins®; Trans-Bodies®; Affibodies®; TrimerX®; MicroProteins; Fynomers, Centyrins; and KALBITOR®s.


In some embodiments, an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally. In some embodiments, an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc], or other pendant group [e.g., poly-ethylene glycol, etc.]. In many embodiments, an antibody agent is or comprises a polypeptide whose amino acid sequence includes one or more structural elements recognized by those skilled in the art as a complementarity determining region (CDR); in some embodiments, an antibody agent is or comprises a polypeptide whose amino acid sequence includes at least one CDR (e.g., at least one heavy chain CDR and/or at least one light chain CDR) that is substantially identical to one found in a reference antibody In some embodiments, an antibody agent is or comprises a polypeptide whose amino acid sequence includes structural elements recognized by those skilled in the art as an immunoglobulin variable domain. In some embodiments, an antibody agent is a polypeptide protein having a binding domain which is homologous or largely homologous to an immunoglobulin-binding domain.


An antibody or antigen binding molecule encoded of the present invention can be single chained or double chained. In some embodiments, the antibody or antigen binding molecule is single chained. In certain embodiments, the antigen binding molecule is selected from the group consisting of an scFv, a Fab, a Fab′, a Fv, a F(ab)2, a dAb, and any combination thereof.


In some embodiments, an anti-DLL-3 antibody agent is isolated. In some embodiments, an antibody agent can be purified to greater than 95% or 99% purity as determined by, for example, electrophoretic (e.g., SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatographic (e.g., ion exchange or reverse phase HPLC) (See, e.g., Flatman et al., J. Chromatogr., B 848:79-87 (2007)). In some aspects, the present disclosure provides a composition comprising a DLL-3 binding agent (e.g., a DLL3 specific antibody) and a pharmaceutically acceptable carrier.


In some embodiments, an anti-DLL-3 antibody agent comprises an Fc. Fc domains can interact with cell surface receptors which can allow antibodies to activate the immune system. In IgG, IgA and IgD antibody isotypes, a Fc region is composed of two identical protein fragments, derived from the second and third constant domains of the antibody's two heavy chains; IgM and IgE Fc regions contain three heavy chain constant domains (CH domains 2-4) in each polypeptide chain. The Fc regions of IgG may bear a highly conserved N-glycosylation site (N297). Glycosylation of the Fc fragment may be essential for Fc receptor-mediated activity. The N-glycans attached to this site can predominantly be core-fucosylated diantennary structures of the complex type.


While the constant regions of the light and heavy chains may not be directly involved in binding of the antibody to an antigen, the constant regions can influence the orientation of the variable regions. The constant regions can also exhibit various effector functions, such as participation in antibody-dependent complement-mediated lysis or antibody-dependent cellular toxicity via interactions with effector molecules and cells.


The disclosed anti-DLL-3 antibody agents can be antibodies of any isotype, including isotype IgA, isotype IgD, isotype IgE, isotype IgG, or isotype IgM. In some embodiments, an anti-DLL-3 antibody contains a IgG1, IgG2, IgG3, or IgG4 constant domain.


Provided herein are DLL3 binding agents (e.g., antibodies) that can bind to various regions or domains of the DLL3 target. The epitope can be, for example, contiguous amino acids of the DLL3 target (linear or contiguous epitope) or come together from two or more non-contiguous regions of the DLL3 target (conformational, non-linear, discontinuous, or non-contiguous epitope). The epitope to which the DLL3 antigen binding domain binds can be determined by various assays, e.g., NMR spectroscopy, X-ray diffraction crystallography studies, ELISA assays, hydrogen/deuterium exchange coupled with mass spectrometry (e.g., liquid chromatography electrospray mass spectrometry), array-based oligo-peptide scanning assays, flow cytometry, and/or mutagenesis mapping (e.g., site-directed mutagenesis mapping).


Representative DLL3 regions or domains are shown in FIG. 2. Exemplary DLL3 antibodies described herein bind to DLL3 domains provided in Table 1a.









TABLE 1a







DLL3 Domains to Which Provided Clones Bind










Clone Name
Binds to DLL3 Domain (FIG. 2A)







2D3
EGF3



5E12
DSL



26C8
EGF3



2A6.C5
EGF3



6D8
EGF1



7F9
N-ter



8E11
EGF3



9D3
EGF3



11H7
DSL



16H7
EGF2



2C3
EGF2



4F9
N-terminus



4G9
N-terminus



2G1
EGF5



3F2
N-terminus



17A2
EGF1



6F8
EGF5



9H12-K
EGF4



4H8
EGF4



10G1-K
EGF5



11 A3
EGF3



4E6
EGF3










In some embodiments, the DLL3 binding agent comprises a variable heavy chain (VH), wherein the amino acid sequence of the VH is selected from the VH sequences presented in Table 1b. In some embodiments, an anti-DLL-3 binding agent comprises an immunoglobulin heavy chain having at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to an amino acid sequence presented in Table 1b.









TABLE 1b







Heavy Chain Variable Regions (VH)









Clone
VH Sequence
SEQ ID NO:





2D3
QVQLQESGPGLVKPSETLSLTCTVSDNSISNYYWSWIRQPPGKGLEWI
SEQ ID NO: 7



AYIYYSGTTNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAVYYCA




RLFNWGFAFDIWGQGTMVTVSS






5A2
QVQLQESGPGLMKPSETLSLTCTVSGGSISSSYWSCIRQPPGKGLEWI
SEQ ID NO: 16



GYIYYSGTTNYNPSLKSRVTLSLDTSKNQFSLRLTSVTAADTAVYYC




ARVAPTGFWFDYWGQGTLVTVSS






7F9
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSHDMHWVRQATGKGLE
SEQ ID NO: 25



WVSAIGIAGDTYYSGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVY




YCARANWGEGAFDIWGQGTMVTVSS






9D3
QVQLQESGPGLVKPSETLSLTCTVSDDSISNYYWSWIRQPPGKGLEWI
SEQ ID NO: 34



GYIFYSGTTNHNPSLKSRLTISLDKAKNQFSLRLSSVTAADTAVYYCA




RVFNWGFAFDIWGQGTMVTVSS






26C8
QVQLQESGPGLVKPSETLSLTCTVSDNSISNYYWSWIRQPPGKGLEWI
SEQ ID NO: 43



AYIYYSGTTNYNPSLKSRVTISLDTSKNQFSLQLSSVTAADAAVYYC




ARVFHWGFAFDIWGQGTMVTVSS






2A6.C5
QVQLQESGPGLVKPSETLSLTCTVSNVSISSYYWSWIRQPPGKGLEWI
SEQ ID NO: 52



GYIYYSGTTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYFC




ARLSNWGFAFDIWGQGTMVTFSS






5E12
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLE
SEQ ID NO: 61



WVSAIGPAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAV




YYCARADPPYYYYGMDVWGQGTTVTVSS






6D8
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTRGVGVGWIRQPPGKALE
SEQ ID NO: 70



WLALIYWNDDKRYSPSLQTRLTITKDTPKNQVVLTMTNMDPVDTAT




YYCARSNWGNWYFALWGRGTLVTVSS






8E11
QVQLQESGPGLVKPSETLSLTCTVSGDSISNYYWTWIRQPPGKGLEWI
SEQ ID NO: 79



GYIYYSGTTNSNPSLKSRVTVSLDTSKSQFSLNLSSVTAADTAVYYCA




RVFNRGFAFDIWGQGTMVTVSS






5C1.A4
QVTLRESGPALVKPTQTLTLTCTVSGVSLSTSGMCVSWIRQPLGKAL
SEQ ID NO: 88



EWLGFIDWDDDKYYNTSLKTRLTISKDTSKNQVVLTMTNMDPVDTA




TYYCARIRGYSGSYDAFDIWGQGTVVIVSS






9F7
QVQLQVSGPGLVKPSETLSLTCSVSGGSISSYYWSWIRQSPGKGLDWI
SEQ ID NO: 97



GYMYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTATDTAVYYC




ARVGLTGFFFDYWGQGTLVTVSS






2C3
QVQLQQWGGGLLKPSETLSLTCAVYGGSSSGNYWSWIRQPPGKRLE
SEQ ID NO: 106



WIGEINHSGTTSYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




CARGELGIADSWGQGTLVTVSS






2G1
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
SEQ ID NO: 115



WIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLRLSSVTAADTAVYY




CAREIIVGATHFDYWGQGTLVTVSS






3E4
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLE
SEQ ID NO: 124



WIGEIIHSGSSNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVYYC




SRGEYGSGSRFDYWGQGTLVTVSS






3F2
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSNNWWSWVRQPPGKGL
SEQ ID NO: 133



EWIGDIHHSGSTNYKPSLKSRVTISVDKSKNQFSLNLISVTAADTAVY




YCAREAGGYFDYWGQGILVTVSS






4F9
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWTWIRQPPGKGLE
SEQ ID NO: 142



WIGEITHSGSTNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVYY




CARGEYGSGSRFDYWGQGTLVTVSS






4G9
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLE
SEQ ID NO: 151



WIGEITHSGSTNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVYY




CARGEYGSGSRFDYWGQGTLVTVSS






11H7
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSAYYWNWIRQPPGKGLE
SEQ ID NO: 160



WIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLNLTSLTAADTAVYY




CARGLDSSGWYPFDYWGQGTLVTVSS






16H7
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGDYWSWIRQPPGKGLE
SEQ ID NO: 169



WIGEINHSGITSFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAV




YYCARGELGIPDNWGQGTLVTVSS






17A2
QVQLQESGPGLVKPSGTLSLTCVVFGDSISSSNWWSWVRQPPGKGLE
SEQ ID NO: 178



WIGEVFHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVY




YCARAAVAGALDYWGQGTLVTVSS






6H1
QITLRESGPTLVKPTQTLTLTCTFSGFSLSTSGLGVGWIRQPPGEA
SEQ ID NO: 187



LEWLALIYWNDDKRYSPSLKSRLSITKDTSKNQVVLIMTNMDPVDT




ATYYCVHRRIAAPGSVYWGQGTLVTVSS






6H5
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGP
SEQ ID NO: 196



EGMGGFDpEDGKTIYAQKFQGRVTMTEDTSADTAYMELNSLRSEDT




AVYYCATLLRG1DAFDVWGQGTMVTVSS






10D1
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWRWIRQPPGKGLE
SEQ ID NO: 205



WIGEISHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




CAVRGYSYGYPLFDYWGQGTLVTVSS






11F6
QVQLQESGPGLVKPSGTLSLTCAVSGDSISSNWWTWVRQPPGKGLE
SEQ ID NO: 214



WIGDIHHSGSTNYNPSLKSRVTMSVDKSENQFSLKLSSVTAADTAVF




YCARDGGGTLDYWGQGTLVTVSS






6F8
QVQLVQSGAEVKKPGSSVKVSCKASGGTFTNYCISWVRQAPGQGLE
SEQ ID NO: 223



WMGGIIpIFGTTNYAQTFQGRVTITADKSTSTAYMELSSLRSEDTAVY




YCARDNGDRYYYDMDVWGQGTTVTVSS






3G6-L1
QVPLVQSGAEVKKPGSSVKVSCKASGGTFSTYSISWVRQAPGQGLE
SEQ ID NO: 232



WMGGIIpIFGTTNYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




YCARDGEGSYYYYYGMDVWGQGTTVTVSS






4C6
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYYWSWIRQPPGKGLEWI
SEQ ID NO: 241



GYMYYSGITNYNPSLKSRVNISLDTSKNQFSLKLGSVTAADTAVYYC




ARLSVAGFYFDYWGQGTLVTVSS






4E6
QVQLQESGPGLVKPSETLSLTCTVSSDSISSYYWSWIRQPPGKGLEWI
SEQ ID NO: 250



SYIYYSGISNYNPSLKSRVSISVDTSKNQFSLRLSSVTAADTAVYYCA




RISVAGFFFDNWGQGTLVTVSS






4H8
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSRGLE
SEQ ID NO: 259



WLGRTYYRSKWYDDYAVSVKSRITINPDTSKNHLSLHLNSVTPEDTA




VYYCAGGGLVGAPDGFDVWGQGTMVTVSS






9H12-K
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYSIHWVRQAPGQGLE
SEQ ID NO: 268



WMGWINPNSGGTFYAQKFQGRVTMTRDTSISTVYMELSRLRSDDTA




VYYCARDGWGDYYYYGLDVWGQGTTVTVSL






10G1-K
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLE
SEQ ID NO: 277



WVSTISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV




FYCAIDPEYYDILTGGDYWGQGTLVTVSS






11A3
QVQLQESGPGLVKPSETLSLTCTVSSDSISNYYWSWIRQPPGKGLEWI
SEQ ID NO: 286



SYIYYSGITNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA




RITVTGFYFDYWGQGTLVTVSS






3B11
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSVVWNWIRQSPSRGL
SEQ ID NO: 295



EWLGRTYYRSKWYDDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDT




AVYHCARGGIVGAPDAFDIWGQGTMVTVSS






5G2
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAVWNWIRQSPSRGL
SEQ ID NO: 304



EWLGWTYYRSKYYNDYAVSLKSRITINPDTSKNQFSLQLNSLTPEDT




AVYYCTRGGIVGAPDGFDIWGQGTMVTVSS






11E4
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQSPGKGLEWI
SEQ ID NO: 313



GYVYYSDITNYNPSLKSRVTISVDTSKNQFSLNLNSVTAADTAFYFCA




RIGVAGFYFDYWGQGTLVTVSS






2404.8E11
QIQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAVWNWIRQSPSRGLE
SEQ ID NO: 322



WLGRTYYRSKWYNDYAVSVKSRITIKPDTAKNQFSLQLNSVTPEDT




AVYYFTRGGIVGAPDAFDIWGQGTMVTVSS






10A2
QVQLQQSGPGLVKPSETLSLTCAISGDSVSSNSATWNWIRQSPSRGLE
SEQ ID NO: 331



WLGRTYYRSEWYNDYAVSVKSRITINPDTSKNHLSLHLNSVTPEDTA




VYYCAGGGIVGAPDGFDVWGQGTMVTVSS






11A8
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSTGLE
SEQ ID NO: 340



WLARTYYRSKWYNDYEVSVKSQITINPDTSKNQFSLQLNSVTPEDTA




VYYCARGGIVGAPDAFDIWGQGTMVTVSS






4H5
QVQLQESGPGLVKPSETLSLTCTVSGDSINNYFWSWIRQPPGKGLEWI
SEQ ID NO: 349



GYFYHRGGNNYNPSLKSRVTISIDTSKNQFSLNLNSVTSADTAVYYC




ARLALAGFFFDYWGQGTLVTVSS






3G6-L2
QVPLVQSGAEVKKPGSSVKVSCKASGGTFSTYSISWVRQAPGQGLE
SEQ ID NO: 358



WMGGIIPIFGTTNYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




YCARDGEGSYYYYYGMDVWGQGTTVTVSS






3B9
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
367



WVSYISSSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAV




YYCARDKERRYYYYGMDVWGQGTTVTVSS






3F9-L
QVQLQQSGPGLVKPSQTLSLACAISGDSVSSNSAIWNWIRQSPSRGLE
SEQ ID NO: 376



WLGGTYYRSMWYNDYAVSVKSRITINPDTSKNQLSLQLNSVTPEDT




AVYYCSRGGIVGVPDAFDIWGQGTMVTVSS






3E10
QVQLQESGPGLVKPSETLSLTCNVSDGSISSYYWTWIRQPPGKGLDW
SEQ ID NO: 385



IGYIFYSGTTNYNPSLKSRVTISLDTSKNQFSLKLTSMTAADTAVYYC




ARISEKSFYFDYWGQGTLVTVSS






3C3
QVQLVQSGAEVKRPGASVKVSCKASGYTFTSYYIHWVRQAPGQGLE
SEQ ID NO: 394



WMGVIVPSGGSISYAQKFQGRVTMTRDTSTNIVYMELSSLRSEDTAV




YYCARDRYYGDYYYGLDVWGQGTTVTVSS






11F4
QVHLQESGPGLVKPSETLSLTCTVSGGSISHYYWTWIRQPPGKGLEWI
SEQ ID NO: 403



GYIYYSGITNFSPSLKSRVSISVDSSKNQFSLNLNSVTAADTAVYYCA




GISLAGFYFDYWVQGTLVTVSS






10E12
QVQLQESGPGLVKPSETLSLTCTVSGVSISSYYWSWIRQPPGKGLEWI
SEQ ID NO: 412



AYIYYSGNTNYSPSLKSRVTISVDTSKDQLSLKLSSVTAADTAVYYCT




RGGSGTIDVFDIWGQGTMVAVSS






4E1
QVQLQQSGPGLVKPSQTLSLTCAISGDNVSTNSAAWNWIRQSPSRGL
SEQ ID NO: 421



EWLGWTYYRSKWYNDYAVSLKSRININPDTSKNQFSLQLNSVTPED




TAVYYCARWVNRDVFDIWGQGTMVTVSS






2404.6H1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQTPGKGLE
SEQ ID NO: 430



WVAVISYDGNSNYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




VYYCARDGATVTSYYYYGMDVWGQGTTVTVSS






2A8-K
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAVWNWIRQSPSRGL
SEQ ID NO: 439



EWLGRTYYRSKWYNDYAVSVKSRITINPDTSRNQFSLQLNSVTPEDT




AVYYCARGGIVGAPDGFDIWGQGTMVTVSS






3B1
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNTTAWKWSRQSPSKGL
SEQ ID NO: 448



EWLGWTYYRSKWYYDYTVSVKSRITINPDTSKNQFSLQLNSVTPEDT




AVYYCARWIFHDAFDIWGQGTMVTVSS






9B5
QVQLQESGPGLVKPSETLSLTCTVSGDSISSLSWSWIRQTPGEGLEWI
SEQ ID NO: 457



GYLYYSGSTDYNPSLKSRVTISVDTSKNQFSLKLRSVAAADTALYYC




ARGRRAFDIWGQGTMVTVSS






11A5
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
SEQ ID NO: 466



EWMGWINPNSGGTNYAQKFQGRVTMTRDTSVSTAYMELSRLTSDD




TAIYYCAKDGGGDFYFYGMDVWGQGTTVTVSS









In some embodiments, the DLL3 binding agent comprises a variable light chain (VL), wherein the amino acid sequence of the VL is selected from the VL sequences presented in Table 1c. In some embodiments, an anti-DLL-3 binding agent comprises an immunoglobulin light chain having at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%) sequence identity to an amino acid sequence presented in Table 1c.









TABLE 1c







Light Chain Variable Regions









Clone
VL Sequence
SEQ ID NO:





2D3
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPR
SEQ ID NO: 8



LLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQY




NNWPLTFGGGTKVEIK






5A2
EIVLTQSPGTLSLSPGERATLSCRASQRVSSRYLAWYQQKPGQAP
SEQ ID NO: 17



RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEEFAVYYCQQ




YGTSPLTFGGGTKVEIK






7F9
DIQMTQSPSSLSASVGDRVTITCRASQGISDYLAWYQQKPGKIPK
SEQ ID NO: 26



LLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKY




NSVPLTFGGGTKVEIK






9D3
EIVLTQSPGTLSLSPGERATLSCRASQRISRTYLAWYQQKPGQAP
SEQ ID NO: 35



RLLIYGASSRATGIPDRFTGSGSGTDFTLTISRLEPEDFAVYYCQQ




YGTSPLTFGGGTKVEIN






26C8
EIVLTQSPGTLSLSPGERATLSCRASQRVSNTYLAWYQQNPGQAP
SEQ ID NO: 44



RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ




YGTSPLTFGGGTKVEIK






2A6.C5
EIVLTQSPGTLSLSPGERATLSCRASQTISSSYLAWYQQKPGQAPR
SEQ ID NO: 53



LLIYGASSRATGIPDRFSGSGSGTEFTLTISRLEPEDFAVYYCQQY




GWSPITFGQGTRLEIK






5E12
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNEYNYLDWYLQKP
SEQ ID NO: 62



GQSPQLLIYLGSNRASGVPDRFSGSGSGTDFILKISRVEAEDVGVY




YCMQALEIPLTFGGGTKVEIK






6D8
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPR
SEQ ID NO: 71



LLIYDAFYRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHR




SNWPITFGQGTRLEIK






8E11
EIVLTQSPGTLSLSPGERATLSCRASQRISNTYLAWYQQKPGQAP
SEQ ID NO: 80



RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAAYYCQQ




YDTSPLTFGGGTKVEIK






5C1.A4
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNHLDWYLQKP
SEQ ID NO: 89



GQSPQVLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV




YFCMQALQTPLTFGGGTKVEIK






9F7
AIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAP
SEQ ID NO: 98



KLLIYAASSLQSGVPSRFSGSGSGTDFTLTVSSLQPEDFATYYCLQ




DYNYPYTFGQGTKLEIK






2C3
DIQMTQSPSTLSASVGDRVTITCRASQSISRWLAWYQQKPGKAPK
SEQ ID NO: 107



LLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NSYSTFGQGTKVEIK






2G1
AIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPE
SEQ ID NO: 116



LLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQD




YNYPLTFGPGTKVDIK






3E4
AIQMTQSPSSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAP
SEQ ID NO: 125



KLLIYAASSLQSGVPSRFSGSRSDTDFTLTISSLQPEDFATYYCLQ




DYDYPLTFGGGTKVEIK






3F2
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPK
SEQ ID NO: 134



LLISKASSLESGVPSRFSGSGSGPEFTLTISSLQPADFATYYCQQYN




SYSTFGQGTKLEIK






4F9
AIQMTQSPSSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAP
SEQ ID NO: 143



KLLIYAASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQ




DYDYPLTFGGGTKVEIK






4G9
AIQMTQSPSSLSASVGDRVALTCRASQGIRDDLGWYQQKPGKAP
SEQ ID NO: 152



KLLIYAASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQ




DYDYPLTFGGGTKVEIK






11H7
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAP
SEQ ID NO: 161



KLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




ADSFPFTFGPGTKVDIK






16H7
DIQMTQSPSTLSASVGDRVTITCRASQSISRWLAWYQQKPGKAPK
SEQ ID NO: 170



LLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NSYSTFGQGTKVEIK






17A2
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKnYLAWYQQ
SEQ ID NO: 179



KPGQPPNLLVYWASTRESGVPDRFSGAGSGTDFTLTISSLQAEDV




AVYYCQQYYGTSWTFGQGTKVEIK






6H1
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAP
SEQ ID NO: 188



KLLISAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQ




ANSFPFTFGQGTKLEIK






6H5
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAP
SEQ ID NO: 197



KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISTLQPEDFATYYCLQ




HNSYPRTFGQGTKVEIK






10D1
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKLGKAP
SEQ ID NO: 206



KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQ




YNSYPRTFGQGTKVEIK






11F6
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPK
SEQ ID NO: 215



LLIYKASTLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NGYSTFGQGTKVEIK






6F8
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAP
SEQ ID NO: 224



KLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCG




TWDSSLSAVVFGGGTKLTVL






3G6-L1
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAP
SEQ ID NO: 233



KLLIYDNNKRPSGIPDRFFGSKFGTSATLGITGLQTGDEADYYCG




TWDSSLSAVVFGGGTKLTVL






4C6
EIVLTQSPGTLSLSPGERATLSCRASQSVTRSYLAWYQQKPGQAP
SEQ ID NO: 242



RLLIYGASSRATDIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQ




YGTSPLTFGGGTKVEIK






4E6
EIMLTQSPDTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAP
SEQ ID NO: 251



RLLIYGASSRAAGVPDRFSGSGSGTDFTLTISRLAPEDFVVYYCQ




QYGISPLTFGGGTKVEIK






4H8
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPK
SEQ ID NO: 260



LLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSA




WDDSLNGYVFGTGTKVTVL






9H12-K
DIQMTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQKPGKAP
SEQ ID NO: 269



KLLIYTASSLQGGVPSRFSGSGSGTDFTLTISSLQPEDLATYSCQQ




ANVFPYTFGQGTKLEIK






10G1-K
DIQMTQSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVP
SEQ ID NO: 278



KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQH




DSFPLTFGGGTKVEIK






11A3
EIVLTQSPGTLSLSPGERATLSCRASQSISRSYLAWYQQKPGQAPR
SEQ ID NO: 287



HLIYGASSRATGIPDRFSGSGSGTDFILTISRLEPEDFAVYYCQQY




DTSPLTFGGGTKVEIK






3B11
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVSWYQQFPGTAPK
SEQ ID NO: 296



LLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGHVFGTGTKVTVL






5G2
QSALTQPPSASGTPGQRVTISCSGSNSNIGSNPINWYQQLPGTAPK
SEQ ID NO: 305



LLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGHVFGTGTKVTVL






11E4
EIVLTQSPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQAP
SEQ ID NO: 314



RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFEVYYCQQ




YGTSPITFGQGTRLEIK






2404.8E11
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPINWYQQVPGTAPK
SEQ ID NO: 323



LLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGYVFGTGTKVTVL






10A2
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVIWYQQLPRTAPK
SEQ ID NO: 332



LLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGYVFGTGTKVTVL






11A8
QSVLTQPPSASGTPGQGVTISCSGSSSNIGSNPVNWYQQLPGTAP
SEQ ID NO: 341



KLLIYSNNQRPSGVPDRFSDSKSGTSASLAISGLQSEDEADYYCSA




WDDWLNGYVFGTGTKVTVL






4H5
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPK
SEQ ID NO: 350



LLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQY




NSYSRTFGQGTKVEIK






3G6-L2
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAP
SEQ ID NO: 359



KLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCA




AWDDSLSGWVFGGGTKLTVL






3B9
EIVLTQSPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQAP
SEQ ID NO: 368



RLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQF




GTSPITFGQGTRLEIK






3F9-L
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTANWYQQLPGTAPR
SEQ ID NO: 377



LLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGYVFGTGTKVTVL






3E10
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAP
SEQ ID NO: 386



KLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAP




WDDSLSGRVFGGGTKLTVL






3C3
DIQMTQSPSSLSASVGDRVTITCRASQGINNFLAWFQQKPGKAPK
SEQ ID NO: 395



SLIYAASSLQSGVPSKFSGSGSGTDFTLTIRSLQPEDFATYYCQHY




NSYPITFGQGTRLEIK






11F4
EIVLTQSPGTLSLSPGERATLSCRASQSVSRSYLAWYQQKPGQAP
SEQ ID NO: 404



RLLIYGASSRATGVPDRFSGSGSGTDFTLTISRLEPEDFAVFYCQQ




YSISPLTFGGGTKVEIK






10E12
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAP
SEQ ID NO: 413



KLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCET




WDSSLSAVVFGGGTKLTVL






4E1
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKA
SEQ ID NO: 422



PKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYC




CSYAGSSTWVFGGGTKLTVL






2404.6H1
EIVLTQSPGTLSLSPGERATLSCRASQSVSRTYLAWYHQKPGQAP
SEQ ID NO: 431



RLLIYGASSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ




YGTSPITFGQGTRLEIK






2A8-K
DIVMTQSPDSLAVSLGERATINCKSSQSVLDSSNNNnYFAWYQQR 
SEQ ID NO: 440



PGQPPHLLIYWASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAV




YYCQQYYSTPYTFGQGTKLEIK






3B1
QSALTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAP
SEQ ID NO: 449



KLLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYFCST




WDDSLNGPVFGGGTKLTVL






9B5
DIQMTQSPSSLSASVGDRVTITCRGSQGISNYLAWFQQRPGKAPK
SEQ ID NO: 458



SLIYAASSLESGVPSKFSGSGSGTDFTLTIISLQPEDFATYYCQQYY




NYPITFGQGTRLEIK






11A5
QTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSCFQQTPGQAP
SEQ ID NO: 467



RTLIYSTDTRSSGVPDRFSGSILGNKAALTITGAQADDESDYYCVL




YMGSGISVFGGGTKLTVL









Provided herein are DLL3 binding agents (e.g., antibodies), wherein the DLL3 antigen binding domain comprises a variable heavy chain (VH) and a variable light chain, wherein the amino acid sequence of the VH is selected from the VH sequences presented in Table 1b; and the amino acid sequence of the VL is selected from the VL sequences presented in Table 1c.


In some embodiments, the DLL-3 binding agent comprises a heavy chain CDR1, CDR2, and CDR3. In some embodiments, the heavy chain CDR1, CDR2, and CDR3 sequences are selected from the heavy chain CDRs presented in Table 1e.









TABLE 1e







Heavy Chain CDRs









Clone
CDR1 VH Sequence
SEQ ID NO:





2D3
NSISNYYWS
SEQ ID NO: 1





5A2
GSISSSYWS
SEQ ID NO: 10





7F9
FTFSSHDMH
SEQ ID NO: 19





9D3
DSISNYYWS
SEQ ID NO: 28





26C8
NSISNYYWS
SEQ ID NO: 37





2A6.C5
VSISSYYWS
SEQ ID NO: 46





5E12
FTFSSYDMH
SEQ ID NO: 55





6D8
FSLSTRGVGVG
SEQ ID NO: 64





8E11
DSISNYYWT
SEQ ID NO: 73





5C1.A4
VSLSTSGMCVS
SEQ ID NO: 82





9F7
GSISSYYWS
SEQ ID NO: 91





2C3
GSSSGNYWS
SEQ ID NO: 100





2G1
GSISSSSYYWG
SEQ ID NO: 109





3E4
GSFSGYYWS
SEQ ID NO: 118





3F2
GSISSNNWWS
SEQ ID NO: 127





4F9
GSFSGYYWT
SEQ ID NO: 136





4G9
GSFSGYYWS
SEQ ID NO: 145





11H7
GSFSAYYWN
SEQ ID NO: 154





16H7
GSFSGDYWS
SEQ ID NO: 163





17A2
DSISSSNWWS
SEQ ID NO: 172





6H1
FSLSTSGLGVG
SEQ ID NO: 181





6H5
YTLTELSMH
SEQ ID NO: 190





10D1
GSFSGYYWR
SEQ ID NO: 199





11F6
DSISSNWWT
SEQ ID NO: 208





6F8
GTFTNYCIS
SEQ ID NO: 217





3G6-L1
GTFSTYSIS
SEQ ID NO: 226





4C6
DSISSYYWS
SEQ ID NO: 235





4E6
DSISSYYWS
SEQ ID NO: 244





4H8
DSVSSNSATWN
SEQ ID NO: 253





9H12-K
YTFTGYSIH
SEQ ID NO: 262





10G1-K
FTFSSYAMN
SEQ ID NO: 271





11A3
DSISNYYWS
SEQ ID NO: 280





3B11
DSVSSNSVVWN
SEQ ID NO: 289





5G2
DSVSSNSAVWN
SEQ ID NO: 298





11E4
GSISSYYWS
SEQ ID NO: 307





2404.8E11
DSVSSNSAVWN
SEQ ID NO: 316





10A2
DSVSSNSATWN
SEQ ID NO: 325





11A8
DSVSSNSATWN
SEQ ID NO: 334





4H5
DSINNYFWS
SEQ ID NO: 343





3G6-L2
GTFSTYSIS
SEQ ID NO: 352





3B9
FTFSSYSMN
SEQ ID NO: 361





3F9-L
DSVSSNSAIWN
SEQ ID NO: 370





3E10
GSISSYYWT
SEQ ID NO: 379





3C3
YTFTSYYIH
SEQ ID NO: 388





11F4
GSISHYYWT
SEQ ID NO: 397





10E12
VSISSYYWS
SEQ ID NO: 406





4E1
DNVSTNSAAWN
SEQ ID NO: 415





2404.6H1
FTFSSYGMH
SEQ ID NO: 424





2A8-K
DSVSSNSAVWN
SEQ ID NO: 433





3B1
DSVSSNTTAWK
SEQ ID NO: 442





9B5
DSISSLSWS
SEQ ID NO: 451





11A5
YTFTGYYMH
SEQ ID NO: 460





2D3
AYIYYSGTTNYN
SEQ ID NO: 2





5A2
GYIYYSGTTNYN
SEQ ID NO: 11





7F9
SAIGIAGDTYYS
SEQ ID NO: 20





9D3
DSISNYYWS
SEQ ID NO: 29



GYIFYSGTTNHN
SEQ ID NO: 695





26C8
AYIYYSGTTNYN
SEQ ID NO: 38





2A6.C5
GYIYYSGTTNYN
SEQ ID NO: 47





5E12
SAIGPAGDTYYP
SEQ ID NO: 56





6D8
ALIYWNDDKRYS
SEQ ID NO: 65





8E11
GYIYYSGTTNSN
SEQ ID NO: 74





5C1.A4
GFIDWDDDKYYN
SEQ ID NO: 83





9F7
GYMYYSGTTNYN
SEQ ID NO: 92





2C3
GEINHSGTTSYN
SEQ ID NO: 101





2G1
GSIYYSGNIYHN
SEQ ID NO: 110





3E4
GEIIHSGSSNYN
SEQ ID NO: 119





3F2
GDIHHSGSTNYK
SEQ ID NO: 128





4F9
GEITHSGSTNYN
SEQ ID NO: 137





4G9
GEITHSGSTNYN
SEQ ID NO: 146





11H7
GEINHSGSTNYN
SEQ ID NO: 155





16H7
GEINHSGITSFN
SEQ ID NO: 164





17A2
GEVFHSGSTNYN
SEQ ID NO: 173





6H1
ALIYWNDDKRYS
SEQ ID NO: 182





6H5
GGFDPEDGKTIYA
SEQ ID NO: 191





10D1
GEISHSGSTNYN
SEQ ID NO: 200





11F6
GDIHHSGSTNYN
SEQ ID NO: 209





6F8
GGIIPIFGTTNYA
SEQ ID NO: 218





3G6-L1
GGIIPIFGTTNYA
SEQ ID NO: 227





4C6
GYMYYSGITNYN
SEQ ID NO: 236





4E6
SYIYYSGISNYN
SEQ ID NO: 245





4H8
GRTYYRSKWYDDYA
SEQ ID NO: 254





9H12-K
GWINPNSGGTFYA
SEQ ID NO: 263





10G1-K
STISGSGGSTYYA
SEQ ID NO: 272





11A3
SYIYYSGITNYN
SEQ ID NO: 281





3B11
GRTYYRSKWYDDYA
SEQ ID NO: 290





5G2
GWTYYRSKYYNDYA
SEQ ID NO: 299





11E4
GYVYYSDITNYN
SEQ ID NO: 308





2404.8E11
GRTYYRSKWYNDYA
SEQ ID NO: 317





10A2
GRTYYRSEWYNDYA
SEQ ID NO: 326





11A8
ARTYYRSKWYNDYE
SEQ ID NO: 335





4H5
GYFYHRGGNNYN
SEQ ID NO: 344





3G6-L2
GGIIPIFGTTNYA
SEQ ID NO: 353





3B9
SYISSSSSTIYYA
SEQ ID NO: 362





3F9-L
GGTYYRSMWYNDYA
SEQ ID NO: 371





3E10
GYIFYSGTTNYN
SEQ ID NO: 380





3C3
GVIVPSGGSISYA
SEQ ID NO: 389





11F4
GYIYYSGITNFS
SEQ ID NO: 398





10E12
AYIYYSGNTNYS
SEQ ID NO: 407





4E1
GWTYYRSKWYNDYA
SEQ ID NO: 416





2404.6H1
AVISYDGNSNYYA
SEQ ID NO: 425





2A8-K
GRTYYRSKWYNDYA
SEQ ID NO: 434





3B1
GWTYYRSKWYYDYT
SEQ ID NO: 443





9B5
GYLYYSGSTDYN
SEQ ID NO: 452





11A5
GWINPNSGGTNYA
SEQ ID NO: 461





2D3
CARLFNWGFAFDIW
SEQ ID NO: 3





5A2
CARVAPTGFWFDYW
SEQ ID NO: 12





7F9
CARANWGEGAFDIW
SEQ ID NO: 21





9D3
CARVFNWGFAFDIW
SEQ ID NO: 30





26C8
CARVFHWGFAFDIW
SEQ ID NO: 39





2A6.C5
CARLSNWGFAFDIW
SEQ ID NO: 48





5E12
CARADPPYYYYGMDVW
SEQ ID NO: 57





6D8
CARSNWGNWYFALW
SEQ ID NO: 66





8E11
CARVFNRGFAFDIW
SEQ ID NO: 75





5Cl.A4
CARIRGYSGSYDAFDIW
SEQ ID NO: 84





9F7
CARVGLTGFFFDYW
SEQ ID NO: 93





2C3
CARGELGIADSW
SEQ ID NO: 102





2G1
CAREIIVGATHFDYW
SEQ ID NO: 111





3E4
CSRGEYGSGSRFDYW
SEQ ID NO: 120





3F2
CAREAGGYFDYW
SEQ ID NO: 129





4F9
CARGEYGSGSRFDYW
SEQ ID NO: 138





4G9
CARGEYGSGSRFDYW
SEQ ID NO: 147





11H7
CARGLDSSGWYPFDYW
SEQ ID NO: 156





16H7
CARGELGIPDNW
SEQ ID NO: 165





17A2
CARAAVAGALDYW
SEQ ID NO: 174





6H1
CVHRRIAAPGSVYW
SEQ ID NO: 183





6H5
CATLLRGLDAFDVW
SEQ ID NO: 192





10D1
CAVRGYSYGYPLFDYW
SEQ ID NO: 201





11F6
CARDGGGTLDYW
SEQ ID NO: 210





6F8
CARDNGDRYYYDMDVW
SEQ ID NO: 219





3G6-L1
CARDGEGSYYYYYGMDVW
SEQ ID NO: 228





4C6
CARLSVAGFYFDYW
SEQ ID NO: 237





4E6
CARISVAGFFFDNW
SEQ ID NO: 246





4H8
CAGGGLVGAPDGFDVW
SEQ ID NO: 255





9H12-K
CARDGWGDYYYYGLDVW
SEQ ID NO: 264





10G1-K
CAIDPEYYDILTGGDYW
SEQ ID NO: 273





11A3
CARITVTGFYFDYW
SEQ ID NO: 282





3B11
CARGGIVGAPDAFDIW
SEQ ID NO: 291





5G2
CTRGGIVGAPDGFDIW
SEQ ID NO: 300





11E4
CARIGVAGFYFDYW
SEQ ID NO: 309





2404.8E11
FTRGGIVGAPDAFDIW
SEQ ID NO: 318





10A2
CAGGGIVGAPDGFDVW
SEQ ID NO: 327





11A8
CARGGIVGAPDAFDIW
SEQ ID NO: 336





4H5
CARLALAGFFFDYW
SEQ ID NO: 345





3G6-L2
CARDGEGSYYYYYGMDVW
SEQ ID NO: 354





3B9
CARDKERRYYYYGMDVW
SEQ ID NO: 363





3F9-L
CSRGGIVGVPDAFDIW
SEQ ID NO: 372





3E10
CARISEKSFYFDYW
SEQ ID NO: 381





3C3
CARDRYYGDYYYGLDVW
SEQ ID NO: 390





11F4
CAGISLAGFYFDYW
SEQ ID NO: 399





10E12
CTRGGSGTIDVFDIW
SEQ ID NO: 408





4E1
CARWVNRDVFDIW
SEQ ID NO: 417





2404.6H1
CARDGATVTSYYYYGMDVW
SEQ ID NO: 426





2A8-K
CARGGIVGAPDGFDIW
SEQ ID NO: 435





3B1
CARWIFHDAFDIW
SEQ ID NO: 444





9B5
CARGRRAFDIW
SEQ ID NO: 453





11A5
CAKDGGGDFYFYGMDVW
SEQ ID NO: 462









In some embodiments, the DLL-3 binding agent comprises a light chain CDR1, CDR2, and CDR3. In some embodiments, the light chain CDR1, CDR2, and CDR3 sequences are selected from the light chain CDRs presented in Table 1f.









TABLE 1f







Light Chain CDRs











Clone
CDR1 VL Sequence
SEQ ID NO:







2D3
RASQSVSSNLA
SEQ ID NO: 4







5A2
RASQRVSSRYLA
SEQ ID NO: 13







7F9
RASQGISDYLA
SEQ ID NO: 22







9D3
RASQRISRTYLA
SEQ ID NO: 31







26C8
RASQRVSNTYLA
SEQ ID NO: 40







2A6.C5
RASQTISSSYLA
SEQ ID NO: 49







5E12
RSSQSLLHSNEYNYLD
SEQ ID NO: 58







6D8
RASQSVSSYLA
SEQ ID NO: 67







8E11
CARVFNRGFAFDIW
SEQ ID NO: 76





SEQ ID NO: 696




RASQRISNTYLA








5C1.A4
RSSQSLLHSNGYNHLD
SEQ ID NO: 85







9F7
RASQGIRNDLG
SEQ ID NO: 94







2C3
RASQSISRWLA
SEQ ID NO: 103







2G1
RASQGIRNDLG
SEQ ID NO: 112







3E4
RASQGIRDDLG
SEQ ID NO: 121







3F2
RASQSISSWLA
SEQ ID NO: 130







4F9
RASQGIRDDLG
SEQ ID NO: 139







4G9
RASQGIRDDLG
SEQ ID NO: 148







11H7
RASQGISSWLA
SEQ ID NO: 157







16H7
RASQSISRWLA
SEQ ID NO: 166







17A2
KSSQSVLYSSNNKNYLA
SEQ ID NO: 175







6H1
RASQGISSWLA
SEQ ID NO: 184







6H5
RASQGIRNDLG
SEQ ID NO: 193







10D1
RASQGIRNDLG
SEQ ID NO: 202







11F6
RASQSISSWLA
SEQ ID NO: 211







6F8
SGSSSNIGNNYVS
SEQ ID NO: 220







3G6-L1
SGSSSNIGNNYVS
SEQ ID NO: 229







4C6
RASQSVTRSYLA
SEQ ID NO: 238







4E6
RASQSVSSSYLA
SEQ ID NO: 247







4H8
SGSSSNIGSDPVN
SEQ ID NO: 256







9H12-K
RASQDISSWLA
SEQ ID NO: 265







10G1-K
RASQGISNYLA
SEQ ID NO: 274







11A3
RASQSISRSYLA
SEQ ID NO: 283







3B11
SGSSSNIGSDPVS
SEQ ID NO: 292







5G2
SGSNSNIGSNPIN
SEQ ID NO: 301







11E4
RASQSVSRRYLA
SEQ ID NO: 310







2404.8E11
SGSSSNIGSDPIN
SEQ ID NO: 319







10A2
SGSSSNIGSDPVI
SEQ ID NO: 328







11A8
SGSSSNIGSNPVN
SEQ ID NO: 337







4H5
RASQSISSWLA
SEQ ID NO: 346







3G6-L2
SGSSSNIGSNYVY
SEQ ID NO: 355







3B9
RASQSVSRRYLA
SEQ ID NO: 364







3F9-L
SGSSSNIGSNTAN
SEQ ID NO: 373







3E10
SGSSSNIGSNYVY
SEQ ID NO: 382







3C3
RASQGINNFLA
SEQ ID NO: 391







11F4
RASQSVSRSYLA
SEQ ID NO: 400







10E12
SGSSSNIGNNYVS
SEQ ID NO: 409







4E1
TGTSSDVGSYNLVS
SEQ ID NO: 418







2404.6H1
RASQSVSRTYLA
SEQ ID NO: 427







2A8-K
KSSQSVLDSSNNNNYFA
SEQ ID NO: 436







3B1
SGSSSNIGSNTVN
SEQ ID NO: 445







9B5
RGSQGISNYLA
SEQ ID NO: 454







11A5
GLSSGSVSTSYYPS
SEQ ID NO: 463







2D3
GASTRAT
SEQ ID NO: 5







5A2
GASSRAT
SEQ ID NO: 14







7F9
AASTLQS
SEQ ID NO: 23







9D3
GASSRAT
SEQ ID NO: 32







26C8
GASSRAT
SEQ ID NO: 41







2A6.C5
GASSRAT
SEQ ID NO: 50







5E12
LGSNRAS
SEQ ID NO: 59







6D8
DAFYRAT
SEQ ID NO: 68







8E11
GASSRAT
SEQ ID NO: 77







5C1.A4
LGSNRAS
SEQ ID NO: 86







9F7
AASSLQS
SEQ ID NO: 95







2C3
KASSLES
SEQ ID NO: 104







2G1
AASSLQS
SEQ ID NO: 113







3E4
AASSLQS
SEQ ID NO: 122







3F2
KASSLES
SEQ ID NO: 131







4F9
AASSLQS
SEQ ID NO: 140







4G9
AASSLQS
SEQ ID NO: 149







11H7
AASSLQS
SEQ ID NO: 158







16H7
KASSLES
SEQ ID NO: 167







17A2
WASTRES
SEQ ID NO: 176







6H1
AASSLQS
SEQ ID NO: 185







6H5
AASSLQS
SEQ ID NO: 194







10D1
AASSLQS
SEQ ID NO: 203







11F6
KASTLES
SEQ ID NO: 212







6F8
DNNKRPS
SEQ ID NO: 221







3G6-L1
DNNKRPS
SEQ ID NO: 230







4C6
GASSRAT
SEQ ID NO: 239







4E6
GASSRAA
SEQ ID NO: 248







4H8
SNNQRPS
SEQ ID NO: 257







9H12-K
TASSLQG
SEQ ID NO: 266







10G1-K
AASSLQS
SEQ ID NO: 275







11A3
GASSRAT
SEQ ID NO: 284







3B11
TNNQRPS
SEQ ID NO: 293







5G2
SNNQRPS
SEQ ID NO: 302







11E4
GASSRAT
SEQ ID NO: 311







2404.8E11
SNNQRPS
SEQ ID NO: 320







10A2
SNNQRPS
SEQ ID NO: 329







11A8
SNNQRPS
SEQ ID NO: 338







4H5
KASSLES
SEQ ID NO: 347







3G6-L2
SNNQRPS
SEQ ID NO: 356







3B9
GASSRAT
SEQ ID NO: 365







3F9-L
RNNQRPS
SEQ ID NO: 374







3E10
SNNQRPS
SEQ ID NO: 383







3C3
AASSLQS
SEQ ID NO: 392







11F4
GASSRAT
SEQ ID NO: 401







10E12
DNNKRPS
SEQ ID NO: 410







4E1
EGSKRPS
SEQ ID NO: 419







2404.6H1
GASSRAT
SEQ ID NO: 428







2A8-K
WASSRES
SEQ ID NO: 437







3B1
TNNQRPS
SEQ ID NO: 446







9B5
AASSLES
SEQ ID NO: 455







11A5
STDTRSS
SEQ ID NO: 464







2D3
CQQYNNWPLTF
SEQ ID NO: 6







5A2
CQQYGTSPLTF
SEQ ID NO: 15







7F9
CQKYNSVPLTF
SEQ ID NO: 24







9D3
CQQYGTSPLTF
SEQ ID NO: 33







26C8
CQQYGTSPLTF
SEQ ID NO: 42







2A6.C5
CQQYGWSPITF
SEQ ID NO: 51







5E12
CMQALEIPLTF
SEQ ID NO: 60







6D8
CQHRSNWPITF
SEQ ID NO: 69







8E11
CQQYDTSPLTF
SEQ ID NO: 78







5Cl.A4
CMQALQTPLTF
SEQ ID NO: 87







9F7
CLQDYNYPYTF
SEQ ID NO: 96







2C3
CQQYNSYSTF
SEQ ID NO: 105







2G1
CLQDYNYPLTF
SEQ ID NO: 114







3E4
CLQDYDYPLTF
SEQ ID NO: 123







3F2
CQQYNSYSTF
SEQ ID NO: 132







4F9
CLQDYDYPLTF
SEQ ID NO: 141







4G9
CLQDYDYPLTF
SEQ ID NO: 150







11H7
CQQADSFPFTF
SEQ ID NO: 159







16H7
CQQYNSYSTF
SEQ ID NO: 168







17A2
CQQYYGTSWTF
SEQ ID NO: 177







6H1
CHQANSFPFTF
SEQ ID NO: 186







6H5
CLQHNSYPRTF
SEQ ID NO: 195







10D1
CLQYNSYPRTF
SEQ ID NO: 204







11F6
CQQYNGYSTF
SEQ ID NO: 213







6F8
CGTWDSSLSAVVF
SEQ ID NO: 222







3G6-L1
CGTWDSSLSAVVF
SEQ ID NO: 231







4C6
CQQYGTSPLTF
SEQ ID NO: 240







4E6
CQQYGISPLTF
SEQ ID NO: 249







4H8
CSAWDDSLNGYVF
SEQ ID NO: 258







9H12-K
CQQANVFPYTF
SEQ ID NO: 267







10G1-K
CLQHDSFPLTF
SEQ ID NO: 276







11A3
CQQYDTSPLTF
SEQ ID NO: 285







3B11
CAAWDDSLNGHVF
SEQ ID NO: 294







5G2
CAAWDDSLNGHVF
SEQ ID NO: 303







11E4
CQQYGTSPITF
SEQ ID NO: 312







2404.8E11
CAAWDDSLNGYVF
SEQ ID NO: 321







10A2
CAAWDDSLNGYVF
SEQ ID NO: 330







11A8
CSAWDDWLNGYVF
SEQ ID NO: 339







4H5
CQQYNSYSRTF
SEQ ID NO: 348







3G6-L2
CAAWDDSLSGWVF
SEQ ID NO: 357







3B9
CQQFGTSPITF
SEQ ID NO: 366







3F9-L
CAAWDDSLNGYVF
SEQ ID NO: 375







3E10
CAPWDDSLSGRVF
SEQ ID NO: 384







3C3
CQHYNSYPITF
SEQ ID NO: 393







11F4
CQQYSISPLTF
SEQ ID NO: 402







10E12
CETWDSSLSAVVF
SEQ ID NO: 411







4E1
CCSYAGSSTWVF
SEQ ID NO: 420







2404.6H1
CQQYGTSPITF
SEQ ID NO: 429







2A8-K
CQQYYSTPYTF
SEQ ID NO: 438







3B1
CSTWDDSLNGPVF
SEQ ID NO: 447







9B5
CQQYYNYPITF
SEQ ID NO: 456







11A5
CVLYMGSGISVF
SEQ ID NO: 465










The disclosure encompasses modifications to the DLL3 antibody agents comprising the sequences shown in Tables 1b to 1e, including functionally equivalent DLL3 antibody agents having modifications which do not significantly affect their properties and variants which have enhanced or decreased activity and/or affinity. For example, the amino acid sequence may be mutated to obtain a DLL3 antigen binding agent with a desired binding affinity to DLL3. Modification of polypeptides is routine practice in the art and need not be described in detail herein. Examples of modified polypeptides include polypeptides with conservative substitutions of amino acid residues, one or more deletions or additions of amino acids which do not significantly deleteriously change the functional activity, or which mature (enhance) the affinity of the polypeptide for its ligand, or use of chemical analogs.


Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody of an enzyme or a polypeptide which increases the half-life of the antibody in the blood circulation.


Substitution variants have at least one amino acid residue in the antigen binding domain removed and a different residue inserted in its place. In some embodiments, sites of interest for substitutional mutagenesis include the hypervariable regions/CDRs, but FR alterations are also contemplated. Conservative substitutions are shown in Table 2 under the heading of “conservative substitutions.” If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 2, or as further described below in reference to amino acid classes, may be introduced and the products screened.









TABLE 2







Amino Acid Substitutions









Original Residue (naturally
Conservative
Exemplary


occurring amino acid)
Substitutions
Substitutions





Ala (A)
Val
Val; Leu; Ile


Arg (R)
Lys
Lys; Gln; Asn; Ala


Asn (N)
Gln
Gln; His; Asp, Lys; Arg; Ala


Asp (D)
Glu
Glu; Asn; Ala


Cys (C)
Ser
Ser; Ala


Gln (Q)
Asn
Asn; Glu; Ala


Glu (E)
Asp
Asp; Gln; Ala


Gly (G)
Ala
Ala


His (H)
Arg
Asn; Gln; Lys; Arg; Ala


Ile (I)
Leu
Leu; Val; Met; Ala; Phe;




Norleucine; Ala


Leu (L)
Ile
Norleucine; Ile; Val; Met;




Ala; Phe


Lys (K)
Arg
Arg; Gln; Asn; Ala


Met (M)
Leu
Leu; Phe; Ile; Ala


Phe (F)
Tyr
Leu; Val; Ile; Ala; Tyr


Pro (P)
Ala
Ala


Ser (S)
Thr
Thr; Ala


Thr (T)
Ser
Ser; Ala


Trp (W)
Tyr
Tyr; Phe; Ala


Tyr (Y)
Phe
Trp; Phe; Thr; Ser; Ala


Val (V)
Leu
Ile; Leu; Met; Phe; Ala;




Norleucine









i. Antibody Fragments


In one aspect, an anti-DLL-3 antibody agent according to any of the above embodiments can be an antibody fragment. An antibody fragment comprises a portion of an intact antibody, such as the antigen binding or variable region of the intact antibody. Antibody fragments include, but are not limited to, Fab, Fab′, Fab′-SH, F(ab′)2, Fv, diabody, linear antibodies, multispecific formed from antibody fragments antibodies and scFv fragments, and other fragments described below. In some embodiments, the antibody is a full length antibody, e.g., an intact IgG1 antibody or other antibody class or isotype as described herein. (See, e.g., Hudson et al., Nat. Med., 9: 129-134 (2003); Pluckthun, The Pharmacology of Monoclonal Antibodies, vol. 113, pp. 269-315 (1994); Hollinger et al., Proc. Natl. Acad. Sci. USA, 90: 6444-6448 (1993); WO93/01161; and U.S. Pat. Nos. 5,571,894, 5,869,046, 6,248,516, and 5,587,458). A full length antibody, intact antibody, or whole antibody is an antibody having a structure substantially similar to a native antibody structure or having heavy chains that contain an Fc region as defined herein. Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells (e.g., E. coli or phage), as known in the art.


An Fv antibody fragment comprises a complete antigen-recognition and antigen-binding site. This fragment may comprise a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (three loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable region (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.


A diabody is a small antibody fragment prepared by constructing an sFv fragment with a short linker (e.g., about 5-10 residues) between the VH and VL domains such that interchain but not intra-chain pairing of the V domains is achieved, resulting in a bivalent fragment. Bispecific diabodies are heterodimers of two crossover sFv fragments in which the VH and VL domains of the two antibodies are present on different polypeptide chains (See, e.g., EP 404,097; WO 93/11161; and Hollinger et al, Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993)).


Domain antibodies (dAbs), which can be produced in fully human form, are the smallest known antigen-binding fragments of antibodies, ranging from about 11 kDa to about 15 kDa. DAbs are the robust variable regions of the heavy and light chains of immunoglobulins (VH and VL, respectively). They are highly expressed in microbial cell culture, show favorable biophysical properties including, for example, but not limited to, solubility and temperature stability, and are well suited to selection and affinity maturation by in vitro selection systems such as, for example, phage display. dAbs are bioactive as monomers and, owing to their small size and inherent stability can be formatted into larger molecules to create drugs with prolonged serum half-lives or other pharmacological activities. (See, e.g., WO9425591 and US20030130496).


Fv and scFv are the species have intact combining sites that are devoid of constant regions. Thus, they may be suitable for reduced nonspecific binding during in vivo use. A single-chain Fv (sFv or scFv) is an antibody fragment that comprises the VH and VL antibody domains connected into a single polypeptide chain. The sFv polypeptide can further comprise a polypeptide linker between the VH and VL domains that enable the sFv to form the desired structure for antigen binding (See, e.g., Pluckthun, The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, infra. scFv fusion proteins can be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. The antibody fragment also can be a “linear antibody (See, e.g., U.S. Pat. No. 5,641,870). Such linear antibody fragments can be monospecific or bispecific. Exemplary DLL3 specific scFvs are provided in Table 1d.









