DNAI FOR THE MODULATION OF GENES

Abstract
The present invention relates to methods and compositions for the inhibition of gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition genes implicated in many diseases.
Description
FIELD OF THE INVENTION

The present invention relates to methods and compositions for the inhibition of gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the inhibition or interference of genes involved and implicated in diseases and cell systems.


SEQUENCE LISTING

This application incorporates by reference in its entirety the Sequence Listing entitled “DNAi13728_ST25.txt” (2.90 MB), which was created Mar. 14, 2014 and filed electronically herewith.


BACKGROUND OF THE INVENTION

The expression of gene products in cancer, e.g. oncogenes has become the central concept in understanding cancer biology and may provide valuable targets for therapeutic drugs. All oncogenes and their products operate inside the cell making protein-based drugs ineffective since their specificity involves ligand-receptor recognition.


Aside from oncogenes, proteins implicated in tumor suppression, genesis, progression, growth, proliferation, migration, cell cycle, cell signaling, metastases, invasion, transformation, differentiation, tolerance, vascular leakage, epithelial mesenchymal transition (EMT), aggregation, angiogenesis, adhesion, development of resistance, addiction to oncogenes and non-oncogenes (cytokines, chemokines, growth factors), alteration of immune surveillance or immune response, alteration of tumor stroma/local environment, endothelial activation, extracellular matrix remodeling, hypoxia and inflammation, immune activation or immune suppression, and survival and/or prevention of cell death by apoptosis, necrosis, or autophagy may be useful targets. Proteins implicated may be increased, decreased, or altered to have an impact on diseases and/or cell systems.


Similarly numerous protein products implicated (overexpressed, mutated, or suppressed) in non-cancerous diseases involving bacterial, cardiovascular (heart failure, atherosclerosis, dylipidemia, etc.), vascular, metabolic, diabetic, dental, oral, dermatological, endocrinology, fungal, gastroenterological, bowel (e.g. Crohn's, Ulcerative Colitis, or inflammatory bowel disease, etc.), genetic, hematological, hepatic, immunology, infections and/or infectious disease, inflammation (e.g. arthritis, etc.), musculosketal, nephrology, neurology (e.g. Alzheimer's, Parkinson's, Huntington's, Multiple Sclerosis, etc.), nutrition and/or weight loss, obstetrics/gynecology, ophthalmology, orthopedics, otolaryngology, pediatric/neonatology, podiatry, pulmonary/respiratory disease, rheumatology, sleep disorders, trauma, urology, stem cells, and viral (e.g. HCV, HIV, HBV, Herpes, etc.) may be useful targets.


Antisense oligonucleotides are under investigation as therapeutic compounds for specifically targeting oncogenes (Wickstrom, E. (ed). Prospects for antisense nucleic acid therapy of cancer and Aids. New York: Wiley-Liss, Inc. 1991; Murray, J. A. H. (ed). Antisense RNA and DNA New York: Wiley-Liss, Inc. 1992). Antisense drugs are modified synthetic oligonucleotides that work by interfering with ribosomal translation of the target mRNA. The antisense drugs developed thus far destroy the targeted mRNA by binding to it and triggering ribonuclease H (RNase H) degradation of mRNA. Oligonucleotides have a half-life of about 20 minutes and they are therefore rapidly degraded in most cells (Fisher, T. L. et al., Nucleic Acids Res. 21:3857-3865 (1993)). To increase the stability of oligonucleotides, they are often chemically modified, e.g., they are protected by a sulfur replacing one of the phosphate oxygens in the backbone (phosphorothioate) (Milligan, J. F. et al., J. Med. Chem. 36:1923-1937 (1993); Wagner, R. W. et al., Science 260:1510-1513 (1993)). However, this modification can only slow the degradation of antisense and therefore large dosages of antisense drug are required to be effective.


Despite the optimism surrounding the use of antisense therapies, there are a number of serious problems with the use of antisense drugs such as difficulty in getting a sufficient amount of antisense into the cell, non-sequence-specific effects, toxicity due to the large amount of sulfur containing phosphothioates oligonucleotides and their inability to enter their target cells, and their high cost due to continuous delivery of large doses. An additional problem with antisense drugs has been their nonspecific activities. Improvements to these first generation RNA targeted nucleic acid therapeutics utilize chemical modification to prevent degradation and utilize other modifications (e.g. 2′OMe modifications, CEt, locked nucleic acids (LNA), unlocked nucleic acids, inverted bases, conformationally-restricted nucleic acids (CRN)) to enable therapeutic windows of activity to be improved.


Other nucleic acid-based approaches beyond antisense also target RNA and its translational machinery rather than genomic DNA. These include double-stranded siRNA to block the translation of abberant proteins, RNA modulation to correct gene defects by exon skipping, and double or single-stranded microRNAs that function to regulate the expression of several gene pathways through the action of miRs and antimiRs, which replace absent sequences or antagonize sequences, respectively.


There is a need for additional non-protein based cancer therapeutics that target genes implicated in diseases. Therapeutics that are effective in low doses and that are non-toxic to the subject are particularly needed.


SUMMARY OF THE INVENTION

The present invention relates to methods and compositions for the interference (inhibition, enhancement or alteration) of gene transcription or gene expression. In particular, the present invention provides oligonucleotide-based therapeutics for the modulation of disease causing genes.


An oligonucleotide that hybridizes to a non-coding region of a target gene, wherein the oligonucleotide comprises: a length of 20-34 bases; at least one CG pairs; at least 40% C and G content; no more than five consecutive bases of the same nucleotide; and may form at least one secondary structure. This oligonucleotide can also comprise a C and G content of at least 30% and in some embodiments the oligonucleotide comprises a C and G content of from about 50 to 80%. In some embodiments the oligonucleotide comprises at least two CG pairs. In some embodiments the oligonucleotide is complementary of said non-coding region of the target gene. In some embodiments the oligonucleotide is unique to the nucleotide sequence of the non-coding region. In some embodiments the nucleotide sequence of the non-coding region is not duplicated in a genome comprising the target gene. In some embodiments the nucleotide sequence of the non-coding region comprises 60% or greater homology to other nucleotide sequences in a genome with another gene. In some other embodiments the oligonucleotide is complementary to a non-coding region of another gene that influences that target gene. In yet other embodiments the oligonucleotide is complementary to a non-coding region of another gene that influences that target gene due to a chromosomal rearrangement. In yet other embodiments the oligonucleotide is complementary to a region upstream of the transcription start site.


In some embodiments, the present invention provides a composition comprising one or more distinct oligonucleotides that hybridizes under physiological conditions to regions upstream of the transcription start site of a disease causing gene.


In some embodiments, the region or regions upstream of the start site are located in regions on, surrounding or near transcription factor binding sites. In other embodiments, the regions are located on, surrounding or near various classes of regulatory elements (promoters, proximal promoters, distal enhancers, activators/co-activators, suppressors) that serve as cis-regulatory elements involved in gene transcription.


In some embodiments, the present invention provides compositions that are complementary to residues within CG regions. In some other embodiments, the present invention provides compositions that are complementary to residues within CpG islands. In yet other embodiments, the present invention resides in areas within nuclease hypersensitive areas.


In some embodiments, the present invention provides a composition comprising a first oligonucleotide that hybridizes under physiological conditions to the regulatory region of the target sequences. In some embodiments, at least one of the cytosine bases in the first oligonucleotide is 5-methylcytosine. In some of the embodiments, wherein at least one or all the cytosine bases in said CG pair is 5-methylcytosine. In some embodiments, all of the cytosine bases in the first oligonucleotide are 5-methylcytosine. In yet other embodiments, some of the bases in the first oligonucleotide are modified to prevent nuclease degradation during cell culture experiments. In some preferred embodiments, the hybridization of the first oligonucleotide to the promoter region of a gene modulates expression of the target gene. In some embodiments, the target gene is on a chromosome of a cell, and the hybridization of the first oligonucleotide to the regulatory region of the gene modulates cell signaling pathways of the cell. In some embodiments, the composition further comprises a second oligonucleotide. In some embodiments, at least one (e.g. all) of the cytosines in the second oligonucleotide are 5-methylcytosine.


In yet other embodiments, the present invention provides a method, comprising: providing an oligonucleotide; and a cell capable of transcription, and a cell capable of gene expression, and comprising a gene capable of being transcribed, and comprising a gene capable of being expressed; and introducing the oligonucleotide to the cell. In some embodiments, the introducing results in the modulation of the gene transcription. In some embodiments, the introducing results in the modulation of expression of the gene. In other embodiments, the introducing results in the modulation of proliferation of the cell. In yet other embodiments, the introducing results in the modulation of the cell phenotype. In certain embodiments, the introducing results in alteration of expression of other genes related to the target gene. In certain other embodiments, the introducing results in modulation of cell signaling pathways related to the target gene transcription. In yet other embodiments, the introducing results in an interference with the expression of other genes involved in transcription. In some embodiments, the cell is a cancer cell. In other embodiments, the cell is a prokaryote. In some other embodiments, the cell is a eukaryote. In some other embodiments the cell is in a host plant. In other embodiments, the cell is in a host animal (e.g., a non-human mammal or a human). In some embodiments, the oligonucleotide is introduced to the host animal at a dosage of between 0.1 mg to 10 g, and preferably at a dosage of between 00.1 mg to 100 mg per kg of body weight or 1 to 500 mg per meter squared body surface area. In some embodiments, the oligonucleotide is introduced to the host animal one or more times per day. In other embodiments, the oligonucleotide is introduced to the host animal continuously. In still further embodiments, the cell is in cell culture. In some embodiments, the method further comprises the step of introducing a test compound to the cell. In some embodiments, the test compound is a known chemotherapy or therapeutic agent. In some embodiments, the cancer is pancreatic cancer, colon/gastric cancer, breast cancer, renal/bladder cancer, lung cancer, leukemia, prostate, lymphoma, ovarian, thyroid cancer, sarcoma, or melanoma. In some embodiments, the non cancer disease involves bacterial, cardiovascular (heart failure, atherosclerosis, dylipidemia, etc.), vascular, metabolic, diabetic, dental, oral, dermatological, endocrinology, fungal, gastroenterological, bowel (e.g. Crohn's, Ulcerative Colitis, or inflammatory bowel disease, etc.), genetic, hematological, hepatic, immunology, infections and/or infectious disease, inflammation (e.g. arthritis, etc.), musculosketal, nephrology, neurology (e.g. Alzheimer's, Parkinson's, Huntington's, Multiple Sclerosis, etc.), nutrition and/or weight loss, obstetrics/gynecology, ophthalmology, orthopedics, otolaryngology, pediatric/neonatology, podiatry, pulmonary/respiratory disease, rheumatology, sleep disorders, trauma, urology, or viral (e.g. HCV, HIV, HBV, Herpes, etc.) disease.


In some embodiments, the method further provides a drug delivery system. In some embodiments, the drug delivery system comprises a nanoparticle, nanocrystal or complex, (e.g., a liposome comprising a neutral lipid or a lipid like compound or particles comprising polymer or polymer-like compound). In some embodiments, the drug delivery system comprises a cell targeting component (e.g., a ligand or ligand like molecule for a cell surface receptor or a nuclear receptor). In yet other embodiments, the drug delivery system comprises a device to administer the test compound(s). In certain embodiments, the drug delivery system is for use in vivo, and the oligonucleotide and the liposome, nanoparticle, nanocrystal or delivery system are present in the ratio of from 1:1 to 1:1000 (weight per weight).


The present invention further provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the coding strand of a gene under conditions such that expression of that gene is inhibited, enhanced or altered (i.e. modulated)


The present invention further provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the coding strand of a gene under conditions such that transcription of that gene is inhibited, enhanced or altered (i.e. modulated)


The present invention further provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the coding strand of a gene under conditions such that cell signaling pathways related to that gene is inhibited, enhanced or altered (i.e. modulated).


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene on a chromosome of a cell under conditions such that the cell phenotype is altered.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene on a chromosome of a cell under conditions such that proliferation of the cell is reduced.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the CG regions of a gene on a chromosome of a cell under conditions such that cell signaling pathways are modulated.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to CpG islands of a gene on a chromosome of a cell under conditions such that cell signaling pathways are modulated.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the CG regions of a gene on a chromosome of a cell under conditions such that genes related to transcription of that gene are modulated.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the CpG islands of a gene on a chromosome of a cell under conditions such that genes related to gene expression of that gene are modulated.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the CG regions of a gene on a chromosome of a cell under conditions such that genes related to cell phenotype are modulated.


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the CpG islands of a gene on a chromosome of a cell under conditions such that genes related to cell phenotype are modulated.


The present invention additionally provides a method of inhibiting the expression of a gene in a subject (e.g., for the treatment of cancer or other hyperproliferative/overexpressive gene disorders) comprising providing an oligonucleotide that hybridizes under physiological conditions to the coding strand of a gene involved in cancer or a hyperproliferative/overexpressive gene disorder expressed in the biological sample, the oligonucleotide comprising at least on CG dinucleotide pair; and administering the oligonucleotide to the subject under conditions such that transcription or expression of the gene is inhibited, enhanced or altered (i.e. modulated). In some embodiments, the subject is a human.


In some embodiments, the method further provides a drug delivery system. In some embodiments, the drug delivery system comprises a liposome (e.g., a liposome comprising a neutral lipid or a lipid like compound or particles comprising polymer or polymer-like compound). In some embodiments, the drug delivery system comprises a cell targeting component (e.g., a ligand or ligand like molecule for a cell surface receptor or a nuclear receptor). In certain embodiments, the drug delivery system is for use in vivo, and the oligonucleotide and the liposome, nanoparticle, nanocrystal or delivery system are present in the ratio of from 1:1 to 1:1000 (weight per weight).


The present invention additionally provides a composition comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene located on a chromosome of a cell under conditions such that transcription, phenotype or cell signaling pathways related to the target gene are modulated.


In certain embodiments, the present invention provides a kit comprising an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene, the oligonucleotide comprising at least one CG dinucleotide pair, wherein at least one of the cytosine bases in the CG dinucleotide pair comprises 5-methylcytosine; and instructions for using the kit for reducing proliferation of a cell comprising a gene on a chromosome of the cell or inhibiting gene expression. In some embodiments, the composition in the kit is used for treating cancer in a subject and the instructions comprise instructions for using the kit to treat cancer in the subject. In some embodiments, the instructions are instructions required by the U.S. Food and Drug Agency for labeling of pharmaceuticals.


The present invention also provides a method, comprising: providing a biological sample from a subject diagnosed with a cancer; and reagents for detecting the present or absence of expression of a oncogene in the sample; and detecting the presence or absence of expression of an oncogene in the sample; administering an oligonucleotide that hybridizes under physiological conditions to the promoter region of an oncogene expressed in the biological sample, the oligonucleotide comprising at least one CG dinucleotide pair.


The present invention additionally provides a method of inhibiting the expression of a gene in a subject (e.g., for the treatment of cancer or other hyperproliferative disorders) comprising providing an oligonucleotide that hybridizes under physiological conditions to the promoter region of a gene involved in cancer or a hyperproliferative disorder expressed in the biological sample, the oligonucleotide comprising at least one CG dinucleotide pair; and administering the oligonucleotide to the subject under conditions such that expression of the gene is inhibited. In some embodiments, the subject is a human.


The present invention additionally provides a method of modulating the transcription of a gene in a subject (e.g., for the treatment of disease) comprising an oligonucleotide that hybridizes under physiological conditions to the non-coding region of a gene involved in disease expressed in the biological sample, the oligonucleotide comprising at least one CG dinucleotide pair; and administering the oligonucleotide to the subject under conditions such that expression of the gene is inhibited. In some embodiments, the subject is a human.


In yet further embodiments, the present invention provides a method of screening compounds providing a cell comprising a suspected gene; and an oligonucleotide that hybridizes to the promoter region of the gene; and administering the oligonucleotide to the cell; and determining if the phenotype of the cell is modulated in the presence of the oligonucleotide relative to the absence of the oligonucleotide. In some embodiments, the cell is in culture (e.g., a prokaryote or eukaryote cell line). In other embodiments, the cell is in a host animal (e.g., a non-human mammal). In some embodiments, the method is a high-throughput screening method.


In other embodiments, the present invention relates to methods and compositions for cancer therapy. In particular, the present invention provides nanoparticle, nanocrystal, liposome, or complex based cancer or non-cancer therapeutics.


Accordingly, in some embodiments, the present invention provides a pharmaceutical composition comprising (e.g., consisting of) a cationic, neutral, or anionic lipids, polymers or delivery agents in a complex or mixture with an oligonucleotide. In some preferred embodiments, the liposome is cationic, neutral, anionic or amphoteric (e.g. SMARTICLES) in charge. In some preferred embodiments, the complex is a mixture of lipids, lipid-like, polymer or polymer-like delivery agents and a cation (e.g. lipids and calcium to form cochleates) or a mixture of lipids lipids, lipid-like, polymer or polymer-like delivery agents and an anion.


In some embodiments, the present invention provides a kit, comprising an oligonucleotide (e.g., an oligonuculeotide that hybridizes to the CG regions, CpG islands or promoter region of an onocogene) and a first pharmaceutical composition comprising (e.g., consisting of) a cationic, neutral, or anionic liposome comprises an optional second pharmaceutical composition, wherein the second pharmaceutical composition comprises a known chemotherapy agent (e.g., TAXOTERE, TAXOL, or VINCRISTINE, etc.), or chemotherapy cocktail, and wherein the known chemotherapy agent is formulated separately from the first pharmaceutical composition. In some embodiments, the chemotherapy agent is present at less than one half the standard dose, more preferably less than one third, even more preferably less than one fourth and still more preferable less than one tenth, and yet more preferably less than one hundredth the standard dose.


In some embodiments, the present invention provides a kit, comprising an oligonucleotide (e.g., an oligonuculeotide that hybridizes to the CG regions, CG islands, or promoter region of an onocogene) and a first pharmaceutical composition comprising (e.g., consisting of) a cationic, neutral, or anionic liposome comprises an optional second pharmaceutical composition, wherein the second pharmaceutical composition comprises a known agent (e.g., an antibiotic, an antiviral, an anti-inflammatory, etc.), or treatment cocktail, and wherein the known agent is formulated separately from the first pharmaceutical composition. In some embodiments, the agent is present at less than one half the standard dose, more preferably less than one third, even more preferably less than one fourth and still more preferable less than one tenth, and yet more preferably less than one hundredth the standard dose.


In yet other embodiments, the present invention provides a method, comprising providing a pharmaceutical composition consisting of a cationic, neutral, or anionic liposome and an oligonucleotide (e.g., an oligonuculeotide that hybridizes to the promoter region of an onocogene); and exposing the pharmaceutical composition to a cancer cell. In some preferred embodiments, the liposome is a cardiolipin based cationic liposome (e.g., NEOPHECTIN). In some preferred embodiments, the charge ration of NEOPHECTIN to oligonucleotide is 6:1. In other embodiments, the liposome comprises N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP). In some embodiments, the cancer cell is a prostate cancer cell, an ovarian cancer cell, a breast cancer cell, a leukemia cell, or lymphoma cell. In some embodiments, the cell is in a host animal (e.g., a human). In some embodiments, the pharmaceutical composition is introduced to the host animal one or more times per day (e.g., continuously). In some embodiments, the method further comprises the step of administering a known chemotherapeutic agent to the subject (e.g., TAXOTERE, TAXOL, or VINCRISTINE), wherein the known chemotherapeutic agent is formulated separately from the cationic, neutral or anionic liposome. In preferred embodiments, the known chemotherapeutic agent is administered separately from the pharmaceutical composition. In some embodiments, the chemotherapy agent is present at less than one half the standard dose, more preferably less than one third, even more preferably less than one forth and still more preferable less than one tenth, and yet more preferably less than one hundredth the standard dose.





DESCRIPTION OF THE FIGURES


FIG. 1 demonstrates a dose-dependent response for representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 2 demonstrates a dose-dependent response for representative olionucleotides in A549 (human lung cell line).



FIG. 3 demonstrates a dose-dependent response for representative olionucleotides in DU145 (human prostate cell line).



FIG. 4 demonstrates a dose-dependent response for representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 5 depicts the structure of the olionucleotide SU1.



FIG. 6 depicts the structure of the olionucleotide SU2.



FIG. 7 depicts the structure of the olionucleotide SU3.



FIG. 8 depicts the structure of the olionucleotide SU102.



FIG. 9 depicts the structure of the olionucleotide SU103.



FIG. 10 demonstrates target inhibition of representative olionucleotides in DU145 (human prostate cell line).



FIG. 11 demonstrates target inhibition of representative olionucleotides in HCT-116 (human colorectal carcinoma).



FIG. 12 depicts the structure of the olionucleotide BE1.



FIG. 13 depicts the structure of the olionucleotide BE2.



FIG. 14 demonstrates target inhibition of representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 15 demonstrates target inhibition of representative olionucleotides in DU145 (human prostate cell line).



FIG. 16 depicts the structure of the olionucleotide ST1.



FIG. 17 depicts the structure of the olionucleotide ST2.



FIG. 18 demonstrates target inhibition of representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 19 demonstrates target inhibition of representative olionucleotides in DU145 (human prostate cell line).



FIG. 20 depicts the structure of the olionucleotide HI1.



FIG. 21 depicts the structure of the olionucleotide HI2.



FIG. 22 demonstrates target inhibition of representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 23 demonstrates target inhibition of representative olionucleotides in DU145 (human prostate cell line).



FIG. 24 depicts the structure of the olionucleotide IL8-1.



FIG. 25 depicts the structure of the olionucleotide IL8-3.



FIG. 26 demonstrates target inhibition of representative olionucleotides in BxPC3 (human pancreatic cancer cell line).



FIG. 27 demonstrates target inhibition of representative olionucleotides in A549 (human lung cancer cell line).



FIG. 28 depicts the structure of the olionucleotide KR1.



FIG. 29 depicts the structure of the olionucleotide KR2.



FIG. 30 depicts the structure of the olionucleotide KR0525.



FIG. 31 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 32 depicts the structure of the olionucleotide IL6.



FIG. 33 demonstrates target inhibition of representative olionucleotides in HCT-116 (human colorectal carcinoma).



FIG. 34 depicts the structure of the olionucleotide AKT4



FIG. 35 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 36 depicts the structure of the olionucleotide BC1.



FIG. 37 demonstrates target inhibition of representative olionucleotides in HCT-116 (human colorectal carcinoma).



FIG. 38 depicts the structure of the olionucleotide MEK11.



FIG. 39 depicts the structure of the olionucleotide MEK12.



FIG. 40 demonstrates target inhibition of representative olionucleotides in HCT-116 (human colorectal carcinoma).



FIG. 41 depicts the structure of the olionucleotide MEK21.



FIG. 42 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 43 depicts the structure of the olionucleotide WNT11.



FIG. 44 depicts the structure of the olionucleotide WNT12.



FIG. 45 depicts the structure of the olionucleotide WNT13.



FIG. 46 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 47 depicts the structure of the olionucleotide EZH22.



FIG. 48 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 49 depicts the structure of the olionucleotide PD1.



FIG. 50 demonstrates target inhibition of representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 51 demonstrates target inhibition of representative olionucleotides in M14 (human melanoma cell line).



FIG. 52 demonstrates target inhibition of representative olionucleotides in NMuMG (a normal murine mouse mammary gland cell line).



FIG. 53 depicts the structure of the olionucleotide BL2.



FIG. 54 demonstrates target inhibition of representative olionucleotides in HCT-116 (human colorectal carcinoma).



FIG. 55 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 56 demonstrates target inhibition of representative olionucleotides in MDA-MB-231 a human breast cell line.



FIG. 57 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 58 depicts the structure of the olionucleotide CM7.



FIG. 59 depicts the structure of the olionucleotide CM12.



FIG. 60 depicts the structure of the olionucleotide CM13.



FIG. 61 depicts the structure of the olionucleotide CM14.



FIG. 62 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 63 depicts the structure of the olionucleotide TNF1.



FIG. 64 demonstrates target inhibition of representative olionucleotides in MCF7 (human mammary breast cell line).



FIG. 65 depicts the structure of the olionucleotide MIF11.



FIG. 66 depicts the structure of the olionucleotide MIF12.



FIG. 67 demonstrates that a representative oligonucleotide PC2 is capable of modulating target gene expression.





The figures are provided by way of example and are not intended to limit the scope of the present invention.


DETAILED DESCRIPTION OF THE INVENTION
Definitions

To facilitate an understanding of the present invention, a number of terms and phrases are defined below:


As used herein, the term “wherein said chemotherapy agent is present at less than one half the standard dose” refers to a dosage that is less than one half (e.g., less than 50%, preferably less than 40%, even more preferably less than 10% and still more preferably less than 1%) of the minimum value of the standard dosage range used for dosing humans. In some embodiments, the standard dosage range is the dosage range recommended by the manufacturer. In other embodiments, the standard dosage range is the range utilized by a medical doctor in the field. In still other embodiments, the standard dosage range is the range considered the normal standard of care in the field. The particular dosage within the dosage range is determined, for example by the age, weight, and health of the subject as well as the type of cancer being treated.


As used herein, the term “under conditions such that expression of said gene is modulated” refers to conditions where an oligonucleotide of the present invention hybridizes to a gene) and modulates expression of the gene by at least 10%, preferably at least 25% relative to the level of transcription in the absence of the oligonucleotide. The present invention is not limited to the modulation of expression of a particular gene. Exemplary genes include, but are not limited to Survivin, Beclin-1, STAT3, HIF1A, IL-8, KRAS, MTTP, ApoC III, ApoB, IL-17, MMP2, FAP, P-selectin, IL-6, IL-23, AKT, CRAF, Beta Catenin, PCSK9, MEK1, MEK2, CD4, WNT1, Clusterin, NRAS, EZH2, HDAC1, and PD-1, TNFα, MIF1, TTR, HBV, HAMP, ERBB2, PARP1, ITGA4, APP, FGFR1, CD68, ALK, MSI2, JAK2, CCND1. As used herein, the term “under conditions such that transcription of said gene is modulated” refers to conditions where an oligonucleotide of the present invention hybridizes to a gene and modulates transcription of the gene by at least 10%, preferably at least 25% relative to the level of transcription in the absence of the oligonucleotide. The modulation of transcription of said gene may involve related genes. The present invention is not limited to the modulation of expression of a particular gene.


As used herein the term “expression” is the process whereby information from a gene is used in the synthesis of a functional gene product. These products may be proteins, but in non-protein coding genes such as ribosomal RNA (rRNA), transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the product is a functional RNA or transcript to generate the macromolecular machinery for gene expression. Gene expression may be modulated at several levels including transcription, RNA splicing, translation, and post-translational modification of a protein. The term may also be used against a viral gene and refer to mRNA synthesis from a RNA molecule (i.e. RNA replication). For instance, the genome of a negative-sense single-stranded RNA virus may serve as a template to translate the viral proteins for viral replication afterwards.


As used herein the term “transcription” is the first step of gene expression where a segment of DNA is copied into RNA by RNA polymerase to produce a transcript. If the gene transcribed encodes a protein, the result of transcription is messenger RNA (mRNA) and expressed to produce a protein. Alternatively, a transcribed gene may encode for non-coding RNA genes (e.g. such as microRNA etc.), ribosomal RNA, transfer RNA (tRNA), other components of the protein-assembly process, or other ribozymes.


As used herein the term “phenotype” describes the modulation of gene expression to define the properties of the expression give rise to the organism's phenotype. A phenotype is expressed by proteins that control the organism's characteristics or traits, such as its morphology, shape, development, biochemical or physiological properties, and products that act to catalyze cell signaling and metabolic pathways characterizing the organism.


As used herein the term “cell signaling” describes a complex system of signals or pathways that governs cellular activities and coordinates cell actions. A cell's ability to perceive and respond to its environment is processed through proteins involved in the cell signaling pathway.


As used herein the term “CG regions” are regions of DNA where cytosine and guanine nucleotides are enriched in the linear sequence of bases along the length of a gene. Generally CG or GC percentage that is greater than 50% with an observed-to-expected CpG ratio that is greater than 60%. CG regions of DNA are also where a cytosine nucleotide occurs next to a guanine nucleotide and may be referred to as “CpG” for “C phosphodiester bond G”. Generally cytosine bases in CpGs are methylated.


As used herein the term “CpG islands” are regions of the genome that have high GC content and higher concentration of CpG sites associated with the start of the gene, promoter regions or regions 5′ upstream of a gene start site. CpG islands are typically 300-3,000 base pairs in length. CpG islands are recognized to be hypomethylated. In most instances the CpG sites in the CpG islands are unmethylated and may be recognized by HpaII restriction site, CCGG.


As used herein the term “nuclease hypersensitive site” is a short region of chromatin and is detected by its super sensitivity to cleavage by DNase I and other various nucleases. The nucleosomal structure is less compact, increasing the availability of the DNA to binding by proteins, such as transcription factors and DNase I. Hypersensitive sites are found on chromatin of cells associated with genes and generally precede active promoters. When DNA is transcribed, 5′ hypersensitive sites appear before transcription begins, and the DNA sequences within the hypersensitive sites are required for gene expression. Hypersensitive sites may be generated as a result of the binding of transcription factors.


As used herein “cis-regulatory element” is a region of DNA or RNA that regulates the expression of genes located on that same molecule of DNA A cis-regulatory element may be located upstream of the coding sequence of the gene it controls (in the promoter region or even further upstream), in an intron, or downstream of the gene's coding sequence, in either the translated or the untranscribed region. A cis-regulatory element may be located in another gene other than the target gene in instances of chromosomal rearrangements.


As used herein “non-coding” refers to a linear sequence of DNA that does not contribute to an amino acid sequence of a protein.


As used herein “Trinucleotide repeat expansion” refers to a triplet repeat expansion of DNA bases that causes any type of disorder categorized as a trinucleotide repeat disorder. Generally, the larger the expansion the more likely they are to cause disease or increase the severity of disease. Trinucleotide repeat disorders represent genetic by trinucleotide repeat expansion, a kind of mutation where trinucleotide repeats in certain genes exceed the normal, stable threshold, which differs per gene.


As used herein, the term “under conditions such that growth of said cell is reduced” refers to conditions where an oligonucleotide of the present invention, when administered to a cell (e.g., a cancer) reduces the rate of growth of the cell by at least 10%, preferably at least 25%, even more preferably at least 50%, and still more preferably at least 90% relative to the rate of growth of the cell in the absence of the oligonucleotide.


As used herein, the term “under conditions such that the expression of said target is modulated” refers to conditions where an oligonucleotide of the present invention, when administered to a cell (e.g., a cancer or non cancer or immune cell) modulates the expression of the protein by at least 10%, preferably at least 25%, relative to basal expression in the absence of the oligonucleotide.


The term “epitope” as used herein refers to that portion of an antigen that makes contact with a particular antibody.


As used herein, the term “subject” refers to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, which is to be the recipient of a particular treatment. Typically, the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.


As used herein, the terms “computer memory” and “computer memory device” refer to any storage media readable by a computer processor. Examples of computer memory include, but are not limited to, RAM, ROM, computer chips, digital video disc (DVDs), compact discs (CDs), hard disk drives (HDD), and magnetic tape.


As used herein, the term “computer readable medium” refers to any device or system for storing and providing information (e.g., data and instructions) to a computer processor. Examples of computer readable media include, but are not limited to, DVDs, CDs, hard disk drives, magnetic tape and servers for streaming media over networks.


As used herein, the term “Delta G” or “ΔG” is the change in Gibbs Free Energy (in units of kcal/mole) and is the net exchange of energy between the system and its environment and can be described by the equation ΔG=ΔH−T·ΔS. Where ΔH (Enthalpy) represents the total energy exchange between the system and its surrounding environment (in units of kcal/mole), ΔS (Entropy) represents the energy spent by the system to organize itself (in units of cal/K·mole). Generally speaking a spontaneous system favors a more random system not an ordered system. Finally, T represents the absolute temperature of the system and is in units Kelvin (Celsius +273.15). The change of free energy is equal to the sum of its enthalpy plus the product of the temperature and entropy of the system. A positive ΔG reaction is generally non-spontaneous while a negative value is spontaneous.


As used herein, the terms “processor” and “central processing unit” or “CPU” are used interchangeably and refer to a device that is able to read a program from a computer memory (e.g., ROM or other computer memory) and perform a set of steps according to the program.


As used herein, the term “non-human animals” refers to all non-human animals including, but are not limited to, vertebrates such as rodents, non-human primates, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, ayes, etc. and and non-vertebrate animals such as drosophila and nematode. In some embodiments, “non-human animals” further refers to prokaryotes and viruses such as bacterial pathogens, fungal, viral pathogens. Non-human animals is used broadly here to also indicate plants and plant genomes, especially commercially valuable crops such as corn, soybean, cotton, the grasses and legumes including rice and alfalfa as well as commercial flowers, vegetables and trees including deciduous and evergreen.


As used herein, the term “nucleic acid molecule” refers to any nucleic acid containing molecule, including but not limited to, DNA or RNA. The term encompasses sequences that include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminomethyluracil, dihydrouracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine.


The term “gene” refers to a nucleic acid (e.g., DNA) sequence that comprises coding sequences necessary for the production of a polypeptide, precursor, or RNA (e.g., rRNA, tRNA). The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence so long as the desired activity or functional properties (e.g., enzymatic activity, ligand binding, signal transduction, immunogenicity, etc.) of the full-length or fragment are retained. The term also encompasses the coding region of a structural gene and the sequences located adjacent to the coding region on the 5′ ends for a distance of about 1 kb or more such that the gene corresponds to the length of the full-length mRNA. Sequences located 5′ of the coding region and present on the mRNA are referred to as 5′ non-translated sequences. Sequences located 3′ or downstream of the coding region and present on the mRNA are referred to as 3′ non-translated sequences. The term “gene” encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed “introns” or “intervening regions” or “intervening sequences.” Introns are segments of a gene that are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or “spliced out” from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.


As used herein, the term “heterologous gene” refers to a gene that is not in its natural environment. For example, a heterologous gene includes a gene from one species introduced into another species. A heterologous gene also includes a gene native to an organism that has been altered in some way (e.g., mutated, added in multiple copies, linked to non-native regulatory sequences, translocated, etc). Heterologous genes are distinguished from endogenous genes in that the heterologous gene sequences are typically joined to DNA sequences that are not found naturally associated with the gene sequences in the chromosome or are associated with portions of the chromosome not found in nature (e.g., genes expressed in loci where the gene is not normally expressed).


As used herein, the term “gene expression” refers to the process of converting genetic information encoded in a gene into RNA (e.g., mRNA, rRNA, tRNA, or snRNA) through “transcription” of the gene (i.e., via the enzymatic action of an RNA polymerase), and for protein encoding genes, into protein through “translation” of mRNA. Gene expression can be regulated at many stages in the process. “Up-regulation” or “activation” refers to regulation that increases the production of gene expression products (i.e., RNA or protein), while “down-regulation” or “repression” refers to regulation that decrease production. “Modulation” refers to regulation that is altered. Molecules (e.g., transcription factors) that are involved in up-regulation or down-regulation are often called “activators” and “repressors or suppressors,” respectively.


In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5′ and 3′ end of the sequences that are present on the RNA transcript. These sequences are referred to as “flanking” sequences or regions (these flanking sequences are located 5′ or 3′ to the non-translated sequences present on the mRNA transcript). The 5′ flanking region may contain regulatory sequences such as promoters and enhancers that control or influence the transcription of the gene. The 3′ flanking region may contain sequences that direct the termination of transcription, post-transcriptional cleavage and polyadenylation.


The term “wild-type” refers to a gene or gene product isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designed the “normal” or “wild-type” form of the gene. In contrast, the term “modified” or “mutant” refers to a gene or gene product that displays modifications in sequence and/or functional properties (i.e., altered characteristics) or phenotype when compared to the wild-type gene or gene product. It is noted that naturally occurring mutants can be isolated; these are identified by the fact that they have altered characteristics (including altered nucleic acid sequences) when compared to the wild-type gene or gene product.


As used herein, the terms “nucleic acid molecule encoding,” “DNA sequence encoding,” and “DNA encoding” refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.


As used herein, the terms “an oligonucleotide having a nucleotide sequence encoding a gene” and “polynucleotide having a nucleotide sequence encoding a gene,” means a nucleic acid sequence comprising the coding region of a gene or in other words the nucleic acid sequence that encodes a gene product. The coding region may be present in a cDNA, genomic DNA or RNA form. When present in a DNA form, the oligonucleotide or polynucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements.


As used herein, the term “oligonucleotide,” refers to a short length of single-stranded polynucleotide chain. Oligonucleotides are typically less than 200 residues long (e.g., between 8 and 100), however, as used herein, the term is also intended to encompass longer polynucleotide chains (e.g., as large as 5000 residues). Oligonucleotides are often referred to by their length. For example a 24 residue or base oligonucleotide is referred to as a “24-mer”. Oligonucleotides can form secondary and tertiary structures by self-hybridizing or by hybridizing to other polynucleotides. Such structures can include, but are not limited to, duplexes, hairpins, cruciforms, bends, and triplexes.


In some embodiments, oligonucleotides are “DNAi or DNA interference (DNAi).” As used herein, the term “DNAi” or refers to an oligonucleotide that hybridizes to region 5′ upstream of the transcription start site of a gene. In some embodiments, the hybridization of the DNAi or DNAi to the promoter modulates expression of the gene.


As used herein, the terms “complementary” or “complementarity” are used in reference to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence “A-G-T,” is complementary to the sequence “T-C-A.” Complementarity may be “partial,” in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be “complete” or “total” or “100 percent” complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. The degree of complementarity is also defined the “native” sequence rather than having a mismatch. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.


As used herein, the term “completely complementary,” for example when used in reference to an oligonucleotide of the present invention refers to an oligonucleotide where all of the nucleotides are complementary to a target sequence (e.g., a gene).


As used herein, the term “partially complementary,” for example when used in reference to an oligonucleotide of the present invention, refers to an oligonucleotide where at least one nucleotide is not complementary to the target sequence. Preferred partially complementary oligonucleotides are those that can still hybridize to the target sequence under physiological conditions. The term “partially complementary” refers to oligonucleotides that have regions of one or more non-complementary nucleotides both internal to the oligonucleotide or at either end. Oligonucleotides with mismatches at the ends may still hybridize to the target sequence.


The term “homology” refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is a nucleic acid molecule that at least partially inhibits a completely complementary nucleic acid molecule from hybridizing to a target nucleic acid is “substantially homologous.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous nucleic acid molecule to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target that is substantially non-complementary (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.


When used in reference to a double-stranded nucleic acid sequence such as a cDNA or genomic clone, the term “substantially homologous” refers to any probe that can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described above.


A gene may produce multiple RNA species that are generated by differential splicing of the primary RNA transcript. cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon “A” on cDNA 1 wherein cDNA 2 contains exon “B” instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other.


When used in reference to a single-stranded nucleic acid sequence, the term “substantially homologous” refers to any probe that can hybridize (i.e., it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described above.


As used herein, the term “hybridization” is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C or C:G ratio within the nucleic acids. An oligonucleotide is a single molecule that contains a covalent bond linking each nucleotide and often pairing of complementary nucleic acids within its structure is said to be “self-hybridized” or having secondary structure.


As used herein the term “secondary structure” means a single molecule that contains a pairing of complementary nucleic acids within its structure that contributes to a two dimensional bend in said molecule.


As used herein, the term “linear section” refers to molecules with secondary structures wherein those secondary structures have regions of DNA that are not paired in a secondary manner they only have one covalent bond to the next oligonucleotide rather than both a bond and a pairing of complementary nucleic acids as one finds in regions having secondary structure.”


As used herein, the term “nuclease hypersensitive region” refers to regions of the target gene that are susceptible to oligonucleotide binding.


As used herein, the term “Tm” is used in reference to the “melting temperature.” The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: Tm=81.5+0.41 (% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985]). Other references include more sophisticated computations that take structural as well as sequence characteristics into account for the calculation of Tm. The process of hybridization and dissociation is complex and highly dynamic and at the Tm, double strands are constantly formed and broken up, resulting in multiple interactions over time. The formation of secondary structures within an oligonucleotide may influence Tm.


As used herein the term “stringency” is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. Under “low stringency conditions” a nucleic acid sequence of interest will hybridize to its exact complement, sequences with single base mismatches, closely related sequences (e.g., sequences with 90% or greater homology), and sequences having only partial homology (e.g., sequences with 50-90% homology). Under “medium stringency conditions,” a nucleic acid sequence of interest will hybridize only to its exact complement, sequences with single base mismatches, and closely relation sequences (e.g., 90% or greater homology). Under “high stringency conditions,” a nucleic acid sequence of interest will hybridize only to its exact complement, and (depending on conditions such a temperature) sequences with single base mismatches. In other words, under conditions of high stringency the temperature can be raised so as to exclude hybridization to sequences with single base mismatches.


“High stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4 H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5×Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.


“Medium stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4 H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5×Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.


“Low stringency conditions” comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4 H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5×Denhardt's reagent [50×Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5×SSPE, 0.1% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.


The present invention is not limited to the hybridization of probes of about 500 nucleotides in length. The present invention contemplates the use of probes between approximately 8 nucleotides up to several thousand (e.g., at least 5000) nucleotides in length. One skilled in the relevant understands that stringency conditions may be altered for probes of other sizes (See e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985] and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY [1989]).


One skilled in the art would know numerous equivalent conditions may be employed to create low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, the art knows conditions that promote hybridization under conditions of high stringency (e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.) (see definition above for “stringency”).


As used herein, the term “physiological conditions” refers to specific stringency conditions that approximate or are conditions inside an animal (e.g., a human). Exemplary physiological conditions for use in vitro include, but are not limited to, 37° C., 95% air, 5% CO2, commercial medium for culture of mammalian cells (e.g., DMEM media available from Gibco, Md.), 5-10% serum (e.g., calf serum or horse serum), additional buffers, and optionally hormone (e.g., insulin and epidermal growth factor).


The term “isolated” when used in relation to a nucleic acid, as in “an isolated oligonucleotide” or “isolated polynucleotide” refers to a nucleic acid sequence that is identified and separated from at least one component or contaminant with which it is ordinarily associated in its natural source. Isolated nucleic acid is such present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids as nucleic acids such as DNA and RNA found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences, such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs that encode a multitude of proteins. However, isolated nucleic acid encoding a given protein includes, by way of example, such nucleic acid in cells ordinarily expressing the given protein where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature. The isolated nucleic acid, oligonucleotide, or polynucleotide may be present in single-stranded or double-stranded form. When an isolated nucleic acid, oligonucleotide or polynucleotide is to be utilized to express a protein, the oligonucleotide or polynucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide or polynucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide or polynucleotide may be double-stranded).


As used herein, the term “purified” or “to purify” refers to the removal of components (e.g., contaminants) from a sample. For example, antibodies are purified by removal of contaminating non-immunoglobulin proteins; they are also purified by the removal of immunoglobulin that does not bind to the target molecule. The removal of non-immunoglobulin proteins and/or the removal of immunoglobulins that do not bind to the target molecule results in an increase in the percent of target-reactive immunoglobulins in the sample. In another example, recombinant polypeptides are expressed in bacterial host cells and the polypeptides are purified by the removal of host cell proteins; the percent of recombinant polypeptides is thereby increased in the sample.


“Amino acid sequence” and terms such as “polypeptide” or “protein” are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.


The term “native protein” as used herein to indicate that a protein does not contain amino acid residues encoded by vector sequences; that is, the native protein contains only those amino acids found in the protein as it occurs in nature. A native protein may be produced by recombinant means or may be isolated from a naturally occurring source.


The term “mutant protein” as used herein to indicate that a protein containing a change in amino acid residues encoded by vector sequences that renders altered function or implicated in disease; that is, the mutant protein contains only those amino acids found in the protein as it occurs in nature. A mutant protein may be produced by recombinant means or may be isolated from a naturally occurring source


As used herein the term “portion” when in reference to a protein (as in “a portion of a given protein”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.


The term “Southern blot,” refers to the analysis of DNA on agarose or acrylamide gels to fractionate the DNA according to size followed by transfer of the DNA from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized DNA is then probed with a labeled probe to detect DNA species complementary to the probe used. The DNA may be cleaved with restriction enzymes prior to electrophoresis. Following electrophoresis, the DNA may be partially depurinated and denatured prior to or during transfer to the solid support. Southern blots are a standard tool of molecular biologists (J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY, pp 9.31-9.58 [1989]).


The term “Northern blot,” as used herein refers to the analysis of RNA by electrophoresis of RNA on agarose gels to fractionate the RNA according to size followed by transfer of the RNA from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized RNA is then probed with a labeled probe to detect RNA species complementary to the probe used. Northern blots are a standard tool of molecular biologists (J. Sambrook, et al., supra, pp 7.39-7.52 [1989]).


The term “Western blot” refers to the analysis of protein(s) (or polypeptides) immobilized onto a support such as nitrocellulose or a membrane. The proteins are run on acrylamide gels to separate the proteins, followed by transfer of the protein from the gel to a solid support, such as nitrocellulose or a nylon membrane. The immobilized proteins are then exposed to antibodies with reactivity against an antigen of interest. The binding of the antibodies may be detected by various methods, including the use of radiolabeled antibodies.


As used herein, the term “cell culture” refers to any in vitro culture of cells. Included within this term are continuous cell lines (e.g., with an immortal phenotype), primary cell cultures, transformed cell lines, finite cell lines (e.g., non-transformed cells), and any other cell population maintained in vitro.


As used, the term “eukaryote” refers to organisms distinguishable from “prokaryotes.” It is intended that the term encompass all organisms with cells that exhibit the usual characteristics of eukaryotes, such as the presence of a true nucleus bounded by a nuclear membrane, within which lie the chromosomes, the presence of membrane-bound organelles, and other characteristics commonly observed in eukaryotic organisms. Thus, the term includes, but is not limited to such organisms as fungi, protozoa, and animals (e.g., humans).


As used herein, the term “in vitro” refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments can consist of, but are not limited to, test tubes and cell culture. The term “in vivo” refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.


The terms “test compound” and “candidate compound” refer to any chemical entity, pharmaceutical, drug, and the like that is a candidate for use to treat or prevent a disease, illness, sickness, disorder of bodily function (e.g., cancer or non-cancer disease) or disrupt a system (e.g. cell culture). Test compounds comprise both known and potential therapeutic compounds. A test compound can be determined to be therapeutic by screening using the screening methods of the present invention. In some embodiments of the present invention, test compounds include antisense compounds.


As used herein, the term “known chemotherapeutic agents” refers to compounds known to be useful in the treatment of disease (e.g., cancer). Exemplary chemotherapeutic agents affective against cancer include, but are not limited to, daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin, lenolamide, and diethylstilbestrol (DES).