TABLE 1d







Exemplary DLL3 specific scFvs









Clone
scFv Sequence
SEQ ID NO:





2D3
QVQLQESGPGLVKPSETLSLTCTVSDNSISNYYWSWIRQPPGKGLE
SEQ ID NO: 9



WIAYIYYSGTTNYNPSLKSRVTISLDTSKNQFSLKLSSVTAADTAVY




YCARLFNWGFAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGG




SEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRL




LIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNW




PLTFGGGTKVEIK






5A2
QVQLQESGPGLMKPSETLSLTCTVSGGSISSSYWSCIRQPPGKGLEWI
SEQ ID NO: 18



GYIYYSGTTNYNPSLKSRVTLSLDTSKNQFSLRLTSVTAADTAVYYC




ARVAPTgFWFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEI




VLTQSPGTLSLSPGERATLSCRASQRVSSRYLAWYQQKPGQAPRLLI




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEEFAVYYCQQYGTSPL




TFGGGTKVEIK






7F9
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSHDMHWVRQATGKGL
SEQ ID NO: 27



EWVSAIGIAGDTYYSGSVKGRFTISRENAKNSLYLQMNSLRAGDTA




VYYCARANWGeGAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCRASQGISDYLAWYQQKPGKIP




KLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYN




SVPLTFGGGTKVEIK






9D3
QVQLQESGPGLVKPSETLSLTCTVSDDSISNYYWSWIRQPPGKGLE
SEQ ID NO: 36



WIGYIFYSGTTNHNPSLKSRLTISLDKAKNQFSLRLSSVTAADTAVY




YCARVFNWgFAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGG




SEIVLTQSPGTLSLSPGERATLSCRASQRISRTYLAWYQQKPGQAPRL




LIYGASSRATGIPDRFTGSGSGTDFTLTISRLEPEDFAVYYCQQYGTS




PLTFGGGTKVEIN






26C8
QVQLQESGPGLVKPSETLSLTCTVSDNSISNYYWSWIRQPPGKGLE
SEQ ID NO: 45



WIAYIYYSGTTNYNPSLKSRVTISLDTSKNQFSLQLSSVTAADAAVY




YCARVFHWgFAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGG




SEIVLTQSPGTLSLSPGERATLSCRASQRVSNTYLAWYQQNPGQAPR




LLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGT




SPLTFGGGTKVEIK






2A6.C5
QVQLQESGPGLVKPSETLSLTCTVSNVSISSYYWSWIRQPPGKGLEW
SEQ ID NO: 54



IGYIYYSGTTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYF




CARLSNWgFAFDIWGQGTMVTFSSGGGGSGGGGSGGGGSGGGGSEI




VLTQSPGTLSLSPGERATLSCRASQTISSSYLAWYQQKPGQAPRLLIY




GASSRATGIPDRFSGSGSGTEFTLTISRLEPEDFAVYYCQQYGWSPIT




FGQGTRLEIK






5E12
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGL
SEQ ID NO: 63



EWVSAIGPAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTA




VYYCARADPPyyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSG




GGGSDIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNEYNYLDWYLQ




KPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFILKISRVEAEDVGVY




YCMQALEIPLTFGGGTKVEIK






6D8
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTrgVGVGWIRQPPGKALE
SEQ ID NO: 72



WLALIYWNDDKRYSPSLQTRLTITKDTPKNQVVLTMTNMDPVDTA




TYYCARSNWGnWYFALWGRGTLVTVSSGGGGSGGGGSGGGGSGG




GGSEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP




RLLIYDAFYRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRS




NWPITFGQGTRLEIK






8E11
QVQLQESGPGLVKPSETLSLTCTVSGDSISNYYWTWIRQPPGKGLE
SEQ ID NO: 81



WIGYIYYSGTTNSNPSLKSRVTVSLDTSKSQFSLNLSSVTAADTAVY




YCARVFNRgFAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGS




EIVLTQSPGTLSLSPGERATLSCRASQRISNTYLAWYQQKPGQAPRL




LIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAAYYCQQYDTS




PLTFGGGTKVEIK






5C1.A4
QVTLRESGPALVKPTQTLTLTCTVSGVSLSTsgMCVSWIRQPLGKAL
SEQ ID NO: 90



EWLGFIDWDDDKYYNTSLKTRLTISKDTSKNQVVLTMTNMDPVDT




ATYYCARIRGYsgsyDAFDIWGQGTVVIVSSGGGGSGGGGSGGGGSG




GGGSDIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNHLDWYLQ




KPGQSPQVLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGV




YFCMQALQTPLTFGGGTKVEIK






9F7
QVQLQVSGPGLVKPSETLSLTCSVSGGSISSYYWSWIRQSPGKGLD
SEQ ID NO: 99



WIGYMYYSGTTNYNPSLKSRVTISVDTSKNQFSLKLSSVTATDTAV




YYCARVGLTgFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SAIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKL




LIYAASSLQSGVPSRFSGSGSGTDFTLTVSSLQPEDFATYYCLQDYN




YPYTFGQGTKLEIK






2C3
QVQLQQWGGGLLKPSETLSLTCAVYGGSSSGNYWSWIRQPPGKRL
SEQ ID NO: 108



EWIGEINHSGTTSYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVY




YCARGELGIADSWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDI




QMTQSPSTLSASVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIY




KASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTF




GQGTKVEIK






2G1
QLQLQESGPGLVKPSETLSLTCTVSGGSISSssYYWGWIRQPPGKGLE
SEQ ID NO: 117



WIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLRLSSVTAADTAVYY




CAREIIVgaTHFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSA




IQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPELLI




YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYNYPL




TFGPGTKVDIK






3E4
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGL
SEQ ID NO: 126



EWIGEIIHSGSSNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVY




YCSRGEYGsgSRFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SAIQMTQSPSSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAPK




LLIYAASSLQSGVPSRFSGSRSDTDFTLTISSLQPEDFATYYCLQDYD




YPLTFGGGTKVEIK






3F2
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSnNWWSWVRQPPGKGL
SEQ ID NO: 135



EWIGDIHHSGSTNYKPSLKSRVTISVDKSKNQFSLNLISVTAADTAV




YYCAREAGGYFDYWGQGILVTVSSGGGGSGGGGSGGGGSGGGGS




DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLL




ISKASSLESGVPSRFSGSGSGPEFTLTISSLQPADFATYYCQQYNSYST




FGQGTKLEIK






4F9
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWTWIRQPPGKGL
SEQ ID NO: 144



EWIGEITHSGSTNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVY




YCARGEYGsgSRFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SAIQMTQSPSSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAPK




LLIYAASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYD




YPLTFGGGTKVEIK






4G9
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGL
SEQ ID NO: 153



EWIGEITHSGSTNYNPSLKSRVSISVDTSKNQFSLKLSSVTAADTAVY




YCARGEYGsgSRFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SAIQMTQSPSSLSASVGDRVALTCRASQGIRDDLGWYQQKPGKAPK




LLIYAASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYD




YPLTFGGGTKVEIK






11H7
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSAYYWNWIRQPPGKGL
SEQ ID NO: 162



EWIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLNLTSLTAADTAV




YYCARGLDSsgwYPFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGG




GGSDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKA




PKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQA




DSFPFTFGPGTKVDIK






16H7
QVQLQQWGAGLLKPSETLSLTCAVFGGSFSGDYWSWIRQPPGKGLE
SEQ ID NO: 171



WIGEINHSGITSFNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




CARGELGIPDNWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQ




MTQSPSTLSASVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIYK




ASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFG




QGTKVEIK






17A2
QVQLQESGPGLVKPSGTLSLTCVVFGDSISSsNWWSWVRQPPGKGL
SEQ ID NO: 180



EWIGEVFHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAV




YYCARAAVAGALDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SDIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKnYLAWYQQKP




GQPPNLLVYWASTRESGVPDRFSGAGSGTDFTLTISSLQAEDVAVY




YCQQYYGTSWTFGQGTKVEIK






6H1
QITLRESGPTLVKPTQTLTLTCTFSGFSLSTsgLGVGWIRQPPGEALE
SEQ ID NO: 189



WLALIYWNDDKRYSPSLKSRLSITKDTSKNQVVLIMTNMDPVDTAT




YYCVHRRIAaPGSVYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGG




SDIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPK




LLISAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQANSF




PFTFGQGTKLEIK






6H5
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKG
SEQ ID NO: 198



PEGMGGFDpEDGKTIYAQKFQGRVTMTEDTSADTAYMELNSLRSE




DTAVYYCATLLRGIDAFDVWGQGTMVTVSSGGGGSGGGGSGGGG




SGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKP




GKAPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISTLQPEDFATYYC




LQHNSYPRTFGQGTKVEIK






10D1
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWRWIRQPPGKGL
SEQ ID NO: 207



EWIGEISHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVY




YCAVRGYSygyPLFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGG




GSDIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKLGKAP




KRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYN




SYPRTFGQGTKVEIK






11F6
QVQLQESGPGLVKPSGTLSLTCAVSGDSISSNWWTWVRQPPGKGLE
SEQ ID NO: 216



WIGDIHHSGSTNYNPSLKSRVTMSVDKSENQFSLKLSSVTAADTAVF




YCARDGGGTLDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSD




IQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI




YKASTLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNGYST




FGQGTKVEIK






6F8
QVQLVQSGAEVKKPGSSVKVSCKASGGTFTNYCISWVRQAPGQGL
SEQ ID NO: 225



EWMGGIIpIFGTTNYAQTFQGRVTITADKSTSTAYMELSSLRSEDTA




VYYCARDNGDryyYDMDVWGQGTTVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPG




TAPKLLIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYC




GTWDSSLSAVVFGGGTKLTVL






3G6-L1
QVPLVQSGAEVKKPGSSVKVSCKASGGTFSTYSISWVRQAPGQGLE
SEQ ID NO: 234



WMGGIIpIFGTTNYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAV




YYCARDGEGsyyyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPG




TAPKLLIYDNNKRPSGIPDRFFGSKFGTSATLGITGLQTGDEADYYC




GTWDSSLSAVVFGGGTKLTVL






4C6
QVQLQESGPGLVKPSETLSLTCTVSGDSISSYYWSWIRQPPGKGLEW
SEQ ID NO: 243



IGYMYYSGITNYNPSLKSRVNISLDTSKNQFSLKLGSVTAADTAVYY




CARLSVAgFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSE




IVLTQSPGTLSLSPGERATLSCRASQSVTRSYLAWYQQKPGQAPRLL




IYGASSRATDIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGTSP




LTFGGGTKVEIK






4E6
QVQLQESGPGLVKPSETLSLTCTVSSDSISSYYWSWIRQPPGKGLEW
SEQ ID NO: 252



ISYIYYSGISNYNPSLKSRVSISVDTSKNQFSLRLSSVTAADTAVYYC




ARISVAgFFFDNWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIM




LTQSPDTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIY




GASSRAAGVPDRFSGSGSGTDFTLTISRLAPEDFVVYYCQQYGISPLT




FGGGTKVEIK






4H8
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsATWNWIRQSPSRGLE
SEQ ID NO: 261



WLGRTYYRSKwyDDYAVSVKSRITINPDTSKNHLSLHLNSVTPEDTA




VYYCAGGGLVgapDGFDVWGQGTMVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPG




TAPKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCS




AWDDSLNGYVFGTGTKVTVL






9H12-K
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYSIHWVRQAPGQGL
SEQ ID NO: 270



EWMGWINpNSGGTFYAQKFQGRVTMTRDTSISTVYMELSRLRSDD




TAVYYCARDGWGdyyyYGLDVWGQGTTVTVSLGGGGSGGGGSGG




GGSGGGGSDIQMTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQ




KPGKAPKLLIYTASSLQGGVPSRFSGSGSGTDFTLTISSLQPEDLATY




SCQQANVFPYTFGQGTKLEIK






10G1-K
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGL
SEQ ID NO: 279



EWVSTISgSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




VFYCAIDPEYydilTGGDYWGQGTLVTVSSGGGGSGGGGSGGGGGS




GGGGSDIQMTQSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPG




KVPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQ




HDSFPLTFGGGTKVEIK






11A3
QVQLQESGPGLVKPSETLSLTCTVSSDSISNYYWSWIRQPPGKGLEW
SEQ ID NO: 288



ISYIYYSGITNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYC




ARITVTgFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIV




LTQSPGTLSLSPGERATLSCRASQSISRSYLAWYQQKPGQAPRHLIY




GASSRATGIPDRFSGSGSGTDFILTISRLEPEDFAVYYCQQYDTSPLTF




GGGTKVEIK






3B11
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsVVWNWIRQSPSRGL
SEQ ID NO: 297



EWLGRTYYRSKwyDDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDT




AVYHCARGGIVgapDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVSWYQQFPGT




APKLLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCA




AWDDSLNGHVFGTGTKVTVL






5G2
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsAVWNWIRQSPSRGL
SEQ ID NO: 306



EWLGWTYYRSKYYndYAVSLKSRITINPDTSKNQFSLQLNSLTPEDT




AVYYCTRGGIVgapDGFDIWGQGTMVTVSSGGGGSGGGGSGGGGS




GGGGSQSALTQPPSASGTPGQRVTISCSGSNSNIGSNPINWYQQLPGT




APKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCA




AWDDSLNGHVFGTGTKVTVL






11E4
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQSPGKGLEW
SEQ ID NO: 315



IGYVYYSDITNYNPSLKSRVTISVDTSKNQFSLNLNSVTAADTAFYF




CARIGVAgFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEI




VLTQSPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQAPRLLI




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFEVYYCQQYGTSPIT




FGQGTRLEIK






2404.8E11
QIQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsAVWNWIRQSPSRGLE
SEQ ID NO: 324



WLGRTYYRSKwyNDYAVSVKSRITIKPDTAKNQFSLQLNSVTPEDT




AVYYFTRGGIVgapDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSG




GGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPINWYQQVPGTA




PKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGYVFGTGTKVTVL






10A2
QVQLQQSGPGLVKPSETLSLTCAISGDSVSSnsATWNWIRQSPSRGLE
SEQ ID NO: 333



WLGRTYYRSEwyNDYAVSVKSRITINPDTSKNHLSLHLNSVTPEDTA




VYYCAGGGIVgapDGFDVWGQGTMVTVSSGGGGSGGGGSGGGGSG




GGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSDPVIWYQQLPRTA




PKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




WDDSLNGYVFGTGTKVTVL






11A8
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsATWNWIRQSPSTGLE
SEQ ID NO: 342



WLARTYYRSKwyNDYEVSVKSQITINPDTSKNQFSLQLNSVTPEDTA




VYYCARGGIVgapDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSG




GGGSQSVLTQPPSASGTPGQGVTISCSGSSSNIGSNPVNWYQQLPGT




APKLLIYSNNQRPSGVPDRFSDSKSGTSASLAISGLQSEDEADYYCSA




WDDWLNGYVFGTGTKVTVL






4H5
QVQLQESGPGLVKPSETLSLTCTVSGDSINNYFWSWIRQPPGKGLE
SEQ ID NO: 351



WIGYFYHRGGNNYNPSLKSRVTISIDTSKNQFSLNLNSVTSADTAVY




YCARLALAgFFFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGS




DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLL




IYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYS




RTFGQGTKVEIK






3G6-L2
QVPLVQSGAEVKKPGSSVKVSCKASGGTFSTYSISWVRQAPGQGLE
SEQ ID NO: 360



WMGGIIpIFGTTNYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAV




YYCARDGEGsyyyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPG




TAPKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCA




AWDDSLSGWVFGGGTKLTVL






3B9
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
SEQ ID NO: 369



WVSYISsSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAV




YYCARDKERryyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSG




GGGSEIVLTQSPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQ




APRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQ




FGTSPITFGQGTRLEIK






3F9-L
QVQLQQSGPGLVKPSQTLSLACAISGDSVSSnsAIWNWIRQSPSRGLE
SEQ ID NO: 378



WLGGTYYRSMwyNDYAVSVKSRITINPDTSKNQLSLQLNSVTPEDT




AVYYCSRGGIVgvpDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGS




GGGGSQSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTANWYQQLPG




TAPRLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYC




AAWDDSLNGYVFGTGTKVTVL






3E10
QVQLQESGPGLVKPSETLSLTCNVSDGSISSYYWTWIRQPPGKGLD
SEQ ID NO: 387



WIGYIFYSGTTNYNPSLKSRVTISLDTSKNQFSLKLTSMTAADTAVY




YCARISEKsFYFDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGS




QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKL




LIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAPWDD




SLSGRVFGGGTKLTVL






3C3
QVQLVQSGAEVKRPGASVKVSCKASGYTFTSYYIHWVRQAPGQGL
SEQ ID NO: 396



EWMGVIVpSGGSISYAQKFQGRVTMTRDTSTNIVYMELSSLRSEDT




AVYYCARDRYYgdyyYGLDVWGQGTTVTVSSGGGGSGGGGSGGGG




SGGGGSDIQMTQSPSSLSASVGDRVTITCRASQGINNFLAWFQQKPG




KAPKSLIYAASSLQSGVPSKFSGSGSGTDFTLTIRSLQPEDFATYYCQ




HYNSYPITFGQGTRLEIK






11F4
QVHLQESGPGLVKPSETLSLTCTVSGGSISHYYWTWIRQPPGKGLE
SEQ ID NO: 405



WIGYIYYSGITNFSPSLKSRVSISVDSSKNQFSLNLNSVTAADTAVYY




CAGISLAgFYFDYWVQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEI




VLTQSPGTLSLSPGERATLSCRASQSVSRSYLAWYQQKPGQAPRLLI




YGASSRATGVPDRFSGSGSGTDFTLTISRLEPEDFAVFYCQQYSISPL




TFGGGTKVEIK






10E12
QVQLQESGPGLVKPSETLSLTCTVSGVSISSYYWSWIRQPPGKGLEW
SEQ ID NO: 414



IAYIYYSGNTNYSPSLKSRVTISVDTSKDQLSLKLSSVTAADTAVYY




CTRGGSGtiDVFDIWGQGTMVAVSSGGGGSGGGGSGGGGSGGGGS




QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKL




LIYDNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCETWDS




SLSAVVFGGGTKLTVL






4E1
QVQLQQSGPGLVKPSQTLSLTCAISGDNVSTnsAAWNWIRQSPSRGL
SEQ ID NO: 423



EWLGWTYYRSKwyNDYAVSLKSRININPDTSKNQFSLQLNSVTPED




TAVYYCARWVNRDVFDIWGQGTMVTVSSGGGGSGGGGSGGGGSG




GGGSQSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPG




KAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYC




CSYAGSSTWVFGGGTKLTVL






2404.6H1
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQTPGKGL
SEQ ID NO: 432



EWVAVISYDGNsNYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDT




AVYYCARDGATvtsyyyYGMDVWGQGTTVTVSSGGGGSGGGGSGG




GGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVSRTYLAWYHQ




KPGQAPRLLIYGASSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVY




YCQQYGTSPITFGQGTRLEIK






2A8-K
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSnsAVWNWIRQSPSRGL
SEQ ID NO: 441



EWLGRTYYRSKwyNDYAVSVKSRITINPDTSRNQFSLQLNSVTPEDT




AVYYCARGGIVgapDGFDIWGQGTMVTVSSGGGGSGGGGSGGGGS




GGGGSDIVMTQSPDSLAVSLGERATINCKSSQSVLDSSNNNnYFAW




YQQRPGQPPHLLIYWASSRESGVPDRFSGSGSGTDFTLTISSLQAEDV




AVYYCQQYYSTPYTFGQGTKLEIK






3B1
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSntTAWKWSRQSPSKGL
SEQ ID NO: 450



EWLGWTYYRSKwyYDYTVSVKSRITINPDTSKNQFSLQLNSVTPEDT




AVYYCARWIFHDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGG




GGSQSALTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTA




PKLLIYTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYFCSTW




DDSLNGPVFGGGTKLTVL






9B5
QVQLQESGPGLVKPSETLSLTCTVSGDSISSLSWSWIRQTPGEGLEWI
SEQ ID NO: 459



GYLYYSGSTDYNPSLKSRVTISVDTSKNQFSLKLRSVAAADTALYY




CARGRRAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCRGSQGISNYLAWFQQRPGKAPKSLIYA




ASSLESGVPSKFSGSGSGTDFTLTIISLQPEDFATYYCQQYYNYPITFG




QGTRLEIK






11A5
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQG
SEQ ID NO: 468



LEWMGWINpNSGGTNYAQKFQGRVTMTRDTSVSTAYMELSRLTSD




DTAIYYCAKDGGGdfyfYGMDVWGQGTTVTVSSGGGGSGGGGSGG




GGSGGGGSQTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSCFQ




QTPGQAPRTLIYSTDTRSSGVPDRFSGSILGNKAALTITGAQADDESD




YYCVLYMGSGISVFGGGTKLTVL






10G1-K
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGL
SEQ ID NO: 629



EWVSTISgSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




VFYCAIDPEYydilTGGDYWGQGTLVTVSSGGGGSGGGGSGGGGSG




GGGSDIQMTQSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGK




VPKRLIYAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQH




DSFPLTFGGGTKVEIK









In some embodiments, the DLL3 antigen binding domain comprises a scFv comprising a light chain variable (VL) region and the heavy chain variable (VH) region of a DLL3-specific monoclonal antibody joined by a flexible linker. Single chain variable region fragments may be made by linking light and/or heavy chain variable regions by using a linking peptide An example of a linking peptide is the GS linker having the amino acid sequence (GGGGS)x wherein x is 1, 2, 3, 4, or 5 (SEQ ID NO: 470). In some embodiments, x is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or any integer less than about 20. In some embodiments, the linker is (GGGGS)4 (SEQ ID NO: 478). In general, linkers can be short, flexible polypeptides, which in some embodiments are comprised of about 20 or fewer amino acid residues. Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports. The single chain variants can be produced either recombinantly or synthetically. For synthetic production of scFv, an automated synthesizer can be used. For recombinant production of scFv, a suitable plasmid containing polynucleotide that encodes the scFv can be introduced into a suitable host cell, either eukaryotic, such as yeast, plant, insect or mammalian cells, or prokaryotic, such as E. coli. Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides. The resultant scFv can be isolated using standard protein purification techniques known in the art.


In exemplary embodiments, provided herein are DLL3 antigen binding domains comprising: a VH region comprising a VH CDR1, VH CDR2, and VH CDR3 of the VH sequence shown in Table 1b and/or a VL region comprising VL CDR1, VL CDR2, and VL CDR3 of the VL sequence shown in Table 1c. In some embodiments, the VH and VL are linked together by a linker. In some embodiments the linker comprises the amino acid sequence GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 478). In some embodiments the linker may be encoded by a DNA sequence comprising GGCGGTGGAGGCTCCGGAGGGGGGGGCTCTGGCGGAGGGGGCTCC (SEQ ID NO: 564). In some embodiments, the linker may be encoded by a DNA sequence comprising ggcggcggcggctctggaggaggaggcagcggcggaggaggctccggaggcggcggctct (SEQ ID NO: 630). In some embodiments the linker comprises the amino acid sequence GGGGSGGGGSGGGGS (SEQ ID NO: 534). In some embodiments the linker is a scFv Whitlow linker, which may comprise the amino acid sequence GSTSGSGKPGSGEGSTKG (SEQ ID NO: 535). The scFv Whitlow linker may be encoded by a DNA sequence comprising GGGTCTACATCCGGCTCCGGGAAGCCCGGAAGTGGCGAAGGTAGTACAAAGGGG (SEQ ID NO: 566). In some embodiments, the VH and VL sequences of the scFv's disclosed can be oriented with the VH sequence being located at the N-terminus of the scFv and followed by a linker and then the VL sequence, while in other embodiments the scFv can be oriented with the VL sequence at the N-Terminus and followed by a linker and then the VH sequence.


ii. Chimeric and Humanized Antibodies


In some embodiments, an anti-DLL-3 antibody agent is or comprises a monoclonal antibody, including a chimeric, humanized or human antibody.


In some embodiments, an anti-DLL-3 antibody agent provided herein can be a chimeric antibody (See, e.g., U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 6851-6855 (1984)). A chimeric antibody can be an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remainder of the heavy and/or light chain is derived from a different source or species. In one example, a chimeric antibody can comprise a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region. In a further example, a chimeric antibody can be a “class switched” antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.


In some embodiments, a chimeric antibody can be a humanized antibody (See, e.g., Almagro and Fransson, Front. Biosci., 13: 1619-1633 (2008); Riechmann et al., Nature, 332:323-329 (1988); Queen et al., Proc. Natl Acad. Sci. USA 86: 10029-10033 (1989); U.S. Pat. Nos. 5,821,337, 7,527,791, 6,982,321, and 7,087,409; Kashmiri et al., Methods 36:25-34 (2005); Padlan, Mol. Immunol, 28:489-498 (1991); Dall'Acqua et al., Methods, 36:43-60 (2005); Osbourn et al., Methods, 36:61-68 (2005); and Klimka et al., Br. J. Cancer, 83:252-260 (2000)). A humanized antibody is a chimeric antibody comprising amino acid residues from non-human hypervariable regions and amino acid residues from human FRs. In certain embodiments, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions (e.g., CDRs) correspond to those of a non-human antibody, and all or substantially all of the FRs correspond to those of a human antibody. A humanized antibody optionally may comprise at least a portion of an antibody constant region derived from a human antibody.


A non-human antibody can be humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody. A humanized antibody can comprise one or more variable domains comprising one or more CDRs, or portions thereof, derived from a non-human antibody. A humanized antibody can comprise one or more variable domains comprising one or more FRs, or portions thereof, derived from human antibody sequences. A humanized antibody can optionally comprise at least a portion of a human constant region. In some embodiments, one or more FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the CDR residues are derived), to restore or improve antibody specificity or affinity.


Human framework regions that may be used for humanization include but are not limited to: framework regions selected using a “best-fit” method; framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions; human mature (somatically mutated) framework regions or human germline framework regions; and framework regions derived from screening FR libraries (See, e.g., Sims et al., J. Immunol, 151:2296 (1993); Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol, 151:2623 (1993); Baca et al., J. Biol. Chem., 272: 10678-10684 (1997); and Rosok et al., J. Biol. Chem., 271:22611-22618 (1996)).


iii. Human Antibodies


In some embodiments, an anti-DLL-3 antibody agent provided herein is a human antibody. Human antibodies can be produced using various techniques known in the art (See, e.g., van Dijk and van de Winkel, Curr. Opin. Pharmacol, 5: 368-74 (2001); and Lonberg, Curr. Opin. Immunol, 20:450-459 (2008)). A human antibody can be one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human or a human cell or derived from a non-human source that utilizes human antibody repertoires or other human antibody-encoding sequences. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues. Human antibodies may be prepared by administering an immunogen (e.g., a DLL-3 protein) to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge (See, e.g., Lonberg, Nat. Biotech., 23: 1117-1125 (2005); U.S. Pat. Nos. 6,075,181, 6,150,584, 5,770,429, and 7,041,870; and U.S. Pat. App. Pub. No. US 2007/0061900) Human variable regions from intact antibodies generated by such animals may be further modified, e.g., by combining with a different human constant region.


Human antibodies can also be made by hybridoma-based methods. For example, human antibodies can be produced from human myeloma and mouse-human heteromyeloma cell lines, using human B-cell hybridoma technology, and other methods (See, e.g., Kozbor, J. Immunol, 133: 3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (1987); Boerner et al., J. Immunol, 147: 86 (1991); Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006); U.S. Pat. No. 7,189,826; Ni, Xiandai Mianyixue, 26(4): 265-268 (2006); Vollmers and Brandlein, Histology and Histopathology, 20(3): 927-937 (2005); and Vollmers and Brandlein, Methods and Findings in Experimental and Clinical Pharmacology, 27(3): 185-91 (2005)). Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant region.


Modifications of the oligosaccharide in an antibody can be made, for example, to create antibody variants with certain improved properties. For example, antibody glycosylation variants can have improved CDC function. In some embodiments, the present disclosure can contemplate an antibody variant that possesses some but not all effector functions, which make it a desirable candidate for applications in which the half-life of the antibody in vivo is important yet certain effector functions (such as complement) are unnecessary or deleterious. In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC activities.


iv. Antibody Derivatives


In some embodiments, an antibody agent provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available. The moieties suitable for derivatization of the antibody can include but are not limited to water soluble polymers. Non-limiting examples of water soluble polymers can include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethyl ene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, polypropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, and mixtures thereof. Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.


The polymer may be of any molecular weight, and may be branched or unbranched. The number of polymers attached to the antibody may vary, and if two or more polymers are attached, they can be the same or different molecules.


In some embodiments, conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided. In some embodiments, the nonproteinaceous moiety can be a carbon nanotube (See, e.g., Kam et al., Proc. Natl. Acad. Sci. USA, 102: 11600-11605 (2005)). The radiation may be of any wavelength, and can include, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.


A DLL3 binding agent (e.g., a molecule comprising an antigen binding domain) is said to “specifically bind” its target antigen (e.g., human, cyno or mouse DLL3) when the dissociation constant (Kd) is ˜1 nM. The antigen binding domain specifically binds antigen with “high affinity” when the Kd is 1-5 nM, and with “very high affinity” when the Kd is 0.1-0.5 nM. In one embodiment, the antigen binding domain has a Kd of ˜1 nM. In one embodiment, the off-rate is <1×10−5. In other embodiments, the antigen binding domains will bind to human DLL3 with a Kd of between about 1×10−7 M and 1×10−12 M, and in yet another embodiment the antigen binding domains will bind with a Kd between about 1×10−5 M and 1×10−12 M.


As provided herein, the antigen binding domains of the present disclosure specifically bind mammalian DLL3 (e.g., human DLL3, cyno DLL3 or mouse DLL3). In certain embodiments, a DLL3 antigen binding domain of the present disclosure binds mammalian DLL3 with a Kd of less than 1×10−6 M, less than 1×10−7 M, less than 1×10−8 M, or less than 1×10−9 M. In one particular embodiment, the DLL3 antigen binding domains binds mammalian DLL3 (e.g., human DLL3, cyno DLL3 or mouse DLL3) with a Kd of less than 1×10−7 M. In another embodiment, the DLL3 antigen binding domains binds mammalian DLL3 (e.g., human DLL3, cyno DLL3 or mouse DLL3) with a Kd of less than 1×10−8 M. In some embodiments, the DLL3 antigen binding domains binds mammalian DLL3 (e.g., human DLL3, cyno DLL3) with a Kd of about 1×10−7M, about 2×10−7 M, about 3×10−7 M, about 4×10−7M, about 5×10−7 M, about 6×10−7 M, about 7×10−7 M, about 8×10−7 M, about 9×10−7 M, about 1×10−8 M, about 2×10−8 M, about 3×10−8 M, about 4×10−8 M, about 5×10−8 M, about 6×10−8 M, about 7×10−8 M, about 8×10−8 M, about 9×10−8 M, about 1×10−9 M, about 2×10−9 M, about 3×10−9 M, about 4×10−9 M, about 5×10−9 M, about 6×10−9 M, about 7×10−9 M, about 8×10−9 M, about 9×10−9 M, about 1×10−10 M, or about 5×10−10 M. In certain embodiments, the Kd is calculated as the quotient of Koff/Kon, and the Kon and Koff are determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon resonance technology. In other embodiments, the Kd is calculated as the quotient of Koff/Kon, and the Kon and Koff are determined using a bivalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon resonance technology.


In some embodiments, the DLL3 antigen binding domain binds mammalian DLL3 (e.g., human DLL3, cyno DLL3 or mouse DLL3) with an association rate (kon) of less than 1×10−4 M4 s-1, less than 2×10−4 M4 less than 3×10−4 M4 s-1, less than 4×10−4 M4 s-1, less than 5×10−4 M4 s-1, less than 7×10−4 M4 s-1, less than 8×10−4 M4 s-1, less than 9×10−4 M4 s-1, less than 1×10−5 M4 s-1, less than 2×10−5 M4 s-1, less than 3×10−5 M4 s-1, less than 4×10−5 M4 s-1, less than 5×10−5 M4 s-1, less than 6×10−5 M4 s-1, less than 7×10−5 M4 s-1, less than 8×10−5 M4 s-1, less than 9×10−5 M4 s-1, less than 1×10−6 M4 s-1, less than 2×10−6 M4 s-1, less than 3×10−6 M4 s-1, less than 4×10−6 M4 s-1, less than 5×10−6 M4 s-1, less than 6×10−6 M4 s-1, less than 7×10−6 M4 s-1, less than 8×10−6 M4 s-1, less than 9×10−6 M4 s-1, or less than 1×10−7 M4 s-1. In certain embodiments, the kon is determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon resonance technology. In other embodiments, the kon is determined using a bivalent antibody as measured by, e.g., BIAcore® surface plasmon resonance technology.


In some embodiments, the DLL3 antigen binding domain binds mammalian DLL3 (e.g., human DLL3, cyno DLL3 or mouse DLL3) with an dissociation rate (koff) of less than 1×10−2 s−1, less than 2×10−2 s−1, less than 3×10−2 s−1, less than 4×10−2 s−1, less than 5×10−2 s−1, less than 6×10−2 s−1, less than 7×10−2 s−1, less than 8×10−2 s−1, less than 9×10−2 s−1, less than 1×10−3 s−1, less than 2×10−3 s−1, less than 3×10−3 s−1, less than 4×10−3 s−1, less than 5×10−3 s−1, less than 6×10−3 s−1, less than 7×10−3 s−1, less than 8×10−3 s−1, less than 9×10−3 s−1, less than 1×10−4 s−1, less than 2×10−4 s−1, less than 3×10−4 s−1, less than 4×10−4 s−1, less than 5×10−4 s−1, less than 6×10−4 s−1 less than 7×10−4 s−1, less than 8×10−4 s−1, less than 9×10−4 s−1, less than 1×10−5 s−1, or less than 5×10−4 s−1. In certain embodiments, the koff is determined using a monovalent antibody, such as a Fab fragment, as measured by, e.g., BIAcore® surface plasmon resonance technology. In other embodiments, the koff is determined using a bivalent antibody as measured by, e.g., BIAcore® surface plasmon resonance technology.


II. Chimeric Antigen Receptors


As used herein, chimeric antigen receptors (CARs) are proteins that specifically recognize target antigens (e.g., target antigens on cancer cells). When bound to the target antigen, the CAR may activate the immune cell to attack and destroy the cell bearing that antigen (e.g., the cancer cell). CARs may also incorporate costimulatory or signaling domains to increase their potency. See Krause et al., J. Exp. Med., Volume 188, No. 4, 1998 (619-626); Finney et al., Journal of Immunology, 1998, 161: 2791-2797, Song et al., Blood 119:696-706 (2012); Kalos et al., Sci. Transl. Med. 3:95 (2011); Porter et al., N Engl. J. Med. 365:725-33 (2011), and Gross et al., Annu. Rev. Pharmacol. Toxicol. 56:59-83 (2016); U.S. Pat. Nos. 7,741,465, and 6,319,494.


Chimeric antigen receptors described herein comprise an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain that specifically binds to DLL3. In some embodiments, the DLL-3 specific CAR comprises the following elements from 5′ to 3′: a signal sequence, a DLL3 antigen binding domain (e g, an anti-DLL3 scFv), a hinge and transmembrane region, and one or more successive signaling domains. In certain embodiments, the DLL-3 specific CAR comprises the following elements from 5′ to 3′: a CD8α signal sequence, a DLL3 scFv comprising a DLL3 variable heavy chain and/or variable light chain described herein, a CD8α hinge and transmembrane region, a 41BB cytoplasmic signaling domain, and a CD3ζ cytoplasmic signaling domain. (FIG. 4, Table 7).


In some embodiments, the DLL-3 specific CARs further comprise a safety switches and/or monoclonal antibody specific-epitope.


a. Antigen Binding Domain


As discussed above, the DLL3 CARs described herein comprise an antigen binding domain. An “antigen binding domain” as used herein means any polypeptide that binds a specified target antigen, for example the specified target antigen can be the DLL3 (DLL-3) protein or fragment thereof (referred to interchangeably herein as a “DLL3 antigen”, “DLL3 target antigen”, or “DLL3 target”). In some embodiments, the antigen binding domain binds to a DLL3 antigen on a tumor cell. In some embodiments, the antigen binding domain binds to a DLL3 antigen on a cell involved in a hyperproliferative disease.


In some embodiments, the antigen binding domain comprises a variable heavy chain, variable light chain, and/or one or more CDRs described herein. In some embodiments, the antigen binding domain is a single chain variable fragment (scFv), comprising light chain CDRs CDR1, CDR2 and CDR3, and heavy chain CDRs CDR1, CDR2 and CDR3.


In some embodiments, DLL-3 specific CARs comprise a VH shown in Table 1b. In some embodiments, DLL-3 specific CARs comprise a VL shown in Table 1c. In some embodiments, DLL-3 specific CARs comprise a heavy chain CDR1, CDR2, CDR3 shown in Table 1e. In some embodiments, DLL-3 specific CARs comprise a light chain CDR1, CDR2, CDR3 shown in Table 1f.


Variants of the antigen binding domains (e.g., variants of the CDRs, VH and/or VL) are also within the scope of the disclosure, e.g., variable light and/or variable heavy chains that each have at least 70-80%, 80-85%, 85-90%, 90-95%, 95-97%, 97-99%, or above 99% identity to the amino acid sequences of the antigen binding domain sequences described herein. In some instances, such molecules include at least one heavy chain and one light chain, whereas in other instances the variant forms contain two variable light chains and two variable heavy chains (or subparts thereof). A skilled artisan will be able to determine suitable variants of the antigen binding domains as set forth herein using well-known techniques. In certain embodiments, one skilled in the art can identify suitable areas of the molecule that may be changed without destroying activity by targeting regions not believed to be important for activity.


In certain embodiments, the polypeptide structure of the antigen binding domains is based on antibodies, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), and fragments thereof, respectively. In some embodiments, the antigen binding domain comprises or consists of avimers.


A DLL3 antigen binding domain is said to be “selective” when it binds to one target more tightly than it binds to a second target.


In some embodiments, the DLL3 antigen binding domain is a scFv. In some embodiments, the DLL3 specific CAR comprises an scFv provided in Table 1d.


In some embodiments, the DLL3 specific CAR comprises a leader or signal peptide; in some embodiments the leader peptide comprises an amino acid sequence that is at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the amino acid sequence MALPVTALLLPLALLLHAARP (SEQ ID NO: 477). In some embodiments, the leader peptide comprises the amino acid sequence of SEQ ID NO: 477. In some embodiments, the leader peptide is encoded by a nucleic acid sequence comprising:









(SEQ ID NO: 555)


ATGGCACTCCCCGTAACTGCTCTGCTGCTGCCGTTGGCATTGCTCCTGC





ACGCCGCACGCCCG






In other embodiments, the disclosure relates to isolated polynucleotides encoding any one of the DLL3 antigen binding domains described herein. In some embodiments, the disclosure relates to isolated polynucleotides encoding a DLL3 CAR described in Table 10. Also provided herein are vectors comprising the polynucleotides, and methods of making the same.









TABLE 10







Polynucleotide Sequences of exemplary DLL3 targeting CARs









SEQ




ID
CAR



NO
Structure
Nucleotide Sequence





570
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 2D3
TGCTGCTGCACGCCGCACGACCACAGGTCCAGGTGCAGC



scFv, CD8α
TGCAGGAGAGCGGCCCAGGCCTGGTGAAGCCATCTGAG



hinge and
ACACTGAGCCTGACCTGCACAGTGAGCGATAACTCCATC



transmembran
TCTAATTACTATTGGTCCTGGATCAGGCAGCCCCCTGGC



e regions,
AAGGGCCTGGAGTGGATCGCCTACATCTACTATTCTGGC



41BB
ACCACAAACTATAATCCCAGCCTGAAGTCCAGAGTGACC



cytoplasmic
ATCTCCCTGGACACATCTAAGAACCAGTTCTCCCTGAAG



signaling
CTGAGCTCCGTGACCGCAGCAGATACAGCCGTGTACTAT



domain, CD3ζ
TGTGCCCGGCTGTTTAATTGGGGCTTCGCCTTTGACATCT



cytoplasmic
GGGGCCAGGGCACCATGGTGACAGTGTCTAGCGGAGGA



signaling
GGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGAT



domain
CTGAGATCGTGATGACCCAGTCTCCAGCCACACTGTCCG




TGTCTCCCGGCGAGAGGGCCACCCTGAGCTGCAGAGCC




AGCCAGTCCGTGAGCTCCAACCTGGCCTGGTACCAGCAG




AAGCCTGGCCAGGCACCTCGGCTGCTGATCTATGGAGCA




TCCACCAGGGCCACAGGAATCCCTGCACGCTTCTCTGGA




AGCGGATCCGGCACAGAGTTTACCCTGACAATCTCTAGC




CTGCAGTCTGAGGACTTCGCCGTGTACTATTGTCAGCAG




TACAACAATTGGCCCCTGACCTTTGGCGGCGGCACAAAG




GTGGAGATCAAGACCACAACTCCTGCACCTAGGCCACCT




ACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTG




CGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGT




GCATACAAGGGGACTGGACTTTGCCTGCGATATCTACAT




TTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCT




GAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAA




GAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACC




TGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTC




GGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGG




GTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAG




CAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGG




GCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCG




GGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAA




AAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGG




ATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAG




GGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGT




ACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





571
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 5A2
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAG



scFv, CD8α
GAGTCTGGCCCAGGCCTGATGAAGCCCAGCGAGACACT



hinge and
GTCCCTGACCTGCACAGTGTCTGGCGGCAGCATCAGCTC



transmembran
CTCTTACTGGAGCTGTATCAGGCAGCCCCCTGGCAAGGG



e regions,
CCTGGAGTGGATCGGCTACATCTACTATTCCGGCACCAC



41BB
AAACTATAATCCTTCCCTGAAGTCTCGGGTGACCCTGTC



cytoplasmic
TCTGGACACAAGCAAGAACCAGTTCTCCCTGAGACTGAC



signaling
CTCTGTGACAGCCGCCGATACCGCCGTGTACTATTGCGC



domain, CD3ζ
CAGAGTGGCCCCCACAGGCTTCTGGTTTGACTATTGGGG



cytoplasmic
CCAGGGCACCCTGGTGACAGTGAGCTCCGGAGGAGGAG



signaling
GAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCTGA



domain
GATCGTGCTGACCCAGTCCCCAGGCACACTGTCCCTGTC




TCCCGGCGAGAGAGCCACCCTGAGCTGCAGGGCCTCCC




AGAGAGTGAGCTCCAGGTACCTGGCCTGGTATCAGCAG




AAGCCTGGCCAGGCCCCCAGACTGCTGATCTACGGAGC




ATCTAGCCGCGCCACCGGAATCCCAGACCGGTTCAGCGG




ATCCGGATCTGGCACAGACTTCACCCTGACAATCTCTAG




ACTGGAGCCTGAGGAGTTCGCCGTGTACTATTGTCAGCA




GTATGGCACCAGCCCACTGACATTTGGCGGCGGCACAA




AGGTGGAGATCAAGACCACAACTCCTGCACCTAGGCCA




CCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCA




CTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGC




AGTGCATACAAGGGGACTGGACTTTGCCTGCGATATCTA




CATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCT




GCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCG




GAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCG




ACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCT




GTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTG




CGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTAC




CAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCT




GGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGC




GCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGACG




GAAAAACCCCCAGGAGGGACTGTACAATGAACTGCAGA




AGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGATG




AAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGAC




TGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTATG




ATGCTCTGCATATGCAGGCACTGCCACCCAGG





572
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 7F9
TGCTGCTGCACGCCGCACGACCACAGGTCCAGCTGGTCC



scFv, CD8α
AGTCAGGGGCCGAGGTGAAGAAACCTGGGGCTTCTGTG



hinge and
AAGGTCAGTTGCAAAGCTAGTGGATACTCATTCCCTGAT



transmembran
TACTATATCAACTGGGTGCGCCAGGCACCAGGACAGGG



e regions,
ACTGGAGTGGATGGGATGGATCTACTTCGCTAGCGGCAA



41BB
CTCCGAATATAATCAGAAGTTTACAGGCAGAGTGACTAT



cytoplasmic
GACCAGGGACACAAGCTCCTCTACTGCCTATATGGAGCT



signaling
GAGTTCACTGCGGAGTGAAGATACCGCAGTGTACTTCTG



domain, CD3ζ
CGCCTCTCTGTACGACTATGATTGGTATTTTGACGTCTGG



cytoplasmic
GGACAGGGCACTATGGTGACCGTCAGCTCCGGAGGAGG



signaling
AGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCT



domain
GATATCGTGATGACACAGACTCCCCTGTCACTGAGCGTC




ACTCCAGGAGAGCCAGCATCCATTTCTTGTAAGTCTAGT




CAGTCACTGGTGCACAGCAACGGAAATACCTACCTGCAT




TGGTATCTGCAGAAGCCTGGCCAGAGCCCACAGCTGCTG




ATCTACAAAGTGTCCAATAGGTTCTCTGGCGTCCCAGAC




CGCTTTAGTGGGTCAGGAAGCGGCGCCGATTTCACCCTG




AAAATTAGCCGCGTGGAGGCTGAAGACGTGGGCGTCTA




CTATTGCGCAGAGACAAGCCACGTCCCCTGGACTTTTGG




GCAGGGAACCAAGCTGGAAATCAAAACCACAACTCCTG




CACCTAGGCCACCTACCCCAGCACCTACAATTGCTAGTC




AGCCACTGTCACTGCGACCAGAGGCATGTCGACCTGCAG




CTGGAGGAGCAGTGCATACAAGGGGACTGGACTTTGCC




TGCGATATCTACATTTGGGCTCCTCTGGCAGGAACATGT




GGCGTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTGC




AAGCGAGGCCGGAAGAAACTGCTGTATATTTTCAAACA




GCCCTTTATGCGACCTGTGCAGACCACACAGGAGGAAG




ATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGGA




GGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGAC




GCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGTATAAC




GAGCTGAATCTGGGGCGGAGAGAGGAATACGACGTGCT




GGATAAAAGGCGCGGGAGAGACCCAGAAATGGGGGGA




AAGCCACGACGGAAAAACCCCCAGGAGGGACTGTACAA




TGAACTGCAGAAGGATAAAATGGCAGAGGCCTATTCCG




AAATCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAGG




ACACGACGGACTGTACCAGGGGCTGTCTACCGCCACAA




AGGACACCTATGATGCTCTGCATATGCAGGCACTGCCAC




CCAGG





631
CD8α signal
atggctctgcccgtcaccgctctgctgctgcctctggctctgctgctgcacgccgcacgacca



sequence, 7F9
gaggtgcagctggtggagagcggaggaggcctggtgcagcctggcggcagcctgaggct



scFv, CD8α
gtcctgcgcagcatctggcttcacctttagctcccacgacatgcactgggtgaggcaggcaac



hinge and
aggcaagggcctggagtgggtgtccgccatcggaatcgcaggcgatacctactattccggct



transmembran
ctgtgaagggccggttcacaatcagcagagagaacgccaagaattccctgtacctgcagatg



e regions,
aactctctgagggccggcgacaccgccgtgtactattgtgccagagccaattggggcgagg



41BB
gcgcctttgatatctggggccagggcaccatggtgacagtgtctagcggcggcggcggctct



cytoplasmic
ggaggaggaggcagcggcggaggaggctccggaggcggcggctctgacatccagatga



signaling
cacagtctcctagctccctgtccgcctctgtgggcgaccgggtgaccatcacatgcagagcc



domain, CD3ζ
agccagggcatctccgattacctggcctggtatcagcagaagcccggcaagatccctaagct



cytoplasmic
gctgatctacgcagcatctaccctgcagagcggagtgccatcccggttcagcggatccggat




ctggaacagactttaccctgacaatctctagcctgcagccagaggatgtggccacctactattg



signaling
tcagaagtataactccgtgccactgaccttcggcggaggaacaaaggtggagatcaagacca



domain
caactcctgcacctaggccacctaccccagcacctacaattgctagtcagccactgtcactgc




gaccagaggcatgtcgacctgcagctggaggagcagtgcatacaaggggactggactagc




ctgcgatatctacatagggctcctctggcaggaacatgtggcgtgctgctgctgagcctggtc




atcactctgtactgcaagcgaggccggaagaaactgctgtatattacaaacagccctttatgc




gacctgtgcagaccacacaggaggaagatgggtgctcctgtcggttccccgaggaagagg




aaggaggctgtgagctgcgggtcaagttaccagatctgcagacgcccctgcttaccagcag




ggccagaaccagctgtataacgagctgaatctggggcggagagaggaatacgacgtgctg




gataaaaggcgcgggagagacccagaaatggggggaaagccacgacggaaaaaccccc




aggagggactgtacaatgaactgcagaaggataaaatggcagaggcctattccgaaatcgg




gatgaagggagaaagaaggcgaggcaaaggacacgacggactgtaccaggggctgtcta




ccgccacaaaggacacctatgatgctctgcatatgcaggcactgccacccagg





573
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 9D3
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



scFv, CD8α
GAGTCTGGCCCAGGCCTGGTGAAGCCCTCTGAGACACTG



hinge and
AGCCTGACCTGCACAGTGAGCGACGATTCCATCTCTAAC



transmembran
TACTATTGGTCCTGGATCAGGCAGCCCCCTGGCAAGGGC



e regions,
CTGGAGTGGATCGGCTACATCTTCTATTCCGGCACCACA



41BB
AACCACAATCCCAGCCTGAAGTCCCGGCTGACAATCTCC



cytoplasmic
CTGGACAAGGCCAAGAACCAGTTCTCTCTGAGACTGAGC



signaling
TCCGTGACCGCCGCCGATACAGCCGTGTACTATTGTGCC



domain, CD3ζ
AGAGTGTTCAACTGGGGCTTCGCCTTTGACATCTGGGGC



cytoplasmic
CAGGGCACCATGGTGACAGTGTCTAGCGGCGGCGGCGG



signaling
CTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGAG



domain
GCGGCGGCTCTGAGATCGTGCTGACCCAGTCTCCAGGCA




CACTGTCTCTGAGCCCCGGCGAGAGGGCCACCCTGAGCT




GCCGCGCCTCCCAGCGGATCTCTAGAACATACCTGGCCT




GGTATCAGCAGAAGCCTGGCCAGGCCCCCAGACTGCTG




ATCTACGGAGCAAGCAGCCGGGCCACCGGAATCCCCGA




CAGATTCACCGGCTCCGGCTCTGGCACAGACTTCACCCT




GACAATCAGCAGACTGGAGCCTGAGGACTTCGCCGTGT




ACTATTGTCAGCAGTATGGCACCTCCCCACTGACATTTG




GCGGCGGCACAAAGGTGGAGATCAACACCACAACCCCA




GCACCTAGGCCACCTACACCTGCACCAACCATCGCCAGC




CAGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGCCAGCA




GCAGGAGGAGCAGTGCACACCCGGGGCCTGGACTTCGC




CTGCGATATCTACATCTGGGCACCACTGGCAGGAACATG




TGGCGTGCTGCTGCTGTCCCTGGTCATCACCCTGTACTGC




AAGAGAGGCAGGAAGAAGCTGCTGTATATCTTCAAGCA




GCCCTTCATGAGACCCGTGCAGACAACCCAGGAGGAGG




ACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGGAGGGA




GGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTGCCGAT




GCACCTGCATACCAGCAGGGACAGAACCAGCTGTATAA




CGAGCTGAATCTGGGCCGGAGAGAGGAGTACGACGTGC




TGGATAAGAGGAGGGGAAGGGACCCTGAGATGGGAGGC




AAGCCTCGGAGAAAGAACCCACAGGAGGGCCTGTACAA




TGAGCTGCAGAAGGACAAGATGGCCGAGGCCTATAGCG




AGATCGGCATGAAGGGAGAGAGGCGCCGGGGCAAGGG




ACACGATGGCCTGTATCAGGGCCTGTCAACCGCTACAAA




AGATACCTACGATGCTCTGCACATGCAGGCTCTGCCACC




AAGA





574
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



26C8 scFv,
GAGAGCGGCCCAGGCCTGGTGAAGCCATCTGAGACACT



CD8α hinge
GAGCCTGACCTGCACAGTGAGCGATAACTCCATCTCTAA



and
TTACTATTGGTCCTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
CCTGGAGTGGATCGCCTACATCTACTATTCTGGCACCAC



e regions,
AAACTATAATCCCAGCCTGAAGTCCAGAGTGACCATCTC



41BB
CCTGGACACATCTAAGAACCAGTTCTCCCTGCAGCTGAG



cytoplasmic
CTCCGTGACAGCAGCAGATGCAGCCGTGTACTATTGTGC



signaling
CAGAGTGTTCCACTGGGGCTTCGCCTTTGACATCTGGGG



domain, CD3ζ
CCAGGGCACCATGGTGACAGTGTCTAGCGGCGGCGGCG



cytoplasmic
GCTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGA



signaling
GGCGGCGGCTCTGAGATCGTGCTGACCCAGAGCCCAGG



domain
CACACTGTCTCTGAGCCCCGGCGAGAGGGCCACCCTGTC




CTGCCGGGCCTCTCAGAGAGTGAGCAACACATACCTGGC




CTGGTATCAGCAGAATCCCGGCCAGGCCCCCAGACTGCT




GATCTACGGAGCAAGCTCCAGGGCCACCGGAATCCCAG




ACCGCTTCTCCGGATCTGGAAGCGGCACAGACTTCACCC




TGACAATCTCCCGGCTGGAGCCTGAGGACTTCGCCGTGT




ACTATTGTCAGCAGTATGGCACCTCTCCACTGACATTTG




GCGGCGGCACCAAGGTGGAGATCAAGACCACAACCCCA




GCACCTAGGCCACCTACACCTGCACCAACCATCGCCAGC




CAGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGCCAGCA




GCAGGAGGAGCAGTGCACACCCGGGGCCTGGACTTCGC




CTGCGATATCTACATCTGGGCACCACTGGCAGGAACATG




TGGCGTGCTGCTGCTGTCCCTGGTCATCACCCTGTACTGC




AAGAGAGGCAGGAAGAAGCTGCTGTATATCTTCAAGCA




GCCCTTCATGAGACCCGTGCAGACAACCCAGGAGGAGG




ACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGGAGGGA




GGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTGCCGAT




GCACCTGCATACCAGCAGGGACAGAACCAGCTGTATAA




CGAGCTGAATCTGGGCCGGAGAGAGGAGTACGACGTGC




TGGATAAGAGGAGGGGAAGGGACCCTGAGATGGGAGGC




AAGCCTCGGAGAAAGAACCCACAGGAGGGCCTGTACAA




TGAGCTGCAGAAGGACAAGATGGCCGAGGCCTATAGCG




AGATCGGCATGAAGGGAGAGAGGCGCCGGGGCAAGGG




ACACGATGGCCTGTATCAGGGCCTGTCAACCGCTACAAA




AGATACCTACGATGCTCTGCACATGCAGGCTCTGCCACC




AAGA





575
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAG



2A6.C5 scFv,
GAGAGCGGCCCAGGCCTGGTGAAGCCATCCGAGACCCT



CD8α hinge
GTCTCTGACCTGCACAGTGAGCAACGTGTCCATCAGCTC



and
CTACTATTGGTCTTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCGGCTACATCTACTATAGCGGCACCAC



e regions,
AAACTATAATCCCTCTCTGAAGAGCAGAGTGACCATGAG



41BB
CGTGGACACATCCAAGAACCAGTTCTCCCTGAAGCTGTC



cytoplasmic
TAGCGTGACCGCCGCCGATACAGCCGTGTACTTTTGTGC



signaling
CCGGCTGTCTAATTGGGGCTTCGCCTTTGACATCTGGGG



domain, CD3ζ
CCAGGGCACCATGGTGACATTCTCCTCTGGAGGAGGAG



cytoplasmic
GAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCTGA



signaling
GATCGTGCTGACCCAGTCTCCAGGCACACTGTCTCTGAG



domain
CCCCGGCGAGAGGGCCACCCTGTCCTGCAGAGCCTCTCA




GACAATCAGCTCCTCTTACCTGGCCTGGTATCAGCAGAA




GCCTGGCCAGGCACCTCGGCTGCTGATCTACGGAGCAAG




CTCCAGGGCCACCGGAATCCCAGACCGCTTCTCCGGATC




TGGAAGCGGCACAGAGTTTACCCTGACAATCAGCCGGCT




GGAGCCTGAGGATTTCGCCGTGTACTATTGTCAGCAGTA




TGGCTGGTCCCCAATCACCTTTGGCCAGGGCACAAGGCT




GGAGATCAAGACCACAACTCCTGCACCTAGGCCACCTAC




CCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGCG




ACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTGC




ATACAAGGGGACTGGACTTTGCCTGCGATATCTACATTT




GGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGA




GCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAGA




AACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCTGT




GCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCGGT




TCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTC




AAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAG




GGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGGCG




GAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGGGA




GAGACCCAGAAATGGGGGGAAAGCCACGACGGAAAAA




CCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGATA




AAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGGGA




GAAAGAAGGCGAGGCAAAGGACACGACGGACTGTACCA




GGGGCTGTCTACCGCCACAAAGGACACCTATGATGCTCT




GCATATGCAGGCACTGCCACCCAGG





576
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCAGAGGTGCAGCTGGTG



5E12 scFv,
GAGAGCGGAGGAGGACTGGTGCAGCCTGGCGGATCCCT



CD8α hinge
GAGGCTGTCTTGCGCAGCAAGCGGCTTCACCTTTAGCTC



and
CTACGACATGCACTGGGTGAGGCAGGCAACAGGCAAGG



transmembran
GACTGGAGTGGGTGTCCGCCATCGGACCAGCCGGCGAT



e regions,
ACCTACTATCCCGGCTCTGTGAAGGGCCGGTTCACAATC



41BB
TCCAGAGAGAACGCCAAGAATTCTCTGTATCTGCAGATG



cytoplasmic
AACAGCCTGAGGGCAGGCGACACCGCCGTGTACTATTGT



signaling
GCCAGAGCCGACCCCCCTTACTATTACTATGGCATGGAC



domain, CD3ζ
GTGTGGGGCCAGGGCACCACAGTGACAGTGTCTAGCGG



cytoplasmic
AGGAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGG



signaling
GGATCTGACATCGTGATGACCCAGTCCCCTCTGTCTCTG



domain
CCCGTGACACCTGGCGAGCCAGCCTCTATCAGCTGCAGG




AGCTCCCAGAGCCTGCTGCACTCCAACGAGTACAATTAT




CTGGATTGGTACCTGCAGAAGCCTGGCCAGTCCCCTCAG




CTGCTGATCTATCTGGGCTCTAACAGGGCAAGCGGAGTG




CCAGACAGATTCTCCGGCTCTGGCAGCGGCACCGACTTC




ATCCTGAAGATCTCTCGGGTGGAGGCAGAGGACGTGGG




CGTGTACTATTGTATGCAGGCCCTGGAGATCCCACTGAC




CTTCGGCGGAGGAACAAAGGTGGAGATCAAGACCACAA




CTCCTGCACCTAGGCCACCTACCCCAGCACCTACAATTG




CTAGTCAGCCACTGTCACTGCGACCAGAGGCATGTCGAC




CTGCAGCTGGAGGAGCAGTGCATACAAGGGGACTGGAC




TTTGCCTGCGATATCTACATTTGGGCTCCTCTGGCAGGA




ACATGTGGCGTGCTGCTGCTGAGCCTGGTCATCACTCTG




TACTGCAAGCGAGGCCGGAAGAAACTGCTGTATATTTTC




AAACAGCCCTTTATGCGACCTGTGCAGACCACACAGGA




GGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGG




AAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTG




CAGACGCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGT




ATAACGAGCTGAATCTGGGGCGGAGAGAGGAATACGAC




GTGCTGGATAAAAGGCGCGGGAGAGACCCAGAAATGGG




GGGAAAGCCACGACGGAAAAACCCCCAGGAGGGACTGT




ACAATGAACTGCAGAAGGATAAAATGGCAGAGGCCTAT




TCCGAAATCGGGATGAAGGGAGAAAGAAGGCGAGGCA




AAGGACACGACGGACTGTACCAGGGGCTGTCTACCGCC




ACAAAGGACACCTATGATGCTCTGCATATGCAGGCACTG




CCACCCAGG





577
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 6D8
TGCTGCTGCACGCCGCACGACCACAGATCACACTGAAG



scFv, CD8α
GAGAGCGGCCCAACCCTGGTGAAGCCCACCCAGACACT



hinge and
GACCCTGACATGCACCTTCTCCGGCTTTTCTCTGAGCACC



transmembran
AGAGGCGTGGGAGTGGGATGGATCAGACAGCCCCCTGG



e regions,
CAAGGCCCTGGAGTGGCTGGCCCTGATCTACTGGAACGA



41BB
CGATAAGAGGTATTCCCCTTCTCTGCAGACACGCCTGAC



cytoplasmic
AATCACCAAGGACACCCCAAAGAACCAGGTGGTGCTGA



signaling
CAATGACCAATATGGACCCCGTGGATACAGCCACCTACT



domain, CD3ζ
ATTGTGCCCGGTCTAACTGGGGCAATTGGTACTTCGCAC



cytoplasmic
TGTGGGGAAGGGGCACACTGGTGACCGTGAGCTCCGGA



signaling
GGAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGG



domain
GATCTGAGATCGTGCTGACCCAGTCTCCAGCCACACTGT




CCCTGTCTCCCGGCGAGAGGGCCACCCTGAGCTGCAGAG




CCAGCCAGTCCGTGAGCTCCTACCTGGCCTGGTATCAGC




AGAAGCCTGGCCAGGCACCTCGGCTGCTGATCTACGACG




CCTTCTATAGGGCCACCGGCATCCCAGCACGCTTCTCTG




GAAGCGGATCCGGCACAGACTTTACCCTGACAATCTCTA




GCCTGGAGCCTGAGGATTTCGCCGTGTACTATTGTCAGC




ACCGGTCCAACTGGCCAATCACCTTTGGCCAGGGCACAA




GGCTGGAGATCAAGACCACAACTCCTGCACCTAGGCCA




CCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCA




CTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGC




AGTGCATACAAGGGGACTGGACTTTGCCTGCGATATCTA




CATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCT




GCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCG




GAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCG




ACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCT




GTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTG




CGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTAC




CAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCT




GGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGC




GCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGACG




GAAAAACCCCCAGGAGGGACTGTACAATGAACTGCAGA




AGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGATG




AAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGAC




TGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTATG




ATGCTCTGCATATGCAGGCACTGCCACCCAGG





578
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



8E11 scFv,
GAGAGCGGCCCAGGCCTGGTGAAGCCATCTGAGACCCT



CD8α hinge
GAGCCTGACCTGCACAGTGTCCGGCGATTCCATCTCTAA



and
CTACTATTGGACATGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCGGCTACATCTACTATTCTGGCACCAC



e regions,
AAACTCTAATCCCAGCCTGAAGAGCCGGGTGACCGTGTC



41BB
CCTGGACACAAGCAAGTCCCAGTTCTCTCTGAACCTGAG



cytoplasmic
CTCCGTGACCGCCGCCGATACAGCCGTGTACTATTGTGC



signaling
CAGAGTGTTCAACAGAGGCTTCGCCTTTGACATCTGGGG



domain, CD3ζ
CCAGGGCACCATGGTGACAGTGTCTAGCGGCGGCGGCG



cytoplasmic
GCTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGA



signaling
GGCGGCGGCTCTGAGATCGTGCTGACCCAGAGCCCAGG



domain
CACACTGTCTCTGAGCCCCGGCGAGAGGGCCACCCTGTC




CTGCCGGGCCTCTCAGAGAATCAGCAACACATACCTGGC




CTGGTATCAGCAGAAGCCTGGCCAGGCCCCCAGACTGCT




GATCTACGGAGCAAGCTCCAGGGCCACCGGAATCCCAG




ACCGCTTCTCCGGATCTGGAAGCGGCACAGACTTCACCC




TGACAATCTCCAGGCTGGAGCCTGAGGACTTCGCAGCCT




ACTATTGTCAGCAGTATGATACCTCTCCACTGACATTTG




GCGGCGGCACCAAGGTGGAGATCAAGACCACAACCCCA




GCACCTAGGCCACCTACACCTGCACCAACCATCGCCAGC




CAGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGCCAGCA




GCAGGAGGAGCAGTGCACACCCGGGGCCTGGACTTCGC




CTGCGATATCTACATCTGGGCACCACTGGCAGGAACATG




TGGCGTGCTGCTGCTGTCCCTGGTCATCACCCTGTACTGC




AAGAGAGGCAGGAAGAAGCTGCTGTATATCTTCAAGCA




GCCCTTCATGAGACCCGTGCAGACAACCCAGGAGGAGG




ACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGGAGGGA




GGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTGCCGAT




GCACCTGCATACCAGCAGGGACAGAACCAGCTGTATAA




CGAGCTGAATCTGGGCCGGAGAGAGGAGTACGACGTGC




TGGATAAGAGGAGGGGAAGGGACCCTGAGATGGGAGGC




AAGCCTCGGAGAAAGAACCCACAGGAGGGCCTGTACAA




TGAGCTGCAGAAGGACAAGATGGCCGAGGCCTATAGCG




AGATCGGCATGAAGGGAGAGAGGCGCCGGGGCAAGGG




ACACGATGGCCTGTATCAGGGCCTGTCAACCGCTACAAA




AGATACCTACGATGCTCTGCACATGCAGGCTCTGCCACC




AAGA





579
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGACACTGAGG



5C1.A4 scFv,
GAGTCTGGACCCGCCCTGGTGAAGCCTACCCAGACACTG



CD8α hinge
ACCCTGACATGCACCGTGAGCGGCGTGTCTCTGAGCACC



and
TCCGGCATGTGCGTGAGCTGGATCAGGCAGCCACTGGGC



transmembran
AAGGCCCTGGAGTGGCTGGGCTTCATCGATTGGGACGAT



e regions,
GACAAGTACTATAACACAAGCCTGAAGACACGCCTGAC



41BB
CATCTCCAAGGACACCTCTAAGAACCAGGTGGTGCTGAC



cytoplasmic
AATGACCAATATGGATCCCGTGGACACAGCCACCTACTA



signaling
TTGCGCCCGGATCAGAGGCTACTCTGGCAGCTATGATGC



domain, CD3ζ
CTTTGACATCTGGGGCCAGGGCACCGTGGTCATCGTGAG



cytoplasmic
CTCCGGAGGAGGAGGAAGCGGAGGAGGAGGGTCCGGA



signaling
GGCGGGGGATCTGACATCGTGATGACCCAGTCCCCTCTG



domain
TCTCTGCCCGTGACACCTGGCGAGCCAGCCTCTATCAGC




TGCAGGAGCTCCCAGAGCCTGCTGCACTCCAACGGCTAC




AATCACCTGGATTGGTATCTGCAGAAGCCTGGCCAGTCC




CCTCAGGTGCTGATCTACCTGGGCTCTAACAGGGCAAGC




GGAGTGCCAGACAGATTCTCCGGATCTGGAAGCGGAAC




CGACTTCACCCTGAAGATCTCTCGGGTGGAGGCAGAGG




ACGTGGGCGTGTATTTCTGTATGCAGGCCCTGCAGACCC




CCCTGACATTTGGCGGCGGCACCAAGGTGGAGATCAAG




ACCACAACTCCTGCACCTAGGCCACCTACCCCAGCACCT




ACAATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGCA




TGTCGACCTGCAGCTGGAGGAGCAGTGCATACAAGGGG




ACTGGACTTTGCCTGCGATATCTACATTTGGGCTCCTCTG




GCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCATC




ACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGTAT




ATTTTCAAACAGCCCTTTATGCGACCTGTGCAGACCACA




CAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGA




AGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCA




GATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGAACC




AGCTGTATAACGAGCTGAATCTGGGGCGGAGAGAGGAA




TACGACGTGCTGGATAAAAGGCGCGGGAGAGACCCAGA




AATGGGGGGAAAGCCACGACGGAAAAACCCCCAGGAG




GGACTGTACAATGAACTGCAGAAGGATAAAATGGCAGA




GGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAAGGC




GAGGCAAAGGACACGACGGACTGTACCAGGGGCTGTCT




ACCGCCACAAAGGACACCTATGATGCTCTGCATATGCAG




GCACTGCCACCCAGG





580
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 9F7
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAG



scFv, CD8α
GTGTCCGGCCCTGGCCTGGTGAAGCCTTCCGAGACACTG



hinge and
TCTCTGACCTGCAGCGTGTCCGGCGGCTCTATCAGCTCC



transmembran
TACTATTGGTCTTGGATCAGGCAGAGCCCAGGCAAGGG



e regions,
ACTGGATTGGATCGGCTACATGTACTATAGCGGCACCAC



41BB
AAACTATAATCCCTCTCTGAAGAGCAGAGTGACAATCAG



cytoplasmic
CGTGGACACCTCCAAGAACCAGTTTTCCCTGAAGCTGTC



signaling
TAGCGTGACCGCCACAGATACCGCCGTGTACTATTGTGC



domain, CD3ζ
CAGAGTGGGCCTGACAGGCTTCTTTTTCGACTACTGGGG



cytoplasmic
CCAGGGCACACTGGTGACCGTGTCCTCTGGAGGAGGAG



signaling
GAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCTGCC



domain
ATCCAGATGACCCAGTCCCCTAGCTCCCTGAGCGCCTCC




GTGGGCGACAGGGTGACCATCACATGCAGAGCCTCTCA




GGGCATCAGGAACGATCTGGGCTGGTATCAGCAGAAGC




CCGGCAAGGCCCCTAAGCTGCTGATCTACGCAGCATCTA




GCCTGCAGTCTGGAGTGCCAAGCCGGTTCTCTGGAAGCG




GATCCGGCACCGACTTTACCCTGACAGTGTCCTCTCTGC




AGCCAGAGGACTTCGCCACATACTATTGTCTGCAGGATT




ACAATTATCCCTACACCTTTGGCCAGGGCACAAAGCTGG




AGATCAAGACCACAACTCCTGCACCTAGGCCACCTACCC




CAGCACCTACAATTGCTAGTCAGCCACTGTCACTGCGAC




CAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTGCAT




ACAAGGGGACTGGACTTTGCCTGCGATATCTACATTTGG




GCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAGC




CTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAGAA




ACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCTGTG




CAGACCACACAGGAGGAAGATGGGTGCTCCTGTCGGTT




CCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCA




AGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAGG




GCCAGAACCAGCTGTATAACGAGCTGAATCTGGGGCGG




AGAGAGGAATACGACGTGCTGGATAAAAGGCGCGGGAG




AGACCCAGAAATGGGGGGAAAGCCACGACGGAAAAAC




CCCCAGGAGGGACTGTACAATGAACTGCAGAAGGATAA




AATGGCAGAGGCCTATTCCGAAATCGGGATGAAGGGAG




AAAGAAGGCGAGGCAAAGGACACGACGGACTGTACCAG




GGGCTGTCTACCGCCACAAAGGACACCTATGATGCTCTG




CATATGCAGGCACTGCCACCCAGG





581
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 2C3
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



scFv, CD8α
AGTGGGGAGGAGGACTGCTGAAGCCCTCCGAGACCCTG



hinge and
TCTCTGACATGCGCCGTGTACGGAGGAAGCTCCTCTGGA



transmembran
AACTATTGGTCCTGGATCCGGCAGCCCCCTGGCAAGAGA



e regions,
CTGGAGTGGATCGGCGAGATCAACCACAGCGGCACCAC



41BB
ATCCTACAATCCTTCTCTGAAGAGCAGGGTGACCATCTC



cytoplasmic
TGTGGACACAAGCAAGAATCAGTTCTCCCTGAAGCTGAG



signaling
CTCCGTGACCGCAGCAGATACAGCCGTGTACTATTGCGC



domain, CD3ζ
CAGAGGCGAGCTGGGAATCGCAGACAGCTGGGGACAGG



cytoplasmic
GCACCCTGGTGACAGTGTCTAGCGGAGGAGGAGGAAGC



signaling
GGAGGAGGAGGGTCCGGAGGCGGGGGATCTGATATCCA



domain
GATGACCCAGTCTCCCAGCACACTGTCCGCCTCTGTGGG




CGACAGGGTGACCATCACATGTCGCGCCAGCCAGTCCAT




CTCTCGGTGGCTGGCCTGGTACCAGCAGAAGCCAGGCA




AGGCCCCCAAGCTGCTGATCTATAAGGCCTCCTCTCTGG




AGTCCGGCGTGCCTTCTAGATTCAGCGGCTCCGGCTCTG




GCACCGAGTTTACCCTGACAATCAGCTCCCTGCAGCCAG




ACGATTTCGCCACCTACTATTGTCAGCAGTACAACAGCT




ATTCCACCTTTGGCCAGGGCACAAAGGTGGAGATCAAG




ACCACAACTCCTGCACCTAGGCCACCTACCCCAGCACCT




ACAATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGCA




TGTCGACCTGCAGCTGGAGGAGCAGTGCATACAAGGGG




ACTGGACTTTGCCTGCGATATCTACATTTGGGCTCCTCTG




GCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCATC




ACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGTAT




ATTTTCAAACAGCCCTTTATGCGACCTGTGCAGACCACA




CAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGA




AGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCA




GATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGAACC




AGCTGTATAACGAGCTGAATCTGGGGCGGAGAGAGGAA




TACGACGTGCTGGATAAAAGGCGCGGGAGAGACCCAGA




AATGGGGGGAAAGCCACGACGGAAAAACCCCCAGGAG




GGACTGTACAATGAACTGCAGAAGGATAAAATGGCAGA




GGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAAGGC




GAGGCAAAGGACACGACGGACTGTACCAGGGGCTGTCT




ACCGCCACAAAGGACACCTATGATGCTCTGCATATGCAG




GCACTGCCACCCAGG





582
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 2G1
TGCTGCTGCACGCGGCGCGCCCGCAGCTGCAGCTGCAGG



scFv, CD8α
AGTCCGGCCCTGGCCTGGTGAAGCCATCCGAGACCCTGT



hinge and
CTCTGACCTGCACAGTGAGCGGCGGCTCCATCAGCTCCT



transmembran
CTAGCTACTATTGGGGCTGGATCAGACAGCCCCCTGGCA



e regions,
AGGGACTGGAGTGGATCGGCAGCATCTACTATTCCGGCA



41BB
ACATCTACCACAATCCTTCTCTGAAGAGCCGCGTGTCTA



cytoplasmic
TCAGCGTGGACACCTCCAAGAACCAGTTCTCTCTGAGGC



signaling
TGTCCTCTGTGACCGCAGCAGATACAGCCGTGTACTATT



domain, CD3ζ
GCGCCAGGGAGATCATCGTGGGAGCAACCCACTTTGACT



cytoplasmic
ATTGGGGCCAGGGCACCCTGGTGACAGTGAGCTCCGGC



signaling
GGCGGCGGCTCTGGAGGAGGAGGCAGCGGCGGAGGAG



domain
GCTCCGGAGGCGGCGGCTCTGCCATCCAGATGACACAGT




CCCCATCTAGCCTGTCCGCCTCTGTGGGCGACAGGGTGA




CCATCACATGTAGAGCCAGCCAGGGCATCAGGAACGAT




CTGGGCTGGTACCAGCAGAAGCCAGGCAAGGCCCCCGA




GCTGCTGATCTATGCCGCCTCCTCTCTGCAGTCTGGCGTG




CCAAGCAGATTCAGCGGCTCCGGCTCTGGCACCGACTTT




ACCCTGACAATCAGCTCCCTGCAGCCCGAGGACTTCGCC




ACATACTATTGTCTGCAGGATTACAATTATCCCCTGACC




TTTGGCCCTGGCACAAAGGTGGATATCAAGACCACAACC




CCAGCACCTAGGCCACCTACACCTGCACCAACCATCGCC




AGCCAGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGCCA




GCAGCAGGAGGAGCAGTGCACACCCGGGGCCTGGACTT




CGCCTGCGATATCTACATCTGGGCACCACTGGCAGGAAC




ATGTGGCGTGCTGCTGCTGTCCCTGGTCATCACCCTGTA




CTGCAAGAGAGGCAGGAAGAAGCTGCTGTATATCTTCA




AGCAGCCCTTCATGAGACCCGTGCAGACAACCCAGGAG




GAGGACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGGA




GGGAGGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTGC




CGATGCACCTGCATACCAGCAGGGACAGAACCAGCTGT




ATAACGAGCTGAATCTGGGCCGGAGAGAGGAGTACGAC




GTGCTGGATAAGAGGAGGGGAAGGGACCCTGAGATGGG




AGGCAAGCCTCGGAGAAAGAACCCACAGGAGGGCCTGT




ACAATGAGCTGCAGAAGGACAAGATGGCCGAGGCCTAT




AGCGAGATCGGCATGAAGGGAGAGAGGCGCCGGGGCA




AGGGACACGATGGCCTGTATCAGGGCCTGTCAACCGCTA




CAAAAGATACCTACGATGCTCTGCACATGCAGGCTCTGC




CACCAAGA





583
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 3E4
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



scFv, CD8α
AGTGGGGAGCAGGACTGCTGAAGCCCTCCGAGACCCTG



hinge and
TCTCTGACATGCGCCGTGTACGGAGGAAGCTTCTCCGGA



transmembran
TACTATTGGTCCTGGATCAGGCAGCCCCCTGGCAAGGGA



e regions,
CTGGAGTGGATCGGCGAGATCATCCACTCTGGCAGCTCC



41BB
AACTATAATCCTTCTCTGAAGAGCCGGGTGTCTATCAGC



cytoplasmic
GTGGACACCTCTAAGAACCAGTTCAGCCTGAAGCTGTCT



signaling
AGCGTGACCGCCGCCGATACAGCCGTGTACTATTGCTCC



domain, CD3ζ
AGAGGCGAGTACGGCTCCGGCTCTAGGTTTGACTATTGG



cytoplasmic
GGCCAGGGCACCCTGGTGACAGTGTCCTCTGGAGGAGG



signaling
AGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCT



domain
GCCATCCAGATGACCCAGTCCCCAAGCTCCCTGAGCGCC




TCCGTGGGCGATAGGGTGGCCATCACATGTAGGGCAAG




CCAGGGAATCAGGGACGATCTGGGCTGGTACCAGCAGA




AGCCAGGCAAGGCCCCCAAGCTGCTGATCTATGCAGCAT




CTAGCCTGCAGAGCGGAGTGCCATCCCGGTTCTCTGGAA




GCAGATCCGACACCGACTTCACCCTGACAATCTCCTCTC




TGCAGCCTGAGGACTTCGCCACATACTATTGTCTGCAGG




ACTACGATTATCCACTGACCTTTGGCGGCGGCACAAAGG




TGGAGATCAAGACCACAACTCCTGCACCTAGGCCACCTA




CCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGC




GACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTG




CATACAAGGGGACTGGACTTTGCCTGCGATATCTACATT




TGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTG




AGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAG




AAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCT




GTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCG




GTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGG




TCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGC




AGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGG




CGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGG




GAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAAA




AACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGA




TAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGG




GAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGTA




CCAGGGGCTGTCTACCGCCACAAAGGACACCTATGATGC




TCTGCATATGCAGGCACTGCCACCCAGG





584
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 3F2
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



scFv, CD8α
GAGTCCGGCCCTGGCCTGGTGAAGCCAAGCGGCACCCT



hinge and
GTCCCTGACATGCGCCGTGTCTGGCGGCAGCATCAGCTC



transmembran
CAACAATTGGTGGAGCTGGGTGAGGCAGCCCCCTGGCA



e regions,
AGGGACTGGAGTGGATCGGCGACATCCACCACTCCGGC



41BB
TCTACCAACTACAAGCCATCCCTGAAGTCTCGCGTGACA



cytoplasmic
ATCTCTGTGGACAAGAGCAAGAACCAGTTCTCCCTGAAT



signaling
CTGATCAGCGTGACCGCCGCCGATACAGCCGTGTACTAT



domain, CD3ζ
TGCGCCAGAGAGGCCGGCGGCTACTTTGACTATTGGGGC



cytoplasmic
CAGGGCATCCTGGTGACCGTGTCTAGCGGCGGCGGCGG



signaling
CTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGAG



domain
GCGGCGGCTCTGATATCCAGATGACCCAGAGCCCATCCA




CACTGTCTGCCAGCGTGGGCGACAGGGTGACCATCACAT




GTAGAGCCTCCCAGTCTATCTCCTCTTGGCTGGCCTGGT




ATCAGCAGAAGCCAGGCAAGGCCCCCAAGCTGCTGATC




AGCAAGGCAAGCTCCCTGGAGTCCGGAGTGCCATCTAG




GTTCAGCGGATCCGGCTCTGGCCCTGAGTTTACCCTGAC




AATCTCTAGCCTGCAGCCTGCCGATTTCGCCACCTACTA




TTGTCAGCAGTACAATAGCTATTCCACCTTTGGCCAGGG




CACAAAGCTGGAGATCAAGACCACAACCCCAGCACCTA




GGCCACCTACACCTGCACCAACCATCGCCAGCCAGCCTC




TGTCCCTGAGACCAGAGGCCTGTAGGCCAGCAGCAGGA




GGAGCAGTGCACACCCGGGGCCTGGACTTCGCCTGCGAT




ATCTACATCTGGGCACCACTGGCAGGAACATGTGGCGTG




CTGCTGCTGTCCCTGGTCATCACCCTGTACTGCAAGAGA




GGCAGGAAGAAGCTGCTGTATATCTTCAAGCAGCCCTTC




ATGAGACCCGTGCAGACAACCCAGGAGGAGGACGGCTG




CAGCTGTAGGTTCCCAGAGGAGGAGGAGGGAGGATGTG




AGCTGCGCGTGAAGTTTTCCCGGTCTGCCGATGCACCTG




CATACCAGCAGGGACAGAACCAGCTGTATAACGAGCTG




AATCTGGGCCGGAGAGAGGAGTACGACGTGCTGGATAA




GAGGAGGGGAAGGGACCCTGAGATGGGAGGCAAGCCTC




GGAGAAAGAACCCACAGGAGGGCCTGTACAATGAGCTG




CAGAAGGACAAGATGGCCGAGGCCTATAGCGAGATCGG




CATGAAGGGAGAGAGGCGCCGGGGCAAGGGACACGAT




GGCCTGTATCAGGGCCTGTCAACCGCTACAAAAGATACC




TACGATGCTCTGCACATGCAGGCTCTGCCACCAAGA





585
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 4F9
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



scFv, CD8α
AGTGGGGAGCAGGACTGCTGAAGCCCTCCGAGACCCTG



hinge and
TCTCTGACATGCGCCGTGTACGGCGGCTCCTTCTCTGGCT



transmembran
ACTATTGGACCTGGATCAGACAGCCCCCTGGCAAGGGA



e regions,
CTGGAGTGGATCGGCGAGATCACCCACAGCGGCTCCAC



41BB
AAACTATAATCCTTCTCTGAAGAGCAGGGTGTCTATCAG



cytoplasmic
CGTGGACACCTCTAAGAACCAGTTCAGCCTGAAGCTGAG



signaling
CTCCGTGACCGCAGCAGATACAGCCGTGTACTATTGCGC



domain, CD3ζ
CAGAGGCGAGTACGGATCCGGATCTCGGTTTGACTATTG



cytoplasmic
GGGCCAGGGCACCCTGGTGACAGTGTCTAGCGGAGGAG



signaling
GAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATC



domain
TGCCATCCAGATGACCCAGTCCCCATCCTCTCTGAGCGC




CTCCGTGGGCGATAGGGTGGCAATCACATGTAGAGCCA




GCCAGGGCATCAGGGACGATCTGGGCTGGTACCAGCAG




AAGCCAGGCAAGGCCCCCAAGCTGCTGATCTATGCAGC




AAGCTCCCTGCAGAGCGGAGTGCCATCCAGATTCTCTGG




CAGCGGCTCCGACACCGACTTCACCCTGACAATCTCTAG




CCTGCAGCCTGAGGACTTCGCCACATACTATTGTCTGCA




GGACTACGATTATCCACTGACCTTTGGCGGCGGCACAAA




GGTGGAGATCAAGACCACAACTCCTGCACCTAGGCCAC




CTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCAC




TGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCA




GTGCATACAAGGGGACTGGACTTTGCCTGCGATATCTAC




ATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTG




CTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGG




AAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGA




CCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTG




TCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGC




GGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACC




AGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTG




GGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCG




CGGGAGAGACCCAGAAATGGGGGGAAAGCCACGACGG




AAAAACCCCCAGGAGGGACTGTACAATGAACTGCAGAA




GGATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGA




AGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGACT




GTACCAGGGGCTGTCTACCGCCACAAAGGACACCTATG




ATGCTCTGCATATGCAGGCACTGCCACCCAGG





586
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 4G9
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



scFv, CD8α
AGTGGGGAGCAGGACTGCTGAAGCCCTCCGAGACCCTG



hinge and
TCTCTGACATGCGCCGTGTACGGCGGCTCCTTCTCTGGCT



transmembran
ACTATTGGTCCTGGATCAGACAGCCCCCTGGCAAGGGAC



e regions,
TGGAGTGGATCGGCGAGATCACCCACAGCGGCTCCACA



41BB
AACTATAATCCTTCTCTGAAGAGCAGGGTGTCTATCAGC



cytoplasmic
GTGGACACCTCTAAGAACCAGTTCAGCCTGAAGCTGAGC



signaling
TCCGTGACCGCAGCAGATACAGCCGTGTACTATTGCGCC



domain, CD3ζ
AGAGGCGAGTACGGATCCGGATCTCGGTTTGACTATTGG



cytoplasmic
GGCCAGGGCACCCTGGTGACAGTGTCTAGCGGAGGAGG



signaling
AGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGGATCT



domain
GCCATCCAGATGACCCAGTCCCCATCCTCTCTGAGCGCC




TCCGTGGGCGATAGGGTGGCCCTGACATGTAGAGCCAG




CCAGGGCATCAGGGACGATCTGGGCTGGTACCAGCAGA




AGCCAGGCAAGGCCCCCAAGCTGCTGATCTATGCAGCA




AGCTCCCTGCAGAGCGGAGTGCCATCCAGATTCTCTGGC




AGCGGCTCCGACACCGACTTCACCCTGACAATCTCTAGC




CTGCAGCCTGAGGACTTCGCCACATACTATTGTCTGCAG




GACTACGATTATCCACTGACCTTTGGCGGCGGCACAAAG




GTGGAGATCAAGACCACAACTCCTGCACCTAGGCCACCT




ACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTG




CGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGT




GCATACAAGGGGACTGGACTTTGCCTGCGATATCTACAT




TTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCT




GAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAA




GAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACC




TGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTC




GGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGG




GTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAG




CAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGG




GCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCG




GGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAA




AAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGG




ATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAG




GGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGT




ACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





587
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



11H7 scFv,
AGTGGGGAGCAGGACTGCTGAAGCCTTCTGAGACCCTG



CD8α hinge
AGCCTGACATGCGCCGTGTACGGCGGCAGCTTTTCCGCC



and
TACTATTGGAACTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCGGCGAGATCAATCACTCTGGCAGCA



e regions,
CCAACTATAATCCCAGCCTGAAGTCCCGCGTGACCATCT



41BB
CCGTGGACACATCTAAGAACCAGTTTTCTCTGAATCTGA



cytoplasmic
CCAGCCTGACAGCCGCCGATACAGCCGTGTACTATTGCG



signaling
CCAGAGGCCTGGACAGCTCCGGATGGTACCCATTCGATT



domain, CD3ζ
ATTGGGGCCAGGGCACCCTGGTGACAGTGTCTAGCGGA



cytoplasmic
GGAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGG



signaling
GATCTGACATCCAGATGACCCAGTCCCCATCCAGCGTGA



domain
GCGCCTCTGTGGGCGATAGGGTGACCATCACATGTAGAG




CAAGCCAGGGAATCAGCTCCTGGCTGGCATGGTACCAG




CAGAAGCCAGGCAAGGCCCCCAAGCTGCTGATCTATGC




AGCATCTAGCCTGCAGAGCGGAGTGCCATCCAGGTTTAG




CGGATCCGGATCTGGAACCGACTTCACCCTGACAATCTC




CTCTCTGCAGCCTGAGGACTTCGCCACATACTATTGTCA




GCAGGCCGATTCCTTCCCTTTTACCTTCGGCCCAGGCAC




AAAGGTGGATATCAAGACCACAACTCCTGCACCTAGGC




CACCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGT




CACTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGA




GCAGTGCATACAAGGGGACTGGACTTTGCCTGCGATATC




TACATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTG




CTGCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGC




CGGAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATG




CGACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTC




CTGTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGC




TGCGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTT




ACCAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAAT




CTGGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAG




GCGCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGA




CGGAAAAACCCCCAGGAGGGACTGTACAATGAACTGCA




GAAGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGA




TGAAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGG




ACTGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTA




TGATGCTCTGCATATGCAGGCACTGCCACCCAGG





588
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



16H7 scFv,
AGTGGGGAGCAGGACTGCTGAAGCCAAGCGAGACCCTG



CD8α hinge
TCCCTGACATGCGCCGTGTTCGGCGGCTCTTTTAGCGGC



and
GACTACTGGAGCTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCGGCGAGATCAACCACTCTGGCATCAC



e regions,
CAGCTTCAATCCCTCCCTGAAGTCTCGCGTGACCATCTC



41BB
CGTGGACACATCTAAGAACCAGTTTTCCCTGAAGCTGAG



cytoplasmic
CTCCGTGACCGCAGCAGATACAGCCGTGTACTATTGCGC



signaling
CAGAGGCGAGCTGGGCATCCCTGACAATTGGGGCCAGG



domain, CD3ζ
GCACCCTGGTGACAGTGTCTAGCGGAGGAGGAGGAAGC



cytoplasmic
GGAGGAGGAGGGTCCGGAGGCGGGGGATCTGATATCCA



signaling
GATGACCCAGTCCCCATCTACACTGAGCGCCTCCGTGGG



domain
CGATAGGGTGACCATCACATGTAGAGCCTCTCAGAGCAT




CTCCCGGTGGCTGGCCTGGTACCAGCAGAAGCCAGGCA




AGGCCCCCAAGCTGCTGATCTATAAGGCATCCTCTCTGG




AGAGCGGAGTGCCATCCAGGTTCTCTGGAAGCGGATCC




GGAACCGAGTTTACCCTGACAATCAGCTCCCTGCAGCCT




GACGATTTCGCCACATACTATTGTCAGCAGTACAACTCT




TATAGCACCTTTGGCCAGGGCACAAAGGTGGAGATCAA




GACCACAACTCCTGCACCTAGGCCACCTACCCCAGCACC




TACAATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGC




ATGTCGACCTGCAGCTGGAGGAGCAGTGCATACAAGGG




GACTGGACTTTGCCTGCGATATCTACATTTGGGCTCCTCT




GGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCAT




CACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGT




ATATTTTCAAACAGCCCTTTATGCGACCTGTGCAGACCA




CACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAG




GAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTC




CAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGA




ACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGAGAG




GAATACGACGTGCTGGATAAAAGGCGCGGGAGAGACCC




AGAAATGGGGGGAAAGCCACGACGGAAAAACCCCCAG




GAGGGACTGTACAATGAACTGCAGAAGGATAAAATGGC




AGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAA




GGCGAGGCAAAGGACACGACGGACTGTACCAGGGGCTG




TCTACCGCCACAAAGGACACCTATGATGCTCTGCATATG




CAGGCACTGCCACCCAGG





589
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



17A2 scFv,
GAGTCCGGCCCTGGCCTGGTGAAGCCATCCGGCACCCTG



CD8α hinge
TCTCTGACATGCGTGGTGTTCGGCGACAGCATCAGCTCC



and
TCTAACTGGTGGTCCTGGGTGAGGCAGCCCCCTGGCAAG



transmembran
GGACTGGAGTGGATCGGCGAGGTGTTCCACTCCGGCTCT



e regions,
ACCAACTACAATCCAAGCCTGAAGTCCCGCGTGACAATC



41BB
AGCGTGGATAAGTCCAAGAATCAGTTTAGCCTGAAGCTG



cytoplasmic
AGCTCCGTGACCGCAGCAGACACAGCCGTGTACTATTGC



signaling
GCCAGAGCCGCAGTGGCAGGCGCCCTGGATTATTGGGG



domain, CD3ζ
ACAGGGCACCCTGGTGACAGTGTCTAGCGGCGGCGGCG



cytoplasmic
GCTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGA



signaling
GGCGGCGGCTCTGACATCGTGATGACCCAGTCTCCCGAT



domain
AGCCTGGCCGTGTCTCTGGGCGAGAGGGCAACAATCAA




CTGTAAGTCCTCTCAGAGCGTGCTGTACAGCTCCAACAA




TAAGAACTACCTGGCCTGGTATCAGCAGAAGCCTGGCCA




GCCACCCAATCTGCTGGTGTATTGGGCCTCTACCAGAGA




GAGCGGAGTGCCTGACAGATTCTCCGGAGCAGGATCTG




GAACAGACTTCACCCTGACAATCTCTAGCCTGCAGGCCG




AGGACGTGGCCGTGTACTATTGTCAGCAGTACTATGGCA




CCTCCTGGACATTTGGCCAGGGCACCAAGGTGGAGATCA




AGACCACAACCCCAGCACCTAGGCCACCTACACCTGCAC




CAACCATCGCCAGCCAGCCTCTGTCCCTGAGACCAGAGG




CCTGTAGGCCAGCAGCAGGAGGAGCAGTGCACACCCGG




GGCCTGGACTTCGCCTGCGATATCTACATCTGGGCACCA




CTGGCAGGAACATGTGGCGTGCTGCTGCTGTCCCTGGTC




ATCACCCTGTACTGCAAGAGAGGCAGGAAGAAGCTGCT




GTATATCTTCAAGCAGCCCTTCATGAGACCCGTGCAGAC




AACCCAGGAGGAGGACGGCTGCAGCTGTAGGTTCCCAG




AGGAGGAGGAGGGAGGATGTGAGCTGCGCGTGAAGTTT




TCCCGGTCTGCCGATGCACCTGCATACCAGCAGGGACAG




AACCAGCTGTATAACGAGCTGAATCTGGGCCGGAGAGA




GGAGTACGACGTGCTGGATAAGAGGAGGGGAAGGGACC




CTGAGATGGGAGGCAAGCCTCGGAGAAAGAACCCACAG




GAGGGCCTGTACAATGAGCTGCAGAAGGACAAGATGGC




CGAGGCCTATAGCGAGATCGGCATGAAGGGAGAGAGGC




GCCGGGGCAAGGGACACGATGGCCTGTATCAGGGCCTG




TCAACCGCTACAAAAGATACCTACGATGCTCTGCACATG




CAGGCTCTGCCACCAAGA





590
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 6H1
TGCTGCTGCACGCCGCACGACCACAGATCACACTGAGG



scFv, CD8α
GAGAGCGGCCCTACCCTGGTGAAGCCAACCCAGACACT



hinge and
GACCCTGACATGCACCTTTTCCGGCTTCTCCCTGTCTACC



transmembran
AGCGGCCTGGGCGTGGGATGGATCAGGCAGCCCCCTGG



e regions,
CGAGGCCCTGGAGTGGCTGGCCCTGATCTACTGGAACGA



41BB
CGATAAGCGGTATTCCCCCTCTCTGAAGTCTAGACTGAG



cytoplasmic
CATCACAAAGGACACCTCCAAGAACCAGGTGGTGCTGA



signaling
TCATGACAAATATGGACCCAGTGGATACAGCCACCTACT



domain, CD3ζ
ATTGCGTGCACAGGAGAATCGCAGCCCCTGGCAGCGTGT



cytoplasmic
ACTGGGGACAGGGCACACTGGTGACCGTGAGCTCCGGA



signaling
GGAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGG



domain
GATCTGACATCCAGATGACCCAGTCTCCTTCTAGCGTGA




GCGCCTCCGTGGGCGATAGGGTGACAATCACCTGTCGCG




CCAGCCAGGGCATCTCCTCTTGGCTGGCCTGGTATCAGC




AGAAGCCAGGCAAGGCACCAAAGCTGCTGATCAGCGCC




GCAAGCTCCCTGCAGTCCGGAGTGCCATCTCGGTTTTCT




GGCAGCGGCTCCGGCACAGACTTCACACTGACCATCTCT




AGCCTGCAGCCCGAGGATTTTGCCACCTACTATTGTCAC




CAGGCCAATTCCTTCCCTTTTACATTCGGCCAGGGCACC




AAGCTGGAGATCAAGACCACAACTCCTGCACCTAGGCC




ACCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTC




ACTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAG




CAGTGCATACAAGGGGACTGGACTTTGCCTGCGATATCT




ACATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGC




TGCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCC




GGAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGC




GACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCC




TGTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCT




GCGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTA




CCAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATC




TGGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGG




CGCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGAC




GGAAAAACCCCCAGGAGGGACTGTACAATGAACTGCAG




AAGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGAT




GAAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGA




CTGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTAT




GATGCTCTGCATATGCAGGCACTGCCACCCAGG





591
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 6H5
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGGTGC



scFv, CD8α
AGTCCGGAGCAGAGGTGAAGAAGCCTGGCGCCTCCGTG



hinge and
AAGGTGTCTTGCAAGGTGAGCGGCTACACCCTGACAGA



transmembran
GCTGTCTATGCACTGGGTGCGCCAGGCCCCCGGCAAGGG



e regions,
ACCTGAGGGAATGGGAGGATTCGACCCTGAGGATGGCA



41BB
AGACAATCTACGCCCAGAAGTTTCAGGGCCGGGTGACC



cytoplasmic
ATGACAGAGGACACCAGCGCCGATACAGCCTATATGGA



signaling
GCTGAACTCTCTGCGCAGCGAGGACACCGCCGTGTACTA



domain, CD3ζ
TTGCGCCACACTGCTGAGGGGACTGGACGCCTTCGACGT



cytoplasmic
GTGGGGACAGGGAACCATGGTGACAGTGAGCTCCGGAG



signaling
GAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGG



domain
ATCTGATATCCAGATGACCCAGTCTCCATCTAGCCTGAG




CGCCTCCGTGGGCGACAGGGTGACCATCACATGTAGAG




CCAGCCAGGGCATCAGGAACGATCTGGGCTGGTACCAG




CAGAAGCCAGGCAAGGCCCCCAAGAGACTGATCTATGC




AGCATCCTCTCTGCAGTCCGGAGTGCCATCTAGGTTCTC




TGGCAGCGGCTCCGGCACCGAGTTTACCCTGACAATCAG




CACACTGCAGCCTGAGGACTTCGCCACCTACTATTGTCT




GCAGCACAATTCCTATCCACGGACCTTTGGCCAGGGCAC




AAAGGTGGAGATCAAGACCACAACTCCTGCACCTAGGC




CACCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGT




CACTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGA




GCAGTGCATACAAGGGGACTGGACTTTGCCTGCGATATC




TACATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTG




CTGCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGC




CGGAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATG




CGACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTC




CTGTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGC




TGCGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTT




ACCAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAAT




CTGGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAG




GCGCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGA




CGGAAAAACCCCCAGGAGGGACTGTACAATGAACTGCA




GAAGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGA




TGAAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGG




ACTGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTA




TGATGCTCTGCATATGCAGGCACTGCCACCCAGG





592
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAGC



10D1 scFv,
AGTGGGGAGCAGGACTGCTGAAGCCATCCGAGACCCTG



CD8α hinge
TCTCTGACATGCGCCGTGTATGGCGGCTCCTTCTCTGGCT



and
ACTATTGGCGGTGGATCAGACAGCCCCCTGGCAAGGGA



transmembran
CTGGAGTGGATCGGCGAGATCAGCCACTCCGGCTCTACC



e regions,
AACTACAATCCCTCTCTGAAGAGCCGCGTGACCATCAGC



41BB
GTGGACACATCCAAGAACCAGTTCAGCCTGAAGCTGAG



cytoplasmic
CTCCGTGACCGCAGCAGATACAGCCGTGTACTATTGCGC



signaling
CGTGCGGGGCTACTCCTATGGCTACCCCCTGTTTGACTA



domain, CD3ζ
CTGGGGCCAGGGCACCCTGGTGACAGTGTCTAGCGGAG



cytoplasmic
GAGGAGGAAGCGGAGGAGGAGGGTCCGGAGGCGGGGG



signaling
ATCTGATATCCAGATGACCCAGTCCCCTTCCTCTCTGAG



domain
CGCCTCCGTGGGCGACAGGGTGACCATCACATGTCGCGC




CTCTCAGGGCATCCGGAACGATCTGGGCTGGTATCAGCA




GAAGCTGGGCAAGGCCCCAAAGAGACTGATCTACGCAG




CAAGCTCCCTGCAGTCTGGAGTGCCAAGCAGGTTCTCTG




GAAGCGGATCCGGAACCGAGTTTACCCTGACAATCTCTA




GCCTGCAGCCTGAGGACTTCGCCACATACTATTGTCTGC




AGTATAATAGCTACCCACGGACCTTTGGCCAGGGCACAA




AGGTGGAGATCAAGACCACAACTCCTGCACCTAGGCCA




CCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCA




CTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGC




AGTGCATACAAGGGGACTGGACTTTGCCTGCGATATCTA




CATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCT




GCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCG




GAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCG




ACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCT




GTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTG




CGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTAC




CAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCT




GGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGC




GCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGACG




GAAAAACCCCCAGGAGGGACTGTACAATGAACTGCAGA




AGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGATG




AAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGAC




TGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTATG




ATGCTCTGCATATGCAGGCACTGCCACCCAGG





593
CD8α signal
ATGGCTCTGCCCGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCCGCACGACCACAGGTGCAGCTGCAG



11F6 scFv,
GAGAGCGGCCCTGGCCTGGTGAAGCCATCCGGCACCCT



CD8α hinge
GTCTCTGACATGCGCCGTGAGCGGCGACTCCATCAGCTC



and
CAACTGGTGGACATGGGTGAGGCAGCCCCCTGGCAAGG



transmembran
GACTGGAGTGGATCGGCGATATCCACCACTCCGGCTCTA



e regions,
CCAACTACAATCCATCTCTGAAGAGCCGCGTGACAATGA



41BB
GCGTGGACAAGTCCGAGAATCAGTTCTCCCTGAAGCTGT



cytoplasmic
CTAGCGTGACCGCCGCCGATACAGCCGTGTTTTACTGCG



signaling
CCAGAGACGGAGGAGGCACCCTGGATTATTGGGGCCAG



domain, CD3ζ
GGCACCCTGGTGACAGTGTCCTCTGGAGGAGGAGGAAG



cytoplasmic
CGGAGGAGGAGGGTCCGGAGGCGGGGGATCTGACATCC



signaling
AGATGACCCAGAGCCCATCCACACTGTCTGCCAGCGTGG



domain
GCGATCGGGTGACCATCACATGTAGAGCCTCCCAGTCTA




TCAGCTCCTGGCTGGCCTGGTACCAGCAGAAGCCAGGCA




AGGCCCCCAAGCTGCTGATCTATAAGGCATCTACCCTGG




AGAGCGGAGTGCCATCCAGGTTCAGCGGATCCGGATCT




GGCACAGAGTTTACCCTGACAATCTCTAGCCTGCAGCCT




GACGATTTCGCCACCTACTATTGTCAGCAGTACAACGGC




TATAGCACCTTTGGCCAGGGCACAAAGGTGGAGATCAA




GACCACAACTCCTGCACCTAGGCCACCTACCCCAGCACC




TACAATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGC




ATGTCGACCTGCAGCTGGAGGAGCAGTGCATACAAGGG




GACTGGACTTTGCCTGCGATATCTACATTTGGGCTCCTCT




GGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCAT




CACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGT




ATATTTTCAAACAGCCCTTTATGCGACCTGTGCAGACCA




CACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAG




GAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTC




CAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGA




ACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGAGAG




GAATACGACGTGCTGGATAAAAGGCGCGGGAGAGACCC




AGAAATGGGGGGAAAGCCACGACGGAAAAACCCCCAG




GAGGGACTGTACAATGAACTGCAGAAGGATAAAATGGC




AGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAA




GGCGAGGCAAAGGACACGACGGACTGTACCAGGGGCTG




TCTACCGCCACAAAGGACACCTATGATGCTCTGCATATG




CAGGCACTGCCACCCAGG





594
CD8α signal
ATGGCACTGCCAGTGACCGCCCTGCTGCTGCCTCTGGCC



sequence, 6F8
CTGCTGCTGCACGCCGCCAGGCCTCAGGTGCAGCTGGTG



scFv, CD8α
CAGTCTGGCGCCGAGGTGAAGAAGCCAGGCAGCTCCGT



hinge and
GAAGGTGTCCTGCAAGGCCTCTGGCGGCACATTCACCAA



transmembran
CTATTGTATCAGCTGGGTGAGACAGGCCCCAGGCCAGG



e regions,
GACTGGAGTGGATGGGAGGAATCATCCCCATCTTCGGCA



41BB
CCACAAATTATGCCCAGACCTTTCAGGGCCGGGTGACAA



cytoplasmic
TCACCGCCGACAAGTCTACAAGCACCGCCTACATGGAGC



signaling
TGTCTAGCCTGAGATCCGAGGATACAGCCGTGTACTATT



domain, CD3ζ
GCGCCAGAGACAACGGCGATAGATACTATTACGACATG



cytoplasmic
GACGTGTGGGGCCAGGGCACCACAGTGACCGTGTCCTCT



signaling
GGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGAGGCG



domain
GCGGCTCTGGCGGCGGCGGCTCCCAGTCTGTGCTGACAC




AGCCACCTAGCGTGTCCGCCGCCCCTGGCCAGAAGGTGA




CCATCTCTTGTAGCGGCAGCTCCTCTAATATCGGCAACA




ATTACGTGAGCTGGTACCAGCAGCTGCCAGGCACAGCCC




CCAAGCTGCTGATCTACGACAACAATAAGAGGCCTAGC




GGCATCCCAGATCGCTTCTCCGGCTCTAAGAGCGGCACA




TCCGCCACCCTGGGCATCACAGGACTGCAGACCGGCGA




CGAGGCAGATTATTACTGCGGAACCTGGGACAGCTCCCT




GAGCGCCGTGGTGTTTGGAGGAGGCACAAAGCTGACCG




TGCTGACCACAACCCCTGCCCCTAGGCCACCTACCCCAG




CACCTACAATTGCTAGTCAGCCACTGTCACTGCGACCAG




AGGCATGTCGACCTGCAGCTGGAGGAGCAGTGCATACA




AGGGGACTGGACTTTGCCTGCGATATCTACATTTGGGCT




CCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTG




GTCATCACTCTGTACTGCAAGCGAGGCCGGAAGAAACT




GCTGTATATTTTCAAACAGCCCTTTATGCGACCTGTGCA




GACCACACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCC




CGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGT




TTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCC




AGAACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGA




GAGGAATACGACGTGCTGGATAAAAGGCGCGGGAGAGA




CCCAGAAATGGGGGGAAAGCCACGACGGAAAAACCCCC




AGGAGGGACTGTACAATGAACTGCAGAAGGATAAAATG




GCAGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAG




AAGGCGAGGCAAAGGACACGACGGACTGTACCAGGGGC




TGTCTACCGCCACAAAGGACACCTATGATGCTCTGCATA




TGCAGGCACTGCCACCCAGG





595
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCCCCTGGTG



3G6-L1 scFv,
CAGAGCGGAGCAGAGGTGAAGAAGCCCGGCAGCTCCGT



CD8α hinge
GAAGGTGAGCTGCAAGGCCTCCGGCGGCACATTCTCCAC



and
CTATTCTATCAGCTGGGTGCGGCAGGCCCCTGGCCAGGG



transmembran
ACTGGAGTGGATGGGAGGAATCATCCCAATCTTCGGCAC



e regions,
CACAAACTATGCCCAGAAGTTTCAGGGCAGGGTGACAA



41BB
TCACCGCCGACAAGTCCACATCTACCGCCTACATGGAGC



cytoplasmic
TGTCTAGCCTGAGGTCCGAGGACACAGCCGTGTACTATT



signaling
GTGCCCGCGATGGCGAGGGCTCTTACTATTACTATTACG



domain, CD3ζ
GAATGGACGTGTGGGGACAGGGAACCACAGTGACCGTG



cytoplasmic
TCCTCTGGCGGCGGCGGCTCTGGAGGAGGAGGCAGCGG



signaling
CGGAGGAGGCTCCGGAGGCGGCGGCAGCCAGTCCGTGC



domain
TGACACAGCCACCTTCTGTGAGCGCCGCCCCTGGCCAGA




AGGTGACCATCTCCTGCTCTGGCAGCTCCTCTAATATCG




GCAACAATTATGTGAGCTGGTACCAGCAGCTGCCTGGCA




CAGCCCCAAAGCTGCTGATCTACGACAACAATAAGCGG




CCCTCCGGCATCCCTGATAGATTCTTTGGCTCTAAGTTCG




GCACAAGCGCCACCCTGGGCATCACAGGACTGCAGACC




GGCGACGAGGCAGATTATTACTGTGGAACCTGGGACAG




CTCCCTGAGCGCCGTGGTGTTTGGAGGAGGCACAAAGCT




GACCGTGCTGACCACAACCCCTGCCCCTAGGCCACCTAC




CCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGCG




ACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTGC




ATACAAGGGGACTGGACTTTGCCTGCGATATCTACATTT




GGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGA




GCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAGA




AACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCTGT




GCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCGGT




TCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTC




AAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAG




GGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGGCG




GAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGGGA




GAGACCCAGAAATGGGGGGAAAGCCACGACGGAAAAA




CCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGATA




AAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGGGA




GAAAGAAGGCGAGGCAAAGGACACGACGGACTGTACCA




GGGGCTGTCTACCGCCACAAAGGACACCTATGATGCTCT




GCATATGCAGGCACTGCCACCCAGG





596
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCTCTGGCC



sequence, 4C6
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



scFv, CD8α
GAGTCCGGCCCTGGCCTGGTGAAGCCATCTGAGACCCTG



hinge and
AGCCTGACATGTACCGTGTCCGGCGATTCTATCAGCTCC



transmembran
TACTATTGGTCTTGGATCAGGCAGCCCCCTGGCAAGGGA



e regions,
CTGGAGTGGATCGGCTACATGTACTATAGCGGCATCACA



41BB
AACTATAATCCTAGCCTGAAGTCCCGCGTGAACATCTCC



cytoplasmic
CTGGACACCTCTAAGAATCAGTTCAGCCTGAAGCTGGGC



signaling
TCCGTGACAGCAGCAGATACCGCCGTGTACTATTGCGCA



domain, CD3ζ
AGGCTGTCCGTGGCAGGCTTCTACTTTGACTATTGGGGC



cytoplasmic
CAGGGCACACTGGTGACCGTGTCTAGCGGCGGCGGCGG



signaling
CTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGCG



domain
GCGGCGGCTCTGAGATCGTGCTGACACAGAGCCCAGGC




ACCCTGAGCCTGTCCCCCGGCGAGCGGGCCACACTGAGC




TGTAGAGCCTCTCAGAGCGTGACCCGGTCCTACCTGGCC




TGGTATCAGCAGAAGCCAGGCCAGGCCCCCAGACTGCT




GATCTACGGCGCCTCCTCTAGGGCCACAGACATCCCAGA




TCGCTTCTCCGGCTCTGGCAGCGGAACCGACTTTACACT




GACCATCAACAGACTGGAGCCTGAGGATTTCGCCGTGTA




CTATTGCCAGCAGTACGGCACAAGCCCACTGACCTTTGG




CGGCGGCACCAAGGTGGAGATCAAGACCACAACCCCTG




CCCCTAGGCCACCTACCCCAGCACCTACAATTGCTAGTC




AGCCACTGTCACTGCGACCAGAGGCATGTCGACCTGCAG




CTGGAGGAGCAGTGCATACAAGGGGACTGGACTTTGCC




TGCGATATCTACATTTGGGCTCCTCTGGCAGGAACATGT




GGCGTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTGC




AAGCGAGGCCGGAAGAAACTGCTGTATATTTTCAAACA




GCCCTTTATGCGACCTGTGCAGACCACACAGGAGGAAG




ATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGGA




GGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGAC




GCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGTATAAC




GAGCTGAATCTGGGGCGGAGAGAGGAATACGACGTGCT




GGATAAAAGGCGCGGGAGAGACCCAGAAATGGGGGGA




AAGCCACGACGGAAAAACCCCCAGGAGGGACTGTACAA




TGAACTGCAGAAGGATAAAATGGCAGAGGCCTATTCCG




AAATCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAGG




ACACGACGGACTGTACCAGGGGCTGTCTACCGCCACAA




AGGACACCTATGATGCTCTGCATATGCAGGCACTGCCAC




CCAGG





597
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCTCTGGCC



sequence, 4E6
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



scFv, CD8α
GAGAGCGGCCCTGGCCTGGTGAAGCCATCTGAGACCCT



hinge and
GAGCCTGACATGTACCGTGAGCTCCGATTCCATCTCTAG



transmembran
CTACTATTGGTCTTGGATCAGACAGCCCCCTGGCAAGGG



e regions,
CCTGGAGTGGATCTCCTACATCTACTATTCCGGCATCTCT



41BB
AACTATAATCCTAGCCTGAAGAGCCGGGTGAGCATCTCT



cytoplasmic
GTGGACACCTCCAAGAACCAGTTTTCTCTGAGACTGTCC



signaling
TCTGTGACAGCCGCCGATACCGCCGTGTACTATTGCGCC



domain, CD3ζ
AGAATCAGCGTGGCCGGCTTCTTTTTCGACAATTGGGGC



cytoplasmic
CAGGGCACACTGGTGACCGTGAGCTCCGGAGGAGGAGG



signaling
CAGCGGAGGAGGAGGCTCCGGAGGCGGCGGCTCTGGCG



domain
GCGGCGGCAGCGAGATCATGCTGACACAGAGCCCAGAT




ACCCTGAGCCTGTCCCCCGGCGAAAGGGCCACACTGTCC




TGTAGAGCCTCTCAGAGCGTGTCTAGCTCCTACCTGGCC




TGGTATCAGCAGAAGCCAGGCCAGGCACCCAGGCTGCT




GATCTACGGAGCATCTAGCAGGGCCGCAGGAGTGCCAG




ACCGCTTTTCCGGCTCTGGCAGCGGCACCGATTTCACAC




TGACCATCTCTCGCCTGGCCCCTGAGGACTTTGTGGTGT




ACTATTGCCAGCAGTATGGCATCTCCCCACTGACATTCG




GCGGCGGCACCAAGGTGGAGATCAAGACCACAACCCCT




GCCCCTAGGCCACCTACCCCAGCACCTACAATTGCTAGT




CAGCCACTGTCACTGCGACCAGAGGCATGTCGACCTGCA




GCTGGAGGAGCAGTGCATACAAGGGGACTGGACTTTGC




CTGCGATATCTACATTTGGGCTCCTCTGGCAGGAACATG




TGGCGTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTG




CAAGCGAGGCCGGAAGAAACTGCTGTATATTTTCAAAC




AGCCCTTTATGCGACCTGTGCAGACCACACAGGAGGAA




GATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGG




AGGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGA




CGCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGTATAA




CGAGCTGAATCTGGGGCGGAGAGAGGAATACGACGTGC




TGGATAAAAGGCGCGGGAGAGACCCAGAAATGGGGGG




AAAGCCACGACGGAAAAACCCCCAGGAGGGACTGTACA




ATGAACTGCAGAAGGATAAAATGGCAGAGGCCTATTCC




GAAATCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAG




GACACGACGGACTGTACCAGGGGCTGTCTACCGCCACA




AAGGACACCTATGATGCTCTGCATATGCAGGCACTGCCA




CCCAGG





598
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence, 4H8
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAGC



scFv, CD8α
AGAGCGGCCCTGGCCTGGTGAAGCCTAGCCAGACACTG



hinge and
TCCCTGACCTGTGCCATCTCTGGCGACAGCGTGAGCTCC



transmembran
AACAGCGCCACATGGAATTGGATCAGGCAGTCCCCATCT



e regions,
CGCGGCCTGGAGTGGCTGGGACGGACCTACTATAGATCC



41BB
AAGTGGTACGACGATTATGCCGTGTCCGTGAAGTCTCGC



cytoplasmic
ATCACAATCAACCCTGACACCTCCAAGAATCACCTGTCT



signaling
CTGCACCTGAACAGCGTGACACCAGAGGATACCGCCGT



domain, CD3ζ
GTACTATTGCGCAGGAGGAGGACTGGTGGGCGCCCCTG



cytoplasmic
ACGGATTCGACGTGTGGGGCCAGGGCACAATGGTGACC



signaling
GTGTCTAGCGGCGGCGGCGGCTCTGGAGGAGGAGGCAG



domain
CGGCGGAGGAGGCTCCGGAGGCGGCGGCTCTCAGTCCG




TGCTGACACAGCCCCCTTCTGCCAGCGGAACACCCGGCC




AGCGGGTGACCATCTCCTGTTCTGGCTCCTCTAGCAACA




TCGGCTCCGACCCTGTGAATTGGTACCAGCAGCTGCCAG




GCACAGCCCCCAAGCTGCTGATCTATAGCAACAATCAGC




GGCCTTCCGGCGTGCCAGATAGATTCAGCGGCTCCAAGT




CTGGCACCAGCGCCTCCCTGGCAATCTCTGGACTGCAGA




GCGAGGACGAGGCCGATTACTATTGCTCCGCCTGGGACG




ATTCTCTGAATGGCTACGTGTTTGGCACAGGCACCAAGG




TGACCGTGCTGACCACAACCCCAGCACCTAGGCCACCTA




CACCTGCACCAACCATCGCCAGCCAGCCTCTGTCCCTGA




GACCAGAGGCCTGTAGGCCAGCAGCAGGAGGAGCAGTG




CACACCCGGGGCCTGGACTTCGCCTGCGATATCTACATC




TGGGCACCACTGGCAGGAACATGTGGCGTGCTGCTGCTG




TCCCTGGTCATCACCCTGTACTGCAAGAGAGGCAGGAAG




AAGCTGCTGTATATCTTCAAGCAGCCCTTCATGAGACCC




GTGCAGACAACCCAGGAGGAGGACGGCTGCAGCTGTAG




GTTCCCAGAGGAGGAGGAGGGAGGATGTGAGCTGCGCG




TGAAGTTTTCCCGGTCTGCCGATGCACCTGCATACCAGC




AGGGACAGAACCAGCTGTATAACGAGCTGAATCTGGGC




CGGAGAGAGGAGTACGACGTGCTGGATAAGAGGAGGGG




AAGGGACCCTGAGATGGGAGGCAAGCCTCGGAGAAAGA




ACCCACAGGAGGGCCTGTACAATGAGCTGCAGAAGGAC




AAGATGGCCGAGGCCTATAGCGAGATCGGCATGAAGGG




AGAGAGGCGCCGGGGCAAGGGACACGATGGCCTGTATC




AGGGCCTGTCAACCGCTACAAAAGATACCTACGATGCTC




TGCACATGCAGGCTCTGCCACCAAGA





599
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGGTGC



9H12-K scFv,
AGAGCGGAGCAGAGGTGAAGAAGCCTGGCGCCAGCGTG



CD8α hinge
AAGGTGTCCTGCAAGGCCTCTGGCTACACATTCACCGGC



and
TATTCTATCCACTGGGTGCGCCAGGCCCCTGGCCAGGGA



transmembran
CTGGAGTGGATGGGCTGGATCAACCCAAATAGCGGCGG



e regions,
CACCTTCTACGCCCAGAAGTTTCAGGGCAGGGTGACAAT



41BB
GACCCGCGACACATCTATCAGCACCGTGTATATGGAGCT



cytoplasmic
GAGCCGGCTGAGATCCGACGATACAGCCGTGTACTATTG



signaling
TGCCAGAGACGGCTGGGGCGATTACTATTACTATGGACT



domain, CD3ζ
GGACGTGTGGGGACAGGGAACCACAGTGACCGTGTCCC



cytoplasmic
TGGGCGGCGGCGGCTCTGGAGGAGGAGGCAGCGGCGGA



signaling
GGAGGCTCCGGAGGCGGCGGCTCTGATATCCAGATGAC



domain
ACAGAGCCCTAGCTCCGTGTCCGCCTCTGTGGGCGACAG




GGTGACAATCACCTGCAGAGCCTCCCAGGATATCTCTAG




CTGGCTGGCCTGGTACCAGCAGAAGCCCGGCAAGGCCC




CTAAGCTGCTGATCTATACCGCATCCTCTCTGCAGGGAG




GAGTGCCATCCCGGTTCAGCGGCTCCGGCTCTGGAACAG




ACTTTACACTGACCATCAGCTCCCTGCAGCCAGAGGATC




TGGCCACCTACTCTTGTCAGCAGGCCAACGTGTTCCCCT




ATACATTTGGCCAGGGCACCAAGCTGGAGATCAAGACC




ACAACCCCAGCACCTAGGCCACCTACACCTGCACCAACC




ATCGCCAGCCAGCCTCTGTCCCTGAGACCAGAGGCCTGT




AGGCCAGCAGCAGGAGGAGCAGTGCACACCCGGGGCCT




GGACTTCGCCTGCGATATCTACATCTGGGCACCACTGGC




AGGAACATGTGGCGTGCTGCTGCTGTCCCTGGTCATCAC




CCTGTACTGCAAGAGAGGCAGGAAGAAGCTGCTGTATA




TCTTCAAGCAGCCCTTCATGAGACCCGTGCAGACAACCC




AGGAGGAGGACGGCTGCAGCTGTAGGTTCCCAGAGGAG




GAGGAGGGAGGATGTGAGCTGCGCGTGAAGTTTTCCCG




GTCTGCCGATGCACCTGCATACCAGCAGGGACAGAACC




AGCTGTATAACGAGCTGAATCTGGGCCGGAGAGAGGAG




TACGACGTGCTGGATAAGAGGAGGGGAAGGGACCCTGA




GATGGGAGGCAAGCCTCGGAGAAAGAACCCACAGGAGG




GCCTGTACAATGAGCTGCAGAAGGACAAGATGGCCGAG




GCCTATAGCGAGATCGGCATGAAGGGAGAGAGGCGCCG




GGGCAAGGGACACGATGGCCTGTATCAGGGCCTGTCAA




CCGCTACAAAAGATACCTACGATGCTCTGCACATGCAGG




CTCTGCCACCAAGA





600
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGGAGGTGCAGCTGCTGG



10G1-K scFv,
AGTCCGGCGGCGGCCTGGTGCAGCCAGGCGGCTCTCTGA



CD8α hinge
GGCTGAGCTGCGCAGCATCCGGCTTCACCTTTAGCTCCT



and
ACGCAATGAACTGGGTGCGCCAGGCCCCCGGCAAGGGA



transmembran
CTGGAGTGGGTGTCTACAATCTCTGGCAGCGGCGGCAGC



e regions,
ACCTACTATGCCGACTCCGTGAAGGGCCGGTTCACAATC



41BB
TCTAGAGATAACAGCAAGAATACCCTGTACCTGCAGATG



cytoplasmic
AACAGCCTGCGGGCCGAGGACACAGCCGTGTTTTATTGT



signaling
GCCATCGACCCAGAGTACTATGATATCCTGACCGGCGGC



domain, CD3ζ
GATTATTGGGGCCAGGGCACACTGGTGACCGTGTCTAGC



cytoplasmic
GGCGGCGGCGGCTCTGGAGGAGGAGGCAGCGGCGGAGG



signaling
AGGCTCCGGAGGCGGCGGCTCTGACATCCAGATGACCC



domain
AGTCCCCATCTGCCATGAGCGCCTCCGTGGGCGATAGGG




TGACAATCACCTGCCGCGCCTCCCAGGGCATCTCTAACT




ACCTGGCCTGGTTCCAGCAGAAGCCCGGCAAGGTGCCTA




AGCGGCTGATCTATGCAGCATCCTCTCTGCAGAGCGGAG




TGCCTTCCAGATTCTCTGGCAGCGGCTCCGGCACAGAGT




TTACACTGACCATCAGCTCCCTGCAGCCCGAGGACTTCG




CCACCTACTTTTGTCTGCAGCACGATTCCTTCCCTCTGAC




ATTTGGCGGCGGCACCAAGGTGGAGATCAAGACCACAA




CCCCAGCACCTAGGCCACCTACACCTGCACCAACCATCG




CCAGCCAGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGC




CAGCAGCAGGAGGAGCAGTGCACACCCGGGGCCTGGAC




TTCGCCTGCGATATCTACATCTGGGCACCACTGGCAGGA




ACATGTGGCGTGCTGCTGCTGTCCCTGGTCATCACCCTG




TACTGCAAGAGAGGCAGGAAGAAGCTGCTGTATATCTTC




AAGCAGCCCTTCATGAGACCCGTGCAGACAACCCAGGA




GGAGGACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGG




AGGGAGGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTG




CCGATGCACCTGCATACCAGCAGGGACAGAACCAGCTG




TATAACGAGCTGAATCTGGGCCGGAGAGAGGAGTACGA




CGTGCTGGATAAGAGGAGGGGAAGGGACCCTGAGATGG




GAGGCAAGCCTCGGAGAAAGAACCCACAGGAGGGCCTG




TACAATGAGCTGCAGAAGGACAAGATGGCCGAGGCCTA




TAGCGAGATCGGCATGAAGGGAGAGAGGCGCCGGGGCA




AGGGACACGATGGCCTGTATCAGGGCCTGTCAACCGCTA




CAAAAGATACCTACGATGCTCTGCACATGCAGGCTCTGC




CACCAAGA





601
CD8α signal
ATGGCTCTGCCTGTCACCGCTCTGCTGCTGCCTCTGGCTC



sequence,
TGCTGCTGCACGCGGCGCGCCCGCAGGTGCAGCTGCAG



11A3 scFv,
GAGTCCGGCCCTGGCCTGGTGAAGCCAAGCGAGACCCT



CD8α hinge
GTCCCTGACATGTACCGTGAGCTCCGATTCTATCAGCAA



and
CTACTATTGGAGCTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCTCCTACATCTACTATTCTGGCATCAC



e regions,
CAACTATAATCCTTCCCTGAAGTCTCGCGTGACAATCTC



41BB
TGTGGACACCAGCAAGAATCAGTTCAGCCTGAAGCTGTC



cytoplasmic
TAGCGTGACAGCCGCCGATACCGCCGTGTACTATTGCGC



signaling
CCGGATCACAGTGACCGGCTTCTACTTTGACTATTGGGG



domain, CD3ζ
CCAGGGCACACTGGTGACCGTGTCCTCTGGCGGCGGCGG



cytoplasmic
CTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGGAG



signaling
GCGGCGGCTCTGAGATCGTGCTGACACAGTCCCCAGGCA



domain
CCCTGTCCCTGTCTCCCGGCGAGCGGGCCACACTGTCTT




GTAGAGCCAGCCAGTCCATCTCTCGGAGCTACCTGGCCT




GGTATCAGCAGAAGCCAGGCCAGGCCCCCAGACACCTG




ATCTACGGAGCAAGCTCCAGGGCCACCGGCATCCCCGA




CCGCTTCTCCGGCTCTGGCAGCGGCACAGACTTCATCCT




GACCATCTCCAGACTGGAGCCTGAGGACTTCGCCGTGTA




CTATTGCCAGCAGTACGATACAAGCCCACTGACCTTTGG




CGGCGGCACCAAGGTGGAGATCAAGACCACAACCCCAG




CACCTAGGCCACCTACACCTGCACCAACCATCGCCAGCC




AGCCTCTGTCCCTGAGACCAGAGGCCTGTAGGCCAGCAG




CAGGAGGAGCAGTGCACACCCGGGGCCTGGACTTCGCC




TGCGATATCTACATCTGGGCACCACTGGCAGGAACATGT




GGCGTGCTGCTGCTGTCCCTGGTCATCACCCTGTACTGC




AAGAGAGGCAGGAAGAAGCTGCTGTATATCTTCAAGCA




GCCCTTCATGAGACCCGTGCAGACAACCCAGGAGGAGG




ACGGCTGCAGCTGTAGGTTCCCAGAGGAGGAGGAGGGA




GGATGTGAGCTGCGCGTGAAGTTTTCCCGGTCTGCCGAT




GCACCTGCATACCAGCAGGGACAGAACCAGCTGTATAA




CGAGCTGAATCTGGGCCGGAGAGAGGAGTACGACGTGC




TGGATAAGAGGAGGGGAAGGGACCCTGAGATGGGAGGC




AAGCCTCGGAGAAAGAACCCACAGGAGGGCCTGTACAA




TGAGCTGCAGAAGGACAAGATGGCCGAGGCCTATAGCG




AGATCGGCATGAAGGGAGAGAGGCGCCGGGGCAAGGG




ACACGATGGCCTGTATCAGGGCCTGTCAACCGCTACAAA




AGATACCTACGATGCTCTGCACATGCAGGCTCTGCCACC




AAGA





602
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



3B11 scFv,
CAGAGCGGCCCTGGCCTGGTGAAGCCTAGCCAGACACT



CD8α hinge
GTCCCTGACCTGTGCCATCTCTGGCGACAGCGTGAGCTC



and
CAACAGCGTGGTGTGGAATTGGATCAGGCAGTCCCCATC



transmembran
TCGCGGCCTGGAGTGGCTGGGACGGACCTACTATAGATC



e regions,
CAAGTGGTACGACGATTATGCCGTGTCCGTGAAGTCTAG



41BB
GATCACAATCAACCCTGACACCAGCAAGAATCAGTTCTC



cytoplasmic
CCTGCAGCTGAACTCTGTGACACCAGAGGATACCGCCGT



signaling
GTACCACTGCGCCAGAGGCGGAATCGTGGGCGCCCCTG



domain, CD3ζ
ACGCCTTTGATATCTGGGGCCAGGGCACAATGGTGACCG



cytoplasmic
TGTCTAGCGGAGGAGGAGGCAGCGGAGGAGGAGGCTCC



signaling
GGAGGCGGCGGCTCTGGCGGCGGCGGCAGCCAGTCCGT



domain
GCTGACCCAGCCACCTTCTGCCAGCGGAACACCCGGCCA




GCGGGTGACCATCTCCTGTTCTGGCTCCTCTAGCAACAT




CGGCTCTGACCCTGTGAGCTGGTACCAGCAGTTCCCAGG




CACAGCCCCCAAGCTGCTGATCTATACCAACAATCAGCG




GCCTAGCGGCGTGCCAGATCGGTTCAGCGGCTCCAAGTC




TGGCACAAGCGCCTCCCTGGCAATCTCCGGACTGCAGTC




TGAGGACGAGGCCGATTACTATTGCGCCGCCTGGGACG




ATTCCCTGAATGGCCACGTGTTCGGCACAGGCACCAAGG




TGACCGTGCTGACCACAACCCCCGCCCCTAGGCCACCTA




CCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGC




GACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTG




CATACAAGGGGACTGGACTTTGCCTGCGATATCTACATT




TGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTG




AGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAG




AAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCT




GTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCG




GTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGG




TCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGC




AGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGG




CGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGG




GAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAAA




AACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGA




TAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGG




GAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGTA




CCAGGGGCTGTCTACCGCCACAAAGGACACCTATGATGC




TCTGCATATGCAGGCACTGCCACCCAGG





603
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence, 5G2
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



scFv, CD8α
CAGTCCGGCCCTGGCCTGGTGAAGCCTTCTCAGACACTG



hinge and
AGCCTGACCTGTGCCATCTCCGGCGACTCTGTGAGCTCC



transmembran
AACTCTGCCGTGTGGAATTGGATCAGACAGTCCCCCTCT



e regions,
AGAGGCCTGGAGTGGCTGGGCTGGACATACTATCGGAG



41BB
CAAGTACTATAACGACTACGCCGTGAGCCTGAAGTCCAG



cytoplasmic
AATCACAATCAACCCTGATACCAGCAAGAATCAGTTCTC



signaling
CCTGCAGCTGAACAGCCTGACACCAGAGGATACCGCCG



domain, CD3ζ
TGTACTATTGCACCAGGGGCGGAATCGTGGGCGCCCCTG



cytoplasmic
ACGGCTTTGATATCTGGGGCCAGGGCACAATGGTGACCG



signaling
TGTCTAGCGGAGGAGGAGGCAGCGGAGGAGGAGGCTCC



domain
GGAGGCGGCGGCTCTGGCGGCGGCGGCAGCCAGTCCGC




CCTGACACAGCCACCTTCTGCCAGCGGAACACCCGGCCA




GCGCGTGACCATCTCCTGTTCTGGCAGCAACTCCAATAT




CGGCTCCAACCCTATCAATTGGTACCAGCAGCTGCCAGG




CACAGCCCCCAAGCTGCTGATCTATAGCAACAATCAGAG




GCCTTCCGGCGTGCCAGACCGCTTCTCTGGCAGCAAGTC




CGGCACCTCTGCCAGCCTGGCAATCTCCGGACTGCAGTC




TGAGGACGAGGCCGATTACTATTGCGCAGCATGGGACG




ATAGCCTGAACGGACACGTGTTTGGCACAGGCACCAAG




GTGACCGTGCTGACCACAACCCCCGCCCCTAGGCCACCT




ACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTG




CGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGT




GCATACAAGGGGACTGGACTTTGCCTGCGATATCTACAT




TTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCT




GAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAA




GAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACC




TGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTC




GGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGG




GTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAG




CAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGG




GCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCG




GGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAA




AAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGG




ATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAG




GGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGT




ACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





604
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCCCAGGTGCAGCTGCAG



11E4 scFv,
GAGAGCGGCCCAGGCCTGGTGAAGCCAAGCGAGACCCT



CD8α hinge
GTCCCTGACATGTACCGTGTCTGGCGGCAGCATCAGCTC



and
CTACTATTGGTCCTGGATCAGACAGTCTCCTGGCAAGGG



transmembran
CCTGGAGTGGATCGGCTACGTGTACTATTCCGACATCAC



e regions,
CAACTATAATCCATCCCTGAAGTCTAGAGTGACAATCTC



41BB
TGTGGATACCAGCAAGAACCAGTTCAGCCTGAACCTGA



cytoplasmic
ACAGCGTGACAGCCGCCGACACCGCCTTCTACTTTTGCG



signaling
CCAGGATCGGCGTGGCCGGCTTCTACTTTGATTATTGGG



domain, CD3ζ
GCCAGGGCACACTGGTGACCGTGTCTAGCGGCGGCGGC



cytoplasmic
GGCTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCCGG



signaling
CGGCGGCGGCTCTGAGATCGTGCTGACACAGAGCCCAG



domain
ACACCCTGAGCCTGTCCCCTGGCGAGAGGGCCACACTGT




CCTGTAGGGCATCTCAGAGCGTGTCCCGGAGATACCTGG




CCTGGTATCAGCAGAAGCCTGGCCAGGCACCTCGCCTGC




TGATCTACGGAGCATCCTCTCGGGCCACAGGCATCCCCG




ACAGATTCTCTGGCAGCGGCTCCGGAACCGACTTCACCC




TGACCATCTCTAGGCTGGAGCCAGAGGATTTCGAGGTGT




ACTATTGCCAGCAGTATGGCACATCCCCAATCACCTTTG




GCCAGGGAACCCGCCTGGAGATCAAGACCACAACCCCT




GCCCCTAGGCCACCTACCCCAGCACCTACAATTGCTAGT




CAGCCACTGTCACTGCGACCAGAGGCATGTCGACCTGCA




GCTGGAGGAGCAGTGCATACAAGGGGACTGGACTTTGC




CTGCGATATCTACATTTGGGCTCCTCTGGCAGGAACATG




TGGCGTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTG




CAAGCGAGGCCGGAAGAAACTGCTGTATATTTTCAAAC




AGCCCTTTATGCGACCTGTGCAGACCACACAGGAGGAA




GATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGG




AGGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGA




CGCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGTATAA




CGAGCTGAATCTGGGGCGGAGAGAGGAATACGACGTGC




TGGATAAAAGGCGCGGGAGAGACCCAGAAATGGGGGG




AAAGCCACGACGGAAAAACCCCCAGGAGGGACTGTACA




ATGAACTGCAGAAGGATAAAATGGCAGAGGCCTATTCC




GAAATCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAG




GACACGACGGACTGTACCAGGGGCTGTCTACCGCCACA




AAGGACACCTATGATGCTCTGCATATGCAGGCACTGCCA




CCCAGG





605
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGATCCAGCTGCAG



2404.8E11
CAGTCCGGCCCTGGCCTGGTGAAGCCTAGCCAGACACTG



scFv, CD8α
TCCCTGACCTGCGCCATCTCTGGCGACAGCGTGAGCTCC



hinge and
AACTCTGCCGTGTGGAATTGGATCAGGCAGTCCCCATCT



transmembran
CGCGGCCTGGAGTGGCTGGGAAGGACATACTATAGAAG



e regions,
CAAGTGGTACAACGACTATGCCGTGTCCGTGAAGTCTAG



41BB
GATCACAATCAAGCCTGATACCGCCAAGAACCAGTTCTC



cytoplasmic
CCTGCAGCTGAACAGCGTGACACCAGAGGATACCGCCG



signaling
TGTACTATTTCACCCGCGGCGGAATCGTGGGCGCCCCTG



domain, CD3ζ
ACGCCTTTGATATCTGGGGCCAGGGCACAATGGTGACCG



cytoplasmic
TGTCTAGCGGAGGAGGAGGCAGCGGAGGAGGAGGCTCC



signaling
GGAGGCGGCGGCTCTGGCGGCGGCGGCAGCCAGTCCGT



domain
GCTGACACAGCCCCCTTCTGCCAGCGGAACACCCGGCCA




GCGGGTGACCATCTCCTGCTCTGGCTCCTCTAGCAACAT




CGGCTCCGACCCTATCAATTGGTACCAGCAGGTGCCAGG




CACAGCCCCCAAGCTGCTGATCTATAGCAACAATCAGCG




GCCTTCCGGCGTGCCAGATAGATTCAGCGGCTCCAAGTC




TGGCACCAGCGCCTCCCTGGCAATCTCTGGACTGCAGAG




CGAGGACGAGGCCGATTACTATTGTGCCGCCTGGGACG




ATAGCCTGAATGGCTACGTGTTTGGCACAGGCACCAAGG




TGACCGTGCTGACCACAACCCCCGCCCCTAGGCCACCTA




CCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGC




GACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTG




CATACAAGGGGACTGGACTTTGCCTGCGATATCTACATT




TGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTG




AGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAG




AAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCT




GTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCG




GTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGG




TCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGC




AGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGG




CGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGG




GAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAAA




AACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGA




TAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGG




GAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGTA




CCAGGGGCTGTCTACCGCCACAAAGGACACCTATGATGC




TCTGCATATGCAGGCACTGCCACCCAGG





606
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



10A2 scFv,
CAGAGCGGCCCTGGCCTGGTGAAGCCTAGCGAGACACT



CD8α hinge
GTCCCTGACCTGTGCCATCTCTGGCGACAGCGTGAGCTC



and
CAACAGCGCCACATGGAATTGGATCAGGCAGTCCCCATC



transmembran
TCGCGGCCTGGAGTGGCTGGGACGGACCTACTATAGATC



e regions,
CGAGTGGTACAACGACTATGCCGTGTCCGTGAAGTCTCG



41BB
GATCACAATCAACCCTGATACCTCCAAGAATCACCTGTC



cytoplasmic
TCTGCACCTGAATAGCGTGACACCAGAGGATACCGCCGT



signaling
GTACTATTGCGCAGGAGGAGGAATCGTGGGCGCCCCTG



domain, CD3ζ
ACGGATTCGACGTGTGGGGCCAGGGCACAATGGTGACC



cytoplasmic
GTGTCTAGCGGAGGAGGAGGCTCCGGAGGAGGAGGCTC



signaling
TGGCGGCGGCGGCAGCGGAGGCGGCGGCAGCCAGTCCG



domain
TGCTGACACAGCCACCTTCTGCCAGCGGAACACCCGGCC




AGAGGGTGACCATCTCCTGTTCTGGCTCCTCTAGCAACA




TCGGCAGCGACCCTGTGATCTGGTACCAGCAGCTGCCAC




GCACAGCCCCCAAGCTGCTGATCTATTCCAACAATCAGC




GGCCTTCTGGCGTGCCAGATAGATTCAGCGGCTCCAAGT




CTGGCACCAGCGCCTCCCTGGCAATCTCTGGACTGCAGA




GCGAGGACGAGGCCGATTACTATTGCGCCGCCTGGGAC




GATTCCCTGAATGGCTACGTGTTTGGCACAGGCACCAAG




GTGACCGTGCTGACCACAACCCCCGCCCCTAGGCCACCT




ACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTG




CGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGT




GCATACAAGGGGACTGGACTTTGCCTGCGATATCTACAT




TTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCT




GAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAA




GAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACC




TGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTC




GGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGG




GTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAG




CAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGG




GCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCG




GGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAA




AAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGG




ATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAG




GGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGT




ACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





607
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



11A8 scFv,
CAGAGCGGCCCTGGCCTGGTGAAGCCTAGCCAGACACT



CD8α hinge
GTCCCTGACCTGTGCCATCTCTGGCGACAGCGTGAGCTC



and
CAACAGCGCCACCTGGAATTGGATCAGGCAGTCCCCATC



transmembran
TACAGGACTGGAGTGGCTGGCACGGACCTACTATAGATC



e regions,
CAAGTGGTACAACGACTATGAGGTGTCCGTGAAGTCTCA



41BB
GATCACAATCAACCCTGATACCTCCAAGAATCAGTTCTC



cytoplasmic
TCTGCAGCTGAATAGCGTGACACCAGAGGATACCGCCGT



signaling
GTACTATTGCGCCAGAGGCGGAATCGTGGGCGCCCCTGA



domain, CD3ζ
CGCCTTTGATATCTGGGGCCAGGGCACAATGGTGACCGT



cytoplasmic
GTCTAGCGGAGGAGGAGGCTCCGGAGGAGGAGGCTCTG



signaling
GCGGCGGCGGCAGCGGAGGCGGCGGCAGCCAGTCCGTG



domain
CTGACACAGCCCCCTTCTGCCAGCGGAACACCCGGCCAG




GGAGTGACCATCTCCTGTTCTGGCTCCTCTAGCAACATC




GGCAGCAACCCTGTGAATTGGTACCAGCAGCTGCCAGG




CACAGCCCCCAAGCTGCTGATCTATTCCAACAATCAGAG




GCCTTCTGGCGTGCCAGACCGCTTCAGCGATTCCAAGTC




TGGCACCAGCGCCTCCCTGGCAATCTCTGGACTGCAGAG




CGAGGACGAGGCCGATTACTATTGCTCCGCCTGGGACGA




TTGGCTGAATGGCTACGTGTTTGGCACAGGCACCAAGGT




GACCGTGCTGACCACAACCCCCGCCCCTAGGCCACCTAC




CCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGCG




ACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTGC




ATACAAGGGGACTGGACTTTGCCTGCGATATCTACATTT




GGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGA




GCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAGA




AACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCTGT




GCAGACCACACAGGAGGAAGATGGGTGCTCCTGTCGGT




TCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTC




AAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAG




GGCCAGAACCAGCTGTATAACGAGCTGAATCTGGGGCG




GAGAGAGGAATACGACGTGCTGGATAAAAGGCGCGGGA




GAGACCCAGAAATGGGGGGAAAGCCACGACGGAAAAA




CCCCCAGGAGGGACTGTACAATGAACTGCAGAAGGATA




AAATGGCAGAGGCCTATTCCGAAATCGGGATGAAGGGA




GAAAGAAGGCGAGGCAAAGGACACGACGGACTGTACCA




GGGGCTGTCTACCGCCACAAAGGACACCTATGATGCTCT




GCATATGCAGGCACTGCCACCCAGG





608
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCTCTGGCC



sequence, 4H5
CTGCTGCTGCACGCCGCCAGGCCTCAGGTGCAGCTGCAG



scFv, CD8α
GAGTCCGGCCCTGGCCTGGTGAAGCCATCCGAGACCCTG



hinge and
TCTCTGACATGCACCGTGTCCGGCGATTCTATCAACAAT



transmembran
TACTTTTGGAGCTGGATCAGACAGCCCCCTGGCAAGGGA



e regions,
CTGGAGTGGATCGGCTACTTCTATCACAGGGGCGGCAAC



41BB
AATTATAACCCAAGCCTGAAGTCCCGCGTGACAATCAGC



cytoplasmic
ATCGACACCTCCAAGAATCAGTTCAGCCTGAACCTGAAC



signaling
AGCGTGACAAGCGCCGATACCGCCGTGTACTATTGTGCC



domain, CD3ζ
CGGCTGGCCCTGGCCGGCTTCTTTTTCGACTACTGGGGC



cytoplasmic
CAGGGCACACTGGTGACCGTGAGCTCCGGAGGAGGAGG



signaling
CTCCGGCGGCGGAGGCTCTGGCGGCGGCGGCTCCGGAG



domain
GCGGCGGCAGCGACATCCAGATGACACAGTCTCCAAGC




ACCCTGTCCGCCTCTGTGGGCGATAGGGTGACAATCACC




TGCAGAGCCAGCCAGTCCATCTCTAGCTGGCTGGCCTGG




TACCAGCAGAAGCCAGGCAAGGCCCCCAAGCTGCTGAT




CTATAAGGCCTCCTCTCTGGAGTCTGGCGTGCCAAGCCG




GTTTTCTGGCAGCGGCTCCGGCACAGAGTTCACACTGAC




CATCAGCTCCCTGCAGCCCGACGATTTTGCCACCTACTA




TTGTCAGCAGTACAACTCTTATAGCAGAACATTCGGCCA




GGGCACCAAGGTGGAGATCAAGACCACAACCCCTGCCC




CTAGGCCACCTACCCCAGCACCTACAATTGCTAGTCAGC




CACTGTCACTGCGACCAGAGGCATGTCGACCTGCAGCTG




GAGGAGCAGTGCATACAAGGGGACTGGACTTTGCCTGC




GATATCTACATTTGGGCTCCTCTGGCAGGAACATGTGGC




GTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTGCAAG




CGAGGCCGGAAGAAACTGCTGTATATTTTCAAACAGCCC




TTTATGCGACCTGTGCAGACCACACAGGAGGAAGATGG




GTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGGAGGCT




GTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGACGCCC




CTGCTTACCAGCAGGGCCAGAACCAGCTGTATAACGAG




CTGAATCTGGGGCGGAGAGAGGAATACGACGTGCTGGA




TAAAAGGCGCGGGAGAGACCCAGAAATGGGGGGAAAG




CCACGACGGAAAAACCCCCAGGAGGGACTGTACAATGA




ACTGCAGAAGGATAAAATGGCAGAGGCCTATTCCGAAA




TCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAGGACA




CGACGGACTGTACCAGGGGCTGTCTACCGCCACAAAGG




ACACCTATGATGCTCTGCATATGCAGGCACTGCCACCCA




GG





609
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCCCCTGGTG



3G6-L2 scFv,
CAGTCCGGAGCAGAGGTGAAGAAGCCCGGCAGCTCCGT



CD8α hinge
GAAGGTGTCTTGCAAGGCCAGCGGCGGCACATTCAGCA



and
CCTACAGCATCTCCTGGGTGCGGCAGGCCCCTGGCCAGG



transmembran
GACTGGAGTGGATGGGAGGAATCATCCCAATCTTCGGC



e regions,
ACCACAAACTACGCCCAGAAGTTTCAGGGCAGAGTGAC



41BB
AATCACCGCCGACAAGTCTACAAGCACCGCCTATATGGA



cytoplasmic
GCTGTCTAGCCTGAGGTCTGAGGACACCGCCGTGTACTA



signaling
TTGTGCCCGCGATGGCGAGGGCAGCTACTATTACTATTA



domain, CD3ζ
CGGAATGGACGTGTGGGGACAGGGAACCACAGTGACAG



cytoplasmic
TGTCCTCTGGAGGAGGAGGCAGCGGCGGAGGAGGCTCC



signaling
GGAGGCGGCGGCTCTGGCGGCGGCGGCTCCCAGTCTGT



domain
GCTGACCCAGCCACCTAGCGCCTCCGGAACACCCGGCCA




GAGGGTGACCATCTCTTGCAGCGGCAGCTCCTCTAACAT




CGGCTCCAATTACGTGTACTGGTATCAGCAGCTGCCTGG




CACAGCCCCAAAGCTGCTGATCTACAGCAACAATCAGC




GGCCCTCCGGCGTGCCTGACAGATTCTCCGGCTCTAAGA




GCGGCACCTCCGCCTCTCTGGCAATCTCCGGACTGCGCT




CTGAGGACGAGGCAGATTATTACTGTGCAGCATGGGAC




GATAGCCTGTCCGGATGGGTGTTTGGAGGAGGAACAAA




GCTGACCGTGCTGACCACAACCCCTGCCCCTAGGCCACC




TACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACT




GCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAG




TGCATACAAGGGGACTGGACTTTGCCTGCGATATCTACA




TTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGC




TGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGA




AGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGAC




CTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGT




CGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCG




GGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCA




GCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGG




GGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGC




GGGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGA




AAAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAG




GATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAA




GGGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTG




TACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





610
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCACTGGCC



sequence, 3B9
CTGCTGCTGCACGCCGCCAGACCCGAGGTGCAGCTGGTG



scFv, CD8α
GAGTCCGGAGGAGGACTGGTGCAGCCTGGCGGCTCCCT



hinge and
GAGGCTGTCTTGCGCAGCAAGCGGCTTCACCTTTAGCTC



transmembran
CTACAGCATGAACTGGGTGAGACAGGCCCCCGGCAAGG



e regions,
GACTGGAGTGGGTGTCTTATATCTCTAGCTCCTCTAGCA



41BB
CAATCTACTATGCCGACAGCGTGAAGGGCCGGTTCACCA



cytoplasmic
TCTCTAGAGATAACGCCAAGAATAGCCTGTACCTGCAGA



signaling
TGAACAGCCTGAGGGACGAGGATACAGCCGTGTACTAT



domain, CD3ζ
TGTGCCCGCGACAAGGAGCGGAGATACTATTACTATGGC



cytoplasmic
ATGGACGTGTGGGGCCAGGGCACCACAGTGACCGTGTC



signaling
CTCTGGCGGCGGCGGCTCCGGAGGCGGCGGCTCTGGAG



domain
GAGGAGGCAGCGGCGGAGGAGGCTCCGAGATCGTGCTG




ACACAGTCCCCTGACACCCTGTCTCTGAGCCCAGGCGAG




AGGGCCACACTGTCTTGCAGGGCATCCCAGTCTGTGAGC




AGGCGCTACCTGGCCTGGTATCAGCAGAAGCCTGGCCA




GGCCCCCAGACTGCTGATCTACGGAGCAAGCAGCCGGG




CCACAGGCATCCCTGACAGATTCTCCGGCTCTGGCAGCG




GAACCGACTTCACCCTGACCATCTCCAGGCTGGAGCCAG




AGGATTTTGCCGTGTACTATTGTCAGCAGTTCGGCACAA




GCCCAATCACCTTTGGCCAGGGAACCCGCCTGGAGATCA




AGACCACAACCCCAGCCCCTAGGCCACCTACCCCAGCAC




CTACAATTGCTAGTCAGCCACTGTCACTGCGACCAGAGG




CATGTCGACCTGCAGCTGGAGGAGCAGTGCATACAAGG




GGACTGGACTTTGCCTGCGATATCTACATTTGGGCTCCT




CTGGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTC




ATCACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGCT




GTATATTTTCAAACAGCCCTTTATGCGACCTGTGCAGAC




CACACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGA




GGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTT




CCAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGA




ACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGAGAG




GAATACGACGTGCTGGATAAAAGGCGCGGGAGAGACCC




AGAAATGGGGGGAAAGCCACGACGGAAAAACCCCCAG




GAGGGACTGTACAATGAACTGCAGAAGGATAAAATGGC




AGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAA




GGCGAGGCAAAGGACACGACGGACTGTACCAGGGGCTG




TCTACCGCCACAAAGGACACCTATGATGCTCTGCATATG




CAGGCACTGCCACCCAGG





611
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCAGACCCCAGGTGCAGCTGCAG



3F9-L scFv,
CAGAGCGGCCCTGGCCTGGTGAAGCCTAGCCAGACCCT



CD8α hinge
GTCCCTGGCCTGTGCCATCTCTGGCGACAGCGTGAGCTC



and
CAACTCCGCCATCTGGAATTGGATCAGGCAGTCCCCTTC



transmembran
TCGCGGCCTGGAGTGGCTGGGAGGAACATACTATCGGTC



e regions,
TATGTGGTACAACGACTATGCCGTGTCCGTGAAGTCTAG



41BB
AATCACAATCAACCCTGATACCTCCAAGAATCAGCTGTC



cytoplasmic
TCTGCAGCTGAATAGCGTGACACCAGAGGATACCGCCGT



signaling
GTACTATTGCAGCCGGGGCGGAATCGTGGGAGTGCCAG



domain, CD3ζ
ACGCCTTCGATATCTGGGGCCAGGGCACAATGGTGACCG



cytoplasmic
TGTCTAGCGGAGGAGGAGGCTCCGGAGGAGGAGGCTCT



signaling
GGCGGCGGCGGCAGCGGAGGCGGCGGCAGCCAGTCCGT



domain
GCTGACCCAGCCACCTTCTGCCAGCGGAACACCCGGCCA




GCGGGTGACCATCTCCTGTTCTGGCTCCTCTAGCAACAT




CGGCAGCAACACAGCCAATTGGTACCAGCAGCTGCCAG




GCACCGCACCCAGGCTGCTGATCTATCGGAACAATCAGA




GACCTTCCGGAGTGCCAGACCGCTTCAGCGGCTCCAAGT




CTGGCACAAGCGCCTCCCTGGCCATCTCTGGCCTGCAGA




GCGAGGACGAGGCCGATTACTATTGCGCCGCCTGGGAC




GATAGCCTGAATGGCTACGTGTTTGGCACAGGCACCAAG




GTGACCGTGCTGACCACAACCCCTGCCCCTAGGCCACCT




ACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCACTG




CGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGT




GCATACAAGGGGACTGGACTTTGCCTGCGATATCTACAT




TTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCT




GAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAA




GAAACTGCTGTATATTTTCAAACAGCCCTTTATGCGACC




TGTGCAGACCACACAGGAGGAAGATGGGTGCTCCTGTC




GGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGG




GTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAG




CAGGGCCAGAACCAGCTGTATAACGAGCTGAATCTGGG




GCGGAGAGAGGAATACGACGTGCTGGATAAAAGGCGCG




GGAGAGACCCAGAAATGGGGGGAAAGCCACGACGGAA




AAACCCCCAGGAGGGACTGTACAATGAACTGCAGAAGG




ATAAAATGGCAGAGGCCTATTCCGAAATCGGGATGAAG




GGAGAAAGAAGGCGAGGCAAAGGACACGACGGACTGT




ACCAGGGGCTGTCTACCGCCACAAAGGACACCTATGAT




GCTCTGCATATGCAGGCACTGCCACCCAGG





612
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



3E10 scFv,
GAGTCCGGCCCAGGCCTGGTGAAGCCATCTGAGACACT



CD8α hinge
GAGCCTGACCTGCAACGTGTCTGATGGCAGCATCAGCTC



and
CTACTATTGGACCTGGATCAGACAGCCCCCTGGCAAGGG



transmembran
ACTGGACTGGATCGGCTATATCTTCTACAGCGGCACCAC



e regions,
AAACTATAATCCCTCCCTGAAGTCTAGAGTGACAATCTC



41BB
CCTGGACACCTCTAAGAATCAGTTTTCTCTGAAGCTGAC



cytoplasmic
AAGCATGACCGCCGCCGATACAGCCGTGTACTATTGCGC



signaling
CAGGATCAGCGAGAAGTCCTTCTATTTTGACTACTGGGG



domain, CD3ζ
CCAGGGCACACTGGTGACCGTGTCTAGCGGAGGAGGAG



cytoplasmic
GCTCCGGAGGAGGAGGCTCTGGCGGCGGCGGCAGCGGA



signaling
GGCGGCGGCTCCCAGTCTGTGCTGACCCAGCCACCAAGC



domain
GCCTCCGGAACACCTGGCCAGCGCGTGACCATCTCTTGT




AGCGGCTCCTCTAGCAACATCGGCTCCAATTACGTGTAT




TGGTACCAGCAGCTGCCTGGCACAGCCCCAAAGCTGCTG




ATCTACTCCAACAATCAGCGGCCCAGCGGCGTGCCTGAT




AGATTCTCCGGCTCTAAGAGCGGCACCTCCGCCTCTCTG




GCAATCAGCGGACTGAGGTCCGAGGACGAGGCAGATTA




CTATTGTGCACCATGGGACGATAGCCTGTCCGGCCGCGT




GTTTGGAGGAGGAACAAAGCTGACCGTGCTGACCACAA




CCCCTGCCCCTAGGCCACCTACCCCAGCACCTACAATTG




CTAGTCAGCCACTGTCACTGCGACCAGAGGCATGTCGAC




CTGCAGCTGGAGGAGCAGTGCATACAAGGGGACTGGAC




TTTGCCTGCGATATCTACATTTGGGCTCCTCTGGCAGGA




ACATGTGGCGTGCTGCTGCTGAGCCTGGTCATCACTCTG




TACTGCAAGCGAGGCCGGAAGAAACTGCTGTATATTTTC




AAACAGCCCTTTATGCGACCTGTGCAGACCACACAGGA




GGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGAAGAGG




AAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCAGATCTG




CAGACGCCCCTGCTTACCAGCAGGGCCAGAACCAGCTGT




ATAACGAGCTGAATCTGGGGCGGAGAGAGGAATACGAC




GTGCTGGATAAAAGGCGCGGGAGAGACCCAGAAATGGG




GGGAAAGCCACGACGGAAAAACCCCCAGGAGGGACTGT




ACAATGAACTGCAGAAGGATAAAATGGCAGAGGCCTAT




TCCGAAATCGGGATGAAGGGAGAAAGAAGGCGAGGCA




AAGGACACGACGGACTGTACCAGGGGCTGTCTACCGCC




ACAAAGGACACCTATGATGCTCTGCATATGCAGGCACTG




CCACCCAGG





613
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence, 3C3
CTGCTGCTGCACGCCGCCAGGCCCCAGGTGCAGCTGGTG



scFv, CD8α
CAGAGCGGAGCAGAGGTGAAGCGCCCTGGCGCAAGCGT



hinge and
GAAGGTGTCCTGCAAGGCCTCTGGCTATACATTCACCAG



transmembran
CTACTATATCCACTGGGTGAGGCAGGCCCCTGGCCAGGG



e regions,
ACTGGAGTGGATGGGCGTGATCGTGCCATCCGGCGGCTC



41BB
TATCAGCTATGCCCAGAAGTTTCAGGGCAGGGTGACAAT



cytoplasmic
GACCCGCGACACAAGCACCAACATCGTGTACATGGAGC



signaling
TGAGCTCCCTGCGGTCCGAGGATACAGCCGTGTACTATT



domain, CD3ζ
GTGCCAGAGACAGATACTATGGCGATTACTATTACGGAC



cytoplasmic
TGGACGTGTGGGGACAGGGAACCACAGTGACCGTGTCT



signaling
AGCGGCGGCGGCGGCTCTGGAGGAGGAGGCAGCGGCGG



domain
AGGAGGCTCCGGCGGCGGCGGCTCTGACATCCAGATGA




CACAGTCCCCTTCCTCTCTGTCCGCCTCTGTGGGCGATCG




GGTGACAATCACCTGCAGAGCCTCTCAGGGCATCAACA




ATTTCCTGGCCTGGTTTCAGCAGAAGCCCGGCAAGGCCC




CTAAGTCCCTGATCTACGCAGCAAGCTCCCTGCAGAGCG




GAGTGCCATCCAAGTTCAGCGGCTCCGGCTCTGGCACAG




ACTTTACACTGACCATCCGGTCTCTGCAGCCAGAGGATT




TCGCCACCTATTACTGTCAGCACTATAATAGCTACCCCA




TCACATTTGGCCAGGGCACCAGACTGGAGATCAAGACC




ACAACCCCCGCCCCTAGGCCACCTACCCCAGCACCTACA




ATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGCATGT




CGACCTGCAGCTGGAGGAGCAGTGCATACAAGGGGACT




GGACTTTGCCTGCGATATCTACATTTGGGCTCCTCTGGC




AGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCATCAC




TCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGTATAT




TTTCAAACAGCCCTTTATGCGACCTGTGCAGACCACACA




GGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGAAG




AGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCAGA




TCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGAACCAG




CTGTATAACGAGCTGAATCTGGGGCGGAGAGAGGAATA




CGACGTGCTGGATAAAAGGCGCGGGAGAGACCCAGAAA




TGGGGGGAAAGCCACGACGGAAAAACCCCCAGGAGGG




ACTGTACAATGAACTGCAGAAGGATAAAATGGCAGAGG




CCTATTCCGAAATCGGGATGAAGGGAGAAAGAAGGCGA




GGCAAAGGACACGACGGACTGTACCAGGGGCTGTCTAC




CGCCACAAAGGACACCTATGATGCTCTGCATATGCAGGC




ACTGCCACCCAGG





614
CD8α signal
ATGGCACTGCCAGTGACAGCCCTGCTGCTGCCTCTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCACCTGCAG



11F4 scFv,
GAGTCTGGCCCTGGCCTGGTGAAGCCATCTGAGACACTG



CD8α hinge
AGCCTGACATGTACCGTGAGCGGCGGCAGCATCTCCCAC



and
TACTATTGGACCTGGATCAGGCAGCCCCCTGGCAAGGGA



transmembran
CTGGAGTGGATCGGCTACATCTACTATTCCGGCATCACC



e regions,
AACTTCTCTCCTAGCCTGAAGTCTCGCGTGTCCATCTCTG



41BB
TGGACAGCTCCAAGAATCAGTTCAGCCTGAACCTGAACA



cytoplasmic
GCGTGACAGCCGCCGATACCGCCGTGTACTATTGCGCCG



signaling
GCATCTCCCTGGCCGGCTTCTACTTTGACTATTGGGTGCA



domain, CD3ζ
GGGCACACTGGTGACCGTGTCTAGCGGAGGAGGAGGCA



cytoplasmic
GCGGAGGAGGAGGCTCCGGAGGCGGCGGCTCTGGCGGC



signaling
GGCGGCAGCGAGATCGTGCTGACACAGAGCCCAGGCAC



domain
CCTGAGCCTGTCCCCCGGCGAGCGGGCCACCCTGTCCTG




TAGAGCCTCTCAGAGCGTGTCCCGGTCTTACCTGGCCTG




GTATCAGCAGAAGCCAGGCCAGGCCCCCAGACTGCTGA




TCTATGGAGCATCCTCTAGGGCCACAGGAGTGCCAGACC




GCTTCAGCGGCTCCGGCTCTGGAACCGACTTCACCCTGA




CCATCAGCCGGCTGGAGCCTGAGGATTTCGCCGTGTTTT




ACTGCCAGCAGTATAGCATCTCCCCACTGACATTCGGCG




GCGGCACCAAGGTGGAGATCAAGACCACAACCCCTGCC




CCTAGGCCACCTACCCCAGCACCTACAATTGCTAGTCAG




CCACTGTCACTGCGACCAGAGGCATGTCGACCTGCAGCT




GGAGGAGCAGTGCATACAAGGGGACTGGACTTTGCCTG




CGATATCTACATTTGGGCTCCTCTGGCAGGAACATGTGG




CGTGCTGCTGCTGAGCCTGGTCATCACTCTGTACTGCAA




GCGAGGCCGGAAGAAACTGCTGTATATTTTCAAACAGCC




CTTTATGCGACCTGTGCAGACCACACAGGAGGAAGATG




GGTGCTCCTGTCGGTTCCCCGAGGAAGAGGAAGGAGGC




TGTGAGCTGCGGGTCAAGTTTTCCAGATCTGCAGACGCC




CCTGCTTACCAGCAGGGCCAGAACCAGCTGTATAACGA




GCTGAATCTGGGGCGGAGAGAGGAATACGACGTGCTGG




ATAAAAGGCGCGGGAGAGACCCAGAAATGGGGGGAAA




GCCACGACGGAAAAACCCCCAGGAGGGACTGTACAATG




AACTGCAGAAGGATAAAATGGCAGAGGCCTATTCCGAA




ATCGGGATGAAGGGAGAAAGAAGGCGAGGCAAAGGAC




ACGACGGACTGTACCAGGGGCTGTCTACCGCCACAAAG




GACACCTATGATGCTCTGCATATGCAGGCACTGCCACCC




AGG





615
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCCCAGGTGCAGCTGCAG



10E12 scFv,
GAGTCCGGCCCAGGCCTGGTGAAGCCAAGCGAGACCCT



CD8α hinge
GTCCCTGACATGCACCGTGTCCGGCGTGTCTATCAGCTC



and
CTACTATTGGAGCTGGATCAGGCAGCCCCCTGGCAAGGG



transmembran
ACTGGAGTGGATCGCCTACATCTACTATTCCGGCAACAC



e regions,
CAATTATTCTCCTAGCCTGAAGTCTCGCGTGACAATCTCT



41BB
GTGGACACCAGCAAGGATCAGCTGTCTCTGAAGCTGTCT



cytoplasmic
AGCGTGACAGCCGCCGACACCGCCGTGTACTATTGCACA



signaling
AGGGGCGGCAGCGGAACCATCGACGTGTTCGATATCTG



domain, CD3ζ
GGGACAGGGAACCATGGTGGCCGTGTCCTCTGGCGGCG



cytoplasmic
GCGGCTCCGGAGGCGGCGGCTCTGGAGGAGGAGGCAGC



signaling
GGCGGAGGAGGCTCCCAGTCTGTGCTGACACAGCCACC



domain
AAGCGTGTCCGCCGCCCCAGGCCAGAAGGTGACCATCTC




TTGTAGCGGCAGCTCCTCTAACATCGGCAACAATTACGT




GTCCTGGTATCAGCAGCTGCCTGGCACAGCCCCAAAGCT




GCTGATCTACGACAACAATAAGCGGCCCAGCGGCATCC




CTGATAGATTCTCCGGCTCTAAGAGCGGCACATCCGCCA




CCCTGGGCATCACAGGACTGCAGACCGGCGACGAGGCA




GATTACTATTGTGAGACCTGGGATAGCTCCCTGAGCGCC




GTGGTGTTTGGAGGAGGCACAAAGCTGACCGTGCTGAC




CACAACCCCTGCCCCTAGGCCACCTACCCCAGCACCTAC




AATTGCTAGTCAGCCACTGTCACTGCGACCAGAGGCATG




TCGACCTGCAGCTGGAGGAGCAGTGCATACAAGGGGAC




TGGACTTTGCCTGCGATATCTACATTTGGGCTCCTCTGGC




AGGAACATGTGGCGTGCTGCTGCTGAGCCTGGTCATCAC




TCTGTACTGCAAGCGAGGCCGGAAGAAACTGCTGTATAT




TTTCAAACAGCCCTTTATGCGACCTGTGCAGACCACACA




GGAGGAAGATGGGTGCTCCTGTCGGTTCCCCGAGGAAG




AGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTTTCCAGA




TCTGCAGACGCCCCTGCTTACCAGCAGGGCCAGAACCAG




CTGTATAACGAGCTGAATCTGGGGCGGAGAGAGGAATA




CGACGTGCTGGATAAAAGGCGCGGGAGAGACCCAGAAA




TGGGGGGAAAGCCACGACGGAAAAACCCCCAGGAGGG




ACTGTACAATGAACTGCAGAAGGATAAAATGGCAGAGG




CCTATTCCGAAATCGGGATGAAGGGAGAAAGAAGGCGA




GGCAAAGGACACGACGGACTGTACCAGGGGCTGTCTAC




CGCCACAAAGGACACCTATGATGCTCTGCATATGCAGGC




ACTGCCACCCAGG





616
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence, 4E1
CTGCTGCTGCACGCCGCCCGGCCTCAGGTGCAGCTGCAG