As used herein, the term “sample” is used in its broadest sense. In one sense, it is meant to include a specimen or culture obtained from any source, as well as biological and environmental samples. Biological samples may be obtained from animals (including humans) and encompass fluids, solids, tissues, and gases. Biological samples include blood products, such as plasma, serum and the like. Environmental samples include environmental material such as surface matter, soil, water, crystals and industrial samples. Such examples are not however to be construed as limiting the sample types applicable to the present invention.


“Hot Zones” in some embodiments, are regions within the promoter region of an oncogene are further defined as preferred regions for hybridization of oligonucleotides. In some embodiments, these preferred regions are referred to as “hot zones.” In some preferred embodiments, hot zones are defined based on oligonucleotide compounds that are demonstrated to be effective (see above section on oligonucleotides) and those that are contemplated to be effective based on the preferred criteria for oligonucleotides described above. Preferred hot zones encompass 20 bp upstream and downstream of each compound included in each hot zone and have at least 1 CG or more within an increment of 40 bp further upstream or downstream of each compound. In preferred embodiments, hot zones encompass a maximum of 100 bp upstream and downstream of each oligonucleotide compound included in the hot zone. In additional embodiments, hot zones are defined at beginning regions of each promoter. These hot zones are defined either based on effective sequence(s) or contemplated sequences and have a preferred maximum length of 1000 bp. Based on the above described criteria, exemplary hot zones were designed. Specific hot zones are described in the examples.


Combination and Single-Agent Therapy Using this DNAi Technology.


We present and define the following disease conditions as exemplary of, but not limited to, those that are potentially treatable with the DNAi therapeutic(s) described herein. Treatment of these disease entities may occur with single-agent DNAi therapy or DNAi therapy in combination with one or more therapeutics used to treat the conditions.


Cardiovascular Disease


Treating cardiovascular disease involves opening narrowed arteries, correcting abnormalities associated with irregular heartbeats and dysfunctional heart muscle or valves, reducing high blood pressure and high lipid levels, and amending imbalances in clotting that causes symptoms of pain and discomfort. Inventions may include: medical devices, dyslipidemics, antithrombotics, anticoagulants, anti-platelets, antihypertensives, anti-inflammatory, antihypertrophics, diuretics, anti-anginal, channel blockers, anti-restenosis agents, anti-atherosclerotics, anti-arrhythmics, enzyme inhibitors, and complement inhibitors.


Antianginals


The heart muscle works continuously and requires a constant supply of nutrients and oxygen. Those nutrients and oxygen are carried to the heart muscle in the blood. The chest pain known as angina can occur when there is an insufficient supply of blood, and consequently of oxygen, to the heart muscle. There are several types of antianginal medications. These include beta blockers (acebutolol, atenolol, betaxolol, bisoprolol, labetalol, metoprolol, nadolol, pindolol, propranolol, timolol), calcium channel blockers (diltiazem, nifedipine, verapamil), and vasodilators (nitroglycerin, isosorbide dinitrate). These drugs act by increasing the amount of oxygen that reaches the heart muscle.


Antiarrhythmics


Antiarrhythmics are used when the heart does not beat rhythmically or smoothly (a condition called arrhythmia), its rate of contraction must be regulated. Antiarrhythmic drugs (disopyramide, mexiletine, procainamide, propranolol, amiodarone, tocainide) prevent or alleviate arrhythmias by altering nerve impulses in the heart. Anticoagulants are used when clots develop on the interior wall of an artery block blood flow.


Antihyperlipidemics


Medications for treating atherosclerosis, or hardening of the arteries, act to reduce the serum levels of cholesterol and triglycerides, which form plaques on the walls of arteries. The following drug classes are used to treat high cholesterol or high lipid levels: HMG CoA reductase inhibitors (atorvastatin, simvastatin, lovastatin, and rosuvastatin, fluvastatin, pravastatin), fibrates (fenofibrate, gemfibrozil), bile acid sequestrants (cholestyramine, colestipol, and colesevelam), niacins (niacin, Vit B3, nicotinic acid), and cholesterol absorption inhibitors (ezetimide), or drug combinations of these classes.


Antihypertensives


High blood pressure is caused when the pressure of the blood against the walls of the blood vessels is higher than what is considered normal. High blood pressure, or hypertension, eventually causes damage to the brain, eyes, heart, or kidneys. Several different drug actions produce an antihypertensive effect. Some drugs block nerve impulses that cause arteries to constrict; others slow the heart rate and decrease its force of contraction; still others reduce the amount of a certain hormone in the blood that causes blood pressure to rise. The effect of any of these medications is to reduce blood pressure. The mainstay of antihypertensive therapy is often a diuretic, a drug that reduces body fluids. Examples of antihypertensive drugs include beta blockers, calcium channel blockers, ACE (angiotensin-converting enzyme) inhibitors (including benazepril, captopril, enalapril, lisinopril, and quinapril), and the agents valsartan, losartan, prazosin, and terazosin.


Antiplatelets


Antilatelet drugs alter the platelet activation at the site of vascular damage crucial to the development of arterial thrombosis. Aspirin irreversibly inhibits the enzyme COX, resulting in reduced platelet production of TXA2 (thromboxane—powerful vasoconstrictor that lowers cyclic AMP and initiates the platelet release reaction). Dipyridamole inhibits platelet phosphodiesterase, causing an increase in cyclic AMP with potentiation of the action of PGI2-—opposes actions of TXA2. Clopidogrel (Plavix) affects the ADP-dependent activation of IIb/IIIa complex. Glycoprotein IIb/IIIa receptor antagonists block a receptor on the platelet for fibrinogen and von Willebrand factor and include for example, abciximab eptifibatide and tirofiban. Epoprostenol is a prostacyclin that is used to inhibit platelet aggregation during renal dialysis (with or without heparin) and is also used in primary pulmonary hypertension.


Antithrombotics


An antithrombotic agent is a drug that reduces thrombus formation. These include plasminogen activators: Alteplase, Reteplase, Tenecteplase, Saruplase, Urokinase, Anistreplase, Monteplase, Streptokinase, other serine endopeptidases (Ancrod, Brinase, Fibrinolysin)


Beta Blockers


Beta-blocking medications block the response of the heart and blood vessels to nerve stimulation, thereby slowing the heart rate and lowering blood pressure. They are used in the treatment of a wide range of diseases, including angina, high blood pressure, migraine headaches, arrhythmias, and glaucoma. Metoprolol and propranolol are common beta blockers.


Calcium Channel Blockers


Calcium channel blockers (diltiazem, nifedipine, verapamil) are used for the prevention of angina (chest pain). Verapamil is also useful in correcting certain arrhythmias (heartbeat irregularities) and lowering blood pressure. This group of drugs is thought to prevent angina and arrhythmias and lower blood pressure by blocking or slowing calcium flow into muscle cells, which results in vasodilation (widening of the blood vessels) and greater oxygen delivery to the heart muscle.


Cardiac Glycosides


Cardiac glycosides include drugs that are derived from digitalis (digoxin is an example). This type of drug slows the rate of the heart but increases its force of contraction. Cardiac glycosides act as both heart depressants and stimulants: They may be used to regulate irregular heart rhythm or to increase the volume of blood pumped by the heart in heart failure.


Diuretics


Diuretic drugs, such as chlorothiazide, chlorthalidone, furosemide, hydrochlorothiazide, and spironolactone, promote the loss of water and salt from the body to lower blood pressure or increase the diameter of blood vessels. Antihypertensive medications cause the body to retain salt and water and are often used concurrently with diuretics. Most diuretics act directly on the kidneys, but there are different types of diuretics, each with different actions. This allows therapy for high blood pressure to be adjusted to meet the needs of individual patients.


Thiazide diuretics, such as chlorothiazide, chlorthalidone, and hydrochlorothiazide, are the most commonly prescribed and generally well tolerated as once or twice a day pills. A major drawback of thiazide diuretics is that they often deplete the body of potassium and therefore compensated with potassium supplements. Loop diuretics, such as furosemide, act more vigorously than thiazide diuretics. (Loop refers to the structures in the kidneys on which these specific diuretic medications act.) Loop diuretics promote more water loss than thiazide diuretics but they also deplete more potassium from the body. Potassium sparing diuretics are also used treat heart failure and high blood pressure and include amiloride, spironolactone, and triamterene. Generally drug combinations of amiloride and hydrochlorothiazide, spironolactone and hydrochlorothiazide, and triamterene and hydrochlorothiazide are used to enhance the antihypertensive effect and reduce potassium loss.


Vasodilators


Vasodilating medications cause the blood vessels to dilate, or widen. Some of the antihypertensive medications, such as hydralazine and prazosin, lower blood pressure by dilating the arteries or veins. Other vasodilating medicines are used in the treatment of stroke and diseases that are characterized by poor blood circulation. Ergoloid mesylates, for example, are used to reduce the symptoms of senility by increasing the flow of oxygen-rich blood to the brain.


Metabolic Disease (Diabetes)


Diabetes is usually a lifelong or chronic disease caused by high levels of sugar in the blood. Insulin is a produced by the pancreas to control blood sugar and diabetes can be caused by too little insulin, resistance to insulin, or both. There are several types of diabetes. (1) Type 1 diabetes can occur at any age, but it is most often diagnosed in children, teens, or young adults. It is caused by the destruction of islet cells in the pancreas resulting in little or no insulin thereby requiring daily injections of insulin. (2) Type 2 diabetes results from insulin resistance and relative insulin deficiency. Obesity is thought to be the primary cause of Type 2 diabetes in those genetically predisposed. (3) Gestational diabetes is high blood sugar that develops at any time during pregnancy in a woman who does not have diabetes.


The following treatments for diabetes include: insulin, biguanides (metformin), suphonylureas, nonsulfonylurea secretagogues, meglitinides/prandial glucose regulatory/glinides, alpha-glucosidase inhibitors, thiazolidineione/glitazones, glucagon-like peptide-1 analog, amylin analogues, and dipeptidyl peptidase-4 inhibitors.


Metformin is generally recommended as a first line treatment. When metformin is not sufficient another class is added.


Sulfonylureas lower blood sugar by stimulating the pancreas to release more insulin. The first drugs of this type that were developed—Dymelor (acetohexamide), Diabinese (chlorpropamide), Orinase (tolbutamide), and Tolinase (tolazamide)—are not as widely used since they tend to be less potent and shorter-acting drugs than the newer sulfonylureas. They include Glucotrol (glipizide), Glucotrol XL (extended release), DiaBeta (glyburide), Micronase (glyburide), Glynase PresTab (glyburide), and Amaryl (glimepiride). These drugs can cause a decrease in the hemoglobin A1c (HbA1c) of up to 1%-2%. Biguanides improve insulin's ability to move sugar into cells especially into the muscle cells and prevent the liver from releasing stored sugar. Biguanides are counterindicated in people who have kidney damage or heart failure because of the risk of precipitating a severe build-up of lactic acid (called lactic acidosis) in these patients. Biguanides can decrease the HbA1c 1%-2%. An example includes metformin (Glucophage, Glucophage XR, Riomet, Fortamet, and Glumetza).


Thiazolidinediones improve insulin's effectiveness (improving insulin resistance) in muscle and in fat tissue. They lower the amount of sugar released by the liver and make fat cells more sensitive to the effects of insulin. Actos (pioglitazone) and Avandia (rosiglitazone) are the two drugs of this class. A decrease in the HbA1c of 1%-2% can be seen with this class of oral diabetes medications. Thiazolidinediones should used with caution in people with heart failure. Avandia is restricted for use in new patients only if they are uncontrolled on other medications and are unable to take Actos.


Alpha-glucosidase inhibitors include Precose (acarbose) and Glyset (miglitol). These drugs block enzymes that help digest starches, slowing the rise in blood sugar. These diabetes pills may cause diarrhea or gas. They can lower hemoglobin A1c by 0.5%-1%.


Meglitinides include Prandin (repaglinide) and Starlix (nateglinide). These diabetes medicines lower blood sugar by stimulating the pancreas to release more insulin. The effects of these drugs are glucose-dependent, with high blood sugar inducing insulin release, which is unlike the action of sulfonylureas which cause insulin release, regardless of glucose levels, and can lead to hypoglycemia.


Dipeptidyl peptidase IV (DPP-IV) inhibitors include Januvia (sitagliptin), Nesina (alogliptin), Onglyza (saxagliptin), Galvus (vildagliptin) and Tradjenta (linagliptin). The DPP-IV inhibitors work to lower blood sugar in patients with type 2 diabetes by increasing insulin secretion from the pancreas and reducing sugar production. These diabetes pills increase insulin secretion when blood sugars are high. They also signal the liver to stop producing excess amounts of sugar. DPP-IV inhibitors control sugar without causing weight gain. The medication may be taken alone or with other medications such as metformin.


Glucagon-Like Peptide Analogs and Agonists


Glucagon-like peptide (GLP) agonists bind to a membrane GLP receptor. As a consequence, insulin release from the pancreatic beta cells is increased. Examples of this class include Exenatide (also Exendin-4, marketed as Byetta). Exenatide is not an analogue of GLP but rather a GLP agonist. Typical reductions in A1C values are 0.5-1.0%. Liraglutide, a once-daily human analogue (97% homology), has been developed by Novo Nordisk under the brand name Victoza. Taspoglutide is presently in Phase III clinical trials with Hoffman-La Roche.


Alpha-glucosidase inhibitors (Acarbose, Miglitol, Voglibose), amylin analogues (Pramlintide), SGLT2 inhibitors (Canagliflozin, Dapagliflozin, Empaliflozin, Remogliflozin, Sergliflozin) and others (Benfluorex, Tolrestat)


Combination agents are the combination of two medications in one tablet and include the following examples: Glucovance, which combines glyburide (a sulfonylurea) and metformin, Metaglip, which combines glipizide (a sulfonylurea) and metformin, and Avandamet which utilizes both metformin and rosiglitazone (Avandia). Kazano (alogliptin and metformin) and Oseni (alogliptin plus pioglitazone) are other examples.


Eye Disorders


Ocular Bacterial Infection. Antibiotics are generally used to treat, or sometimes to prevent a bacterial eye infection. Examples of common antibiotics used in the eye are sulfacetamide, erythromycin, gentamicin, tobramycin, ciprofloxacin and ofloxacin.


Ocular Inflammatory reaction. Anti-inflammatories reduce inflammation, which in the eye is usually manifest by pain, redness, light sensitivity and sometimes blurred vision. Anti-inflammatories can be either glucocorticoids/corticosteroids or NSAIDs. Corticosteroids are very effective anti-inflammatories for a wide variety of eye problems including all disorders associated with systemic inflammatory reactions (Reiter's syndrome, xerostomia, etc.). Common corticosteroids include: Prednisolone, Fluorometholone and Dexamethasone. Non-steroidal anti-inflammatories reduce the production of pro-inflammatory factors such as prostaglandins. Common NSAIDs include: Diclofenac, Ketorolac and Flurbiprofen.


Glaucoma. Glaucoma is a disorder of regulation of intraocular pressure. Glaucoma medications all attempt to reduce this pressure to prevent damage to the optic nerve resulting in loss of vision. These medications may lower pressure by decreasing the amount of fluid produced in the eye, by increasing the amount of fluid exiting through the eye's natural drain, or by providing additional pathways for fluid to leave the eye. More than one glaucoma medication is used simultaneously, as these effects can combine to lower pressure further than possible with a single medication. These medications are listed by class:


BETA-BLOCKERS: Timolol, Metipranolol, Carteolol, Betaxolol, Levobunolol
ALPHA AGONISTS: Brimonidine, Iopidine
PROSTAGLANDIN ANALOGUES: Latanoprost
CARBONIC ANHYDRASE INHIBITORS: Dorzolamide
CHOLINERGIC AGONISTS: Pilocarpine, Carbachol
ADENERGIC AGONISTS, Epinephrine, Dipivefrin

Ocular Viral Infection


Used primarily in treating herpes virus infections of the eye, antiviral eye medications may be used in conjunction with oral medications for elimination the virus. The most common type of antiviral is triflurthymidine. Other topical anti-virals include adenine arabinoside and idoxuridine.


Allergic Reaction


All anti-allergy topicals decrease the effects of histamine, a factor that mediates, the inflammatory reaction. Common anti-allergy medicines include livostin, patanol, Cromolyn and alomide.


Infectious Diseases


Aminoglycosides. This class of antibiotics is used to treat infections caused by Gram-negative bacteria, such as Escherichia coli and Klebsiella, particularly Pseudomonas aeruginosa. This class is also effective against Aerobic bacteria (but not obligate/facultative anaerobes) and in the treatment of tularemia. The mechanism of action includes binding to the bacterial 30S ribosome/ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth. Possible toxicities include hearing loss, vertigo and nephrotoxicity. Examples of aminoglycosides include Amikacin, Gentamicin, Kanamycin, Neomycin, Netilmicin, Tobramycin, Paromomycin, Spectinomycin.


Ansamycins. Used as anti-tumor antibiotics and for treatment of traveler's diarrhea caused by E. coli. Examples include Geldanamycin, Herbimycin, and Rifaximin.


Carbacephem. This class prevents bacterial cell division by inhibiting cell wall synthesis. An example is Loracarbef.


Carbapenem. This class works by inhibiting cell wall synthesis. It is bactericidal for both Gram-positive and Gram-negative organisms and therefore useful for empiric broad-spectrum antibacterial coverage. (Note MRSA resistance to this class.). Toxicity may include gastrointestinal upset and diarrhea, nausea, seizures, headache, rash and allergic reactions. Examples include Ertapenem, Doripenem, Imipenem/Cilastatin, Meropenem.


Cephalosporins (First generation). Have the same mode of action as other beta-lactam antibiotic to disrupt the synthesis of the peptidoglycan layer of bacterial cell walls. The class provides good coverage against Gram positive infections. Potential toxicities include gastrointestinal upset and diarrhea, nausea (if alcohol taken concurrently) and allergic reactions. Examples include Cefadroxil, Cefazolin, Cefalotin, Cefalothin, Keflin, and Cefalexin.


Cephalosporins (Second generation). This class provides less gram-positive coverage than the above with improved gram negative cover. They have the same mode of action as other beta-lactam antibiotics and disrupt the synthesis of the peptidoglycan layer of bacterial cell walls. They may cause gastrointestinal upset and diarrhea, nausea (if alcohol taken concurrently) and allergic reactions. Examples include: Cefaclor, Cefamandole, Cefoxitin, Cefprozil and Cefuroxime.


Cephalosporins (Third generation). Same mode of action as other beta-lactam antibiotic to disrupt the synthesis of the peptidoglycan layer of bacterial cell wall. Provides improved coverage of Gram-negative organisms, except Pseudomonas. Has reduced Gram-positive coverage. May cause gastrointestinal upset and diarrhea, nausea (if alcohol taken concurrently and allergic reactions. Examples include Cefixime, Cefdinir, Cefditoren, Cefoperazone, Cefotaxime, Cefpodoxime, Ceftazidime, Ceftibuten, Ceftizoxime, and Ceftriaxone.


Cephalosporins (Fourth generation). As above for mechanism and toxicity but good coverage for pseudomonal infections. Examples include Cefepime.


Cephalosporins (Fifth generation). As above for mechanism and toxicity but good coverage for Methicillin-resistant Staphylococcus aureus/MRSA. Examples include Ceftaroline fosamil, and Ceftobiprole.


Glycopeptides Inhibit peptidoglycan synthesis and are active against aerobic and anaerobic Gram positive bacteria including MRSA; Vancomycin is used orally for the treatment of C. difficile. Examples include Teicoplanin, Vancomycin, and Telavancin


Lincosamides. Bind to 50S subunit of bacterial ribosomal RNA thereby inhibiting protein synthesis. Used to treat serious staph-, pneumo-, and streptococcal infections in penicillin-allergic patients, also anaerobic infections; clindamycin topically used for acne and possible C. difficile-related pseudomembranous enterocolitis. include Clindamycin and Lincomycin.


Lipopeptides. Bind to the membrane and cause rapid depolarization, resulting in a loss of membrane potential leading to inhibition of protein, DNA and RNA synthesis Gram-positive organisms. Example is Daptomycin.


Macrolides. Are enzyme inhibitors of bacterial protein biosynthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl-tRNA. Used to treat Streptococcal infections, syphilis, upper respiratory tract infections, lower respiratory tract infection, mycoplasmal infections, Lyme disease. Can cause nausea, vomiting, and diarrhea (especially at higher doses), prolonged QT interval (especially erythromycin) and Jaundice. Examples include Azithromycin, Clarithromycin, irithromycin, Erythromycin, Roxithromycin, Troleandomycin, Telithromycin and Spiramycin.


Monobactams. Same mode of action as other beta-lactam antibiotics, to disrupt the synthesis of the peptidoglycan layer of bacterial cell walls. Example includes Aztreonam.


Nitrofurans. Are used to treat bacterial or protozoal diarrhea or enteritis. An example is Furazolidone and Nitrofurantoin to treat urinary tract infections.


Oxazolidonones. Protein synthesis inhibitors, they prevent the initiation step and are used to treat vancomycin-resistant Staphylococcus aureus. Can cause thrombocytopenia, and peripheral neuropathy. Examples include Linezolid, Radezolid,


Penicillins. Disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.


These are used to treat a wide range of infections; penicillin is used for streptococcal infections, syphilis and Lyme disease and can cause gastrointestinal upset and diarrhea, allergy with serious anaphylactic reaction, brain and kidney damage (rare). Examples include, Amoxicillin, Ampicillin, Azlocillin, Carbenicillin, Cloxacillin, Dicloxacillin, Flucloxacillin, Mezlocillin, Methicillin, Nafcillin, Oxacillin, Penicillin G, Penicillin V, Piperacillin, Penicillin G, Temocillin, Ticarcillin.


Penicillin combinations. The second component prevents bacterial antibiotic resistance to the first component. Examples include Augmentin, Ampicillin/sulbactam, Piperacillin/tazobactam, Ticarcillin/clavulanate.


Polypeptide antibiotics. For treatment of eye, ear or bladder infections; usually applied directly to the eye or inhaled into the lungs; rarely given by injection, although the use of intravenous colistin is experiencing a resurgence due to the emergence of multi drug resistant organisms. This class can cause kidney and nerve damage (when given by injection). The class inhibits isoprenyl pyrophosphate, a molecule that carries the building blocks of the peptidoglycan bacterial cell wall outside of the inner membrane. Examples include Bacitracin, Colistin, and Polymyxin B


Quinolones. For treatment of urinary tract infections, bacterial prostatitis, community-acquired pneumonia, bacterial diarrhea, mycoplasmal infection, gonorrhea. Can cause nausea (rare), irreversible damage to central nervous system (uncommon), tendinosis (rare). The class works by inhibiting the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Examples include, Ciprofloxacin, Enoxacin, Gatifloxacin, Levofloxacin, Lomefloxacin, Moxifloxacin, Avelox, Nalidixic acid, Norfloxacin, Ofloxacin, Trovafloxacin, Grepafloxacin, Raxar, Sparfloxacin and Temafloxacin.


Sulfonamides. They are competitive inhibitors of the enzyme dihydropteroate synthetase, DHPS. DHPS catalyses the conversion of PABA (para-Aminobenzoic acid) to dihydropteroic acid|dihydropteroate, a key step in folate synthesis. Folate is necessary for the cell to synthesize nucleic acids (nucleic acids are essential building blocks of DNA and RNA, and in its absence cells will be unable to divide. The class is used to treat Urinary tract infections (except sulfacetamide, used for Conjunctivitis, and mafenide and silver sulfadiazine, used topically for burns. The class can cause nausea, vomiting, and diarrhea, Allergy, including skin rashes, crystals in urine, Renal failure, decrease in white blood cell count and sensitivity to sunlight. Examples include Mafenide, Sulfacetamide, Sulfadiazine, Silver sulfadiazine, Sulfadimethoxine, Sulfamethizole, Sulfamethoxazole, Sulfanilimide, Sulfasalazine, Sulfisoxazole, and Trimethoprim-Sulfamethoxazole.


Tetracyclines Inhibit the binding of aminoacyl-tRNA to the mRNA-ribosome complex. They do so mainly by binding to the 30S ribosomal subunit in the mRNA translation complex. Can be used to treat Syphilis, Chlamydia infections, Lyme disease, mycoplasmal infections, acne, rickettsial infections, and malaria caused by a protest and not a bacterium. Toxicity includes Gastrointestinal upset, Sensitivity to sunlight, Potential toxicity to mother and fetus during pregnancy, Enamel hypoplasia (staining of teeth; potentially permanent, transient depression of bone growth. Examples include Demeclocycline, Doxycycline, Minocycline, Oxytetracycline, and Tetracycline.


Drugs against mycobacteria include the following: Clofazimine, Dapsone, Capreomycin, Cycloserine, Ethambutol, Ethionamide, Isoniazid, Pyrazinamide, Rifampicin, Rifabutin, Rifapentine, Streptomycin, and aminoglycosides.


Other antibiotics include the following:


Arsphenamine, Chloramphenicol, Fosfomycin, Fusidic acid, Metronidazole, Mupirocin, Platensimycin, Quinupristin/Dalfopristin, Thiamphenicol, Tigecycline, Tinidazole, and Trimethoprim. Anti-Viral Medications by Indication


Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV) and cytomegalovirus (CMV). Oral herpes simplex virus (HSV) causes mucous membrane lesions (i.e., cold sores), and genital HSV causes genital herpetic lesions. Treatment for HSV can also be used for the treatment of Varicella Zoster Virus (VZV) the causative agent for chicken-pox in children and shingles in adults. Typical anti-virals include Acyclovir and Valaciclovir, both inhibitors of viral DNA synthesis. Additionally, Idoxuridine and Brivudin can be incorporated into the viral DNA leading to a hindered mechanism of DNA duplication. A third type of herpes viruses with established treatment is cytomegalovirus (CMV), particularly dangerous for unborn children, infants and immune-compromised patients. Medications used to treat CMV are Ganciclovir and Foscarnet, also indicated in some HSV infections. They act to inhibit viral DNA synthesis.


HIV. A diverse group of antiviral medications control viral load, but cannot cure HIV infections. Viral entry inhibitors such as Enfuvirtide prevent newly formed viruses from entering uninfected host cells by preventing virus-cell fusion.


Reverse transcriptase inhibitors include many drugs such as Abacavir, Lamivudine, Zidovudine, Tenofovir, Efavirenz and Nevirapine. These drugs inhibit reverse transcriptase, an enzyme critical to the mechanism by which HIV transcribes genetic material.


Another anti-viral approach utilizes the protease inhibitors such as Atazanavir, Indinavirn and Ritonavir to inhibit assembly of new viruses. Combination therapies using 2 or 3 of the aforementioned agents are very effective at reducing serum viral load to below detectable levels.


Hepatitis. One of the few anti-HBV (hepatitis B) medications is Lamivudine, a reverse transcriptase inhibitor. Additionally, adefovir and dipivoxil, medications used in the treatment of HIV can be used to inhibit transcription of viral HBV RNA into DNA. Interferons are naturally occurring molecules that stimulate immune responses against invading species, including viral particles. Imiquimod up-regulates the natural production of interferons to boost the human immune response. Synthetically produced Alpha-interferon is also effective in treating HBV and HCV, especially in combination with other drugs. Unfortunately, interferons are associated with a number of severe toxicities that limit their long-terms usage in a number of patients.


Broad-spectrum Antiviral Medications


Ribavirin is effective in the treatment of influenza, HCV and paramyxoviruses such as measles and respiratory syncytial virus by blocking synthesis of viral RNA. A combination of Ribavirin and Alfa-interferon is proven to be effective in treatment of chronic hepatitis C infections.


Inflammation. Anti-Inflammatory medications by class


Glucocorticoids. This class of anti-inflammatory medication reduces inflammation by binding to glucocorticoid receptors (GR). The activated GR complex, in turn, up-regulates the expression of anti-inflammatory proteins in the nucleus (a process known as transactivation) and represses the expression of pro-inflammatory proteins in the cytosol by preventing the translocation of other transcription factors from the cytosol into the nucleus. These drugs are often referred to as corticosteroids. Examples include Budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone and prednisolone.


Non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs reduce inflammation by reducing the production of prostaglandins, chemicals that promote inflammation, pain, and fever. Prostaglandins also protect the lining of the stomach and intestines from the damaging effects of acid, and promote blood clotting by activating blood platelets and affect kidney function. The enzymes that produce prostaglandins are called cyclooxygenase (COX). There are two types of COX enzymes, COX-1 and COX-2. Both enzymes produce prostaglandins that promote inflammation, pain, and fever; however, only COX-1 produces prostaglandins that activate platelets and protect the stomach and intestinal lining. NSAIDs block COX enzymes and reduce production of prostaglandins. Therefore, inflammation, pain, and fever are reduced. Since the prostaglandins that protect the stomach and promote blood clotting also are reduced, NSAIDs can cause ulcers in the stomach and intestines, and increase the risk of bleeding. Aspirin is the only NSAID that inhibits the clotting of blood for a prolonged period of time, four to seven days, and is therefore effective for preventing blood clots that cause heart attacks and strokes. Ketorolac is a very potent NSAID and is used for treating severe pain that normally would be managed with narcotics. Ketorolac causes ulcers more frequently than other NSAIDs and should not be used for more than five days. Celecoxib blocks COX-2 but has little effect on COX-1. Therefore, celecoxib is sub-classified as a selective COX-2 inhibitor, and it causes fewer ulcers and less bleeding than other NSAIDs. Commonly prescribed NSAIDs include aspirin, salsalate, celecoxib, diclofenac, etodolac, ibuprofen, indomethacin, ketoprofen, ketorolac, nabumetone, naproxen, oxaprozin, piroxicam, sulindac and tolmetin.


Neurological Diseases


Huntington's Disease and dyskinesias. Chorea is an abnormal involuntary movement disorder, one of a group of neurological disorders called dyskinesias, which are caused by overactivity of the neurotransmitter dopamine in the areas of the brain that control movement. Chorea is characterized by brief, irregular contractions that are not repetitive or rhythmic, but appear to flow from one muscle to the next. Chorea often occurs with athetosis, which adds twisting and writhing movements. Chorea is a primary feature of Huntington's disease, a progressive, hereditary movement disorder that appears in adults, but it may also occur in a variety of other conditions. Syndenham's chorea occurs in a small percentage (20 percent) of children and adolescents as a complication of rheumatic fever. Chorea can also be induced by drugs (levodopa, anti-convulsants, and anti-psychotics) metabolic and endocrine disorders, and vascular incidents. There is currently no standard course of treatment for chorea. Treatment depends on the type of chorea and the associated disease. Treatment for Huntington's disease is supportive, while treatment for Syndenham's chorea usually involves antibiotic drugs to treat the infection, followed by drug therapy to prevent recurrence. Adjusting medication dosages can treat drug-induced chorea. Metabolic and endocrine-related choreas are treated according to the cause(s) of symptoms.


Parkinson's Disease. Parkinson's disease (PD) belongs to a group of conditions called motor system disorders, which are the result of the loss of dopamine-producing brain cells. The four primary symptoms of PD are tremor, or trembling in hands, arms, legs, jaw, and face; rigidity, or stiffness of the limbs and trunk; bradykinesia, or slowness of movement; and postural instability, or impaired balance and coordination. PD usually affects people over the age of 50. Other symptoms may include depression and other emotional changes; difficulty in swallowing, chewing, and speaking; urinary problems or constipation; skin problems; and sleep disruptions. There are currently no blood or laboratory tests that have been proven to help in diagnosing sporadic PD. Therefore the diagnosis is based on medical history and a neurological examination. The disease can be difficult to diagnose accurately. There is no cure for PD, but a variety of medications are used to relieve symptoms. Patients are given levodopa combined with carbidopa. Carbidopa delays the conversion of levodopa into dopamine until it reaches the brain. Nerve cells can use levodopa to make dopamine and replenish the brain supply. Anticholinergics may help control tremor and rigidity. Other drugs, such as bromocriptine, pramipexole, and ropinirole, mimic the role of dopamine in the brain, causing the neurons to react as they would to dopamine. An antiviral drug, amantadine, also appears to reduce symptoms. Rasagiline can be used along with levodopa for patients with advanced PD or as a single-drug treatment for early PD. In some cases, surgery may be appropriate if the disease doesn't respond to drugs. A therapy called deep brain stimulation (DBS) has now been approved by the U.S. Food and Drug Administration. In DBS, electrodes are implanted into the brain and connected to a small electrical device called a pulse generator that can be externally programmed. DBS can reduce the need for levodopa and related drugs, which in turn decreases the involuntary movements called dyskinesias that are a common side effect of levodopa. It also helps to alleviate fluctuations of symptoms and to reduce tremors, slowness of movements, and gait problems. DBS requires careful programming of the stimulator device in order to work correctly.


Amyotrophic Lateral Sclerosis. Amyotrophic lateral sclerosis (ALS), sometimes called Lou Gehrig's disease or classical motor neuron disease, is a rapidly progressive, invariably fatal neurological disease that attacks the neurons responsible for controlling voluntary muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, ceasing to send messages to muscles. Unable to function, the muscles gradually atrophy. Symptoms are usually first noticed in the arms and hands, legs, or swallowing muscles. Muscle weakness and atrophy occur on both sides of the body. Individuals with ALS lose their strength and the ability to move their arms and legs, and to hold the body upright. The disease does not affect a person's ability to see, smell, taste, hear, or recognize touch. Although the disease does not usually impair a person's mind or personality, several recent studies suggest that some people with ALS may develop cognitive problems involving word fluency, decision-making, and memory. The cause of ALS is not known. No cure has yet been found for ALS. The drug riluzole prolongs life by 2-3 months but does not relieve symptoms.


Multiple Sclerosis. Multiple sclerosis (MS) is a neurologic disease that can range from benign to completely disabling. MS results from an auto-immune response to nerve-insulating myelin. Such assaults may be linked to an unknown environmental trigger, perhaps a virus.


Most people experience their first symptoms of MS between the ages of 20 and 40; the initial symptom of MS is often blurred or double vision, red-green color distortion, or even blindness in one eye. Most MS patients experience muscle weakness in their extremities and difficulty with coordination and balance. These symptoms may be severe enough to impair walking or even standing. In the worst cases, MS can produce partial or complete paralysis. Most people with MS also exhibit paresthesias, transitory abnormal sensory feelings such as numbness, prickling, or “pins and needles” sensations. Some may also experience pain. Speech impediments, tremors, and dizziness are other frequent complaints. Occasionally, people with MS have hearing loss. Approximately half of all people with MS experience cognitive impairments such as difficulties with concentration, attention, memory, and poor judgment, but such symptoms are usually mild and are frequently overlooked. Depression is another common feature of MS. There is as yet no cure for MS. Three forms of beta interferon (Avonex, Betaseron, and Rebif) have now been approved by the Food and Drug Administration for treatment of relapsing-remitting MS. Beta interferon has been shown to reduce the number of exacerbations and may slow the progression of physical disability. When attacks do occur, they tend to be shorter and less severe. The FDA also has approved a synthetic form of myelin basic protein, called copolymer I (Copaxone), for the treatment of relapsing-remitting MS. An immunosuppressant treatment, Novantrone (mitoxantrone), is approved by the FDA for the treatment of advanced or chronic MS. The FDA has also approved dalfampridine (Ampyra) to improve walking in individuals with MS. While steroids do not affect the course of MS over time, they can reduce the duration and severity of attacks in some patients. Spasticity, which can occur either as a sustained stiffness caused by increased muscle tone or as spasms that come and go, is usually treated with muscle relaxants and tranquilizers such as baclofen, tizanidine, diazepam, clonazepam, and dantrolene. Other drugs that may reduce fatigue in some, but not all, patients include amantadine (Symmetrel), pemoline (Cylert), and the still-experimental drug aminopyridine. Although improvement of optic symptoms usually occurs even without treatment, a short course of treatment with intravenous methylprednisolone (Solu-Medrol) followed by treatment with oral steroids is sometimes used.


Alzheimer's Disease. Alzheimer's disease is an irreversible, progressive brain disease that slowly destroys memory and thinking skills. In most people with Alzheimer's, symptoms first appear after age 60. Estimates vary, but as many as 5.1 million Americans may have Alzheimer's disease. Patient's exhibit various brain abnormalities including amyloid plaques, neurofibrillary tangles, and neuronal loss. Four medications are approved by the U.S. Food and Drug Administration to treat Alzheimer's. Donepezil, rivastigmine and galantamine are used to treat mild to moderate Alzheimer's. Memantine is used to treat moderate to severe Alzheimer's. These drugs do not change the underlying disease process, are effective for some but not all people, and may help only for a limited time.


Schizophrenia. Schizophrenics display three broad categories of symptoms characterized as positive, negative and cognitive. Positive symptoms are psychotic behaviors including hallucinations, delusions, thought and movement disorders. Negative symptoms are associated with disruptions to normal behaviors. These symptoms include flat affect, lack of pleasure in everyday activities, lack of ability to begin and sustain planned activities, and speaking little, even when forced to interact as well as having neglect for basic personal hygiene. Cognitive symptoms include poor ability to understand information and use it to make decisions, trouble focusing or paying attention and problems with the ability to use information immediately after learning it. This neurologic disorder effects 1 percent of the general population, but it occurs in 10 percent of people who have a first-degree relative with the disorder. The risk is highest for an identical twin of a person with schizophrenia with a 40-65 percent chance of developing the disorder. No gene causes the disease by itself. Aberrant dopamine and glutamate transmission is believed to play a role in schizophrenia. Treatments include antipsychotic medications and various psychosocial treatments. Older antipsychotic medications include Chlorpromazine, Haloperidol, Perphenazine, Etrafon and Fluphenazine. New antipsychotic medications include clozapine which can cause agranulocytosis, requiring bi-weekly WBC count evaluation. Other atypical antipsychotics include Risperidone, Olanzapine, Quetiapine, Ziprasidone, Aripiprazole and Paliperidone. Side effects of many antipsychotics include drowsiness, dizziness when changing positions, blurred vision, rapid heartbeat, sensitivity to the sun, Skin rashes and menstrual problems for women. Atypical antipsychotic medications can cause major weight gain and changes in a person's metabolism. This may increase a person's risk of getting diabetes and high cholesterol. Typical antipsychotic medications can cause side effects related to physical movement, such as rigidity, persistent muscle spasms, tremors and restlessness. Long-term use of typical antipsychotic medications may lead to a condition called tardive dyskinesia (TD). TD causes uncontrolled, and in some cases permanent, involuntary muscle movements.


Additional Description of the Invention

The present invention relates to methods and compositions for the treatment of any gene that is desirable to modulate expression of. This includes but is not limited to cancers. In the next sections will will describe both cancer and non-cancer targets and then in the section immediately following those selected cancer and non-cancer targets we will present over 40 High Value Targets, both cancer and noncancer, with sequence information, and some of these examples will have data with detailed information about our techniques and methods as well as our surprising results.


Cancer Targets


In some embodiments, the present invention provides oligonucleotide-based therapeutics for the inhibition of oncogenes involved in a variety of cancers. The present invention is not limited to the treatment of cancer or any particular cancer. Any cancer can be targeted, including, but not limited to, breast cancers. The present invention is also not limited to the targeting of cancers or oncogenes. The methods and compositions of the present invention are suitable for use with any gene that it is desirable to inhibit the expression of (e.g., for therapeutic or research uses. Specific gene targets that have been optimally identified as susceptible to the DNAi therapeutic approach are described below.


Oncogene Targets such as,


In some embodiments, the present invention provides DNAi inhibitors of oncogenes. The present invention is not limited to the inhibition of a particular oncogene. Indeed, the present invention encompasses DNAi inhibitors to any number of oncogenes including, but not limited to, those disclosed herein.


Combination Therapies with Cancer Targets


In some embodiments, the compositions of the present invention are provided in combination with existing therapies. In other embodiments, two or more compounds of the present invention are provided in combination. In some embodiments, the compounds of the present invention are provided in combination with known cancer chemotherapy agents. The present invention is not limited to a particular chemotherapy agent.


Various classes of antineoplastic (e.g., anticancer) agents are contemplated for use in certain embodiments of the present invention. Anticancer agents suitable for use with the present invention include, but are not limited to, agents that induce apoptosis, agents that inhibit adenosine deaminase function, inhibit pyrimidine biosynthesis, inhibit purine ring biosynthesis, inhibit nucleotide interconversions, inhibit ribonucleotide reductase, inhibit thymidine monophosphate (TMP) synthesis, inhibit dihydrofolate reduction, inhibit DNA synthesis, form adducts with DNA, damage DNA, inhibit DNA repair, intercalate with DNA, deaminate asparagines, inhibit RNA synthesis, inhibit protein synthesis or stability, inhibit microtubule synthesis or function, and the like.


In some embodiments, exemplary anticancer agents suitable for use in compositions and methods of the present invention include, but are not limited to: 1) alkaloids, including microtubule inhibitors (e.g., vincristine, vinblastine, and vindesine, etc.), microtubule stabilizers (e.g., paclitaxel (TAXOL), and docetaxel, etc.), and chromatin function inhibitors, including topoisomerase inhibitors, such as epipodophyllotoxins (e.g., etoposide (VP-16), and teniposide (VM-26), etc.), and agents that target topoisomerase I (e.g., camptothecin and isirinotecan (CPT-11), etc.); 2) covalent DNA-binding agents (alkylating agents), including nitrogen mustards (e.g., mechlorethamine, chlorambucil, cyclophosphamide, ifosphamide, and busulfan (MYLERAN), etc.), nitrosoureas (e.g., carmustine, lomustine, and semustine, etc.), and other alkylating agents (e.g., dacarbazine, hydroxymethylmelamine, thiotepa, and mitomycin, etc.); 3) noncovalent DNA-binding agents (antitumor antibiotics), including nucleic acid inhibitors (e.g., dactinomycin (actinomycin D), etc.), anthracyclines (e.g., daunorubicin (daunomycin, and cerubidine), doxorubicin (adriamycin), and idarubicin (idamycin), etc.), anthracenediones (e.g., anthracycline analogues, such as mitoxantrone, etc.), bleomycins (BLENOXANE), etc., and plicamycin (mithramycin), etc.; 4) antimetabolites, including antifolates (e.g., methotrexate, FOLEX, and MEXATE, etc.), purine antimetabolites (e.g., 6-mercaptopurine (6-MP, PURINETHOL), 6-thioguanine (6-TG), azathioprine, acyclovir, ganciclovir, chlorodeoxyadenosine, 2-chlorodeoxyadenosine (CdA), and 2′-deoxycoformycin (pentostatin), etc.), pyrimidine antagonists (e.g., fluoropyrimidines (e.g., 5-fluorouracil (ADRUCIL), 5-fluorodeoxyuridine (FdUrd) (floxuridine)) etc.), and cytosine arabinosides (e.g., CYTOSAR (ara-C) and fludarabine, etc.); 5) enzymes, including L-asparaginase, and hydroxyurea, etc.; 6) hormones, including glucocorticoids, antiestrogens (e.g., tamoxifen, etc.), nonsteroidal antiandrogens (e.g., flutamide, etc.), and aromatase inhibitors (e.g., anastrozole (ARIMIDEX), etc.); 7) platinum compounds (e.g., cisplatin and carboplatin, etc.); 8) monoclonal antibodies conjugated with anticancer drugs, toxins, and/or radionuclides, etc.; 9) biological response modifiers (e.g., interferons (e.g., IFN-α, etc.) and interleukins (e.g., IL-2, etc.), etc.); 10) adoptive immunotherapy; 11) hematopoietic growth factors; 12) agents that induce tumor cell differentiation (e.g., all-trans-retinoic acid, etc.); 13) gene therapy techniques; 14) antisense therapy techniques; 15) tumor vaccines; 16) therapies directed against tumor metastases (e.g., batimastat, etc.); 17) angiogenesis inhibitors; 18) proteosome inhibitors (e.g., VELCADE); 19) inhibitors of acetylation and/or methylation (e.g., HDAC inhibitors); 20) modulators of NF kappa B; 21) inhibitors of cell cycle regulation (e.g., CDK inhibitors); 22) modulators of p53 protein function; and 23) radiation.


Any oncolytic agent that is routinely used in a cancer therapy context finds use in the compositions and methods of the present invention. For example, the U.S. Food and Drug Administration maintains a formulary of oncolytic agents approved for use in the United States. International counterpart agencies to the U.S.F.D.A. maintain similar formularies. Table 1 provides a list of exemplary antineoplastic agents approved for use in the U.S. Those skilled in the art will appreciate that the “product labels” required on all U.S. approved chemotherapeutics describe approved indications, dosing information, toxicity data, and the like, for the exemplary agents.











TABLE 1







Aldesleukin
Proleukin
Chiron Corp.,


(des-alanyl-1, serine-125 human interleukin-2)

Emeryville, CA


Alemtuzumab
Campath
Millennium and


(IgG1κ anti CD52 antibody)

ILEX Partners, LP,




Cambridge, MA


Alitretinoin
Panretin
Ligand


(9-cis-retinoic acid)

Pharmaceuticals,




Inc., San Diego CA


Allopurinol
Zyloprim
GlaxoSmithKline,


(1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one

Research Triangle


monosodium salt)

Park, NC


Altretamine
Hexalen
US Bioscience,


(N,N,N′,N′,N″,N″,-hexamethyl-1,3,5-triazine-2,4,6-

West


triamine)

Conshohocken, PA


Amifostine
Ethyol
US Bioscience


(ethanethiol, 2-[(3-aminopropyl)amino]-, dihydrogen


phosphate (ester))


Anastrozole
Arimidex
AstraZeneca


(1,3-Benzenediacetonitrile,a,a,a′,a′-tetramethyl-5-

Pharmaceuticals,


(1H-1,2,4-triazol-1-ylmethyl))

LP, Wilmington,




DE


Arsenic trioxide
Trisenox
Cell Therapeutic,




Inc., Seattle, WA


Asparaginase
Elspar
Merck & Co., Inc.,


(L-asparagine amidohydrolase, type EC-2)

Whitehouse




Station, NJ


BCG Live
TICE BCG
Organon Teknika,


(lyophilized preparation of an attenuated strain of

Corp., Durham, NC



Mycobacterium bovis (Bacillus Calmette-Gukin



[BCG], substrain Montreal)


bexarotene capsules
Targretin
Ligand


(4-[1-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-

Pharmaceuticals


napthalenyl) ethenyl] benzoic acid)


Bexarotene gel
Targretin
Ligand




Pharmaceuticals


Bleomycin
Blenoxane
Bristol-Myers


(cytotoxic glycopeptide antibiotics produced by

Squibb Co., NY,



Streptomyces verticillus; bleomycin A2 and


NY


bleomycin B2)


Capecitabine
Xeloda
Roche


(5′-deoxy-5-fluoro-N-[(pentyloxy)carbonyl]-cytidine)


Carboplatin
Paraplatin
Bristol-Myers


(platinum, diammine [1,1-

Squibb


cyclobutanedicarboxylato(2-)-0,0′]-,(SP-4-2))


Carmustine
BCNU,
Bristol-Myers


(1,3-bis(2-chloroethyl)-1-nitrosourea)
BiCNU
Squibb


Carmustine with Polifeprosan 20 Implant
Gliadel
Guilford



Wafer
Pharmaceuticals,




Inc., Baltimore,




MD


Celecoxib
Celebrex
Searle


(as 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-

Pharmaceuticals,


pyrazol-1-yl] benzenesulfonamide)

England


Chlorambucil
Leukeran
GlaxoSmithKline


(4-[bis(2chlorethyl)amino]benzenebutanoic acid)


Cisplatin
Platinol
Bristol-Myers


(PtC12H6N2)

Squibb


Cladribine
Leustatin, 2-
R. W. Johnson


(2-chloro-2′-deoxy-b-D-adenosine)
CdA
Pharmaceutical




Research Institute,




NJ


Cyclophosphamide
Cytoxan,
Bristol-Myers


(2-[bis(2-chloroethyl)amino] tetrahydro-2H-13,2-
Neosar
Squibb


oxazaphosphorine 2-oxide monohydrate)


Cytarabine
Cytosar-U
Pharmacia &


(1-b-D-Arabinofuranosylcytosine, C9H13N3O5)

Upjohn Company


Cytarabine liposomal
DepoCyt
Skye




Pharmaceuticals,




Inc., San Diego,




CA


Dacarbazine
DTIC-Dome
Bayer AG,


(5-(3,3-dimethyl-1-triazeno)-imidazole-4-

Leverkusen,


carboxamide (DTIC))

Germany


Dactinomycin, actinomycin D
Cosmegen
Merck


(actinomycin produced by Streptomyces parvullus,


C62H86N12O16)


Darbepoetin alfa
Aranesp
Amgen, Inc.,


(recombinant peptide)

Thousand Oaks,




CA


daunorubicin liposomal
DanuoXome
Nexstar


((8S-cis)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-á-L-

Pharmaceuticals,


lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-

Inc., Boulder, CO


trihydroxy-1-methoxy-5,12-naphthacenedione


hydrochloride)


Daunorubicin HCl, daunomycin
Cerubidine
Wyeth Ayerst,


((1S,3S)-3-Acetyl-1,2,3,4,6,11-hexahydro-3,5,12-

Madison, NJ


trihydroxy-10-methoxy-6,11-dioxo-1-naphthacenyl


3-amino-2,3,6-trideoxy-(alpha)-L-lyxo-


hexopyranoside hydrochloride)


Denileukin diftitox
Ontak
Seragen, Inc.,


(recombinant peptide)

Hopkinton, MA


Dexrazoxane
Zinecard
Pharmacia &


((S)-4,4′-(1-methyl-1,2-ethanediyl)bis-2,6-

Upjohn Company


piperazinedione)


Docetaxel
Taxotere
Aventis


((2R,3S)-N-carboxy-3-phenylisoserine, N-tert-butyl

Pharmaceuticals,


ester, 13-ester with 5b-20-epoxy-12a,4,7b,10b,13a-

Inc., Bridgewater,


hexahydroxytax-11-en-9-one 4-acetate 2-benzoate,

NJ


trihydrate)


Doxorubicin HCl
Adriamycin,
Pharmacia &


(8S,10S)-10-[(3-amino-2,3,6-trideoxy-a-L-lyxo-
Rubex
Upjohn Company


hexopyranosyl)oxy]-8-glycolyl-7,8,9,10-tetrahydro-


6,8,11-trihydroxy-1-methoxy-5,12-


naphthacenedione hydrochloride)


doxorubicin
Adriamycin
Pharmacia &



PFS
Upjohn Company



Intravenous



injection


doxorubicin liposomal
Doxil
Sequus




Pharmaceuticals,




Inc., Menlo park,




CA


dromostanolone propionate
Dromostanolone
Eli Lilly &


(17b-Hydroxy-2a-methyl-5a-androstan-3-one

Company,


propionate)

Indianapolis, IN


dromostanolone propionate
Masterone
Syntex, Corp., Palo



injection
Alto, CA


Elliott′s B Solution
Elliott′s B
Orphan Medical,



Solution
Inc


Epirubicin
Ellence
Pharmacia &


((8S-cis)-10-[(3-amino-2,3,6-trideoxy-a-L-arabino-

Upjohn Company


hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-


trihydroxy-8-(hydroxyacetyl)-1-methoxy-5,12-


naphthacenedione hydrochloride)


Epoetin alfa
Epogen
Amgen, Inc


(recombinant peptide)


Estramustine
Emcyt
Pharmacia &


(estra-1,3,5(10)-triene-3,17-diol(17(beta))-, 3-[bis(2-

Upjohn Company


chloroethyl)carbamate] 17-(dihydrogen phosphate),


disodium salt, monohydrate, or estradiol 3-[bis(2-


chloroethyl)carbamate] 17-(dihydrogen phosphate),


disodium salt, monohydrate)


Etoposide phosphate
Etopophos
Bristol-Myers


(4′-Demethylepipodophyllotoxin9-[4,6-O-(R)-

Squibb


ethylidene-(beta)-D-glucopyranoside], 4′-


(dihydrogen phosphate))


etoposide, VP-16
Vepesid
Bristol-Myers


(4′-demethylepipodophyllotoxin 9-[4,6-0-(R)-

Squibb


ethylidene-(beta)-D-glucopyranoside])


Exemestane
Aromasin
Pharmacia &


(6-methylenandrosta-1,4-diene-3,17-dione)

Upjohn Company


Filgrastim
Neupogen
Amgen, Inc


(r-metHuG-CSF)


floxuridine (intraarterial)
FUDR
Roche


(2′-deoxy-5-fluorouridine)


Fludarabine
Fludara
Berlex


(fluorinated nucleotide analog of the antiviral agent

Laboratories, Inc.,


vidarabine, 9-b-D-arabinofuranosyladenine (ara-A))

Cedar Knolls, NJ


Fluorouracil, 5-FU
Adrucil
ICN


(5-fluoro-2,4(1H,3H)-pyrimidinedione)

Pharmaceuticals,




Inc., Humacao,




Puerto Rico


Fulvestrant
Faslodex
IPR


(7-alpha-[9-(4,4,5,5,5-penta fluoropentylsulphinyl)

Pharmaceuticals,


nonyl]estra-1,3,5-(10)-triene-3,17-beta-diol)

Guayama, Puerto




Rico


Gemcitabine
Gemzar
Eli Lilly


(2′-deoxy-2′,2′-difluorocytidine monohydrochloride


(b-isomer))


Gemtuzumab Ozogamicin
Mylotarg
Wyeth Ayerst


(anti-CD33 hP67.6)


Goserelin acetate
Zoladex
AstraZeneca


(acetate salt of [D-Ser(But)6,Azgly10]LHRH; pyro-
Implant
Pharmaceuticals


Glu-His-Trp-Ser-Tyr-D-Ser(But)-Leu-Arg-Pro-


Azgly-NH2 acetate [C59H84N18O14•(C2H4O2)x


Hydroxyurea
Hydrea
Bristol-Myers




Squibb


Ibritumomab Tiuxetan
Zevalin
Biogen IDEC, Inc.,


(immunoconjugate resulting from a thiourea covalent

Cambridge MA


bond between the monoclonal antibody Ibritumomab


and the linker-chelator tiuxetan [N-[2-


bis(carboxymethyl)amino]-3-(p-


isothiocyanatophenyl)-propyl]-[N-[2-


bis(carboxymethyl)amino]-2-(methyl)-


ethyl]glycine)


Idarubicin
Idamycin
Pharmacia &


(5,12-Naphthacenedione, 9-acetyl-7-[(3-amino-

Upjohn Company


2,3,6-trideoxy-(alpha)-L-lyxo-hexopyranosyl)oxy]-


7,8,9,10-tetrahydro-6,9,11-trihydroxyhydrochloride,


(7S-cis))


Ifosfamide
IFEX
Bristol-Myers


(3-(2-chloroethyl)-2-[(2-

Squibb


chloroethyl)amino]tetrahydro-2H-1,3,2-


oxazaphosphorine 2-oxide)


Imatinib Mesilate
Gleevec
Novartis AG,


(4-[(4-Methyl-1-piperazinyl)methyl]-N-[4-methyl-3-

Basel, Switzerland


[[4-(3 -pyridinyl)-2-pyrimidinyl] amino]-


phenyl]benzamide methanesulfonate)


Interferon alfa-2a
Roferon-A
Hoffmann-La


(recombinant peptide)

Roche, Inc., Nutley,




NJ


Interferon alfa-2b
Intron A
Schering AG,


(recombinant peptide)
(Lyophilized
Berlin, Germany



Betaseron)


Irinotecan HCl
Camptosar
Pharmacia &


((4S)-4,11-diethyl-4-hydroxy-9-[(4-piperi-

Upjohn Company


dinopiperidino)carbonyloxy]-1H-pyrano[3′,4′:6,7]


indolizino[1,2-b] quinoline-3,14(4H,12H) dione


hydrochloride trihydrate)


Letrozole
Femara
Novartis


(4,4′-(1H-1,2,4-Triazol-1-ylmethylene)


dibenzonitrile)


Leucovorin
Wellcovorin,
Immunex, Corp.,


(L-Glutamic acid, N[4[[(2amino-5-formyl-1,4,5,6,7,8
Leucovorin
Seattle, WA


hexahydro4oxo6-pteridinyl)methyl] amino]benzoyl] ,


calcium salt (1:1))


Levamisole HCl
Ergamisol
Janssen Research


((−)-(S)-2,3,5,6-tetrahydro-6-phenylimidazo [2,1-b]

Foundation,


thiazole monohydrochloride C11H12N2S•HCl)

Titusville, NJ


Lomustine
CeeNU
Bristol-Myers


(1-(2-chloro-ethyl)-3-cyclohexyl-1-nitrosourea)

Squibb


Meclorethamine, nitrogen mustard
Mustargen
Merck


(2-chloro-N-(2-chloroethyl)-N-methylethanamine


hydrochloride)


Megestrol acetate
Megace
Bristol-Myers


17α(acetyloxy)-6-methylpregna-4,6-diene-3,20-

Squibb


dione


Melphalan, L-PAM
Alkeran
GlaxoSmithKline


(4-[bis(2-chloroethyl) amino]-L-phenylalanine)


Mercaptopurine, 6-MP
Purinethol
GlaxoSmithKline


(1,7-dihydro-6H-purine-6-thione monohydrate)


Mesna
Mesnex
Asta Medica


(sodium 2-mercaptoethane sulfonate)


Methotrexate
Methotrexate
Lederle


(N-[4-[[(2,4-diamino-6-

Laboratories


pteridinyl)methyl]methylamino]benzoyl]-L-glutamic


acid)


Methoxsalen (9-methoxy-7H-furo[3,2-g][1]-
Uvadex
Therakos, Inc.,


benzopyran-7-one)

Way Exton, Pa


Mitomycin C
Mutamycin
Bristol-Myers




Squibb


Mitomycin C
Mitozytrex
SuperGen, Inc.,




Dublin, CA


Mitotane
Lysodren
Bristol-Myers


(1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)

Squibb


ethane)


Mitoxantrone
Novantrone
Immunex


(1,4-dihydroxy-5,8-bis[[2-[(2-

Corporation


hydroxyethyl)amino]ethyl]amino]-9,10-


anthracenedione dihydrochloride)


Nandrolone phenpropionate
Durabolin-50
Organon, Inc., West




Orange, NJ


Nofetumomab
Verluma
Boehringer




Ingelheim Pharma




KG, Germany


Oprelvekin
Neumega
Genetics Institute,


(IL-11)

Inc., Alexandria,




VA


Oxaliplatin
Eloxatin
Sanofi Synthelabo,


(cis-[(1R,2R)-1,2-cyclohexanediamine-N,N′]

Inc., NY, NY


[oxalato(2-)-O,O′] platinum)


Paclitaxel
TAXOL
Bristol-Myers


(5β,20-Epoxy-1,2a,4,7β,10β,13a-hexahydroxytax-

Squibb


11-en-9-one 4,10-diacetate 2-benzoate 13-ester with


(2R,3S)-N-benzoyl-3-phenylisoserine)


Pamidronate
Aredia
Novartis


(phosphonic acid (3-amino-1-hydroxypropylidene)


bis-, disodium salt, pentahydrate, (APD))


Pegademase
Adagen
Enzon


((monomethoxypolyethylene glycol succinimidyl) 11-
(Pegademase
Pharmaceuticals,


17-adenosine deaminase)
Bovine)
Inc., Bridgewater,




NJ


Pegaspargase
Oncaspar
Enzon


(monomethoxypolyethylene glycol succinimidyl L-


asparaginase)


Pegfilgrastim
Neulasta
Amgen, Inc


(covalent conjugate of recombinant methionyl human


G-CSF (Filgrastim) and monomethoxypolyethylene


glycol)


Pentostatin
Nipent
Parke-Davis




Pharmaceutical Co.,




Rockville, MD


Pipobroman
Vercyte
Abbott




Laboratories,




Abbott Park, IL


Plicamycin, Mithramycin
Mithracin
Pfizer, Inc., NY,


(antibiotic produced by Streptomyces plicatus)

NY


Porfimer sodium
Photofrin
QLT




Phototherapeutics,




Inc., Vancouver,




Canada


Procarbazine
Matulane
Sigma Tau


(N-isopropyl-μ-(2-methylhydrazino)-p-toluamide

Pharmaceuticals,


monohydrochloride)

Inc., Gaithersburg,




MD


Quinacrine
Atabrine
Abbott Labs


(6-chloro-9-(1-methyl-4-diethyl-amine)


butylamino-2-methoxyacridine)


Rasburicase
Elitek
Sanofi-Synthelabo,


(recombinant peptide)

Inc.,


Rituximab
Rituxan
Genentech, Inc.,


(recombinant anti-CD20 antibody)

South San




Francisco, CA


Sargramostim
Prokine
Immunex Corp


(recombinant peptide)


Streptozocin
Zanosar
Pharmacia &


(streptozocin 2-deoxy-2-

Upjohn Company


[[(methylnitrosoamino)carbonyl]amino]-a(and b)-


D-glucopyranose and 220 mg citric acid anhydrous)


Talc
Sclerosol
Bryan, Corp.,


(Mg3Si4O10 (OH)2)

Woburn, MA


Tamoxifen
Nolvadex
AstraZeneca


((Z)2-[4-(1,2-diphenyl-1-butenyl) phenoxy]-N,N-

Pharmaceuticals


dimethylethanamine 2-hydroxy-1,2,3-


propanetricarboxylate (1:1))


Temozolomide
Temodar
Schering


(3,4-dihydro-3-methyl-4-oxoimidazo[5,1-d]-as-


tetrazine-8-carboxamide)


Teniposide, VM-26
Vumon
Bristol-Myers


(4′-demethylepipodophyllotoxin 9-[4,6-0-(R)-2-

Squibb


thenylidene-(beta)-D-glucopyranoside])


Testolactone
Teslac
Bristol-Myers


(13-hydroxy-3-oxo-13,17-secoandrosta-1,4-dien-17-

Squibb


oic acid [dgr]-lactone)


Thioguanine, 6-TG
Thioguanine
GlaxoSmithKline


(2-amino-1,7-dihydro-6H-purine-6-thione)


Thiotepa
Thioplex
Immunex


(Aziridine,1,1′,1″-phosphinothioylidynetris-, or Tris

Corporation


(1-aziridinyl) phosphine sulfide)


Topotecan HCl
Hycamtin
GlaxoSmithKline


((S)-10-[(dimethylamino)methyl]-4-ethyl-4,9-


dihydroxy-1H-pyrano[3′,4′:6,7] indolizino [1,2-b]


quinoline-3,14-(4H,12H)-dione monohydrochloride)


Toremifene
Fareston
Roberts


(2-(p-[(Z)-4-chloro-1,2-diphenyl-1-butenyl]-

Pharmaceutical


phenoxy)-N,N-dimethylethylamine citrate (1:1))

Corp., Eatontown,




NJ


Tositumomab, I 131 Tositumomab
Bexxar
Corixa Corp.,


(recombinant murine immunotherapeutic monoclonal

Seattle, WA


IgG2a lambda anti-CD20 antibody (I 131 is a


radioimmunotherapeutic antibody))


Trastuzumab
Herceptin
Genentech, Inc


(recombinant monoclonal IgG1 kappa anti-HER2


antibody)


Tretinoin, ATRA
Vesanoid
Roche


(all-trans retinoic acid)


Uracil Mustard
Uracil
Roberts Labs



Mustard



Capsules


Valrubicin, N-trifluoroacetyladriamycin-14-
Valstar
Anthra --> Medeva


valerate


((2S-cis)-2-[1,2,3,4,6,11-hexahydro-2,5,12-


trihydroxy-7 methoxy-6,11-dioxo-[[4 2,3,6-trideoxy-


3-[(trifluoroacetyl)-amino-α-L-lyxo-


hexopyranosyl]oxyl]-2-naphthacenyl]-2-oxoethyl


pentanoate)


Vinblastine, Leurocristine
Velban
Eli Lilly


(C46H56N4O10•H2SO4)


Vincristine
Oncovin
Eli Lilly


(C46H56N4O10•H2SO4)


Vinorelbine
Navelbine
GlaxoSmithKline


(3′,4′-didehydro-4′-deoxy-C′-norvincaleukoblastine


[R-(R*,R*)-2,3-dihydroxybutanedioate (1:2)(salt)])


Zoledronate, Zoledronic acid
Zometa
Novartis


((1-Hydroxy-2-imidazol-1-yl-phosphonoethyl)


phosphonic acid monohydrate)









Other identified cancer combination therapies include the following: PI3K inhibitors (CAL101), Bruton Kinase inhibitor (PCI-32765), and BCL-6 inhibitor. This document describes the targets and associated therapy for these identified cancers as being particularly susceptible to treatment with combination therapies. Targets


The present invention is not limited to the cancer and non-cancer targets listed above commonly found in humans. The present invention can also be applied both to other cancer targets (also referred to as oncogenes) (and where such cancer targets may also be involved in other disease such as inflammation, neurological, metabolic, cardiovascular, etc.) and to non-cancer target such as Cardiovascular/Metabolic Disease, Eye Disease, Infectious Disease, Inflammation, Neurological Disease, Rare Disease, and Stem Cells. Examples of specific genes are included in Table 2, but are not limited to those described in Table. Additional targets are not listed but can be found in the key proliferation pathways such as MAPK, PI3K, MEK, etc. The present invention can also apply to disease and growth targets for plant genome and animal genomes.









TABLE 2







Cancer and non-cancer targets


DNAi Disease, Gene, and Cell System Targets









ID
Disease Area
Target












1
Cancer
2-dG


2
Cancer
4-1BB


3
Cancer
ABCB1


4
Cancer
ABL


5
Cancer
ABL1/BCR


6
Cancer
Act-1


7
Cancer
ADAM12


8
Cancer
ADAM7


9
Cancer
ADAMTS4


10
Cancer
ADAMTS5


11
Cancer
AFP (Alpha-fetoprotein)


12
Cancer
AKT


13
Cancer
AKT1


14
Cancer
AKT2


15
Cancer
AKT3


16
Cancer
AldoA


17
Cancer
ALK


18
Cancer
ALK/NPM1


19
Cancer
AMI1


20
Cancer
AML1/ETO


21
Cancer
Androgen Receptor (AR)


22
Cancer
Angiopoeitin (ANG)


23
Cancer
ANGPT2 (ANG-2)


24
Cancer
APC


25
Cancer
ARAF


26
Cancer
AR


27
Cancer
AREG


28
Cancer
ARF6


29
Cancer
ARNT


30
Cancer
Aromatase Inhibitors (Ais)


31
Cancer
ASXL1


32
Cancer
ATM


33
Cancer
ATRX


34
Cancer
AXIN1


35
Cancer
AXL


36
Cancer
B7H3


37
Cancer
BAX


38
Cancer
BBC3


39
Cancer
BCBL


40
Cancer
BCL1


41
Cancer
BCL2


42
Cancer
BCL2L1 (BCLXL)


43
Cancer
BCL2L 11


44
Cancer
BCL3


45
Cancer
BCL6


46
Cancer
BCR/ABL


47
Cancer
BDNF


48
Cancer
Beclin-1


49
Cancer
Beta catenin


50
Cancer
BIRC2 (c-IAP1)


51
Cancer
BIRC3 (c-IAP2)


52
Cancer
BIRC4


53
Cancer
BIRC5


54
Cancer
BMI1


55
Cancer
BMP10


56
Cancer
BRAF


57
Cancer
BRCA1


58
Cancer
BRCA2


59
Cancer
BRD3


60
Cancer
BTK


61
Cancer
BTLA


62
Cancer
C/EBPalpha


63
Cancer
C5B-9


64
Cancer
CANT1


65
Cancer
CASP2


66
Cancer
CASP3


67
Cancer
CASP8


68
Cancer
CBFA2T3


69
Cancer
CBFB


70
Cancer
CBL


71
Cancer
CBLB


72
Cancer
CBLC


73
Cancer
CCND1


74
Cancer
CCND3


75
Cancer
CCKBR


76
Cancer
CCNA1


77
Cancer
CCNB1


78
Cancer
CD133


79
Cancer
CD19


80
Cancer
CD20


81
Cancer
CD24


82
Cancer
CD30


83
Cancer
CD33


84
Cancer
CD37


85
Cancer
CD38


86
Cancer
CD4


87
Cancer
CD-40


88
Cancer
CD40LG


89
Cancer
CD44


90
Cancer
CD-52


91
Cancer
CD74


92
Cancer
CD80


93
Cancer
CDC42


94
Cancer
CDC25A


95
Cancer
CDC25B


96
Cancer
CDK2


97
Cancer
CDK4


98
Cancer
CDK4


99
Cancer
CDK6


100
Cancer
CDK7


101
Cancer
CDKN1A


102
Cancer
CDKN1C


103
Cancer
CDKN2A


104
Cancer
CDKN2B


105
Cancer
CDKN2C


106
Cancer
c-fos


107
Cancer
CHEK1


108
Cancer
CHEK2


109
Cancer
CHMP5


110
Cancer
c-ki-RAS


111
Cancer
CKIT


112
Cancer
CLTC


113
Cancer
Clusterin


114
Cancer
CMET


115
Cancer
COL6A3


116
Cancer
CPK


117
Cancer
CRAF


118
Cancer
CRB


119
Cancer
CRBN


120
Cancer
CRCT1/TORC1


121
Cancer
CRK


122
Cancer
CRK-II


123
Cancer
CRM1


124
Cancer
Crry


125
Cancer
CSF1R/FMS


126
Cancer
CSN5


127
Cancer
c-SRC


128
Cancer
CATG1B


129
Cancer
CTAG2


130
Cancer
CTCF


131
Cancer
CTFG


132
Cancer
CTLA-4


133
Cancer
CTNNB1


134
Cancer
CTSB


135
Cancer
CTSL2


136
Cancer
CX3CL1


137
Cancer
CXCL12


138
Cancer
CYCS


139
Cancer
CYLD


140
Cancer
CYR61


141
Cancer
DAL1L


142
Cancer
DAPK1


143
Cancer
DBL


144
Cancer
DCC


145
Cancer
DCN


146
Cancer
DCL1


147
Cancer
DDB2


148
Cancer
DDOST


149
Cancer
DDX6


150
Cancer
DEK


151
Cancer
DHFR


152
Cancer
DIABLO


153
Cancer
DKK1


154
Cancer
DNMT1


155
Cancer
DNMT(3A)


156
Cancer
DNMT(3B)


157
Cancer
DOT1L


158
Cancer
DPC4/SMAD4


159
Cancer
DPP-IV


160
Cancer
E2F


161
Cancer
E2F1


162
Cancer
E2F1/RBAP


163
Cancer
E2F3


164
Cancer
EBF1


165
Cancer
E-CAD


166
Cancer
Ecadherin


167
Cancer
EGF


168
Cancer
EGFL7


169
Cancer
EGFR


170
Cancer
EGFR/ERBB-1


171
Cancer
EGFR/HER1


172
Cancer
EIF4A2


173
Cancer
eIF-4E


174
Cancer
ELK1


175
Cancer
ELK3


176
Cancer
EP300


177
Cancer
EPCAM


178
Cancer
EPH


179
Cancer
EPHA1


180
Cancer
EPHA3


181
Cancer
ER


182
Cancer
ERBB-3


183
Cancer
ERG


184
Cancer
ERK


185
Cancer
e-selectin (SELE)


186
Cancer
Estrogen Receptor (ESR1)


187
Cancer
ETS1


188
Cancer
ETS2


189
Cancer
ETV6 (TEL)


190
Cancer
EZH2


191
Cancer
FAK


192
Cancer
FANCA


193
Cancer
FAP


194
Cancer
FAS


195
Cancer
FASLG


196
Cancer
FBXW7


197
Cancer
FER


198
Cancer
FGF6


199
Cancer
FGF7


200
Cancer
FGFR-TACC fusion protein


201
Cancer
FGFR1


202
Cancer
FGFR2


203
Cancer
FGR


204
Cancer
Fibroblast growth factor




(FGF), 1, 2,


205
Cancer
FLI1/ERGB2


206
Cancer
FLI1/ERGB2


207
Cancer
FLT1 (VEGFR1)


208
Cancer
FLT3


209
Cancer
FLT4


210
Cancer
FMS


211
Cancer
FOLH1 (PSMA)


212
Cancer
FOS


213
Cancer
FOSL1


214
Cancer
FOSL2


215
Cancer
FOXE1


216
Cancer
FPS/FES


217
Cancer
FRA1


218
Cancer
FRA2


219
Cancer
FST


220
Cancer
FT3


221
Cancer
FUBP1


222
Cancer
Furin


223
Cancer
FYN


224
Cancer
GADD45A


225
Cancer
GADD45B


226
Cancer
GATA4


227
Cancer
GDF2


228
Cancer
GIP


229
Cancer
GLI


230
Cancer
GNA11


231
Cancer
GHAQ


232
Cancer
GNAS1


233
Cancer
GNAS2


234
Cancer
GRB-2


235
Cancer
GRN


236
Cancer
GSK3A


237
Cancer
GSP


238
Cancer
GST-Pi


239
Cancer
HAT1


240
Cancer
HCK


241
Cancer
HDAC1


242
Cancer
HDAC10


243
Cancer
HDAC11


244
Cancer
HDAC2


245
Cancer
HDAC4


246
Cancer
HDAC5


247
Cancer
HDAC6


248
Cancer
HDAC7


249
Cancer
HDAC8


250
Cancer
HDAC9


251
Cancer
Hedgehog


252
Cancer
HEK


253
Cancer
Her-2


254
Cancer
HER2/ERBB2


255
Cancer
HER3


256
Cancer
HER3/ERBB-2


257
Cancer
HER4


258
Cancer
HER4/ERBB-4


259
Cancer
HIF1A


260
Cancer
HIF2A


261
Cancer
HIF-1beta


262
Cancer
HIND


263
Cancer
hMOF


264
Cancer
HMGA1


265
Cancer
HMGB1


266
Cancer
HMTs


267
Cancer
HOX11


268
Cancer
HOXA7


269
Cancer
HOXD10


270
Cancer
HPC1


271
Cancer
HRAS (c-ha-ras)


272
Cancer
HRX/MLLT1


273
Cancer
HRX/MLLT2


274
Cancer
Hsp27


275
Cancer
Hsp70 (HSPBP1)


276
Cancer
HSP-90


277
Cancer
HST


278
Cancer
HST2


279
Cancer
HSTF1


280
Cancer
HTRA3


281
Cancer
IDH (2H)


282
Cancer
IDH1


283
Cancer
IDH2


284
Cancer
IDO


285
Cancer
IFNA1


286
Cancer
IGF1


287
Cancer
IGF1R


288
Cancer
IGF2


289
Cancer
IGFBP2


290
Cancer
IGFBP5


291
Cancer
IL-17


292
Cancer
IL-23


293
Cancer
IL3


294
Cancer
IL3RA


295
Cancer
IL4RA


296
Cancer
IL-6


297
Cancer
IL8


298
Cancer
ING4


299
Cancer
INK4A (p16)


300
Cancer
INK4B


301
Cancer
INT-1


302
Cancer
INT1/WNT1


303
Cancer
INT2


304
Cancer
IRF1


305
Cancer
IRP2


306
Cancer
ITGB1


307
Cancer
JAG1


308
Cancer
JAK1


309
Cancer
JAK2


310
Cancer
JAK3


311
Cancer
JUN


312
Cancer
JUNB


313
Cancer
JUND


314
Cancer
KAT6A


315
Cancer
KDM6A


316
Cancer
KIF5B


317
Cancer
KIP2


318
Cancer
KIT


319
Cancer
KITLG


320
Cancer
KRAS


321
Cancer
KRAS2


322
Cancer
KRAS2A


323
Cancer
KRAS2B


324
Cancer
KS3


325
Cancer
K-SAM


326
Cancer
KSP


327
Cancer
LAG3


328
Cancer
LATS1


329
Cancer
LBC


330
Cancer
LCK


331
Cancer
LEF1


332
Cancer
LET-7


333
Cancer
LIMK1


334
Cancer
LMO-1


335
Cancer
LMO-2


336
Cancer
L-MYC


337
Cancer
LSD1


338
Cancer
1-selectin


339
Cancer
LYL1


340
Cancer
LYN


341
Cancer
LYT-10


342
Cancer
MADH4


343
Cancer
MALT1


344
Cancer
MAP2K1


345
Cancer
MAP3K3


346
Cancer
MAP3K10


347
Cancer
MAP3K11


348
Cancer
MAP3K14


349
Cancer
MAP4K4


350
Cancer
MAPK


351
Cancer
MAPK1


352
Cancer
MAPK9


353
Cancer
MAS


354
Cancer
MAS1


355
Cancer
MASXL1


356
Cancer
MTA2


357
Cancer
MAX


358
Cancer
MCC


359
Cancer
MCF2


360
Cancer
MCL1


361
Cancer
MDM2


362
Cancer
MDM4


363
Cancer
MEF2C


364
Cancer
MEK1


365
Cancer
MEK2


366
Cancer
MEN1


367
Cancer
MEN2


368
Cancer
MET


369
Cancer
Metabolites


370
Cancer
Methyltransferase


371
Cancer
MGLL


372
Cancer
MGMT


373
Cancer
MIDHI?


374
Cancer
MLH1


375
Cancer
MLL


376
Cancer
MLLT1/MLL


377
Cancer
MLLT2/HRX


378
Cancer
MLM


379
Cancer
MMP


380
Cancer
MMP1


381
Cancer
MMP13


382
Cancer
MMP2


383
Cancer
MMP9


384
Cancer
MNK


385
Cancer
MOS


386
Cancer
MSH2


387
Cancer
MSH6


388
Cancer
MTG8/RUNX1


389
Cancer
MTOR


390
Cancer
MTORC2


391
Cancer
MUC1


392
Cancer
MYB


393
Cancer
MYBA


394
Cancer
MYBB


395
Cancer
MYC (CMYC)


396
Cancer
MYCC/MCYN


397
Cancer
MYCL1


398
Cancer
MYCLK1


399
Cancer
MYCN


400
Cancer
MYH11//CBFB


401
Cancer
MXD1


402
Cancer
MXI1


403
Cancer
NAFT4


404
Cancer
NAFT5


405
Cancer
NAIP


406
Cancer
Nampt


407
Cancer
NANOG


408
Cancer
NCL (nucleolin)


409
Cancer
NCOA6


410
Cancer
NCOR2


411
Cancer
NDN


412
Cancer
NF1


413
Cancer
NF2


414
Cancer
NFI-A


415
Cancer
NFKB


416
Cancer
NFKB1


417
Cancer
NFKB2


418
Cancer
NGFR


419
Cancer
NME1


420
Cancer
N-MYC


421
Cancer
NOS2A


422
Cancer
NOTCH1


423
Cancer
NPM1


424
Cancer
NPM1/ALK


425
Cancer
NPTX1


426
Cancer
NR3C1


427
Cancer
NRAS


428
Cancer
NRG/REL


429
Cancer
NSD3


430
Cancer
NTRK1


431
Cancer
NUAK1


432
Cancer
NUP214


433
Cancer
OSM


434
Cancer
OST


435
Cancer
OX40/CD134


436
Cancer
P2Y12


437
Cancer
P53 (TP53)


438
Cancer
P57/KIP2


439
Cancer
p85beta


440
Cancer
PACE4


441
Cancer
PAK4


442
Cancer
PALB2


443
Cancer
PARP


444
Cancer
PARP1


445
Cancer
PARP2


446
Cancer
PAX-5


447
Cancer
PBRM1


448
Cancer
PBX1/TCF3


449
Cancer
PD1


450
Cancer
PDCD4


451
Cancer
PDFGR/FILP1L1-PDFGRa


452
Cancer
PDGF


453
Cancer
PDGFB


454
Cancer
PDGFR


455
Cancer
PDGFRA


456
Cancer
PDL1/2


457
Cancer
Pfk


458
Cancer
Pfkfb3


459
Cancer
PGAM1


460
Cancer
PHDGH


461
Cancer
PHF6


462
Cancer
PI3K


463
Cancer
PIGF


464
Cancer
PIM1


465
Cancer
PKCα


466
Cancer
Pkm2


467
Cancer
PKN3


468
Cancer
PLAU


469
Cancer
PLK1


470
Cancer
PML/RARA


471
Cancer
PMS-1


472
Cancer
PMS-2


473
Cancer
POLK


474
Cancer
POU4F2


475
Cancer
PPARD


476
Cancer
PPP2CA


477
Cancer
PPP2R1A


478
Cancer
PPP2R1B


479
Cancer
PRAD-1


480
Cancer
PRC


481
Cancer
PRCA1


482
Cancer
Prohibitin


483
Cancer
Proteasome inhibitors


484
Cancer
PRKCA


485
Cancer
PRKRA


486
Cancer
PRKG1


487
Cancer
PSDK1


488
Cancer
P-Selectin


489
Cancer
PTCH


490
Cancer
PTEN


491
Cancer
PTGS2


492
Cancer
PTK2B


493
Cancer
PTN (pleiotrophin)


494
Cancer
RAB6A


495
Cancer
RAB6B


496
Cancer
RAB21


497
Cancer
RAC1


498
Cancer
RAC3


499
Cancer
RAF


500
Cancer
RAF1


501
Cancer
RAI


502
Cancer
RANKL


503
Cancer
RAR-28


504
Cancer
RAS


505
Cancer
RASL10B (VTS58635)


506
Cancer
RRAS


507
Cancer
RAASF1


508
Cancer
RB1


509
Cancer
RBL2


510
Cancer
REL


511
Cancer
RERG


512
Cancer
RET


513
Cancer
REST


514
Cancer
RFC-1


515
Cancer
RHOA


516
Cancer
RHOB


517
Cancer
RHOBTB2


518
Cancer
RHOM-1


519
Cancer
RHOM-2


520
Cancer
rhPDGF-BB


521
Cancer
RNA-R2


522
Cancer
ROCK2


523
Cancer
ROS1


524
Cancer
RTKN


525
Cancer
RUNX1


526
Cancer
RUNX1/CBFA2T1


527
Cancer
RUNXIT1


528
Cancer
SDCBP


529
Cancer
SEPT9


530
Cancer
Ser/Thr


531
Cancer
SERPINB5 (MASPIN)


532
Cancer
SET


533
Cancer
SHC1


534
Cancer
SIRT1


535
Cancer
SIS


536
Cancer
SKI


537
Cancer
SLUG


538
Cancer
SMAD1


539
Cancer
SMAD2


540
Cancer
SMAD3


541
Cancer
SMAD4


542
Cancer
SMAD7


543
Cancer
SMARCA4


544
Cancer
SFRP1


545
Cancer
SKP2


546
Cancer
SNAIL


547
Cancer
SOCS1


548
Cancer
SOS


549
Cancer
SOX2


550
Cancer
SOX9


551
Cancer
SPANXC


552
Cancer
SRC1


553
Cancer
v-src


554
Cancer
SST


555
Cancer
STAT1


556
Cancer
STAT3


557
Cancer
STK11


558
Cancer
STX2


559
Cancer
Survivin


560
Cancer
SYNE1


561
Cancer
TACR1


562
Cancer
TAL1


563
Cancer
TAL2


564
Cancer
TAN1


565
Cancer
TCF3/PBX1


566
Cancer
TCF8/ZEB1


567
Cancer
TET2


568
Cancer
TFPI2


569
Cancer
TFRC (TfR)


570
Cancer
TGFB1


571
Cancer
TGFB2


572
Cancer
TGFBR1


573
Cancer
TGFBR2


574
Cancer
TGF-α


575
Cancer
TGFβ


576
Cancer
TGIF2


577
Cancer
TGRC


578
Cancer
THOC1


579
Cancer
THRA1


580
Cancer
THRB


581
Cancer
TIAM1


582
Cancer
TIE2


583
Cancer
TIF1A


584
Cancer
TIM3/HAVCR2


585
Cancer
TIMP1


586
Cancer
TIMP2


587
Cancer
TIMP3


588
Cancer
TIMP4


589
Cancer
TK


590
Cancer
TLX1


591
Cancer
TM1


592
Cancer
TMEFF2


593
Cancer
TNC


594
Cancer
TNFAIP3


595
Cancer
TNFα


596
Cancer
TNFRSF1A


597
Cancer
TNFRSF10A


598
Cancer
TNFRSF11A (RANK)


599
Cancer
TOP1


600
Cancer
TP73L/p63


601
Cancer
TPM1


602
Cancer
TRIM2


603
Cancer
TRK


604
Cancer
TRKB


605
Cancer
TrkC


606
Cancer
TSC1


607
Cancer
TSC2


608
Cancer
TSG101


609
Cancer
Tubulin beta 3


610
Cancer
Tubulin beta 5


611
Cancer
TUSC2


612
Cancer
Twist


613
Cancer
TWIST1


614
Cancer
Tyr


615
Cancer
Tyrosine Kinase Enzymes


616
Cancer
VAV


617
Cancer
VDR


618
Cancer
VCAM


619
Cancer
VEGF


620
Cancer
VEGFA


621
Cancer
VHL


622
Cancer
WAF1


623
Cancer
WEE1


624
Cancer
WIF1


625
Cancer
WNT


626
Cancer
WNT1


627
Cancer
WNT2


628
Cancer
WT1


629
Cancer
XAF1


630
Cancer
XIAP


631
Cancer
XPA/XPG


632
Cancer
XPO1


633
Cancer
YES1


634
Cancer
YWHAE


635
Cancer
YY1


636
Cancer
ZAK (MLT)


637
Cancer
ZEB2


638
Cancer
αv-β3


639
Cancer
RAD51


640
Cancer
RAD51C


641
Cancer
PPARβ


642
Cancer
PPARγ


643
Cancer
SPHK2


644
Cancer
SPHK1


645
Cancer
TMFRSF5B


646
Cancer
STAT6


647
Cancer
KLF4


648
Cardiovascular/Metabolic Disease
ACC


649
Cardiovascular/Metabolic Disease
ANGPTL3


650
Cardiovascular/Metabolic Disease
Apo(a)


651
Cardiovascular/Metabolic Disease
APOA1


652
Cardiovascular/Metabolic Disease
APOA4


653
Cardiovascular/Metabolic Disease
APOA5


654
Cardiovascular/Metabolic Disease
ApoB


655
Cardiovascular/Metabolic Disease
ApoB-100


656
Cardiovascular/Metabolic Disease
ApoC I


657
Cardiovascular/Metabolic Disease
ApoC III


658
Cardiovascular/Metabolic Disease
APOE


659
Cardiovascular/Metabolic Disease
BACE1


660
Cardiovascular/Metabolic Disease
Citrate lyase


661
Cardiovascular/Metabolic Disease
DGAT2


662
Cardiovascular/Metabolic Disease
endotheal lipase


663
Cardiovascalar/Metabolic Disease
Factor VII


664
Cardiovascular/Metabolic Disease
Factor IX/F9


665
Cardiovascular/Metabolic Disease
FGFR4


666
Cardiovascular/Metabolic Disease
GCGR


667
Cardiovascular/Metabolic Disease
HDL


668
Cardiovascular/Metabolic Disease
LDL


669
Cardiovascular/Metabolic Disease
MTTP


670
Cardiovascular/Metabolic Disease
PAFAH1B2


671
Cardiovascular/Metabolic Disease
PCSK9


672
Cardiovascular/Metabolic Disease
PTP-1B


673
Cardiovascalar/Metabolic Disease
VLDL



Cardiovascular/Metabolic Disease
THP—Thrombopoietin for




essential thrombocytosis


674
Eye Disease
ARMS2


675
Eye Disease
CFH


676
Eye Disease
C5


677
Eye Disease
ERK1


678
Eye Disease
ERK2


679
Eye Disease
Il-18


680
Eye Disease
NGF (proNGF)


681
Eye Disease
PDGFC


682
Eye Disease
RTP801


683
Eye Disease
TLR4


684
Infectious Disease
ACEE


685
Infectious Disease
aroA


686
Infectious Disease
aroC


687
Infectious Disease
B2M


688
Infectious Disease
carA


689
Infectious Disease
CASP1


690
Infectious Disease
celB


691
Infectious Disease
cflA


692
Infectious Disease
cglA


693
Infectious Disease
cglE


694
Infectious Disease
cilA


695
Infectious Disease
cilB


696
Infectious Disease
cilC


697
Infectious Disease
cilD


698
Infectious Disease
cilE


699
Infectious Disease
cinA


700
Infectious Disease
CCL3


701
Infectious Disease
CCL4


702
Infectious Disease
CCR5


703
Infectious Disease
CD14


704
Infectious Disease
CD28


705
Infectious Disease
CHIT1


706
Infectious Disease
coiA


707
Infectious Disease
comA


708
Infectious Disease
comC


709
Infectious Disease
comX


710
Infectious Disease
CSF3


711
Infectious Disease
CTL


712
Infectious Disease
DDX25


713
Infectious Disease
DMC1


714
Infectious Disease
Ebola


715
Infectious Disease
envZ


716
Infectious Disease
epsA


717
Infectious Disease
F3


718
Infectious Disease
F8


719
Infectious Disease
FKBP8


720
Infectious Disease
Food borne pathogens


721
Infectious Disease
H1N1


722
Infectious Disease
H3N2


723
Infectious Disease
H5N1


724
Infectious Disease
HBx


725
Infectious Disease
Hep-A


726
Infectious Disease
Hep-B


727
Infectious Disease
Hep-C


728
Infectious Disease
HIV


729
Infectious Disease
HLA-A


730
Infectious Disease
HLA-B


731
Infectious Disease
HLA-C


732
Infectious Disease
HP


733
Infectious Disease
HSPD1


734
Infectious Disease
IDO1


735
Infectious Disease
IL1B


736
Infectious Disease
IL6


737
Infectious Disease
IL12RB2


738
Infectious Disease
IL15


739
Infectious Disease
IL17A


740
Infectious Disease
IL1RN


741
Infectious Disease
Influenza RNA-dependent




RNA polymerase


742
Infectious Disease
INS


743
Infectious Disease
LACTB


744
Infectious Disease
LTA


745
Infectious Disease
Malaria


746
Infectious Disease
MBL2


747
Infectious Disease
MIF


748
Infections Disease
miR-122


749
Infectious Disease
MMP3


750
Infectious Disease
NS1A


751
Infectious Disease
NS5A


752
Infectious Disease
ompF


753
Infectious Disease
ostA


754
Infectious Disease
pbpG


755
Infectious Disease
PPIA


756
Infectious Disease
Protease Inhibitors


757
Infectious Disease
PRTN3


758
Infectious Disease
PTK


759
Infectious Disease
PTPRC/CD45


760
Infectious Disease
pyrC


761
Infectious Disease
relA


762
Infectious Disease
retinoic acid receptors/




retinoids


763
Infectious Disease
rpmA


764
Infectious Disease
rstA


765
Infectious Disease
RSV


766
Infectious Disease
RSV


767
Infectious Disease
SARS


768
Infectious Disease
secE


769
Infectious Disease
SELL


770
Infectious Disease
SERPINA1


771
Infectious Disease
SLC11A1


772
Infectious Disease
spsC


773
Infectious Disease
tcdA


774
Infectious Disease
tcdB


775
Infectious Disease
TLR2


776
Infectious Disease
TLR7


777
Infectious Disease
TNF


778
Infectious Disease
TNFRSF1B


779
Infectious Disease
TNFRSF8


780
Infectious Disease
trmD


781
Infectious Disease
uppP


782
Infectious Disease
West Nile


783
Inflammation
ACEI


784
Inflammation
ADAMS


785
Inflammation
ADAMTS


786
Inflammation
AGER


787
Inflammation
Aldosterone


788
Inflammation
ALK5


789
Inflammation
Aminoglycoside


790
Inflammation
ARB


791
Inflammation
ATG16L1


792
Inflammation
BDKRB1


793
Inflammation
bFGF


794
Inflammation
BMP-7


795
Inflammation
c-abl


796
Inflammation
CaMKIV


797
Inflammation
CASP14


798
Inflammation
CCL2/CCL2 receptor


799
Inflammation
CCL13


800
Inflammation
CCN2


801
Inflammation
CCR1


802
Inflammation
CCR2


803
Inflammation
CCR9


804
Inflammation
CCR10


805
Inflammation
CD97


806
Inflammation
COX


807
Inflammation
CRP


808
Inflammation
CTGF


809
Inflammation
CX3CR1


810
Inflammation
CXCR-4


811
Inflammation
CXCR-7


812
Inflammation
Endothelin


813
Inflammation
ELANE


814
Inflammation
EPO


815
Inflammation
F2RL1


816
Inflammation
FPR1


817
Inflammation
FPR2


818
Inflammation
GPR84


819
Inflammation
GZMB


820
Inflammation
Hepcidin (HAMP)


821
Inflammation
HGF


822
Inflammation
HRH4


823
Inflammation
ICAM-1


824
Inflammation
IFNG


825
Inflammation
IL1


826
Inflammation
IL10


827
Inflammation
IL12


828
Inflammation
IL13


829
Inflammation
IL2


830
Inflammation
IL4


831
Inflammation
Il-5


832
Inflammation
IL7


833
Inflammation
Integrin α4β7


834
Inflammation
JNK


835
Inflammation
KNG1


836
Inflammation
MAPK14


837
Inflammation
MCP1


838
Inflammation
M-CSF


839
Inflammation
MIF1


840
Inflammation
MYD88


841
Inflammation
Nitric Oxide


842
Inflammation
NOD2


843
Inflammation
NR1H2


844
Inflammation
P38 MAPK


845
Inflammation
PAI-1


846
Inflammation
PLA2G2D


847
Inflammation
PLA2G7


848
Inflammation
PLA2G10


849
Inflammation
plasminogen


850
Inflammation
PLCγ


851
Inflammation
PPIG


852
Inflammation
PPARα


853
Inflammation
PSGL-1


854
Inflammation
PTGDR


855
Inflammation
PTGDR2


856
Inflammation
Rantes (CCL5)


857
Inflammation
Renin


858
Inflammation
ROCK (Rho-kinase)


859
Inflammation
SAA1


860
Inflammation
SAP


861
Inflammation
SCGB1A1


862
Inflammation
SELPLG


863
Inflammation
Smads (1, 2, 3, 5)


864
Inflammation
SYK


865
Inflammation
TLR9


866
Inflammation
TSLP


867
Inflammation
TNFAIP6


868
Inflammation
TNFAIP8L2


869
Inflammation
tpa


870
Inflammation
uPA


871
Inflammation
Vasopeptidase


872
Inflammation
VLA-4


873
Inflammation
XBP1


874
Neurological Disease
alpha-synuclein


875
Neurological Disease
ApoE 4


876
Neurological Disease
APP


877
Neurological Disease
Beta amyloid


878
Neurological Disease
CDK5R2


879
Neurological Disease
CLU


880
Neurological Disease
COX2


881
Neurological Disease
CR1


882
Neurological Disease
ErbB


883
Neurological Disease
FRA10AC1


884
Neurological Disease
GBA


885
Neurological Disease
GNAS


886
Neurological Disease
GPCR


887
Neurological Disease
GRM1


888
Neurological Disease
GUSB


889
Neurological Disease
has-mir-29b


890
Neurological Disease
has-mir-29c


891
Neurological Disease
HDAC3


892
Neurological Disease
hnRNPA1


893
Neurological Disease
hnRNPA2B1


894
Neurological Disease
hsa-miR-137


895
Neurological Disease
HTT


896
Neurological Disease
IAPP


897
Neurological Disease
LRRK2


898
Neurological Disease
MAPT


899
Neurological Disease
MBP


900
Neurological Disease
MDK (Midkine)


901
Neurological Disease
MT-ATP6


902
Neurological Disease
PARK


903
Neurological Disease
PARK7


904
Neurological Disease
PBP


905
Neurological Disease
PDE1B


906
Neurological Disease
PICALM


907
Neurological Disease
PINK1


908
Neurological Disease
PON1


909
Neurological Disease
PPARGC1B


910
Neurological Disease
PRNP


911
Neurological Disease
PSEN1


912
Neurological Disease
PSEN2


913
Neurological Disease
RAGE


914
Neurological Disease
SERPINA3


915
Neurological Disease
SNCA


916
Neurological Disease
SOD1


917
Neurological Disease
SPON1


918
Neurological Disease
SPP1


919
Neurological Disease
STH


920
Neurological Disease
Supt4h


921
Neurological Disease
Tau


922
Neurological Disease
TOMM40


923
Neurological Disease
TUBA3


924
Neurological Disease
Ubiquilin-2


925
Rare Disease
AAT


926
Rare Disease
ABCG5


927
Rare Disease
ACHE


928
Rare Disease
ADA


929
Rare Disease
AGXT


930
Rare Disease
AIRE


931
Rare Disease
ALAS-1


932
Rare Disease
ALDH2


933
Rare Disease
alpha-1 antritrypsisn


934
Rare Disease
AMPH


935
Rare Disease
antithrombin


936
Rare Disease
AQP2


937
Rare Disease
ASPA


938
Rare Disease
APT7A


939
Rare Disease
ATP7B


940
Rare Disease
AVPR2


941
Rare Disease
BSCL2


942
Rare Disease
C1S


943
Rare Disease
CCL3L1


944
Rare Disease
CD79A


945
Rare Disease
CTLA4


946
Rare Disease
CYB5R3


947
Rare Disease
CYP117A1


948
Rare Disease
CYBB


949
Rare Disease
CYP21A2


950
Rare Disease
CYP27A1


951
Rare Disease
DMPK


952
Rare Disease
ENO2


953
Rare Disease
F2


954
Rare Disease
F5


955
Rare Disease
F10


956
Rare Disease
FGF23


957
Rare Disease
FRAXA


958
Rare Disease
FRAXE


959
Rare Disease
GAA


960
Rare Disease
GAD1


961
Rare Disease
GCCR


962
Rare Disease
GCK


963
Rare Disease
GDNF


964
Rare Disease
GFAP


965
Rare Disease
GH1


966
Rare Disease
GHR


967
Rare Disease
GJB1


968
Rare Disease
GLA


969
Rare Disease
GLRA1


970
Rare Disease
GYS2


971
Rare Disease
HADHA


972
Rare Disease
HFE


973
Rare Disease
IGES


974
Rare Disease
IPW


975
Rare Disease
KCNJ2


976
Rare Disease
KRT6A (Keratin K6a)


977
Rare Disease
KRT81


978
Rare Disease
KRT86


979
Rare Disease
LMAN1


980
Rare Disease
LMNA


981
Rare Disease
MPL


982
Rare Disease
MPZ


983
Rare Disease
NEU1


984
Rare Disease
NPC1


985
Rare Disease
NPC2


986
Rare Disease
NR0B1


987
Rare Disease
NR3C2


988
Rare Disease
PKK


989
Rare Disease
PMP22


990
Rare Disease
PYGM


991
Rare Disease
RETN


992
Rare Disease
SAG


993
Rare Disease
SCNN1A


994
Rare Disease
SH2D1A


995
Rare Disease
SLC2A1 (Glut1)


996
Rare Disease
SMN2


997
Rare Disease
SMPD1


998
Rare Disease
SNRPN


999
Rare Disease
THBD


1000
Rare Disease
STAR


1001
Rare Disease
SYP


1002
Rare Disease
TRD


1003
Rare Disease
TSHB


1004
Rare Disease
Tmprss6


1005
Rare Disease
TTR


1006
Rare Disease
UBE3A


1007
Rare Disease
WAS


1008
Rare Disease
WRN


1009
Rare Disease
Dentatorubropallidoluysian




Atrophy


1010
Rare Disease
Huntington′s Disease


1011
Rare Disease
Spinobulbar Muscular




Atrophy


1012
Rare Disease
SCA1 (Spinocerebellar Ataxia




Type 1)