scFv, CD8α
CAGAGCGGCCCAGGCCTGGTGAAGCCATCCCAGACACT



hinge and
GTCTCTGACCTGCGCCATCTCCGGCGACAACGTGTCCAC



transmembran
AAATTCTGCCGCCTGGAACTGGATCAGGCAGAGCCCATC



e regions,
CCGCGGCCTGGAGTGGCTGGGCTGGACCTACTATAGGA



41BB
GCAAGTGGTACAATGACTATGCCGTGAGCCTGAAGTCCC



cytoplasmic
GCATCAACATCAATCCAGATACCTCCAAGAACCAGTTCT



signaling
CTCTGCAGCTGAATAGCGTGACACCCGAGGATACCGCCG



domain, CD3ζ
TGTACTATTGCGCCCGGTGGGTGAACAGAGACGTGTTTG



cytoplasmic
ATATCTGGGGCCAGGGCACAATGGTGACCGTGAGCTCC



signaling
GGAGGAGGAGGCTCCGGCGGCGGAGGCTCTGGCGGCGG



domain
CGGCAGCGGAGGCGGCGGCTCTCAGAGCGCCCTGACAC




AGCCAGCATCCGTGTCTGGCAGCCCTGGCCAGAGCATCA




CCATCTCCTGTACAGGCACCTCTAGCGACGTGGGCTCCT




ACAATCTGGTGTCTTGGTATCAGCAGCACCCCGGCAAGG




CCCCTAAGCTGATGATCTACGAGGGCAGCAAGAGGCCA




TCTGGCGTGAGCAACAGATTCTCCGGCTCTAAGAGCGGC




AATACAGCCTCTCTGACCATCAGCGGACTGCAGGCAGA




GGACGAGGCAGATTACTATTGCTGTTCCTATGCCGGCTC




CTCTACCTGGGTGTTTGGCGGCGGCACAAAGCTGACCGT




GCTGACCACAACCCCTGCCCCTAGGCCACCTACCCCAGC




ACCTACAATTGCTAGTCAGCCACTGTCACTGCGACCAGA




GGCATGTCGACCTGCAGCTGGAGGAGCAGTGCATACAA




GGGGACTGGACTTTGCCTGCGATATCTACATTTGGGCTC




CTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTGG




TCATCACTCTGTACTGCAAGCGAGGCCGGAAGAAACTGC




TGTATATTTTCAAACAGCCCTTTATGCGACCTGTGCAGA




CCACACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCCCG




AGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGTTT




TCCAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCCAG




AACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGAGA




GGAATACGACGTGCTGGATAAAAGGCGCGGGAGAGACC




CAGAAATGGGGGGAAAGCCACGACGGAAAAACCCCCAG




GAGGGACTGTACAATGAACTGCAGAAGGATAAAATGGC




AGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAGAA




GGCGAGGCAAAGGACACGACGGACTGTACCAGGGGCTG




TCTACCGCCACAAAGGACACCTATGATGCTCTGCATATG




CAGGCACTGCCACCCAGG





617
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCCCTGGCC



sequence,
CTGCTGCTGCACGCCGCCAGGCCCCAGGTGCAGCTGGTG



2404.6H1
GAGTCCGGAGGAGGAGTGGTGCAGCCTGGCCGGTCTCT



scFv, CD8α
GAGACTGAGCTGCGCAGCATCCGGCTTCACCTTCAGCTC



hinge and
CTACGGAATGCACTGGGTGCGGCAGACCCCTGGCAAGG



transmembran
GACTGGAGTGGGTGGCCGTGATCTCCTATGACGGCAACT



e regions,
CTAATTACTATGCCGATAGCGTGAAGGGCAGGTTCACAA



41BB
TCTCTCGCGACAACAGCAAGAATACCCTGTACCTGCAGA



cytoplasmic
TGAACTCTCTGCGGGCCGAGGACACAGCCGTGTACTATT



signaling
GTGCCAGAGATGGCGCCACAGTGACCAGCTACTATTACT



domain, CD3ζ
ATGGCATGGACGTGTGGGGCCAGGGCACCACAGTGACC



cytoplasmic
GTGTCTAGCGGAGGAGGAGGCAGCGGAGGAGGAGGCTC



signaling
CGGAGGCGGCGGCTCTGGCGGCGGCGGCAGCGAGATCG



domain
TGCTGACACAGTCCCCTGGCACCCTGAGCCTGTCCCCAG




GCGAGCGGGCCACACTGTCTTGCAGAGCCTCTCAGAGCG




TGTCCAGGACCTACCTGGCCTGGTATCACCAGAAGCCTG




GCCAGGCACCTCGCCTGCTGATCTACGGAGCATCCTCTA




GGGCCACAGGCATCAGCGACCGCTTCTCTGGCAGCGGCT




CCGGAACCGACTTCACCCTGACCATCTCCCGGCTGGAGC




CAGAGGACTTCGCCGTGTACTATTGTCAGCAGTATGGCA




CATCCCCCATCACCTTTGGCCAGGGCACCAGACTGGAGA




TCAAGACCACAACCCCCGCCCCTAGGCCACCTACCCCAG




CACCTACAATTGCTAGTCAGCCACTGTCACTGCGACCAG




AGGCATGTCGACCTGCAGCTGGAGGAGCAGTGCATACA




AGGGGACTGGACTTTGCCTGCGATATCTACATTTGGGCT




CCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTG




GTCATCACTCTGTACTGCAAGCGAGGCCGGAAGAAACT




GCTGTATATTTTCAAACAGCCCTTTATGCGACCTGTGCA




GACCACACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCC




CGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGT




TTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCC




AGAACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGA




GAGGAATACGACGTGCTGGATAAAAGGCGCGGGAGAGA




CCCAGAAATGGGGGGAAAGCCACGACGGAAAAACCCCC




AGGAGGGACTGTACAATGAACTGCAGAAGGATAAAATG




GCAGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAG




AAGGCGAGGCAAAGGACACGACGGACTGTACCAGGGGC




TGTCTACCGCCACAAAGGACACCTATGATGCTCTGCATA




TGCAGGCACTGCCACCCAGG





618
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence, 2A8
CTGCTGCTGCACGCCGCCAGGCCCCAGGTGCAGCTGCAG



scFv, CD8α
CAGAGCGGCCCAGGCCTGGTGAAGCCATCTCAGACACT



hinge and
GAGCCTGACCTGCGCCATCTCTGGCGACAGCGTGAGCTC



transmembran
CAACTCCGCCGTGTGGAATTGGATCAGGCAGAGCCCTTC



e regions,
CCGCGGCCTGGAGTGGCTGGGACGGACCTACTATAGATC



41BB
TAAGTGGTACAACGACTATGCCGTGTCCGTGAAGTCTAG



cytoplasmic
GATCACAATCAACCCCGATACCTCCCGCAATCAGTTCTC



signaling
TCTGCAGCTGAATAGCGTGACACCTGAGGATACCGCCGT



domain, CD3ζ
GTACTATTGCGCCAGAGGCGGAATCGTGGGCGCCCCAG



cytoplasmic
ACGGCTTTGATATCTGGGGCCAGGGCACAATGGTGACCG



signaling
TGTCTAGCGGAGGAGGAGGCTCCGGAGGAGGAGGCTCT



domain
GGCGGCGGCGGCAGCGGAGGCGGCGGCTCCGACATCGT




GATGACACAGAGCCCTGATTCCCTGGCCGTGTCTCTGGG




CGAGAGGGCAACCATCAACTGTAAGTCCTCTCAGAGCGT




GCTGGACAGCTCCAACAATAACAATTACTTCGCCTGGTA




TCAGCAGAGACCTGGCCAGCCCCCTCACCTGCTGATCTA




CTGGGCATCTAGCCGGGAGAGCGGAGTGCCAGACAGAT




TCTCTGGCAGCGGCTCCGGCACAGACTTCACCCTGACCA




TCTCCTCTCTGCAGGCCGAGGATGTGGCCGTGTACTATT




GTCAGCAGTACTATTCCACACCATATACCTTTGGCCAGG




GCACCAAGCTGGAGATCAAGACCACAACCCCCGCCCCT




AGGCCACCTACCCCAGCACCTACAATTGCTAGTCAGCCA




CTGTCACTGCGACCAGAGGCATGTCGACCTGCAGCTGGA




GGAGCAGTGCATACAAGGGGACTGGACTTTGCCTGCGA




TATCTACATTTGGGCTCCTCTGGCAGGAACATGTGGCGT




GCTGCTGCTGAGCCTGGTCATCACTCTGTACTGCAAGCG




AGGCCGGAAGAAACTGCTGTATATTTTCAAACAGCCCTT




TATGCGACCTGTGCAGACCACACAGGAGGAAGATGGGT




GCTCCTGTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGT




GAGCTGCGGGTCAAGTTTTCCAGATCTGCAGACGCCCCT




GCTTACCAGCAGGGCCAGAACCAGCTGTATAACGAGCT




GAATCTGGGGCGGAGAGAGGAATACGACGTGCTGGATA




AAAGGCGCGGGAGAGACCCAGAAATGGGGGGAAAGCC




ACGACGGAAAAACCCCCAGGAGGGACTGTACAATGAAC




TGCAGAAGGATAAAATGGCAGAGGCCTATTCCGAAATC




GGGATGAAGGGAGAAAGAAGGCGAGGCAAAGGACACG




ACGGACTGTACCAGGGGCTGTCTACCGCCACAAAGGAC




ACCTATGATGCTCTGCATATGCAGGCACTGCCACCCAGG





619
CD8α signal
ATGGCCCTGCCAGTGACCGCCCTGCTGCTGCCACTGGCC



sequence, 3B1
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGCAG



scFv, CD8α
CAGAGCGGCCCTGGCCTGGTGAAGCCTAGCCAGACACT



hinge and
GTCCCTGACCTGCGCCATCTCTGGCGACAGCGTGAGCTC



transmembran
CAACACCACAGCCTGGAAGTGGAGCAGACAGTCCCCCT



e regions,
CTAAGGGCCTGGAGTGGCTGGGCTGGACATACTATAGGT



41BB
CCAAGTGGTACTATGACTACACCGTGTCCGTGAAGTCTC



cytoplasmic
GCATCACAATCAACCCCGATACCTCCAAGAATCAGTTCT



signaling
CTCTGCAGCTGAATAGCGTGACACCTGAGGATACCGCCG



domain, CD3ζ
TGTACTATTGCGCCAGGTGGATCTTCCACGACGCCTTTG



cytoplasmic
ATATCTGGGGCCAGGGCACAATGGTGACCGTGTCTAGCG



signaling
GAGGAGGAGGCTCCGGAGGAGGAGGCTCTGGCGGCGGC



domain
GGCAGCGGAGGCGGCGGCAGCCAGTCCGCCCTGACACA




GCCACCTTCTGCCAGCGGAACACCTGGCCAGAGAGTGA




CCATCTCCTGTTCTGGCTCCTCTAGCAACATCGGCAGCA




ACACCGTGAATTGGTACCAGCAGCTGCCAGGCACAGCC




CCCAAGCTGCTGATCTATACCAACAATCAGAGGCCTTCC




GGAGTGCCAGACCGGTTCAGCGGCTCCAAGTCTGGCAC




AAGCGCCTCCCTGGCCATCTCTGGCCTGCAGAGCGAGGA




CGAGGCCGATTATTTCTGTTCCACCTGGGACGATTCTCT




GAATGGACCCGTGTTCGGAGGAGGAACAAAGCTGACCG




TGCTGACCACAACCCCAGCCCCTAGGCCACCTACCCCAG




CACCTACAATTGCTAGTCAGCCACTGTCACTGCGACCAG




AGGCATGTCGACCTGCAGCTGGAGGAGCAGTGCATACA




AGGGGACTGGACTTTGCCTGCGATATCTACATTTGGGCT




CCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAGCCTG




GTCATCACTCTGTACTGCAAGCGAGGCCGGAAGAAACT




GCTGTATATTTTCAAACAGCCCTTTATGCGACCTGTGCA




GACCACACAGGAGGAAGATGGGTGCTCCTGTCGGTTCCC




CGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCAAGT




TTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAGGGCC




AGAACCAGCTGTATAACGAGCTGAATCTGGGGCGGAGA




GAGGAATACGACGTGCTGGATAAAAGGCGCGGGAGAGA




CCCAGAAATGGGGGGAAAGCCACGACGGAAAAACCCCC




AGGAGGGACTGTACAATGAACTGCAGAAGGATAAAATG




GCAGAGGCCTATTCCGAAATCGGGATGAAGGGAGAAAG




AAGGCGAGGCAAAGGACACGACGGACTGTACCAGGGGC




TGTCTACCGCCACAAAGGACACCTATGATGCTCTGCATA




TGCAGGCACTGCCACCCAGG





620
CD8α signal
ATGGCACTGCCTGTGACAGCCCTGCTGCTGCCACTGGCC



sequence, 9B5
CTGCTGCTGCACGCCGCCAGACCCCAGGTGCAGCTGCAG



scFv, CD8α
GAGTCCGGCCCAGGCCTGGTGAAGCCAAGCGAGACCCT



hinge and
GTCCCTGACATGCACCGTGTCTGGCGACAGCATCAGCTC



transmembran
CCTGTCTTGGAGCTGGATCAGGCAGACACCAGGCGAGG



e regions,
GCCTGGAGTGGATCGGCTACCTGTACTATTCCGGCTCTA



41BB
CCGACTATAACCCCTCCCTGAAGTCTCGCGTGACAATCT



cytoplasmic
CTGTGGATACCAGCAAGAATCAGTTCTCTCTGAAGCTGC



signaling
GGAGCGTGGCTGCCGCCGACACAGCCCTGTACTATTGCG



domain, CD3ζ
CCAGAGGCCGGAGAGCCTTTGATATCTGGGGCCAGGGC



cytoplasmic
ACAATGGTGACCGTGTCTAGCGGAGGAGGAGGCTCCGG



signaling
AGGAGGAGGCTCTGGCGGCGGCGGCAGCGGAGGCGGCG



domain
GCTCCGACATCCAGATGACCCAGAGCCCTTCCTCTCTGA




GCGCCTCCGTGGGCGATAGGGTGACAATCACCTGTCGCG




GCTCCCAGGGCATCTCTAACTACCTGGCATGGTTCCAGC




AGCGGCCCGGCAAGGCACCTAAGTCTCTGATCTATGCAG




CAAGCTCCCTGGAGAGCGGAGTGCCATCCAAGTTCTCTG




GCAGCGGCTCCGGCACAGACTTTACACTGACCATCATCA




GCCTGCAGCCCGAGGATTTCGCCACCTACTATTGTCAGC




AGTACTATAATTACCCTATCACATTTGGCCAGGGCACCC




GGCTGGAGATCAAGACCACAACCCCTGCCCCTAGGCCA




CCTACCCCAGCACCTACAATTGCTAGTCAGCCACTGTCA




CTGCGACCAGAGGCATGTCGACCTGCAGCTGGAGGAGC




AGTGCATACAAGGGGACTGGACTTTGCCTGCGATATCTA




CATTTGGGCTCCTCTGGCAGGAACATGTGGCGTGCTGCT




GCTGAGCCTGGTCATCACTCTGTACTGCAAGCGAGGCCG




GAAGAAACTGCTGTATATTTTCAAACAGCCCTTTATGCG




ACCTGTGCAGACCACACAGGAGGAAGATGGGTGCTCCT




GTCGGTTCCCCGAGGAAGAGGAAGGAGGCTGTGAGCTG




CGGGTCAAGTTTTCCAGATCTGCAGACGCCCCTGCTTAC




CAGCAGGGCCAGAACCAGCTGTATAACGAGCTGAATCT




GGGGCGGAGAGAGGAATACGACGTGCTGGATAAAAGGC




GCGGGAGAGACCCAGAAATGGGGGGAAAGCCACGACG




GAAAAACCCCCAGGAGGGACTGTACAATGAACTGCAGA




AGGATAAAATGGCAGAGGCCTATTCCGAAATCGGGATG




AAGGGAGAAAGAAGGCGAGGCAAAGGACACGACGGAC




TGTACCAGGGGCTGTCTACCGCCACAAAGGACACCTATG




ATGCTCTGCATATGCAGGCACTGCCACCCAGG





621
CD8α signal
ATGGCACTGCCTGTGACCGCCCTGCTGCTGCCACTGGCC



sequence,
CTGCTGCTGCACGCCGCCCGGCCACAGGTGCAGCTGGTG



11A5 scFv,
CAGTCTGGAGCAGAGGTGAAGAAGCCTGGCGCAAGCGT



CD8α hinge
GAAGGTGTCCTGCAAGGCCTCTGGCTACACATTCACCGG



and
CTACTATATGCACTGGGTGAGACAGGCCCCTGGCCAGGG



transmembran
ACTGGAGTGGATGGGCTGGATCAACCCTAATAGCGGCG



e regions,
GCACCAACTACGCCCAGAAGTTTCAGGGCCGGGTGACA



41BB
ATGACCAGAGACACCAGCGTGTCCACAGCCTATATGGA



cytoplasmic
GCTGAGCAGGCTGACCTCCGACGATACAGCCATCTACTA



signaling
TTGTGCCAAGGACGGCGGCGGCGATTTCTACTTTTATGG



domain, CD3ζ
CATGGACGTGTGGGGCCAGGGCACCACAGTGACCGTGA



cytoplasmic
GCTCCGGCGGCGGCGGCTCTGGAGGAGGAGGCAGCGGC



signaling
GGAGGAGGCTCCGGAGGAGGCGGCTCTCAGACCGTGGT



domain
GACACAGGAGCCATCTTTCAGCGTGTCCCCCGGCGGAAC




AGTGACCCTGACATGCGGCCTGTCTAGCGGCTCTGTGAG




CACATCCTACTATCCTAGCTGTTTCCAGCAGACCCCCGG




CCAGGCACCTAGAACACTGATCTACTCCACCGACACAAG




GTCCTCTGGCGTGCCAGATCGCTTTTCTGGCAGCATCCT




GGGCAATAAGGCCGCCCTGACCATCACAGGAGCACAGG




CCGACGATGAGTCCGACTACTATTGCGTGCTGTATATGG




GCTCCGGAATCAGCGTGTTCGGAGGAGGCACCAAGCTG




ACAGTGCTGACCACAACCCCCGCCCCTAGGCCACCTACC




CCAGCACCTACAATTGCTAGTCAGCCACTGTCACTGCGA




CCAGAGGCATGTCGACCTGCAGCTGGAGGAGCAGTGCA




TACAAGGGGACTGGACTTTGCCTGCGATATCTACATTTG




GGCTCCTCTGGCAGGAACATGTGGCGTGCTGCTGCTGAG




CCTGGTCATCACTCTGTACTGCAAGCGAGGCCGGAAGAA




ACTGCTGTATATTTTCAAACAGCCCTTTATGCGACCTGTG




CAGACCACACAGGAGGAAGATGGGTGCTCCTGTCGGTT




CCCCGAGGAAGAGGAAGGAGGCTGTGAGCTGCGGGTCA




AGTTTTCCAGATCTGCAGACGCCCCTGCTTACCAGCAGG




GCCAGAACCAGCTGTATAACGAGCTGAATCTGGGGCGG




AGAGAGGAATACGACGTGCTGGATAAAAGGCGCGGGAG




AGACCCAGAAATGGGGGGAAAGCCACGACGGAAAAAC




CCCCAGGAGGGACTGTACAATGAACTGCAGAAGGATAA




AATGGCAGAGGCCTATTCCGAAATCGGGATGAAGGGAG




AAAGAAGGCGAGGCAAAGGACACGACGGACTGTACCAG




GGGCTGTCTACCGCCACAAAGGACACCTATGATGCTCTG




CATATGCAGGCACTGCCACCCAGG









b. Safety Switches and Monoclonal Antibody Specific-Epitopes


Safety Switches


It will be appreciated that adverse events may be minimized by transducing the immune cells (containing one or more CARs) with a suicide gene. It may also be desired to incorporate an inducible “on” or “accelerator” switch into the immune cells. Suitable techniques include use of inducible caspase-9 (U.S. Appl. 2011/0286980) or a thymidine kinase, before, after or at the same time, as the cells are transduced with the CAR construct of the present disclosure. Additional methods for introducing suicide genes and/or “on” switches include TALENS, zinc fingers, RNAi, siRNA, shRNA, antisense technology, and other techniques known in the art.


In accordance with the disclosure, additional on-off or other types of control switch techniques may be incorporated herein. These techniques may employ the use of dimerization domains and optional activators of such domain dimerization. These techniques include, e.g., those described by Wu et al., Science 2014 350 (6258) utilizing FKBP/Rapalog dimerization systems in certain cells, the contents of which are incorporated by reference herein in their entirety. Additional dimerization technology is described in, e.g., Fegan et al. Chem. Rev. 2010, 110, 3315-3336 as well as U.S. Pat. Nos. 5,830,462; 5,834,266; 5,869,337; and 6,165,787, the contents of which are also incorporated by reference herein in their entirety. Additional dimerization pairs may include cyclosporine-A/cyclophilin, receptor, estrogen/estrogen receptor (optionally using tamoxifen), glucocorticoids/glucocorticoid receptor, tetracycline/tetracycline receptor, vitamin D/vitamin D receptor. Further examples of dimerization technology can be found in e.g., WO 2014/127261, WO 2015/090229, US 2014/0286987, US2015/0266973, US2016/0046700, U.S. Pat. No. 8,486,693, US 2014/0171649, and US 2012/0130076, the contents of which are further incorporated by reference herein in their entirety.


In some embodiments, the CAR-immune cell (e.g., CAR-T cell) of the disclosure comprises a polynucleotide encoding a suicide polypeptide, such as for example RQR8. See, e.g., WO2013153391A, which is hereby incorporated by reference in its entirety. In CAR-immune cell (e.g., CAR-T cell) cells comprising the polynucleotide, the suicide polypeptide is expressed at the surface of a CAR-immune cell (e.g., CAR-T cell). In some embodiments, the suicide polypeptide comprises the amino acid sequence shown in SEQ ID NO: 552:









(SEQ ID NO: 552)


CPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTTACPYSNPSLCS





GGGGSPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIY





IWAPLAGTCGVLLLSLVITLYCNHRNRRRVCKCPRPVV






The suicide polypeptide may also comprise a signal peptide at the amino terminus—for example, MGTSLLCWMALCLLGADHADA (SEQ ID NO: 553). In some embodiments, the suicide polypeptide comprises the amino acid sequence shown in SEQ ID NO: 554, which includes the signal sequence of SEQ ID NO: 553:









(SEQ ID NO: 554)


MGTSLLCWMALCLLGADHADACPYSNPSLCSGGGGSELPTQGTFSNVST





NVSPAKPTTTACPYSNPSLCSGGGGSPAPRPPTPAPTIASQPLSLRPEA





CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCNHRNRR





RVCKCPRPVV






When the suicide polypeptide is expressed at the surface of a CAR-immune cell (e.g., CAR-T cell), binding of rituximab to the R epitopes of the polypeptide causes lysis of the cell. More than one molecule of rituximab may bind per polypeptide expressed at the cell surface. Each R epitope of the polypeptide may bind a separate molecule of rituximab. Deletion of DLL3-specific CAR-immune cell (e.g., CAR-T cell) may occur in vivo, for example by administering rituximab to a patient. The decision to delete the transferred cells may arise from undesirable effects being detected in the patient which are attributable to the transferred cells, such as for example, when unacceptable levels of toxicity are detected.


In some embodiments, a suicide polypeptide is expressed on the surface of the cell. In some embodiments, a suicide polypeptide is included in the CAR construct. In some embodiments, a suicide polypeptide is not part of the DLL3 CAR construct.


In some embodiments, the extracellular domain of any one of the DLL3-specific CARs disclosed herein may comprise one or more epitopes specific for (i.e., specifically recognized by) a monoclonal antibody. These epitopes are also referred to herein as mAb-specific epitopes. Exemplary mAb-specific epitopes are disclosed in International Patent Publication No. WO 2016/120216, which is incorporated herein in its entirety. In these embodiments, the extracellular domain of the CARs comprise antigen binding domains that specifically bind to DLL3 and one or more epitopes that bind to one or more monoclonal antibodies (mAbs). CARs comprising the mAb-specific epitopes can be single-chain or multi-chain.


The inclusion of epitopes specific for monoclonal antibodies in the extracellular domain of the CARs described herein allows sorting and depletion of engineered immune cells expressing the CARs. In some embodiments, this feature also promotes recovery of endogenous DLL3-expressing cells that were depleted by administration of engineered immune cells expressing the CARs. In some embodiments, allowing for depletion provides a safety switch in case of deleterious effects, e.g., upon administration to a subject.


Accordingly, in some embodiments, the present disclosure relates to a method for sorting and/or depleting the engineered immune cells endowed with the CARs comprising mAb-specific epitopes and a method for promoting recovery of endogenous DLL3-expressing cells.


Several epitope-monoclonal antibody couples can be used to generate CARs comprising monoclonal antibody specific epitopes; in particular, those already approved for medical use, such as CD20 epitope/rituximab as a non-limiting example.


The disclosure also encompasses methods for sorting the engineered immune cells endowed with the DLL3-specific CARs expressing the mAb-specific epitope(s) and therapeutic methods where the activation of the engineered immune cells endowed with these CARs is modulated by depleting the cells using an antibody that targets the external ligand binding domain of said CARs. Table 4 provides exemplary mimotope sequences that can be inserted into the extracellular domains of any one of the CARs of the disclosure.









TABLE 4





Exemplary mimotope sequences

















Rituximab




Mimotope
SEQ ID NO: 536
CPYSNPSLC





Palivizumab




Epitope
SEQ ID NO: 537
NSELLSLINDMPITNDQKKLMSNN





Cetuximab




Mimotope 1
SEQ ID NO: 538
CQFDLSTRRLKC


Mimotope 2
SEQ ID NO: 539
CQYNLSSRALKC


Mimotope 3
SEQ ID NO: 540
CVWQRWQKSYVC


Mimotope 4
SEQ ID NO: 541
CMWDRFSRWYKC





Nivolumab




Epitope 1
SEQ ID NO: 542
SFVLNWYRMSPSNQTDKLAAFPEDR


Epitope 2
SEQ ID NO: 543
SGTYLCGAISLAPKAQIKE





QBEND-10




Epitope
SEQ ID NO: 544
ELPTQGTFSNVSTNVSPAKPTTTA



SEQ ID NO: 471
ELPTQGTFSNVSTNVS





Alemtuzumab




Epitope
SEQ ID NO: 545
GQNDTSQTSSPS









In some embodiments, the extracellular binding domain of the CAR comprises the following sequence:

    • V1-L1-V2-(L)x-Epitope1-(L)x-;
    • V1-L1-V2-(L)x-Epitope1-(L)x-Epitope2-(L)x-;
    • V1-L1-V2-(L)x-Epitope1-(L)x-Epitope2-(L)x-Epitope3-(L)x-;
    • (L)x-Epitope1-(L)x-V1-L1-V2;
    • (L)x-Epitope1-(L)x-Epitope2-(L)x-V1-L1-V2;
    • Epitope1-(L)x-Epitope2-(L)x-Epitope3-(L)x-V1-L1-V2;
    • (L)x-Epitope1-(L)x-V1-L1-V2-(L)x-Epitope2-(L)x;
    • (L)x-Epitope1-(L)x-V1-L1-V2-(L)x-Epitope2-(L)x-Epitope3-(L)x-;
    • (L)x-Epitope 1-(L)x-V1-L1-V2-(L)x-Epitope2-(L)x-Epitope3-(L)x-Epitope4-(L)x-;
    • (L)x-Epitope1-(L)x-Epitope2-(L)x-V1-L1-V2-(L)x-Epitope3-(L)x-;
    • (L)x-Epitope1-(L)x-Epitope2-(L)x-V1-L1-V2-(L)x-Epitope3-(L)x-Epitope4-(L)x-;
    • V1-(L)x-Epitope1-(L)x-V2;
    • V1-(L)x-Epitope1-(L)x-V2-(L)x-Epitope2-(L)x;
    • V1-(L)x-Epitope1-(L)x-V2-(L)x-Epitope2-(L)x-Epitope3-(L)x;
    • V1-(L)x-Epitope1-(L)x-V2-(L)x-Epitope2-(L)x-Epitope3-(L)x-Epitope4-(L)x;
    • (L)x-Epitope1-(L)x-V1-(L)x-Epitope2-(L)x-V2; or,
    • (L)x-Epitope1-(L)x-V1-(L)x-Epitope2-(L)x-V2-(L)x-Epitope3-(L)x;
    • wherein,
    • V1 is VL and V2 is VH or V1 is VH and V2 is VL
    • L1 is a linker suitable to link the VH chain to the VL chain;
    • Epitope 1, Epitope 2, Epitope 3 and Epitope 4 are mAb-specific epitopes and can be identical or


c. Hinge Domain


The extracellular domain of the CARs of the disclosure may comprise a “hinge” domain (or hinge region). The term generally to any polypeptide that functions to link the transmembrane domain in a CAR to the extracellular antigen binding domain in a CAR. In particular, hinge domains can be used to provide more flexibility and accessibility for the extracellular antigen binding domain.


A hinge domain may comprise up to 300 amino acids—in some embodiments 10 to 100 amino acids or in some embodiments 25 to 50 amino acids. The hinge domain may be derived from all or part of naturally occurring molecules, such as from all or part of the extracellular region of CD8, CD4, CD28, 4-1BB, or IgG (in particular, the hinge region of an IgG; it will be appreciated that the hinge region may contain some or all of a member of the immunoglobulin family such as IgG1, IgG2, IgG3, IgG4, IgA, IgD, IgE, IgM, or fragment thereof), or from all or part of an antibody heavy-chain constant region. Alternatively, the A domain may be a synthetic sequence that corresponds to a naturally occurring A sequence or may be an entirely synthetic A sequence. In some embodiments said A domain is a part of human CD8α chain (e.g., NP_001139345.1). In another particular embodiment, said hinge and transmembrane domains comprise a part of human CD8α chain. In some embodiments, the hinge domain of CARs described herein comprises a subsequence of CD8a, CD28, an IgG1, IgG4, PD-1 or an FcγRIIIα, in particular the hinge region of any of an CD8a, CD28, an IgG1, IgG4, PD-1 or an FcγRIIIα. In some embodiments, the hinge domain comprises a human CD8α hinge, a human IgG1 hinge, a human IgG4, a human PD-1 or a human FcγRIIIα hinge. In some embodiments the CARs disclosed herein comprise a scFv, CD8α human hinge and transmembrane domains, the CD3ζ signaling domain, and 4-1BB signaling domain. Table 5 provides amino acid sequences for exemplary hinges provided herein.









TABLE 5







Exemplary hinges











SEQ ID


Domain
Amino Acid Sequence
NO:





FcγRIIIα
GLAVSTISSFFPPGYQ
546


hinge







CD8α
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT
547


hinge
RGLDFACD






IgG1
EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMI
548


hinge
ARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTK




PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA




LPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS




LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD




GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ




KSLSLSPGK









In certain embodiments, the hinge region comprises an amino acid sequence that is at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the extracellular domain amino acid sequences set forth herein in Table 5.


d. Transmembrane Domain


The CARs of the disclosure are designed with a transmembrane domain that is fused to the extracellular domain of the CAR. It can similarly be fused to the intracellular domain of the CAR. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins to minimize interactions with other members of the receptor complex. In some embodiments, short linkers may form linkages between any or some of the extracellular, transmembrane, and intracellular domains of the CAR.


Suitable transmembrane domains for a CAR disclosed herein have the ability to (a) be expressed at the surface an immune cell such as, for example without limitation, a lymphocyte cell, such as a T helper (Th) cell, cytotoxic T (Tc) cell, T regulatory (Treg) cell, or Natural killer (NK) cells, and/or (b) interact with the extracellular antigen binding domain and intracellular signaling domain for directing the cellular response of an immune cell against a target cell.


The transmembrane domain may be derived either from a natural or from a synthetic source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein.


Transmembrane regions of particular use in this disclosure may be derived from (comprise, or correspond to) CD28, OX-40, 4-1BB/CD137, CD2, CD7, CD27, CD30, CD40, programmed death-1 (PD-1), inducible T cell costimulator (ICOS), lymphocyte function-associated antigen-1 (LFA-1, CD1-1a/CD18), CD3 gamma, CD3 delta, CD3 epsilon, CD247, CD276 (B7-H3), LIGHT, (TNFSF14), NKG2C, Ig alpha (CD79a), DAP-10, Fc gamma receptor, MHC class 1 molecule, TNF receptor proteins, an Immunoglobulin protein, cytokine receptor, integrins, Signaling Lymphocytic Activation Molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptors, ICAM-1, B7-H3, CDS, ICAM-1, GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL-2R beta, IL-2R gamma, IL-7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 1d, ITGAE, CD103, ITGAL, CD1 1a, LFA-1, ITGAM, CD1 1b, ITGAX, CD1 1c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, or any combination thereof.


As non-limiting examples, the transmembrane region can be a derived from, or be a portion of a T cell receptor such as α, β, γ or δ, polypeptide constituting CD3ζ complex, IL-2 receptor p55 (α chain), p75 (β chain) or γ chain, subunit chain of Fc receptors, in particular Fcγ receptor III or CD proteins. Alternatively, the transmembrane domain can be synthetic and can comprise predominantly hydrophobic residues such as leucine and valine. In some embodiments said transmembrane domain is derived from the human CD8α chain (e.g., NP_001139345.1).


In some embodiments, the transmembrane domain in the CAR of the disclosure is a CD8α transmembrane domain. In some embodiments, the transmembrane domain in the CAR of the disclosure is a CD8α transmembrane domain comprising the amino acid sequence IYIWAPLAGTCGVLLLSLVIT (SEQ ID NO: 549). In some embodiments, the CD8α transmembrane domain comprises the nucleic acid sequence that encodes the transmembrane amino acid sequence of SEQ ID NO: 549. In some embodiments, the hinge and transmembrane domain in the CAR of the disclosure is a CD8α hinge and transmembrane domain comprising the amino acid sequence of SEQ ID NO: 479.


In some embodiments, the transmembrane domain in the CAR of the disclosure is a CD28 transmembrane domain. In some embodiments, the transmembrane domain in the CAR of the disclosure is a CD28 transmembrane domain comprising the amino acid sequence of FWVLVVVGGVLACYSLLVTVAFIIFWV (SEQ ID NO: 550). In some embodiments, the CD28 transmembrane domain comprises the nucleic acid sequence that encodes the transmembrane amino acid sequence of SEQ ID NO: 550.


e. Intracellular Domain


The intracellular (cytoplasmic) domain of the CARs of the disclosure can provide activation of at least one of the normal effector functions of the immune cell comprising the CAR, e.g., Signal 1/activation and/or Signal 2/costimulation. Effector function of a T cell, for example, may refer to cytolytic activity or helper activity, including the secretion of cytokines. In some embodiments, an activating intracellular signaling domain for use in a CAR can be the cytoplasmic sequences of, for example without limitation, the T cell receptor and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any synthetic sequence that has the same functional capability.


It will be appreciated that suitable (e.g., activating) intracellular domains include, but are not limited to signaling domains derived from (or corresponding to) CD3 zeta, CD28, OX-40, 4-1BB/CD137, CD2, CD7, CD27, CD30, CD40, programmed death-1 (PD-1), inducible T cell costimulator (ICOS), lymphocyte function-associated antigen-1 (LFA-1, CD1-1a/CD18), CD3 gamma, CD3 delta, CD3 epsilon, CD247, CD276 (B7-H3), LIGHT, (TNFSF14), NKG2C, Ig alpha (CD79a), DAP-10, Fc gamma receptor, MHC class 1 molecule, TNF receptor proteins, an Immunoglobulin protein, cytokine receptor, integrins, Signaling Lymphocytic Activation Molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptors, ICAM-1, B7-H3, CDS, ICAM-1, GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL-2R beta, IL-2R gamma, IL-7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 1d, ITGAE, CD103, ITGAL, CD1 1a, LFA-1, ITGAM, CD1 1b, ITGAX, CD1 1c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, or any combination thereof.


The intracellular domains of the CARs of the disclosure may incorporate, in addition to the activating domains described above, costimulatory signaling domains (interchangeably referred to herein as costimulatory molecules) to increase their potency. Costimulatory domains can provide a signal in addition to the primary signal provided by an activating molecule as described herein.


It will be appreciated that suitable costimulatory domains within the scope of the disclosure can be derived from (or correspond to) for example, CD28, OX40, 4-1BB/CD137, CD2, CD3 (alpha, beta, delta, epsilon, gamma, zeta), CD4, CD5, CD7, CD9, CD16, CD22, CD27, CD30, CD 33, CD37, CD40, CD 45, CD64, CD80, CD86, CD134, CD137, CD154, PD-1, ICOS, lymphocyte function-associated antigen-1 (LFA-1 (CD1 1a/CD18), CD247, CD276 (B7-H3), LIGHT (tumor necrosis factor superfamily member 14; TNFSF14), NKG2C, Ig alpha (CD79a), DAP-10, Fc gamma receptor, MHC class I molecule, TNFR, integrin, signaling lymphocytic activation molecule, BTLA, Toll ligand receptors, ICAM-1, B7-H3, CDS, ICAM-1, GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL-2R beta, IL-2R gamma, IL-7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1-1d, ITGAE, CD103, ITGAL, CD1-1a, LFA-1, ITGAM, CD1-1b, ITGAX, CD1-1c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, CD83 ligand, or fragments or combinations thereof. It will be appreciated that additional costimulatory molecules, or fragments thereof, not listed above are within the scope of the disclosure.


In some embodiments, the intracellular/cytoplasmic domain of the CAR can be designed to comprise the 41BB/CD137 domain by itself or combined with any other desired intracellular domain(s) useful in the context of the CAR of the disclosure. The complete native amino acid sequence of 41BB/CD137 is described in NCBI Reference Sequence: NP_001552.2. The complete native 41BB/CD137 nucleic acid sequence is described in NCBI Reference Sequence: NM_001561.5.


In some embodiments, the intracellular/cytoplasmic domain of the CAR can be designed to comprise the CD28 domain by itself or combined with any other desired intracellular domain(s) useful in the context of the CAR of the disclosure. The complete native amino acid sequence of CD28 is described in NCBI Reference Sequence: NP_006130.1. The complete native CD28 nucleic acid sequence is described in NCBI Reference Sequence: NM_006139.1.


In some embodiments, the intracellular/cytoplasmic domain of the CAR can be designed to comprise the CD3 zeta domain by itself or combined with any other desired intracellular domain(s) useful in the context of the CAR of the disclosure. In some embodiments, the intracellular signaling domain of the CAR can comprise the CD3 signaling domain which has amino acid sequence with at least about 70%, at least 80%, at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ ID NO: 481 in Table 7. For example, the intracellular domain of the CAR can comprise a CD3 zeta chain portion and a portion of a costimulatory signaling molecule. The intracellular signaling sequences within the intracellular signaling portion of the CAR of the disclosure may be linked to each other in a random or specified order. In some embodiments, the intracellular domain is designed to comprise the activating domain of CD3 zeta and a signaling domain of CD28. In some embodiments, the intracellular domain is designed to comprise the activating domain of CD3 zeta and a costimulatory/signaling domain of 4-1BB.


In some embodiments, the 4-1BB (intracellular domain) comprises the amino acid sequence KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL (SEQ ID NO: 480). In some embodiments, the 4-1BB (intracellular domain) is encoded by the nucleic acid sequence:









(SEQ ID NO: 568)


AAGCGCGGCAGGAAGAAGCTCCTCTACATTTTTAAGCAGCCTTTTATGA





GGCCCGTACAGACAACACAGGAGGAAGATGGCTGTAGCTGCAGATTTCC





CGAGGAGGAGGAAGGTGGGTGCGAGCTG






In some embodiments, the intracellular domain in the CAR is designed to comprise a portion of CD28 and CD3 zeta, wherein the intracellular CD28 comprises the nucleic acid sequence set forth in SEQ ID NO: 567.









(SEQ ID NO: 567)


AGATCCAAAAGAAGCCGCCTGCTCCATAGCGATTACATGAATATGACTC





CACGCCGCCCTGGCCCCACAAGGAAACACTACCAGCCTTACGCACCACC





TAGAGATTTCGCTGCCTATCGGAGC






In some embodiments, the intracellular domain in the CAR is designed to comprise the amino acid sequence RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS (SEQ ID NO: 551). The CD3 zeta amino acid sequence may comprise SEQ ID NO: 481 or 469 and the nucleic acid sequence may comprise SEQ ID NO: 569:









(SEQ ID NO: 569)


AGGGTGAAGTTTTCCAGATCTGCAGATGCACCAGCGTATCAGCAGGGCC





AGAACCAACTGTATAACGAGCTCAACCTGGGACGCAGGGAAGAGTATGA





CGTTTTGGACAAGCGCAGAGGACGGGACCCTGAGATGGGTGGCAAACCA





AGACGAAAAAACCCCCAGGAGGGTCTCTATAATGAGCTGCAGAAGGATA





AGATGGCTGAAGCCTATTCTGAAATAGGCATGAAAGGAGAGCGGAGAAG





GGGAAAAGGGCACGACGGTTTGTACCAGGGACTCAGCACTGCTACGAAG





GATACTTATGACGCTCTCCACATGCAAGCCCTGCCACCTAGG






In some embodiments the intracellular signaling domain of the CAR of the disclosure comprises a domain of a co-stimulatory molecule. In some embodiments, the intracellular signaling domain of a CAR of the disclosure comprises a part of co-stimulatory molecule selected from the group consisting of fragment of 4-1BB (GenBank: AAA53133) and CD28 (NP_006130.1). In some embodiments, the intracellular signaling domain of the CAR of the disclosure comprises amino acid sequence which comprises at least 70%, at least 80%, at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ ID NO: 480 and SEQ ID NO: 551. In some embodiments, the intracellular signaling domain of the CAR of the disclosure comprises amino acid sequence which comprises at least 70%, at least 80%, at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ ID NO: 480 and/or at least 70%, at least 80%, at least 90%, 95%, 97%, or 99% sequence identity with an amino acid sequence shown in SEQ ID NO: 551.


In exemplary embodiments, a CAR of the disclosure comprises, from N-terminus to C-terminus: a (cleavable) CD8α signal sequence, a DLL3 scFv, a CD8α hinge and transmembrane region, a 4-1BB cytoplasmic (costimulatory) signaling domain, and a CD3ζ cytoplasmic (stimulatory) signaling domain.


III. Immune Cells Comprising CARs


a. Immune Cells


Provided herein are engineered immune cells expressing the CARs of the disclosure (e.g., CAR-T cells).


In some embodiments, an engineered immune cell comprises a population of CARs, each CAR comprising different extracellular antigen-binding domains. In some embodiments, an immune cell comprises a population of CARs, each CAR comprising the same extracellular antigen-binding domains.


The engineered immune cells can be allogeneic or autologous.


In some embodiments, the engineered immune cell is a T cell (e.g., inflammatory T lymphocyte, cytotoxic T lymphocyte, regulatory T lymphocyte (Treg), helper T lymphocyte, tumor infiltrating lymphocyte (TIL)), natural killer T cell (NKT), TCR-expressing cell, dendritic cell, killer dendritic cell, a mast cell, or a B-cell. In some embodiments, the cell can be derived from the group consisting of CD4+T-lymphocytes and CD8+T-lymphocytes. In some exemplary embodiments, the engineered immune cell is a T cell. In some exemplary embodiments, the engineered immune cell is a gamma delta T cell. In some exemplary embodiments, the engineered immune cell is a macrophage. In some exemplary embodiments, the engineered immune cell is a natural killer (NK) cell.


In some embodiments, the engineered immune cell can be derived from, for example without limitation, a stem cell. The stem cells can be adult stem cells, non-human embryonic stem cells, more particularly non-human stem cells, cord blood stem cells, progenitor cells, bone marrow stem cells, induced pluripotent stem cells, totipotent stem cells or hematopoietic stem cells.


In some embodiments, the cell is obtained or prepared from peripheral blood. In some embodiments, the cell is obtained or prepared from peripheral blood mononuclear cells (PBMCs). In some embodiments, the cell is obtained or prepared from bone marrow. In some embodiments, the cell is obtained or prepared from umbilical cord blood. In some embodiments, the cell is a human cell.


In some embodiments, the cell is transfected or transduced by the nucleic acid vector using a method selected from the group consisting of electroporation, sonoporation, biolistics (e.g., Gene Gun), lipid transfection, polymer transfection, nanoparticles, viral transfection (e.g., retrovirus, lentivirus, AAV) or polyplexes.


In some embodiments, the engineered immune cells expressing at their cell surface membrane a DLL3-specific CAR of the disclosure comprise a percentage of stem cell memory and central memory cells greater than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%. In some embodiments, the engineered immune cells expressing at their cell surface membrane a DLL3-specific CAR of the disclosure comprise a percentage of stem cell memory and central memory cells of about 10% to about 100%, about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 10% to about 60%, about 10% to about 50%, about 10% to about 40%, about 10% to about 30%, about 10% to about 20%, about 15% to about 100%, about 15% to about 90%, about 15% to about 80%, about 15% to about 70%, about 15% to about 60%, about 15% to about 50%, about 15% to about 40%, about 15% to about 30%, about 20% to about 100%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 50%, about 20% to about 40%, about 20% to about 30%, about 30% to about 100%, about 30% to about 90%, about 30% to about 80%, about 30% to about 70%, about 30% to about 60%, about 30% to about 50%, about 30% to about 40%, about 40% to about 100%, about 40% to about 90%, about 40% to about 80%, about 40% to about 70%, about 40% to about 60%, about 40% to about 50%, about 50% to about 100%, about 50% to about 90%, about 50% to about 80%, about 50% to about 70%, about 50% to about 60%, about 60% to about 100%, about 60% to about 90%, about 60% to about 80%, about 60% to about 70%, about 70% to about 90%, about 70% to about 80%, about 80% to about 100%, about 80% to about 90%, about 90% to about 100%, about 25% to about 50%, about 75% to about 100%, or about 50% to about 75%.


In some embodiments, the immune cell is an inflammatory T-lymphocyte that expresses any one of the CARs described herein. In some embodiments, the immune cell is a cytotoxic T-lymphocyte that expresses any one of the CARs described herein. In some embodiments, the immune cell is a regulatory T-lymphocyte that expresses any one of the CARs described herein. In some embodiments, the immune cell is a helper T-lymphocyte that expresses any one of the CARs described herein.


Prior to expansion and genetic modification, a source of cells can be obtained from a subject through a variety of non-limiting methods. Cells can be obtained from a number of non-limiting sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In some embodiments, any number of T cell lines available and known to those skilled in the art, may be used. In some embodiments, cells can be derived from a healthy donor, from a patient diagnosed with cancer or from a patient diagnosed with an infection. In some embodiments, cells can be part of a mixed population of cells which present different phenotypic characteristics.


Also provided herein are cell lines obtained from a transformed immune cell (e.g., T-cell) according to any of the above-described methods. Also provided herein are modified cells resistant to an immunosuppressive treatment. In some embodiments, an isolated cell according to the disclosure comprises a polynucleotide encoding a CAR.


The immune cells of the disclosure can be activated and expanded, either prior to or after genetic modification of the immune cells, using methods as generally known. Generally, the engineered immune cells of the disclosure can be expanded, for example, by contacting with an agent that stimulates a CD3 TCR complex and a costimulatory molecule on the surface of the T-cells to create an activation signal for the T cell. For example, chemicals such as calcium ionophore A23187, phorbol 12-myristate 13-acetate (PMA), or mitogenic lectins like phytohemagglutinin (PHA) can be used to create an activation signal for the T cell.


In some embodiments, T cell populations may be stimulated in vitro by contact with, for example, an anti-CD3 antibody such as an OKT3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co-stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody (e.g., an OKT3 antibody) and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. The anti-CD3 antibody and an anti-CD28 antibody can be disposed on a bead, such as a plastic or magnetic bead, or plate or other substrate. Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-γ, IL-4, IL-7, GM-CSF, IL-10, IL-2, IL-15, TGFbeta, and TNF, or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanoi. Media can include RPMI 1640, A1M-V, DMEM, MEM, a-MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells (e.g., IL-7 and/or IL-15). Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C.) and atmosphere (e.g., air plus 5% CO2). T cells that have been exposed to varied stimulation times may exhibit different characteristics. In some embodiments, the cells of the disclosure can be expanded by co-culturing with tissue or cells. The cells can also be expanded in vivo, for example in the subject's blood after administering the cell into the subject.


In some embodiments, an engineered immune cell according to the present disclosure may comprise one or more disrupted or inactivated genes. In some embodiments, an engineered immune cell according to the present disclosure comprises one disrupted or inactivated gene selected from the group consisting of CD52, DLL3, GR, PD-1, CTLA-4, LAG3, TIM3, BTLA, BY55, TIGIT, B7H5, LAIR1, SIGLEC10, 2B4, HLA, TCRα and TCRβ and/or expresses a CAR, a multi-chain CAR and/or a pTa transgene. In some embodiments, an isolated cell comprises polynucleotides encoding polypeptides comprising a multi-chain CAR. In some embodiments, the isolated cell according to the present disclosure comprises two disrupted or inactivated genes selected from the group consisting of: CD52 and GR, CD52 and TCRα, CDR52 and TCRβ, DLL3 and CD52, DLL3 and TCRα, DLL3 and TCRβ, GR and TCRα, GR and TCRβ, TCRα and TCRβ, PD-1 and TCRα, PD-1 and TCRβ, CTLA-4 and TCRα, CTLA-4 and TCRβ, LAG3 and TCRα, LAG3 and TCRβ, TIM3and TCRα, Tim3 and TCRβ, BTLA and TCRα, BTLA and TCRβ, BY55 and TCRα, BY55 and TCRβ, TIGIT and TCRα, TIGIT and TCRβ, B7H5 and TCRα, B7H5 and TCRβ, LAIR1 and TCRα, LAIR1 and TCRβ, SIGLEC10 and TCRα, SIGLEC10 and TCRβ, 2B4 and TCRα, 2B4 and TCRβ and/or expresses a CAR, a multi-chain CAR and a pTα transgene. In some embodiments the method comprises disrupting or inactivating one or more genes by introducing into the cells a endonuclease able to selectively inactivate a gene by selective DNA cleavage. In some embodiments the endonuclease can be, for example, a zinc finger nuclease (ZFN), megaTAL nuclease, meganuclease, transcription activator-like effector nuclease (TALE-nuclease/TALEN), or CRISPR (e.g., Cas9) endonuclease.


In some embodiments, TCR is rendered not functional in the cells according to the disclosure by disrupting or inactivating TCRα gene and/or TCRβ gene(s). In some embodiments, a method to obtain modified cells derived from an individual is provided, wherein the cells can proliferate independently of the major histocompatibility complex (MHC) signaling pathway. Modified cells, which can proliferate independently of the MHC signaling pathway, susceptible to be obtained by this method are encompassed in the scope of the present disclosure. Modified cells disclosed herein can be used in for treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD); therefore in the scope of the present disclosure is a method of treating patients in need thereof against Host versus Graft (HvG) rejection and Graft versus Host Disease (GvHD) comprising treating said patient by administering to said patient an effective amount of modified cells comprising disrupted or inactivated TCRα and/or TCRβ genes.


In some embodiments, the immune cells are engineered to be resistant to one or more chemotherapy drugs. The chemotherapy drug can be, for example, a purine nucleotide analogue (PNA), thus making the immune cell suitable for cancer treatment combining adoptive immunotherapy and chemotherapy. Exemplary PNAs include, for example, clofarabine, fludarabine, cyclophosphamide, and cytarabine, alone or in combination. PNAs are metabolized by deoxycytidine kinase (dCK) into mono-, di-, and tri-phosphate PNA. Their tri-phosphate forms compete with ATP for DNA synthesis, act as pro-apoptotic agents, and are potent inhibitors of ribonucleotide reductase (RNR), which is involved in trinucleotide production. Provided herein are DLL3-specific CAR-T cells comprising a disrupted or inactivated dCK gene. In some embodiments, the dCK knockout cells are made by transfection of T cells using polynucleotides encoding specific TAL-nuclease directed against dCK genes by, for example, electroporation of mRNA. The dCK knockout DLL3-specific CAR-T cells are resistant to PNAs, including for example clorofarabine and/or fludarabine, and maintain T cell cytotoxic activity toward DLL3-expressing cells.


In some embodiments, isolated cells or cell lines of the disclosure can comprise a pTα or a functional variant thereof. In some embodiments, an isolated cell or cell line can be further genetically modified by disrupting or inactivating the TCRα gene.


The disclosure also provides engineered immune cells comprising any of the CAR polynucleotides described herein. In some embodiments, a CAR can be introduced into an immune cell as a transgene via a plasmid vector. In some embodiments, the plasmid vector can also contain, for example, a selection marker which provides for identification and/or selection of cells which received the vector.


CAR polypeptides may be synthesized in situ in the cell after introduction of polynucleotides encoding the CAR polypeptides into the cell. Alternatively, CAR polypeptides may be produced outside of cells, and then introduced into cells. Methods for introducing a polynucleotide construct into cells are known in the art. In some embodiments, stable transformation methods (e.g., using a lentiviral vector) can be used to integrate the polynucleotide construct into the genome of the cell. In other embodiments, transient transformation methods can be used to transiently express the polynucleotide construct, and the polynucleotide construct not integrated into the genome of the cell. In other embodiments, virus-mediated methods can be used. The polynucleotides may be introduced into a cell by any suitable means such as for example, recombinant viral vectors (e.g., retroviruses, adenoviruses), liposomes, and the like. Transient transformation methods include, for example without limitation, microinjection, electroporation or particle bombardment. Polynucleotides may be included in vectors, such as for example plasmid vectors or viral vectors.


In some embodiments, isolated nucleic acids are provided comprising a promoter operably linked to a first polynucleotide encoding a DLL3 antigen binding domain, at least one costimulatory molecule, and an activating domain. In some embodiments, the nucleic acid construct is contained within a viral vector. In some embodiments, the viral vector is selected from the group consisting of retroviral vectors, murine leukemia virus vectors, SFG vectors, adenoviral vectors, lentiviral vectors, adeno-associated virus (AAV) vectors, Herpes virus vectors, and vaccinia virus vectors. In some embodiments, the nucleic acid is contained within a plasmid.


b. Methods of Making


Provided herein are methods of making the CARs and the CAR-containing immune cells of the disclosure.


A variety of known techniques can be utilized in making the polynucleotides, polypeptides, vectors, antigen binding domains, immune cells, compositions, and the like according to the disclosure.


Prior to the in vitro manipulation or genetic modification of the immune cells described herein, the cells may be obtained from a subject. The cells expressing a DLL3 CAR may be derived from an allogenic or autologous process.


i. Source Material


In some embodiments, the immune cells comprise T cells. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells (PBMCs), bone marrow, lymph nodes tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain embodiments, T cells can be obtained from a unit of blood collected from the subject using any number of techniques known to the skilled person, such as FICOLL™ separation.


Cells may be obtained from the circulating blood of an individual by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In certain embodiments, the cells collected by apheresis may be washed to remove the plasma fraction, and placed in an appropriate buffer or media for subsequent processing.


In certain embodiments, T cells are isolated from PBMCs by lysing the red blood cells and depleting the monocytes, for example, using centrifugation through a PERCOLL™ gradient. A specific subpopulation of T cells, (e.g., CD28+, CD4+, CDS+, CD45RA−, CD45RO+, CDS+, CD62−, CD95−, CD95+, IL2RP+, IL2Rβ−, CCR7+, CCR7−, CDL−, CD62L+ and combinations thereof) can be further isolated by positive or negative selection techniques known in the art. In one example the subpopulation of T cells is CD45RA+, CD95−, IL-2Rβ−, CCR7+, CD62L+. In one example the subpopulation of T cells is CD45RA+, CD95+, IL-2Rβ+, CCR7+, CD62L+. In one example the subpopulation of T cells is CD45RO+, CD95+, IL-2Rβ+, CCR7+, CD62L+. In one example the subpopulation of T cells is CD45RO+, CD95+, IL-2Rβ+, CCR7-, CD62L-. In one example the subpopulation of T cells is CD45RA+, CD95+, IL-2Rβ+, CCR7−, CD62L−. For example, enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method for use herein is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CD11b, CD16, HLA-DR, and CD8. Flow cytometry and cell sorting may also be used to isolate cell populations of interest for use in the present disclosure.


PBMCs may be used directly for genetic modification with the immune cells (such as CARs or TCRs) using methods as described herein. In certain embodiments, after isolating the PBMCs, T lymphocytes can be further isolated and both cytotoxic and helper T lymphocytes can be sorted into naïve, memory, and effector T cell subpopulations either before or after genetic modification and/or expansion.