1013
Rare Disease
SCA2 (Spinocerebellar Ataxia




Type 2)


1014
Rare Disease
SCA3 (Spinocerebellar Ataxia




Type 3 or Machado-Joseph




Disease)


1015
Rare Disease
SCA6 (Spinocerebellar Ataxia




Type 6)


1016
Rare Disease
SCA7 (Spinocerebellar Ataxia




Type 7)


1017
Rare Disease
Fragile X Syndrome


1018
Rare Disease
Fragile XE Mental




Retardation


1019
Rare Disease
Friedreich′s Ataxia


1020
Rare Disease
Myotonic Dystrophy


1021
Rare Disease
Spinocerebellar Ataxia




Type 8


1022
Rare Disease
Spinocerebellar Ataxia




Type 12


1023
Rare Disease
SPT4


1024
Rare Disease
ATN1


1025
Rare Disease
DRPLA


1026
Rare Disease
HTT


1027
Rare Disease
ATXN1


1028
Rare Disease
ATXN2


1029
Rare Disease
ATXN3


1030
Rare Disease
CACNA1A


1031
Rare Disease
ATXN7


1032
Rare Disease
TBP


1033
Rare Disease
FMR1


1034
Rare Disease
AFF2


1035
Rare Disease
FXN


1036
Rare Disease
SCA8


1037
Rare Disease
PPP2R2B


1038
Stem Cells
Cancer Stem Cells


1039
Stem Cells
Cardiac Stem Cells


1040
Stem Cells
Kidney Stem Cells


1041
Stem Cells
Embryonic Stem Cells


1042
Stem Cells
Tissue Stem Cells


1043
Stem Cells
Induced Pluripotent Stem




Cells


1044
Stem Cells
Blood Stem Cells


1045
Stem Cells
Mescenchymal Stem Cells


1046
Stem Cells
Cord Blood Stem Cells









Non-Cancer Targets


The present invention is not limited to the targeting of cancer genes. The methods and compositions of the present invention find use in the targeting of any gene that it is desirable to down regulate the expression of. For example, targets for immune and/or surface antigens or immune surveillance targets, angiogenic receptors, proteins and factors (kinases, heat shock, hypoxic, oxidative stress gene/protein targets), monogenic diseases, inflammation, gene transcription (transcription factors, cis regulatory elements), cell recognition receptors, cell signaling receptors, cell death (autophagy, necrosis, apoptosis), cell adhesion, survival targets (resistance), metastases targets (brain, primary to secondary tumors), chemokines/cytokines, EMT/MET, immune cell activation factors, multidrug resistance, viral proteins and viral recognition proteins, psoriasis, dermatitis and eczema


Extracellular matrix, stromal or connective tissue genes/proteins, coagulation factors and platelet aggregation or platelet overproduction, and growth factors.


For example, in some embodiments, the genes to be targeted include, but are not limited to, an immunoglobulin or antibody gene, a clotting factor gene, a protease, a pituitary hormone, a protease inhibitor, a growth factor, a somatomedian, a gonadotrophin, a chemotactin, a chemokine, a plasma protein, a plasma protease inhibitor, an interleukin, an interferon, a cytokine, a transcription factor, or a pathogen target (e.g., a viral gene, a bacterial gene, a microbial gene, a fungal gene).


In other embodiments and gene from a pathogen is targeted. Exemplary pathogens include, but are not limited to, Human Immunodeficiency virus (CD4, APOBEC3G, Vif, LEDGF/p75), Hepatitis B virus, hepatitis C virus (SR-B1, scavenger receptor type B1; CLDN-1, claudin-1; OCLN, occluding), hepatitis A virus, respiratory syncytial virus, pathogens involved in severe acute respiratory syndrome, west nile virus, and food borne pathogens (e.g., E. coli).


The lists of Cancer and Non-Cancer targets from above is intended to be specific and accurate, but in addition to the targets above we have further found and we describe in even greater detail the targets listed below, comprising both cancer and non-cancer targets, presented in no particular order. These targets are especially well suited for DNAi targeting and therapy. The preferred list of targets is provided with the sections that follow which provided detailed descriptions of over 40 genes. These gene targets are numbered below, 1-30. Included with a description of many of these preferred targets are the background relevance of the gene, gene identification, the targeted oligonucleotide sequences, the hot zones, and the 5′ upstream genetic code.


EXPERIMENTALS

These examples are provided in order to demonstrate and further illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.


In the experimental disclosure which follows, the following abbreviations apply: N (normal); M (molar); mM (millimolar); μM (micromolar); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); pmol (picomoles); g (grams); mg (milligrams); μg (micrograms); ng (nanograms); 1 or L (liters); ml (milliliters); μl (microliters); cm (centimeters); mm (millimeters); μm (micrometers); nm (nanometers); and ° C. (degrees Centigrade).


1) Survivin. Survivin (BIRC5) also called buloviral inhibitor of apoptosis repeat-containing 5 is a member of the inhibitor of apoptosis family that is expressed during mitosis in a cell cycle-dependent manner. Survivin is localized to different components of the mitotic apparatus, plays an important role in both cell division and inhibition of apoptosis. Survivin is not expressed in normal adult tissue, but is widely expressed in a majority of cancers (Fukuda and Pelus, Mol Cancer Ther 2006; 5 1087-1098), often with poor prognosis. Survivin inhibits caspase activation, the key effector enzyme in programmed cell death, and as a result there is uncontrolled growth and drug resistance. The inhibition of survivin leads to increased apoptosis and decreased tumor growth and sensitizes cells to various therapeutic interventions including chemotherapies and targeted therapies against cancer targets. Survivin expression is increased in tumors and regulated by the cell cycle (expressed in mitosis in a cell cycle dependent manner); expression is also linked to p53 and is targeted by the WNT1 pathway and is upregulated by β-catenin. A review of approaches targeted against survivin may be found in “Targeting surviving in cancer: a patent review” (Expert Opinion on Therapeutic Patents, December 2010, Vol. 20, No. 12: Pages 1723-1737).


An antisense therapeutic being developed (LY2181308) downregulates survivin expression in human cancer cells derived from lung, colon, pancreas, liver, breast, prostate, ovary, cervix, skin, and brain as measured by quantitative RT-PCR and immunoblotting analysis (Carrasco et al., Mol Cancer Ther 2011; 10(2); 221-32). Specific inhibition of survivin expression in multiple cancer cell lines induced caspase-3-dependent apoptosis, cell cycle arrest in the G2-M phase, and multinucleated cells and sensitized tumor cells to chemotherapeutic-induced apoptosis. In an in vivo human xenograft tumor model, LY2181308 produced significant antitumor activity as compared with saline or its sequence-specific control oligonucleotide and sensitized to gemcitabine, paclitaxel, and docetaxel with inhibition of surviving expression in xenograft tumors. LY2181308 is being evaluated in a clinical setting (Phase II) in combination with docetaxel for the treatment of prostate cancer.


Protein: Survivin Gene: BIRC5 (Homo sapiens, chromosome 17, 76210277-76221716 [NCBI Reference Sequence: NC000017.10]; start site location: 76210398; strand: positive)












Gene Identification


















GeneID
332



HGNC
593



HPRD
04520



MIM
603352




















Targeted Sequences













Relative





upstream





location


Se-


to gene


quence
Design

start


ID No:
ID
Sequence (5′-3′)
site













1
SU1
GAGCGCACGCCCTCTTAGGCGG
73





75
SU2
CACCCCGAGGTACGATCAGTGCGTACC
2990





105
SU3
GACATCGCTGTCCCGGCGAGTACATCGTT
665





155
SU1_02
GAGCGCACGCCCTCTTAGGCG
73





229
SU1_03
GAGCGCACGCCCTCTTAGGCGGTCCA
73





303

GTCGCCCCTGGGTCCTGCTGATTGGC
1918





322

CAGCGAGCCTGGGCCCCATCGGCACATCT
2905





357

CCCGCGGCCTTCTGGGAGTAGAGGC
102





431

TCCCGGCGAGTACATCGTTGACTGCACG
675





481

AACCTCCTCCCCGCCACGGGTT
1229



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












1
GAGCGCACGCCCTCTTAGGCGG
77





2
AGCGCACGCCCTCTTAGGCG
78





3
GCGCACGCCCTCTTAGGCGG
79





4
CGCACGCCCTCTTAGGCGGT
80





5
GCACGCCCTCTTAGGCGGTC
81





6
CACGCCCTCTTAGGCGGTCC
82





7
ACGCCCTCTTAGGCGGTCCA
83





8
CGCCCTCTTAGGCGGTCCAC
84





9
GCCCTCTTAGGCGGTCCACC
85





10
CCCTCTTAGGCGGTCCACCC
86





11
CCTCTTAGGCGGTCCACCCC
87





12
CTCTTAGGCGGTCCACCCCC
88





13
TCTTAGGCGGTCCACCCCCC
89





14
CTTAGGCGGTCCACCCCCCG
90





15
TTAGGCGGTCCACCCCCCGC
91





16
TAGGCGGTCCACCCCCCGCG
92





17
AGGCGGTCCACCCCCCGCGG
93





18
GGCGGTCCACCCCCCGCGGC
94





19
GCGGTCCACCCCCCGCGGCC
95





20
CGGTCCACCCCCCGCGGCCT
96





21
GGTCCACCCCCCGCGGCCTT
97





22
GTCCACCCCCCGCGGCCTTC
98





23
TCCACCCCCCGCGGCCTTCT
99





24
CCACCCCCCGCGGCCTTCTG
100





25
CACCCCCCGCGGCCTTCTGG
101





26
ACCCCCCGCGGCCTTCTGGG
102





27
CCCCCCGCGGCCTTCTGGGA
103





28
CCCCCGCGGCCTTCTGGGAG
104





29
CCCCGCGGCCTTCTGGGAGT
105





30
CCCGCGGCCTTCTGGGAGTA
106





31
CCGCGGCCTTCTGGGAGTAG
107





32
CGCGGCCTTCTGGGAGTAGA
108





33
GCGGCCTTCTGGGAGTAGAG
109





34
CGGCCTTCTGGGAGTAGAGG
110





35
GGAGCGCACGCCCTCTTAGG
76





36
GGGAGCGCACGCCCTCTTAG
75





37
CGGGAGCGCACGCCCTCTTA
74





38
TCGGGAGCGCACGCCCTCTT
73





39
GTCGGGAGCGCACGCCCTCT
72





40
TGTCGGGAGCGCACGCCCTC
71





41
ATGTCGGGAGCGCACGCCCT
70





42
CATGTCGGGAGCGCACGCCC
69





43
GCATGTCGGGAGCGCACGCC
68





44
GGCATGTCGGGAGCGCACGC
67





45
GGGCATGTCGGGAGCGCACG
66





46
GGGGCATGTCGGGAGCGCAC
65





47
CGGGGCATGTCGGGAGCGCA
64





48
GCGGGGCATGTCGGGAGCGC
63





49
CGCGGGGCATGTCGGGAGCG
62





50
CCGCGGGGCATGTCGGGAGC
61





51
GCCGCGGGGCATGTCGGGAG
60





52
CGCCGCGGGGCATGTCGGGA
59





53
GCGCCGCGGGGCATGTCGGG
58





54
CGCGCCGCGGGGCATGTCGG
57





55
GCGCGCCGCGGGGCATGTCG
56





56
GGCGCGCCGCGGGGCATGTC
55





57
TGGCGCGCCGCGGGGCATGT
54





58
ATGGCGCGCCGCGGGGCATG
53





59
AATGGCGCGCCGCGGGGCAT
52





60
TAATGGCGCGCCGCGGGGCA
51





61
TTAATGGCGCGCCGCGGGGC
50





62
GTTAATGGCGCGCCGCGGGG
49





63
GGTTAATGGCGCGCCGCGGG
48





64
CGGTTAATGGCGCGCCGCGG
47





65
GCGGTTAATGGCGCGCCGCG
46





66
GGCGGTTAATGGCGCGCCGC
45





67
TGGCGGTTAATGGCGCGCCG
44





68
CTGGCGGTTAATGGCGCGCC
43





69
TCTGGCGGTTAATGGCGCGC
42





70
ATCTGGCGGTTAATGGCGCG
41





71
AATCTGGCGGTTAATGGCGC
40





72
AAATCTGGCGGTTAATGGCG
39





73
CAAATCTGGCGGTTAATGGC
38





74
TCAAATCTGGCGGTTAATGG
37





75
CACCCCGAGGTACGATCAGTGCGTACC
2994





76
ACCCCGAGGTACGATCAGTG
2995





77
CCCCGAGGTACGATCAGTGC
2996





78
CCCGAGGTACGATCAGTGCG
2997





79
CCGAGGTACGATCAGTGCGT
2998





80
CGAGGTACGATCAGTGCGTA
2999





81
GAGGTACGATCAGTGCGTAC
3000





82
AGGTACGATCAGTGCGTACC
3001





83
GGTACGATCAGTGCGTACCA
3002





84
GTACGATCAGTGCGTACCAA
3003





85
TACGATCAGTGCGTACCAAG
3004





86
ACGATCAGTGCGTACCAAGT
3005





87
CGATCAGTGCGTACCAAGTA
3006





88
GATCAGTGCGTACCAAGTAC
3007





89
ATCAGTGCGTACCAAGTACA
3008





90
TCAGTGCGTACCAAGTACAT
3009





91
CAGTGCGTACCAAGTACATA
3010





92
CCACCCCGAGGTACGATCAG
2993





93
CCCACCCCGAGGTACGATCA
2992





94
TCCCACCCCGAGGTACGATC
2991





95
CTCCCACCCCGAGGTACGAT
2990





96
TCTCCCACCCCGAGGTACGA
2989





97
TTCTCCCACCCCGAGGTACG
2988





98
CTTCTCCCACCCCGAGGTAC
2987





99
TCTTCTCCCACCCCGAGGTA
2986





100
CTCTTCTCCCACCCCGAGGT
2985





101
TCTCTTCTCCCACCCCGAGG
2984





102
CTCTCTTCTCCCACCCCGAG
2983





103
CCTCTCTTCTCCCACCCCGA
2982





104
CCCTCTCTTCTCCCACCCCG
2981





105
GACATCGCTGTCCCGGCGAGTACATCGTT
669





106
ACATCGCTGTCCCGGCGAGT
670





107
CATCGCTGTCCCGGCGAGTA
671





108
ATCGCTGTCCCGGCGAGTAC
672





109
TCGCTGTCCCGGCGAGTACA
673





110
CGCTGTCCCGGCGAGTACAT
674





111
GCTGTCCCGGCGAGTACATC
675





112
CTGTCCCGGCGAGTACATCG
676





113
TGTCCCGGCGAGTACATCGT
677





114
GTCCCGGCGAGTACATCGTT
678





115
TCCCGGCGAGTACATCGTTG
679





116
CCCGGCGAGTACATCGTTGA
680





117
CCGGCGAGTACATCGTTGAC
681





118
CGGCGAGTACATCGTTGACT
682





119
GGCGAGTACATCGTTGACTG
683





120
GCGAGTACATCGTTGACTGC
684





121
CGAGTACATCGTTGACTGCA
685





122
GAGTACATCGTTGACTGCAC
686





123
AGTACATCGTTGACTGCACG
687





124
GTACATCGTTGACTGCACGA
688





125
TACATCGTTGACTGCACGAC
689





126
ACATCGTTGACTGCACGACC
690





127
CATCGTTGACTGCACGACCT
691





128
ATCGTTGACTGCACGACCTG
692





129
TCGTTGACTGCACGACCTGG
693





130
CGTTGACTGCACGACCTGGG
694





131
GTTGACTGCACGACCTGGGT
695





132
TTGACTGCACGACCTGGGTT
696





133
TGACTGCACGACCTGGGTTT
697





134
GACTGCACGACCTGGGTTTC
698





135
ACTGCACGACCTGGGTTTCC
699





136
CTGCACGACCTGGGTTTCCA
700





137
TGCACGACCTGGGTTTCCAG
701





138
GCACGACCTGGGTTTCCAGG
702





139
CACGACCTGGGTTTCCAGGA
703





140
ACGACCTGGGTTTCCAGGAG
704





141
CGACCTGGGTTTCCAGGAGG
705





142
AGACATCGCTGTCCCGGCGA
668





143
CAGACATCGCTGTCCCGGCG
667





144
GCAGACATCGCTGTCCCGGC
666





145
AGCAGACATCGCTGTCCCGG
665





146
CAGCAGACATCGCTGTCCCG
664





147
GCAGCAGACATCGCTGTCCC
663





148
TGCAGCAGACATCGCTGTCC
662





149
GTGCAGCAGACATCGCTGTC
661





150
AGTGCAGCAGACATCGCTGT
660





151
GAGTGCAGCAGACATCGCTG
659





152
GGAGTGCAGCAGACATCGCT
658





153
TGGAGTGCAGCAGACATCGC
657





154
ATGGAGTGCAGCAGACATCG
656





155
GAGCGCACGCCCTCTTAGGCG
77





156
AGCGCACGCCCTCTTAGGCG
78





157
GCGCACGCCCTCTTAGGCGG
79





158
CGCACGCCCTCTTAGGCGGT
80





159
GCACGCCCTCTTAGGCGGTC
81





160
CACGCCCTCTTAGGCGGTCC
82





161
ACGCCCTCTTAGGCGGTCCA
83





162
CGCCCTCTTAGGCGGTCCAC
84





163
GCCCTCTTAGGCGGTCCACC
85





164
CCCTCTTAGGCGGTCCACCC
86





165
CCTCTTAGGCGGTCCACCCC
87





166
CTCTTAGGCGGTCCACCCCC
88





167
TCTTAGGCGGTCCACCCCCC
89





168
CTTAGGCGGTCCACCCCCCG
90





169
TTAGGCGGTCCACCCCCCGC
91





170
TAGGCGGTCCACCCCCCGCG
92





171
AGGCGGTCCACCCCCCGCGG
93





172
GGCGGTCCACCCCCCGCGGC
94





173
GCGGTCCACCCCCCGCGGCC
95





174
CGGTCCACCCCCCGCGGCCT
96





175
GGTCCACCCCCCGCGGCCTT
97





176
GTCCACCCCCCGCGGCCTTC
98





177
TCCACCCCCCGCGGCCTTCT
99





178
CCACCCCCCGCGGCCTTCTG
100





179
CACCCCCCGCGGCCTTCTGG
101





180
ACCCCCCGCGGCCTTCTGGG
102





181
CCCCCCGCGGCCTTCTGGGA
103





182
CCCCCGCGGCCTTCTGGGAG
104





183
CCCCGCGGCCTTCTGGGAGT
105





184
CCCGCGGCCTTCTGGGAGTA
106





185
CCGCGGCCTTCTGGGAGTAG
107





186
CGCGGCCTTCTGGGAGTAGA
108





187
GCGGCCTTCTGGGAGTAGAG
109





188
CGGCCTTCTGGGAGTAGAGG
110





189
GGAGCGCACGCCCTCTTAGG
76





190
GGGAGCGCACGCCCTCTTAG
75





191
CGGGAGCGCACGCCCTCTTA
74





192
TCGGGAGCGCACGCCCTCTT
73





193
GTCGGGAGCGCACGCCCTCT
72





194
TGTCGGGAGCGCACGCCCTC
71





195
ATGTCGGGAGCGCACGCCCT
70





196
CATGTCGGGAGCGCACGCCC
69





197
GCATGTCGGGAGCGCACGCC
68





198
GGCATGTCGGGAGCGCACGC
67





199
GGGCATGTCGGGAGCGCACG
66





200
GGGGCATGTCGGGAGCGCAC
65





201
CGGGGCATGTCGGGAGCGCA
64





202
GCGGGGCATGTCGGGAGCGC
63





203
CGCGGGGCATGTCGGGAGCG
62





204
CCGCGGGGCATGTCGGGAGC
61





205
GCCGCGGGGCATGTCGGGAG
60





206
CGCCGCGGGGCATGTCGGGA
59





207
GCGCCGCGGGGCATGTCGGG
58





208
CGCGCCGCGGGGCATGTCGG
57





209
GCGCGCCGCGGGGCATGTCG
56





210
GGCGCGCCGCGGGGCATGTC
55





211
TGGCGCGCCGCGGGGCATGT
54





212
ATGGCGCGCCGCGGGGCATG
53





213
AATGGCGCGCCGCGGGGCAT
52





214
TAATGGCGCGCCGCGGGGCA
51





215
TTAATGGCGCGCCGCGGGGC
50





216
GTTAATGGCGCGCCGCGGGG
49





217
GGTTAATGGCGCGCCGCGGG
48





218
CGGTTAATGGCGCGCCGCGG
47





219
GCGGTTAATGGCGCGCCGCG
46





220
GGCGGTTAATGGCGCGCCGC
45





221
TGGCGGTTAATGGCGCGCCG
44





222
CTGGCGGTTAATGGCGCGCC
43





223
TCTGGCGGTTAATGGCGCGC
42





224
ATCTGGCGGTTAATGGCGCG
41





225
AATCTGGCGGTTAATGGCGC
40





226
AAATCTGGCGGTTAATGGCG
39





227
CAAATCTGGCGGTTAATGGC
38





228
TCAAATCTGGCGGTTAATGG
37





229
GAGCGCACGCCCTCTTAGGCGGTCCA
77





230
AGCGCACGCCCTCTTAGGCG
78





231
GCGCACGCCCTCTTAGGCGG
79





232
CGCACGCCCTCTTAGGCGGT
80





233
GCACGCCCTCTTAGGCGGTC
81





234
CACGCCCTCTTAGGCGGTCC
82





235
ACGCCCTCTTAGGCGGTCCA
83





236
CGCCCTCTTAGGCGGTCCAC
84





237
GCCCTCTTAGGCGGTCCACC
85





238
CCCTCTTAGGCGGTCCACCC
86





239
CCTCTTAGGCGGTCCACCCC
87





240
CTCTTAGGCGGTCCACCCCC
88





241
TCTTAGGCGGTCCACCCCCC
89





242
CTTAGGCGGTCCACCCCCCG
90





243
TTAGGCGGTCCACCCCCCGC
91





244
TAGGCGGTCCACCCCCCGCG
92





245
AGGCGGTCCACCCCCCGCGG
93





246
GGCGGTCCACCCCCCGCGGC
94





247
GCGGTCCACCCCCCGCGGCC
95





248
CGGTCCACCCCCCGCGGCCT
96





249
GGTCCACCCCCCGCGGCCTT
97





250
GTCCACCCCCCGCGGCCTTC
98





251
TCCACCCCCCGCGGCCTTCT
99





252
CCACCCCCCGCGGCCTTCTG
100





253
CACCCCCCGCGGCCTTCTGG
101





254
ACCCCCCGCGGCCTTCTGGG
102





255
CCCCCCGCGGCCTTCTGGGA
103





256
CCCCCGCGGCCTTCTGGGAG
104





257
CCCCGCGGCCTTCTGGGAGT
105





258
CCCGCGGCCTTCTGGGAGTA
106





259
CCGCGGCCTTCTGGGAGTAG
107





260
CGCGGCCTTCTGGGAGTAGA
108





261
GCGGCCTTCTGGGAGTAGAG
109





262
CGGCCTTCTGGGAGTAGAGG
110





263
GGAGCGCACGCCCTCTTAGG
76





264
GGGAGCGCACGCCCTCTTAG
75





265
CGGGAGCGCACGCCCTCTTA
74





266
TCGGGAGCGCACGCCCTCTT
73





267
GTCGGGAGCGCACGCCCTCT
72





268
TGTCGGGAGCGCACGCCCTC
71





269
ATGTCGGGAGCGCACGCCCT
70





270
CATGTCGGGAGCGCACGCCC
69





271
GCATGTCGGGAGCGCACGCC
68





272
GGCATGTCGGGAGCGCACGC
67





273
GGGCATGTCGGGAGCGCACG
66





274
GGGGCATGTCGGGAGCGCAC
65





275
CGGGGCATGTCGGGAGCGCA
64





276
GCGGGGCATGTCGGGAGCGC
63





277
CGCGGGGCATGTCGGGAGCG
62





278
CCGCGGGGCATGTCGGGAGC
61





279
GCCGCGGGGCATGTCGGGAG
60





280
CGCCGCGGGGCATGTCGGGA
59





281
GCGCCGCGGGGCATGTCGGG
58





282
CGCGCCGCGGGGCATGTCGG
57





283
GCGCGCCGCGGGGCATGTCG
56





284
GGCGCGCCGCGGGGCATGTC
55





285
TGGCGCGCCGCGGGGCATGT
54





286
ATGGCGCGCCGCGGGGCATG
53





287
AATGGCGCGCCGCGGGGCAT
52





288
TAATGGCGCGCCGCGGGGCA
51





289
TTAATGGCGCGCCGCGGGGC
50





290
GTTAATGGCGCGCCGCGGGG
49





291
GGTTAATGGCGCGCCGCGGG
48





292
CGGTTAATGGCGCGCCGCGG
47





293
GCGGTTAATGGCGCGCCGCG
46





294
GGCGGTTAATGGCGCGCCGC
45





295
TGGCGGTTAATGGCGCGCCG
44





296
CTGGCGGTTAATGGCGCGCC
43





297
TCTGGCGGTTAATGGCGCGC
42





298
ATCTGGCGGTTAATGGCGCG
41





299
AATCTGGCGGTTAATGGCGC
40





300
AAATCTGGCGGTTAATGGCG
39





301
CAAATCTGGCGGTTAATGGC
38





302
TCAAATCTGGCGGTTAATGG
37





303
GTCGCCCCTGGGTCCTGCTGATTGGC
1919





304
TCGCCCCTGGGTCCTGCTGA
1920





305
CGCCCCTGGGTCCTGCTGAT
1921





306
GGTCGCCCCTGGGTCCTGCT
1918





307
AGGTCGCCCCTGGGTCCTGC
1917





308
CAGGTCGCCCCTGGGTCCTG
1916





309
GCAGGTCGCCCCTGGGTCCT
1915





310
GGCAGGTCGCCCCTGGGTCC
1914





311
TGGCAGGTCGCCCCTGGGTC
1913





312
TTGGCAGGTCGCCCCTGGGT
1912





313
TTTGGCAGGTCGCCCCTGGG
1911





314
CTTTGGCAGGTCGCCCCTGG
1910





315
ACTTTGGCAGGTCGCCCCTG
1909





316
GACTTTGGCAGGTCGCCCCT
1908





317
TGACTTTGGCAGGTCGCCCC
1907





318
TTGACTTTGGCAGGTCGCCC
1906





319
GTTGACTTTGGCAGGTCGCC
1905





320
AGTTGACTTTGGCAGGTCGC
1904





321
CAGTTGACTTTGGCAGGTCG
1903





322
CAGCGAGCCTGGGCCCCATCGGCACATCT
2909





323
AGCGAGCCTGGGCCCCATCG
2910





324
GCGAGCCTGGGCCCCATCGG
2911





325
CGAGCCTGGGCCCCATCGGC
2912





326
GAGCCTGGGCCCCATCGGCA
2913





327
AGCCTGGGCCCCATCGGCAC
2914





328
GCCTGGGCCCCATCGGCACA
2915





329
CCTGGGCCCCATCGGCACAT
2916





330
CTGGGCCCCATCGGCACATC
2917





331
TGGGCCCCATCGGCACATCT
2918





332
GGGCCCCATCGGCACATCTG
2919





333
GGCCCCATCGGCACATCTGA
2920





334
GCCCCATCGGCACATCTGAA
2921





335
CCCCATCGGCACATCTGAAG
2922





336
CCCATCGGCACATCTGAAGG
2923





337
CCATCGGCACATCTGAAGGT
2924





338
CATCGGCACATCTGAAGGTG
2925





339
ATCGGCACATCTGAAGGTGC
2926





340
TCGGCACATCTGAAGGTGCA
2927





341
CGGCACATCTGAAGGTGCAC
2928





342
GCAGCGAGCCTGGGCCCCAT
2908





343
TGCAGCGAGCCTGGGCCCCA
2907





344
CTGCAGCGAGCCTGGGCCCC
2906





345
TCTGCAGCGAGCCTGGGCCC
2905





346
ATCTGCAGCGAGCCTGGGCC
2904





347
CATCTGCAGCGAGCCTGGGC
2903





348
CCATCTGCAGCGAGCCTGGG
2902





349
GCCATCTGCAGCGAGCCTGG
2901





350
GGCCATCTGCAGCGAGCCTG
2900





351
GGGCCATCTGCAGCGAGCCT
2899





352
GGGGCCATCTGCAGCGAGCC
2898





353
GGGGGCCATCTGCAGCGAGC
2897





354
AGGGGGCCATCTGCAGCGAG
2896





355
AAGGGGGCCATCTGCAGCGA
2895





356
GAAGGGGGCCATCTGCAGCG
2894





357
CCCGCGGCCTTCTGGGAGTAGAGGC
106





358
CCGCGGCCTTCTGGGAGTAG
107





359
CGCGGCCTTCTGGGAGTAGA
108





360
GCGGCCTTCTGGGAGTAGAG
109





361
CGGCCTTCTGGGAGTAGAGG
110





362
CCCCGCGGCCTTCTGGGAGT
105





363
CCCCCGCGGCCTTCTGGGAG
104





364
CCCCCCGCGGCCTTCTGGGA
103





365
ACCCCCCGCGGCCTTCTGGG
102





366
CACCCCCCGCGGCCTTCTGG
101





367
CCACCCCCCGCGGCCTTCTG
100





368
TCCACCCCCCGCGGCCTTCT
99





369
GTCCACCCCCCGCGGCCTTC
98





370
GGTCCACCCCCCGCGGCCTT
97





371
CGGTCCACCCCCCGCGGCCT
96





372
GCGGTCCACCCCCCGCGGCC
95





373
GGCGGTCCACCCCCCGCGGC
94





374
AGGCGGTCCACCCCCCGCGG
93





375
TAGGCGGTCCACCCCCCGCG
92





376
TTAGGCGGTCCACCCCCCGC
91





377
CTTAGGCGGTCCACCCCCCG
90





378
TCTTAGGCGGTCCACCCCCC
89





379
CTCTTAGGCGGTCCACCCCC
88





380
CCTCTTAGGCGGTCCACCCC
87





381
CCCTCTTAGGCGGTCCACCC
86





382
GCCCTCTTAGGCGGTCCACC
85





383
CGCCCTCTTAGGCGGTCCAC
84





384
ACGCCCTCTTAGGCGGTCCA
83





385
CACGCCCTCTTAGGCGGTCC
82





386
GCACGCCCTCTTAGGCGGTC
81





387
CGCACGCCCTCTTAGGCGGT
80





388
GCGCACGCCCTCTTAGGCGG
79





389
AGCGCACGCCCTCTTAGGCG
78





390
GAGCGCACGCCCTCTTAGGC
77





391
GGAGCGCACGCCCTCTTAGG
76





392
GGGAGCGCACGCCCTCTTAG
75





393
CGGGAGCGCACGCCCTCTTA
74





394
TCGGGAGCGCACGCCCTCTT
73





395
GTCGGGAGCGCACGCCCTCT
72





396
TGTCGGGAGCGCACGCCCTC
71





397
ATGTCGGGAGCGCACGCCCT
70





398
CATGTCGGGAGCGCACGCCC
69





399
GCATGTCGGGAGCGCACGCC
68





400
GGCATGTCGGGAGCGCACGC
67





401
GGGCATGTCGGGAGCGCACG
66





402
GGGGCATGTCGGGAGCGCAC
65





403
CGGGGCATGTCGGGAGCGCA
64





404
GCGGGGCATGTCGGGAGCGC
63





405
CGCGGGGCATGTCGGGAGCG
62





406
CCGCGGGGCATGTCGGGAGC
61





407
GCCGCGGGGCATGTCGGGAG
60





408
CGCCGCGGGGCATGTCGGGA
59





409
GCGCCGCGGGGCATGTCGGG
58





410
CGCGCCGCGGGGCATGTCGG
57





411
GCGCGCCGCGGGGCATGTCG
56





412
GGCGCGCCGCGGGGCATGTC
55





413
TGGCGCGCCGCGGGGCATGT
54





414
ATGGCGCGCCGCGGGGCATG
53





415
AATGGCGCGCCGCGGGGCAT
52





416
TAATGGCGCGCCGCGGGGCA
51





417
TTAATGGCGCGCCGCGGGGC
50





418
GTTAATGGCGCGCCGCGGGG
49





419
GGTTAATGGCGCGCCGCGGG
48





420
CGGTTAATGGCGCGCCGCGG
47





421
GCGGTTAATGGCGCGCCGCG
46





422
GGCGGTTAATGGCGCGCCGC
45





423
TGGCGGTTAATGGCGCGCCG
44





424
CTGGCGGTTAATGGCGCGCC
43





425
TCTGGCGGTTAATGGCGCGC
42





426
ATCTGGCGGTTAATGGCGCG
41





427
AATCTGGCGGTTAATGGCGC
40





428
AAATCTGGCGGTTAATGGCG
39





429
CAAATCTGGCGGTTAATGGC
38





430
TCAAATCTGGCGGTTAATGG
37





431
TCCCGGCGAGTACATCGTTGACTGCACG
679





432
CCCGGCGAGTACATCGTTGA
680





433
CCGGCGAGTACATCGTTGAC
681





434
CGGCGAGTACATCGTTGACT
682





435
GGCGAGTACATCGTTGACTG
683





436
GCGAGTACATCGTTGACTGC
684





437
CGAGTACATCGTTGACTGCA
685





438
GAGTACATCGTTGACTGCAC
686





439
AGTACATCGTTGACTGCACG
687





440
GTACATCGTTGACTGCACGA
688





441
TACATCGTTGACTGCACGAC
689





442
ACATCGTTGACTGCACGACC
690





443
CATCGTTGACTGCACGACCT
691





444
ATCGTTGACTGCACGACCTG
692





445
TCGTTGACTGCACGACCTGG
693





446
CGTTGACTGCACGACCTGGG
694





447
GTTGACTGCACGACCTGGGT
695





448
TTGACTGCACGACCTGGGTT
696





449
TGACTGCACGACCTGGGTTT
697





450
GACTGCACGACCTGGGTTTC
698





451
ACTGCACGACCTGGGTTTCC
699





452
CTGCACGACCTGGGTTTCCA
700





453
TGCACGACCTGGGTTTCCAG
701





454
GCACGACCTGGGTTTCCAGG
702





455
CACGACCTGGGTTTCCAGGA
703





456
ACGACCTGGGTTTCCAGGAG
704





457
CGACCTGGGTTTCCAGGAGG
705





458
GTCCCGGCGAGTACATCGTT
678





459
TGTCCCGGCGAGTACATCGT
677





460
CTGTCCCGGCGAGTACATCG
676





461
GCTGTCCCGGCGAGTACATC
675





462
CGCTGTCCCGGCGAGTACAT
674





463
TCGCTGTCCCGGCGAGTACA
673





464
ATCGCTGTCCCGGCGAGTAC
672





465
CATCGCTGTCCCGGCGAGTA
671





466
ACATCGCTGTCCCGGCGAGT
670





467
GACATCGCTGTCCCGGCGAG
669





468
AGACATCGCTGTCCCGGCGA
668





469
CAGACATCGCTGTCCCGGCG
667





470
GCAGACATCGCTGTCCCGGC
666





471
AGCAGACATCGCTGTCCCGG
665





472
CAGCAGACATCGCTGTCCCG
664





473
GCAGCAGACATCGCTGTCCC
663





474
TGCAGCAGACATCGCTGTCC
662





475
GTGCAGCAGACATCGCTGTC
661





476
AGTGCAGCAGACATCGCTGT
660





477
GAGTGCAGCAGACATCGCTG
659





478
GGAGTGCAGCAGACATCGCT
658





479
TGGAGTGCAGCAGACATCGC
657





480
ATGGAGTGCAGCAGACATCG
656





481
AACCTCCTCCCCGCCACGGGTT
1233





482
ACCTCCTCCCCGCCACGGGT
1234





483
CCTCCTCCCCGCCACGGGTT
1235





484
CTCCTCCCCGCCACGGGTTC
1236





485
TCCTCCCCGCCACGGGTTCA
1237





486
CCTCCCCGCCACGGGTTCAA
1238





487
CTCCCCGCCACGGGTTCAAG
1239





488
TCCCCGCCACGGGTTCAAGC
1240





489
CCCCGCCACGGGTTCAAGCG
1241





490
CCCGCCACGGGTTCAAGCGA
1242





491
CCGCCACGGGTTCAAGCGAT
1243





492
CGCCACGGGTTCAAGCGATT
1244





493
GCCACGGGTTCAAGCGATTC
1245





494
CCACGGGTTCAAGCGATTCT
1246





495
CACGGGTTCAAGCGATTCTC
1247





496
ACGGGTTCAAGCGATTCTCC
1248





497
CGGGTTCAAGCGATTCTCCT
1249





498
GGGTTCAAGCGATTCTCCTG
1250





499
GGTTCAAGCGATTCTCCTGC
1251





500
GTTCAAGCGATTCTCCTGCC
1252





501
TTCAAGCGATTCTCCTGCCT
1253





502
TCAAGCGATTCTCCTGCCTC
1254





503
CAAGCGATTCTCCTGCCTCA
1255





504
AAGCGATTCTCCTGCCTCAG
1256





505
AGCGATTCTCCTGCCTCAGC
1257





506
GCGATTCTCCTGCCTCAGCC
1258





507
CGATTCTCCTGCCTCAGCCT
1259





508
CAACCTCCTCCCCGCCACGG
1232





509
GCAACCTCCTCCCCGCCACG
1231





510
TGCAACCTCCTCCCCGCCAC
1230





511
CTGCAACCTCCTCCCCGCCA
1229





512
ACTGCAACCTCCTCCCCGCC
1228





513
CACTGCAACCTCCTCCCCGC
1227





514
TCACTGCAACCTCCTCCCCG
1226



















Hot Zones (Relative upstream location to gene start site)







 1-350


600-800


1100-1350


1900-2150


2750-3200









Examples

In FIG. 1, SU1 (1) shows a dose-dependent response in MDA-MB-231, a human breast cell line, with SU1 at 20 μL showing greater inhibition than SU1 at 10 and 3 μM. SU1's inhibition values, both at 20 and 10 μM, were statistically significant (P<0.05) compared to untreated control values. SU1's inhibition values at 3 μM were insignificant (insignificance indicated by bars with diagonal stripes). Furthermore, SU3's (3) inhibition values at 10 μM were insignificant compared to the untreated control values. SU3's diminished inhibition is attributable to the lack of a CG pair in the 5′ linear section before or at the base of the hairpin of the secondary structure and further back from the transcription start site compared to the other oligonucleotides tested. Two variants of SU1, SU102 (4; 1 base shorter) and SU103 (5; 4 bases longer), were also statistically significant at 10 μM (P<0.5) compared to the untreated control. This demonstrates that a sequence still retains its inhibitory levels despite shifting the sequence a few bases. The negative control (a scrambled oligonucleotide) was not statistically significant compared to the untreated control. The Survivin sequences SU1 (1), SU102 (4), SU103 (5) (shown below) fit the independent and dependent DNAi motif claims. As noted previously, SU3 (3), does not contain a CG in the 5′ linear section either prior to or in the base of the hairpin.



FIG. 2 is similar to FIG. 1 and in FIG. 2 it is shown that SU1 (1) demonstrated significant (P<0.05) inhibition of A549 (human lung cell line) compared to the untreated control values. Also, SU3's (3) inhibition values were insignificant compared to the untreated control values. The negative control was not statistically significant compared to the untreated control. The Survivin sequence SU1 (1) (shown below) fits the independent and dependent DNAi motif claims. As noted previously, SU3 (3), does not contain a CG in the 5′ linear section either prior to or in the base of the hairpin.



FIG. 3 shows that DU145 (human prostate cell line), SU1 (1) and its two variants, SU102 (4) and SU103 (5), produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated control values. SU2 (2), at 20 μM, produced statistically significant (P<0.05) inhibition compared to the untreated control values. The Survivin sequences SU1 (1), SU102 (4), SU103 (5), and SU2 (2) (shown below) fit the independent and dependent DNAi motif claims. As noted previously, SU3 (3), does not contain a CG in the 5′ linear section either prior to or in the base of the hairpin. SU2 (2) demonstrates that some oligonucleotides will show inhibition at acceptably higher concentrations (below a concentration where general cytotoxicity is observed) even though they may not demonstrate inhibition at lower concentrations.



FIG. 4 shows that in MCF7 (human mammary breast cell line), SU1 (1) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The Survivin sequence SU1 (1), fits the independent and dependent DNAi motif claims.


Secondary Structures FIGS. 5, 6, 7, 8, 9.



FIG. 5 is Sequence 1 (SU1). FIG. 6 is Sequence 2 (SU2). FIG. 7 is Sequence 3 (SU3) (Note in FIG. 7 or Sequence 3 there is No CG in the 5′ linear base. FIG. 8 is Sequence 4 (SU102). FIG. 9 is Sequence 5 (SU103).