In some embodiments, CD8+ cells are further sorted into naïve, stem cell memory, central memory, and effector cells by identifying characteristic cell surface antigens that are associated with each of these types of CD8+ cells. In some embodiments, the expression of phenotypic markers of central memory T cells include CD45RO, CD62L, CCR7, CD28, CD3, and CD127 and are negative for granzyme B. In some embodiments, stem cell memory T cells are CD45RO−, CD62L+, CD8+ T cells. In some embodiments, central memory T cells are CD45RO+, CD62L+, CD8+ T cells. In some embodiments, effector T cells are negative for CD62L, CCR7, CD28, and CD127, and positive for granzyme B and perforin.


In certain embodiments, CD4+ T cells are further sorted into subpopulations. For example, CD4+T helper cells can be sorted into naïve, central memory, and effector cells by identifying cell populations that have characteristic cell surface antigens.


iii. Stem Cell-Derived Immune Cells


In some embodiments, the immune cells may be derived from stem cells, such as a progenitor cell, a bone barrow stem cell, an inducible pluripotent stem cell, an iPSC, a hematopoietic stem cell, and a mesenchymal stem cell. iPS cells and other types of stem cells may be cultivated immortal cell lines or isolated directly from a patient. Various methods for isolating, developing, and/or cultivating stem cells are known in the art and may be used to practice the present invention.


In some embodiments, the immune cell is an induced pluripotent stem cell (iPSC) derived from a reprogrammed T-cell. In some embodiments, the source material may be an induced pluripotent stem cell (iPSC) derived from a T cell or non-T cell. The source material may alternatively be a B cell, or any other cell from peripheral blood mononuclear cell isolates, hematopoietic progenitor, hematopoietic stem cell, mesenchymal stem cell, adipose stem cell, or any other somatic cell type.


ii. Genetic Modification of Isolated Cells


The immune cells, such as T cells, can be genetically modified following isolation using known methods, or the immune cells can be activated and expanded (or differentiated in the case of progenitors) in vitro prior to being genetically modified. In some embodiments, the isolated immune cells are genetically modified to reduce or eliminate expression of endogenous TCRα and/or CD52. In some embodiments, the cells are genetically modified using gene editing technology (e.g., CRISPR/Cas9, CRISPR/CAS12, a zinc finger nuclease (ZFN), a TALEN, a MegaTAL, a meganuclease) to reduce or eliminate expression of endogenous proteins (e.g., TCRα and/or CD52). In another embodiment, the immune cells, such as T cells, are optionally further genetically modified with the chimeric antigen receptors described herein (e.g., transduced with a viral vector comprising one or more nucleotide sequences encoding a CAR) and then are activated and/or expanded in vitro.


Methods for activating and expanding T cells are known in the art and are described, for example, in U.S. Pat. Nos. 6,905,874; 6,867,041; 6,797,514; and PCT WO2012/079000, the contents of which are hereby incorporated by reference in their entirety. Generally, such methods include contacting PBMC or isolated T cells with a stimulatory molecule and a costimulatory molecule, such as anti-CD3 and anti-CD28 antibodies, generally attached to a plastic or magnetic bead or other surface, in a culture medium with appropriate cytokines, such as IL-2. Anti-CD3 and anti-CD28 antibodies attached to the same bead serve as a “surrogate” antigen presenting cell (APC). One example is the Dynabeads® system, which is a CD3/CD28 activator/stimulator system for physiological activation of human T cells. In other embodiments, the T cells may be activated and stimulated to proliferate with feeder cells and appropriate antibodies and cytokines using methods such as those described in U.S. Pat. Nos. 6,040,177; 5,827,642; and WO2012129514, the contents of which are hereby incorporated by reference in their entirety.


Certain methods for making the constructs and engineered immune cells of the disclosure are described in PCT application PCT/US15/14520, the contents of which are hereby incorporated by reference in their entirety.


It will be appreciated that PBMCs can further include other cytotoxic lymphocytes such as NK cells or NKT cells. An expression vector carrying the coding sequence of a chimeric receptor as disclosed herein can be introduced into a population of human donor T cells, NK cells or NKT cells. Successfully transduced T cells that carry the expression vector can be sorted using flow cytometry to isolate CD3 positive T cells and then further propagated to increase the number of these CAR expressing T cells in addition to cell activation using anti-CD3 antibodies and IL-2 or other methods known in the art as described elsewhere herein. Standard procedures are used for cryopreservation of T cells expressing the CAR for storage and/or preparation for use in a human subject. In one embodiment, the in vitro transduction, culture and/or expansion of T cells are performed in the absence of non-human animal derived products such as fetal calf serum and fetal bovine serum. In an embodiment, cryopreservation can comprise freezing in a suitable medium, such as CryoStor® CS10, CryoStor® CS2 or CryoStor® CS5 (BioLife Solutions).


For cloning of polynucleotides, the vector may be introduced into a host cell (an isolated host cell) to allow replication of the vector itself and thereby amplify the copies of the polynucleotide contained therein. The cloning vectors may contain sequence components generally include, without limitation, an origin of replication, promoter sequences, transcription initiation sequences, enhancer sequences, and selectable markers. These elements may be selected as appropriate by a person of ordinary skill in the art. For example, the origin of replication may be selected to promote autonomous replication of the vector in the host cell.


In certain embodiments, the present disclosure provides isolated host cells containing the vector provided herein. The host cells containing the vector may be useful in expression or cloning of the polynucleotide contained in the vector. Suitable host cells can include, without limitation, prokaryotic cells, fungal cells, yeast cells, or higher eukaryotic cells such as mammalian cells, and more specifically human cells.


The vector can be introduced to the host cell using any suitable methods known in the art, including, without limitation, DEAE-dextran mediated delivery, calcium phosphate precipitate method, cationic lipids mediated delivery, liposome mediated transfection, electroporation, microprojectile bombardment, receptor-mediated gene delivery, delivery mediated by polylysine, histone, chitosan, and peptides. Standard methods for viral transfection and transformation of cells for expression of a vector of interest are well known in the art. In a further embodiment, a mixture of different expression vectors can be used in genetically modifying a donor population of immune effector cells wherein each vector encodes a different CAR as disclosed herein. The resulting transduced immune effector cells form a mixed population of engineered cells, with a proportion of the engineered cells expressing more than one different CARs.


In one embodiment, the disclosure provides a method of storing genetically engineered cells expressing CARs which target a DLL3 protein. In an embodiment this involves cryopreserving the immune cells such that the cells remain viable upon thawing. In an embodiment, cryopreservation can comprise freezing in a suitable medium, such as CryoStor® CS10, CryoStor® CS2 or CryoStor® CS5 (BioLife Solutions). A fraction of the immune cells expressing the CARs can be cryopreserved by methods known in the art to provide a permanent source of such cells for the future treatment of patients afflicted with a malignancy. When needed, the cryopreserved transformed immune cells can be thawed, grown and expanded for more such cells.


In some embodiments, the cells are formulated by first harvesting them from their culture medium, and then washing and concentrating the cells in a medium and container system suitable for administration (a “pharmaceutically acceptable” carrier) in a treatment-effective amount. Suitable infusion media can be any isotonic medium formulation, typically normal saline, Normosol™ R (Abbott) or Plasma-Lyte™ A (Baxter), but also 5% dextrose in water or Ringer's lactate can be utilized. The infusion medium can be supplemented with human serum albumin.


iv. Allogeneic CAR T Cells


In brief, the process for manufacturing allogeneic CAR T therapy, or AlloCARs™ involves harvesting healthy, selected, screened and tested T cells from healthy donors. Allogeneic T cells are gene editing to reduce the risk of graft versus host disease (GvHD) and to prevent allogeneic rejection. A selected T cell receptor gene (e.g., TCRα, TCRβ) is knocked out to avoid GvHD. The CD52 gene can also be knocked out to render the CAR T product resistant to anti-CD52 antibody treatment. Anti-CD52 antibody treatment can therefore be used to lymphodeplete the host immune system and allow the CAR T cells to stay engrafted to achieve full therapeutic impact. Next, the T cells are engineered to express CARs, which recognize certain cell surface proteins (e.g., DLL-3) that are expressed in hematologic or solid tumors. The engineered T cells then undergo a purification step and are ultimately cryopreserved in vials for delivery to patients.


v. Autologous CAR T cells


Autologous chimeric antigen receptor (CAR) T cell therapy, involves collecting a patient's own cells (e.g., white blood cells, including T cells) and genetically engineering the T cells to express CARs that recognize a target antigen expressed on the cell surface of one or more specific cancer cells and kill cancer cells. The engineered cells are then cryopreserved and subsequently administered to the patient from which the cells were removed for engineering.


IV. Methods of Treatment


The disclosure comprises methods for treating or preventing a condition associated with undesired and/or elevated DLL3 levels in a patient, comprising administering to a patient in need thereof an effective amount of at least one CAR, or immune-cell comprising a CAR disclosed herein.


Methods are provided for treating diseases or disorders, including cancer. In some embodiments, the disclosure relates to creating a T cell-mediated immune response in a subject, comprising administering an effective amount of the engineered immune cells of the present application to the subject. In some embodiments, the T cell-mediated immune response is directed against a target cell or cells. In some embodiments, the engineered immune cell comprises a chimeric antigen receptor (CAR). In some embodiments, the target cell is a tumor cell. In some aspects the disclosure comprises a method for treating or preventing a malignancy, said method comprising administering to a subject in need thereof an effective amount of at least one isolated antigen binding domain described herein. In some aspects, the disclosure comprises a method for treating or preventing a malignancy, said method comprising administering to a subject in need thereof an effective amount of at least one immune cell, wherein the immune cell comprises at least one chimeric antigen receptor, and/or isolated antigen binding domain as described herein. The CAR containing immune cells of the disclosure can be used to treat malignancies involving aberrant expression of DLL3. In some embodiments, CAR containing immune cells of the disclosure can be used to treat such malignancies as small cell lung cancer, melanoma, low grade gliomas, glioblastoma, medullary thyroid cancer, carcinoids, dispersed neuroendocrine tumors in the pancreas, bladder and prostate, testicular cancer, and lung adenocarcinomas with neuroendocrine features. In exemplary embodiments, the CAR-containing immune cells, e.g., the anti-DLL3 CAR-T cells of the disclosure, are used to treat small cell lung cancer.


Also provided are methods for reducing the size of a tumor in a subject, comprising administering to the subject an engineered cell of the present disclosure to the subject, wherein the cell comprises a chimeric antigen receptor comprising a DLL3 antigen binding domain and binds to a DLL3 antigen on the tumor.


In some embodiments, the subject has a solid tumor, or a blood malignancy such as lymphoma or leukemia. In some embodiments, the engineered cell is delivered to a tumor bed, such as a tumor bed found in small cell lung cancer. In some embodiments, the cancer is present in the bone marrow of the subject. In some embodiments, the engineered cells are autologous immune cells, e.g., autologous T cells. In some embodiments, the engineered cells are allogeneic immune cells, e.g., allogeneic T cells. In some embodiments, the engineered cells are heterologous immune cells, e.g., heterologous T cells. In some embodiments, the engineered cells are transfected or transduced ex vivo. As used herein, the term “in vitro cell” refers to any cell that is cultured ex vivo.


A “therapeutically effective amount,” “effective dose,” “effective amount,” or “therapeutically effective dosage” of a therapeutic agent, e.g., engineered CART cells, is any amount that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. The ability of a therapeutic agent to promote disease regression can be evaluated using a variety of methods known to the skilled practitioner (e.g., a physician or clinician), such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.


The terms “patient” and “subject” are used interchangeably and include human and non-human animal subjects as well as those with formally diagnosed disorders, those without formally recognized disorders, those receiving medical attention, those at risk of developing the disorders, etc.


The term “treat” and “treatment” includes therapeutic treatments, prophylactic treatments, and applications in which one reduces the risk that a subject will develop a disorder or other risk factor. Treatment does not require the complete curing of a disorder and encompasses embodiments in which one reduces symptoms or underlying risk factors. The term “prevent” does not require the 100% elimination of the possibility of an event. Rather, it denotes that the likelihood of the occurrence of the event has been reduced in the presence of the compound or method.


Desired treatment total amounts of cells in the composition comprise at least 2 cells (for example, at least one CD8+ T cell and at least one CD4+ T cell, or two CD8+ T cells, or two CD4+ T cells) or is more typically greater than 102 cells, and up to 106, up to and including 108 or 109 cells and can be 1010 or 1012 or more cells. The number of cells will depend upon the desired use for which the composition is intended, and the type of cells included therein. The density of the desired cells is typically greater than 106 cells/ml and generally is greater than 107 cells/ml, generally 108 cells/ml or greater. The clinically relevant number of immune cells can be apportioned into multiple infusions that cumulatively equal or exceed 105, 106, 107, 108, 109, 1010, 1011, or 1012 cells. In some aspects of the present disclosure, particularly since all the infused cells will be redirected to a particular target antigen (e.g., DLL3), lower numbers of cells, in the range of 106/kilogram (106-1011 per patient) may be administered. CAR treatments may be administered multiple times at dosages within these ranges. The cells may be autologous, allogeneic, or heterologous to the patient undergoing therapy.


In some embodiments, the therapeutically effective amount of the CAR T cells is about 1×105 cells/kg, about 2×105 cells/kg, about 3×105 cells/kg, about 4×105 cells/kg, about 5×105 cells/kg, about 6×105 cells/kg, about 7×105 cells/kg, about 8×105 cells/kg, about 9×105 cells/kg, 2×106 cells/kg, about 3×106 cells/kg, about 4×106 cells/kg, about 5×106 cells/kg, about 6×106 cells/kg, about 7×106 cells/kg, about 8×106 cells/kg, about 9×106 cells/kg, about 1×107 cells/kg, about 2×107 cells/kg, about 3×107 cells/kg, about 4×107 cells/kg, about 5×107 cells/kg, about 6×107 cells/kg, about 7×107 cells/kg, about 8×107 cells/kg, or about 9×107 cells/kg.


In some embodiments, target doses for CAR+/CAR-T+ cells range from about 1×106 to about 1×1010 cells/kg, for example about 1×106 cells/kg, about 1×107 cells/kg, about 1×108 cells/kg, about 1×109 cells/kg or about 1×1010 cells/kg. It will be appreciated that doses above and below this range may be appropriate for certain subjects, and appropriate dose levels can be determined by the healthcare provider as needed. Additionally, multiple doses of cells can be provided in accordance with the disclosure.


In some aspects the disclosure comprises a pharmaceutical composition comprising at least one antigen binding domain as described herein and a pharmaceutically acceptable excipient. In some embodiments, the pharmaceutical composition further comprises an additional active agent.


The CAR expressing cell populations of the present disclosure may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations. Pharmaceutical compositions of the present disclosure may comprise a CAR expressing cell population, such as T cells, as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present disclosure are preferably formulated for intravenous administration.


The pharmaceutical compositions (solutions, suspensions or the like), may include one or more of the following: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono- or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. For therapeutic applications, an injectable pharmaceutical composition is preferably sterile.


In some embodiments, upon administration to a patient, engineered immune cells expressing at their cell surface any one of the DLL3-specific CARs described herein may reduce, kill or lyse endogenous DLL3-expressing cells of the patient. In one embodiment, a percentage reduction or lysis of DLL3-expressing endogenous cells or cells of a cell line expressing DLL3 by engineered immune cells expressing any one of the DLL3-specific CARs described herein is at least about or greater than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95%. In one embodiment, a percentage reduction or lysis of DLL3-expressing endogenous cells or cells of a cell line expressing DLL3 by engineered immune cells expressing any one of the DLL3-specific CARs described herein is about 5% to about 95%, about 10% to about 95%, about 10% to about 90%, about 10% to about 80%, about 10% to about 70%, about 10% to about 60%, about 10% to about 50%, about 10% to about 40%, about 20% to about 90%, about 20% to about 80%, about 20% to about 70%, about 20% to about 60%, about 20% to about 50%, about 25% to about 75%, or about 25% to about 60%. In one embodiment, the endogenous DLL3-expressing cells are endogenous DLL3-expressing bone marrow cells.


In one embodiment, the percent reduction or lysis of target cells, e.g., a cell line expressing DLL3, by engineered immune cells expressing at their cell surface membrane a DLL3-specific CAR of the disclosure can be measured using the assay disclosed herein.


The methods can further comprise administering one or more chemotherapeutic agents to a patient prior to administering the engineered cells provided herein. In certain embodiments, the chemotherapeutic agent is a lymphodepleting (preconditioning) chemotherapeutic. For example, methods of conditioning a patient in need of a T cell therapy comprising administering to the patient specified beneficial doses of cyclophosphamide (between 200 mg/m2/day and 2000 mg/m2/day, about 100 mg/m2/day and about 2000 mg/m2/day; e.g., about 100 mg/m2/day, about 200 mg/m2/day, about 300 mg/m2/day, about 400 mg/m2/day, about 500 mg/m2/day, about 600 mg/m2/day, about 700 mg/m2/day, about 800 mg/m2/day, about 900 mg/m2/day, about 1000 mg/m2/day, about 1500 mg/m2/day or about 2000 mg/m2/day) and specified doses of fludarabine (between 20 mg/m2/day and 900 mg/m2/day, between about 10 mg/m2/day and about 900 mg/m2/day; e.g., about 10 mg/m2/day, about 20 mg/m2/day, about 30 mg/m2/day, about 40 mg/m2/day, about 40 mg/m2/day, about 50 mg/m2/day, about 60 mg/m2/day, about 70 mg/m2/day, about 80 mg/m2/day, about 90 mg/m2/day, about 100 mg/m2/day, about 500 mg/m2/day or about 900 mg/m2/day). An exemplary dosing regimen involves treating a patient comprising administering daily to the patient about 300 mg/m2/day of cyclophosphamide in combination or before or after administering about 30 mg/m2/day of fludarabine for three days prior to administration of a therapeutically effective amount of engineered T cells to the patient.


In some embodiments, notably in the case when the engineered cells provided herein have been gene edited to eliminate or minimize surface expression of CD52, lymphodepletion further comprises administration of an anti-CD52 antibody, such as alemtuzumab. In some embodiments, the CD52 antibody is administered at a dose of about 1-20 mg/day IV, e.g., about 13 mg/day IV for 1, 2, 3 or more days. The antibody can be administered in combination with, before, or after administration of other elements of a lymphodepletion regime (e.g., cyclophosphamide and/or fludarabine).


In other embodiments, the antigen binding domain, transduced (or otherwise engineered) cells and the chemotherapeutic agent are administered each in an amount effective to treat the disease or condition in the subject.


In certain embodiments, compositions comprising CAR-expressing immune effector cells disclosed herein may be administered in conjunction with any number of chemotherapeutic agents. Examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclophosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine resume; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin, epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elformithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2′,2″-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside (“Ara-C”); cyclophosphamide; thiotepa; taxoids, e.g., paclitaxel (TAXOL™, Bristol-Myers Squibb) and doxetaxel (TAXOTERE®, Rhone-Poulenc Rorer); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RF 52000; difluoromethylomithine (DMFO); retinoic acid derivatives such as Targretin™ (bexarotene), Panretin™, (alitretinoin); ONTAK™ (denileukin diftitox); esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Combinations of chemotherapeutic agents are also administered where appropriate, including, but not limited to CHOP, i.e., Cyclophosphamide (Cytoxan®), Doxorubicin (hydroxydoxorubicin), Vincristine (Oncovin®), and Prednisone.


In some embodiments, the chemotherapeutic agent is administered at the same time or within one week after the administration of the engineered cell, polypeptide, or nucleic acid. In other embodiments, the chemotherapeutic agent is administered from about 1-7 days, about 1 to about 4 weeks or from about 1 week to about 1 month, about 1 week to about 2 months, about 1 week to about 3 months, about 1 week to about 6 months, about 1 week to about 9 months, or about 1 week to about 12 months after the administration of the engineered cell, polypeptide, or nucleic acid. In other embodiments, the chemotherapeutic agent is administered at least 1 month before administering the cell, polypeptide, or nucleic acid. In some embodiments, the methods further comprise administering two or more chemotherapeutic agents.


A variety of additional therapeutic agents may be used in conjunction with the compositions described herein. For example, potentially useful additional therapeutic agents include PD-1 inhibitors such as nivolumab (Opdivo®), pembrolizumab (Keytruda®), pembrolizumab, pidilizumab, and atezolizumab.


Additional therapeutic agents suitable for use in combination with the disclosure include, but are not limited to, ibrutinib (Imbruvica®), ofatumumab (Arzerra®, rituximab (Rituxan®), bevacizumab (Avastin®), trastuzumab (Herceptin®), trastuzumab emtansine (KADCYLA®, imatinib (Gleevec®), cetuximab (Erbitux®, panitumumab) (Vectibix®), catumaxomab, ibritumomab, ofatumumab, tositumomab, brentuximab, alemtuzumab, gemtuzumab, erlotinib, gefitinib, vandetanib, afatinib, lapatinib, neratinib, axitinib, masitinib, pazopanib, sunitinib, sorafenib, toceranib, lestaurtinib, axitinib, cediranib, lenvatinib, nintedanib, pazopanib, regorafenib, semaxanib, sorafenib, sunitinib, tivozanib, toceranib, vandetanib, entrectinib, cabozantinib, imatinib, dasatinib, nilotinib, ponatinib, radotinib, bosutinib, lestaurtinib, ruxolitinib, pacritinib, cobimetinib, selumetinib, trametinib, binimetinib, alectinib, ceritinib, crizotinib, aflibercept,adipotide, denileukin diftitox, mTOR inhibitors such as Everolimus and Temsirolimus, hedgehog inhibitors such as sonidegib and vismodegib, CDK inhibitors such as CDK inhibitor (palbociclib).


In some embodiments, the composition comprising CAR-containing immune cells may be administered with a therapeutic regimen to prevent or reduce cytokine release syndrome (CRS) or neurotoxicity. The therapeutic regimen to prevent cytokine release syndrome (CRS) or neurotoxicity may include lenzilumab, tocilizumab, atrial natriuretic peptide (ANP), anakinra, iNOS inhibitors (e.g., L-NIL or 1400 W). In additional embodiments, the composition comprising CAR-containing immune cells can be administered with an anti-inflammatory agent. Anti-inflammatory agents or drugs include, but are not limited to, steroids and glucocorticoids (including betamethasone, budesonide, dexamethasone, hydrocortisone acetate, hydrocortisone, hydrocortisone, methylprednisolone, prednisolone, prednisone, triamcinolone), nonsteroidal anti-inflammatory drugs (NSAIDS) including aspirin, ibuprofen, naproxen, methotrexate, sulfasalazine, leflunomide, anti-TNF medications, cyclophosphamide and mycophenolate. Exemplary NSAIDs include ibuprofen, naproxen, naproxen sodium, Cox-2 inhibitors, and sialylates. Exemplary analgesics include acetaminophen, oxycodone, tramadol of proporxyphene hydrochloride. Exemplary glucocorticoids include cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, or prednisone. Exemplary biological response modifiers include molecules directed against cell surface markers (e.g., CD4, CD5, etc.), cytokine inhibitors, such as the TNF antagonists, (e.g., etanercept (ENBREL®), adalimumab (HUMIRA®) and infliximab (REMICADE®), chemokine inhibitors and adhesion molecule inhibitors. The biological response modifiers include monoclonal antibodies as well as recombinant forms of molecules. Exemplary DMARDs include azathioprine, cyclophosphamide, cyclosporine, methotrexate, penicillamine, leflunomide, sulfasalazine, hydroxychloroquine, Gold (oral (auranofin) and intramuscular) and minocycline.


In certain embodiments, the compositions described herein are administered in conjunction with a cytokine. Examples of cytokines are lymphokines, monokines, and traditional polypeptide hormones. Included among the cytokines are growth hormones such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor (HGF); fibroblast growth factor (FGF); prolactin; placental lactogen; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors (NGFs) such as NGF-beta; platelet-growth factor; transforming growth factors (TGFs) such as TGF-alpha and TGF-beta; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-alpha, beta, and -gamma; colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1alpha, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; IL-15, IL-21 a tumor necrosis factor such as TNF-alpha or TNF-beta; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture, and biologically active equivalents of the native sequence cytokines.


V. Methods of Sorting and Depletion


In some embodiments, provided are methods for in vitro sorting of a population of immune cells, wherein a subset of the population of immune cells comprises engineered immune cells expressing any one of the DLL3-specific CARs comprising epitopes specific for monoclonal antibodies (e.g., exemplary mimotope sequences). The method comprises contacting the population of immune cells with a monoclonal antibody specific for the epitopes and selecting the immune cells that bind to the monoclonal antibody to obtain a population of cells enriched in engineered immune cells expressing the DLL3-specific CAR.


In some embodiments, said monoclonal antibody specific for said epitope is optionally conjugated to a fluorophore. In this embodiment, the step of selecting the cells that bind to the monoclonal antibody can be done by Fluorescence Activated Cell Sorting (FACS).


In some embodiments, said monoclonal antibody specific for said epitope is optionally conjugated to a magnetic particle. In this embodiment, the step of selecting the cells that bind to the monoclonal antibody can be done by Magnetic Activated Cell Sorting (MACS).


In some embodiments, the mAb used in the method for sorting immune cells expressing the CAR is chosen from alemtuzumab, ibritumomab tiuxetan, muromonab-CD3, tositumomab, abciximab, basiliximab, brentuximab vedotin, cetuximab, infliximab, rituximab, bevacizumab, certolizumab pegol, daclizumab, eculizumab, efalizumab, gemtuzumab, natalizumab, omalizumab, palivizumab, ranibizumab, tocilizumab, trastuzumab, vedolizumab, adalimumab, belimumab, canakinumab, denosumab, golimumab, ipilimumab, ofatumumab, panitumumab, QBEND-10 and/or ustekinumab. In some embodiments, said mAb is rituximab. In another embodiment, said mAb is QBEND-10.


In some embodiments, the population CAR-expressing immune cells obtained when using the method for in vitro sorting CAR-expressing immune cells described above, comprises at least 70%, 75%, 80%, 85%, 90%, 95% of CAR-expressing immune cells. In some embodiments, the population of CAR-expressing immune cells obtained when using the method for in vitro sorting CAR-expressing immune cells, comprises at least 85% CAR-expressing immune cells.


In some embodiments, the population of CAR-expressing immune cells obtained when using the method for in vitro sorting CAR-expressing immune cells described above shows increased cytotoxic activity in vitro compared with the initial (non-sorted) cell population. In some embodiments, said cytotoxic activity in vitro is increased by 10%, 20%, 30% or 50%. In some embodiments, the immune cells are T-cells.


In some embodiments, the mAbs are previously bound onto a support or surface. Non-limiting examples of solid support may include a bead, agarose bead, a plastic bead a magnetic bead, a plastic welled plate, a glass welled plate, a ceramic welled plate, a column, or a cell culture bag.


The CAR-expressing immune cells to be administered to the recipient may be enriched in vitro from the source population. Methods of expanding source populations may include selecting cells that express an antigen such as CD34 antigen, using combinations of density centrifugation, immuno-magnetic bead purification, affinity chromatography, and fluorescent activated cell sorting.


Flow cytometry is may be used to quantify specific cell types within a population of cells. In general, flow cytometry is a method for quantitating components or structural features of cells primarily by optical means. Since different cell types can be distinguished by quantitating structural features, flow cytometry and cell sorting can be used to count and sort cells of different phenotypes in a mixture.


A flow cytometry analysis involves two primary steps: 1) labeling selected cell types with one or more labeled markers, and T) determining the number of labeled cells relative to the total number of cells in the population. In some embodiments, the method of labeling cell types includes binding labeled antibodies to markers expressed by the specific cell type. The antibodies may be either directly labeled with a fluorescent compound or indirectly labeled using, for example, a fluorescent-labeled second antibody which recognizes the first antibody.


In a some embodiments, the method used for sorting T cells expressing CAR is the Magnetic-Activated Cell Sorting (MACS). Magnetic-activated cell sorting (MACS) is a method for separation of various cell populations depending on their surface antigens (CD molecules) by using superparamagnetic nanoparticles and columns. MACS may be used to obtain a pure cell population. Cells in a single-cell suspension may be magnetically labeled with microbeads. The sample is applied to a column composed of ferromagnetic spheres, which are covered with a cell-friendly coating allowing fast and gentle separation of cells. The unlabeled cells pass through while the magnetically labeled cells are retained within the column. The flow-through can be collected as the unlabeled cell fraction. After a washing step, the column is removed from the separator, and the magnetically labeled cells are eluted from the column.


Detailed protocol for the purification of specific cell population such as T-cell can be found in Basu S et al. (2010). (Basu S, Campbell H M, Dittel B N, Ray A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J Vis Exp. (41): 1546).


In some aspects the present disclosure provides a method for depleting DLL3 specific CAR-expressing immune cells by in vivo depletion. in vivo depletion may include the administration of a treatment (e.g., a molecule that binds an epitope on the CAR) to a mammalian organism aiming to stop the proliferation of the CAR-expressing immune cells by inhibition or elimination.


One aspect of the invention is related to a method for in vivo depleting an engineered immune cell expressing a DLL3 CAR comprising a mAb specific epitope, comprising contacting said engineered immune cell or said CAR-expressing immune cell with at least one epitope-specific mAb. Another aspect of the invention relates to a method for in vivo depleting CAR-expressing immune cell which comprises a chimeric scFv (e.g., formed by insertion of a mAb-specific epitope) by contacting said engineered immune cell with epitope-specific antibodies. In some embodiments, the immune cells are T-cells and/or the antibodies are monoclonal.


According to one embodiment, the in vivo depletion of the immune engineered cells is performed on engineered immune cells which has been previously sorted using the in vitro method of the present invention. In this case, the same infused mAb may be used. In some embodiments, the mAb-specific antigen is CD20 antigen and the epitope-specific mAb is rituximab. In some embodiments, the invention relates to a method for in vivo depleting an engineered immune cell expressing a CAR comprising an mAb-specific epitope (CAR-expressing immune cell) in a patient comprising contacting said CAR-expressing immune cell with at least one epitope-specific mAb.


In some embodiments, the step of contacting said engineered immune cell or said CAR-expressing immune cell with at least one epitope-specific mAb comprises infusing the patient with epitope-specific mAb (e.g., rituximab). In some embodiments, the amount of epitope-specific mAb administered to the patient is sufficient to eliminate at least 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% of the CAR-expressing immune cell in the patient.


In some embodiments, the step of contacting said engineered immune cell or said CAR-expressing immune cell with at least one epitope-specific mAb comprises infusing the patient with about 375 mg/m2 of rituximab, once or several times. In some embodiments, the mAb (e.g., rituximab) is administered once weekly.


In some embodiments, when immune cells expressing a CAR comprising an mAb-specific epitope (CAR-expressing immune cells) are depleted in a complement dependent cytotoxicity (CDC) assay using epitope-specific mAb, the amount of viable CAR-expressing immune cells decreases. In some embodiments, the amount of viable CAR-expressing immune cells decreases by at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%. In some embodiments, said mAb-specific epitope is a CD20 epitope or mimotope and/or the epitope-specific mAb is rituximab.


In certain embodiments, the in vivo depletion of CAR-engineered immune cells is performed by infusing bi-specific antibodies. By definition, a bispecific monoclonal antibody (BsAb) is an artificial protein that is composed of fragments of two different monoclonal antibodies and consequently binds to two different types of antigen. These BsAbs and their use in immunotherapy have been reviewed in Muller D and Kontermann R. E. (2010) Bispecific Antibodies for Cancer Immunotherapy, BioDrugs 24 (2): 89-98.


According to another particular embodiment, the infused bi-specific mAb is able to bind both the mAb-specific epitope borne on engineered immune cells expressing the chimeric scFv and to a surface antigen on an effector and cytotoxic cell (e.g., immune cells such as lymphocytes, macrophages, dendritic cells, natural killer cells (NK Cell), cytotoxic T lymphocytes (CTL)). By doing so, the depletion of engineered immune cells triggered by the BsAb may occur through antibody-dependent cellular cytotoxicity (ADCC). (Deo Y M, Sundarapandiyan K, Keler T, Wallace P K, and Graziano R F, (2000), Journal of Immunology, 165 (10):5954-5961]).


In some embodiments, a cytotoxic drug is coupled to the epitope-specific mAbs which may be used to deplete CAR-expressing immune cells. By combining targeting capabilities of monoclonal antibodies with the cancer-killing ability of cytotoxic drugs, antibody-drug conjugate (ADC) allows a sensitive discrimination between healthy and diseased tissue when compared to the use of the drug alone. Market approvals were received for several ADCs; the technology for making them—particularly on linkers—are described in (Payne, G. (2003) Cancer Cell 3:207-212; Trail et al (2003) Cancer Immunol. Immunother. 52:328-337; Syrigos and Epenetos (1999) Anticancer Research 19:605-614; Niculescu-Duvaz and Springer (1997) Adv. Drug Del. Rev. 26:151-172; U.S. Pat. No. 4,975,278).


In some embodiments, the epitope-specific mAb to be infused is conjugated beforehand with a molecule able to promote complement dependent cytotoxicity (CDC). Therefore, the complement system helps or complements the ability of antibodies to clear pathogens from the organism. When stimulated an activation cascade is triggered as a massive amplification of the response and activation of the cell-killing membrane attack complex. Different molecule may be used to conjugate the mAb, such as glycans (Courtois, A, Gac-Breton, S., Berthou, C, Guezennec, J., Bordron, A. and Boisset, C. (2012), Complement dependent cytotoxicity activity of therapeutic antibody fragments may be acquired by immunogenic glycan coupling, Electronic Journal of Biotechnology ISSN: 0717-3458; http://www.ejbiotechnology.info DOI: 10.2225/vol15-issue5).


VI. Kits and Articles of Manufacture


The present application provides kits comprising any one of the DLL3 containing CARs or DLL3 CAR containing immune cells described herein, and pharmaceutical compositions of the same. In an embodiment of a kit the engineered CAR cells are frozen in a suitable medium, such as CryoStor® CS10, CryoStor® CS2 or CryoStor® CS5 (BioLife Solutions).


In some exemplary embodiments, a kit of the disclosure comprises allogeneic DLL3 CAR-containing T-cells and a CD52 antibody for administering to the subject a lymphodepletion regiment and a CAR-T regimen.


The present application also provides articles of manufacture comprising any one of the therapeutic compositions or kits described herein. Examples of an article of manufacture include vials (e.g., sealed vials).


EXAMPLES
Example 1: Generation and Testing of DLL3 Targeting Antibodies

The monoclonal antibodies to be used in accordance with the invention may be made by the hybridoma method first described by Kohler and Milstein, Nature 256:495, 1975, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. Anti-DLL3 antibodies were first screened in Flag-DLL3 (adipogen) ELISA and then screened in FACS to determine binding to HEK-293T cells with or without human DLL3 expression.


To test if the DLL3 specific antibodies can recognize cells that express endogenous DLL3, DMS 273 (Sigma, cat #95062830), DMS 454 (Sigma, cat #95062832), and SHP-77 (ATCC, cat # CRL-2195) cells were stained with 2 ug/ml of purified DLL3 antibodies with mouse IgG2A backbone (mIgG2a) or control mIgG2a antibody in PBS supplemented with 1% BSA. Bound DLL3 antibodies were detected with PE labelled anti-mouse IgG antibody (Biolegend, cat #405307). The samples were analyzed by flow cytometry. Representative images showing binding of DLL3 antibodies to DMS 273, DMS 454 and SHP-77 cells are included in FIG. 1.


Example 2: Determination of Kinetics and Affinity of Anti-DLL3 Antibodies Toward DLL3

This example determines the binding kinetics and affinity of various anti-DLL3 antibodies at 37° C. as both full-length monoclonal antibodies (IgG) and scFvs toward human, cynomolgus monkey (cyno) and mouse DLL3. For the scFvs, the variable regions of the anti-DLL3 antibodies derived from their respective hybridoma were cloned flanking a (GGGGS)3 (SEQ ID NO: 472) or (GGGGS)4 (SEQ ID NO: 478) linker followed by part of the hinge and Fc from a modified human IgG2 sequence resulting in a scFv-Fc fusion which was expressed using Expi293. The extracellular domain (ECD) from human, cyno and mouse DLL3 was fused with a C-terminal 8×His epitope tag (SEQ ID NO: 473) and Avi tag, expressed using Expi293 then purified by immobilized metal affinity chromatography (IMAC) followed by size exclusion chromatography (SEC).


The antibody binding kinetics were determined by surface plasmon resonance (Biacore™ surface plasmon resonance (SPR) system, GE Healthcare Bio-Sciences, Pittsburgh Pa.). The antibodies diluted in HBS-T+ running buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl, 0.05% v/v Tween20, 1 mg/mL BSA) were captured on a CM4 chip immobilized with an antibody specific for the anti-DLL3 antibody constant domains. Purified DLL3 was serially diluted into HBS-T+, injected for 2 min at 30 uL/min and a dissociation time of 10 min then the surface regenerated with either 10 mM Glycine-HCl pH 1.7 or phosphoric acid between injections. Kinetic association rates (kon) and dissociation rates (koff) are obtained simultaneously by fitting the data globally to a 1:1 Langmuir binding model (Karlsson, R. Roos, H. Fagerstam, L. Petersson, B. (1994). Methods Enzymology 6. 99-110) using the BIAevaluation program. Equilibrium dissociation constant (Kd) values are calculated as koff/kon.


The kinetics and affinity parameters for tested anti-DLL3 antibodies are shown in Table 8. Specifically, Table 8 shows the affinity of anti-DLL3 antibodies (either as IgG or scFv-Fc fusion) to human, cyno and mouse DLL3. The last column shows which extracellular domain of human DLL3 each of anti-DLL3 antibodies recognizes









TABLE 8







Affinity of anti-DLL3 antibodies













IgG
ScFv
ScFv
ScFv




affinity to
affinity to
affinity to
affinity to



huDLL3
huDLL3
cynoDLL3
msDLL3
Binding


Clones
(nM)
(nM)
(nM)
(nM)
domain















2D3
5.47
ND
ND
ND
EGF3


5E12
7.76
ND
ND
ND
DSL


26C8
5.54
5.53
4.51
 3.05
EGF3


2A6.C5
23.4
48.4
46.8
42.1
EGF3


6D8
<1.42
<1.2
NB
<1.5
EGF1


7F9
12.67
27.3
>250
NB
N-ter


8E11
5.86
11.2
10.5
 7.03
EGF3


9D3
21.1
23.3
21.8
 7.19
EGF3


2G1
38.1
17.2
20.5
 2.61
EGF5


3F2
14.8
8.18
6.81
N
N-ter


17A2
5.49
3.82
<0.97
N
EGF1


6F8
26.5
40.8
NB
19.3
EGF5


9H12-K
ND
186
NB
NB
EGF4


4H8
18.5
23.3
27.0
18.6
EGF4


10G1-K
ND
26.3
28.8
27.7
EGF5


11 A3
4.8
ND
ND
ND
EGF3





N-ter = N-terminus


ND = Not Determined


NB = No Binding






Example 3: Generation of CHO Cells Expressing Full Length and Truncated DLL3

A panel of CHO cells expressing full length and a variety of truncated human DLL3 were used to determine which domain each DLL3 targeting antibody recognizes. The extracellular domain of human DLL3 can be subdivided into different sub-domains that are defined by the following amino acid positions: Signal peptide: 1-26; N-terminus (N-ter): 27-175; DSL: 176-215; EGF1:215-249; EGF2:274-310; EGF3:312-351; EGF4:353-389; EGF5: 391-427; and EGF6: 429-465.


To generate truncated DLL3 proteins used for epitope mapping, the sequences of the respective 8 extracellular domains (signal peptide plus N-terminus, DSL, EGF1, EGF2, EGF3, EGF4, EGF5 and EGF6) of human DLL3 were deleted one by one from the antigen, starting from the N-terminus. Table 6 shows the truncated DLL3 proteins that were generated (also see FIGS. 2A-2D).









TABLE 6







Truncated DLL3 proteins








Name/



Component
Sequence





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLAG


complete ECD
VFELQIHSFGPGPGPGAPRSPCSARLPCRLFFRV


(SEQ ID NO:
CLKPGLSEEAAESPCALGAALSARGPVYTEQPGA



PAPDLPLPDGLLQVPFRDAWPGTFSFIIETWREE


556)
LGDQIGGPAWSLLARVAGRRRLAAGGPWARDIQR



AGAWELRFSYRARCEPPAVGTACTRLCRPRSAPS



RCGPGLRPCAPLEDECEAPLVCRAGCSPEHGFCE



QPGECRCLEGWTGPLCTVPVSTSSCLSPRGPSSA



TTGCLVPGPGPCDGNPCANGGSCSETPRSFECTC



PRGFYGLRCEVSGVTCADGPCFNGGLCVGGADPD



SAYICHCPPGFQGSNCEKRVDRCSLQPCRNGGLC



LDLGHALRCRCRAGFAGPRCEHDLDDCAGRACAN



GGTCVEGGGAHRCSCALGFGGRDCRERADPCAAR



PCAHGGRCYAHFSGLVCACAPGYMGARCEFPVHP



DGASALPAAPPGLRPGDPQRYLLPPALGLLVAAG



VAGAALLLVHVRRRGHSQDAGSRLLAGTPEPSVH



ALPDALNNLRTQEGSGDGPSSSVDWNRPEDVDPQ



GIYVISAPSIYAREVATPLFPPLHTGRAGQRQHL



LFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSA


DSL-EGF6
RCEPPAVGTACTRLCRPRSAPSRCGPGLRPCAPLE


(SEQ ID NO:
DECEAPLVCRAGCSPEHGFCEQPGECRCLEGWTGP


557)
LCTVPVSTSSCLSPRGPSSATTGCLVPGPGPCDGN



PCANGGSCSETPRSFECTCPRGFYGLRCEVSGVTC



ADGPCFNGGLCVGGADPDSAYICHCPPGFQGSNCE



KRVDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGP



RCEHDLDDCAGRACANGGTCVEGGGAHRCSCALGF



GGRDCRERADPCAARPCAHGGRCYAHFSGLVCACA



PGYMGARCEFPVHPDGASALPAAPPGLRPGDPQRY



LLPPALGLLVAAGVAGAALLLVHVRRRGHSQDAGS



RLLAGTPEPSVHALPDALNNLRTQEGSGDGPSSSV



DWNRPEDVDPQGIYVISAPSIYAREVATPLFPPLH



TGRAGQRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSA


EGF1- EGF6
PLVCRAGCSPEHGFCEQPGECRCLEGWTGPLCTVP


(SEQ ID NO:
VSTSSCLSPRGPSSATTGCLVPGPGPCDGNPCANG


558)
GSCSETPRSFECTCPRGFYGLRCEVSGVTCADGPC



FNGGLCVGGADPDSAYICHCPPGFQGSNCEKRVDR



CSLQPCRNGGLCLDLGHALRCRCRAGFAGPRCEHD



LDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDC



RERADPCAARPCAHGGRCYAHFSGLVCACAPGYMG



ARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPA



LGLLVAAGVAGAALLLVHVRRRGHSQDAGSRLLAG



TPEPSVHALPDALNNLRTQEGSGDGPSSSVDWNRP



EDVDPQGIYVISAPSIYAREVATPLFPPLHTGRAG



QRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSG


EGF2- EGF6
PGPCDGNPCANGGSCSETPRSFECTCPRGFYGLRC


(SEQ ID NO:
EVSGVTCADGPCFNGGLCVGGADPDSAYICHCPPG


559)
FQGSNCEKRVDRCSLQPCRNGGLCLDLGHALRCRC



RAGFAGPRCEHDLDDCAGRACANGGTCVEGGGAHR



CSCALGFGGRDCRERADPCAARPCAHGGRCYAHFS



GLVCACAPGYMGARCEFPVHPDGASALPAAPPGLR



PGDPQRYLLPPALGLLVAAGVAGAALLLVHVRRRG



HSQDAGSRLLAGTPEPSVHALPDALNNLRTQEGSG



DGPSSSVDWNRPEDVDPQGIYVISAPSIYAREVAT



PLFPPLHTGRAGQRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSS


EGF3- EGF6
GVTCADGPCFNGGLCVGGADPDSAYICHCPPGFQG


(SEQ ID NO:
SNCEKRVDRCSLQPCRNGGLCLDLGHALRCRCRAG


560)
FAGPRCEHDLDDCAGRACANGGTCVEGGGAHRCSC



ALGFGGRDCRERADPCAARPCAHGGRCYAHFSGLV



CACAPGYMGARCEFPVHPDGASALPAAPPGLRPGD



PQRYLLPPALGLLVAAGVAGAALLLVHVRRRGHSQ



DAGSRLLAGTPEPSVHALPDALNNLRTQEGSGDGP



SSSVDWNRPEDVDPQGIYVISAPSIYAREVATPLF



PPLHTGRAGQRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSR


EGF4- EGF6
VDRCSLQPCRNGGLCLDLGHALRCRCRAGFAGPRC


(SEQ ID NO:
EHDLDDCAGRACANGGTCVEGGGAHRCSCALGFGG


561)
RDCRERADPCAARPCAHGGRCYAHFSGLVCACAPG



YMGARCEFPVHPDGASALPAAPPGLRPGDPQRYLL



PPALGLLVAAGVAGAALLLVHVRRRGHSQDAGSRL



LAGTPEPSVHALPDALNNLRTQEGSGDGPSSSVDW



NRPEDVDPQGIYVISAPSIYAREVATPLFPPLHTG



RAGQRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSD


EGF5- EGF6
LDDCAGRACANGGTCVEGGGAHRCSCALGFGGRDC


(SEQ ID NO:
RERADPCAARPCAHGGRCYAHFSGLVCACAPGYMG


562)
ARCEFPVHPDGASALPAAPPGLRPGDPQRYLLPPA



LGLLVAAGVAGAALLLVHVRRRGHSQDAGSRLLAG



TPEPSVHALPDALNNLRTQEGSGDGPSSSVDWNRP



EDVDPQGIYVISAPSIYAREVATPLFPPLH 



TGRAGQRQHLLFPYPSSILSVK





Human DLL3
METDTLLLWVLLLWVPGSTGYPYDVPDYAGMLGSR


EGF6
ADPCAARPCAHGGRCYAHFSGLVCACAPGYMGARC


(SEQ ID NO:
EFPVHPDGASALPAAPPGLRPGDPQRYLLPPALGL


563)
LVAAGVAGAALLLVHVRRRGHSQDAGSRLLAGTPE



PSVHALPDALNNLRTQEGSGDGPSSSVDWNRPEDV



DPQGIYVISAPSIYAREVATPLFPPLHTGRAGQRQ



HLLFPYPSSILSVK









To establish CHO cells expressing full length and truncated human DLL3 with an N-terminal HA tag, the coding sequences for full length human DLL3 (SEQ ID NO: 556; GeneBank record NM_016941) and the 7 HA-tagged truncated human DLL3 (SEQ ID NOs: 557 to 563) were cloned into pLVX-SFFV-Puro-P2A-TetO3G vector (Clontech). A lentivirus encoding either the full length or truncated human DLL3s were generated by co-transfecting 293T cells with the pLVX-SFFV-Puro-P2A-TetO3G vectors with psPAX2 and pMD2G vectors. Two days after transfection, supernatant containing viral particles were collected and used to transduce CHO cells together with 5 ug/ml of polybrene.


The expression of full length and truncated DLL3 was verified in a FACS assay using PE conjugated anti-HA antibody (Biolegend, cat #901518). As negative control, cells were incubated with isotype-matched and PE-labelled antibody (Biolegend, cat #400111) instead of anti-HA antibody. The bottom panel of FIG. 2A shows the expression of full length and truncated DLL3 on CHO cells.


Example 4: Epitope Mapping of DLL3 Targeting Antibodies

CHO cells expressing full length and truncated DLL3 were stained with hybridoma supernatant or purified DLL3 antibodies in PBS+1% BSA. Bound DLL3 antibodies were detected with PE labelled anti-mouse IgG antibody (Biolegend, cat #405307). The samples were analyzed by flow cytometry. The binding domain for each clone was determined using the panel of CHO expressing full length or truncated DLL3 described in Example 2. Flow cytometry analysis demonstrated that, for example, if a clone binds to all truncated proteins including EGF3 but not to any truncated protein without EGF3, then such clone recognizes EGF3. As shown in the representative images in FIG. 2D, anti-DLL3 antibodies recognize DSL, EGF1 and EGF3 domains, respectively. Signals from the PE channel are shown on the x-axis and counts are shown on the y-axis.


Example 5: Generation of DLL3 Specific CAR-T Cells

This example describes the construction of anti-DLL3 chimeric antigen receptors (CARs).


The anti-DLL3 antibodies listed in Table 1a were reformatted to CARs. The amino acid sequences of the heavy chain variable regions and light chain variable regions of these antibodies (Table 1b and Table 1c) were used to design single chain variable fragments (scFvs) (Table 1d) having the following general structure: heavy chain variable region--linker--light chain variable region. The linker had the following amino acid sequences GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 478).


Protein sequences encoding chimeric antigen receptor were designed to contain the following elements from 5′ to 3′ (FIG. 3A, Table 7): the CD8α signal sequence (SEQ ID NO: 477), an anti-DLL3 scFv, hinge and transmembrane regions of the human CD8α molecule (SEQ ID NO: 479), the cytoplasmic portion of the 41BB molecule (SEQ ID NO: 291) and the cytoplasmic portion of the CD3ζ molecule (SEQ ID NO: 292).









TABLE 7







CAR amino acid sequences









SEQ




ID
Name/



NO:
Component
Sequence





477
CD8α signal
MALPVTALLLPLALLLHAARP



sequence






478
linker
GGGGSGGGGSGGGGSGGGGS





479
CD8α hinge and
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC



transmembrane
DIYIWAPLAGTCGVLLLSLVIT



regions






480
41BB cytoplasmic
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL



signaling domain






481
CD3ζ cytoplasmic
LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRG



signaling domain
RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR





469
CD3ζ cytoplasmic
LRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRG



signaling domain
RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR




RGKGHDGLYQGLSTATKDTYDALHMQALPPR





482
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 2D3 scFv,
TVSDNSISNYYWSWIRQPPGKGLEWIAYIYYSGTTNYNPSLKS



CD8α hinge and
RVTISLDTSKNQFSLKLSSVTAADTAVYYCARLFNWGFAFDI



transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVMTQSPAT



regions, 41BB
LSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGAST



cytoplasmic
RATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPLT



signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





483
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLMKPSETLSLTC



sequence, 5A2 scFv,
TVSGGSISSSYWSCIRQPPGKGLEWIGYIYYSGTTNYNPSLKSR



CD8α hinge and
VTLSLDTSKNQFSLRLTSVTAADTAVYYCARVAPTgFWFDYW



transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLS



regions, 41BB
LSPGERATLSCRASQRVSSRYLAWYQQKPGQAPRLLIYGASSR



cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEEFAVYYCQQYGTSPLTF



signaling domain,
GGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFK



signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





484
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS



sequence, 7F9 scFv,
CAASGFTFSSHDMHWVRQATGKGLEWVSAIGIAGDTYYSGS



CD8α hinge and
VKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARANWGeG



transmembrane
AFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQ



regions, 41BB
SPSSLSASVGDRVTITCRASQGISDYLAWYQQKPGKIPKLLIYA



cytoplasmic
ASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSV



signaling domain,
PLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





485
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 9D3 scFv,
TVSDDSISNYYWSWIRQPPGKGLEWIGYIFYSGTTNHNPSLKS



CD8α hinge and
RLTISLDKAKNQFSLRLSSVTAADTAVYYCARVFNWgFAFDI



transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGT



regions, 41BB
LSLSPGERATLSCRASQRISRTYLAWYQQKPGQAPRLLIYGAS



cytoplasmic
SRATGIPDRFTGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSPL



signaling domain,
TFGGGTKVEINTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



CD3ζ cytoplasmic
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYI



signaling domain
FKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





486
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 26C8
TVSDNSISNYYWSWIRQPPGKGLEWIAYIYYSGTTNYNPSLKS



scFv, CD8α hinge
RVTISLDTSKNQFSLQLSSVTAADAAVYYCARVFHWgFAFDI



and transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGT



regions, 41BB
LSLSPGERATLSCRASQRVSNTYLAWYQQNPGQAPRLLIYGAS



cytoplasmic
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSPL



signaling domain,
TFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG



CD3ζ cytoplasmic
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYI



signaling domain
FKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP




AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





487
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 2A6.C5
TVSNVSISSYYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKS



scFv, CD8α hinge
RVTMSVDTSKNQFSLKLSSVTAADTAVYFCARLSNWgFAFDI



and transmembrane
WGQGTMVTFSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTL



regions, 41BB
SLSPGERATLSCRASQTISSSYLAWYQQKPGQAPRLLIYGASSR



cytoplasmic
ATGIPDRFSGSGSGTEFTLTISRLEPEDFAVYYCQQYGWSPITF



signaling domain,
GQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFK



signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





488
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS



sequence, 5E12
CAASGFTFSSYDMHWVRQATGKGLEWVSAIGPAGDTYYPGS



scFv, CD8α hinge
VKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARADPPyyy



and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSDIVM



regions, 41BB
TQSPLSLPVTPGEPASISCRSSQSLLHSNEYNYLDWYLQKPGQS



cytoplasmic
PQLLIYLGSNRASGVPDRFSGSGSGTDFILKISRVEAEDVGVYY



signaling domain,
CMQALEIPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





489
CD8α signal
MALPVTALLLPLALLLHAARPQITLKESGPTLVKPTQTLTLTCT



sequence, 6D8 scFv,
FSGFSLSTrgVGVGWIRQPPGKALEWLALIYWNDDKRYSPSLQ



CD8α hinge and
TRLTITKDTPKNQVVLTMTNMDPVDTATYYCARSNWGnWYF



transmembrane
ALWGRGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPA



regions, 41BB
TLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDAF



cytoplasmic
YRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRSNWPI



signaling domain,
TFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





490
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 8E11
TVSGDSISNYYWTWIRQPPGKGLEWIGYIYYSGTTNSNPSLKS



scFv, CD8α hinge
RVTVSLDTSKSQFSLNLSSVTAADTAVYYCARVFNRgFAFDIW



and transmembrane
GQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLS



regions, 41BB
LSPGERATLSCRASQRISNTYLAWYQQKPGQAPRLLIYGASSR



cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEDFAAYYCQQYDTSPLTF



signaling domain,
GGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFK



signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





491
CD8α signal
MALPVTALLLPLALLLHAARPQVTLRESGPALVKPTQTLTLTC



sequence, 5C1.A4
TVSGVSLSTsgMCVSWIRQPLGKALEWLGFIDWDDDKYYNTS



scFv, CD8α hinge
LKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARIRGYsgsy



and transmembrane
DAFDIWGQGTVVIVSSGGGGSGGGGSGGGGSGGGGSDIVMT



regions, 41BB
QSPLSLPVTPGEPASISCRSSQSLLHSNGYNHLDWYLQKPGQSP



cytoplasmic
QVLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYF



signaling domain,
CMQALQTPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRP



CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITK



signaling domain
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV




KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP




EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





492
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQVSGPGLVKPSETLSLTC



sequence, 9F7 scFv,
SVSGGSISSYYWSWIRQSPGKGLDWIGYMYYSGTTNYNPSLK



CD8α hinge and
SRVTISVDTSKNQFSLKLSSVTATDTAVYYCARVGLTgFFFDY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL



regions, 41BB
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSL



cytoplasmic
QSGVPSRFSGSGSGTDFTLTVSSLQPEDFATYYCLQDYNYPYT



signaling domain,
FGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





493
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGGGLLKPSETLSLT



sequence, 2C3 scFv,
CAVYGGSSSGNYWSWIRQPPGKRLEWIGEINHSGTTSYNPSLK



CD8α hinge and
SRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGELGIADSWG



transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSA



regions, 41BB
SVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIYKASSLES



cytoplasmic
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQG



signaling domain,
TKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR



CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPF



signaling domain
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ




GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





494
CD8α signal
MALPVTALLLPLALLLHAARPQLQLQESGPGLVKPSETLSLTC



sequence, 2G1 scFv,
TVSGGSISSssYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLK



CD8α hinge and
SRVSISVDTSKNQFSLRLSSVTAADTAVYYCAREIIVgaTHFDY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL



regions, 41BB
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPELLIYAASSL



cytoplasmic
QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTF



signaling domain,
GPGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFK



signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





495
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 3E4 scFv,
CAVYGGSFSGYYWSWIRQPPGKGLEWIGEIIHSGSSNYNPSLK



CD8α hinge and
SRVSISVDTSKNQFSLKLSSVTAADTAVYYCSRGEYGsgSRFDY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL



regions, 41BB
SASVGDRVAITCRASQGIRDDLGWYQQKPGKAPKLLIYAASS



cytoplasmic
LQSGVPSRFSGSRSDTDFTLTISSLQPEDFATYYCLQDYDYPLT



signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





496
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC



sequence, 3F2 scFv,
AVSGGSISSnNWWSWVRQPPGKGLEWIGDIHHSGSTNYKPSL



CD8α hinge and
KSRVTISVDKSKNQFSLNLISVTAADTAVYYCAREAGGYFDY



transmembrane
WGQGILVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTL



regions, 41BB
SASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLISKASSL



cytoplasmic
ESGVPSRFSGSGSGPEFTLTISSLQPADFATYYCQQYNSYSTFG



signaling domain,
QGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH



CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQP



signaling domain
FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





497
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 4F9 scFv,
CAVYGGSFSGYYWTWIRQPPGKGLEWIGEITHSGSTNYNPSL



CD8α hinge and
KSRVSISVDTSKNQFSLKLSSVTAADTAVYYCARGEYGsgSRF



transmembrane
DYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSP



regions, 41BB
SSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAPKLLIYA



cytoplasmic
ASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYDY



signaling domain,
PLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





498
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 4G9 scFv,
CAVYGGSFSGYYWSWIRQPPGKGLEWIGEITHSGSTNYNPSLK



CD8α hinge and
SRVSISVDTSKNQFSLKLSSVTAADTAVYYCARGEYGsgSRFD



transmembrane
YWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPS



regions, 41BB
SLSASVGDRVALTCRASQGIRDDLGWYQQKPGKAPKLLIYAA



cytoplasmic
SSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYDYP



signaling domain,
LTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





499
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 11H7
CAVYGGSFSAYYWNWIRQPPGKGLEWIGEINHSGSTNYNPSL



scFv, CD8α hinge
KSRVTISVDTSKNQFSLNLTSLTAADTAVYYCARGLDSsgwYP



and transmembrane
FDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQS



regions, 41BB
PSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYA



cytoplasmic
ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQADSF



signaling domain,
PFTFGPGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





500
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 16H7
CAVFGGSFSGDYWSWIRQPPGKGLEWIGEINHSGITSFNPSLKS



scFv, CD8α hinge
RVTISVDTSKNQFSLKLSSVTAADTAVYYCARGELGIPDNWG



and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSA



regions, 41BB
SVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIYKASSLES



cytoplasmic
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQG



signaling domain,
TKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR



CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPF



signaling domain
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ




GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





501
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC



sequence, 17A2
VVFGDSISSsNWWSWVRQPPGKGLEWIGEVFHSGSTNYNPSL



scFv, CD8α hinge
KSRVTISVDKSKNQFSLKLSSVTAADTAVYYCARAAVAGALD



and transmembrane
YWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQSPD



regions, 41BB
SLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPN



cytoplasmic
LLVYWASTRESGVPDRFSGAGSGTDFTLTISSLQAEDVAVYYC



signaling domain,
QQYYGTSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





502
CD8α signal
MALPVTALLLPLALLLHAARPQITLRESGPTLVKPTQTLTLTCT



sequence, 6H1 scFv,
FSGFSLSTsgLGVGWIRQPPGEALEWLALIYWNDDKRYSPSLK



CD8α hinge and
SRLSITKDTSKNQVVLIMTNMDPVDTATYYCVHRRIAaPGSVY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSS



regions, 41BB
VSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLISAASS



cytoplasmic
LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQANSFPFT



signaling domain,
FGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





503
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS



sequence, 6H5 scFv,
CKVSGYTLTELSMHWVRQAPGKGPEGMGGFDpEDGKTIYAQ



CD8α hinge and
KFQGRVTMTEDTSADTAYMELNSLRSEDTAVYYCATLLRGlD



transmembrane
AFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMT



regions, 41BB
QSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLI



cytoplasmic
YAASSLQSGVPSRFSGSGSGTEFTLTISTLQPEDFATYYCLQHN



signaling domain,
SYPRTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA



CD3ζ cytoplasmic
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKK



signaling domain
LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG




LYQGLSTATKDTYDALHMQALPPR





504
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT



sequence, 10D1
CAVYGGSFSGYYWRWIRQPPGKGLEWIGEISHSGSTNYNPSL



scFv, CD8α hinge
KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAVRGYSygyPLF



and transmembrane
DYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSP



regions, 41BB
SSLSASVGDRVTITCRASQGIRNDLGWYQQKLGKAPKRLIYA



cytoplasmic
ASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYNSY



signaling domain,
PRTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





505
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC



sequence, 11F6
AVSGDSISSNWWTWVRQPPGKGLEWIGDIHHSGSTNYNPSLK



scFv, CD8α hinge
SRVTMSVDKSENQFSLKLSSVTAADTAVFYCARDGGGTLDY



and transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPST



regions, 41BB
LSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKAST



cytoplasmic
LESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNGYSTF



signaling domain,
GQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFK



signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY




QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP




QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST




ATKDTYDALHMQALPPR





506
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGSSVKVS



sequence, 6F8 scFv,
CKASGGTFTNYCISWVRQAPGQGLEWMGGIIpIFGTTNYAQTF



CD8α hinge and
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDNGDryyYD



transmembrane
MDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQP



regions, 41BB
PSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIY



cytoplasmic
DNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWD



signaling domain,
SSLSAVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACR



CD3ζ cytoplasmic
PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGR



signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS




RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG




GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





507
CD8α signal
MALPVTALLLPLALLLHAARPQVPLVQSGAEVKKPGSSVKVS



sequence, 3G6-L1
CKASGGTFSTYSISWVRQAPGQGLEWMGGIIpIFGTTNYAQKF



scFv, CD8α hinge
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDGEGsyyyy



and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVL



regions, 41BB
TQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKL



cytoplasmic
LIYDNNKRPSGIPDRFFGSKFGTSATLGITGLQTGDEADYYCGT



signaling domain,
WDSSLSAVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





508
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 4C6 scFv,
TVSGDSISSYYWSWIRQPPGKGLEWIGYMYYSGITNYNPSLKS



CD8α hinge and
RVNISLDTSKNQFSLKLGSVTAADTAVYYCARLSVAgFYFDY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTL



regions, 41BB
SLSPGERATLSCRASQSVTRSYLAWYQQKPGQAPRLLIYGASS



cytoplasmic
RATDIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGTSPLT



signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





509
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 4E6 scFv,
TVSSDSISSYYWSWIRQPPGKGLEWISYIYYSGISNYNPSLKSR



CD8α hinge and
VSISVDTSKNQFSLRLSSVTAADTAVYYCARISVAgFFFDNWG



transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIMLTQSPDTLSL



regions, 41BB
SPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA



cytoplasmic
AGVPDRFSGSGSGTDFTLTISRLAPEDFVVYYCQQYGISPLTFG



signaling domain,
GGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH



CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQP



signaling domain
FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





510
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



sequence, 4H8 scFv,
AISGDSVSSnsATWNWIRQSPSRGLEWLGRTYYRSKwyDDYAV



CD8α hinge and
SVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVgapD



transmembrane
GFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT



regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLLI



cytoplasmic
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSAW



signaling domain,
DDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA



CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRG



signaling domain
RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM




GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





511
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS



sequence, 9H12-K
CKASGYTFTGYSIHWVRQAPGQGLEWMGWINpNSGGTFYAQ



scFv, CD8α hinge
KFQGRVTMTRDTSISTVYMELSRLRSDDTAVYYCARDGWGdy



and transmembrane
yyYGLDVWGQGTTVTVSLGGGGSGGGGSGGGGSGGGGSDIQ



regions, 41BB
MTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQKPGKAPK



cytoplasmic
LLIYTASSLQGGVPSRFSGSGSGTDFTLTISSLQPEDLATYSCQQ



signaling domain,
ANVFPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACR



CD3ζ cytoplasmic
PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGR



signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS




RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG




GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





512
CD8α signal
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSC



sequence, 10G1-K
AASGFTFSSYAMNWVRQAPGKGLEWVSTISgSGGSTYYADSV



scFv, CD8α hinge
KGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCAIDPEYydilTG



and transmembrane
GDYWGQGTLVTVSSGGGGSGGGGSGGGGGSGGGGSDIQMT



regions, 41BB
QSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVPKRLI



cytoplasmic
YAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHD



signaling domain,
SFPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA



CD3ζ cytoplasmic
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKK



signaling domain
LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS




ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG




KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG




LYQGLSTATKDTYDALHMQALPPR





513
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 11A3
TVSSDSISNYYWSWIRQPPGKGLEWISYIYYSGITNYNPSLKSR



scFv, CD8α hinge
VTISVDTSKNQFSLKLSSVTAADTAVYYCARITVTgFYFDYWG



and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLSLS



regions, 41BB
PGERATLSCRASQSISRSYLAWYQQKPGQAPRHLIYGASSRAT



cytoplasmic
GIPDRFSGSGSGTDFILTISRLEPEDFAVYYCQQYDTSPLTFGG



signaling domain,
GTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT



CD3ζ cytoplasmic
RGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPF



signaling domain
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ




GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





514
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



sequence, 3B11
AISGDSVSSnsVVWNWIRQSPSRGLEWLGRTYYRSKwyDDYA



scFv, CD8α hinge
VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYHCARGGIVgap



and transmembrane
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT



regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVSWYQQFPGTAPKLLI



cytoplasmic
YTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA



signaling domain,
WDDSLNGHVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





515
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



sequence, 5G2 scFv,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGWTYYRSKYYndYA



CD8α hinge and
VSLKSRITINPDTSKNQFSLQLNSLTPEDTAVYYCTRGGIVgapD



transmembrane
GFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQ



regions, 41BB
PPSASGTPGQRVTISCSGSNSNIGSNPINWYQQLPGTAPKLLIYS



cytoplasmic
NNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWD



signaling domain,
DSLNGHVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEAC



CD3ζ cytoplasmic
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGR



signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS




RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG




GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





516
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 11E4
TVSGGSISSYYWSWIRQSPGKGLEWIGYVYYSDITNYNPSLKS



scFv, CD8α hinge
RVTISVDTSKNQFSLNLNSVTAADTAFYFCARIGVAgFYFDYW



and transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPDTLS



regions, 41BB
LSPGERATLSCRASQSVSRRYLAWYQQKPGQAPRLLIYGASSR



cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEDFEVYYCQQYGTSPITFG



signaling domain,
QGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH



CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQP



signaling domain
FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQ




QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ




EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





517
CD8α signal
MALPVTALLLPLALLLHAARPQIQLQQSGPGLVKPSQTLSLTC



sequence,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGRTYYRSKwyNDYA



2404.8E11 scFv,
VSVKSRITIKPDTAKNQFSLQLNSVTPEDTAVYYFTRGGIVgap



CD8α hinge and
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT



transmembrane
QPPSASGTPGQRVTISCSGSSSNIGSDPINWYQQVPGTAPKLLI



regions, 41BB
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA



cytoplasmic
WDDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE



signaling domain,
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



CD3ζ cytoplasmic
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK



signaling domain
FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





518
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSETLSLTC



sequence, 10A2
AISGDSVSSnsATWNWIRQSPSRGLEWLGRTYYRSEwyNDYAV



scFv, CD8α hinge
SVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGIVgapD



and transmembrane
GFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT



regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVIWYQQLPRTAPKLLIY



cytoplasmic
SNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAW



signaling domain,
DDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA



CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRG



signaling domain
RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM




GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





519
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



sequence, 11A8
AISGDSVSSnsATWNWIRQSPSTGLEWLARTYYRSKwyNDYEV



scFv, CD8α hinge
SVKSQITINPDTSKNQFSLQLNSVTPEDTAVYYCARGGIVgapD



and transmembrane
AFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQ



regions, 41BB
PPSASGTPGQGVTISCSGSSSNIGSNPVNWYQQLPGTAPKLLIY



cytoplasmic
SNNQRPSGVPDRFSDSKSGTSASLAISGLQSEDEADYYCSAWD



signaling domain,
DWLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA



CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRG



signaling domain
RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF




SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM




GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH




DGLYQGLSTATKDTYDALHMQALPPR





520
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 4H5 scFv,
TVSGDSINNYFWSWIRQPPGKGLEWIGYFYHRGGNNYNPSLK



CD8α hinge and
SRVTISIDTSKNQFSLNLNSVTSADTAVYYCARLALAgFFFDY



transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPST



regions, 41BB
LSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASS



cytoplasmic
LESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSRT



signaling domain,
FGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA




YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK




NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL




STATKDTYDALHMQALPPR





521
CD8α signal
MALPVTALLLPLALLLHAARPQVPLVQSGAEVKKPGSSVKVS



sequence, 3G6-L2
CKASGGTFSTYSISWVRQAPGQGLEWMGGIIpIFGTTNYAQKF



scFv, CD8α hinge
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDGEGsyyyy



and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVL



regions, 41BB
TQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKL



cytoplasmic
LIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAA



signaling domain,
WDDSLSGWVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





522
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS



sequence, 3B9 scFv,
CAASGFTFSSYSMNWVRQAPGKGLEWVSYISsSSSTIYYADSV



CD8α hinge and
KGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARDKERryyyY



transmembrane
GMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQ



regions, 41BB
SPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQAPRLLI



cytoplasmic
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFG



signaling domain,
TSPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA



CD3ζ cytoplasmic
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLL



signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





523
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLA



sequence, 3F9-L
CAISGDSVSSnsAIWNWIRQSPSRGLEWLGGTYYRSMwyNDYA



scFv, CD8α hinge
VSVKSRITINPDTSKNQLSLQLNSVTPEDTAVYYCSRGGIVgvp



and transmembrane
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT



regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSNTANWYQQLPGTAPRLLI



cytoplasmic
YRNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA



signaling domain,
WDDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE



CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKR



signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK




FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE




MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





524
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 3E10
NVSDGSISSYYWTWIRQPPGKGLDWIGYIFYSGTTNYNPSLKS



scFv, CD8α hinge
RVTISLDTSKNQFSLKLTSMTAADTAVYYCARISEKsFYFDYW



and transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSASG



regions, 41BB
TPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYSNNQR



cytoplasmic
PSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAPWDDSLSG



signaling domain,
RVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





525
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKRPGASVKVS



sequence, 3C3 scFv,
CKASGYTFTSYYIHWVRQAPGQGLEWMGVIVpSGGSISYAQK



CD8α hinge and
FQGRVTMTRDTSTNIVYMELSSLRSEDTAVYYCARDRYYgdyy



transmembrane
YGLDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSDIQMT



regions, 41BB
QSPSSLSASVGDRVTITCRASQGINNFLAWFQQKPGKAPKSLIY



cytoplasmic
AASSLQSGVPSKFSGSGSGTDFTLTIRSLQPEDFATYYCQHYNS



signaling domain,
YPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA



CD3ζ cytoplasmic
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLL



signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD




APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR




RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





526
CD8α signal
MALPVTALLLPLALLLHAARPQVHLQESGPGLVKPSETLSLTC



sequence, 11F4
TVSGGSISHYYWTWIRQPPGKGLEWIGYIYYSGITNFSPSLKSR



scFv, CD8α hinge
VSISVDSSKNQFSLNLNSVTAADTAVYYCAGISLAgFYFDYWV



and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLSLS



regions, 41BB
PGERATLSCRASQSVSRSYLAWYQQKPGQAPRLLIYGASSRAT



cytoplasmic
GVPDRFSGSGSGTDFTLTISRLEPEDFAVFYCQQYSISPLTFGG



signaling domain,
GTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT



CD3ζ cytoplasmic
RGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPF



signaling domain
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ




GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE




GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR





527
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC



sequence, 10E12
TVSGVSISSYYWSWIRQPPGKGLEWIAYIYYSGNTNYSPSLKS



scFv, CD8α hinge
RVTISVDTSKDQLSLKLSSVTAADTAVYYCTRGGSGtiDVFDIW



and transmembrane
GQGTMVAVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSVS



regions, 41BB
AAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNK



cytoplasmic
RPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCETWDSSLSA



signaling domain,
VVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA




PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR




KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ




GLSTATKDTYDALHMQALPPR





528
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



sequence, 4E1 scFv,
AISGDNVSTnsAAWNWIRQSPSRGLEWLGWTYYRSKwyNDYA



CD8α hinge and
VSLKSRININPDTSKNQFSLQLNSVTPEDTAVYYCARWVNRD



transmembrane
VFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQ



regions, 41BB
PASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLM











cytoplasmic
IYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCC
S



signaling domain,
YAGSSTWVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRG




signaling domain
RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF





SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM





GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH





DGLYQGLSTATKDTYDALHMQALPPR






529
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLS




sequence, 2404.6H1
CAASGFTFSSYGMHWVRQTPGKGLEWVAVISYDGNsNYYAD




scFv, CD8α hinge
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGATvts




and transmembrane
yyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSEI




regions, 41BB
VLTQSPGTLSLSPGERATLSCRASQSVSRTYLAWYHQKPGQAP




cytoplasmic
RLLIYGASSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQ




signaling domain,
QYGTSPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEAC




CD3ζ cytoplasmic
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGR




signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS





RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG





GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD





GLYQGLSTATKDTYDALHMQALPPR






530
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 2A8 scFv,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGRTYYRSKwyNDYA




CD8α hinge and
VSVKSRITINPDTSRNQFSLQLNSVTPEDTAVYYCARGGIVgap




transmembrane
DGFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIVMT




regions, 41BB
QSPDSLAVSLGERATINCKSSQSVLDSSNNNnYFAWYQQRPGQ




cytoplasmic
PPHLLIYWASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY




signaling domain,
YCQQYYSTPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRP




CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITK




signaling domain
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV





KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP





EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






531
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 3B1 scFv,
AISGDSVSSntTAWKWSRQSPSKGLEWLGWTYYRSKwyYDYT




CD8α hinge and
VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARWIFHDA




transmembrane
FDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQP




regions, 41BB
PSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYT




cytoplasmic
NNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYFCSTWDD




signaling domain,
SLNGPVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRP




CD3ζ cytoplasmic
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






532
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 9B5 scFv,
TVSGDSISSLSWSWIRQTPGEGLEWIGYLYYSGSTDYNPSLKS




CD8α hinge and
RVTISVDTSKNQFSLKLRSVAAADTALYYCARGRRAFDIWGQ




transmembrane
GTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSAS




regions, 41BB
VGDRVTITCRGSQGISNYLAWFQQRPGKAPKSLIYAASSLESG




cytoplasmic
VPSKFSGSGSGTDFTLTIISLQPEDFATYYCQQYYNYPITFGQG




signaling domain,
TRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPF




signaling domain
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ





GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE





GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT





KDTYDALHMQALPPR






533
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS




sequence, 11A5
CKASGYTFTGYYMHWVRQAPGQGLEWMGWINpNSGGTNYA




scFv, CD8α hinge
QKFQGRVTMTRDTSVSTAYMELSRLTSDDTAIYYCAKDGGGd




and transmembrane
fyfYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQT




regions, 41BB
VVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSCFQQTPGQAP




cytoplasmic
RTLIYSTDTRSSGVPDRFSGSILGNKAALTITGAQADDESDYYC




signaling domain,
VLYMGSGISVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRP




CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITK




signaling domain
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV





KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP





EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






632
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 2D3 scFv,
TVSDNSISNYYWSWIRQPPGKGLEWIAYIYYSGTTNYNPSLKS




CD8α hinge and
RVTISLDTSKNQFSLKLSSVTAADTAVYYCARLFNWGFAFDI




transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVMTQSPAT




regions, 41BB
LSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGAST




cytoplasmic
RATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPLT




signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






633
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLMKPSETLSLTC




sequence, 5A2 scFv,
TVSGGSISSSYWSCIRQPPGKGLEWIGYIYYSGTTNYNPSLKSR




CD8α hinge and
VTLSLDTSKNQFSLRLTSVTAADTAVYYCARVAPTgFWFDYW




transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLS




regions, 41BB
LSPGERATLSCRASQRVSSRYLAWYQQKPGQAPRLLIYGASSR




cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEEFAVYYCQQYGTSPLTF




signaling domain,
GGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY




signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA





PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






634
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS




sequence, 7F9 scFv,
CAASGFTFSSHDMHWVRQATGKGLEWVSAIGIAGDTYYSGS




CD8α hinge and
VKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARANWGeG




transmembrane
AFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQ




regions, 41BB
SPSSLSASVGDRVTITCRASQGISDYLAWYQQKPGKIPKLLIYA




cytoplasmic
ASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSV




signaling domain,
PLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






635
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 9D3 scFv,
TVSDDSISNYYWSWIRQPPGKGLEWIGYIFYSGTTNHNPSLKS




CD8α hinge and
RLTISLDKAKNQFSLRLSSVTAADTAVYYCARVFNWgFAFDI




transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGT




regions, 41BB
LSLSPGERATLSCRASQRISRTYLAWYQQKPGQAPRLLIYGAS




cytoplasmic
SRATGIPDRFTGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSPL




signaling domain,
TFGGGTKVEINTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG




CD3ζ cytoplasmic
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




signaling domain
LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA





DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP





RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY





QGLSTATKDTYDALHMQALPPR






636
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 26C8
TVSDNSISNYYWSWIRQPPGKGLEWIAYIYYSGTTNYNPSLKS




scFv, CD8α hinge
RVTISLDTSKNQFSLQLSSVTAADAAVYYCARVFHWgFAFDI




and transmembrane
WGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGT




regions, 41BB
LSLSPGERATLSCRASQRVSNTYLAWYQQNPGQAPRLLIYGAS




cytoplasmic
SRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTSPL




signaling domain,
TFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG




CD3ζ cytoplasmic
AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKL




signaling domain
LYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA





DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP





RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY





QGLSTATKDTYDALHMQALPPR






637
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 2A6.C5
TVSNVSISSYYWSWIRQPPGKGLEWIGYIYYSGTTNYNPSLKS




scFv, CD8α hinge
RVTMSVDTSKNQFSLKLSSVTAADTAVYFCARLSNWgFAFDI




and transmembrane
WGQGTMVTFSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTL




regions, 41BB
SLSPGERATLSCRASQTISSSYLAWYQQKPGQAPRLLIYGASSR




cytoplasmic
ATGIPDRFSGSGSGTEFTLTISRLEPEDFAVYYCQQYGWSPITF




signaling domain,
GQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY




signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA





PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






638
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS




sequence, 5E12
CAASGFTFSSYDMHWVRQATGKGLEWVSAIGPAGDTYYPGS




scFv, CD8α hinge
VKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARADPPyyy




and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSDIVM




regions, 41BB
TQSPLSLPVTPGEPASISCRSSQSLLHSNEYNYLDWYLQKPGQS




cytoplasmic
PQLLIYLGSNRASGVPDRFSGSGSGTDFILKISRVEAEDVGVYY




signaling domain,
CMQALEIPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






639
CD8α signal
MALPVTALLLPLALLLHAARPQITLKESGPTLVKPTQTLTLTCT




sequence, 6D8 scFv,
FSGFSLSTrgVGVGWIRQPPGKALEWLALIYWNDDKRYSPSLQ




CD8α hinge and
TRLTITKDTPKNQVVLTMTNMDPVDTATYYCARSNWGnWYF




transmembrane
ALWGRGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPA




regions, 41BB
TLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDAF




cytoplasmic
YRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRSNWPI




signaling domain,
TFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






640
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 8E11
TVSGDSISNYYWTWIRQPPGKGLEWIGYIYYSGTTNSNPSLKS




scFv, CD8α hinge
RVTVSLDTSKSQFSLNLSSVTAADTAVYYCARVFNRgFAFDIW




and transmembrane
GQGTMVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLS




regions, 41BB
LSPGERATLSCRASQRISNTYLAWYQQKPGQAPRLLIYGASSR




cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEDFAAYYCQQYDTSPLTF




signaling domain,
GGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY




signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA





PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






641
CD8α signal
MALPVTALLLPLALLLHAARPQVTLRESGPALVKPTQTLTLTC




sequence, 5C1.A4
TVSGVSLSTsgMCVSWIRQPLGKALEWLGFIDWDDDKYYNTS




scFv, CD8α hinge
LKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARIRGYsgsy




and transmembrane
DAFDIWGQGTVVIVSSGGGGSGGGGSGGGGSGGGGSDIVMT




regions, 41BB
QSPLSLPVTPGEPASISCRSSQSLLHSNGYNHLDWYLQKPGQSP




cytoplasmic
QVLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYF




signaling domain,
CMQALQTPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRP




CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




signaling domain
YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCE





LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRG





RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR





RGKGHDGLYQGLSTATKDTYDALHMQALPPR






642
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQVSGPGLVKPSETLSLTC




sequence, 9F7 scFv,
SVSGGSISSYYWSWIRQSPGKGLDWIGYMYYSGTTNYNPSLK




α hinge and
SRVTISVDTSKNQFSLKLSSVTATDTAVYYCARVGLTgFFFDY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL




regions, 41BB
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSL




cytoplasmic
QSGVPSRFSGSGSGTDFTLTVSSLQPEDFATYYCLQDYNYPYT




signaling domain,
FGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






643
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGGGLLKPSETLSLT




sequence, 2C3 scFv,
CAVYGGSSSGNYWSWIRQPPGKRLEWIGEINHSGTTSYNPSLK




CD8α hinge and
SRVTISVDTSKNQFSLKLSSVTAADTAVYYCARGELGIADSWG




transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSA




regions, 41BB
SVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIYKASSLES




cytoplasmic
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQG




signaling domain,
TKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFK




signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY





QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP





QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST





ATKDTYDALHMQALPPR






644
CD8α signal
MALPVTALLLPLALLLHAARPQLQLQESGPGLVKPSETLSLTC




sequence, 2G1 scFv,
TVSGGSISSssYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLK




CD8α hinge and
SRVSISVDTSKNQFSLRLSSVTAADTAVYYCAREIIVgaTHFDY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL




regions, 41BB
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPELLIYAASSL




cytoplasmic
QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTF




signaling domain,
GPGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY




signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA





PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






645
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 3E4 scFv,
CAVYGGSFSGYYWSWIRQPPGKGLEWIGEIIHSGSSNYNPSLK




CD8α hinge and
SRVSISVDTSKNQFSLKLSSVTAADTAVYYCSRGEYGsgSRFDY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL




regions, 41BB
SASVGDRVAITCRASQGIRDDLGWYQQKPGKAPKLLIYAASS




cytoplasmic
LQSGVPSRFSGSRSDTDFTLTISSLQPEDFATYYCLQDYDYPLT




signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






646
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC




sequence, 3F2 scFv,
AVSGGSISSnNWWSWVRQPPGKGLEWIGDIHHSGSTNYKPSL




CD8α hinge and
KSRVTISVDKSKNQFSLNLISVTAADTAVYYCAREAGGYFDY




transmembrane
WGQGILVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTL




regions, 41BB
SASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLISKASSL




cytoplasmic
ESGVPSRFSGSGSGPEFTLTISSLQPADFATYYCQQYNSYSTFG




signaling domain,
QGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH




CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF




signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA





YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK





NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL





STATKDTYDALHMQALPPR






647
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 4F9 scFv,
CAVYGGSFSGYYWTWIRQPPGKGLEWIGEITHSGSTNYNPSL




CD8α hinge and
KSRVSISVDTSKNQFSLKLSSVTAADTAVYYCARGEYGsgSRF




transmembrane
DYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSP




regions, 41BB
SSLSASVGDRVAITCRASQGIRDDLGWYQQKPGKAPKLLIYA




cytoplasmic
ASSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYDY




signaling domain,
PLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






648
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 4G9 scFv,
CAVYGGSFSGYYWSWIRQPPGKGLEWIGEITHSGSTNYNPSLK




CD8α hinge and
SRVSISVDTSKNQFSLKLSSVTAADTAVYYCARGEYGsgSRFD




transmembrane
YWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPS




regions, 41BB
SLSASVGDRVALTCRASQGIRDDLGWYQQKPGKAPKLLIYAA




cytoplasmic
SSLQSGVPSRFSGSGSDTDFTLTISSLQPEDFATYYCLQDYDYP




signaling domain,
LTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






649
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 11H7
CAVYGGSFSAYYWNWIRQPPGKGLEWIGEINHSGSTNYNPSL




scFv, CD8α hinge
KSRVTISVDTSKNQFSLNLTSLTAADTAVYYCARGLDSsgwYP




and transmembrane
FDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQS




regions, 41BB
PSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYA




cytoplasmic
ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQADSF




signaling domain,
PFTFGPGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






650
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 16H7
CAVFGGSFSGDYWSWIRQPPGKGLEWIGEINHSGITSFNPSLKS




scFv, CD8α hinge
RVTISVDTSKNQFSLKLSSVTAADTAVYYCARGELGIPDNWG




and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSA




regions, 41BB
SVGDRVTITCRASQSISRWLAWYQQKPGKAPKLLIYKASSLES




cytoplasmic
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQG




signaling domain,
TKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFK




signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY





QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP





QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST





ATKDTYDALHMQALPPR






651
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC




sequence, 17A2
VVFGDSISSsNWWSWVRQPPGKGLEWIGEVFHSGSTNYNPSL




scFv, CD8α hinge
KSRVTISVDKSKNQFSLKLSSVTAADTAVYYCARAAVAGALD




and transmembrane
YWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQSPD




regions, 41BB
SLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPN




cytoplasmic
LLVYWASTRESGVPDRFSGAGSGTDFTLTISSLQAEDVAVYYC




signaling domain,
QQYYGTSWTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






652
CD8α signal
MALPVTALLLPLALLLHAARPQITLRESGPTLVKPTQTLTLTCT




sequence, 6H1 scFv,
FSGFSLSTsgLGVGWIRQPPGEALEWLALIYWNDDKRYSPSLK




CD8α hinge and
SRLSITKDTSKNQVVLIMTNMDPVDTATYYCVHRRIAaPGSVY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSS




regions, 41BB
VSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLISAASS




cytoplasmic
LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCHQANSFPFT




signaling domain,
FGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






653
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS




sequence, 6H5 scFv,
CKVSGYTLTELSMHWVRQAPGKGPEGMGGFDpEDGKTIYAQ




CD8α hinge and
KFQGRVTMTEDTSADTAYMELNSLRSEDTAVYYCATLLRGlD




transmembrane
AFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMT




regions, 41BB
QSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLI




cytoplasmic
YAASSLQSGVPSRFSGSGSGTEFTLTISTLQPEDFATYYCLQHN




signaling domain,
SYPRTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA




CD3ζ cytoplasmic
AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRG




signaling domain
RKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKF





SRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEM





GGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGH





DGLYQGLSTATKDTYDALHMQALPPR






654
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQWGAGLLKPSETLSLT




sequence, 10D1
CAVYGGSFSGYYWRWIRQPPGKGLEWIGEISHSGSTNYNPSL




scFv, CD8α hinge
KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAVRGYSygyPLF




and transmembrane
DYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSP




regions, 41BB
SSLSASVGDRVTITCRASQGIRNDLGWYQQKLGKAPKRLIYA




cytoplasmic
ASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQYNSY




signaling domain,
PRTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






655
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSGTLSLTC




sequence, 11F6
AVSGDSISSNWWTWVRQPPGKGLEWIGDIHHSGSTNYNPSLK




scFv, CD8α hinge
SRVTMSVDKSENQFSLKLSSVTAADTAVFYCARDGGGTLDY




and transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPST




regions, 41BB
LSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKAST




cytoplasmic
LESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNGYSTF




signaling domain,
GQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV




CD3ζ cytoplasmic
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY




signaling domain
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA





PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






656
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGSSVKVS




sequence, 6F8 scFv,
CKASGGTFTNYCISWVRQAPGQGLEWMGGIIpIFGTTNYAQTF




CD8α hinge and
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDNGDryyYD




transmembrane
MDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQP




regions, 41BB
PSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIY




cytoplasmic
DNNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWD




signaling domain,
SSLSAVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACR




CD3ζ cytoplasmic
PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK





FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE





MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






657
CD8α signal
MALPVTALLLPLALLLHAARPQVPLVQSGAEVKKPGSSVKVS




sequence, 3G6-L1
CKASGGTFSTYSISWVRQAPGQGLEWMGGIIpIFGTTNYAQKF




scFv, CD8α hinge
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDGEGsyyyy




and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVL




regions, 41BB
TQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKL




cytoplasmic
LIYDNNKRPSGIPDRFFGSKFGTSATLGITGLQTGDEADYYCGT




signaling domain,
WDSSLSAVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






658
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 4C6 scFv,
TVSGDSISSYYWSWIRQPPGKGLEWIGYMYYSGITNYNPSLKS




CD8α hinge and
RVNISLDTSKNQFSLKLGSVTAADTAVYYCARLSVAgFYFDY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTL




regions, 41BB
SLSPGERATLSCRASQSVTRSYLAWYQQKPGQAPRLLIYGASS




cytoplasmic
RATDIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGTSPLT




signaling domain,
FGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






659
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 4E6 scFv,
TVSSDSISSYYWSWIRQPPGKGLEWISYIYYSGISNYNPSLKSR




CD8α hinge and
VSISVDTSKNQFSLRLSSVTAADTAVYYCARISVAgFFFDNWG




transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIMLTQSPDTLSL




regions, 41BB
SPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRA




cytoplasmic
AGVPDRFSGSGSGTDFTLTISRLAPEDFVVYYCQQYGISPLTFG




signaling domain,
GGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH




CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF




signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA





YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK





NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL





STATKDTYDALHMQALPPR






660
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 4H8 scFv,
AISGDSVSSnsATWNWIRQSPSRGLEWLGRTYYRSKwyDDYAV




CD8α hinge and
SVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVgapD




transmembrane
GFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT




regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLLI




cytoplasmic
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSAW




signaling domain,
DDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




signaling domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR





VKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD





PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPR






661
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS




sequence, 9H12-K
CKASGYTFTGYSIHWVRQAPGQGLEWMGWINpNSGGTFYAQ




scFv, CD8α hinge
KFQGRVTMTRDTSISTVYMELSRLRSDDTAVYYCARDGWGdy




and transmembrane
yyYGLDVWGQGTTVTVSLGGGGSGGGGSGGGGSGGGGSDIQ




regions, 41BB
MTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQKPGKAPK




cytoplasmic
LLIYTASSLQGGVPSRFSGSGSGTDFTLTISSLQPEDLATYSCQQ




signaling domain,
ANVFPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACR




CD3ζ cytoplasmic
PAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK





FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE





MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






662
CD8α signal
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSC




sequence, 10G1-K
AASGFTFSSYAMNWVRQAPGKGLEWVSTISgSGGSTYYADSV




scFv, CD8α hinge
KGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCAIDPEYydilTG




and transmembrane
GDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQS




regions, 41BB
PSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVPKRLIYA




cytoplasmic
ASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHDSFP




signaling domain,
LTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






663
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 11A3
TVSSDSISNYYWSWIRQPPGKGLEWISYIYYSGITNYNPSLKSR




scFv, CD8α hinge
VTISVDTSKNQFSLKLSSVTAADTAVYYCARITVTgFYFDYWG




and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLSLS




regions, 41BB
PGERATLSCRASQSISRSYLAWYQQKPGQAPRHLIYGASSRAT




cytoplasmic
GIPDRFSGSGSGTDFILTISRLEPEDFAVYYCQQYDTSPLTFGG




signaling domain,
GTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT




CD3ζ cytoplasmic
RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF




signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA





YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK





NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL





STATKDTYDALHMQALPPR






664
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 3B11
AISGDSVSSnsVVWNWIRQSPSRGLEWLGRTYYRSKwyDDYA




scFv, CD8α hinge
VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYHCARGGIVgap




and transmembrane
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT




regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVSWYQQFPGTAPKLLI




cytoplasmic
YTNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




signaling domain,
WDDSLNGHVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






665
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 5G2 scFv,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGWTYYRSKYYndYA




CD8α hinge and
VSLKSRITINPDTSKNQFSLQLNSLTPEDTAVYYCTRGGIVgapD




transmembrane
GFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQ




regions, 41BB
PPSASGTPGQRVTISCSGSNSNIGSNPINWYQQLPGTAPKLLIYS




cytoplasmic
NNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWD




signaling domain,
DSLNGHVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEAC




CD3ζ cytoplasmic
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK




signaling domain
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV





KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP





EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






666
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 11E4
TVSGGSISSYYWSWIRQSPGKGLEWIGYVYYSDITNYNPSLKS




scFv, CD8α hinge
RVTISVDTSKNQFSLNLNSVTAADTAFYFCARIGVAgFYFDYW




and transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPDTLS




regions, 41BB
LSPGERATLSCRASQSVSRRYLAWYQQKPGQAPRLLIYGASSR




cytoplasmic
ATGIPDRFSGSGSGTDFTLTISRLEPEDFEVYYCQQYGTSPITFG




signaling domain,
QGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVH




CD3ζ cytoplasmic
TRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF




signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA





YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK





NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL





STATKDTYDALHMQALPPR






667
CD8α signal
MALPVTALLLPLALLLHAARPQIQLQQSGPGLVKPSQTLSLTC




sequence,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGRTYYRSKwyNDYA




2404.8E11 scFv,
VSVKSRITIKPDTAKNQFSLQLNSVTPEDTAVYYFTRGGIVgap




CD8α hinge and
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT




transmembrane
QPPSASGTPGQRVTISCSGSSSNIGSDPINWYQQVPGTAPKLLI




regions, 41BB
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




cytoplasmic
WDDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE




signaling domain,
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




CD3ζ cytoplasmic
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL




signaling domain
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






668
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSETLSLTC




sequence, 10A2
AISGDSVSSnsATWNWIRQSPSRGLEWLGRTYYRSEwyNDYAV




scFv, CD8α hinge
SVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGIVgapD




and transmembrane
GFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT




regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSDPVIWYQQLPRTAPKLLIY




cytoplasmic
SNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAW




signaling domain,
DDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




signaling domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR





VKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD





PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPR






669
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 11A8
AISGDSVSSnsATWNWIRQSPSTGLEWLARTYYRSKwyNDYEV




scFv, CD8α hinge
SVKSQITINPDTSKNQFSLQLNSVTPEDTAVYYCARGGIVgapD




and transmembrane
AFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQ




regions, 41BB
PPSASGTPGQGVTISCSGSSSNIGSNPVNWYQQLPGTAPKLLIY




cytoplasmic
SNNQRPSGVPDRFSDSKSGTSASLAISGLQSEDEADYYCSAWD




signaling domain,
DWLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




signaling domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR





VKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD





PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPR






670
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 4H5 scFv,
TVSGDSINNYFWSWIRQPPGKGLEWIGYFYHRGGNNYNPSLK




CD8α hinge and
SRVTISIDTSKNQFSLNLNSVTSADTAVYYCARLALAgFFFDY




transmembrane
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPST




regions, 41BB
LSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASS




cytoplasmic
LESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSRT




signaling domain,
FGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA




CD3ζ cytoplasmic
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLL




signaling domain
YIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSAD





APAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPR





RKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQ





GLSTATKDTYDALHMQALPPR






671
CD8α signal
MALPVTALLLPLALLLHAARPQVPLVQSGAEVKKPGSSVKVS




sequence, 3G6-L2
CKASGGTFSTYSISWVRQAPGQGLEWMGGIIpIFGTTNYAQKF




scFv, CD8α hinge
QGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDGEGsyyyy




and transmembrane
YGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQSVL




regions, 41BB
TQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKL




cytoplasmic
LIYSNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAA




signaling domain,
WDDSLSGWVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






672
CD8α signal
MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLS




sequence, 3B9 scFv,
CAASGFTFSSYSMNWVRQAPGKGLEWVSYISsSSSTIYYADSV




CD8α hinge and
KGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCARDKERryyyY




transmembrane
GMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQ




regions, 41BB
SPDTLSLSPGERATLSCRASQSVSRRYLAWYQQKPGQAPRLLI




cytoplasmic
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFG




signaling domain,
TSPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA




CD3ζ cytoplasmic
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGR




signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS





RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG





GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD





GLYQGLSTATKDTYDALHMQALPPR






673
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLA




sequence, 3F9-L
CAISGDSVSSnsAIWNWIRQSPSRGLEWLGGTYYRSMwyNDYA




scFv, CD8α hinge
VSVKSRITINPDTSKNQLSLQLNSVTPEDTAVYYCSRGGIVgvp




and transmembrane
DAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLT




regions, 41BB
QPPSASGTPGQRVTISCSGSSSNIGSNTANWYQQLPGTAPRLLI




cytoplasmic
YRNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAA




signaling domain,
WDDSLNGYVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPE




CD3ζ cytoplasmic
ACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLY




signaling domain
CKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL





RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGR





DPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPR






674
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 3E10
NVSDGSISSYYWTWIRQPPGKGLDWIGYIFYSGTTNYNPSLKS




scFv, CD8α hinge
RVTISLDTSKNQFSLKLTSMTAADTAVYYCARISEKsFYFDYW




and transmembrane
GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSASG




regions, 41BB
TPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYSNNQR




cytoplasmic
PSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAPWDDSLSG




signaling domain,
RVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






675
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKRPGASVKVS




sequence, 3C3 scFv,
CKASGYTFTSYYIHWVRQAPGQGLEWMGVIVpSGGSISYAQK




CD8α hinge and
FQGRVTMTRDTSTNIVYMELSSLRSEDTAVYYCARDRYYgdyy




transmembrane
YGLDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSDIQMT




regions, 41BB
QSPSSLSASVGDRVTITCRASQGINNFLAWFQQKPGKAPKSLIY




cytoplasmic
AASSLQSGVPSKFSGSGSGTDFTLTIRSLQPEDFATYYCQHYNS




signaling domain,
YPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA




CD3ζ cytoplasmic
GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGR




signaling domain
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS





RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG





GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD





GLYQGLSTATKDTYDALHMQALPPR






676
CD8α signal
MALPVTALLLPLALLLHAARPQVHLQESGPGLVKPSETLSLTC




sequence, 11F4
TVSGGSISHYYWTWIRQPPGKGLEWIGYIYYSGITNFSPSLKSR




scFv, CD8α hinge
VSISVDSSKNQFSLNLNSVTAADTAVYYCAGISLAgFYFDYWV




and transmembrane
QGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPGTLSLS




regions, 41BB
PGERATLSCRASQSVSRSYLAWYQQKPGQAPRLLIYGASSRAT




cytoplasmic
GVPDRFSGSGSGTDFTLTISRLEPEDFAVFYCQQYSISPLTFGG




signaling domain,
GTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT




CD3ζ cytoplasmic
RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF




signaling domain
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA





YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK





NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGL





STATKDTYDALHMQALPPR






677
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 10E12
TVSGVSISSYYWSWIRQPPGKGLEWIAYIYYSGNTNYSPSLKS




scFv, CD8α hinge
RVTISVDTSKDQLSLKLSSVTAADTAVYYCTRGGSGtiDVFDIW




and transmembrane
GQGTMVAVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSVS




regions, 41BB
AAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNK




cytoplasmic
RPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCETWDSSLSA




signaling domain,
VVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG




CD3ζ cytoplasmic
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK




signaling domain
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSR





SADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG





KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG





LYQGLSTATKDTYDALHMQALPPR






678
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 4E1 scFv,
AISGDNVSTnsAAWNWIRQSPSRGLEWLGWTYYRSKwyNDYA




CD8α hinge and
VSLKSRININPDTSKNQFSLQLNSVTPEDTAVYYCARWVNRD




transmembrane
VFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQ




regions, 41BB
PASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLM




cytoplasmic
IYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCS




signaling domain,
YAGSSTWVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEA




CD3ζ cytoplasmic
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC




signaling domain
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR





VKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD





PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPR






679
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVESGGGVVQPGRSLRLS




sequence, 2404.6H1
CAASGFTFSSYGMHWVRQTPGKGLEWVAVISYDGNsNYYAD




scFv, CD8α hinge
SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGATvts




and transmembrane
yyyYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSEI




regions, 41BB
VLTQSPGTLSLSPGERATLSCRASQSVSRTYLAWYHQKPGQAP




cytoplasmic
RLLIYGASSRATGISDRFSGSGSGTDFTLTISRLEPEDFAVYYCQ




signaling domain,
QYGTSPITFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEAC




CD3ζ cytoplasmic
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK




signaling domain
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV





KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP





EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






680
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 2A8 scFv,
AISGDSVSSnsAVWNWIRQSPSRGLEWLGRTYYRSKwyNDYA




CD8α hinge and
VSVKSRITINPDTSRNQFSLQLNSVTPEDTAVYYCARGGIVgap




transmembrane
DGFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIVMT




regions, 41BB
QSPDSLAVSLGERATINCKSSQSVLDSSNNNnYFAWYQQRPGQ




cytoplasmic
PPHLLIYWASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVY




signaling domain,
YCQQYYSTPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRP




CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




signaling domain
YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCE





LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRG





RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR





RGKGHDGLYQGLSTATKDTYDALHMQALPPR






681
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




sequence, 3B1 scFv,
AISGDSVSSntTAWKWSRQSPSKGLEWLGWTYYRSKwyYDYT




CD8α hinge and
VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARWIFHDA




transmembrane
FDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSALTQP




regions, 41BB
PSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYT




cytoplasmic
NNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYFCSTWDD




signaling domain,
SLNGPVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRP




CD3ζ cytoplasmic
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR




signaling domain
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK





FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE





MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK





GHDGLYQGLSTATKDTYDALHMQALPPR






682
CD8α signal
MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTC




sequence, 9B5 scFv,
TVSGDSISSLSWSWIRQTPGEGLEWIGYLYYSGSTDYNPSLKS




CD8α hinge and
RVTISVDTSKNQFSLKLRSVAAADTALYYCARGRRAFDIWGQ




transmembrane
GTMVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSAS




regions, 41BB
VGDRVTITCRGSQGISNYLAWFQQRPGKAPKSLIYAASSLESG




cytoplasmic
VPSKFSGSGSGTDFTLTIISLQPEDFATYYCQQYYNYPITFGQG




signaling domain,
TRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTR




CD3ζ cytoplasmic
GLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFK




signaling domain
QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY





QQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP





QEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST





ATKDTYDALHMQALPPR






683
CD8α signal
MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKPGASVKVS




sequence, 11A5
CKASGYTFTGYYMHWVRQAPGQGLEWMGWINpNSGGTNYA




scFv, CD8α hinge
QKFQGRVTMTRDTSVSTAYMELSRLTSDDTAIYYCAKDGGGd




and transmembrane
fyfYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSGGGGSQT




regions, 41BB
VVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSCFQQTPGQAP




cytoplasmic
RTLIYSTDTRSSGVPDRFSGSILGNKAALTITGAQADDESDYYC




signaling domain,
VLYMGSGISVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRP




CD3ζ cytoplasmic
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITL




signaling domain
YCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCE





LRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRG





RDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERR





RGKGHDGLYQGLSTATKDTYDALHMQALPPR









A schematic of the CAR structure is set forth in FIG. 3A. Representative CAR sequences reformatted from anti-DLL3 clones are included in SEQ ID NO 482 to 533. Codon-optimized DLL3 CAR sequences were synthesized and subcloned into the following lentiviral vectors pLVX-EF1a-DLL3 CAR (Clontech) using the XmaI (5′) and MluI (3′) restriction sites.


To generate DLL3 CAR-T cells, PBMCs were first purified from buffy coat samples using Ficoll gradient density medium (Ficoll Paque PLUS/GE Healthcare Life Sciences). T cells were purified from PBMCs using a commercially available T cell isolation kit (Miltenyi Biotec, Cat #130-096-535). Alternatively, primary human T cells can be directly purified from LeukoPak (StemCell Technologies).


To make lentivirus encoding DLL3 CARs, HEK-293T cells were plated at 0.4 million cells per mL in 2 mL of DMEM (Gibco) supplemented with 10% FBS (Hyclone or JR Scientific) per well of a 6-well plate on Day 0. On Day 1, the lentivirus was prepared by mixing together lentiviral packaging vectors 1.5 ug psPAX2, 0.5 ug pMD2G, and 0.5 ug of the appropriate transfer CAR vector in 250 uL Opti-MEM (Gibco) per well of the 6-well plate (“DNA mix”). 10 uL Lipofectamine 2000 (Invitrogen) in 250 uL Opti-MEM was incubated at room temperature for 5 minutes and then added to the DNA mix. The mixture was incubated at room temperature for 20 minutes and the total volume of 500 uL was slowly added to the sides of the wells containing HEK-293T. Purified T cells were activated in X-Vivo-15 medium (Lonza) supplemented with 100 IU/mL human IL-2 (Miltenyi Biotec), 10% FBS (Hyclone), and human T TransAct (Miltenyi Biotec, Cat #130-111-160, 1:100 dilution). On Day 2, the media from each well of the 6-well plate was replaced with 2 mL per well of T cell transduction media, i.e., X-Vivo-15 supplemented with 10% FBS. On Day 3, T cells were resuspended at 0 5 million cells per mL in 1 mL of T cell transduction media per well of a Grex-24 plate (Wilson Wolf, cat #80192M). The lentiviral supernatants from HEK293T cells were harvested and passed through a 0.45 micron filter (EMD Millipore) to remove cell debris, and then added to the T cells along with 100 IU/mL human IL-2. On Day 5, 4.5 mL of T cell expansion media, i.e., X-Vivo-15 supplemented with 5% human AB serum (Gemini Bio) was added to each well of a Grex-24 plate. On Day 9 and Day 13, transduction efficiency was determined by detecting the percentage of T cells that recognize recombinant DLL3 (Adipogen) using flow cytometry. Cells were expanded into larger flasks or G-Rex vessels (Wilson Wolf) as needed using T cell expansion media. On Day 14, DLL3 CAR-T cells were cryopreserved. Percentage of cells stained with recombinant DLL3 was normalized across clones right before cryopreservation.


To determine the percentage of T cells that were successfully transduced with DLL3 CAR, T cells were first incubated with 1 ug/ml Flag tagged recombinant DLL3 (Adipogen) in PBS+1% BSA for 20 minutes at 4 C. Then cells were washed with PBS+1% BSA, stained with PE labelled anti-Flag antibodies (Biolegend, Cat #637310) and analyzed using flow cytometry.


Examples of DLL3 CAR-T cells are shown in FIG. 3B. FIG. 3B shows experimental data, showing anti-DLL3 CARs are expressed on the surface of primary T-cells and can recognize recombinant DLL3. The plots are gated on live CD3+ cells. The numbers on the plots are the percentage of cells expressing each anti-DLL3 CAR.


Example 6: In Vitro Characterization

This example describes experiments used to determine the specificity and in vitro activity of CARs for DLL3.


SHP-77, WM266.4, DMS 454 and DMS 273 are DLL3+ cells lines that were purchased from ATCC or Sigma. HEK-293T is a DLL3 negative cell line. To express human DLL3 in HEK-293T, lentivirus encoding full length human DLL3 was used to transduce HEK-293T cells.


To test DLL3-specific killing, firefly luciferase expressing HEK-293T cells with or without human DLL3 expression were then plated at a seeding density of 5,000 cells per well in 96-well assay plates (Costar). DLL3 CAR-T cells were thawed and added to plated HEK-293T cells with or without human DLL3 expression at effector:target (E:T) ratio ranging from 1:9 to 9:1 in T cell expansion media, i.e., X-Vivo-15 supplemented with 5% human AB serum (Gemini Bio). Cell viability was measured after 72 hours using one-glo assay kit (Promega). Representative DLL3 CAR-T cells demonstrated potent killing on HEK-293T-DLL3 cells but did not show detectable activity in HEK-293T parental cells (FIG. 4A).


To test the cytotoxic activity of DLL3 CAR-T cells against cell lines that express endogenous DLL3, DLL3 CAR-T cells were incubated with firefly luciferase labelled DLL3+ SHP-77, WM266.4, DMS 454 or DMS 273 cells at effector:target (E:T) ratio ranting from 1:9 to 9:1 in T cell expansion media, i.e., X-Vivo-15 supplemented with 5% human AB serum (Gemini Bio). Cell viability was measured after 72 hours using one-glo assay kit (Promega). Each condition was assayed in 3 replicates. Average percentage of live cells and standard deviation were plated (FIG. 4B and FIG. 4C).



FIG. 4A shows experimental data showing anti-DLL3 CAR-T cells specifically killed HEK-293T cells expressing human DLL3 but not parental HEK-293T cells in a 3-day cytotox assay at indicated effector:target ratios. T cells that didn't express anti-DLL3 CARs (labelled empty vector) were used as negative control.



FIG. 4B shows experimental data showing anti-DLL3 CAR-T cells killed SHP-77 and WM266.4 cells that expresses endogenous DLL3 in a 3-day cytotox assay at indicated effector:target ratios.



FIG. 4C shows experimental data showing anti-DLL3 CAR-T cells killed DMS 454 and DMS 273 small cell lung cancer cells that expresses endogenous DLL3 in a 3-day cytotox assay at indicated effector:target ratios. For all plots in FIG. 4C, One-glo assay system was used to assess target cell viability, n=3.


To measure cytokines secreted from DLL3 CAR-T cells, DLL3 CAR-T cells were incubated with DLL3+ SHP-77 cells at effector:target (E:T) ratio of 1:1 or 1:9 in T cell expansion media, i.e., X-Vivo-15 supplemented with 5% human AB serum (Gemini Bio). 24 hours later, tissue culture supernatant was collected and the levels of 3 cytokines [interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-2] in the supernatants were measured using human proinflammatory tissue culture 9-plex assay (MSD) following manufacturer's protocol. FIG. 5 shows Anti-DLL3 CAR-T cells released cytokines after co-incubation with DLL3-expressing SHP-77 cell line. CAR-T cells and SHP-77 cells were incubated at 1:1 or 1:9 effector:target ratio for 24 hours, n=3.


Example 7: Serial Killing Assay

A serial killing assay involves repeated exposure of CAR-T cells to their target causing the CAR-T cells to undergo proliferation and in certain cases, differentiation and exhaustion. This assay was used to select optimal clones with high target cell lysis and proliferative abilities after several rounds of exposure to target cells.


One the first day of the assay, 5,000 firefly luciferase labelled WM266.4, DMS 454 or DMS 273 cells that are known to express DLL3 were seeded in 96-well plates with white wall and flat clear bottom in 100 ul X-Vivo-15 medium with 5% of human serum. After target cells attached to the bottom of the plates, DLL3 CAR-T cells were thawed and added to plated target cells at an effector:target (E:T) ratio of 1:1 in X-VIVO medium with 5% of human serum. Every 2 days thereafter, 100 μl medium containing DLL3 CAR-T cells were transferred to freshly plated target cells and percentage lysis of previously plated target cells were determined using one-glo assay system or CellTiter-glo system (Promega). Each condition was assayed in 3 to 6 replicates. Average percentage of lysis and standard deviation were plated (FIGS. 6A-6C). Optimal clones were those with highest target cell lysis during the entire assay on day 12. These data show experimental data of serial killing assay to show that after repeated exposure of anti-DLL3 CAR-T cells to DLL3+WM266.4 cells, some of the clones remained active. One-glo assay system or CellTiter-glo was used at each indicated time point to assess target cell viability, n=3-6.


Example 8: In Vivo Activity

To test the anti-tumor activity of DLL3 CAR-T cells, SHP-77 tumor bearing NSG mice were used. SHP-77 cells were obtained from a frozen stock vial, thawed and counted according to standard procedure. Cells were diluted to 50×106 viable cells/mL in complete growth medium (RPMI+10% FBS). Cell suspension was kept on ice until implantation Immediately before implanting, cells were mixed 1:1 with BD Matrigel Matrix (cat #354234) and 200 μL of cells/matrigel suspension containing 5×106 SHP-77 cells was injected per mouse subcutaneously. Tumor growth was monitored by caliper measurements using a digital caliper starting from Day 5 post-implantation. Tumor size was calculated using the formula Tumor volume=(width{circumflex over ( )}2×length/2). Mice were randomized into groups of 5 based on tumor volume about two weeks post-implantation. Average tumor volume per group was 314 mm3 or less. One day after mice were randomized, Non-transduced T cells and DLL3 CAR-T cells were thawed and counted according to standard procedure. Cells were resuspended in RPMI+10% FBS and injected at doses 2 or 5 million CAR+ cells/mouse by tail vein IV injection in a volume of 200 uL/mouse. Tumors continued to be monitored every 3-4 days until the end of the study. 26C8 and 10G1-K DLL3 CAR-T cells induced tumor inhibition in a dose dependent manner (FIG. 7A-7B) FIG. 7A-7B shows experimental data showing anti-DLL3 CAR-T cells can eliminate established small cell lung cancer tumors in mice in a dose dependent manner.