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11950)







ATCATGACACACATTTACCTGTGTAACAAACCTGCACATCCTACACA





TATACCCTGGAACTTAAAGTAAAAGTTGGGGGGGGGGGTAAAAAAGAATT





TCCACCGTGACATTATTGAGTATAGCAAAAAAAAAAAAAACAAGAAACAG





CCTAGTGTTCATTAGGGAATAAACGCATTCAAGCAGCATCAAACCCTGCA





GCCATTACAAAGAGATCTATGTTGACCATGTGGAATATCTCCAAGAGCCA





CAGTAGCCTCCCTTATCTGTAGGATTCACTCCAAGACCCTCTGAAACCAT





GGATAATACTGAACCCTATATACACTATGTTTTTTCTTGTATATACATAC





CTACGATAAAGTTTAATTTATAAATTGGCAAAGGGTATATAAATATTCCT





TCTAAGAGATTAACAATAACTAATAAAGTAGAACGATTAAAACAATATAC





TGTGATCAAAGTTATGTGAAGCCAGGTGCTGTGGCTCATGCCTGTAATCC





CAGCACTTTGGGAGGCTGAGACAGGTGGATCACCTGAGGTCAGGAGTTGG





AGACCAGCCTGGCCAACATGACAAAACCCCGTCTCTACTAAAGATAAAAA





AAATTAGCCGGGCATGGTGACACATGCCTGTAATCCCAGCTACTTGGGAG





GCTGAGGCAGGAGAATCGCTTGAACCTGGGAGGCGGAGGTTGCAGTGAGC





TAAGATCACACCATTGCACTCCAGCCTGGGCAACAAGAGTGAAACTCTGT





CTCAAAACAAAACAAAACAAAACAAACTTATGGGGTTGCTCTCTTTCTCT





CAAAATATCCTTTTTTTGGCAGGGCACGGTGGCTCATGCCTGTAATCCCA





GCACTTTGAGAGGCTGAGGTGGGTGAATCACCTGAGGTCAGGAGTTCAAG





ACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTATTAAAAATACAAAAA





ATTAGCTGGGCGTGGTGGTGCAGGCCTGTAATCCCAGCTACTTGGGAGGC





TGAGGCAGGAGAATCACTCGAACCCAGGAGCTGGAGTTTGCAGTGAGCCG





AGATCATGCCATTGCACTCCAGCCTGGGCCACAGAGCAAGACTCCATCTC





AAAAAAAAAAAAAAGAAAAAAAGAAAGTCTTTTTTTTTTTTGAGACTGTA





TCTCACTCTTTCTCCCAGGCTGGAGTGCAGTGGCCCAATCATGGCTCACT





GCAGCCTCGACCTCCCAGGATCAAGTGATCCTTCCACCTCAGCCTCCCGA





GTAGCTGGAAGTATAGGTGCACGCCCGACTGATTTTTTTTTTTTTTTTTA





GACGGAGTCTCACTCTTGTTGCTCTGGCTGGAGTGCAATGGCAGGATCTC





GGCTCACTGCAACCTCTGCCTCTTAGATTCAAGCGATTCTCGTGCCTCAG





CCTCCCGAGTAGCTGGGATTACAGGTGCCCACCACCATGCCCGGATAATT





TTTTGTATTTTTAATAGAGACAGGGTTTCACCATATTGGTCAGGCTGGTC





TCAAACTCCTGACCTCAGGTGATCCACCTGCCTCAGCCTCCCAAACTGCT





GGGATTACAGGCGTGAGCCACCGGGCATGGCCTTTCCTGGCTAATTTTTT





AAATTTTTGATAGAGATGGGGTCTCAGTGTTGCCCAGGCTGATCTTGAAC





TCCTAGATTCAAGTGATCCTCCCTCCTTGGTCTCCCAAAGTGCTGAGATT





ACAGGCGTGAGCCACCGCCCCGGGCTGGAAAATACTTTTTTAAACGAGGG





CAATGTGAATCTGAAATGCCATTTGAGGAAAGATCTGTTCGCCTGACATC





CTGTTTGAGCCTGGGTGGACAGGACAGCACCTGCCAGCATCGGGAAGCAC





TGCAGATGGGAAGAGGCTTGGTCACTCTCCAAAGGTGGCAGGAGTTGGAG





GGGGTGAGCTGAAGGTAAGGAGAAAGGAGGTGGGGACCCAGGAGACAGGG





GCTGCGCAGCGGGCTCGGGGCTGACACCCCCACGGATACAGTTCACTGGG





GCTCAAACATAAAAGGAACCCAACTATTGTGGGAGGAAAAGACTCTTCTG





CCTTTCTGCCTTTTCTTTTTTTCTTTTTCTTTCTTTCTTTTTTTTTTTTT





TTTTTTGAGACAGAGTCTTGCTCTATCGCCCAGGCTGGAGTGCAGTGGCG





TGATCTCGGCTCACTGCAAGCTCTGCCTCCCGGGATCACGCCATTCTCCT





GCCTCAACCTCCCGAGCAGCTGGGACTACAGGCGCCTGCCACCACACCCG





GCTATTTTTTTGTATTTTTTAGTAGAGATGGGGTTTCACCGTGTTAGCCA





GGACGGTCTCGATCTCCTGACCTTGTGATCCGCCCGCCTCGGCCTCCCAA





AGTGCTGGGATTACAGGCGTGAGCCACCGCGCCTGGCTCTTTTTTCTTTC





TTTTTTTTTTTTCCGAGACAGAGTTTCACTCTTGTTGCCCAGGCTGGAGT





GCAGTGGCGCAATCTTGGCTCACTGCAACCTCCACCTCCAGGGTTCAAGC





GATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTGCAGGCGCGCACCA





CCACGCCTGGCTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATA





TTGGCCAGGCTGGTCTCGAACTCCTGACCTTGTGATCTGCCCACCTCAGC





CTCCCAAAGTCCTGGGATTACAGGCGTGAGCCACCGTGCCCAGCCTGACC





CCTCTGCCCTTTCAAAAACTATGTTCGTTCTCTCACAGCCTTCTCTTGTC





ATATTAAGTCCACACCGCAGGCCTAATTTGTCCAGTGAATGCTATGCAAA





TATTTCATGCACCTGCTGATCGCAGGAATGATATGTACTTGGTACGCACT





GATCGTACCTCGGGGTGGGAGAAGAGAGGGCAAGGAAGCAAAGAATAGCC





CCCTCCTTTCCTGGTGCACCTTCAGATGTGCCGATGGGGCCCAGGCTCGC





TGCAGATGGCCCCCTTCCCAGAGACAGGGGAGGATCCTCCACCCACTCCC





CAGCCTCCAGGACCATCCTGACTCCTGCCTTCAGGCACTCAAGTTATGCG





TCTAGACATGCGGATATATTCAAGCTGGGCACAGCACAGCAGCCCCACCC





CAGGCAGCTTGAAATCAGAGCTGGGGTCCAAAGGGACCACACCCCGAGGG





ACTGTGTGGGGGTCGGGGCACACAGGCCACTGCTTCCCCCCGTCTTTCTC





AGCCATTCCTGAAGTCAGCCTCACTCTGCTTCTCAGGGATTTCAAATGTG





CAGAGACTCTGGCACTTTTGTAGAAGCCCCTTCTGGTCCTAACTTACACC





TGGATGCTGTGGGGCTGCAGCTGCTGCTCGGGCTCGGGAGGATGCTGGGG





GCCCGGTGCCCATGAGCTTTTGAAGCTCCTGGAACTCGGTTTTGAGGGTG





TTCAGGTCCAGGTGGACACCTGGGCTGTCCTTGTCCATGCATTTGATGAC





ATTGTGTGCAGAAGTGAAAAGGAGTTAGGCCGGGCATGCTGGCTTATGCC





TGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGTGGATCACGAGGTCAGG





AGTTCAATACCAGCCTGGCCAAGATGGTGAAACCCCGTCTCTACTAAAAA





TACAAAAAAATTAGCCGGGCATGGTGGCGGGCGCATGTAATCCCAGCTAC





TGGGGGGGCTGAGGCAGAGAATTGCTGGAACCCAGGAGATGGAGGTTGCA





GTGAGCCAAGATTGTGCCACTGCACTGCACTCCAGCCTGGCGACAGAGCA





AGACTCTGTCTCAAAAAAAAAAAAAAAAAGTGAAAAGGAGTTGTTCCTTT





CCTCCCTCCTGAGGGCAGGCAACTGCTGCGGTTGCCAGTGGAGGTGGTGC





GTCCTTGGTCTGTGCCTGGGGGCCACCCCAGCAGAGGCCATGGTGGTGCC





AGGGCCCGGTTAGCGAGCCAATCAGCAGGACCCAGGGGCGACCTGCCAAA





GTCAACTGGATTTGATAACTGCAGCGAAGTTAAGTTTCCTGATTTTGATG





ATTGTGTTGTGGTTGTGTAAGAGAATGAAGTATTTCGGGGTAGTATGGTA





ATGCCTTCAACTTACAAACGGTTCAGGTAAACCACCCATATACATACATA





TACATGCATGTGATATATACACATACAGGGATGTGTGTGTGTTCACATAT





ATGAGGGGAGAGAGACTAGGGGAGAGAAAGTAGGTTGGGGAGAGGGAGAG





AGAAAGGAAAACAGGAGACAGAGAGAGAGCGGGGAGTAGAGAGAGGGAAG





GGGTAAGAGAGGGAGAGGAGGAGAGAAAGGGAGGAAGAAGCAGAGAGTGA





ATGTTAAAGGAAACAGGCAAAACATAAACAGAAAATCTGGGTGAAGGGTA





TATGAGTATTCTTTGTACTATTCTTGCAATTATCTTTTATTTAAATTGAC





ATCGGGCCGGGCGCAGTGGCTCACATCTGTAATCCCAGCACTTTGGGAGG





CCGAGGCAGGCAGATCACTTGAGGTCAGGAGTTTGAGACCAGCCTGGCAA





ACATGGTGAAACCCCATCTCTACTAAAAATACAAAAATTAGCCTGGTGTG





GTGGTGCATGCCTTTAATCTCAGCTACTCGGGAGGCTGAGGCAGGAGAAT





CGCTTGAACCCGTGGCGGGGAGGAGGTTGCAGTGAGCTGAGATCATGCCA





CTGCACTCCAGCCTGGGCGATAGAGCGAGACTCAGTTTCAAATAAATAAA





TAAACATCAAAATAAAAAGTTACTGTATTAAAGAATGGGGGCGGGGTGGG





AGGGGTGGGGAGAGGTTGCAAAAATAAATAAATAAATAAATAAACCCCAA





AATGAAAAAGACAGTGGAGGCACCAGGCCTGCGTGGGGCTGGAGGGCTAA





TAAGGCCAGGCCTCTTATCTCTGGCCATAGAACCAGAGAAGTGAGTGGAT





GTGATGCCCAGCTCCAGAAGTGACTCCAGAACACCCTGTTCCAAAGCAGA





GGACACACTGATTTTTTTTTTAATAGGCTGCAGGACTTACTGTTGGTGGG





ACGCCCTGCTTTGCGAAGGGAAAGGAGGAGTTTGCCCTGAGCACAGGCCC





CCACCCTCCACTGGGCTTTCCCCAGCTCCCTTGTCTTCTTATCACGGTAG





TGGCCCAGTCCCTGGCCCCTGACTCCAGAAGGTGGCCCTCCTGGAAACCC





AGGTCGTGCAGTCAACGATGTACTCGCCGGGACAGCGATGTCTGCTGCAC





TCCATCCCTCCCCTGTTCATTTGTCCTTCATGCCCGTCTGGAGTAGATGC





TTTTTGCAGAGGTGGCACCCTGTAAAGCTCTCCTGTCTGACTTTTTTTTT





TTTTTTAGACTGAGTTTTGCTCTTGTTGCCTAGGCTGGAGTGCAATGGCA





CAATCTCAGCTCACTGCACCCTCTGCCTCCCGGGTTCAAGCGATTCTCCT





GCCTCAGCCTCCCGAGTAGTTGGGATTACAGGCATGCACCACCACGCCCA





GCTAATTTTTGTATTTTTAGTAGAGACAAGGTTTCACCGTGATGGCCAGG





CTGGTCTTGAACTCCAGGACTCAAGTGATGCTCCTGCCTAGGCCTCTCAA





AGTGTTGGGATTACAGGCGTGAGCCACTGCACCCGGCCTGCACGCGTTCT





TTGAAAGCAGTCGAGGGGGCGCTAGGTGTGGGCAGGGACGAGCTGGCGCG





GCGTCGCTGGGTGCACCGCGACCACGGGCAGAGCCACGCGGCGGGAGGAC





TACAACTCCCGGCACACCCCGCGCCGCCCCGCCTCTACTCCCAGAAGGCC





GCGGGGGGTGGACCGCCTAAGAGGGCGTGCGCTCCCGACATGCCCCGCGG





CGCGCCATTAACCGCCAGATTTGAATCGCGGGACCCGTTGGCAGAGGTGG





CGGCGGCGGCATG






2) Beclin-1. Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP3R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration (reviewed by Kang et al., Cell Death Differ. 2011 April; 18(4): 571-580).


Protein: Beclin-1 Gene: BECN1 (Homo sapiens, chromosome 17, 40962150-40976310 [NCBI Reference Sequence: NC000017.10]; start site location: 40975895; strand: negative)












Gene Identification


















GeneID
8678



HGNC
1034



HPRD
05087



MIM
604378




















Targeted Sequences













Relative





upstream





location


Se-
De-

to gene


quence
sign

start


ID No:
ID
Sequence (5′-3′)
site













515
BE1
CGACGCCCTTGACCTCCGGCCCGGGGT
39





550
BE2
CTGCGCCGTTCCCTCTAGGAATGG
111





572

GAAGCGACGCCCTTGACCTCCGGCCCGG
35





607

CCCCCGATGCTCTTCACCTCGGG
261





712

CGGGTCGGCCCCGGAGCGAGGCC
335





817

GCCCGGCAGCGGCCCCCAGAGGCCG
475





847

CGGTCTACCGCGGAGGCACTGTGGCCTCGG
308





952

ACAAAAACTAGCCGGGCGTGGTGGGGCACG
735




CC



















Target Shift Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












515
CGACGCCCTTGACCTCCGGCCCGGGGT
39





516
GACGCCCTTGACCTCCGGCC
40





517
ACGCCCTTGACCTCCGGCCC
41





518
CGCCCTTGACCTCCGGCCCG
42





519
GCCCTTGACCTCCGGCCCGG
43





520
CCCTTGACCTCCGGCCCGGG
44





521
CCTTGACCTCCGGCCCGGGG
45





522
CTTGACCTCCGGCCCGGGGT
46





523
TTGACCTCCGGCCCGGGGTT
47





524
TGACCTCCGGCCCGGGGTTA
48





525
GACCTCCGGCCCGGGGTTAC
49





526
ACCTCCGGCCCGGGGTTACC
50





527
CCTCCGGCCCGGGGTTACCA
51





528
CTCCGGCCCGGGGTTACCAC
52





529
TCCGGCCCGGGGTTACCACA
53





530
CCGGCCCGGGGTTACCACAT
54





531
CGGCCCGGGGTTACCACATG
55





532
GGCCCGGGGTTACCACATGC
56





533
GCCCGGGGTTACCACATGCC
57





534
CCCGGGGTTACCACATGCCT
58





535
CCGGGGTTACCACATGCCTT
59





536
CGGGGTTACCACATGCCTTG
60





537
GCGACGCCCTTGACCTCCGG
38





538
AGCGACGCCCTTGACCTCCG
37





539
AAGCGACGCCCTTGACCTCC
36





540
GAAGCGACGCCCTTGACCTC
35





541
AGAAGCGACGCCCTTGACCT
34





542
GAGAAGCGACGCCCTTGACC
33





543
GGAGAAGCGACGCCCTTGAC
32





544
GGGAGAAGCGACGCCCTTGA
31





545
AGGGAGAAGCGACGCCCTTG
30





546
TAGGGAGAAGCGACGCCCTT
29





547
TTAGGGAGAAGCGACGCCCT
28





548
ATTAGGGAGAAGCGACGCCC
27





549
CATTAGGGAGAAGCGACGCC
26





550
CTGCGCCGTTCCCTCTAGGAATGG
111





551
TGCGCCGTTCCCTCTAGGAA
112





552
GCGCCGTTCCCTCTAGGAAT
113





553
CGCCGTTCCCTCTAGGAATG
114





554
GCCGTTCCCTCTAGGAATGG
115





555
CCGTTCCCTCTAGGAATGGT
116





556
CGTTCCCTCTAGGAATGGTA
117





557
CCTGCGCCGTTCCCTCTAGG
110





558
ACCTGCGCCGTTCCCTCTAG
109





559
AACCTGCGCCGTTCCCTCTA
108





560
CAACCTGCGCCGTTCCCTCT
107





561
CCAACCTGCGCCGTTCCCTC
106





562
CCCAACCTGCGCCGTTCCCT
105





563
TCCCAACCTGCGCCGTTCCC
104





564
GTCCCAACCTGCGCCGTTCC
103





565
AGTCCCAACCTGCGCCGTTC
102





566
AAGTCCCAACCTGCGCCGTT
101





567
GAAGTCCCAACCTGCGCCGT
100





568
GGAAGTCCCAACCTGCGCCG
99





569
GGGAAGTCCCAACCTGCGCC
98





570
AGGGAAGTCCCAACCTGCGC
97





571
GAGGGAAGTCCCAACCTGCG
96





572
GAAGCGACGCCCTTGACCTCCGGCCCGG
35





573
AAGCGACGCCCTTGACCTCC
36





574
AGCGACGCCCTTGACCTCCG
37





575
GCGACGCCCTTGACCTCCGG
38





576
CGACGCCCTTGACCTCCGGC
39





577
GACGCCCTTGACCTCCGGCC
40





578
ACGCCCTTGACCTCCGGCCC
41





579
CGCCCTTGACCTCCGGCCCG
42





580
GCCCTTGACCTCCGGCCCGG
43





581
CCCTTGACCTCCGGCCCGGG
44





582
CCTTGACCTCCGGCCCGGGG
45





583
CTTGACCTCCGGCCCGGGGT
46





584
TTGACCTCCGGCCCGGGGTT
47





585
TGACCTCCGGCCCGGGGTTA
48





586
GACCTCCGGCCCGGGGTTAC
49





587
ACCTCCGGCCCGGGGTTACC
50





588
CCTCCGGCCCGGGGTTACCA
51





589
CTCCGGCCCGGGGTTACCAC
52





590
TCCGGCCCGGGGTTACCACA
53





591
CCGGCCCGGGGTTACCACAT
54





592
CGGCCCGGGGTTACCACATG
55





593
GGCCCGGGGTTACCACATGC
56





594
GCCCGGGGTTACCACATGCC
57





595
CCCGGGGTTACCACATGCCT
58





596
CCGGGGTTACCACATGCCTT
59





597
CGGGGTTACCACATGCCTTG
60





598
AGAAGCGACGCCCTTGACCT
34





599
GAGAAGCGACGCCCTTGACC
33





600
GGAGAAGCGACGCCCTTGAC
32





601
GGGAGAAGCGACGCCCTTGA
31





602
AGGGAGAAGCGACGCCCTTG
30





603
TAGGGAGAAGCGACGCCCTT
29





604
TTAGGGAGAAGCGACGCCCT
28





605
ATTAGGGAGAAGCGACGCCC
27





606
CATTAGGGAGAAGCGACGCC
26





607
CCCCCGATGCTCTTCACCTCGGG
261





608
CCCCGATGCTCTTCACCTCG
262





609
CCCGATGCTCTTCACCTCGG
263





610
CCGATGCTCTTCACCTCGGG
264





611
CGATGCTCTTCACCTCGGGA
265





612
GATGCTCTTCACCTCGGGAG
266





613
ATGCTCTTCACCTCGGGAGC
267





614
TGCTCTTCACCTCGGGAGCC
268





615
GCTCTTCACCTCGGGAGCCC
269





616
CTCTTCACCTCGGGAGCCCG
270





617
TCTTCACCTCGGGAGCCCGG
271





618
CTTCACCTCGGGAGCCCGGA
272





619
TTCACCTCGGGAGCCCGGAG
273





620
TCACCTCGGGAGCCCGGAGC
274





621
CACCTCGGGAGCCCGGAGCC
275





622
ACCTCGGGAGCCCGGAGCCC
276





623
CCTCGGGAGCCCGGAGCCCG
277





624
CTCGGGAGCCCGGAGCCCGT
278





625
TCGGGAGCCCGGAGCCCGTC
279





626
CGGGAGCCCGGAGCCCGTCA
280





627
GGGAGCCCGGAGCCCGTCAC
281





628
GGAGCCCGGAGCCCGTCACC
282





629
GAGCCCGGAGCCCGTCACCC
283





630
AGCCCGGAGCCCGTCACCCA
284





631
GCCCGGAGCCCGTCACCCAA
285





632
CCCGGAGCCCGTCACCCAAG
286





633
CCGGAGCCCGTCACCCAAGT
287





634
CGGAGCCCGTCACCCAAGTC
288





635
GGAGCCCGTCACCCAAGTCC
289





636
GAGCCCGTCACCCAAGTCCG
290





637
AGCCCGTCACCCAAGTCCGG
291





638
GCCCGTCACCCAAGTCCGGT
292





639
CCCGTCACCCAAGTCCGGTC
293





640
CCGTCACCCAAGTCCGGTCT
294





641
CGTCACCCAAGTCCGGTCTA
295





642
GTCACCCAAGTCCGGTCTAC
296





643
TCACCCAAGTCCGGTCTACC
297





644
CACCCAAGTCCGGTCTACCG
298





645
ACCCAAGTCCGGTCTACCGC
299





646
CCCAAGTCCGGTCTACCGCG
300





647
CCAAGTCCGGTCTACCGCGG
301





648
CAAGTCCGGTCTACCGCGGA
302





649
AAGTCCGGTCTACCGCGGAG
303





650
AGTCCGGTCTACCGCGGAGG
304





651
GTCCGGTCTACCGCGGAGGC
305





652
TCCGGTCTACCGCGGAGGCA
306





653
CCGGTCTACCGCGGAGGCAC
307





654
CGGTCTACCGCGGAGGCACT
308





655
GGTCTACCGCGGAGGCACTG
309





656
GTCTACCGCGGAGGCACTGT
310





657
TCTACCGCGGAGGCACTGTG
311





658
CTACCGCGGAGGCACTGTGG
312





659
TACCGCGGAGGCACTGTGGC
313





660
ACCGCGGAGGCACTGTGGCC
314





661
CCGCGGAGGCACTGTGGCCT
315





662
CGCGGAGGCACTGTGGCCTC
316





663
GCGGAGGCACTGTGGCCTCG
317





664
CGGAGGCACTGTGGCCTCGG
318





665
GGAGGCACTGTGGCCTCGGG
319





666
GAGGCACTGTGGCCTCGGGT
320





667
AGGCACTGTGGCCTCGGGTC
321





668
GGCACTGTGGCCTCGGGTCG
322





669
GCACTGTGGCCTCGGGTCGG
323





670
CACTGTGGCCTCGGGTCGGC
324





671
ACTGTGGCCTCGGGTCGGCC
325





672
CTGTGGCCTCGGGTCGGCCC
326





673
TGTGGCCTCGGGTCGGCCCC
327





674
GTGGCCTCGGGTCGGCCCCG
328





675
TGGCCTCGGGTCGGCCCCGG
329





676
GGCCTCGGGTCGGCCCCGGA
330





677
GCCTCGGGTCGGCCCCGGAG
331





678
CCTCGGGTCGGCCCCGGAGC
332





679
CTCGGGTCGGCCCCGGAGCG
333





680
TCGGGTCGGCCCCGGAGCGA
334





681
CGGGTCGGCCCCGGAGCGAG
335





682
GGGTCGGCCCCGGAGCGAGG
336





683
GGTCGGCCCCGGAGCGAGGC
337





684
GTCGGCCCCGGAGCGAGGCC
338





685
TCGGCCCCGGAGCGAGGCCT
339





686
CGGCCCCGGAGCGAGGCCTC
340





687
GGCCCCGGAGCGAGGCCTCC
341





688
GCCCCGGAGCGAGGCCTCCA
342





689
CCCCGGAGCGAGGCCTCCAG
343





690
CCCGGAGCGAGGCCTCCAGA
344





691
CCGGAGCGAGGCCTCCAGAA
345





692
CGGAGCGAGGCCTCCAGAAC
346





693
GGAGCGAGGCCTCCAGAACT
347





694
GAGCGAGGCCTCCAGAACTA
348





695
AGCGAGGCCTCCAGAACTAC
349





696
GCGAGGCCTCCAGAACTACC
350





697
CGAGGCCTCCAGAACTACCA
351





698
GCCCCCGATGCTCTTCACCT
260





699
AGCCCCCGATGCTCTTCACC
259





700
CAGCCCCCGATGCTCTTCAC
258





701
TCAGCCCCCGATGCTCTTCA
257





702
CTCAGCCCCCGATGCTCTTC
256





703
CCTCAGCCCCCGATGCTCTT
255





704
ACCTCAGCCCCCGATGCTCT
254





705
CACCTCAGCCCCCGATGCTC
253





706
CCACCTCAGCCCCCGATGCT
252





707
CCCACCTCAGCCCCCGATGC
251





708
TCCCACCTCAGCCCCCGATG
250





709
GTCCCACCTCAGCCCCCGAT
249





710
GGTCCCACCTCAGCCCCCGA
248





711
AGGTCCCACCTCAGCCCCCG
247





712
CGGGTCGGCCCCGGAGCGAGGCC
335





713
GGGTCGGCCCCGGAGCGAGG
336





714
GGTCGGCCCCGGAGCGAGGC
337





715
GTCGGCCCCGGAGCGAGGCC
338





716
TCGGCCCCGGAGCGAGGCCT
339





717
CGGCCCCGGAGCGAGGCCTC
340





718
GGCCCCGGAGCGAGGCCTCC
341





719
GCCCCGGAGCGAGGCCTCCA
342





720
CCCCGGAGCGAGGCCTCCAG
343





721
CCCGGAGCGAGGCCTCCAGA
344





722
CCGGAGCGAGGCCTCCAGAA
345





723
CGGAGCGAGGCCTCCAGAAC
346





724
GGAGCGAGGCCTCCAGAACT
347





725
GAGCGAGGCCTCCAGAACTA
348





726
AGCGAGGCCTCCAGAACTAC
349





727
GCGAGGCCTCCAGAACTACC
350





728
CGAGGCCTCCAGAACTACCA
351





729
TCGGGTCGGCCCCGGAGCGA
334





730
CTCGGGTCGGCCCCGGAGCG
333





731
CCTCGGGTCGGCCCCGGAGC
332





732
GCCTCGGGTCGGCCCCGGAG
331





733
GGCCTCGGGTCGGCCCCGGA
330





734
TGGCCTCGGGTCGGCCCCGG
329





735
GTGGCCTCGGGTCGGCCCCG
328





736
TGTGGCCTCGGGTCGGCCCC
327





737
CTGTGGCCTCGGGTCGGCCC
326





738
ACTGTGGCCTCGGGTCGGCC
325





739
CACTGTGGCCTCGGGTCGGC
324





740
GCACTGTGGCCTCGGGTCGG
323





741
GGCACTGTGGCCTCGGGTCG
322





742
AGGCACTGTGGCCTCGGGTC
321





743
GAGGCACTGTGGCCTCGGGT
320





744
GGAGGCACTGTGGCCTCGGG
319





745
CGGAGGCACTGTGGCCTCGG
318





746
GCGGAGGCACTGTGGCCTCG
317





747
CGCGGAGGCACTGTGGCCTC
316





748
CCGCGGAGGCACTGTGGCCT
315





749
ACCGCGGAGGCACTGTGGCC
314





750
TACCGCGGAGGCACTGTGGC
313





751
CTACCGCGGAGGCACTGTGG
312





752
TCTACCGCGGAGGCACTGTG
311





753
GTCTACCGCGGAGGCACTGT
310





754
GGTCTACCGCGGAGGCACTG
309





755
CGGTCTACCGCGGAGGCACT
308





756
CCGGTCTACCGCGGAGGCAC
307





757
TCCGGTCTACCGCGGAGGCA
306





758
GTCCGGTCTACCGCGGAGGC
305





759
AGTCCGGTCTACCGCGGAGG
304





760
AAGTCCGGTCTACCGCGGAG
303





761
CAAGTCCGGTCTACCGCGGA
302





762
CCAAGTCCGGTCTACCGCGG
301





763
CCCAAGTCCGGTCTACCGCG
300





764
ACCCAAGTCCGGTCTACCGC
299





765
CACCCAAGTCCGGTCTACCG
298





766
TCACCCAAGTCCGGTCTACC
297





767
GTCACCCAAGTCCGGTCTAC
296





768
CGTCACCCAAGTCCGGTCTA
295





769
CCGTCACCCAAGTCCGGTCT
294





770
CCCGTCACCCAAGTCCGGTC
293





771
GCCCGTCACCCAAGTCCGGT
292





772
AGCCCGTCACCCAAGTCCGG
291





773
GAGCCCGTCACCCAAGTCCG
290





774
GGAGCCCGTCACCCAAGTCC
289





775
CGGAGCCCGTCACCCAAGTC
288





776
CCGGAGCCCGTCACCCAAGT
287





777
CCCGGAGCCCGTCACCCAAG
286





778
GCCCGGAGCCCGTCACCCAA
285





779
AGCCCGGAGCCCGTCACCCA
284





780
GAGCCCGGAGCCCGTCACCC
283





781
GGAGCCCGGAGCCCGTCACC
282





782
GGGAGCCCGGAGCCCGTCAC
281





783
CGGGAGCCCGGAGCCCGTCA
280





784
TCGGGAGCCCGGAGCCCGTC
279





785
CTCGGGAGCCCGGAGCCCGT
278





786
CCTCGGGAGCCCGGAGCCCG
277





787
ACCTCGGGAGCCCGGAGCCC
276





788
CACCTCGGGAGCCCGGAGCC
275





789
TCACCTCGGGAGCCCGGAGC
274





790
TTCACCTCGGGAGCCCGGAG
273





791
CTTCACCTCGGGAGCCCGGA
272





792
TCTTCACCTCGGGAGCCCGG
271





793
CTCTTCACCTCGGGAGCCCG
270





794
GCTCTTCACCTCGGGAGCCC
269





795
TGCTCTTCACCTCGGGAGCC
268





796
ATGCTCTTCACCTCGGGAGC
267





797
GATGCTCTTCACCTCGGGAG
266





798
CGATGCTCTTCACCTCGGGA
265





799
CCGATGCTCTTCACCTCGGG
264





800
CCCGATGCTCTTCACCTCGG
263





801
CCCCGATGCTCTTCACCTCG
262





802
CCCCCGATGCTCTTCACCTC
261





803
GCCCCCGATGCTCTTCACCT
260





804
AGCCCCCGATGCTCTTCACC
259





805
CAGCCCCCGATGCTCTTCAC
258





806
TCAGCCCCCGATGCTCTTCA
257





807
CTCAGCCCCCGATGCTCTTC
256





808
CCTCAGCCCCCGATGCTCTT
255





809
ACCTCAGCCCCCGATGCTCT
254





810
CACCTCAGCCCCCGATGCTC
253





811
CCACCTCAGCCCCCGATGCT
252





812
CCCACCTCAGCCCCCGATGC
251





813
TCCCACCTCAGCCCCCGATG
250





814
GTCCCACCTCAGCCCCCGAT
249





815
GGTCCCACCTCAGCCCCCGA
248





816
AGGTCCCACCTCAGCCCCCG
247





817
GCCCGGCAGCGGCCCCCAGAGGCCG
475





818
CCCGGCAGCGGCCCCCAGAG
476





819
CCGGCAGCGGCCCCCAGAGG
477





820
CGGCAGCGGCCCCCAGAGGC
478





821
GGCAGCGGCCCCCAGAGGCC
479





822
GCAGCGGCCCCCAGAGGCCG
480





823
CAGCGGCCCCCAGAGGCCGG
481





824
AGCGGCCCCCAGAGGCCGGG
482





825
GCGGCCCCCAGAGGCCGGGC
483





826
CGGCCCCCAGAGGCCGGGCT
484





827
GGCCCCCAGAGGCCGGGCTG
485





828
GCCCCCAGAGGCCGGGCTGG
486





829
CCCCCAGAGGCCGGGCTGGG
487





830
CCCCAGAGGCCGGGCTGGGA
488





831
CCCAGAGGCCGGGCTGGGAA
489





832
GGCCCGGCAGCGGCCCCCAG
474





833
AGGCCCGGCAGCGGCCCCCA
473





834
CAGGCCCGGCAGCGGCCCCC
472





835
ACAGGCCCGGCAGCGGCCCC
471





836
CACAGGCCCGGCAGCGGCCC
470





837
TCACAGGCCCGGCAGCGGCC
469





838
CTCACAGGCCCGGCAGCGGC
468





839
GCTCACAGGCCCGGCAGCGG
467





840
GGCTCACAGGCCCGGCAGCG
466





841
AGGCTCACAGGCCCGGCAGC
465





842
CAGGCTCACAGGCCCGGCAG
464





843
ACAGGCTCACAGGCCCGGCA
463





844
CACAGGCTCACAGGCCCGGC
462





845
CCACAGGCTCACAGGCCCGG
461





846
TCCACAGGCTCACAGGCCCG
460





847
CGGTCTACCGCGGAGGCACTGTGGCCTCGG
308





848
GGTCTACCGCGGAGGCACTG
309





849
GTCTACCGCGGAGGCACTGT
310





850
TCTACCGCGGAGGCACTGTG
311





851
CTACCGCGGAGGCACTGTGG
312





852
TACCGCGGAGGCACTGTGGC
313





853
ACCGCGGAGGCACTGTGGCC
314





854
CCGCGGAGGCACTGTGGCCT
315





855
CGCGGAGGCACTGTGGCCTC
316





856
GCGGAGGCACTGTGGCCTCG
317





857
CGGAGGCACTGTGGCCTCGG
318





858
GGAGGCACTGTGGCCTCGGG
319





859
GAGGCACTGTGGCCTCGGGT
320





860
AGGCACTGTGGCCTCGGGTC
321





861
GGCACTGTGGCCTCGGGTCG
322





862
GCACTGTGGCCTCGGGTCGG
323





863
CACTGTGGCCTCGGGTCGGC
324





864
ACTGTGGCCTCGGGTCGGCC
325





865
CTGTGGCCTCGGGTCGGCCC
326





866
TGTGGCCTCGGGTCGGCCCC
327





867
GTGGCCTCGGGTCGGCCCCG
328





868
TGGCCTCGGGTCGGCCCCGG
329





869
GGCCTCGGGTCGGCCCCGGA
330





870
GCCTCGGGTCGGCCCCGGAG
331





871
CCTCGGGTCGGCCCCGGAGC
332





872
CTCGGGTCGGCCCCGGAGCG
333





873
TCGGGTCGGCCCCGGAGCGA
334





874
CGGGTCGGCCCCGGAGCGAG
335





875
GGGTCGGCCCCGGAGCGAGG
336





876
GGTCGGCCCCGGAGCGAGGC
337





877
GTCGGCCCCGGAGCGAGGCC
338





878
TCGGCCCCGGAGCGAGGCCT
339





879
CGGCCCCGGAGCGAGGCCTC
340





880
GGCCCCGGAGCGAGGCCTCC
341





881
GCCCCGGAGCGAGGCCTCCA
342





882
CCCCGGAGCGAGGCCTCCAG
343





883
CCCGGAGCGAGGCCTCCAGA
344





884
CCGGAGCGAGGCCTCCAGAA
345





885
CGGAGCGAGGCCTCCAGAAC
346





886
GGAGCGAGGCCTCCAGAACT
347





887
GAGCGAGGCCTCCAGAACTA
348





888
AGCGAGGCCTCCAGAACTAC
349





889
GCGAGGCCTCCAGAACTACC
350





890
CGAGGCCTCCAGAACTACCA
351





891
CCGGTCTACCGCGGAGGCAC
307





892
TCCGGTCTACCGCGGAGGCA
306





893
GTCCGGTCTACCGCGGAGGC
305





894
AGTCCGGTCTACCGCGGAGG
304





895
AAGTCCGGTCTACCGCGGAG
303





896
CAAGTCCGGTCTACCGCGGA
302





897
CCAAGTCCGGTCTACCGCGG
301





898
CCCAAGTCCGGTCTACCGCG
300





899
ACCCAAGTCCGGTCTACCGC
299





900
CACCCAAGTCCGGTCTACCG
298





901
TCACCCAAGTCCGGTCTACC
297





902
GTCACCCAAGTCCGGTCTAC
296





903
CGTCACCCAAGTCCGGTCTA
295





904
CCGTCACCCAAGTCCGGTCT
294





905
CCCGTCACCCAAGTCCGGTC
293





906
GCCCGTCACCCAAGTCCGGT
292





907
AGCCCGTCACCCAAGTCCGG
291





908
GAGCCCGTCACCCAAGTCCG
290





909
GGAGCCCGTCACCCAAGTCC
289





910
CGGAGCCCGTCACCCAAGTC
288





911
CCGGAGCCCGTCACCCAAGT
287





912
CCCGGAGCCCGTCACCCAAG
286





913
GCCCGGAGCCCGTCACCCAA
285





914
AGCCCGGAGCCCGTCACCCA
284





915
GAGCCCGGAGCCCGTCACCC
283





916
GGAGCCCGGAGCCCGTCACC
282





917
GGGAGCCCGGAGCCCGTCAC
281





918
CGGGAGCCCGGAGCCCGTCA
280





919
TCGGGAGCCCGGAGCCCGTC
279





920
CTCGGGAGCCCGGAGCCCGT
278





921
CCTCGGGAGCCCGGAGCCCG
277





922
ACCTCGGGAGCCCGGAGCCC
276





923
CACCTCGGGAGCCCGGAGCC
275





924
TCACCTCGGGAGCCCGGAGC
274





925
TTCACCTCGGGAGCCCGGAG
273





926
CTTCACCTCGGGAGCCCGGA
272





927
TCTTCACCTCGGGAGCCCGG
271





928
CTCTTCACCTCGGGAGCCCG
270





929
GCTCTTCACCTCGGGAGCCC
269





930
TGCTCTTCACCTCGGGAGCC
268





931
ATGCTCTTCACCTCGGGAGC
267





932
GATGCTCTTCACCTCGGGAG
266





933
CGATGCTCTTCACCTCGGGA
265





934
CCGATGCTCTTCACCTCGGG
264





935
CCCGATGCTCTTCACCTCGG
263





936
CCCCGATGCTCTTCACCTCG
262





937
CCCCCGATGCTCTTCACCTC
261





938
GCCCCCGATGCTCTTCACCT
260





939
AGCCCCCGATGCTCTTCACC
259





940
CAGCCCCCGATGCTCTTCAC
258





941
TCAGCCCCCGATGCTCTTCA
257





942
CTCAGCCCCCGATGCTCTTC
256





943
CCTCAGCCCCCGATGCTCTT
255





944
ACCTCAGCCCCCGATGCTCT
254





945
CACCTCAGCCCCCGATGCTC
253





946
CCACCTCAGCCCCCGATGCT
252





947
CCCACCTCAGCCCCCGATGC
251





948
TCCCACCTCAGCCCCCGATG
250





949
GTCCCACCTCAGCCCCCGAT
249





950
GGTCCCACCTCAGCCCCCGA
248





951
AGGTCCCACCTCAGCCCCCG
247





952
ACAAAAACTAGCCGGGCGTGGTGGGGCACGCC
735





953
CAAAAACTAGCCGGGCGTGG
736





954
AAAAACTAGCCGGGCGTGGT
737





955
AAAACTAGCCGGGCGTGGTG
738





956
AAACTAGCCGGGCGTGGTGG
739





957
AACTAGCCGGGCGTGGTGGG
740





958
ACTAGCCGGGCGTGGTGGGG
741





959
CTAGCCGGGCGTGGTGGGGC
742





960
TAGCCGGGCGTGGTGGGGCA
743





961
AGCCGGGCGTGGTGGGGCAC
744





962
GCCGGGCGTGGTGGGGCACG
745





963
CCGGGCGTGGTGGGGCACGC
746





964
CGGGCGTGGTGGGGCACGCC
747





965
GGGCGTGGTGGGGCACGCCT
748





966
GGCGTGGTGGGGCACGCCTA
749





967
GCGTGGTGGGGCACGCCTAT
750





968
CGTGGTGGGGCACGCCTATA
751





969
GTGGTGGGGCACGCCTATAA
752





970
TGGTGGGGCACGCCTATAAT
753





971
GGTGGGGCACGCCTATAATC
754





972
GTGGGGCACGCCTATAATCC
755





973
TGGGGCACGCCTATAATCCC
756





974
GGGGCACGCCTATAATCCCA
757





975
GGGCACGCCTATAATCCCAG
758





976
GGCACGCCTATAATCCCAGC
759





977
GCACGCCTATAATCCCAGCT
760





978
CACGCCTATAATCCCAGCTT
761





979
ACGCCTATAATCCCAGCTTA
762





980
CGCCTATAATCCCAGCTTAA
763





981
TACAAAAACTAGCCGGGCGT
734





982
ATACAAAAACTAGCCGGGCG
733





983
AATACAAAAACTAGCCGGGC
732



















Hot Zones (Relative upstream location to gene start site)







  1-1200


1850-2200


2550-3000


3300-3500









Examples


FIG. 10 shows that BE1 (11) and BE2 (12), both at 10 μM, demonstrated statistically significant (P<0.05) inhibition compared to the untreated control inhibition values in DU145 (human prostate cell line). The negative control did not produce a statistically significant difference compared to the untreated control. The Beclin-1 sequences BE1 (11) and BE2 (12) fit the independent and dependent DNAi motif claims.



FIG. 11 shows that BE2 (12) at 10 μM demonstrated statistically significant (P<0.05) inhibition compared to the untreated and negative control values in HCT-116 (human colorectal carcinoma). The negative control did not produce a statistically significant difference compared to the untreated control. BE2 (12) fit the independent and dependent DNAi motif claims.


The secondary structures for BE1 and BE2 are shown in FIGS. 12 and 13. Sequence 11 (BE1) is shown in FIG. 12 and Sequence 12 (BE2) is shown in FIG. 13.









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11951)


ACTTACCACCCTCAGTGGTTTCCAGATAACATAGGCCTTCCTGAATCCCC





CAGTTGAAGCAGCTCCTCCCACCCTGCCCCCACTTACTCTCTATCACATC





ACCTTCTTACCTACTGTATTAGCTTTCTAGGGCTGCTGTAGCAAAGTACC





ACAAAGTGGATGGCTTAGAACCAAAGAAATATATTGTCTCAGAGTTCTGG





ATGCCAGAAATCCAAAATTAAGGTGTCAGCAGGACCATGTTCCTTCTAAG





GGAGCCAGAGAAGTATCTGTTCCAGACCTCTTTCCTGGCTTTTGGTAGCC





TCAGGTCTTCCTTGGCTTACAGATCACCCTGTGTCTCTTTACATCATCTT





CCCTCAGACACGGTACATGTCTGTCTCTGTGTCCAGATTGCCCCTATTTA





TAAGGACGCAGTCATATTGGTCTAGGGCTAACATCAATGACCTCATCTGC





AACGATCCTATTTCCAAAAAAGGTCACATTCCCATGTGTTAGTCCCAGAT





GTTAGGACTTCAACATCTTTTGGGGGACATCATTCAACCCATAATATCTG





CCATTATCTGAAATTATCTTATTAACTTGGTTACATGTTTACTGTCAAAT





TCTCTCCTCTGGAATATAAACTATTAGAGCAGTTCACCAGTATATCCTCT





CAGACCTAGAATAGGGACTGGCACATAGTAGATGCTCAATAAACATCTGT





TGAATCGATGACTGAGGATATGTTGTGTATTATTCACAATCCCTCAAGCA





CTACATACACTGATTACATATACTTCCCAAGTGTGAGGATACACAGAGCA





TTCACTATGTAACAGTCATTCCCCTCCATTCCAAATGTATCAGCTCATTT





ATCACACTACCCTTTATGATATTTACTACTGTATACTATTAATCTCATTT





TGTAAATAAGAAAACAAAGCACAGAACAGTTGAATAAATTGCATAAGGTC





ACATGGTTAGTGGATGGTAAAGAACCAGGTGGTCTCAACTTCCAAATCCT





CAGTTGTAACACTATACCCCCTACCTCTCTAGAAGCCCGTTACTTCTCTA





TGCGTTTCTGAGATGTTAGGGACAGCCAAGCAGGAAGAAACGCAGGACTA





TGAAGCAGCCACACCAGGACTAGGTGAGAATTCTTTGGGGATGATTCCAG





TCACCTCCCCTAAAGGGGCTTTCATGCTGAAAGAGCCAAGAGGAAGAAGG





ATTGTAAACACTATCCCTAGTCACAAAACCGGGAGAAAAATCAATCTAGT





TCCACATATCACATCCAATACCAACTATAAGAAACCACATACATTTAAAA





GAAAAGAAAGACACTTCTGGAGGTGGGAATAACTTTCTAAGCAGTATAAG





TCATCAAGAAAAATAAGCAGATTTGACTTGAAAATTTAAAACTTCCTGAA





CATCTGGAAAATAATTAAAGCATTCATGAAAAATTACTAAAAATACTGAG





AAAAATACTAATAATCCAATACCTAAATAATCAAAGAATGCAAACATAAT





TCAGAAAAAAGTAACTACTGCTTGAGCCCGGGAGGCGGAGATTCCAGTGA





GCTGATATTGCACCACTGCACTCCAGCCTGGGTGACAGAGTGAGACCGTG





TCTCTTTTTTTTTTTTTTTTTAAAAAAAGGCCGGGCATGGTGGCTCACAC





CTGTAATCCCAGCACTTTGGGAGGCCAAGGCGGGCAGATCAGGAGGTCAG





GAGATTGAGACCATCCTGGCTAACATGGTGAAACCGTCTCCACTAAAAAT





ATAAAAAATTAGCCGGGTGTAGTGGTGGGCGCCTGTAGTCCCAGCTACTC





GGGAGGCTGAGACAGGAGAATGGCGTGAACCCAGGAGGCAGAGGTTGCAG





TGAGCCGAGATGGCACCACTGCACTCCAGCCTGGGCAACAGAGCAAGACT





CCATCTCAAAAAAAAAAAAAAAAGTAACTACAATAAGCAAATACATAGCA





AAAAGTTCAGCCTTACCAGCAATCAATGATGCTAATTAAAATAACAAGGA





AGTGCCATTTTTTGCTTTTGTTCCCCAAATATATGATACCCAATACTGGC





CAAGGCAATATGAAAACAGGCTTCCTCATACATTACTGGAAGCAGAATAT





AGTTATGTGCAAGCACTTTGGAAAATGATTCCCAGTGTTAAGGAAGAGAC





ATTAAATAGCTGACACACTCTTAATTCTGTAGTCCCAGTTATGAGTCTCT





ATCATAAGTAGCCAGCTCTTCATTGCAGGATTATTGTAATCACCCACAGG





GGAAATAGTAGAATTTCCAGCGGTAAAAAAATACACTAAGGCAGTACATT





TAGTGTAGTGTAATGTAGCCATGATAACTACAATAACTGTGTAGCAACAT





AGAAAAATGTTAAATTTAAAAAGCAGAAGCCTGGGCAACAAAGTGAGACC





CCATCTCTTTTTTTTTTTGAGATGGCGTCTCGCTCTGTCACCGAGGCTGG





AGTGCAGTGTGAGACCACATCTCTACAAAAAATTTTAAAAATTAGCTGGG





CATGGTAGTGATCACCTGTGGTCCCTGCTACACTGGAGGTTGAAGCAAGA





GGATTGCTTGAGCCAGGAAGTCAAATCTGCAGTGAGCCATGTTTGTTTGT





TCCGCTTCACTCCAGCCTGGGTAACAGAGTAAGACACTGTCTCAAAATAA





AAATAAAATAGACAATACTACATACAATTTTGGGTTAAGCAGTGGTTTCT





TTTACACCAAAAGCATAAACATTGGACTTTATTGAAATGAAAAACTTTTG





GCCAGGCACATTGGCTCACACCTGTAATCTCAGCACTTTGGGAGGCCACA





GTGGGGGATTGCAAGGGGAGATGGGAAATGTTCTAAAACTGGATTATGGT





GATAGTTGGGCAACTGTGTAAATTTACTAAAAATTATTGAACTGTACATT





TAAAAAGTGTGAGTCTTATGGTATGTAAATTATACCCCATAAAGTTGTTT





TTAAAAATGAAGTAAGTCCCTCTGCTCAAGACCCAGTCATCTCATCTCAT





TCAAAGTGAAAGCCAGAGCTTTACAATCCCTATAAGAGCCTAGGTGGTAG





CTCAACACTCTTACCTCCCTCACCCCATTTTCTGTATCTCTTTTCGTTGC





CCATCTTCTAGCCACACCAGCCTCTGCTAATCCCCAAACAGGTACCCTCT





GTGCTCTTGCTGTTCCCTTGGCCTAGAATGCTCTTCCTTAAGATGCAGGT





AAGAATTCCTTCCTCACCTTCTTCAAGCTTTTATTTGAATATCACTTTCT





TTTTTTGTTGGTTTTGTGTGTGTGTGTGGGGGGGGGGGGTTTGAGATGGA





GTTTCCTTCTGTCGCCCAGGCTGGAGTGCAGTGGCATGATCTCGACTCAC





TGCAACCTCCGCCTCCGGGGGTCAAGCGATTTTCCTACCCCAGCCTCCTG





AGTAGCTGGGATTACAGGCGCACGCCACCATGCCCAGCTAATTGTATTTT





TTAGTAGAGACGGGATTTAACCATTTTGGCCAGGCTGGTCTCGAACTCCT





GACCTTGTGATCCGCCCGCCTCGGCCTCCCAAAGTGCTGGAATTACAAGC





GTGAGCCACCATGCCCGGCCTTTTGTTGTTGCTGTTGTTGTTCTGAGATG





GAGCCTTGCCCTGTCGCCCAGGCTGGAGTGCAGTGGCCCGATCTCGGCTC





ACTGCAACCTCCACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCTCC





CGAGTAGCTGGGATTAAGCTGGGATTATAGGCGTGCCCCACCACGCCCGG





CTAGTTTTTGTATTTTTAGTAGAGACGGGGTTTCACTGTGTTGGCCAGGC





TGGTCTCGAACTCCTGACCTCACGTGATCCGCCCTCCTCGGCCTCCCCAA





GTGCTGAGATTACAGGCGTGAGCCACCGCGCCCGCCGCCCCCTGAATTTA





GAGAATAGCGGAGCCTCCCCATTCTCTGCGGCCTTGGCTCCTACACTTCC





CGTGGTAACCTTGTTCATCCGCTGAAGCCCGCTGCTTTTCCCAGCCCGGC





CTCTGGGGGCCGCTGCCGGGCCTGTGAGCCTGTGGACCAGGAGCTCCTGC





TGCCGTCGTAGCGTCACGTCCGGTCTCGGCGGAAGTTTTCCGGCGGCTAC





CGGGAAGTCGCTGAAGACAGAGCGATGGTAGTTCTGGAGGCCTCGCTCCG





GGGCCGACCCGAGGCCACAGTGCCTCCGCGGTAGACCGGACTTGGGTGAC





GGGCTCCGGGCTCCCGAGGTGAAGAGCATCGGGGGCTGAGGTGGGACCTT





AGAAGGGAGTCTGGGAACCCTCACGGCTCTTATTGGAGTCCCTTCCCTGA





CCCTGGGCTCTAAACTGCCTTTGCTCAGGCTGTCCCGGAAGCAGGTCCTC





CCCGTATCATACCATTCCTAGAGGGAACGGCGCAGGTTGGGACTTCCCTC





CCTTTACCATCGTCACCAAGGCATGTGGTAACCCCGGGCCGGAGGTCAAG





GGCGTCGCTTCTCCCTAATGTTGCCTCTTTTCCACGGCCTCAGGGATG






3) STAT3. Signal Transducers and Activators of Transcription 3 (STAT3) is a point of convergence for numerous oncogenic signalling pathways, is constitutively activated both in tumor cells and in immune cells in the tumor microenvironment. STAT3 inhibits the expression of mediators necessary for immune activation against tumor cells (Nature Reviews Immunology 7, 41-51; 2007; Proc Natl Acad Sci USA. 2006 Jul. 5; 103(27): 10151-10152) and promotes the production of immunosuppressive factors that further activate STAT3 in diverse immune-cell subsets, altering gene-expression. This restraining anti-tumor immune response and propagation of cross-talk between tumor cells and their immunological microenvironment leads to tumor-induced immunosuppression and enhanced tumor growth. STAT3 belongs to a protein family of transcription factors first characterized for their role in cytokine signaling that contain a site for specific tyrosine phosphorylation, a modification that results in a conformational rearrangement causing it to accumulate in the cell nucleus, bound to enhancer elements of target genes (Nat. Rev. Mol. Cell. Biol. 2002; 3:651-662). STAT3 is a substrate for the catalytic activity of the tyrosine kinase oncoprotein v-Src (Science. 1995; 269:81-83) and that phosphorylated STAT3 accumulated in many human cancers, suggesting that activated STAT3 may act as an oncogene (Cell. 1999; 98:295-303). In a recent issue of PNAS, Kasprzycka et al. (Proc. Natl. Acad. Sci. USA. 2006; 103:9964-9969) provided evidence that activated STAT3 in a tumor cell contributes to both cell survival and impaired immune surveillance by conferring properties of a T lymphocyte regulatory phenotype on a T cell lymphoma. Further it is recognized that STAT3 is stimulated by classic growth-promoting signals, such as activated growth factor receptors as well as a remarkable degree of diversity for the molecular mechanisms at the basis of STAT3 action including some noncanonical mechanisms of tumor progression that apparently do not rely on tyrosine phosphorylation or binding of homodimers to DNA (Cancer Res. 2005; 65:939-947), possibly involving pathways in malignant cells not directly regulating gene expression.


Isis Pharmaceuticals is developing an antisense against STAT3. In preclinical studies, ISIS-STAT3Rx demonstrated antitumor activity in animal models of human cancer. ISIS-STAT3Rx was tested in a Phase 1 study in patients with solid tumors and lymphoma who have relapsed or were refractory to multiple chemotherapy regimens and in a Phase 2 study in focused patient populations with advanced cancers that have been linked to STAT3 and who have failed all other treatment options with clear responses in patients with advanced cancer who were refractory to prior chemotherapy treatment. STAT3 is implicated in a variety of cancers, including brain, lung, breast, bone, liver and multiple myeloma to promote tumor cell growth and prevents cell death.


Protein: STAT3 Gene: STAT3 (Homo sapiens, chromosome 17, 40465343-40540513 [NCBI Reference Sequence: NC000017.10]; start site location: 40540405; strand: negative)












Gene Identification


















GeneID
6774



HGNC
11364



HPRD
00026



MIM
102582




















Targeted Sequences













Relative upstream location





to gene start site


Sequence
Design

(upstream promoter of the


ID No:
ID
Sequence (5′-3′)
two promoters)













984
ST1
GGCCGAGGCACGCCGTCATGCA
−18





985
ST2
CCGGCCCTTGGCACCACGTGGTGGCGA
345





986

TTGTTCCCTCGGCTGCGACGTCG
−135





987

CAGTCTGCGCCGCCGCAGCTCCGG
−92





988

CAGTGCGTGTGCGGTACAGCCG
45





989

TGTGCTGGCTGTTCCGACAGTTCGGT
140





990

TAACTACGCTATCCCGTGCGGCC
1998449





991

TCGCCCAGCCCCAGCCTGGCCGAGGC
−35



















Hot Zones (Relative upstream location to gene start site)







−200-200 


300-400


1998400-1998500









Examples


FIG. 14 shows ST1 (21) and ST2 (22), both at 10 μM, demonstrated statistically significant (P<0.05) inhibition compared to the untreated control inhibition values in MDA-MB-231 (human breast cell line). The negative control did not produce a statistically significant difference compared to the untreated control. The STAT3 sequence ST2 (22) fit the independent and dependent DNAi motif claims. The STAT3 sequence ST1 (21) is designed to the coding region of STAT3.



FIG. 15, which is similar to FIG. 12, shows ST1 (21) and ST2 (22), both at 10 μM, demonstrated statistically significant (P<0.05) inhibition compared to the untreated control inhibition values in DU145 (human prostate cell line). The negative control did not produce statistically significant difference compared to the untreated control. The STAT3 sequence ST2 (22) fit the independent and dependent DNAi motif claims. The STAT3 sequence ST1 (21) is designed to the coding region of STAT3.


The secondary structures for ST1 and ST2 are shown in FIGS. 16 and 17. Sequence 21 (ST1) is shown in FIG. 16 and Sequence 22 (ST2) is shown in FIG. 17.









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11952)


CTTCTGCACTTAAGCACACTATACTTTTTTCACCCAAAGTACCAAATCAA





ACTAGTCAGGATACCTACCTTTGTACAATGTCAGACTCCAGTTAATAACT





CCCCTAGGGCAGAGGGCATATGCACTGATTTACTTTGTACAAATTAACCA





GCATCAGGCAATCAGGCCTGTGCCTAACACATAGTAAGCACTCTATGATT





AAACATCAGTGCTTCGGCTCCAAAGTTTTATTTATTTATTTATTTATTTA





TTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTG





CAGTGGTGCGATATCGGCTCACTGCAAGCTCCGCCTCCCGAGTTCACGCT





CTTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGACGCCCGCCAC





AACGCCCGGCTACTTTTTTTTGTATTTTTAGTAGAGATGGGGTTTCACCG





TGTTAGCCAGGATGGTCTCGATCTCCTGGCCTCGTGATCCGCGCGTCTGG





GCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCGCCC





CGAAAGTTTTAAAAGCTTCCCCTACAAAAGAACAGAACTGAAATTCCTTG





GTCCTGTATTCAATGTCTTTTGTAAGTAATCACTTCTCCCCTACTTACCC





TCCTAGTCTACCGGGCTACCAGGAATTTTTTTTTTTTTTGGAGACAGGGT





CTCACTCTGTCACCCAGGCTGGAGTGCGGTGGCGGGATCACGGCTCACTG





CAGCCTTAACCCCCGGGGCTTGGGTGATCCTCCCACCTTAGTCTCACCAG





TAGCTGGGACTACAGGTCCACGCCACCAGGCCTGGCTAATTTTTTTTATT





TTTAGGGGAGAGGGAGTTTTACCACGTTGCCCAAGCTGGTCTCAAACTCC





TGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCCAAAGTGCTGGGATTACA





GGCATAAACCACCGCAAATTCTTTACACCTATCAAATTCCACCCATTATT





TGGGACCCAGTTGAAATCCCTCTTTGGCAAAAAGACTTTCTAGACAACTC





CAGGCCTCATAACCTCTCCTTTCTCTGAAGATCTGTAGCATTCAGCCTAG





CACTGTCCAATAGAACGTTCTATGATAACAGAAAAGTTCTACATCTGTAC





TGTATGTTCTTTTATGTAGAACAGCTACCTTGTTAGCACAAGTGTAAAGT





CTCACCATCTCTTTGATGACAACATGTTACATTGGATGGTTAAAACATTT





ATCAGCTCCCCCAGTAGACTGCAATTTCTGTGAACAAGATACAACTTATT





CTTCATAGCAACTCTGACAAAGTTGCAAAAGGTATATATATGTTGGCCAG





GCAAGGTGGTTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGG





CAGATCTCTTGAGGTCAGGAGTTTGAGACCAGCCTGGTCAATATAGTGAA





ACCTTATCTCTACTAAAAATACAAAAATTAGCCGGGCGTAGTGGCGGGCA





CCTGTAATCCCAGCTACTCAGGAGGCTGAGGTGCGAGAATCACTTGAACC





CGGGAGGAGGAGGTTGCAGTGAGCCACGATCATGCCACTGCACTCCAGCC





TGGGTGATAGAGTGCAACTCCAACTCAAAAAAAAAAAAAAAAAAGTATAT





ATTTGTTGATTTGCACATCACCTAAGAAAACCATAAGCTAAGAAGGTTTG





GACTCAGGCGTCTGGAAAGTTGGTCACCACCTCTACCCCACCTCATATCT





GAATGTCAAGAGACACGTAGAGGCAGAGAAGTTAAAGCAACTTTCTAGAG





ACAGAAATGACCACTGATCAAGCCACAATGCACTCTGGTTTAAATGACAT





TTAGGTCATGACTGTCCTTAATCTAAAACAAACCTAGATTAGTATTTCTT





TTCATTAGTAAATAGCTAAATTCTGATGGTAAATTATGCTGACCAAAAAC





AGTTCCTCACTTCCCAAGTTAGACATAGCAATTAGAAAAATAATCTAAGC





AAGCTCCATTTGTATTTCTTTTTTCACCTGTTTATTGAATATTTACCTCC





CATGAAGTCTTTCAGCCTATTGGTGGTATTTTACTGTTCAGATATATGTT





AGAATTTCACTGATACTTACTGGGCGCGGTGGCTCACACCTGTAATCCCA





GCACTTTGGGAGATAGAGGTGGGCAAATCACAAGGTCAGGAGTTCAAGAC





CAGCCTGGCCAATATGGTAAAACCCCGGTCTCTACTAAAAATACAAAAAT





TAGCTGGGCGTGGTGGCGCACGCCTGTAGTCCCAGCTACTTGGGAGGCTG





AGGCAGGAGAATCGCTTGAACCCAGGAGGCAGAGGTTGCAGTGAGCCAAG





ATTGCGCCACTGCACTCTAGCCTGGGCAACAGAGCAAGACTCTGACTCAA





AAAAAAAAAAAAAAAGAATTTCACTGATACTTTTCACAAAATATACAGAA





GGAGGCACAAATTCCACCACTATGGCACTCTGCTGCGTTGGCCAAGTGTC





TTGATCCTTTGGCCTCAATTTTCTTATCTACGATATTAGGGTAATTGTTA





TGTGAACTACCCACCTCACAAGTCCTTTGTGGGTTAATTCATAACTGTGC





TGTGGGTATTTCTTTTTCTTTCCTTTCTTCCTCCTTTCCTTTCTTTCTTT





CTTAAAGATGGGTTCTCATTATGGTGCTTAGACTAGACTCTAGACCCAAT





TCCTGGCCTCTCACCATGTTGCCCAGACCAGACTCAACTCCTGGACTCAA





GGAATCCTCCCACCTCAGCCTTCAATTAGCTGGGATCAGAGGTGTGCACC





ACCATGCCTGGCACTGTGGATATTTCTAAGTGATTATTCTTCTCAAATGA





ACTACATAAAAAACAAAAGATTCATGAATTTACTAATGGTTCTTTGTGAT





GGATGTGCTAATATAGAGACTAAAATCAAGGCTCCAACCTCTAAAACATT





TTTTTTTAAATTCCAGACTTGTTTCCCCATCCCACTGTGCAAACTGAACA





AAAACTGGGCTAGCACTCCTGTCTGGAACATGTAATAAGGAAATAAATGT





GCTGACTCAGAGAACACAGACATATTTAATATAAAATAAGATAGAAAACT





GGCTGAACCAAGTCATAACACAGTCTAAATCCACATATAAAAGATTGAGA





TGATTTTCTGCTTTGCTTTATTCAAGCCCAATGCTTTATCAGCACAGCCA





GCCAAAAATTTACAACCCATACACAGACTATGTAAACCTTTAGTTGCACA





TACAGTAAGACCAGCAGGTACACACTATACACATTTTTAATTAAAAAAAT





GACTAACCACTGATTTTGTCACCACACTTAACAACGACCTGATATGGCAC





AGAGTGATGTGTACCAAACATGGAAATACCAACTTGGGCGACGGTTTGAA





TCTTGTTAACTTCAGTGCAACCACACCCCCCAAATGCATGTAAAGTTTGC





ACACATGGTTTTTTCAAGGCCAGCCTGTCTTTGTTTCCCTCTCCTCTGCA





TTTACCCAAGATCTTGGCTCTGAGACAGAAAACTCCCACTCTCAATTGGT





TCATTCCGTCCTATGCAATTAAGCAACACCACAATCCAGTAAATGCAATG





GCTCAATTATTTATCTTCTGGCCGACTTTACCAGGTATTTGGAAAAGGAC





AATGTCAAGAGGTTTATTTCTCTCTCTAGAGCTGGCTTGACGGGTTGATG





GGGATTTTATTTTGTCTTTTTTTCTCTTTTTTACAAGGCGGGGACGTGGG





GGGAGCATAATTTAACCTAGAAAAAGATGCGAGGGAATTTAGAAAGAGTA





CCGGTCTGTCAATTTCCCTACAGGAAACTTGATTCTTATGCAATAAAGCC





TACCCACGACCAGCCAGCCCGTAAGGCTGCAGGCGACAGACACACCTATT





CCTGCCTCCAAAAGGGCACAGCTGTCTCCTGAAGGAGCGGGAACAGGGCA





AGCGGAGGAAGTGGCTCAGCGGGAGCCGCCGACCGGGCGGGGAGGAGGCG





CTTTCCGACCCCCCACTCGCGCCGGTGATCCCCGTCGGCGTGACAGTCGC





TCCGGTGGCCGGAACGTCCCCAGGGCCCCAGGGAGCAGGAAATCGGGGGA





CTGTCCCTCACTCCTGCCGCCGCAACCGAGTGCGCCCTCGCCCCACGGTG





CCCCCTCGAGCGCGTTCTGTTTCTCCGAAGAACGAAACTTCCCTCCAGCG





CCCCGAGTCCCTTCCGAGGCCCGCTCCTGTCATCCCGAAGAGTCTTCCCT





CAGGGCGACCCTCCGCGTCTCTTCATCTCTCCCGGCCCCACTGCAGCGTC





CATCACAACATCCCCAAGGTCCCAGAGGCCCCCTGCCGCTGCGGAGCCCC





CGGGTCCCCAGGCCTCCCCAACGGCCCCACCCTGCACCCCCTTCACCTGT





TTCTCCGGCAGAGGCCGAGAGGCCGGGGCTGCGCGTGTGCCGGGGACGGG





CGGCGAGGCTCCCTCAGGCCGAAGGGCCTCTCCGAGCCGAGGGGGAGAGA





CAGCGCC






4) HIF1A. Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in available oxygen in the cellular environment, specifically, to decreases in oxygen, or hypoxia. Hypoxia-inducible factor-1 (HIF-1a) is the alpha subunit of the HIF-1 dimeric transcriptional complex involved in the maintenance of oxygen and energy homoeostasis. Hypoxia often keeps cells from differentiating. However, hypoxia promotes the formation of blood vessels, and is important for the formation of a vascular system in embryos, and cancer tumors. The HIF-1 alpha subunit is oxygen labile and is degraded by the proteasome following prolyl-hydroxylation and ubiquitination in normoxic cells. There is also evidence that HIF-1 is also involved in immune reactions (Hurwig-Burgel et al, J Interferon Cytokine Res. 2005; 25(6):297-310). Immunomodulatory peptides, including interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha), stimulate HIF-1 dependent gene expression even in normoxic cells. Both the hypoxic and the cytokine-induced activation of HIF-1 involve the phosphatidylinositol-3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) signaling pathways. In addition, heat shock proteins (HSP) and other cofactors interact with HIF-1 subunits. HIF-1 blockade may be beneficial to prevent tumor angiogenesis and tumor growth.


Protein: HIF1A Gene: HIF1A (Homo sapiens, chromosome 14, 62162119-62214977 [NCBI Reference Sequence: NC000014.8]; start site location: 62162523; strand: positive)












Gene Identification


















GeneID
3091



HGNC
4910



HPRD
04517



MIM
603348




















Targeted Sequences













Relative upstream


Sequence


location to gene start


ID No:
Design ID
Sequence (5′-3′)
site













992
HI1
CAGGCCGGCGCGCGCTCCCGCAA
390





1048
HI2
GGACGGGCTGCGACGCTCACGTGC
539





1089

GAGGTGGGGGTGCGAGGCGGGAAACCC
108




CTCG






1090

CAATCGCCGGGGTCCGGGCCCGGC
162





1129

TGGCCGAAGCGACGAAGAGGG
232





1130

GGGCGGAGGCGCGCTCGGGCGCG
325





1142

CACGGCGGGCGGCCCCCAGGCTCGC
26





1214

CAGGCCGGCGCGCGCTCCCGCAAGCCCG
390





1270

CGATTGCCGCCCAACTCTGCTGGG
789



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene start


ID No:
Sequence (5′-3′)
site












992
CAGGCCGGCGCGCGCTCCCGCAA
390





993
AGGCCGGCGCGCGCTCCCGC
391





994
GGCCGGCGCGCGCTCCCGCA
392





995
GCCGGCGCGCGCTCCCGCAA
393





996
CCGGCGCGCGCTCCCGCAAG
394





997
CGGCGCGCGCTCCCGCAAGC
395





998
GGCGCGCGCTCCCGCAAGCC
396





999
GCGCGCGCTCCCGCAAGCCC
397





1000
CGCGCGCTCCCGCAAGCCCG
398





1001
GCGCGCTCCCGCAAGCCCGC
399





1002
CGCGCTCCCGCAAGCCCGCC
400





1003
GCGCTCCCGCAAGCCCGCCT
401





1004
CGCTCCCGCAAGCCCGCCTC
402





1005
GCTCCCGCAAGCCCGCCTCA
403





1006
CTCCCGCAAGCCCGCCTCAC
404





1007
TCCCGCAAGCCCGCCTCACC
405





1008
CCCGCAAGCCCGCCTCACCT
406





1009
CCGCAAGCCCGCCTCACCTG
407





1010
CGCAAGCCCGCCTCACCTGA
408





1011
GCAAGCCCGCCTCACCTGAG
409





1012
CAAGCCCGCCTCACCTGAGG
410





1013
AAGCCCGCCTCACCTGAGGT
411





1014
AGCCCGCCTCACCTGAGGTG
412





1015
GCCCGCCTCACCTGAGGTGG
413





1016
CCCGCCTCACCTGAGGTGGA
414





1017
CCGCCTCACCTGAGGTGGAG
415





1018
CGCCTCACCTGAGGTGGAGG
416





1019
CCAGGCCGGCGCGCGCTCCC
389





1020
CCCAGGCCGGCGCGCGCTCC
388





1021
GCCCAGGCCGGCGCGCGCTC
387





1022
TGCCCAGGCCGGCGCGCGCT
386





1023
CTGCCCAGGCCGGCGCGCGC
385





1024
CCTGCCCAGGCCGGCGCGCG
384





1025
GCCTGCCCAGGCCGGCGCGC
383





1026
CGCCTGCCCAGGCCGGCGCG
382





1027
TCGCCTGCCCAGGCCGGCGC
381





1028
CTCGCCTGCCCAGGCCGGCG
380





1029
GCTCGCCTGCCCAGGCCGGC
379





1030
CGCTCGCCTGCCCAGGCCGG
378





1031
CCGCTCGCCTGCCCAGGCCG
377





1032
CCCGCTCGCCTGCCCAGGCC
376





1033
GCCCGCTCGCCTGCCCAGGC
375





1034
CGCCCGCTCGCCTGCCCAGG
374





1035
GCGCCCGCTCGCCTGCCCAG
373





1036
CGCGCCCGCTCGCCTGCCCA
372





1037
GCGCGCCCGCTCGCCTGCCC
371





1038
AGCGCGCCCGCTCGCCTGCC
370





1039
GAGCGCGCCCGCTCGCCTGC
369





1040
GGAGCGCGCCCGCTCGCCTG
368





1041
GGGAGCGCGCCCGCTCGCCT
367





1042
CGGGAGCGCGCCCGCTCGCC
366





1043
GCGGGAGCGCGCCCGCTCGC
365





1044
GGCGGGAGCGCGCCCGCTCG
364





1045
GGGCGGGAGCGCGCCCGCTC
363





1046
GGGGCGGGAGCGCGCCCGCT
362





1047
GGGGGCGGGAGCGCGCCCGC
361





1048
GGACGGGCTGCGACGCTCACGTGC
539





1049
GACGGGCTGCGACGCTCACG
540





1050
ACGGGCTGCGACGCTCACGT
541





1051
CGGGCTGCGACGCTCACGTG
542





1052
GGGCTGCGACGCTCACGTGC
543





1053
GGCTGCGACGCTCACGTGCT
544





1054
GCTGCGACGCTCACGTGCTC
545





1055
CTGCGACGCTCACGTGCTCG
546





1056
TGCGACGCTCACGTGCTCGT
547





1057
GCGACGCTCACGTGCTCGTC
548





1058
CGACGCTCACGTGCTCGTCT
549





1059
GACGCTCACGTGCTCGTCTG
550





1060
ACGCTCACGTGCTCGTCTGT
551





1061
CGCTCACGTGCTCGTCTGTG
552





1062
GCTCACGTGCTCGTCTGTGT
553





1063
CTCACGTGCTCGTCTGTGTT
554





1064
TCACGTGCTCGTCTGTGTTT
555





1065
CACGTGCTCGTCTGTGTTTA
556





1066
ACGTGCTCGTCTGTGTTTAG
557





1067
CGTGCTCGTCTGTGTTTAGC
558





1068
GTGCTCGTCTGTGTTTAGCG
559





1069
TGCTCGTCTGTGTTTAGCGG
560





1070
GCTCGTCTGTGTTTAGCGGC
561





1071
CTCGTCTGTGTTTAGCGGCG
562





1072
TCGTCTGTGTTTAGCGGCGG
563





1073
CGTCTGTGTTTAGCGGCGGA
564





1074
GTCTGTGTTTAGCGGCGGAG
565





1075
TCTGTGTTTAGCGGCGGAGG
566





1076
CTGTGTTTAGCGGCGGAGGA
567





1077
TGTGTTTAGCGGCGGAGGAA
568





1078
GGGACGGGCTGCGACGCTCA
538





1079
TGGGACGGGCTGCGACGCTC
537





1080
CTGGGACGGGCTGCGACGCT
536





1081
GCTGGGACGGGCTGCGACGC
535





1082
AGCTGGGACGGGCTGCGACG
534





1083
CAGCTGGGACGGGCTGCGAC
533





1084
ACAGCTGGGACGGGCTGCGA
532





1085
CACAGCTGGGACGGGCTGCG
531





1086
GCACAGCTGGGACGGGCTGC
530





1087
GGCACAGCTGGGACGGGCTG
529





1088
AGGCACAGCTGGGACGGGCT
528





1089
GAGGTGGGGGTGCGAGGCGGGAAACCCCTCG
108





1090
CAATCGCCGGGGTCCGGGCCCGGC
162





1091
AATCGCCGGGGTCCGGGCCC
163





1092
ATCGCCGGGGTCCGGGCCCG
164





1093
TCGCCGGGGTCCGGGCCCGG
165





1094
CGCCGGGGTCCGGGCCCGGC
166





1095
GCCGGGGTCCGGGCCCGGCT
167





1096
CCGGGGTCCGGGCCCGGCTC
168





1097
CGGGGTCCGGGCCCGGCTCC
169





1098
GGGGTCCGGGCCCGGCTCCG
170





1099
GGGTCCGGGCCCGGCTCCGA
171





1100
GGTCCGGGCCCGGCTCCGAG
172





1101
GTCCGGGCCCGGCTCCGAGC
173





1102
TCCGGGCCCGGCTCCGAGCC
174





1103
CCGGGCCCGGCTCCGAGCCT
175





1104
CGGGCCCGGCTCCGAGCCTC
176





1105
GGGCCCGGCTCCGAGCCTCT
177





1106
GGCCCGGCTCCGAGCCTCTC
178





1107
GCCCGGCTCCGAGCCTCTCC
179





1108
CCCGGCTCCGAGCCTCTCCT
180





1109
CCGGCTCCGAGCCTCTCCTC
181





1110
CGGCTCCGAGCCTCTCCTCA
182





1111
GGCTCCGAGCCTCTCCTCAG
183





1112
GCTCCGAGCCTCTCCTCAGG
184





1113
CTCCGAGCCTCTCCTCAGGT
185





1114
TCCGAGCCTCTCCTCAGGTG
186





1115
CCGAGCCTCTCCTCAGGTGG
187





1116
CGAGCCTCTCCTCAGGTGGC
188





1117
GCAATCGCCGGGGTCCGGGC
161





1118
GGCAATCGCCGGGGTCCGGG
160





1119
CGGCAATCGCCGGGGTCCGG
159





1120
GCGGCAATCGCCGGGGTCCG
158





1121
GGCGGCAATCGCCGGGGTCC
157





1122
GGGCGGCAATCGCCGGGGTC
156





1123
CGGGCGGCAATCGCCGGGGT
155





1124
GCGGGCGGCAATCGCCGGGG
154





1125
AGCGGGCGGCAATCGCCGGG
153





1126
AAGCGGGCGGCAATCGCCGG
152





1127
GAAGCGGGCGGCAATCGCCG
151





1128
AGAAGCGGGCGGCAATCGCC
150





1129
TGGCCGAAGCGACGAAGAGGG
232





1130
GGGCGGAGGCGCGCTCGGGCGCG
325





1131
GGCGGAGGCGCGCTCGGGCG
326





1132
GCGGAGGCGCGCTCGGGCGC
327





1133
CGGAGGCGCGCTCGGGCGCG
328





1134
GGAGGCGCGCTCGGGCGCGC
329





1135
GAGGCGCGCTCGGGCGCGCG
330





1136
AGGCGCGCTCGGGCGCGCGG
331





1137
GGCGCGCTCGGGCGCGCGGG
332





1138
GCGCGCTCGGGCGCGCGGGG
333





1139
CGCGCTCGGGCGCGCGGGGA
334





1140
GCGCTCGGGCGCGCGGGGAG
335





1141
CGCTCGGGCGCGCGGGGAGG
336





1142
CACGGCGGGCGGCCCCCAGGCTCGC
26





1143
ACGGCGGGCGGCCCCCAGGC
27





1144
CGGCGGGCGGCCCCCAGGCT
28





1145
GGCGGGCGGCCCCCAGGCTC
29





1146
GCGGGCGGCCCCCAGGCTCG
30





1147
CGGGCGGCCCCCAGGCTCGC
31





1148
GGGCGGCCCCCAGGCTCGCT
32





1149
GGCGGCCCCCAGGCTCGCTC
33





1150
GCGGCCCCCAGGCTCGCTCC
34





1151
CGGCCCCCAGGCTCGCTCCG
35





1152
GGCCCCCAGGCTCGCTCCGG
36





1153
GCCCCCAGGCTCGCTCCGGC
37





1154
CCCCCAGGCTCGCTCCGGCC
38





1155
CCCCAGGCTCGCTCCGGCCT
39





1156
CCCAGGCTCGCTCCGGCCTA
40





1157
CCAGGCTCGCTCCGGCCTAA
41





1158
CAGGCTCGCTCCGGCCTAAG
42





1159
AGGCTCGCTCCGGCCTAAGC
43





1160
GGCTCGCTCCGGCCTAAGCG
44





1161
GCTCGCTCCGGCCTAAGCGC
45





1162
CTCGCTCCGGCCTAAGCGCT
46





1163
TCGCTCCGGCCTAAGCGCTG
47





1164
CGCTCCGGCCTAAGCGCTGG
48





1165
GCTCCGGCCTAAGCGCTGGC
49





1166
CTCCGGCCTAAGCGCTGGCT
50





1167
TCCGGCCTAAGCGCTGGCTC
51





1168
CCGGCCTAAGCGCTGGCTCC
52





1169
CGGCCTAAGCGCTGGCTCCC
53





1170
GGCCTAAGCGCTGGCTCCCT
54





1171
GCCTAAGCGCTGGCTCCCTC
55





1172
CCTAAGCGCTGGCTCCCTCC
56





1173
CTAAGCGCTGGCTCCCTCCA
57





1174
TAAGCGCTGGCTCCCTCCAC
58





1175
AAGCGCTGGCTCCCTCCACA
59





1176
AGCGCTGGCTCCCTCCACAC
60





1177
GCGCTGGCTCCCTCCACACG
61





1178
CGCTGGCTCCCTCCACACGC
62





1179
GCTGGCTCCCTCCACACGCG
63





1180
CTGGCTCCCTCCACACGCGG
64





1181
TGGCTCCCTCCACACGCGGA
65





1182
GGCTCCCTCCACACGCGGAG
66





1183
GCTCCCTCCACACGCGGAGA
67





1184
CTCCCTCCACACGCGGAGAA
68





1185
TCCCTCCACACGCGGAGAAG
69





1186
CCCTCCACACGCGGAGAAGA
70





1187
CCTCCACACGCGGAGAAGAG
71





1188
CTCCACACGCGGAGAAGAGA
72





1189
TCACGGCGGGCGGCCCCCAG
25





1190
TTCACGGCGGGCGGCCCCCA
24





1191
CTTCACGGCGGGCGGCCCCC
23





1192
TCTTCACGGCGGGCGGCCCC
22





1193
GTCTTCACGGCGGGCGGCCC
21





1194
TGTCTTCACGGCGGGCGGCC
20





1195
ATGTCTTCACGGCGGGCGGC
19





1196
GATGTCTTCACGGCGGGCGG
18





1197
CGATGTCTTCACGGCGGGCG
17





1198
GCGATGTCTTCACGGCGGGC
16





1199
CGCGATGTCTTCACGGCGGG
15





1200
CCGCGATGTCTTCACGGCGG
14





1201
CCCGCGATGTCTTCACGGCG
13





1202
CCCCGCGATGTCTTCACGGC
12





1203
TCCCCGCGATGTCTTCACGG
11





1204
GTCCCCGCGATGTCTTCACG
10





1205
GGTCCCCGCGATGTCTTCAC
9





1206
CGGTCCCCGCGATGTCTTCA
8





1207
TCGGTCCCCGCGATGTCTTC
7





1208
ATCGGTCCCCGCGATGTCTT
6





1209
AATCGGTCCCCGCGATGTCT
5





1210
GAATCGGTCCCCGCGATGTC
4





1211
TGAATCGGTCCCCGCGATGT
3





1212
GTGAATCGGTCCCCGCGATG
2





1213
GGTGAATCGGTCCCCGCGAT
1





1214
CAGGCCGGCGCGCGCTCCCGCAAGCCCG
390





1215
AGGCCGGCGCGCGCTCCCGC
391





1216
GGCCGGCGCGCGCTCCCGCA
392





1217
GCCGGCGCGCGCTCCCGCAA
393





1218
CCGGCGCGCGCTCCCGCAAG
394





1219
CGGCGCGCGCTCCCGCAAGC
395





1220
GGCGCGCGCTCCCGCAAGCC
396





1221
GCGCGCGCTCCCGCAAGCCC
397





1222
CGCGCGCTCCCGCAAGCCCG
398





1223
GCGCGCTCCCGCAAGCCCGC
399





1224
CGCGCTCCCGCAAGCCCGCC
400





1225
GCGCTCCCGCAAGCCCGCCT
401





1226
CGCTCCCGCAAGCCCGCCTC
402





1227
GCTCCCGCAAGCCCGCCTCA
403





1228
CTCCCGCAAGCCCGCCTCAC
404





1229
TCCCGCAAGCCCGCCTCACC
405





1230
CCCGCAAGCCCGCCTCACCT
406





1231
CCGCAAGCCCGCCTCACCTG
407





1232
CGCAAGCCCGCCTCACCTGA
408





1233
GCAAGCCCGCCTCACCTGAG
409





1234
CAAGCCCGCCTCACCTGAGG
410





1235
AAGCCCGCCTCACCTGAGGT
411





1236
AGCCCGCCTCACCTGAGGTG
412





1237
GCCCGCCTCACCTGAGGTGG
413





1238
CCCGCCTCACCTGAGGTGGA
414





1239
CCGCCTCACCTGAGGTGGAG
415





1240
CGCCTCACCTGAGGTGGAGG
416





1241
CCAGGCCGGCGCGCGCTCCC
389





1242
CCCAGGCCGGCGCGCGCTCC
388





1243
GCCCAGGCCGGCGCGCGCTC
387





1244
TGCCCAGGCCGGCGCGCGCT
386





1245
CTGCCCAGGCCGGCGCGCGC
385





1246
CCTGCCCAGGCCGGCGCGCG
384





1247
GCCTGCCCAGGCCGGCGCGC
383





1248
CGCCTGCCCAGGCCGGCGCG
382





1249
TCGCCTGCCCAGGCCGGCGC
381





1250
CTCGCCTGCCCAGGCCGGCG
380





1251
GCTCGCCTGCCCAGGCCGGC
379





1252
CGCTCGCCTGCCCAGGCCGG
378





1253
CCGCTCGCCTGCCCAGGCCG
377





1254
CCCGCTCGCCTGCCCAGGCC
376





1255
GCCCGCTCGCCTGCCCAGGC
375





1256
CGCCCGCTCGCCTGCCCAGG
374





1257
GCGCCCGCTCGCCTGCCCAG
373





1258
CGCGCCCGCTCGCCTGCCCA
372





1259
GCGCGCCCGCTCGCCTGCCC
371





1260
AGCGCGCCCGCTCGCCTGCC
370





1261
GAGCGCGCCCGCTCGCCTGC
369





1262
GGAGCGCGCCCGCTCGCCTG
368





1263
GGGAGCGCGCCCGCTCGCCT
367





1264
CGGGAGCGCGCCCGCTCGCC
366





1265
GCGGGAGCGCGCCCGCTCGC
365





1266
GGCGGGAGCGCGCCCGCTCG
364





1267
GGGCGGGAGCGCGCCCGCTC
363





1268
GGGGCGGGAGCGCGCCCGCT
362





1269
GGGGGCGGGAGCGCGCCCGC
361





1270
CGATTGCCGCCCAACTCTGCTGGG
789





1271
GATTGCCGCCCAACTCTGCT
790





1272
ATTGCCGCCCAACTCTGCTG
791





1273
TTGCCGCCCAACTCTGCTGG
792





1274
TGCCGCCCAACTCTGCTGGG
793





1275
GCCGCCCAACTCTGCTGGGC
794





1276
CCGCCCAACTCTGCTGGGCT
795





1277
CGCCCAACTCTGCTGGGCTC
796





1278
ACGATTGCCGCCCAACTCTG
788





1279
CACGATTGCCGCCCAACTCT
787





1280
GCACGATTGCCGCCCAACTC
786





1281
GGCACGATTGCCGCCCAACT
785





1282
GGGCACGATTGCCGCCCAAC
784





1283
TGGGCACGATTGCCGCCCAA
783





1284
CTGGGCACGATTGCCGCCCA
782





1285
GCTGGGCACGATTGCCGCCC
781





1286
TGCTGGGCACGATTGCCGCC
780





1287
GTGCTGGGCACGATTGCCGC
779





1288
AGTGCTGGGCACGATTGCCG
778





1289
CAGTGCTGGGCACGATTGCC
777





1290
TCAGTGCTGGGCACGATTGC
776





1291
CTCAGTGCTGGGCACGATTG
775





1292
CCTCAGTGCTGGGCACGATT
774





1293
GCCTCAGTGCTGGGCACGAT
773





1294
GGCCTCAGTGCTGGGCACGA
772





1295
CGGCCTCAGTGCTGGGCACG
771





1296
TCGGCCTCAGTGCTGGGCAC
770





1297
CTCGGCCTCAGTGCTGGGCA
769





1298
CCTCGGCCTCAGTGCTGGGC
768





1299
TCCTCGGCCTCAGTGCTGGG
767





1300
CTCCTCGGCCTCAGTGCTGG
766





1301
TCTCCTCGGCCTCAGTGCTG
765





1302
TTCTCCTCGGCCTCAGTGCT
764





1303
TTTCTCCTCGGCCTCAGTGC
763





1304
CTTTCTCCTCGGCCTCAGTG
762





1305
TCTTTCTCCTCGGCCTCAGT
761





1306
CTCTTTCTCCTCGGCCTCAG
760





1307
TCTCTTTCTCCTCGGCCTCA
759





1308
CTCTCTTTCTCCTCGGCCTC
758





1309
GCTCTCTTTCTCCTCGGCCT
757





1310
TGCTCTCTTTCTCCTCGGCC
756





1311
CTGCTCTCTTTCTCCTCGGC
755





1312
CCTGCTCTCTTTCTCCTCGG
754





1313
TCCTGCTCTCTTTCTCCTCG
753



















Hot Zones (Relative upstream location to gene start site)







  1-1050


1500-1700


2000-2450










FIG. 18 shows MDA-MB-231 (human breast cell line), HI1 (31) and HI2 (32) at 10 μM showed increased inhibition compared to the untreated control and the negative control. The HIF1A sequences HI1 (31) and HI2 (32) (shown below) fit the independent and dependent DNAi motif claims.



FIG. 19 shows DU145 (human prostate cell line), HI1 (31) and HI2 (32) at 10 μM produced statistically significant (P<0.05) inhibition compared to the untreated control values. The negative control inhibition values did not a produce statistically significant difference compared to the untreated control values. The HIF1A sequences HI1 (31) and HI2 (32) (shown below) fit the independent and dependent DNAi motif claims.


The secondary structures for HI1 and HI2 are shown in FIGS. 20 and 21. Sequence 31 (HI1) is shown in FIG. 20 and Sequence 32 (HI2) is shown in FIG. 21.