To test anti-tumor activity of DLL3 CAR-T cells in models that show metastasis similar to human disease, SHP-77 tumors were established with tail vein injection. Tumors were observed in lung, liver, brain, kidney and spleen. Specifically, SHP-77 cells were thawed and diluted to 40×106 viable cells/mL in complete growth medium (RPMI+10% FBS). Cell suspension was kept on ice until implantation and 200 uL of cell suspension was injected per mouse by tail vein IV. On day 7 post-implantation, 200 uL Luciferin (15 mg/mL) was injected and tumor growth was monitored by IVIS imaging., Mice were randomized into groups of 5 based on Total Flux on Day 11 post-implantation. On Day 12 post-implantation, CAR-Ts were thawed and counted according to standard procedure. Cells were resuspended in RPMI+10% FBS and injected at 2 or 7 million CAR+ cells per mouse by tail vein IV injection in a volume of 200 uL per mouse. Tumors continued to be monitored every 3-4 days until the end of the study. As shown in FIG. 8, 10G1-K anti-DLL3 CAR-T cells can inhibit established small cell lung cancer tumors in mice in a dose dependent manner.


Example 9: Anti-DLL3 CAR Constructs with a Safety Switch

This example describes the construction, expression and cytotoxic activity of anti-DLL3 CAR with safety switch. The anti-DLL3 CARs in Table 6 were reformatted to include different safety switches structures listed below (Table 8).









TABLE 8







Structure of safety switches








Format
Structure





QR3
CD8α signal sequence - linker - CD20 mimotope - linker - anti-



DLL3 ScFv - linker - CD20 mimotope - linker - QBEND-10



epitope - linker - CD20 mimotope - hinge and transmembrane



regions of human CD8 α molecule - 41BB signaling domain -



CD3ζ signaling domain


SR2
CD8α signal sequence - anti-DLL3 ScFv - linker - CD20



mimotope - linker- CD20 mimotope -linker - hinge and



transmembrane regions of human CD8 α molecule - 41BB



signaling domain - CD3ζ signaling domain


RSR
CD8α signal sequence - linker - CD20 mimotope - linker - anti-



DLL3 ScFv - linker - CD20 mimotope - linker - hinge and



transmembrane regions of human CD8 α molecule - 41BB



signaling domain - CD3ζ signaling domain


R2S
CD8α signal sequence - linker - CD20 mimotope - linker- CD20



mimotope - linker - anti-DLL3 ScFv- linker-hinge and



transmembrane regions of human CD8 α molecule - 41BB



signaling domain - CD3ζ signaling domain









Protein sequences encoding anti-DLL3 CAR constructs including a safety switch are shown in Table 9. Exemplary safety switch constructs may comprise the CD8α signal sequence (SEQ ID NO: 477), an anti-DLL3 scFv described herein, CD20 mimotope (SEQ ID NO: 536), QBEND-10 epitope (SEQ ID NO: 544), hinge and transmembrane regions of the human CD8α molecule (SEQ ID NO: 479), the cytoplasmic portion of the 4-1BB molecule (SEQ ID NO: 291) and the cytoplasmic portion of the CD3ζ molecule (SEQ ID NO: 292).









TABLE 9







CAR and safety switch amino acid sequences









SEQ ID




NO
Name / Component
Sequence





622
2G1-QR3
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCSGGGGSG



CD8α signal
GGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWI



sequence,CD20
RQPPGKGLEWIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLR



mimotope, 2G1
LSSVTAADTAVYYCAREIIVGATHFDYWGQGTLVTVSSGGGG



ScFv, CD20
SGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQ



mimotope,
GIRNDLGWYQQKPGKAPELLIYAASSLQSGVPSRFSGSGSGTD



QBEND-10
FTLTISSLQPEDFATYYCLQDYNYPLTFGPGTKVDIKGSGGGGS



epitope, CD20
CPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTTACPYSN



mimotope, hinge
PSLCTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL



and transmembrane
DFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPFMRP



regions of human
VQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQN



CD8 α molecule,
QLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY



41BB signaling
NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT



domain, CD3ζ
YDALHMQALPPR



signaling domain






623
2G1-SR2
MALPVTALLLPLALLLHAARPQLQLQESGPGLVKPSETLSLTC



CD8α signal
TVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLK



sequence, 2G1
SRVSISVDTSKNQFSLRLSSVTAADTAVYYCAREIIVGATHFDY



ScFv, CD20
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL



mimotope, CD20
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPELLIYAASSL



mimotope, hinge
QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTF



and transmembrane
GPGTKVDIKGSGGGGSCPYSNPSLCSGGGGSCPYSNPSLCSGG



regions of human
GGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRPEACRP



CD8 α molecule,
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRK



41BB signaling
KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRS



domain, CD3ζ
ADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG



signaling domain
KPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG




LYQGLSTATKDTYDALHMQALPPR





624
2G1-RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSQL



CD8α signal
QLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKG



sequence, CD20
LEWIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLRLSSVTAA



mimotope, 2G1
DTAVYYCAREIIVGATHFDYWGQGTLVTVSSGGGGSGGGGSG



ScFv, CD20
GGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQGIRNDLG



mimotope, hinge
WYQQKPGKAPELLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL



and transmembrane
QPEDFATYYCLQDYNYPLTFGPGTKVDIKGGGGSCPYSNPSLC



regions of human
GGGGSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG



CD8 α molecule,
LDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPFM



41BB signaling
RPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQG



domain, CD3ζ
QNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG



signaling domain
LYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





625
2G1-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSS



sequence, CD20
SYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLKSRVSISVDTS



mimotope, CD20
KNQFSLRLSSVTAADTAVYYCAREIIVGATHFDYWGQGTLVT



mimotope, 2G1
VSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRV



ScFv, hinge and
TITCRASQGIRNDLGWYQQKPGKAPELLIYAASSLQSGVPSRFS



transmembrane
GSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTFGPGTKVDIK



regions of human
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC



CD8 α molecule,
DIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPFMRPVQTT



41BB signaling
QEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQNQLYN



domain, CD3ζ
ELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ



signaling domain
KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL




HMQALPPR





626
4H8-SR2
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC




AISGDSVSSNSATWNWIRQSPSRGLEWLGRTYYRSKWYDDYA



CD8α signal
VSVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVGA



sequence, 4H8
PDGFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVL



ScFv, CD20
TQPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLL



mimotope, CD20
IYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSA



mimotope, hinge
WDDSLNGYVFGTGTKVTVLGSGGGGSCPYSNPSLCSGGGGSC



and transmembrane
PYSNPSLCSGGGGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQ



regions of human
PLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLL



CD8 α molecule,
SLVITKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGG



41BB signaling
CELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKR



domain, CD3ζ
RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE



signaling domain
RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





627
4H8-RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSQV



CD8α signal
QLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSR



sequence, CD20
GLEWLGRTYYRSKWYDDYAVSVKSRITINPDTSKNHLSLHLN



mimotope, 4H8
SVTPEDTAVYYCAGGGLVGAPDGFDVWGQGTMVTVSSGGG



ScFv, CD20
GSGGGGSGGGGSGGGGSQSVLTQPPSASGTPGQRVTISCSGSS



mimotope, hinge
SNIGSDPVNWYQQLPGTAPKLLIYSNNQRPSGVPDRFSGSKSG



and transmembrane
TSASLAISGLQSEDEADYYCSAWDDSLNGYVFGTGTKVTVLG



regions of human
GGGSCPYSNPSLCGGGGSTTTPAPRPPTPAPTIASQPLSLRPEAC



CD8 α molecule,
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGR



41BB signaling
KKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFS



domain, CD3ζ
RSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG



signaling domain
GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHD




GLYQGLSTATKDTYDALHMQALPPR





628
4H8-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSS



sequence, CD20
NSATWNWIRQSPSRGLEWLGRTYYRSKWYDDYAVSVKSRITI



mimotope, CD20
NPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVGAPDGFDVW



mimotope, 4H8
GQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSAS



ScFv, hinge and
GTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLLIYSNNQR



transmembrane
PSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSAWDDSLNG



regions of human
YVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD8 α molecule,
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLY



41BB signaling
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA



domain, CD3ζ
PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR



signaling domain





KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQG




LSTATKDTYDALHMQALPPR





474
10G1K-QR3
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCSGGGGSG



CD8α signal
GGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVR



sequence,CD20
QAPGKGLEWVSTISGSGGSTYYADSVKGRFTISRDNSKNTLYL



mimotope, 10G1-K
QMNSLRAEDTAVFYCAIDPEYYDILTGGDYWGQGTLVTVSSG



ScFv, CD20
GGGSGGGGSGGGGGSGGGGSDIQMTQSPSAMSASVGDRVTIT



mimotope,
CRASQGISNYLAWFQQKPGKVPKRLIYAASSLQSGVPSRFSGS



QBEND-10
GSGTEFTLTISSLQPEDFATYFCLQHDSFPLTFGGGTKVEIKGS



epitope, CD20
GGGGSCPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTT



mimotope, hinge
ACPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



and transmembrane
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



regions of human
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA



CD8 α molecule,
YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN



41BB signaling
PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLS



domain, CD3ζ
TATKDTYDALHMQALPPR



signaling domain






475
10G1-K-SR2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSC



CD8α signal
AASGFTFSSYAMNWVRQAPGKGLEWVSTISGSGGSTYYADSV



sequence, 10G1-K
KGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCAIDPEYYDILT



ScFv, CD20
GGDYWGQGTLVTVSSGGGGSGGGGSGGGGGSGGGGSDIQMT



mimotope, CD20
QSPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVPKRLI



mimotope, hinge
YAASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHD



and transmembrane
SFPLTFGGGTKVEIKGSGGGGSCPYSNPSLCSGGGGSCPYSNPS



regions of human
LCSGGGGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRP



CD8 α molecule,
EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITK



41BB signaling
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV



domain, CD3ζ
KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP



signaling domain
EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





476
10G1-K RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSEV



CD8α signal
QLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKG



sequence, CD20
LEWVSTISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLR



mimotope, 10G1-K
AEDTAVFYCAIDPEYYDILTGGDYWGQGTLVTVSSGGGGSGG



ScFv, CD20
GGSGGGGGSGGGGSDIQMTQSPSAMSASVGDRVTITCRASQG



mimotope, hinge
ISNYLAWFQQKPGKVPKRLIYAASSLQSGVPSRFSGSGSGTEFT



and transmembrane
LTISSLQPEDFATYFCLQHDSFPLTFGGGTKVEIKGGGGSCPYS



regions of human
NPSLCGGGGSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA



CD8 α molecule,
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIF



41BB signaling
KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPA



domain, CD3ζ
YQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN



signaling domain
PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLS




TATKDTYDALHMQALPPR





565
10G1-K-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSS



sequence, CD20
YAMNWVRQAPGKGLEWVSTISGSGGSTYYADSVKGRFTISRD



mimotope, CD20
NSKNTLYLQMNSLRAEDTAVFYCAIDPEYYDILTGGDYWGQG



mimotope, 10G1-K
TLVTVSSGGGGSGGGGSGGGGGSGGGGSDIQMTQSPSAMSAS



ScFv, hinge and
VGDRVTITCRASQGISNYLAWFQQKPGKVPKRLIYAASSLQSG



transmembrane
VPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHDSFPLTFGGGT



regions of human
KVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG



CD8 α molecule,
LDFACDIYIWAPLAGTCGVLLLSLVITKRGRKKLLYIFKQPFM



41BB signaling
RPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQG



domain, CD3ζ
QNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEG



signaling domain
LYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATK




DTYDALHMQALPPR





684
2G1-QR3
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCSGGGGSG



CD8α signal
GGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWI



sequence,CD20
RQPPGKGLEWIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLR



mimotope, 2G1
LSSVTAADTAVYYCAREIIVGATHFDYWGQGTLVTVSSGGGG



ScFv, CD20
SGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQ



mimotope,
GIRNDLGWYQQKPGKAPELLIYAASSLQSGVPSRFSGSGSGTD



QBEND-10
FTLTISSLQPEDFATYYCLQDYNYPLTFGPGTKVDIKGSGGGGS



epitope, CD20
CPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTTACPYSN



mimotope, hinge
PSLCTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL



and transmembrane
DFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF



regions of human
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ



CD8 α molecule,
GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE



41BB signaling
GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT



domain, CD3ζ
KDTYDALHMQALPPR



signaling domain






685
2G1-SR2
MALPVTALLLPLALLLHAARPQLQLQESGPGLVKPSETLSLTC



CD8α signal
TVSGGSISSSSYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLK



sequence, 2G1
SRVSISVDTSKNQFSLRLSSVTAADTAVYYCAREIIVGATHFDY



ScFv, CD20
WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSL



mimotope, CD20
SASVGDRVTITCRASQGIRNDLGWYQQKPGKAPELLIYAASSL



mimotope, hinge
QSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTF



and transmembrane
GPGTKVDIKGSGGGGSCPYSNPSLCSGGGGSCPYSNPSLCSGG



regions of human
GGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRPEACRP



CD8 α molecule,
AAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKR



41BB signaling
GRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVK



domain, CD3ζ
FSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE



signaling domain
MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG




HDGLYQGLSTATKDTYDALHMQALPPR





686
2G1-RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSQL



CD8α signal
QLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKG



sequence, CD20
LEWIGSIYYSGNIYHNPSLKSRVSISVDTSKNQFSLRLSSVTAA



mimotope, 2G1
DTAVYYCAREIIVGATHFDYWGQGTLVTVSSGGGGSGGGGSG



ScFv, CD20
GGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQGIRNDLG



mimotope, hinge
WYQQKPGKAPELLIYAASSLQSGVPSRFSGSGSGTDFTLTISSL



and transmembrane
QPEDFATYYCLQDYNYPLTFGPGTKVDIKGGGGSCPYSNPSLC



regions of human
GGGGSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRG



CD8 α molecule,
LDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQP



41BB signaling
FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQ



domain, CD3ζ
QGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQ



signaling domain
EGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA




TKDTYDALHMQALPPR





687
2G1-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSQLQLQESGPGLVKPSETLSLTCTVSGGSISSS



sequence, CD20
SYYWGWIRQPPGKGLEWIGSIYYSGNIYHNPSLKSRVSISVDTS



mimotope, CD20
KNQFSLRLSSVTAADTAVYYCAREIIVGATHFDYWGQGTLVT



mimotope, 2G1
VSSGGGGSGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRV



ScFv, hinge and
TITCRASQGIRNDLGWYQQKPGKAPELLIYAASSLQSGVPSRFS



transmembrane
GSGSGTDFTLTISSLQPEDFATYYCLQDYNYPLTFGPGTKVDIK



regions of human
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFAC



CD 8α molecule,
DIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRP



41BB signaling
VQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQGQN



domain, CD3ζ
QLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY



signaling domain
NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT




YDALHMQALPPR





688
4H8-SR2
MALPVTALLLPLALLLHAARPQVQLQQSGPGLVKPSQTLSLTC



CD8α signal
AISGDSVSSNSATWNWIRQSPSRGLEWLGRTYYRSKWYDDYA



sequence, 4H8
VSVKSRITINPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVGA



ScFv, CD20
PDGFDVWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVL



mimotope, CD20
TQPPSASGTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLL



mimotope, hinge
IYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSA



and transmembrane
WDDSLNGYVFGTGTKVTVLGSGGGGSCPYSNPSLCSGGGGSC



regions of human
PYSNPSLCSGGGGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQ



CD8 α molecule,
PLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLL



41BB signaling
SLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEE



domain, CD3ζ
EGGCELRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVL



signaling domain
DKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM




KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR





689
4H8-RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSQV



CD8α signal
QLQQSGPGLVKPSQTLSLTCAISGDSVSSNSATWNWIRQSPSR



sequence, CD20
GLEWLGRTYYRSKWYDDYAVSVKSRITINPDTSKNHLSLHLN



mimotope, 4H8
SVTPEDTAVYYCAGGGLVGAPDGFDVWGQGTMVTVSSGGG



ScFv, CD20
GSGGGGSGGGGSGGGGSQSVLTQPPSASGTPGQRVTISCSGSS



mimotope, hinge
SNIGSDPVNWYQQLPGTAPKLLIYSNNQRPSGVPDRFSGSKSG



and transmembrane
TSASLAISGLQSEDEADYYCSAWDDSLNGYVFGTGTKVTVLG



regions of human
GGGSCPYSNPSLCGGGGSTTTPAPRPPTPAPTIASQPLSLRPEAC



CD8 α molecule,
RPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCK



41BB signaling
RGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRV



domain, CD3ζ
KFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP



signaling domain
EMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGK




GHDGLYQGLSTATKDTYDALHMQALPPR





690
4H8-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSQVQLQQSGPGLVKPSQTLSLTCAISGDSVSS



sequence, CD20
NSATWNWIRQSPSRGLEWLGRTYYRSKWYDDYAVSVKSRITI



mimotope, CD20
NPDTSKNHLSLHLNSVTPEDTAVYYCAGGGLVGAPDGFDVW



mimotope, 4H8
GQGTMVTVSSGGGGSGGGGSGGGGSGGGGSQSVLTQPPSAS



ScFv, hinge and
GTPGQRVTISCSGSSSNIGSDPVNWYQQLPGTAPKLLIYSNNQR



transmembrane
PSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCSAWDDSLNG



regions of human
YVFGTGTKVTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG



CD8 α molecule,
GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKK



41BB signaling
LLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSA



domain, CD3ζ
DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP



signaling domain
RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLY




QGLSTATKDTYDALHMQALPPR





691
10G1K-QR3
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCSGGGGSG



CD8α signal
GGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVR



sequence,CD20
QAPGKGLEWVSTISGSGGSTYYADSVKGRFTISRDNSKNTLYL



mimotope, 10G1-K
QMNSLRAEDTAVFYCAIDPEYYDILTGGDYWGQGTLVTVSSG



ScFv, CD20
GGGSGGGGSGGGGSGGGGSDIQMTQSPSAMSASVGDRVTITC



mimotope,
RASQGISNYLAWFQQKPGKVPKRLIYAASSLQSGVPSRFSGSG



QBEND-10
SGTEFTLTISSLQPEDFATYFCLQHDSFPLTFGGGTKVEIKGSG



epitope, CD20
GGGSCPYSNPSLCSGGGGSELPTQGTFSNVSTNVSPAKPTTTA



mimotope, hinge
CPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



and transmembrane
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY



regions of human
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA



CD8 α molecule,
PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR



41BB signaling
KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQG



domain, CD3ζ
LSTATKDTYDALHMQALPPR



signaling domain






692
10G1-K-SR2
MALPVTALLLPLALLLHAARPEVQLLESGGGLVQPGGSLRLSC



CD8α signal
AASGFTFSSYAMNWVRQAPGKGLEWVSTISGSGGSTYYADSV



sequence, 10G1-K
KGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCAIDPEYYDILT



ScFv, CD20
GGDYWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQ



mimotope, CD20
SPSAMSASVGDRVTITCRASQGISNYLAWFQQKPGKVPKRLIY



mimotope, hinge
AASSLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHDSF



and transmembrane
PLTFGGGTKVEIKGSGGGGSCPYSNPSLCSGGGGSCPYSNPSLC



regions of human
SGGGGSTTTACPYSNPSLCTTTPAPRPPTPAPTIASQPLSLRPEA



CD8 α molecule,
CRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC



41BB signaling
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELR



domain, CD3ζ
VKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRD



signaling domain
PEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




KGHDGLYQGLSTATKDTYDALHMQALPPR





693
10G1-K RSR
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSEV




QLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKG



CD8α signal
LEWVSTISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLR



sequence, CD20
AEDTAVFYCAIDPEYYDILTGGDYWGQGTLVTVSSGGGGSGG



mimotope, 10G1-K
GGSGGGGSGGGGSDIQMTQSPSAMSASVGDRVTITCRASQGIS



ScFv, CD20
NYLAWFQQKPGKVPKRLIYAASSLQSGVPSRFSGSGSGTEFTL



mimotope, hinge
TISSLQPEDFATYFCLQHDSFPLTFGGGTKVEIKGGGGSCPYSN



and transmembrane
PSLCGGGGSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAV



regions of human
HTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLY



CD8 α molecule,
IFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADA



41BB signaling
PAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR



domain, CD3ζ
KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQG



signaling domain
LSTATKDTYDALHMQALPPR





694
10G1-K-R2S
MALPVTALLLPLALLLHAARPGGGGSCPYSNPSLCGGGGSCP



CD8α signal
YSNPSLCGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSS



sequence, CD20
YAMNWVRQAPGKGLEWVSTISGSGGSTYYADSVKGRFTISRD



mimotope, CD20
NSKNTLYLQMNSLRAEDTAVFYCAIDPEYYDILTGGDYWGQG



mimotope, 10G1-K
TLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSAMSASV



ScFv, hinge and
GDRVTITCRASQGISNYLAWFQQKPGKVPKRLIYAASSLQSGV



transmembrane
PSRFSGSGSGTEFTLTISSLQPEDFATYFCLQHDSFPLTFGGGTK



regions of human
VEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL



CD8 α molecule,
DFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF



41BB signaling
MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYQQ



domain, CD3ζ
GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQE



signaling domain
GLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTAT




KDTYDALHMQALPPR









CAR-Ts were generated using methods described in Example 5 and their cytotoxic activity were examined using methods described in Example 7. FIG. 9A are plots showing the structure of four different safety switches. FIG. 9B depicts experimental flow cytometry data showing that anti-DLL3 CARs 2G1, 4H8 and 10G1-K with safety switches are expressed on the surface of primary T-cells and can recognize recombinant DLL3. The plots are gated on live CD3+ cells and the numbers on the plots are the percentage of cells expressing each anti-DLL3 CAR. FIG. 9C depicts experimental data showing that anti-DLL3 CARs with safety switches are active in serial killing assay of DLL3+WM266.4 cell line.


Example 10: Cytotoxicity Against Small Cell Lung Cancer PDX Models

Small cell lung cancer PDX models were purchased from Crown Bioscience. To examine DLL3 expression of cell surface, frozen vials of PDX models were thawed and 200,000 cells were used for each staining sample. The expression of DLL3 was verified in a FACS assay using PE conjugated anti-DLL3 antibody. Brilliant violet 421 conjugated anti-human CD45 and anti-mouse CD45 antibodies were added in the same staining sample to exclude human and mouse lymphocytes.



FIG. 10A depicts experimental data showing DLL3 is expressed on the surface of two small cell lung cancer PDX models. FIG. 10B shows experimental data showing anti-DLL3 CAR-T cells killed the same two small cell lung PDX models in a 3-day cytotoxicity assay at indicated effector:target ratios. T cells that didn't express anti-DLL3 CARs (labelled empty vector) were used as negative control.


Example 11: In Vitro Detection and Depletion of DLL3 CAR-T Cells Using Rituximab-Based Safety-Switch

In order to deplete or turn off CAR T cells in the event of unwanted activity, a rituximab off-switch was developed by insertion of rituximab mimotopes at varying location in the extracellular region of the CARs as described in Example 9. Complement-dependent cytotoxicity assay was used to evaluate rituximab-dependent in vitro depletion of DLL3 CAR-T cells. In this assay, frozen CAR-T cells were thawed and 1×105 cells were incubated in RPMI 1640 medium supplemented with 10% FBS in 96-well plates. Cells were incubated for 3 hours in the absence or presence of 25% baby rabbit complement (Cedarlane, CL3441-S) and rituximab antibodies (produced in-house; 100 mg/mL). Cells were stained with recombinant DLL3 (Adipogen) and cytotoxicity was analyzed by flow cytometry. FIG. 11A depicts experimental data showing anti-DLL3 CAR-T cells can be detected by both recombinant DLL3 and rituximab staining FIG. 11B depicts experimental data showing DLL3 CAR-T cells were depleted in vitro in a rituximab-dependent and complement-dependent manner.


Example 12: In Vivo Activity of Anti-DLL3 CAR-T Cells with a Safety Switch

To test the anti-tumor activity of DLL3 CAR-T cells with a safety switch, SHP-77 tumor bearing NSG mice were used. SHP-77 cells were thawed from a frozen vial, counted and diluted. 50×106 viable cells/mL in RPMI medium/matrigel suspension was injected per mouse subcutaneously. Tumor growth was monitored by caliper measurements using a digital caliper starting from Day 5 post-implantation. Tumor size was calculated using the formula Tumor volume=(width{circumflex over ( )}2×length/2). Mice were randomized into groups of 8 based on tumor volume about 14 days post-implantation. Average tumor volume per group was 178 mm3. On the same day after mice were randomized, Non-transduced T cells and DLL3 CAR-T cells were thawed and counted according to standard procedure. Cells were resuspended in RPMI at 5×106 CAR+ cells/mouse by tail vein IV injection in a volume of 200 uL/mouse. Tumors continued to be monitored every 3-4 days until the end of the study. All groups of DLL3 CAR-T cells with safety switch induced significant tumor inhibition and complete or near complete elimination of detectable tumor by Day 50 (FIG. 12A).


To test anti-tumor activity of DLL3 CAR-T cells in models that show metastasis like human disease, DMS 273 small cell lung tumors expressing exogenous DLL3 (DMS 273-DLL3) were established with tail vein injection. Specifically, DMS 273-DLL3 cells were thawed and diluted to 5×105 viable cells/mL in RPMI medium. 200 uL of cell suspension was injected per mouse by tail vein IV. On day 3 post-implantation, mice were randomized into groups of 9. On the same day, DLL3 CAR-Ts were thawed, counted and resuspended in RPMI medium at 5×106 CAR+ cells per mouse by tail vein IV injection in a volume of 200 uL per mouse. Tumors continued to be monitored every 3-4 days using IVIS imaging system until the end of the study. As shown in FIG. 12B, multiple different DLL3 CARs with different rituximab-based safety switches were effective against metastatic tumors.


Example 13: Mouse Safety Study Using Non-Tumor Bearing Animals

DLL3 RNA has been reported in human brain and pituitary (GTex). Similarly, mouse DLL3 RNA has also been reported in pituitary (Bio-GPS). To understand DLL3 RNA expression in mouse brain, brains from three NSG mice were fixed in 10% neutral buffered formalin (NBF), embedded, serially sectioned at 4-6 microns, and analyzed in an RNAscope®LS Red ISH assay (ACDBio). DLL3 RNA was detected at low levels in brain samples of NSG mice. FIG. 13A shows a representative image of the mouse DLL3 RNA staining observed in this assay.


To understand the potential toxicity liabilities of DLL3 RNA expression in the brain and pituitary, non-transduced T cells, 8×106 10 G1-K DLL3 CAR-T cells, or 8×106 2 G1 DLL3 CAR-T cells were IV injected into NSG mice. Seven days after injection, spleens, brains and pituitaries were harvested, fixed in 10% NBF, embedded, serially sectioned at 4-6 microns, and stained with anti-human CD3 antibody (Abcam, ab52959, 1:500 dilution) to detect human T cells by immunohistochemistry. Although T cells were detected in spleens from all animals, they were not detected in brain or pituitary samples (FIG. 13B). Thus, although DLL3 RNA was detected at a low level in non-tumor bearing NSG mice, DLL3 CAR-T cells were not detected in the brain or pituitary samples of the mice.


Example 14: Mouse Safety Study Using Animals Bearing Subcutaneous Tumor

To further evaluate potential brain and pituitary toxicity liabilities, DLL3 CAR-T cells were injected into NSG mice bearing subcutaneous LN229 tumors that express exogenous mouse DLL3 (LN229-mDLL3). In this model, activation of CAR-T by tumor cells may lead to increased sensitivity and activity against potential DLL3-expressing normal tissues. The experiment design is shown in FIG. 14A. Three days before tumor implantation (day −3), adeno-associated viruses (AAV) encoding IL-7 & IL-15 (Vigene Biosciences) were injected through tail vein to support CAR-T cell expansion and persistence. LN229-mDLL3 cells were then thawed from a frozen vial and diluted to 4.25×107 cells/mL in complete growth medium (RPMI+10% FBS). Cell suspension was kept on ice until implantation. Immediately before implanting, cells were mixed 1:1 with BD Matrigel Matrix (cat #354234) and 200 μL of cells/matrigel suspension containing 4.25×106 LN229-mDLL3 cells was injected per mouse subcutaneously. Tumor growth was monitored by caliper measurements using a digital caliper starting from Day 8 post-implantation. Tumor size was calculated using the formula Tumor volume=(width{circumflex over ( )}2×length/2). On day 22 post implantation, mice were randomized into groups of 5 based on tumor volume and serum concentration of IL-7 and IL-15. On the same day (day 22), non-transduced T cells and mouse cross-reactive 10G1-K DLL3 CAR-T cells were thawed and resuspended in RPMI+10% FBS and injected at 1×107 CAR+ cells/mouse by tail vein IV injection in a volume of 200 uL/mouse. Tumors continued to be monitored every 3-4 days until the end of the study and robust anti-tumor activity with DLL3 CAR T treatment was observed (FIG. 14B).


On day 49, when animals that received DLL3 CAR-T cells were tumor free, brain tissues from animals were fixed in 10% NBF and embedded to reveal the ventricular system, including the lateral, third and fourth ventricles, such that the three sections were placed into a single block that was serially sectioned at 4-6 microns, and stained with hematoxylin and eosin (H&E) or stained to detect human-specific CD3 (hCD3) by immunohistochemistry. Pituitary glands were fixed in 10% NBF, processed and stained with H&E or immunohistochemically stained to demonstrate hCD3. The H&E slides were examined microscopically and histopathologic findings were scored by a pathologist using a standard system. Administration of DLL3 CAR-T cells resulted in abundant hCD3-staining T cells in the pituitary pars intermedia and nervosa with relatively few T cells in the pars distalis (FIG. 14C and data not shown). Sparse-to-moderately low or moderate-to-moderately high hCD3 staining of T cells was present in brain neuropil and vasculature (as circulating T cells) (FIG. 14C and data not shown). No other pituitary or brain findings were present (FIGS. 14C-D). To understand the functional consequences of T cell infiltration, two hormones released in the pars nervosa, vasopressin and oxytocin, were stained using immunohistochemistry. For vasopressin detection, samples were stained with anti-vasopressin antibody (ImmunoStar, 20069) at 1/7,000 dilution for 1 hour at room temperature and then with Rabbit-on-Rodent HRP-Polymer (Biocare Medical) for 30 minutes at room temperature. For oxytocin detection, samples were stained with anti-oxytocin antibody (ImmunoStar, 20068) at 1/10,000 dilution for 15 minutes at room temperature and then with Rabbit-on-Rodent HRP-Polymer (Biocare Medical) for 30 minutes at room temperature. Both hormones can be detected in the pituitary pars nervosa of animals that received non-transduced T cells or DLL3 CAR-T cells, suggesting that hormone producing neurons in this region remained functional (FIGS. 14E-F). Thus, no tissue damage was seen in the samples based on the pathological evaluation and hormone staining.


Example 15: Mouse Safety Study Using Animals Bearing Intracranial Tumors

To promote T cell infiltration into the brain and further understand potential brain toxicity, NSG mice bearing intracranial LN229 tumors that express exogenous mouse DLL3 and human EGFRvIII (LN229-mDLL3-vIII) were used. The experiment design is shown in FIG. 15A. LN229-mDLL3 cells were thawed from a frozen vial and diluted to 1×107 viable cells/mL in RPMI. Then 3 μL of cell suspension containing 3×104 LN229-mDLL3 cells was injected per mouse intracranially. Tumor growth was monitored by IVIS imaging system. On day 17 post implantation, mice were randomized into groups of 10 based on tumor volume. On the same day (day 17), TCR knocked-out, non-transduced T cells, 10G1-K DLL3 CAR-T cells, and EGFRvIII CAR-T cells were thawed and resuspended in RPMI and injected at 1×107 CAR+ cells/mouse by tail vein IV injection in a volume of 200 uL/mouse. EGFRvIII CAR-T cells were included as control to evaluate potential inflammation caused by tumor lysis in the brain. In order to support CAR-T cell expansion and persistence, 0.5 ug IL-15 (Peprotech AF-200-15) and 3 ug IL-15Ra Fc fusion protein (R&D Systems 7194-IR) were given to each animal twice weekly starting on day 17 until the end of the study. Tumors continued to be monitored every 3-4 days until the end of the study and clear anti-tumor activity was observed (FIG. 15B). On day 22 and 38, brain tissues from all animals were trimmed, processed, and embedded to reveal the ventricular system, including the lateral, third and fourth ventricles, such that the three sections were placed into a single block that was serially sectioned at 4-6 microns, and stained with H&E or stained to detect human-specific CD45 (hCD45) by immunohistochemistry. Pituitary gland tissues were processed to include pars nervosa, intermedia, and distalis, and stained with H&E or immunohistochemically stained to detect hCD45 as the marker for human T cells.


On day 22, animals that received non-transduced T cells or 10G1-K DLL3 CAR-T cells had rare/sparse hCD45 staining T cells in the brain or pituitary gland (data not shown). On the other hand, for animals treated with EGFRvIII CAR-T cells, hCD45+ staining ranged from rare/sparse to moderately low or moderate-to-moderately high in areas of infiltrate/gliosis or glioma, consistent with anti-tumor activity in this group (data not shown). On day 38, animals that received non-transduced T cells or EGFRvIII CAR-T cells had rare/sparse hCD45+ staining in the brain and pituitary gland. Animals that received 10G1-K DLL3 CAR-T cells had minimal or mild mononuclear cell infiltrate in the pituitary gland, primarily in the pars intermedia and nervosa (FIGS. 15C-D). Also, these animals had slightly more (moderately low) hCD45+ staining associated with the small foci of glioma compared with the rare/sparse staining in other areas of the brain (vasculature of the brain, choroid plexus, and meninges), consistent with anti-tumor activity in this group as shown in FIG. 15B.


Example 16: In Vitro Cytotoxicity of Disassociated Mouse Pituitary Cells

To directly test whether the DLL3 CARTs are active against the pituitary, mouse pituitaries from NSG mice were harvested under aseptic conditions for in vitro analysis. Tissues were dissociated by 3 rounds of incubations at 37 C in 1 mL dissociation mix [5 mL DMEM, high glucose, GlutaMax (Gibco, cat #10564), 50 uL Enzyme H, 5 uL Enzyme R, 6.25 uL Enzyme A (Miltenyi tumor dissociation kit #130-095-929)] followed by mechanical dissociation using trituration. Single cells were transferred to complete medium (DMEM, high glucose, GlutaMax, 20%, 1× Insulin-Transferrin-Selenium Solution, 1×MEM Non-Essential Amino Acids, 1× Penicillin-Streptomycin) and pooled following each round. Cells were pelleted and treated with ACK lysis buffer for 3 min at RT, followed by neutralization in complete medium. The cell suspension was filtered through a 70u filter and centrifuged to remove buffer. Cells were counted and plated in 96-well plate in complete medium at 5×104 cells per well and let to recover for 3 days before CAR-T cells were added. At the time CAR-T cells are added, the expected target density is 1×104 cells per well. For controls, DLL3+ cells (DMS-273) and DLL3 cells (293T) were plated at the same densities. 10G1-K and 2G1 DLL3 CAR-T cells were added at E:T=9:1, 3:1, and 1:1 and co-cultured with targets for 3 days. At the end of 3 day co-culture, the media was separated from the wells and centrifuged to pellet out the T cells. The target cells were treated with 50 uL/well Cell Titer Glo (Promega, G7570) for 10 minutes and analyzed in SpectraMax plate reader for cytotox readout.



FIG. 16A depicts experimental data showing that although DLL3 CAR-T cells are active against DLL3+ DMS 273 cell line, they are not cytotoxic against mouse pituitary cells in vitro. The T cells were pooled and stained for activation markers (41BB and CD25) for analysis by flow cytometry. FIG. 16B depicts that mouse pituitary cells do not activate DLL3 CAR-T cells in vitro. The supernatant was frozen at −80C and then thawed for cytokine analysis using Human TH1/TH2 10-Plex Tissue Culture Kit (Meso Scale Discovery, K15010B). FIG. 16C depicts that although both 10G1-K and 2G1 DLL3 CAR-T cells secrete interferon-gamma (IFNγ), tumor necrosis factor alpha (TNF-α), and IL-2 when co-cultured with DLL3+ DMS 273 cell line, there is no cytokine secretion after co-culturing DLL3 CAR-T cells with mouse pituitary cells. Thus, DLL3 CAR-T cells were not cytotoxic against pituitary cells in vitro.

Claims
  • 1. A chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain of an antibody that specifically binds to DLL3, and wherein the antigen binding domain comprises: (a) a variable heavy chain CDR1 comprising the amino acid sequence shown as SEQ ID NO: 109;(b) a variable heavy chain CDR2 comprising the amino acid sequence shown as SEQ ID NO: 110;(c) a variable heavy chain CDR3 comprising the amino acid sequence shown as SEQ ID NO: 111;(d) a variable light chain CDR1 comprising the amino acid sequence shown as SEQ ID NO: 112;(e) a variable light chain CDR2 comprising the amino acid sequence shown as SEQ ID NO: 113; and(f) a variable light chain CDR3 comprising the amino acid sequence shown as SEQ ID NO: 114.
  • 2. A chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain, wherein the extracellular domain comprises a DLL3 antigen binding domain of an antibody that specifically binds to DLL3, and wherein the antigen binding domain comprises: (a) a variable heavy chain comprising the amino acid sequence shown as SEQ ID NO: 115; and(b) a variable light chain comprising the amino acid sequence shown as SEQ ID NO: 116,wherein the variable heavy chain and the variable light chain is linked by at least one linker.
  • 3. The chimeric antigen receptor of claim 1, wherein the antigen binding domain comprises the scFv sequence shown as SEQ ID NO: 117.
  • 4. The chimeric antigen receptor of claim 1, wherein the chimeric antigen receptor comprises an amino acid sequence that is 100% identical to SEQ ID NO: 644.
  • 5. The chimeric antigen receptor of claim 1, wherein the intracellular domain comprises at least one costimulatory domain.
  • 6. The chimeric antigen receptor of claim 5, wherein the costimulatory domain is a signaling region of CD28, OX-40, 4-1BB/CD137, CD2, CD7, CD27, CD30, CD40, programmed death-1 (PD-1), inducible T cell costimulator (ICOS), lymphocyte function-associated antigen-1 (LFA-1 (CD1 1a/CD18), CD3 gamma, CD3 delta, CD3 epsilon, CD247, CD276 (B7-H3), LIGHT, (TNFSF14), NKG2C, Ig alpha (CD79a), DAP-10, Fc gamma receptor, MHC class I molecule, TNF receptor protein, an Immunoglobulin protein, cytokine receptor, integrin, Signaling Lymphocytic Activation Molecule (SLAM protein), activating NK cell receptor, BTLA, a Toll-like receptor, ICAM-1, B7-H3, CDS, ICAM-1, GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL-2R beta, IL-2R gamma, IL-7R alpha, ITGA4, VLA1, CD49a, ITGA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD1 1d, ITGAE, CD103, ITGAL, CD1 1a, LFA-1, ITGAM, CD1 1b, ITGAX, CD1 1c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, TNFR2, TRANCE/RANKL, DNAMI (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, or any combination thereof.
  • 7. The chimeric antigen receptor of claim 6, wherein the costimulatory domain comprises a signaling region of 4-1BB/CD137.
  • 8. The chimeric antigen receptor of claim 7, wherein the 4-1BB/CD137 costimulatory domain comprises SEQ ID NO: 480.
  • 9. The chimeric antigen receptor of claim 1, wherein the intracellular domain comprises at least one activating domain.
  • 10. The chimeric antigen receptor of claim 9, wherein the activating domain comprises CD3.
  • 11. The chimeric antigen receptor of claim 10, wherein the CD3 comprises CD3 zeta.
  • 12. The chimeric antigen receptor of claim 11, wherein the CD3 zeta comprises SEQ ID NO: 481.
  • 13. The chimeric antigen receptor of claim 1, further comprising a safety switch.
  • 14. The chimeric antigen receptor of claim 13, wherein the safety switch comprises one or more CD20 mimotopes comprising SEQ ID NO:536 or one or more QBEND-10 epitopes comprising SEQ ID NO: 471, SEQ ID NO: 544, or combinations thereof.
  • 15. The chimeric antigen receptor of claim 14, wherein the chimeric antigen receptor comprises one or more safety switches in the format of a) QR3 comprising CD8αsignal sequence-linker-CD20 mimotope-linker-anti-DLL3 ScFv-linker-CD20 mimotope-linker-QBEND-10 epitope-linker-CD20 mimotope-hinge and transmembrane regions of human CD8αmolecule-41BB signaling domain-CD3θsignaling domain,b) SR2 comprising CD8αsignal sequence-anti-DLL3 ScFv-linker-CD20 mimotope-linker-CD20 mimotope-linker-hinge and transmembrane regions of human CD8αmolecule-41BB signaling domain-CD3θsignaling domain,c) RSR comprising CD8αsignal sequence-linker-CD20 mimotope-linker-anti-DLL3 ScFv-linker-CD20 mimotope-linker-hinge and transmembrane regions of human CD8αmolecule-41BB signaling domain-CD3θsignaling domain, ord) R2S comprising CD8αsignal sequence-linker-CD20 mimotope-linker-CD20 mimotope-linker-anti-DLL3 ScFv-linker-hinge and transmembrane regions of human CD8αmolecule-41BB signaling domain-CD3θsignaling domain.
  • 16. The chimeric antigen receptor of claim 13, wherein the chimeric antigen receptor comprises the amino acid sequence that is 100% identical to SEQ ID NO: 686.
  • 17. An engineered immune cell expressing the chimeric antigen receptor of claim 1.
  • 18. A pharmaceutical composition comprising the engineered immune cell of claim 17.
  • 19. A method of treating cancer in a subject in need thereof comprising administering to the subject the engineered immune cell of claim 17.
  • 20. The method of claim 19, wherein the cancer is small cell lung cancer.
  • 21. An article of manufacture comprising the engineered immune cell of claim 17.
  • 22. An anti-DLL3 binding agent comprising an antigen binding domain of an antibody that specifically binds to DLL3, comprising: (a) a variable heavy chain CDR1 comprising the amino acid sequence shown as SEQ ID NO: 109;(b) a variable heavy chain CDR2 comprising the amino acid sequence shown as SEQ ID NO: 110;(c) a variable heavy chain CDR3 comprising the amino acid sequence shown as SEQ ID NO: 111;(d) a variable light chain CDR1 comprising the amino acid sequence shown as SEQ ID NO: 112;(e) a variable light chain CDR2 comprising the amino acid sequence shown as SEQ ID NO: 113; and(f) a variable light chain CDR3 comprising the amino acid sequence shown as SEQ ID NO: 114.
  • 23. The DLL3 binding agent of claim 22, wherein the binding agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof, optionally, a F(ab’)2 fragment, a Fab′ fragment, a Fab fragment, a Fv fragment, a scFv fragment, and a dsFv fragment.
  • 24. The anti-DLL3 binding agent of claim 23, wherein the binding agent is a monoclonal antibody comprising an IgG constant region.
  • 25. The anti-DLL3 binding agent of claim 22, comprising a variable heavy (VH) chain sequence that is 100% identical to a VH sequence shown as SEQ ID NO: 115.
  • 26. The anti-DLL3 binding agent of claim 22, comprising a variable light (VL) chain sequence that is 100% identical to a VL sequence shown as SEQ ID NO: 116.
  • 27. The anti-DLL3 binding agent of claim 22, wherein the binding agent comprises a sequence that is 100% identical to a single chain Fv (scFv) shown as SEQ ID NO: 117.
  • 28. The anti-DLL3 binding agent of claim 22, wherein the binding agent is a fusion protein comprising a scFv fragment fused to an Fc constant region.
  • 29. A pharmaceutical composition comprising the anti-DLL3 binding agent of claim 22 and a pharmaceutically acceptable excipient.
  • 30. A method of treating a cancer in a subject in need thereof comprising administering to the subject anti-DLL3 binding agent of claim 22.
  • 31. The method of claim 30, wherein the cancer is small cell lung cancer.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority to U.S. Provisional Application No. 62/812,585, filed Mar. 1, 2019; and U.S. Provisional Application No. 62/969,976, filed Feb. 4, 2020, the contents of all of which are hereby incorporated by reference in their entireties.

US Referenced Citations (35)
Number Name Date Kind
4816567 Cabilly et al. Mar 1989 A
5571894 Wels et al. Nov 1996 A
5587458 King et al. Dec 1996 A
5641870 Rinderknecht Jun 1997 A
5821337 Carter et al. Oct 1998 A
5827642 Ridell et al. Oct 1998 A
5830462 Crabtree et al. Nov 1998 A
5834266 Crabtree et al. Nov 1998 A
5869046 Presta et al. Feb 1999 A
5869337 Crabtree et al. Feb 1999 A
6040177 Ridell et al. Mar 2000 A
6075181 Kucherlapati et al. Jun 2000 A
6165787 Crabtree et al. Dec 2000 A
6248516 Winter et al. Jun 2001 B1
6319494 Capon et al. Nov 2001 B1
6797514 Brenson et al. Sep 2004 B2
6867041 Berenson et al. Mar 2005 B2
6905874 Berenson et al. Jun 2005 B2
6982321 Winter et al. Jan 2006 B2
7087409 Barbas et al. Aug 2006 B2
7527791 Adams et al. May 2009 B2
7709226 Foote May 2010 B2
7741465 Eshhar et al. Jun 2010 B1
8486693 Park et al. Jul 2013 B2
20030130496 Winter et al. Jul 2003 A1
20110286980 Brenner Nov 2011 A1
20120130076 Holt et al. May 2012 A1
20140171649 Li et al. Jun 2014 A1
20140286987 Spencer et al. Sep 2014 A1
20140364590 Stull et al. Dec 2014 A1
20150266973 Jarjour et al. Sep 2015 A1
20160046700 Foster et al. Feb 2016 A1
20170088620 Nioi Mar 2017 A1
20170283500 Wiltzius et al. Oct 2017 A1
20180237511 Beil Aug 2018 A1
Foreign Referenced Citations (11)
Number Date Country
404097 Sep 1996 EP
WO9301161 Jan 1993 WO
WO1994025591 Nov 1994 WO
WO2012079000 Jun 2012 WO
WO2012129514 Sep 2012 WO
WO2014127261 Aug 2014 WO
WO2015090229 Jun 2015 WO
WO2015120096 Aug 2015 WO
WO2015127407 Aug 2015 WO
WO2016138038 Sep 2016 WO
WO2017021349 Feb 2017 WO
Non-Patent Literature Citations (54)
Entry
Murphy et al. (Journal of Immunological Methods, vol. 463, p. 127-133, 2018) (Year: 2018).
Edwards et al. 2003. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BlyS. Journal of Molecular Biology 334:103-118 (Year: 2003).
Saunders LR, et al., A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. Aug. 26, 2015;7(302):302ra136; “Generation and characterization of DLL3-specific monoclonal antibodies” (Year: 2015).
Van Dijk, Marc A., et al., “Human antibodies as next generation therapeutics”, Curr Opin Chem Biol, vol. 5, No. 4, pp. 368-374, (2001).
Vollmers, H. P., et al., “Death by Stress: Natural IgM-lnduced Apoptosis”, Methods Find Exp Clin Pharmacol 2005, 27(3): 185-191.
Vollmers, H. P., et al., “The “early birds”: natural IgM antibodies and immune surveillance”, Review, Histol Histopathol (2005) 20: 927-937.
Al-Lazikani, Bissan , et al., “Standard Conformations for the Canonical Structures of Immunoglobulins”, J. Mol. Biol. (1997) 273, 927-948.
Almagro , et al., “Humanization of antibodies”, Frontiers in Bioscience, vol. 13, pp. 1619-1633, (2008).
Baca, Manuel , et al., “Antibody Humanization Using Monovalent Phage Display”, The Journal of Biological Chemistry.
Basu, Sreemanti, et al., “Purification of Specific Cell Population by Fluorescence Activated Cell Sorting (FACS)”, Journal of Visualized Experiments, (41), e1546, doi:10.3791/1546 (2010).
Brenner, Malcom K., et al., “Adoptive T Cell Therapy of Cancer”, Curr Opin Immunol. Apr. 2010; 22(2): 251-257. doi:10.1016/j.coi.2010.01.020.
Brinkmann, Ulrich , et al., “The making of bispecific antibodies”, MABS, 2017, vol. 9, No. 2, 182-212.
Brodeur, Bernart R., et al., “Mouse-Human Myeloma Partners for the production of Heterohybridomas”, Monoclonal Antibody Production Techniques and Applications, pp. 51-56, 3Mercel Dekker Inc, (1987).
Carter, Robert H., et al., “CD19: Lowering the Threshold for Antigen Receptor Stimulation of B Lymphocytes”, Reports, Science, vol. 256 pp. 105-107.
Chothia, Cyrus , et al., “Conformations of immunoglobulin hypervariable regions”, Nature▪ vol. 342 . 21/28 Dec. 1989.
Chothia, Cyrus , et al., “Structural Repertoire of the Human VH Segments”, J. Mol. Biol. (1992) 227, 799-917.
Courtois, Anthony , et al., “Complement dependent cytotoxicity activity of therapeutic antibody fragments is acquired by immunogenic glycan coupling”, Research Article, Biotechnology of Human Disorders, Electronic Journal of Biotechnology, vol. 15 No. 5, Issue of Sep. 15, 2012.
Dall'Acqua, William F., et al., “Antibody humanization by framework shuffling”, Methods, vol. 36, pp. 43-60, (2005).
EPO , “International Search Report & Written Opinion”, dated Aug. 5, 2020 for PCT/US2020/020042.
Eshhar, Zelig , et al., “Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.”, Immunology; Proc Natl Acad Sci U S A. Jan. 15, 1993; 90(2): 720-724.
Finney, Helen , et al., “Chimeric Receptors Providing Both Primary and Costimulatory Signaling in T Cells from a Single Gene Product”, J Immunol Sep. 15, 1998, 161 (6) 2791-2797.
Flatman, Stephen , et al., “Process analytics for purification of monoclonal antibodies”, J. Chromatogr. B 848 (2007) 79-87.
Gross, Gideon , et al., “Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy”, Annual Review of Pharmacology and Toxicology; vol. 56:59-83 (Volume publication date Jan. 2016) https://doi.org/10.1146/annurev-pharmtox-010814-124844.
Holliger, Philipp , et al., ““Diabodies”: Small bivalent and bispecific antibody fragments”, Proc. Natl. Acad. Sci. USA, vol. 90, pp. 6444-6448, Jul. 1993, Biophysics.
Hudson, Peter J., et al., “Engineered antibodies”, Review, National Medicine, vol. 9, No. 1, (2003).
Kalos, Michael , et al., “T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia”, Science Transnational Medicine, vol. 3 Issue 95 95ra73, 2011.
Kam, Nadine Wong, et al., “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction”, PNAS, vol. 102, No. 33, pp. 11600-11605.
Karlsson, Robert , et al., “Kinetic and Concentration Analysis Using BIA Technology”, Methods: A Companion to Methods in Enzymology 6, 99-110 (1994).
Kashmiri, Syed V.S., et al., “SDR grafting—a new approach to antibody humanization”, Methods, vol. 36, pp. 25-34, (2005).
Klimka, A., et al., “Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell panning”, British Journal of Cancer, vol. 83, No. 2, pp. 252-260, (2000).
Kozbor, Danuta, et al., “A Human Hybrid Myeloma for Production of Human Monoclonal Antibodies”, The Journal of Immunology, vol. 133, No. 6 (1984).
Krause, Anja , et al., “Antigen-dependent CD28 Signaling Selectively Enhances Survival and Proliferation in Genetically Modified Activated Human Primary T Lymphocytes”, The Journal of experimental medicine vol. 188,4 (1998): 619-26. doi:10.1084/jem.188.4.619.
Li, Jian , et al., “Human antibodies for immunotherapy development generated via a human B cell hybridoma technology”, PNAS, vol. 103, No. 10, pp. 3557-3562.
Lonberg, Nils , “Fully human antibodies from transgenic mouse and phage display platforms”, Current Opinion in Immunology, 2008, 20:450-459.
Lonberg, Nils , “Human antibodies from transgenic animals”, Review, Nature Biotechnology, vol. 23, No. 9, pp. 1117-1125 (2005).
Morrison, Sherie L., et al., “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci., USA, vol. 81, pp. 6851-6855, (1984).
Muller, Dafne , et al., “Bispecific Antibodies for Cancer Immunotherapy”, Review Article, Biodrugs 2010; 24 (2):89-98.
Niculescu-Duvaz, I. , et al., “Antibody-directed enzyme prodrug therapy (ADEPT): a review”, Advanced Drug Delivery Reviews 26 (1997) 151-172.
Osbourn, Jane , et al., “From rodent reagents to human therapeutics using antibody guided selection”, , Methods, vol. 36, pp. 61-68, (2005).
Padlan, Eduardo A., et al., “A Possible Procedure for Reducing the Immunogenicity of Antibody Variable Domains While Preserving Their Ligand-Binding Properties”, Mol. Immunol, vol. 28, pp. 489-498, (1991).
Payne, Gillian , “Progress in immunoconjugate cancer therapeutics”, Pipeline, Cancer Cell, vol. 3, pp. 207-212, (2003).
Pluckthun, A., “Antibodies from Escherichia coli”, The Pharmacology of Monoclonal Antibodies, Chapter 11, pp. 269-315 (1994).
Porter, David L., et al., “Chimeric Antigen Receptor—Modified T Cells in Chronic Lymphoid Leukemia”, N Engl J Med 2011;365:725-33.
Presta, L. G., et al., “Humanization of an antibody directed against IgE.”, J Immunol 1993; 151:2623-2632.
Riechmann, Lutz, et al., “Reshaping human antibodies for therapy”, Nature, vol. 332, pp. 323-327, (1998).
Rosenberg, Steven A., et al., “Adoptive cell transfer: a clinical path to effective cancer immunotherapy”, Nat Rev Cancer. Apr. 2008 ; 8(4): 299-308. doi:10.1038/nrc2355.
Rosok, Mae Joanne, et al., “A Combinatorial Library Strategy for the Rapid Humanization of Anticarcinoma BR96 Fab”, The Journal of Biological Chemistry, vol. 271, No. 37, Issue of Sep. 13, pp. 22611-22618, 1996.
Sadelain, Michel , et al., “The promise and potential pitfalls of chimeric antigen receptors”, Current Opinion in Immunology 2009, 21:215-223.
Sims, M. J., et al., “A humanized CD18 antibody can block function without cell destruction”, J Immunol 1993; 151:2296-2308.
Song, De-Gang , et al., “CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo”, Blood (2012) 119 (3): 696-706.
Stockmeyer, Bernhard , et al., “Triggering FCa-Receptor I (CD89) Recruits Neutrophils as Effector Cells for CD20-Directed Antibody Therapy”, J Immunol 2000; 165:5954-5961.
Syrigos, Konstantinos , et al., “Antibody Directed Enzyme Prodrug Therapy (ADEPT): A Review of the Experimental and Clinical Considerations”, Review, Anticancer Re˜Earch 19: 605-614 (1999).
Trail, Pamela A., et al., “Monoclonal antibody drug immunoconjugates for targeted treatment of cancer”, Symposium in Writing, Cancer Immunol Immunother (2003) 52: 328-337.
Tramontano, Anna, et al., “Framework Residue 71 is a Major Determinant of the Position and Conformation of the Second Hypervariable Region in the V H Domains of Immunoglobulins”, J. Mol. Biol. (1990) 215, 175-182.
Related Publications (1)
Number Date Country
20210107979 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
62969976 Feb 2020 US
62812585 Mar 2019 US