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11953)


GTTTCCCTTGAGGCCAGGTCTTGTTAAGAAGAACAGAGAGCCCTGAGAGT





ATTTCACGATGGTTACTTACCCCTTCTCCCTGGCAAAAGCAAAGCAGATT





TTTCTCAGATCTTTACAGTGAGAATCTGACAGGATTCACAGAGGTAAAAC





TGAGGTAAGTATTGAGGCCCCTCTCAGACTGAGCCTCCTTGGAGTTTTTT





AACTCTCAAGCTAGTCTGCACTGAGCCTCCAGCAATTCCCCAATTACAGT





TTAGTGTTCCTACTGATGTTGGCTCCAGCTGTGAAACTAGCTTCAGCTTC





TGGCTTCTGTGCCTGGGCTCTGCTCCTGGTAAACTGTGATTCTCTGAAAA





GCTGTGATTCTCTGTATCTATCTGTCTGTCTCTCTAGTTTTTAGGGCAGT





GGTTTTTCCTGTGACCTCAATTCTCTGGTGGATCTAAGAAGAGTTACTGA





TTTCAGTTTGCTTAGCTTTTTTTTTTCTTGTTGTGAGGATGGGAGTGACA





ACTTCCAAGCTCTTTACATGTTGAACAGGAAACTGAAAGCCCCTTGGTGT





TCCTTTGTAAATTCATCTTAAAAATATTTATCATAATTGAAAAGTGCTAA





TATCAAATTTTCAGTCTGTTTATATTCCCCCTAAACTCAGATAAATATAC





ATTTTATTTTGTGTGTCTGTGTGTGTGGGTTTTGTTGTTGTTTGTTTTTT





GTGTTTTTTTTTAAGATATAGGGTCTTGCTCTGTCAAGGCTGGAGTGCAG





TGGCACAATCGTACATCTCTGCAGCCTCGAACTCCTGGGAGAAAGTGATC





CTCCCGCTTTAGCCTTCAGAGTAGCTACGACTACAGGCACTAACCACCAA





GCCCAGCTAATTTTTAAAATTTTTTGTAGAGATGGGAGTTTCACTTTGTT





GCCCAGGCTGGTCTCAAACTCTTGGCCTCAAGTGATCCTCCTGCCTCAGC





CTCCCAAAATGTTGGAATCACAGATACTTTGTGTCTTGATTCTTGAAAGG





AAAAAACAAAGATTTTTAATGCCTCTTATCTTGTACGCACTTTCCTTCCA





AACAATACCCTTTTGCTGCCATTGTTCTCGTTATGAATAGCTTAAAGAAA





AAGAAACAACTAAGGGTAGTAATAGGCCAGGAATCACTTACTGAATACTA





GGTCTTCTTGTATAGTTTGATACCCTATAAATTGTGTGCATCTGATGCAT





TTCACCTTCAAAAGGCTCAATGCTCTGTATTATTTAGTAGTAATCAAAAT





TTCAAGTTTTACTTAACCTCCTGATTCACTGCCCAATTTCCTAATAAATA





CGGGCTAAGGGTCAATGGGGTCATTTGCAAGTAATCTTGTAGTCTACTCA





GAAAGTTCTGCAAAGTTAGAAAGTGATTAAATGACTGTTTGTTAAGATAT





ACTTACATAGTAATAACCTAAATGCATTTGTTAAGTGGTTGTAGAGAGAG





GGATTTAAAATTTTATCCTATATGAAATTTTCCTTTTTGGTGTCTGTTAT





TTAATAGGATTGTTTGAATTAGGGGATACTATTTGGTGCCTTTGTAACTA





TATGAAAATTAGTTGGTTGAATATTACTGCTTTCCATGTTCATATTTATA





TTTGTATAGACATATATATATATACACATATACTACTTTCCTTTCCATTT





TCATATTTATATTTGTGTATACACATATACATAAACATATATTTTATACA





TTTTTGAAAAGGAAAATTAACTTAAGGGCATATTTAATGAATATTCAAAA





ATTTTTTTGCTGATCAAATTATCATTCTGCTTTAAACTTTTGAAATGATC





CAAAAAAATTTTAAATGACTTAGATTTACTGTTACAAAATGCTTGTCTTT





TGATGTCACAAACATTATATACTATAATCACTGGCCAGAGATAATTGCTA





TAAGTATAATGAAAAGGGAAATGATGGAAGAATCTCTGCAGCTATCCTCA





TAAATGAGGGTGGGAACACGATGGGCAGTTCCAAAGTTGAAAATAGAGAA





TATATGTGGATTTATATTAACATAATTGGTATTCTTGGATAGTTAAAAAT





GGCTAAACTGTAGGAGAAGCCCGAGTAATTACTGTTAACAGAGGAATAAA





TTTGAGGGCAATAATAATGATGATAGGCCAGGCACTGTGGCTCATGCCTG





TAATCCCAGCACTTTGGGAACCCGAGGCGAGCGGACCACCTGAGGTCAGG





AGTTCGAGAGCAGCCTGGCCAACATGGTGAAACCTCGTCTCTACTAAAAA





TAGAAAAATTATCCGAGTGTGGTGGTGCGTGCCTGTAATCCCAGCTACTT





GGGAGGCTGAGGCAGGAGAATCACTTGTACCTGGGAGGCGGAGTTGCAGT





GAGCCGAAATCGCGCCACTGCGCTCCAGCCTGTGGGCCAGAGCGAGACTC





CGCCTCAGAATAATAATAATGATAATAATAATAACGCCACCAACAATACT





AAGAGCTAACATTTACTGAGTGCTTACTATGCACCAGATATTGTTCTAAG





TATACATTTATTATCTCATTTAACCATCCATAATACTGTGGTATAGACAC





TTTTATATCCATTTTATAAATAAGTAAACTGAGTTATGGAGAGATTAAAC





GACTTGCCAGTAAGATTCAAAGCCTGTGTACAAGCTCACGCTTGATTCTG





GAGCCAGTGTTCTTAACACAGTATCTTGAGAATGTTAAACTAAAAAGTTT





TTAATTTACAGTATTCTTTCCACAATTAAAAAAGAAATTATGAGTAATTA





TTTTTAGTTCTTTCTTCTCTTCAGGCATTTCCCATGGTTCTTTTCAAGAC





ATAATACATATCATTTAGTGTTGTAGATCTGAAAAAACAAAAGTAGCGTG





AAGATCAAAAATTTTCTAAAGAGACGGAGTCTCGCTACGTTCCCTAGGCT





GGAACACCCAGGCTTCTCCAGCCTCACACCTCTGAGTAGCTGGAACCACC





CTGTCCGCTAAGGTCAATGTTTAATCGTATCTTTGTAGGTCTACTGACCA





GTTAAAAAGAGGTGCTGTATACATTGGTTGTTGTCTTGTCAGAGTTTGAT





GCTTCTATATAGACCATTGTTTTTACATGCTAATACAATTGAAAGCCACT





ACAGATATTTATATTTACAACCCAAAGCTAGGTTTTAACAAGAAACTCAT





AAGGCAAAGGTGAGAAGTAAAATAATTTAGCGCCAAGTGGAGATATATGT





GCAATGCTACTTTGTTGGGCTCAAAACATATTTTTCTTTTAGAAGACTGA





CAGGCTTGAAGTTTATGCCTCCAAAGACAAAAGTGATTATGTTTTGTTTA





GTAGCTTGCAAAGTTGCCAAAGCCATTTTTTCTACTCTTTCCCTGAAATT





GGTTTATATGCTTATTAAAGTCATTTATACCTATTTGCAAATGCTTAACA





TAGTTTCAGATTTTAAGATTTCCCTGCAACTTTATTTCCCTTGAAGTTTA





CAGCAACAGGAGTTCATTTTTATTTTTAATTGCATTTATTCAGTAAGTAA





ACTCCGCCACAGAAAAACTTAGTAGACAAGGTGAGTTCCCCTGTGCTCCG





TGGCAAAGAGTGCGGTGGGTGACATTGACCCATGGTTAGGTAATCTGGTA





AGGAAAGACCCCGTTGTAACACATCTGAGCAACGAGACCAAAGGAAGGGC





TTGCTGCCACGAGGCGAAGTCTGCTTTTTTGAACAGAGAGCCCAGCAGAG





TTGGGCGGCAATCGTGCCCAGCACTGAGGCCGAGGAGAAAGAGAGCAGGA





GCATTACATTACTGCACCAAGAGTAGGAAAATATGATGCATGTTTGGGAC





CAGGCAACCGAAATCCCTTCTCAGCAGCGCCTCCCAAAGCCGGGCACCGC





CTTCCTTCGGAGAAGGCGCAGAGTCCCCAGACTCGGGCTGAGCCGCACCC





CCATCTCCTTTCTCTTTCCTCCGCCGCTAAACACAGACGAGCACGTGAGC





GTCGCAGCCCGTCCCAGCTGTGCCTCAGCTGACCGCCTCCTGATTGGCTG





AGAGCGGCGTGGGCTGGGGTGGGGACTTGCCGCCTGCGTCGCTCGCCATT





GGATCTCGAGGAACCCGCCTCCACCTCAGGTGAGGCGGGCTTGCGGGAGC





GCGCGCCGGCCTGGGCAGGCGAGCGGGCGCGCTCCCGCCCCCTCTCCCCT





CCCCGCGCGCCCGAGCGCGCCTCCGCCCTTGCCCGCCCCCTGACGCTGCC





TCAGCTCCTCAGTGCACAGTGCTGCCTCGTCTGAGGGGACAGGAGGATCA





CCCTCTTCGTCGCTTCGGCCAGTGTGTCGGGCTGGGCCCTGACAAGCCAC





CTGAGGAGAGGCTCGGAGCCGGGCCCGGACCCCGGCGATTGCCGCCCGCT





TCTCTCTAGTCTCACGAGGGGTTTCCCGCCTCGCACCCCCACCTCTGGAC





TTGCCTTTCCTTCTCTTCTCCGCGTGTGGAGGGAGCCAGCGCTTAGGCCG





GAGCGAGCCTGGGGGCCGCCCGCCGTGAAGACATCGCGGGGACCGATTCA





CCATG






5) IL-8. IL-8 is a member of the CXC chemokine family. IL-8 is a chemokine produced by macrophages, immune and epithelial cells and is an important mediator of immune reaction in the innate immune system (reviewed in Waugh and Wilson, 2008; Clin Cancer Res 14; 6735). While neutrophil granulocytes are the primary target cells of IL-8, there is a relative wide range of cells (endothelial cells, macrophages, mast cells, and keratinocytes) respond to IL-8. IL-8, also known as neutrophil chemotactic factor, has two primary functions. It induces chemotaxis in target cells, primarily neutrophils but also other granulocytes, causing them to migrate toward the site of infection. IL-8 also induces phagocytosis once they have arrived. IL-8 is also known to be a potent promoter of angiogenesis. In target cells, IL-8 induces a series of physiological responses required for migration and phagocytosis, such as increase of intracellular Ca2+, exocytosis (e.g. histamine release), and respiratory burst.


IL-8 can be secreted by any cells with toll-like receptors that are involved in the innate immune response. Generally, macrophages see the antigen first, and thus are first to release IL-8 to recruit other cells. Both monomer and homodimer forms of IL-8 have been reported to be potent inducers of the chemokines CXCR1 and CXCR2. The homodimer is more potent, but methylation of Leu25 can block activity of the dimers. IL-8 is believed to play a role in the pathogenesis of bronchiolitis, a common respiratory tract disease caused by viral infection. IL-8 is implicated in gingivitis, psoriasis and increased oxidant stress thereby enhancing the recruitment of inflammatory cells to the site of local inflammation.


Protein: IL-8 Gene: IL-8 (Homo sapiens, chromosome 4, 74606223-74609433 [NCBI Reference Sequence: NC000004.11]; start site location: 74606376; strand: positive)












Gene Identification


















GeneID
3576



HGNC
6025



HPRD
00909



MIM
146930




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













1314
IL8-1
ACGTCCCATTCGGCTCCTGAGCCA
2868





1331
IL8-3
GACGTTGACGAAGTCTATCACCCAA
2939





1341

ACGGAGTATGACGAAAGTTTTC
257





1342

GAGCGAGACTCCCGTCTAAA
3259



















Target Shift Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












1314
ACGTCCCATTCGGCTCCTGAGCCA
2868





1315
CGTCCCATTCGGCTCCTGAG
2869





1316
GTCCCATTCGGCTCCTGAGC
2870





1317
TCCCATTCGGCTCCTGAGCC
2871





1318
CCCATTCGGCTCCTGAGCCA
2872





1319
CCATTCGGCTCCTGAGCCAT
2873





1320
CATTCGGCTCCTGAGCCATA
2874





1321
ATTCGGCTCCTGAGCCATAA
2875





1322
TTCGGCTCCTGAGCCATAAG
2876





1323
TCGGCTCCTGAGCCATAAGA
2877





1324
CGGCTCCTGAGCCATAAGAA
2878





1325
TACGTCCCATTCGGCTCCTG
2867





1326
TTACGTCCCATTCGGCTCCT
2866





1327
TTTACGTCCCATTCGGCTCC
2865





1328
ATTTACGTCCCATTCGGCTC
2864





1329
TATTTACGTCCCATTCGGCT
2863





1330
TTATTTACGTCCCATTCGGC
2862





1331
GACGTTGACGAAGTCTATCACCCAA
2939





1332
ACGTTGACGAAGTCTATCAC
2940





1333
CGTTGACGAAGTCTATCACC
2941





1334
GTTGACGAAGTCTATCACCC
2942





1335
TTGACGAAGTCTATCACCCA
2943





1336
TGACGAAGTCTATCACCCAA
2944





1337
GACGAAGTCTATCACCCAAG
2945





1338
ACGAAGTCTATCACCCAAGA
2946





1339
CGAAGTCTATCACCCAAGAA
2947





1340
AGACGTTGACGAAGTCTATC
2938





1341
ACGGAGTATGACGAAAGTTTTC
257





1342
GAGCGAGACTCCCGTCTAAA
3259





1343
AGCGAGACTCCCGTCTAAAA
3260





1344
GCGAGACTCCCGTCTAAAAA
3261





1345
CGAGACTCCCGTCTAAAAAA
3262





1346
GAGACTCCCGTCTAAAAAAG
3263





1347
AGAGCGAGACTCCCGTCTAA
3258





1348
AAGAGCGAGACTCCCGTCTA
3257





1349
AAAGAGCGAGACTCCCGTCT
3256





1350
GAAAGAGCGAGACTCCCGTC
3255





1351
TGAAAGAGCGAGACTCCCGT
3254





1352
GTGAAAGAGCGAGACTCCCG
3253





1353
GGTGAAAGAGCGAGACTCCC
3252



















Hot Zones (Relative upstream location to gene start site)







 1-300


2650-3300


4800-5000









Examples

In FIG. 22, IL8-1 (41) and IL8-3 (42), both at 10 μM, demonstrated statistically significant (P<0.05) inhibition compared to the untreated control values in MDA-MB-231 (human breast cell line). The negative control did not produce a statistically significant difference compared to the untreated control. The IL-8 sequences IL8-1 (41) and IL8-3 (42) fit the independent and dependent DNAi motif claims.


In FIG. 23, IL8-1 (41) and IL8-3 (42), both at 10 μM, demonstrated statistically significant (P<0.05) inhibition compared to the untreated control values in DU145 (human prostate cell line). The negative control did not produce a statistically significant difference compared to the untreated control. The IL-8 sequences IL8-1 (41) and IL8-3 (42) fit the independent and dependent DNAi motif claims.


The secondary structures for IL8-1 and IL8-3 are shown in FIGS. 24 and 25. Sequence 41 (IL8-1) is shown in FIG. 24 and Sequence 42 (IL8-3) is shown in FIG. 25.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11954)







GGCATTAAAAAAGAAAGCTTATATAGTGGAAGAAAATAAAGCATCTAGAC





ATAAGCTTTAAGAGATCTATTGTGTTAATACAGCTTTACTTTTTGAGTGG





TAAGCTTTTAAAAAGAAATGTGGTGCTCTAACTCCAGGAAAAGATAAGGG





TGACTGAAGTGATAGTCTAGAGGAAAAAGATGCAGACATTTACTGAGTAC





CTCCAATGTGCCAGGTGCCATTCTGGGCATTTTCATTATGTTTCCTCATT





TAATTCTCATGGTGATCCTTTGGAACTGTGTTATTCTCATTTTTACAGAT





GAGGTAACTGAGAGACAGTCAGATTAAAGAACTGCCTATGATTGTTTGGC





TAATAATAAGTGGAGGGGTGAGGCTTGAAGGCAGGTTTGTCTTATTCCAA





CACCCATACATACCCTTAAATTTAAGTTATTCTGACTTGTGTTGCTCAAA





TCCAATGTGTTCAGCTGTTTGCTTCTCCAATTACCAAGATTTTTCTTTAA





AAGGTAGGACACTTTTGGCAACACGAACCAACTTTGCTCAGTATTGTTAT





AAACTGTTAACTGGAGACATTTGAATTTGGAGATGGAACTGAAATGGTCT





TGCGGTACTAGAGAAGATCAAGTTATCACATAAACAAAGTACAGAGCTGA





GAACATATTTTAAATCTTTCCACTAACTCTGACTTTTATTGACTAAAATT





TTAGTGGGCAGTATGTTTATGTTTATGACTCTTAACATTAACAACATCGT





AAGTCAAACTCACTAATATATGTTAAGCATTCTGTTTATGATTCTTTTAA





CCTAGAGGATTGTTGAGCTGGGACTAATTTCCTCAAATGGGAAAAAAACC





CAGGTGAGAGCTGAGACTGCTCCTGAGACTGAGAAAGGCAGCTCTGACGG





GATCTCAGATTTTAGCAGCAGGAGTTGAACAATGGGCATAGAATCAGCTT





GCCCAAGATCTCCTGATTAATAAACCATGGAACAAGATTTAAACCCAAGT





TCATTTCATTTCAAAGCTCATACCACATTTTGCCCACCATATTTTGCTTT





GTTATATGACTACAACTTAGTTCAGGCTTACAAAAAAGTCCTAATTCTAA





AATTCCTATGGCGTGGGTGGGAGGGGATTTAGATGATTTTGCATAGGCAA





GAAACACCCAGTTTCATGGAGTTTGATGGAAGAGTTATGTACTAATATGG





GAAAAGTAGAGGCCATCTTTGTCTTTGTTCTTTCTTTTTTAGACGGGAGT





CTCGCTCTTTCACCCAGGCTGGAGTGCAGTGGCGCTATCTCGGCTCACTG





CAAGCTCCGCCTCCTGGGTTCACGCCATTCTCCTGCCTCAGCCTCCTGAG





TAGCTGGGACTACAGGCGCCCGCCACCGCTCCCGGCTAATTTTTTATATT





TTCAGTAGAGACGGGGTTTCACCGTGTTAGCTAAGATGGTTTGGATCTCC





TGAACTCGTGATCCGCCCGCCTCGGACTCCCAAAGTGCTGGGATTACAGG





CTTGAGCCACCGCGCCCGGCCGTCTTTGTTCTTTCTTGAACTCTTCCTTT





TCTTGGGTGATAGACTTCGTCAACGTCTAATGAGGATATCTAGGTGCTAG





TCTCTGCTCATCAAATGATTCTTATGGCTCAGGAGCCGAATGGGACGTAA





ATAAACAGTTAAGTCTCATGAACTCACTTTGCATTCATCTCTAGAAGATG





ACAAAACATTTGTATTTATGTGTAGCGTGGCACTTTAGTTAAACTTTGTA





CCCCACTTTGCTCTATTTTAAAGCAGAATATCCTTAAAAAGGATACTTAG





TCCTGCTTTTTTTTTTCCGCCTAAGCCCATTTAGTCCTTCTACTCATTAT





GCAAGGACTCAAATGGTTATCTTTACAGAAGTGAGACAAGATAGAATCAA





TGCTCTTGTAGTCACTTCATCTTTGTCCATTCCCACTTCTGATGGAGAGG





GTTCTAGGACATAATGCACTGAAGGTTACATTGTGAGAGATGAACAACAT





TTGCAAAAGAGGTCTTTTTGCCTTGGAAAGGCTTCATTCTTAAAAAAAAA





TGTGAGCATCAAGGTTAAGTAGACCTCATTAGCTCAAACTTTAAGGATGA





TATCAGGATAAAGTTGGGCCCATGAGAAGAGAATGAGAGGGAGATATAGT





GACATGAAAATAAGGAGGAAAACGAGGTGTCTATGTAAGTTGGGCTCACC





ATAAATACAAAGGCAACCGTTAGGGAAAAGCAAAGAAGTCTTTGCACATC





CTCAGAACTCTGAATGTCTTAGTGATGCTGTATGAGTGAGTCTTAATGAT





AGTGAACTGAATCAGTCAAGCCAGGTTGTGTCCATATGAGAATGTGTCTT





TGCTAAACATGCCAACATCACTGAAGCAAAGAAACTTGGAGTTTTCTTTA





AGATATAGGTCTTTTTTACCTATCCGGCCCAAGCTTTCTCTTCTTGTCAC





TCCATGCACTGTGTTCCGTATGCTAAATAGTTTGAGAAACCCAAATGGGC





CATGTTCGCCTACATTTCATTGTCCTGTACTTCCTGTCCTGTACTAGCAA





AGCAGTCCCATTGGTCTTTCTTCTCCTCATTAACAATAAAGGTAACACTT





TTGATGTTGTTTCTTCAGAAAACCTTCATTCATCAAAACTGCCTCAAAGA





TCATGTTTGTTTGATTCCAGAACTTCCTGTAATTACCTGTTATTGTAACA





CTCATCACTGTATTTTACTTACTTGTGTAACTAATTTTCCATATTCTGCA





CTAGACAACAAAGTCCTTTAAGTCAGGTACTATATCTATTTACATAGCAT





TCACATCTCCTACAATAAGGGACATTAGCAGATAAACAACACATATTAAA





TGAATAATGAAGTTTCTGAAATACTACAGTTGAAAACTATAGGAGCTACA





TTATATAGAATAAACATTTACTTTGCTATAGAATTCAGTGTAACCCAGGC





ATTATTTTATCCTCAAGTCTTAGGTTGGTTGGAGAAAGATAACAAAAAGA





AACATGATTGTGCAGAAACAGACAAACCTTTTTGGAAAGCATTTGAAAAT





GGCATTCCCCCTCCACAGTGTGTTCACAGTGTGGGCAAATTCACTGCTCT





GTCGTACTTTCTGAAAATGAAGAACTGTTACACCAAGGTGAATTATTTAT





AAATTATGTACTTGCCCAGAAGCGAACAGACTTTTACTATCATAAGAACC





CTTCCTTGGTGCTCTTTATCTACAGAATCCAAGACCTTTCAAGAAAGGTC





TTGGATTCTTTTCTTCAGGACACTAGGACATAAAGCCACCTTTTTATGAT





TTGTTGAAATTTCTCACTCCATCCCTTTTGCTAGTGATCATGGGTCCTCA





GAGGTCAGACTTGGTGTCCTTGGATAAAGAGCATGAAGCAACAGTGGCTG





AACCAGAGTTGGAACCCAGATGCTCTTTCCACTAAGCATACAACTTTCCA





TTAGATAACACCTCCCTCCCACCCCAACCAAGCAGCTCCAGTGCACCACT





TTCTGGAGCATAAACATACCTTAACTTTACAACTTGAGTGGCCTTGAATA





CTGTTCCTATCTGGAATGTGCTGTTCTCTTTCATCTTCCTCTATTGAAGC





CCTCCTATTCCTCAATGCCTTGCTCCAACTGCCTTTGGAAGATTCTGCTC





TTATGCCTCCACTGGAATTAATGTCTTAGTACCACTTGTCTATTCTGCTA





TATAGTCAGTCCTTACATTGCTTTCTTCTTCTGATAGACCAAACTCTTTA





AGGACAAGTACCTAGTCTTATCTATTTCTAGATCCCCCACATTACTCAGA





AAGTTACTCCATAAATGTTTGTGGAACTGATTTCTATGTGAAGCACATGT





GCCCCTTCACTCTGTTAACATGCATTAGAAAACTAAATCTTTTGAAAAGT





TGTAGTATGCCCCCTAAGAGCAGTAACAGTTCCTAGAAACTCTCTAAAAT





GCTTAGAAAAAGATTTATTTTAAATTACCTCCCCAATAAAATGATTGGCT





GGCTTATCTTCACCATCATGATAGCATCTGTAATTAACTGAAAAAAAATA





ATTATGCCATTAAAAGAAAATCATCCATGATCTTGTTCTAACACCTGCCA





CTCTAGTACTATATCTGTCACATGGTACTATGATAAAGTTATCTAGAAAT





AAAAAAGCATACAATTGATAATTCACCAAATTGTGGAGCTTCAGTATTTT





AAATGTATATTAAAATTAAATTATTTTAAAGATCAAAGAAAACTTTCGTC





ATACTCCGTATTTGATAAGGAACAAATAGGAAGTGTGATGACTCAGGTTT





GCCCTGAGGGGATGGGCCATCAGTTGCAAATCGTGGAATTTCCTCTGACA





TAATGAAAAGATGAGGGTGCATAAGTTCTCTAGTAGGGTGATGATATAAA





AAGCCACCGGAGCACTCCATAAGGCACAAACTTTCAGAGACAGCAGAGCA





CACAAGCTTCTAGGACAAGAGCCAGGAAGAAACCACCGGAAGGAACCATC





TCACTGTGTGTAAACATG






6) KRAS or GTPase KRas also known as V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog and KRAS, is a protein that in humans is encoded by the KRAS gene (McGrath et al. Nature 1983; 304 (5926): 501-6, Popescu et al., Somat. Cell Mol. Genet. 1985; 11 (2): 149-55) and is usually tethered to cell membranes because by its C-terminal isoprenyl group. The protein product of the normal KRAS gene performs an essential function in normal tissue signaling. A single amino acid substitution resulting from a particular single nucleotide substitution in genomic DNA, is responsible for the activating mutation. Once on, it recruits and activates C-RAF and PI3Kinase necessary for to propagate growth factor and other receptor signals. The transformed protein that results is implicated in various malignancies, including leukemias, lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma (Kranenburg, Biochim. Biophys. Acta 2005; 1756 (2): 81-2; Burmer and Loeb, Proc. Natl. Acad. Sci. U.S.A. 86 (7): 2403-7, Tam et al, Clin. Cancer Res. 12 (5): 1647-53, Almoguera et al, Cell 53 (4): 549-54). Several germline KRAS mutations have been found to be associated with Noonan syndrome (Gelb and Tartaglia, Human Molecular Genetics, 2006; 15 (2): R220-226).


Protein: KRAS Gene: KRAS (Homo sapiens, chromosome 12, 25358180-25403854 [NCBI Reference Sequence: NC000012.11]; start site location: 25398318; strand: negative)












Gene Identification


















GeneID
3845



HGNC
6407



HPRD
01817



MIM
190070




















Targeted Sequences













Relative upstream


Sequence
Design

location to gene start


ID No:
ID
Sequence (5′-3′)
site













1354
KR1
CCCGGAGCGGGACCGGACCGCGG
5923





1435
KR2
GCCGGACCCACGCGGCGGCCCGCC
5856





1516
KR0525
AGTCTCCCCTTCCCGGAGACT
10265





1535

GCCGGGCCGGCTGGAGAGCGGGTC
5803





1538

TCGCCCCTCCTCCGAGACTTTC
6626





1584

GCACCCCGCCACCCTCAGGGTCGGC
6029





1633

GAGCCGCCGCCACCTTCGCCGCCGC
5475





1697

CGGCATAGTTCCCCGCCTTAC
2002





1730
KR16
CGGCCCGAGCCTCCGTGACGAGTGC
146348





1767
KR17
CTGGGAGGGGATCCCTCACCGAGAG
3328



















Target Shift Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












1354
CCCGGAGCGGGACCGGACCGCGG
5923





1355
CCGGAGCGGGACCGGACCGC
5924





1356
CGGAGCGGGACCGGACCGCG
5925





1357
ACCCGGAGCGGGACCGGACC
5922





1358
GACCCGGAGCGGGACCGGAC
5921





1359
TGACCCGGAGCGGGACCGGA
5920





1360
CTGACCCGGAGCGGGACCGG
5919





1361
TCTGACCCGGAGCGGGACCG
5918





1362
TTCTGACCCGGAGCGGGACC
5917





1363
ATTCTGACCCGGAGCGGGAC
5916





1364
AATTCTGACCCGGAGCGGGA
5915





1365
CAATTCTGACCCGGAGCGGG
5914





1366
CCAATTCTGACCCGGAGCGG
5913





1367
GCCAATTCTGACCCGGAGCG
5912





1368
CGCCAATTCTGACCCGGAGC
5911





1369
CCGCCAATTCTGACCCGGAG
5910





1370
GCCGCCAATTCTGACCCGGA
5909





1371
AGCCGCCAATTCTGACCCGG
5908





1372
CAGCCGCCAATTCTGACCCG
5907





1373
GCAGCCGCCAATTCTGACCC
5906





1374
CGCAGCCGCCAATTCTGACC
5905





1375
CCGCAGCCGCCAATTCTGAC
5904





1376
CCCGCAGCCGCCAATTCTGA
5903





1377
CCCCGCAGCCGCCAATTCTG
5902





1378
TCCCCGCAGCCGCCAATTCT
5901





1379
GTCCCCGCAGCCGCCAATTC
5900





1380
TGTCCCCGCAGCCGCCAATT
5899





1381
CTGTCCCCGCAGCCGCCAAT
5898





1382
GCTGTCCCCGCAGCCGCCAA
5897





1383
GGCTGTCCCCGCAGCCGCCA
5896





1384
AGGCTGTCCCCGCAGCCGCC
5895





1385
AAGGCTGTCCCCGCAGCCGC
5894





1386
CAAGGCTGTCCCCGCAGCCG
5893





1387
GCAAGGCTGTCCCCGCAGCC
5892





1388
CGCAAGGCTGTCCCCGCAGC
5891





1389
CCGCAAGGCTGTCCCCGCAG
5890





1390
GCCGCAAGGCTGTCCCCGCA
5889





1391
AGCCGCAAGGCTGTCCCCGC
5888





1392
TAGCCGCAAGGCTGTCCCCG
5887





1393
CTAGCCGCAAGGCTGTCCCC
5886





1394
CCTAGCCGCAAGGCTGTCCC
5885





1395
GCCTAGCCGCAAGGCTGTCC
5884





1396
TGCCTAGCCGCAAGGCTGTC
5883





1397
CTGCCTAGCCGCAAGGCTGT
5882





1398
CCTGCCTAGCCGCAAGGCTG
5881





1399
CCCTGCCTAGCCGCAAGGCT
5880





1400
CCCCTGCCTAGCCGCAAGGC
5879





1401
CCCCCTGCCTAGCCGCAAGG
5878





1402
GCCCCCTGCCTAGCCGCAAG
5877





1403
CGCCCCCTGCCTAGCCGCAA
5876





1404
CCGCCCCCTGCCTAGCCGCA
5875





1405
CCCGCCCCCTGCCTAGCCGC
5874





1406
GCCCGCCCCCTGCCTAGCCG
5873





1407
GGCCCGCCCCCTGCCTAGCC
5872





1408
CGGCCCGCCCCCTGCCTAGC
5871





1409
GCGGCCCGCCCCCTGCCTAG
5870





1410
GGCGGCCCGCCCCCTGCCTA
5869





1411
CGGCGGCCCGCCCCCTGCCT
5868





1412
GCGGCGGCCCGCCCCCTGCC
5867





1413
CGCGGCGGCCCGCCCCCTGC
5866





1414
ACGCGGCGGCCCGCCCCCTG
5865





1415
CACGCGGCGGCCCGCCCCCT
5864





1416
CCACGCGGCGGCCCGCCCCC
5863





1417
CCCACGCGGCGGCCCGCCCC
5862





1418
ACCCACGCGGCGGCCCGCCC
5861





1419
GACCCACGCGGCGGCCCGCC
5860





1420
GGACCCACGCGGCGGCCCGC
5859





1421
CGGACCCACGCGGCGGCCCG
5858





1422
CCGGACCCACGCGGCGGCCC
5857





1423
GCCGGACCCACGCGGCGGCC
5856





1424
TGCCGGACCCACGCGGCGGC
5855





1425
CTGCCGGACCCACGCGGCGG
5854





1426
ACTGCCGGACCCACGCGGCG
5853





1427
GACTGCCGGACCCACGCGGC
5852





1428
GGACTGCCGGACCCACGCGG
5851





1429
GGGACTGCCGGACCCACGCG
5850





1430
AGGGACTGCCGGACCCACGC
5849





1431
GAGGGACTGCCGGACCCACG
5848





1432
GGAGGGACTGCCGGACCCAC
5847





1433
AGGAGGGACTGCCGGACCCA
5846





1434
GAGGAGGGACTGCCGGACCC
5845





1435
GCCGGACCCACGCGGCGGCCCGCC
5856





1436
CCGGACCCACGCGGCGGCCC
5857





1437
CGGACCCACGCGGCGGCCCG
5858





1438
GGACCCACGCGGCGGCCCGC
5859





1439
GACCCACGCGGCGGCCCGCC
5860





1440
ACCCACGCGGCGGCCCGCCC
5861





1441
CCCACGCGGCGGCCCGCCCC
5862





1442
CCACGCGGCGGCCCGCCCCC
5863





1443
CACGCGGCGGCCCGCCCCCT
5864





1444
ACGCGGCGGCCCGCCCCCTG
5865





1445
CGCGGCGGCCCGCCCCCTGC
5866





1446
GCGGCGGCCCGCCCCCTGCC
5867





1447
CGGCGGCCCGCCCCCTGCCT
5868





1448
GGCGGCCCGCCCCCTGCCTA
5869





1449
GCGGCCCGCCCCCTGCCTAG
5870





1450
CGGCCCGCCCCCTGCCTAGC
5871





1451
GGCCCGCCCCCTGCCTAGCC
5872





1452
GCCCGCCCCCTGCCTAGCCG
5873





1453
CCCGCCCCCTGCCTAGCCGC
5874





1454
CCGCCCCCTGCCTAGCCGCA
5875





1455
CGCCCCCTGCCTAGCCGCAA
5876





1456
GCCCCCTGCCTAGCCGCAAG
5877





1457
CCCCCTGCCTAGCCGCAAGG
5878





1458
CCCCTGCCTAGCCGCAAGGC
5879





1459
CCCTGCCTAGCCGCAAGGCT
5880





1460
CCTGCCTAGCCGCAAGGCTG
5881





1461
CTGCCTAGCCGCAAGGCTGT
5882





1462
TGCCTAGCCGCAAGGCTGTC
5883





1463
GCCTAGCCGCAAGGCTGTCC
5884





1464
CCTAGCCGCAAGGCTGTCCC
5885





1465
CTAGCCGCAAGGCTGTCCCC
5886





1466
TAGCCGCAAGGCTGTCCCCG
5887





1467
AGCCGCAAGGCTGTCCCCGC
5888





1468
GCCGCAAGGCTGTCCCCGCA
5889





1469
CCGCAAGGCTGTCCCCGCAG
5890





1470
CGCAAGGCTGTCCCCGCAGC
5891





1471
GCAAGGCTGTCCCCGCAGCC
5892





1472
CAAGGCTGTCCCCGCAGCCG
5893





1473
AAGGCTGTCCCCGCAGCCGC
5894





1474
AGGCTGTCCCCGCAGCCGCC
5895





1475
GGCTGTCCCCGCAGCCGCCA
5896





1476
GCTGTCCCCGCAGCCGCCAA
5897





1477
CTGTCCCCGCAGCCGCCAAT
5898





1478
TGTCCCCGCAGCCGCCAATT
5899





1479
GTCCCCGCAGCCGCCAATTC
5900





1480
TCCCCGCAGCCGCCAATTCT
5901





1481
CCCCGCAGCCGCCAATTCTG
5902





1482
CCCGCAGCCGCCAATTCTGA
5903





1483
CCGCAGCCGCCAATTCTGAC
5904





1484
CGCAGCCGCCAATTCTGACC
5905





1485
GCAGCCGCCAATTCTGACCC
5906





1486
CAGCCGCCAATTCTGACCCG
5907





1487
AGCCGCCAATTCTGACCCGG
5908





1488
GCCGCCAATTCTGACCCGGA
5909





1489
CCGCCAATTCTGACCCGGAG
5910





1490
CGCCAATTCTGACCCGGAGC
5911





1491
GCCAATTCTGACCCGGAGCG
5912





1492
CCAATTCTGACCCGGAGCGG
5913





1493
CAATTCTGACCCGGAGCGGG
5914





1494
AATTCTGACCCGGAGCGGGA
5915





1495
ATTCTGACCCGGAGCGGGAC
5916





1496
TTCTGACCCGGAGCGGGACC
5917





1497
TCTGACCCGGAGCGGGACCG
5918





1498
CTGACCCGGAGCGGGACCGG
5919





1499
TGACCCGGAGCGGGACCGGA
5920





1500
GACCCGGAGCGGGACCGGAC
5921





1501
ACCCGGAGCGGGACCGGACC
5922





1502
CCCGGAGCGGGACCGGACCG
5923





1503
CCGGAGCGGGACCGGACCGC
5924





1504
CGGAGCGGGACCGGACCGCG
5925





1505
TGCCGGACCCACGCGGCGGC
5855





1506
CTGCCGGACCCACGCGGCGG
5854





1507
ACTGCCGGACCCACGCGGCG
5853





1508
GACTGCCGGACCCACGCGGC
5852





1509
GGACTGCCGGACCCACGCGG
5851





1510
GGGACTGCCGGACCCACGCG
5850





1511
AGGGACTGCCGGACCCACGC
5849





1512
GAGGGACTGCCGGACCCACG
5848





1513
GGAGGGACTGCCGGACCCAC
5847





1514
AGGAGGGACTGCCGGACCCA
5846





1515
GAGGAGGGACTGCCGGACCC
5845





1516
AGTCTCCCCTTCCCGGAGACT
10265





1517
GTCTCCCCTTCCCGGAGACT
10266





1518
TCTCCCCTTCCCGGAGACTT
10267





1519
CTCCCCTTCCCGGAGACTTA
10268





1520
TCCCCTTCCCGGAGACTTAA
10269





1521
CCCCTTCCCGGAGACTTAAT
10270





1522
CCCTTCCCGGAGACTTAATC
10271





1523
CCTTCCCGGAGACTTAATCT
10272





1524
CTTCCCGGAGACTTAATCTT
10273





1525
TTCCCGGAGACTTAATCTTG
10274





1526
TCCCGGAGACTTAATCTTGC
10275





1527
CCCGGAGACTTAATCTTGCT
10276





1528
CCGGAGACTTAATCTTGCTT
10277





1529
CGGAGACTTAATCTTGCTTC
10278





1530
AAGTCTCCCCTTCCCGGAGA
10264





1531
TAAGTCTCCCCTTCCCGGAG
10263





1532
TTAAGTCTCCCCTTCCCGGA
10262





1533
GTTAAGTCTCCCCTTCCCGG
10261





1534
AGTTAAGTCTCCCCTTCCCG
10260





1535
GCCGGGCCGGCTGGAGAGCGGGTC
5803





1536
CCGGGCCGGCTGGAGAGCGG
5804





1537
AGCCGGGCCGGCTGGAGAGC
5802





1538
TCGCCCCTCCTCCGAGACTTTC
6626





1539
CGCCCCTCCTCCGAGACTTT
6627





1540
GCCCCTCCTCCGAGACTTTC
6628





1541
CCCCTCCTCCGAGACTTTCA
6629





1542
CCCTCCTCCGAGACTTTCAG
6630





1543
CCTCCTCCGAGACTTTCAGT
6631





1544
CTCCTCCGAGACTTTCAGTT
6632





1545
TCCTCCGAGACTTTCAGTTC
6633





1546
CCTCCGAGACTTTCAGTTCC
6634





1547
CTCCGAGACTTTCAGTTCCA
6635





1548
TCCGAGACTTTCAGTTCCAT
6636





1549
CCGAGACTTTCAGTTCCATT
6637





1550
CGAGACTTTCAGTTCCATTC
6638





1551
ATCGCCCCTCCTCCGAGACT
6625





1552
GATCGCCCCTCCTCCGAGAC
6624





1553
GGATCGCCCCTCCTCCGAGA
6623





1554
AGGATCGCCCCTCCTCCGAG
6622





1555
TAGGATCGCCCCTCCTCCGA
6621





1556
ATAGGATCGCCCCTCCTCCG
6620





1557
GATAGGATCGCCCCTCCTCC
6619





1558
TGATAGGATCGCCCCTCCTC
6618





1559
CTGATAGGATCGCCCCTCCT
6617





1560
CCTGATAGGATCGCCCCTCC
6616





1561
ACCTGATAGGATCGCCCCTC
6615





1562
TACCTGATAGGATCGCCCCT
6614





1563
GTACCTGATAGGATCGCCCC
6613





1564
TGTACCTGATAGGATCGCCC
6612





1565
CTGTACCTGATAGGATCGCC
6611





1566
CCTGTACCTGATAGGATCGC
6610





1567
GCCTGTACCTGATAGGATCG
6609





1568
CGCCTGTACCTGATAGGATC
6608





1569
GCGCCTGTACCTGATAGGAT
6607





1570
AGCGCCTGTACCTGATAGGA
6606





1571
CAGCGCCTGTACCTGATAGG
6605





1572
GCAGCGCCTGTACCTGATAG
6604





1573
AGCAGCGCCTGTACCTGATA
6603





1574
AAGCAGCGCCTGTACCTGAT
6602





1575
AAAGCAGCGCCTGTACCTGA
6601





1576
AAAAGCAGCGCCTGTACCTG
6600





1577
GAAAAGCAGCGCCTGTACCT
6599





1578
GGAAAAGCAGCGCCTGTACC
6598





1579
TGGAAAAGCAGCGCCTGTAC
6597





1580
CTGGAAAAGCAGCGCCTGTA
6596





1581
GCTGGAAAAGCAGCGCCTGT
6595





1582
GGCTGGAAAAGCAGCGCCTG
6594





1583
GGGCTGGAAAAGCAGCGCCT
6593





1584
GCACCCCGCCACCCTCAGGGTCGGC
6029





1585
CACCCCGCCACCCTCAGGGT
6030





1586
ACCCCGCCACCCTCAGGGTC
6031





1587
CCCCGCCACCCTCAGGGTCG
6032





1588
CCCGCCACCCTCAGGGTCGG
6033





1589
CCGCCACCCTCAGGGTCGGC
6034





1590
CGCCACCCTCAGGGTCGGCC
6035





1591
GCCACCCTCAGGGTCGGCCT
6036





1592
CCACCCTCAGGGTCGGCCTA
6037





1593
CACCCTCAGGGTCGGCCTAT
6038





1594
ACCCTCAGGGTCGGCCTATA
6039





1595
CCCTCAGGGTCGGCCTATAC
6040





1596
CCTCAGGGTCGGCCTATACT
6041





1597
CTCAGGGTCGGCCTATACTG
6042





1598
TCAGGGTCGGCCTATACTGG
6043





1599
CAGGGTCGGCCTATACTGGC
6044





1600
AGGGTCGGCCTATACTGGCG
6045





1601
GGGTCGGCCTATACTGGCGC
6046





1602
GGTCGGCCTATACTGGCGCG
6047





1603
GTCGGCCTATACTGGCGCGC
6048





1604
TCGGCCTATACTGGCGCGCA
6049





1605
CGGCCTATACTGGCGCGCAT
6050





1606
GGCCTATACTGGCGCGCATC
6051





1607
GCCTATACTGGCGCGCATCC
6052





1608
CCTATACTGGCGCGCATCCA
6053





1609
CTATACTGGCGCGCATCCAT
6054





1610
TATACTGGCGCGCATCCATT
6055





1611
ATACTGGCGCGCATCCATTT
6056





1612
TACTGGCGCGCATCCATTTA
6057





1613
ACTGGCGCGCATCCATTTAC
6058





1614
CTGGCGCGCATCCATTTACT
6059





1615
TGGCGCGCATCCATTTACTA
6060





1616
GGCGCGCATCCATTTACTAT
6061





1617
GCGCGCATCCATTTACTATC
6062





1618
CGCGCATCCATTTACTATCA
6063





1619
AGCACCCCGCCACCCTCAGG
6028





1620
GAGCACCCCGCCACCCTCAG
6027





1621
AGAGCACCCCGCCACCCTCA
6026





1622
AAGAGCACCCCGCCACCCTC
6025





1623
GAAGAGCACCCCGCCACCCT
6024





1624
CGAAGAGCACCCCGCCACCC
6023





1625
GCGAAGAGCACCCCGCCACC
6022





1626
TGCGAAGAGCACCCCGCCAC
6021





1627
CTGCGAAGAGCACCCCGCCA
6020





1628
GCTGCGAAGAGCACCCCGCC
6019





1629
AGCTGCGAAGAGCACCCCGC
6018





1630
AAGCTGCGAAGAGCACCCCG
6017





1631
GAAGCTGCGAAGAGCACCCC
6016





1632
AGAAGCTGCGAAGAGCACCC
6015





1633
GAGCCGCCGCCACCTTCGCCGCCGC
5475





1634
AGCCGCCGCCACCTTCGCCG
5476





1635
GCCGCCGCCACCTTCGCCGC
5477





1636
CCGCCGCCACCTTCGCCGCC
5478





1637
CGCCGCCACCTTCGCCGCCG
5479





1638
GCCGCCACCTTCGCCGCCGC
5480





1639
CCGCCACCTTCGCCGCCGCC
5481





1640
CGCCACCTTCGCCGCCGCCA
5482





1641
GCCACCTTCGCCGCCGCCAC
5483





1642
CCACCTTCGCCGCCGCCACT
5484





1643
CACCTTCGCCGCCGCCACTG
5485





1644
ACCTTCGCCGCCGCCACTGC
5486





1645
CCTTCGCCGCCGCCACTGCC
5487





1646
CTTCGCCGCCGCCACTGCCG
5488





1647
TTCGCCGCCGCCACTGCCGC
5489





1648
TCGCCGCCGCCACTGCCGCC
5490





1649
CGCCGCCGCCACTGCCGCCG
5491





1650
GCCGCCGCCACTGCCGCCGC
5492





1651
CCGCCGCCACTGCCGCCGCC
5493





1652
CGCCGCCACTGCCGCCGCCG
5494





1653
GCCGCCACTGCCGCCGCCGC
5495





1654
CCGCCACTGCCGCCGCCGCT
5496





1655
CGCCACTGCCGCCGCCGCTG
5497





1656
GCCACTGCCGCCGCCGCTGC
5498





1657
CCACTGCCGCCGCCGCTGCT
5499





1658
CACTGCCGCCGCCGCTGCTG
5500





1659
ACTGCCGCCGCCGCTGCTGC
5501





1660
CTGCCGCCGCCGCTGCTGCC
5502





1661
TGCCGCCGCCGCTGCTGCCT
5503





1662
GCCGCCGCCGCTGCTGCCTC
5504





1663
CCGCCGCCGCTGCTGCCTCC
5505





1664
CGCCGCCGCTGCTGCCTCCG
5506





1665
GCCGCCGCTGCTGCCTCCGC
5507





1666
CCGCCGCTGCTGCCTCCGCC
5508





1667
CGCCGCTGCTGCCTCCGCCG
5509





1668
GCCGCTGCTGCCTCCGCCGC
5510





1669
CCGCTGCTGCCTCCGCCGCC
5511





1670
CGCTGCTGCCTCCGCCGCCG
5512





1671
GCTGCTGCCTCCGCCGCCGC
5513





1672
CTGCTGCCTCCGCCGCCGCG
5514





1673
TGCTGCCTCCGCCGCCGCGG
5515





1674
GCTGCCTCCGCCGCCGCGGC
5516





1675
CTGCCTCCGCCGCCGCGGCC
5517





1676
CGAGCCGCCGCCACCTTCGC
5474





1677
CCGAGCCGCCGCCACCTTCG
5473





1678
GCCGAGCCGCCGCCACCTTC
5472





1679
GGCCGAGCCGCCGCCACCTT
5471





1680
TGGCCGAGCCGCCGCCACCT
5470





1681
CTGGCCGAGCCGCCGCCACC
5469





1682
ACTGGCCGAGCCGCCGCCAC
5468





1683
TACTGGCCGAGCCGCCGCCA
5467





1684
GTACTGGCCGAGCCGCCGCC
5466





1685
AGTACTGGCCGAGCCGCCGC
5465





1686
GAGTACTGGCCGAGCCGCCG
5464





1687
GGAGTACTGGCCGAGCCGCC
5463





1688
GGGAGTACTGGCCGAGCCGC
5462





1689
CGGGAGTACTGGCCGAGCCG
5461





1690
CCGGGAGTACTGGCCGAGCC
5460





1691
GCCGGGAGTACTGGCCGAGC
5459





1692
GGCCGGGAGTACTGGCCGAG
5458





1693
GGGCCGGGAGTACTGGCCGA
5457





1694
GGGGCCGGGAGTACTGGCCG
5456





1695
GGGGGCCGGGAGTACTGGCC
5455





1696
CGGGGGCCGGGAGTACTGGC
5454





1697
CGGCATAGTTCCCCGCCTTAC
2002





1698
GGCATAGTTCCCCGCCTTAC
2003





1699
GCATAGTTCCCCGCCTTACT
2004





1700
CATAGTTCCCCGCCTTACTC
2005





1701
ATAGTTCCCCGCCTTACTCT
2006





1702
TAGTTCCCCGCCTTACTCTG
2007





1703
AGTTCCCCGCCTTACTCTGC
2008





1704
GTTCCCCGCCTTACTCTGCT
2009





1705
TTCCCCGCCTTACTCTGCTC
2010





1706
TCCCCGCCTTACTCTGCTCT
2011





1707
CCCCGCCTTACTCTGCTCTA
2012





1708
CCCGCCTTACTCTGCTCTAC
2013





1709
CCGCCTTACTCTGCTCTACC
2014





1710
CGCCTTACTCTGCTCTACCT
2015





1711
ACGGCATAGTTCCCCGCCTT
2001





1712
CACGGCATAGTTCCCCGCCT
2000





1713
TCACGGCATAGTTCCCCGCC
1999





1714
GTCACGGCATAGTTCCCCGC
1998





1715
GGTCACGGCATAGTTCCCCG
1997





1716
CGGTCACGGCATAGTTCCCC
1996





1717
ACGGTCACGGCATAGTTCCC
1995





1718
CACGGTCACGGCATAGTTCC
1994





1719
ACACGGTCACGGCATAGTTC
1993





1720
CACACGGTCACGGCATAGTT
1992





1721
ACACACGGTCACGGCATAGT
1991





1722
CACACACGGTCACGGCATAG
1990





1723
TCACACACGGTCACGGCATA
1989





1724
ATCACACACGGTCACGGCAT
1988





1725
TATCACACACGGTCACGGCA
1987





1726
GTATCACACACGGTCACGGC
1986





1727
TGTATCACACACGGTCACGG
1985





1728
TTGTATCACACACGGTCACG
1984





1729
ATTGTATCACACACGGTCAC
1983





1730
CGGCCCGAGCCTCCGTGACGAGTGC
146348





1731
GGCCCGAGCCTCCGTGACGA
146349





1732
GCCCGAGCCTCCGTGACGAG
146350





1733
CCCGAGCCTCCGTGACGAGT
146351





1734
CCGAGCCTCCGTGACGAGTG
146352





1735
CGAGCCTCCGTGACGAGTGC
146353





1736
GAGCCTCCGTGACGAGTGCC
146354





1737
AGCCTCCGTGACGAGTGCCA
146355





1738
GCCTCCGTGACGAGTGCCAC
146356





1739
CCTCCGTGACGAGTGCCACC
146357





1740
CTCCGTGACGAGTGCCACCC
146358





1741
TCCGTGACGAGTGCCACCCC
146359





1742
CCGTGACGAGTGCCACCCCC
146360





1743
CGTGACGAGTGCCACCCCCT
146361





1744
GTGACGAGTGCCACCCCCTG
146362





1745
TGACGAGTGCCACCCCCTGC
146363





1746
GACGAGTGCCACCCCCTGCT
146364





1747
ACGAGTGCCACCCCCTGCTC
146365





1748
CGAGTGCCACCCCCTGCTCC
146366





1749
GCGGCCCGAGCCTCCGTGAC
146347





1750
TGCGGCCCGAGCCTCCGTGA
146346





1751
ATGCGGCCCGAGCCTCCGTG
146345





1752
TATGCGGCCCGAGCCTCCGT
146344





1753
CTATGCGGCCCGAGCCTCCG
146343





1754
CCTATGCGGCCCGAGCCTCC
146342





1755
TCCTATGCGGCCCGAGCCTC
146341





1756
CTCCTATGCGGCCCGAGCCT
146340





1757
GCTCCTATGCGGCCCGAGCC
146339





1758
GGCTCCTATGCGGCCCGAGC
146338





1759
GGGCTCCTATGCGGCCCGAG
146337





1760
TGGGCTCCTATGCGGCCCGA
146336





1761
ATGGGCTCCTATGCGGCCCG
146335





1762
CATGGGCTCCTATGCGGCCC
146334





1763
CCATGGGCTCCTATGCGGCC
146333





1764
TCCATGGGCTCCTATGCGGC
146332





1765
CTCCATGGGCTCCTATGCGG
146331





1766
CCTCCATGGGCTCCTATGCG
146330





1767
CTGGGAGGGGATCCCTCACCGAGAG
3328





1768
TGGGAGGGGATCCCTCACCG
3329





1769
GGGAGGGGATCCCTCACCGA
3330





1770
GGAGGGGATCCCTCACCGAG
3331





1771
GAGGGGATCCCTCACCGAGA
3332





1772
AGGGGATCCCTCACCGAGAG
3333





1773
GGGGATCCCTCACCGAGAGT
3334





1774
GGGATCCCTCACCGAGAGTT
3335





1775
GGATCCCTCACCGAGAGTTA
3336





1776
GATCCCTCACCGAGAGTTAG
3337





1777
ATCCCTCACCGAGAGTTAGA
3338





1778
TCCCTCACCGAGAGTTAGAA
3339





1779
CCCTCACCGAGAGTTAGAAA
3340





1780
CCTCACCGAGAGTTAGAAAA
3341





1781
CTCACCGAGAGTTAGAAAAG
3342





1782
TCACCGAGAGTTAGAAAAGC
3343





1783
CACCGAGAGTTAGAAAAGCT
3344



















Hot Zones (Relative upstream location to gene start site)







 650-1600


1900-2200


2900-3250


3800-4350


4800-6350


6500-7050









Examples

In FIG. 26, Both KR1 (51) and KR2 (52) demonstrated a dose-dependent inhibition response in BxPC3 (human pancreatic cancer cell line), albeit the dose response in KR1 (51) was more subtle. As would be expected, both KR1 (51) and KR2 (52) at 5 μM showed the lowest inhibition while KR1 (51) and KR2 (52) at 30 μM showed the greatest inhibition. Both KR1 (51) and KR2 (52) (FIG. 28 and FIG. 29) fit the independent and dependent DNAi motif claims.


In FIG. 27, A549 (human lung cancer cell line), KR1 shows significant (P<0.05) inhibition at 10 μM. Neither KR0525 nor the negative control demonstrates significant inhibition. Only KR1 (FIG. 28) fits the independent and dependent DNAi motif claims. KR0525's (FIG. 29) lack of inhibition is attributable to: 1) the linear base of the secondary structure either prior to or at the base of the hairpin does not contain a CG pair, 2) its secondary structure does not contain four nucleotides in its base and 3) it is located too far upstream from the KRAS transcription start site (10,265 bases upstream).


The secondary structures for KR1 and KR2 are shown in FIGS. 28 and 29. Sequence 51 (KR1) is shown in FIG. 28 and Sequence 52 (KR2) is shown in FIG. 29.


The secondary structure for KR0525 is show in FIG. 30. Sequence 53 (KR0525)—No CG in 5′ linear section of the base either prior to or in the base of the hairpin; does not contain 4 nucleotides in the base; located too far from the start site









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11955)







TAATCAACAAAGCATTCATGGAGAAAATAGGTCTTATTCTAAATCTTGAA





TGAGAGAGAATTGTAGCAAACAGAAAGACAAAAAGGTGCTGGGTGAGAAA





AGGAGCAGAGACATAAATAAAATATCCAATTTTAAGGGTATAGAGAGGGG





ATTCACTCAAGGAGGGGAGACCATCTATCTGCTTTGAGAAGCTGGGAAAC





AAAGTCATAGGGTCAGGATGGTGCCTGACTATGGATGCTCTCAAAAGCTA





GGCACCAAGGATTTGGACTGGATTCAGCTGGATATAAGAAGTTATTACAG





ACTTGGAAGCAAGATTAAGTCTCCGGGAAGGGGAGACTTAACTGGGACCA





GAGATCATTTTCCCCTATAATTTTAAAGGTACTTATCATCTTTAGGTACT





CATTAGGTACTTAGCTTGTAACTCTTTCCACTGTTCAAATATATACCCAG





TATGCATGTAGCCTATATGGAGCAGGCACAGAGTAAATGTTTGATGATGA





TAAAAGACATGCGGAAGAAAGGTTAATTTGGCAACATCATAAAACTGAAT





TGAGACAAAGAAAGCCAGGAGGTAGGAAAGTCAATGAAGAAGTTATTCCA





GAAATGTAGCTGAGAAGGAAGGAATACAGAAGAGGCAGATATGGGAAAAT





ACTCAGGAAGTATAATTAAAAGGAGCTGTGACTAATTTTAATAAGGACTG





GGTTAAAAATTAAGTTTTCATGTCTAAATGTTCTGGAGGACCATGATGTC





ACTCAGGTAAGATGGAGGAATTGAGAGAGGGAATTCGTTAGAGGGAATAA





CATGGGGAATTTGGCTTTGGACAGGCATTTGCCATGATAACAGAATATTC





ATTTAGAAATGGTCCAGGAAATTGGTTTGATGAGAATGAAGTGCCTGTGA





AGAGAGAGGACTGAAGCTTGTTATAATTTCATTCACTTCAGGAATATTTA





CAGAGGACCCAAATGTGCTAAGAACTATGAAAACATAGAATTAAAAGAAA





TGGGCCTGGAATAATTTACAACCTAGTAAAGCAGTTATGGGAAAACATAT





TTGCAAAAAAGGTATACAAAGTATAATGAAATAAGTGTCCAGTAAGGATA





AAGTGCAGAGTAAGTGAATTAAGCAGCACCCATTCATGTGTTCAAATTCC





TGCCAGAGTCAAAAGGTTGTGCTGAAGTAGAGTCCATGAAAGCATCGTAG





ATGGCTCCTCCTGCTCAAGTTCCCCTGCTCTGCGTCCTGCTACTCTGGCC





ACAACCGTCTGGACCCAGGGTTGACACACAAACAAACACAATAATCTTTT





AGCCAGACATAAAGAAGGCCAGCCACCAATCAGGAAAATTGTGTCCCATA





AAGGCCCTTCCTATTGAACAGTGAATGACAGACATGGCCAGATCTTCTCT





CTTGGAATGCTTTGAATGTTAGTCACAGAGAGTGACCACTAGAAGCACAG





ATAGCAGTAGAAGCTAAGACTACATGAAAAAGCAGTGGACAGATGGTGAT





TTATGAGAATGGCAAAATTACTAGAGTCATAGGCAATGGATACTTGTTAA





TGAAGGGATGAGCAGGGCCCCACAGCCTGTTGCTGGCTCACAAGTGCAGT





TGATTGCTGGACTGAACAGCAGCTCTCCGCCTGATGATAGGGTTTTTTAA





AGTGTCCTTATTGCCTTAAAGTAAATCCTCAGCATTTGCAGTGCTCTGAG





GGTGTCCTAGCATTTTATACCTTTTTTCTAAGAGCCCAGGTAACATAAGG





GTACTCCTGTTGTTCTGGCTTTAATTCTATCTGCAGAAGAGGGTTTCTTG





TGAAAGAAAGGGTCAGTATGGTCTTTTATCTGTACAGCAGATAAAAAGGG





TATGTACGTGCACACCTTTGTACGTGGCTGCCTTCCCAGGACAGTCTGAC





AGTAGAGGGTAGAAACTTCAGTTGTAGCTGAGAGCAGGCCTGGAATCCCC





ATGCTTATACTTTTTATTTCCTCCCCCCTTTCCCATTGTGATCACAGGCT





ACTTCAGTGTGCTTGTCCTTGGAGAGAGCAAGGGAAGGGAGAGCCAGGGA





GACTGTTCAAGGGAGCCACCAGGCTCGAGAAAGAGGAACCCCTGAAGACA





GTAGAAAGTGCAGGTGCCAAGAATTTGAATATCTACATCAGAGTTTCTCA





ATGTGCACACAGTGAACTACCAGTTTAGGATCATTTGATTTGCTAAAAAT





GAAGATTACTGGTCTACCTTAGACCAACTGAATAAAATATCTGGGTGAGG





GGCCTAGGAACTTGCATTTTTGGTAGGCATGGCAGGTGATTCCTAAAGCA





TTTACCCTTGAGACCTCTATGTTAAGGAAAGAAAGGTAATGTTGCAAGGA





GGTGGTGCCGGCTTCTAAGAAAGTACCCAGGACTGAACGGCAGAAAGACC





TGACATACCATATGTATAAATTGCTGTGGAAGTGAAAAGGAAAGAGAAAG





TGTCTGAGGTAAAACTGGAGTGTGGGGTGCGTGGAACAAATGGTTGGATG





CAGATTTGCTTTACGAATCATGAGCCTAGATGATAACTGAGACCATGTGG





ATGGATTAGGTTTCTGCTAATGCCAGAATTTTTATAATCAGCATAAAAGT





GCTATATAAAGCTTTCCCCTCTTCTATATTATAGTCCTTTTAAGATGTAT





GGAACATCAACTATAGGAAGAACATCATATTCACAGCTGTAAGAGGAAAC





AAGAACTTATCATGCACTTGATGTTGTACAAAATAAATCTGTGATTTATG





CTTGAGTGACCACAAAGTAGCATACACATAAGCGCAAATTCATTCATTTA





AGAATTCCTTGTGTCTATTATGTACGAGATAAGTATCTCTGAGCTGCACG





GAATGTGGCTTATCAGAAGGTGACCTAAGTTTCAAAGCAGATTTTGTTAA





GATGAAGACAGAGATTGACAGGAGGTTTAAGACACTCTGTCTAAAGTAAA





GATTTAGAGTCACAGAGTTCATGGATTAGGATTTAGAATCCACAGAGGGT





CCACAGATTCACTCATTCAACATTCCATAAATATTTATTGAATGCCTTTT





TGTGTCAGAGACTGTCTTAGGTGCTGGAAATTTAGCAGTAAATGAAACAG





ACCAAAACCCATGCCCTCATGGAGCTTACATTCTGATGGTAGAGAGACAA





GAAAACAAAATAGATAGTGTATTATTGAAGGTGATGAGAGCTCTGGAGAA





AAAGTAGGAAAAGAGACAGATCTGGGACAAGGGCGAAATTACAGTATCAA





AGATGATCTTTTTAGGGAAGATCTCCTTTTAAAAACACTTTGGAACAAAG





ATTTAAATGAGGTGCCAGAGGGGTAGCAAGTGCATATTCCCTGAGGAAGA





CGCCTGCCTGGCATTTTCAAGGAACAGCCAGTAACCAATGTTTATCTACG





TAAGTAAGGAAGGGAGAACAGTAGGATGAGAGTTCAGAGAAGAGGGTAGG





GGATATCAAATAATTTAAGGCCATGTAGGATTTTTGAGAAGAATTTTGCT





TTTATGTCAAGTGGAATGAGGGCCACTGATGATCTGGGAGTAGAGTGACT





ATGATCCGACATGAAGTATACTCCATTTTTTAACTATGTGAACTTGTGCC





AACGTTTTAACCTCTAAATCTGTTTCGTCATTTGTAAAACGGTAAAAAGT





ATTTTACCTCATAAGGTTGTCGTGATGATTAAATAAGATGATACGATAAG





TGCAAAAGATTTAGCTTGTACTTAACATAGAGTAGGCACATTTTCTCCCC





TTCCCTGTCTTTCACTTTTCTCTTCTGCCCCTTCCACCTGGCGCTAGGAG





GGGGAGACTGGAATAAACCTTGCAGATTACAGCCCGTGTAAGAGTAGAAA





GGAAAGGATGACAGTTGATGTAAAGCCTTGGTTAACAGACATAATAGCTG





GGATTTAAATTCAGCTTTATTGGTGGTTTATGATGTGGACTAGAGGAATG





GAACTGAAAGTCTCGGAGGAGGGGCGATCCTATCAGGTACAGGCGCTGCT





TTTCCAGCCCTCAATCCTCAAGACTCTCCCAAGATACATTTCTAGGTAGT





TTATCAACACAGACTCCGGGTATGCTAGCATGTTTAATTGCCCCATTGTT





TAATGTCTTAACTCCACGAACTTTAACTGATTAATCTGTCTTCTAATTAA





TGTTTGAATGACTCTCCTCAGGTCTAAACTACCAAGGCCATCTCTACTTA





AAAACAGTTGTCTTTTGTTTGTGATTTCAGGGGCCCTGGGTATAAGCGAA





GTCCCTGTTTAGAGACCTTGTGATGGGTTCAAAATATCAAGAAAGATAGC





AAAATATCACAAGCCTCCTGACCCGAGAAGATTAGCGTTGAAAGGGTCTG





TCGTGTTTGTTTGGGCCTGGGGCTAAATTCCCAGCCCAAGTGCTGAGGCT





GATAATAATCGGGGCGGCGATCAGACAGCCCCGGTGTGGGAAATCGTCCG





CCCGGTCTCCCTAAGTCCCCGAAGTCGCCTCCCACTTTTGGTGACTGCTT





GTTTATTTACATGCAGTCAATGATAGTAAATGGATGCGCGCCAGTATAGG





CCGACCCTGAGGGTGGCGGGGTGCTCTTCGCAGCTTCTCTGTGGAGACCG





GTCAGCGGGGCGGCGTGGCCGCTCGCGGCGTCTCCCTGGTGGCATCCGCA





CAGCCCGCCGCGGTCCGGTCCCGCTCCGGGTCAGAATTGGCGGCTGCGGG





GACAGCCTTGCGGCTAGGCAGGGGGCGGGCCGCCGCGTGGGTCCGGCAGT





CCCTCCTCCCGCCAAGGCGCCGCCCAGACCCGCTCTCCAGCCGGCCCGGC





TCGCCACCCTAGACCGCCCCAGCCACCCCTTCCTCCGCCGGCCCGGCCCC





CGCTCCTCCCCCGCCGGCCCGGCCCGGCCCCCTCCTTCTCCCCGCCGGCG





CTCGCTGCCTCCCCCTCTTCCCTCTTCCCACACCGCCCTCAGCCGCTCCC





TCTCGTACGCCCGTCTGAAGAAGAATCGAGCGCGGAACGCATCGATAGCT





CTGCCCTCTGCGGCCGCCCGGCCCCGAACTCATCGGTGTGCTCGGAGCTC





GATTTTCCTAGGCGGCGGCCGCGGCGGCGGAGGCAGCAGCGGCGGCGGCA





GTGGCGGCGGCGAAGGTGGCGGCGGCTCGGCCAGTACTCCCGGCCCCCGC





CATTTCGGACTGGGAGCGAGCGCGGCGCAGGCACTGAAGGCGGCGGCGGG





GCCAGAGGCTCAGCGGCTCCCAGGTGCGGGAGAGAGGTACGGAGCGGACC





ACCCCTCCTGGGCCCCTGCCCGGGTCCCGACCCTCTTTGCCGGCGCCGGG





CGGGGCCGGCGGCGAGTGAATGAATTAGGGGTCCCCGGAGGGGCGGGTGG





GGGGCGCGGGCGCGGGGTCGGGGCGGGCTGGGTGAGAGGGGTCTGCAGGG





GGGAGGCGCGCGGACGCGGCGGCGCGGGGAGTGAGGAATGGGCGGTGCGG





GGCTGAGGAGGGTGAGGCTGGAGGCGGTCGCCGCTGGTGCTGCTTCCTGG





ACGGGGAACCCCTTCCTTCCTCCTCCCCGAGAGCCGCGGCTGGAGGCTTC





TGGGGAGAAACTCGGGCCGGGCCGGCTGCCCCTCGGAGCGGTGGGGTGCG





GTGGAGGTTACTCCCGCGGCGCCCCGGCCTCCCCTCCCCCTCTCCCCGCT





CCCGCACCTCTTGCCTCCCTTTCCAGCACTCGGCTGCCTCGGTCCAGCCT





TCCCTGCTGCATTTGGCATCTCTAGGACGAAGGTATAAACTTCTCCCTCG





AGCGCAGGCTGGACGGATAGTGGTCCTTTTCCGTGTGTAGGGGATGTGTG





AGTAAGAGGGGAGGTCACGTTTTGGAAGAGCATAGGAAAGTGCTTAGAGA





CCACTGTTTGAGGTTATTGTGTTTGGAAAAAAATGCATCTGCCTCCGAGT





TCCTGAATGCTCCCCTCCCCCATGTATGGGCTGTGACATTGCTGTGGCCA





CAAAGGAGGAGGTGGAGGTAGAGATGGTGGAAGAACAGGTGGCCAACACC





CTACACGTAGAGCCTGTGACCTACAGTGAAAAGGAAAAAGTTAATCCCAG





ATGGTCTGTTTTGCTTGGTCAAGTTAAACCCGAAGAAAACCCGCAGAGCA





GAAGCAAGGCTTTTTCCTTGCTAGTTGAGTGTAGACAGCAATAGCAAAAA





TAGTACTTGAAGTTTAATTTACCTGTTCTTGTCCTTTCCCCTATTTCTTA





TGTATTACCCTCATCCCCTCGTCTCTTTTATACTACCCTCATTTTGCAGA





TGTGTTCTACATCTCAAGAGTTATTACAGTACTCCAAAACAGCACTTACA





TGATTTTTTAAACTTACAGAGGAATTGTAGCAATCCACCAGCTAACCGCC





TGAAATAGACTTAAACATGTGCATCTCCTTTTTTTTTTTTTTTTTGAGAC





ACAGTCTCGCTCTGTTGCCCAGGCTGGAGTGCAATGGCGCGGTATCGGCT





CACTGAAACCTCCGCCTCCTGGGTTCAAGCAATTCTCCTGCCTCAGCCTC





CCGAGTAGCTGGGACTAGTAGGTGCACGCCACCATGCCCAGCTAATTTTT





GTATTTTTAGTAGAGACAGAGTTTCATCATGTTGGTCAGGATGGTCTCCA





TCTGCTCTGTTGCCCAGGCTGGAGTGCAGTGGCGCCGTCTCGGCTCACTG





CAACCTCTGCCTCCTGCATTCAAGCAATTCTCCTGCCTCAGCCTCCCGAA





TAACTGGGATTACAGGTGTCTGCTGCCATGCCCGGCTAATTTTTTGTATT





TTTAGTAGAGACGGGGGTTTCACCATGTTGGTCAGGCTGGTCTAGAACTC





CTGACCTCGTGATCTGCCCGCCTCGGCCTCCCACAGTGGCATGTGCATCT





TATAGCTGAAGTCTAAGCCTTCTTAAATCTTGAGATCCATCAAAACAGAC





AGGTTTTCTAATTGTTATACAATGTATATGTTATGTTTATAATAGAAATC





ATTTTACAAATAAGTTATAAATGGGAAAGGTCTATTTGTAATTATCAGCT





CAGAATTAACCATAAAACTGGTGTCACTGAAGTGACTGAGGTCCAAAATG





CTGACTCTGCATGTTATAGACTACAGATATCAAATATGGTTGCTAACAAT





AGTTTACTTTGAGACTGTAGCCATCCACAGTATATTTGCTTTTAAGAGAT





GGTAGATGGTAATTCAGTTTTATGAAAAATAAAAATGAATTTTCTTCCAT





TACAAAATTGTTGGATTCGAGTCCAGTCCACTCCTTACTAGCTTTTCTAA





CTCTCGGTGAGGGATCCCCTCCCAGCCCATGATCTTCATTTGGTAAGACT





CCTTTGGAACCCAGTTCTCTCTAGTGGATTTAAATGTGATTTGGTTTTAA





AAATCTCATTCAAGGAATTTTTTTTTTTTCTGGAAACAACCACCGCATAA





ACAAGTAAACCGGAAGATACATGTGGCTCTGAATTCATATATATACACAA





ACTCTAATCCAATGTCTGTCCACAGTATTTCCTAGGCTAGTAAACTTTTT





GGCCTTAACGACCCCTCTACCCTCTTTGTTTTTTTGAGAGAGAGAGTCTC





ACTCTGTCACCCAGGCCGGAATGCAGTGGCGCGATCTCGGCCCGCTACTA





CCTCCGACTCTCAGGCTCAAGCGATTCTCCCGCCTCAGCTTCCCGAGTAG





CCGGGATTACAGGCTCCCGCCACCGGGCTAATTGTATTTTTAGATACGGG





ATTTCACCATGTTGGCCAGGCTGGTCTCGACCTCCTGACCTCAGGTGATC





CGCCCGCCTAAGCCTCCCAAAGTGCTGGGATTACAGGCCACCACACCCGG





CCTACACTCTTAAAAATTATCGAAGGGGCCGGGCACATTGGCTCTTATCT





GTAATCCCAGCACTTTGGGAGACTGAGGCGGGAGGATCGCTTGAGGCCAG





GAGTTGGAGACCAGCGTACTCAACATAGTGAGACCTTGTTATAAAGAAAA





AAAAAATCCAGGATTAAAAAAAATCTTTGATTTGTTTGGGATTTATTAAT





ATTTACCGTATTGGAAATTAAAACAATTTTTTAAAATGTATTCATTTAAA





AATAATAAGCCCATTACTTGGTAACATGAATAAAATATTTTATGAAAAAT





AACTATTTTCCAAAACAAAACCAAAACTTAGAAAAGTGGTATTGTTTCAC





ACTTCAGTAAATCTCTTTAATGATGTGGCTTAATAGAAGATATGGATTCT





TATATCTGCATCTGCATTCAATCTATTATGATCACACATCTGGAAAACTT





GTGAAAGAATGGGAGTTAAAAGGGTAAAGGACATCTTAATGTTATTATGA





AAACAGTTTTGACCTCTTGCACACCAGAAAAGTCTTAGTAACCTGAGGGG





TTCCTAGACCACATTTTGAGAACTGTTTTAGGCTATGCAAACTGGTTGGG





GGGAGGTTGGGGTAGGCAGAGAGCTAGAAGATACATTTTAGTGTAATTCT





CCTCATCTATTCCTAATTGCTTTGGCCTACATTTGAAATAAAGCGTGGAG





GCAAACGGGATAAGATACATGTTTGTAGTGGTTGTTAACTTCACCCTAGA





CAAGCAGCCAATAAGTCTAGGTAGAGCAGAGTAAGGCGGGGAACTATGCC





GTGACCGTGTGTGATACAATTTTTCTAGCCTGTGGTGCTTTTTGCGGCAG





GGCTTAGGAGTAAGGTTAGTATGTTATCATTTGGGAAACCAAATTATTAT





TTTGGGTCTTCAGTCAATTATGATGCTGTGTATATTTAGTGTTTATCTAC





AATATATGCACATTCATTAATTTGGAGCTACTCATCCTATAATAAATAGT





TGTGCATTTACTCCCATTTTTTTCTGCATTTCTCTCCTTATTTATAATTA





TGTGTTACATGAGGGAAAGGAGGTGAAATTAAACATTCATATTATTTCAA





AAAATTTGAAACAACTAACTAAAAAATATGTTTTATTTTCTGTATGGTGT





TTGTTATACAATCTGTCAATATTCATGCACCTCTTGGGAGACAGTGTATG





AAAAGCAAAGAGTAACAGTCACATGGATTACTGATTACTGAGATATATTC





ACTTGCATCTTTTTTTTTTTTTGAGACGGAGTGGCTCTGTCGCCCAGGCT





GGAGTGCAGTGGCGTGATCTCGGCTCACTGCAAGCTCCGCCTCCTGGGTT





CACGCCATTCTTCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGCC





CGCCACCACGCCCGGCTAATTTTTTTATATTTTTAGTAGAGACGGGGTTT





CACCGGGTTAGCCAGGATGGTCTTGATCTCCTGACCTCGTGATCCACCCT





CCTCGGCCTCCCAAAGTGCTAGGATTATAGGCGTGAGCCACCGTGCCCGG





CTCACTTGCATCTCTTAACAGCTGTTTTCTTACTAAAAACAGTGTTTATC





TCTAATCTTTTTGTTTGTTTGTTTGTTTTGAGATGGAGTCTTACTCCGTC





ACCCAATCTGGAGTGCAGTGGCGTGATCTGGGCTCACTGCAACCTCTGCC





TCCCGGGTTCAAGTGATTCTCCTTCCTCAGCCTCCCCAGTAGCTAGGACT





ACAGGAGAGCGCCACCACGCCTGATTAATTTTTGTATTTTTAGTAGAGAG





AGGGTTTCACCATATTGGCCAGGCTGGTCTTGAACTCCTGGCCTCAGGTG





ATCCACCCGCCTTGGCCTCTGAAAGTGCTGGGATTACAGGCATGAGCCGC





CGCACCCGGCTTTCTAATCTTTATCTTTTTTTGTGCAGCGGTGATACAGG





ATTATGTATTGTACTGAACAGTTAATTCGGAGTTCTCTTGGTTTTTAGCT





TTATTTTCCCCAGAGATTTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTC





TTGCTCTATCGCCAGGCTGGAGTGCAGTGGCGCCATCTCGGCTCATTGCA





ACCTCGGACTCCTATTTTCCCCAGAGATATTTCACACATTAAAATGTCGT





CAAATATTGTTCTTCTTTGCCTCAGTGTTTAAATTTTTATTTCCCCATGA





CACAATCCAGCTTTATTTGACACTCATTCTCTCAACTCTCATCTGATTCT





TACTGTTAATATTTATCCAAGAGAACTACTGCCATGATGCTTTAAAAGTT





TTTCTGTAGCTGTTGCATATTGACTTCTAACACTTAGAGGTGGGGGTCCA





CTAGGAAAACTGTAACAATAAGAGTGGAGATAGCTGTCAGCAACTTTTGT





GAGGGTGTGCTACAGGGTGTAGAGCACTGTGAAGTCTCTACATGAGTGAA





GTCATGATATGATCCTTTGAGAGCCTTTAGCCGCCGCAGAACAGCAGTCT





GGCTATTTAGATAGAACAACTTGATTTTAAGATAAAAGAACTGTCTATGT





AGCATTTATGCATTTTTCTTAAGCGTCGATGGAGGAGTTTGTAAATGAAG





TACAGTTCATTACGATACACGTCTGCAGTCAACTGGAATTTTCATGATTG





AATTTTGTAAGGTATTTTGAAATAATTTTTCATATAAAGGTGAGTTTGTA





TTAAAAGGTACTGGTGGAGTATTTGATAGTGTATTAACCTTATGTGTGAC





ATGTTCTAATATAGTCACATTTTCATTATTTTTATTATAAGGCCTGCTGA





AAATG






7) MTTP. Microsomal triglyceride transfer protein is an an essential chaperone for the biosynthesis/lipoprotein assembly of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins Inhibition of MTTP prevents the assembly of apo B-containing lipoproteins by inhibiting chylomicrons and VLDL synthesis. As a result, decreases in plasma levels of LDL-C are observed (Shoulders et al., Hum Mol Genet 2 (12): 2109-16). Patients carry mutations in the MTTP gene exhibit abetalipoproteinemia resulting from the loss of its lipid transfer activity.


MTTP is also recognized to play a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. Recently, MTTP has been implicated in the propagation of hepatitis C virus, where the virus hijacks lipoprotein assembly for its secretion. Therefore, MTTP is a good target to lower plasma lipids and treat disorders characterized by higher production of apoB-containing lipoproteins such as atherosclerosis, metabolic syndrome, familial combined hyperlipidemia, homozygous and heterozygous familial hypercholesterolemia and hypertriglyceridemia (reviewed in Hussain et al. Nutrition & Metabolism 2012, 9:14). MTTP is also recognized to be involved in the immune response against foreign lipid antigens, such that targeting it may also be useful for modulating the inflammatory response during T cell mediated processes such as inflammatory bowel disease, autoimmune hepatitis and asthma (Hussain et al., Curr Opin Lipidol 2008, 19:277-284). Current therapies that inhibit MTTP without increasing hepatic lipids and plasma transaminases are lacking.


Protein: MTTP Gene: MTTP (Homo sapiens, chromosome 4, 100485240-100545154 [NCBI Reference Sequence: NC000004.11]; start site location: 100496067; strand: positive)












Gene Identification


















GeneID
4547



HGNC
7467



HPRD
01144



MIM
157147




















Targeted Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site





1784
AACCGCCGTAGCCTCCACTGCG
10855





1870
TGGCCGCAGTTCGATGACGTAAGACG
10828



















Target Shift Sequences











Relative




upstream


Sequence

location to gene


ID No:
Sequence (5′-3′)
start site





1784
AACCGCCGTAGCCTCCACTGCG
10855





1785
ACCGCCGTAGCCTCCACTGC
10856





1786
CCGCCGTAGCCTCCACTGCG
10857





1787
CGCCGTAGCCTCCACTGCGT
10858





1788
GCCGTAGCCTCCACTGCGTA
10859





1789
CCGTAGCCTCCACTGCGTAA
10860





1790
CGTAGCCTCCACTGCGTAAC
10861





1791
GTAGCCTCCACTGCGTAACT
10862





1792
TAGCCTCCACTGCGTAACTA
10863





1793
AGCCTCCACTGCGTAACTAC
10864





1794
GCCTCCACTGCGTAACTACC
10865





1795
CCTCCACTGCGTAACTACCG
10866





1796
CTCCACTGCGTAACTACCGC
10867





1797
TCCACTGCGTAACTACCGCC
10868





1798
CCACTGCGTAACTACCGCCC
10869





1799
CACTGCGTAACTACCGCCCC
10870





1800
ACTGCGTAACTACCGCCCCT
10871





1801
CTGCGTAACTACCGCCCCTG
10872





1802
TGCGTAACTACCGCCCCTGC
10873





1803
GCGTAACTACCGCCCCTGCC
10874





1804
CGTAACTACCGCCCCTGCCT
10875





1805
GTAACTACCGCCCCTGCCTC
10876





1806
TAACTACCGCCCCTGCCTCT
10877





1807
AACTACCGCCCCTGCCTCTG
10878





1808
ACTACCGCCCCTGCCTCTGG
10879





1809
CTACCGCCCCTGCCTCTGGG
10880





1810
TACCGCCCCTGCCTCTGGGA
10881





1811
ACCGCCCCTGCCTCTGGGAA
10882





1812
CCGCCCCTGCCTCTGGGAAT
10883





1813
CGCCCCTGCCTCTGGGAATT
10884





1814
CAACCGCCGTAGCCTCCACT
10854





1815
GCAACCGCCGTAGCCTCCAC
10853





1816
CGCAACCGCCGTAGCCTCCA
10852





1817
ACGCAACCGCCGTAGCCTCC
10851





1818
GACGCAACCGCCGTAGCCTC
10850





1819
AGACGCAACCGCCGTAGCCT
10849





1820
AAGACGCAACCGCCGTAGCC
10848





1821
TAAGACGCAACCGCCGTAGC
10847





1822
GTAAGACGCAACCGCCGTAG
10846





1823
CGTAAGACGCAACCGCCGTA
10845





1824
ACGTAAGACGCAACCGCCGT
10844





1825
GACGTAAGACGCAACCGCCG
10843





1826
TGACGTAAGACGCAACCGCC
10842





1827
ATGACGTAAGACGCAACCGC
10841





1828
GATGACGTAAGACGCAACCG
10840





1829
CGATGACGTAAGACGCAACC
10839





1830
TCGATGACGTAAGACGCAAC
10838





1831
TTCGATGACGTAAGACGCAA
10837





1832
GTTCGATGACGTAAGACGCA
10836





1833
AGTTCGATGACGTAAGACGC
10835





1834
CAGTTCGATGACGTAAGACG
10834





1835
GCAGTTCGATGACGTAAGAC
10833





1836
CGCAGTTCGATGACGTAAGA
10832





1837
CCGCAGTTCGATGACGTAAG
10831





1838
GCCGCAGTTCGATGACGTAA
10830





1839
GGCCGCAGTTCGATGACGTA
10829





1840
TGGCCGCAGTTCGATGACGT
10828





1841
ATGGCCGCAGTTCGATGACG
10827





1842
AATGGCCGCAGTTCGATGAC
10826





1843
AAATGGCCGCAGTTCGATGA
10825





1844
GAAATGGCCGCAGTTCGATG
10824





1845
CGAAATGGCCGCAGTTCGAT
10823





1846
TCGAAATGGCCGCAGTTCGA
10822





1847
TTCGAAATGGCCGCAGTTCG
10821





1848
GTTCGAAATGGCCGCAGTTC
10820





1849
GGTTCGAAATGGCCGCAGTT
10819





1850
GGGTTCGAAATGGCCGCAGT
10818





1851
CGGGTTCGAAATGGCCGCAG
10817





1852
GCGGGTTCGAAATGGCCGCA
10816





1853
TGCGGGTTCGAAATGGCCGC
10815





1854
TTGCGGGTTCGAAATGGCCG
10814





1855
ATTGCGGGTTCGAAATGGCC
10813





1856
CATTGCGGGTTCGAAATGGC
10812





1857
CCATTGCGGGTTCGAAATGG
10811





1858
TCCATTGCGGGTTCGAAATG
10810





1859
TTCCATTGCGGGTTCGAAAT
10809





1860
CTTCCATTGCGGGTTCGAAA
10808





1861
TCTTCCATTGCGGGTTCGAA
10807





1862
TTCTTCCATTGCGGGTTCGA
10806





1863
TTTCTTCCATTGCGGGTTCG
10805





1864
CTTTCTTCCATTGCGGGTTC
10804





1865
CCTTTCTTCCATTGCGGGTT
10803





1866
CCCTTTCTTCCATTGCGGGT
10802





1867
CCCCTTTCTTCCATTGCGGG
10801





1868
TCCCCTTTCTTCCATTGCGG
10800





1869
CTCCCCTTTCTTCCATTGCG
10799





1870
TGGCCGCAGTTCGATGACGTAAGACG
10828





1871
GGCCGCAGTTCGATGACGTA
10829





1872
GCCGCAGTTCGATGACGTAA
10830





1873
CCGCAGTTCGATGACGTAAG
10831





1874
CGCAGTTCGATGACGTAAGA
10832





1875
GCAGTTCGATGACGTAAGAC
10833





1876
CAGTTCGATGACGTAAGACG
10834





1877
AGTTCGATGACGTAAGACGC
10835





1878
GTTCGATGACGTAAGACGCA
10836





1879
TTCGATGACGTAAGACGCAA
10837





1880
TCGATGACGTAAGACGCAAC
10838





1881
CGATGACGTAAGACGCAACC
10839





1882
GATGACGTAAGACGCAACCG
10840





1883
ATGACGTAAGACGCAACCGC
10841





1884
TGACGTAAGACGCAACCGCC
10842





1885
GACGTAAGACGCAACCGCCG
10843





1886
ACGTAAGACGCAACCGCCGT
10844





1887
CGTAAGACGCAACCGCCGTA
10845





1888
GTAAGACGCAACCGCCGTAG
10846





1889
TAAGACGCAACCGCCGTAGC
10847





1890
AAGACGCAACCGCCGTAGCC
10848





1891
AGACGCAACCGCCGTAGCCT
10849





1892
GACGCAACCGCCGTAGCCTC
10850





1893
ACGCAACCGCCGTAGCCTCC
10851





1894
CGCAACCGCCGTAGCCTCCA
10852





1895
GCAACCGCCGTAGCCTCCAC
10853





1896
CAACCGCCGTAGCCTCCACT
10854





1897
AACCGCCGTAGCCTCCACTG
10855





1898
ACCGCCGTAGCCTCCACTGC
10856





1899
CCGCCGTAGCCTCCACTGCG
10857





1900
CGCCGTAGCCTCCACTGCGT
10858





1901
GCCGTAGCCTCCACTGCGTA
10859





1902
CCGTAGCCTCCACTGCGTAA
10860





1903
CGTAGCCTCCACTGCGTAAC
10861





1904
GTAGCCTCCACTGCGTAACT
10862





1905
TAGCCTCCACTGCGTAACTA
10863





1906
AGCCTCCACTGCGTAACTAC
10864





1907
GCCTCCACTGCGTAACTACC
10865





1908
CCTCCACTGCGTAACTACCG
10866





1909
CTCCACTGCGTAACTACCGC
10867





1910
TCCACTGCGTAACTACCGCC
10868





1911
CCACTGCGTAACTACCGCCC
10869





1912
CACTGCGTAACTACCGCCCC
10870





1913
ACTGCGTAACTACCGCCCCT
10871





1914
CTGCGTAACTACCGCCCCTG
10872





1915
TGCGTAACTACCGCCCCTGC
10873





1916
GCGTAACTACCGCCCCTGCC
10874





1917
CGTAACTACCGCCCCTGCCT
10875





1918
GTAACTACCGCCCCTGCCTC
10876





1919
TAACTACCGCCCCTGCCTCT
10877





1920
AACTACCGCCCCTGCCTCTG
10878





1921
ACTACCGCCCCTGCCTCTGG
10879





1922
CTACCGCCCCTGCCTCTGGG
10880





1923
TACCGCCCCTGCCTCTGGGA
10881





1924
ACCGCCCCTGCCTCTGGGAA
10882





1925
CCGCCCCTGCCTCTGGGAAT
10883





1926
CGCCCCTGCCTCTGGGAATT
10884





1927
ATGGCCGCAGTTCGATGACG
10827





1928
AATGGCCGCAGTTCGATGAC
10826





1929
AAATGGCCGCAGTTCGATGA
10825





1930
GAAATGGCCGCAGTTCGATG
10824





1931
CGAAATGGCCGCAGTTCGAT
10823





1932
TCGAAATGGCCGCAGTTCGA
10822





1933
TTCGAAATGGCCGCAGTTCG
10821





1934
GTTCGAAATGGCCGCAGTTC
10820





1935
GGTTCGAAATGGCCGCAGTT
10819





1936
GGGTTCGAAATGGCCGCAGT
10818





1937
CGGGTTCGAAATGGCCGCAG
10817





1938
GCGGGTTCGAAATGGCCGCA
10816





1939
TGCGGGTTCGAAATGGCCGC
10815





1940
TTGCGGGTTCGAAATGGCCG
10814





1941
ATTGCGGGTTCGAAATGGCC
10813





1942
CATTGCGGGTTCGAAATGGC
10812





1943
CCATTGCGGGTTCGAAATGG
10811





1944
TCCATTGCGGGTTCGAAATG
10810





1945
TTCCATTGCGGGTTCGAAAT
10809





1946
CTTCCATTGCGGGTTCGAAA
10808





1947
TCTTCCATTGCGGGTTCGAA
10807





1948
TTCTTCCATTGCGGGTTCGA
10806





1949
TTTCTTCCATTGCGGGTTCG
10805





1950
CTTTCTTCCATTGCGGGTTC
10804





1951
CCTTTCTTCCATTGCGGGTT
10803





1952
CCCTTTCTTCCATTGCGGGT
10802





1953
CCCCTTTCTTCCATTGCGGG
10801





1954
TCCCCTTTCTTCCATTGCGG
10800





1955
CTCCCCTTTCTTCCATTGCG
10799



















Hot Zones (Relative upstream location to gene start site)







10750-10900









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11956)







TCTTGAAAATAATCTGTCCTCTCTATCTAGTTCCTTTAAATATCTTCTCT





CTCTCTCTGATATTCTGCAGTTTAATTATGATGTATCTACTTGTGTGTAT





GTGTGTTTTAAAAATTATCCTGCTTAAGACTTATTGAGCCTCGTGAATCT





GTGGATTGGTATCTGTGATAGGCAGACAATGGCTCCCCAAAGATCTTAAA





TGTCTTAATCTCCAGAACCTGTGATAGTCTAAGTTAAGGTTGTAGATGAA





ATTAAAGTTACCAATCCACAGACCTCAGGGTAAAAAGATTATCCTGGATT





ATTTAGGCAGGCCCAGTATAATCACAAGGATTCATAAAACGGAAGAGGGA





GACAGAAGAGATGGTCAGAGTGATATGAAGTAAAAAGGATTCAGCTTACT





CTTGCTGGATTTGTAAATGCAGGAAGGGACCACGAGTCAAGGAATGCAGG





TAGCTTCTAGAAGCTAGAAAAGGTAAGAAACAAATTCTCCCCTAAAGCCT





CCAGAAAGGGATACACCTGCCAATACTTTCATTTTATCCCTGTGAGACCA





GTGTTAGACTTCTGACCTCCAAGAGTATAAGACAATAAATCTGCTGTTTT





AAGCCACTAAGTTTTGTGGTAATTTGTTATGGTAGCTATGGAGAACTGAT





ACAGTGCCTTTCAATAGTTCTTGGAAATTCTTCAAATATATTCCCCAAAT





ATTGCCTTTGCACCACTCACTCTATCCTCTATATCTCTTGACCTCTCTTT





AACATTTTTTATTTTCTTATTTTGGTAATTATTTAAAACAATTGGCTTCT





TGTTCCACTTCAAATAAATTCATATTTTTATATCTACATATTAAGAATTA





GTTCATAAATGTAATTGTTGTATCGTATATACTTTAAAAGGAAAATTGCA





TTTATACTTGGATATTATTATATTTTAGGTTTTGAAATTTCTTTTTTTAA





ATGTCTGATAAATTTATTCTGATCAAAATTAAAATCTTATTGTATTTACA





GTAGTCTACTAAAAGAGTTTACATCAATTCTCTCCTTTAAATGCTAGCAA





TTCAGTTTTGTGTGGTCAAAGATAATTTAGAATCCTTTTATGGTAACTGA





TATGATACAAAGGATTTTTTTGGTTGTTGTCAAATTTGTATGTGCGTATA





TATGTATAGGGGGTAGAAAATTTGGTTAGTGACTCTATTTTGGAAAAATG





AATGTTCTTTTTGGAGTTTTAGATTCCCAGTGTTTCAAACCAAGTTTGCT





TTTGATAAGGAATTCAGTGAATCTTTATTTTCTCGTAGAGAATTTTTAAA





CAATACCTTTCAAAATATTGTATGTATTCCTATATAATTTTGCCTTGGAA





TAAAAAAAGTCATCACATTAAGAATATTTTTAACTTAAGAAATTTTTTCA





AGATTCTTTCAAAATGCTAACTCCCTCATTGATTTGAAAATACTTTTAGA





GTTTAAACTATTATGACCATGTAGGGATAACTTAAAGTGTCCTTCTAAAT





TTTTTTTTCATTAATGTCATGCTTCTTTCTAAGAACAAAGTGTTTCAATG





TTATAAACAGACTGTTTTTTCACATAGCTTTCATACATCCTGACTTTCTA





TATCTAGTAGGGTAATACATTTCCTTCCAACCTTTAGTGGGGTGAAGTTC





ATTTGTCTTCTAATCTAAGAAAATACGTTAACTCCTGACAACCTCTGACA





CTCAACAGAAACACAACTGTACTTTGGAATTAATCATCCATCTTTATTTC





ATAGTCTCCTTATTTATCAATGCAAATGGAAGTATAGCAAATATTTCACA





GTGTCATGTACTACCTAAGGAATTTCATTGCAATAGCATTGTTTTGAAAT





GTATCATTTGATTTTGATCTAACTATCATAGATCAGTTTTACCCCTGTAT





GTTCAGCCTGAATGTCTAACCACAATTTCACAAAAATCAAGGGCTCTGTT





AGTTTTCATACAAAATTGTGATGACTTATTATGAAGACAGTCCCAATTAA





CAATTGCATGTCATCTGTAAGAAATCAATTTTTTTCTCACTCCCCACCTG





TAATTTTTTTTAAGCAAAGAAGAATACTTGGGTCTAGGTTTCAAGGTTTA





TTTTTCTGTAGTCCTAATATCACTTCAGTAAATTAATCTGAGACTCATTT





TTCTAATATGTCAAATGACTGTTGTAAGGATTATTATAAAAACGTAAGGT





GATTAACAAAGTATGTAATTGTTCCATAGATGGCAGCTCTTGTTTTTTTA





CTGTGCTTTGCTTCTGCCCTGCTTCACATATTATGTAAAATAGCTGGTGA





GTTTTAGGAGGTAGTGCTCACATGTTTGCACAGTGTTTGCTGTGGACGAT





CAACAGTAACAGAAGAGCATACTTCTTCGATACACAGAGTTTACTGAATT





TGGAAAGGCTTTGGCATTCTTATGTCATCTGTAATGAAACAATCTCCAGA





AGTCTTTTCTAAAATGTCCTTGTAAAAAGAAAAAAGTTATGTTTATATTT





TATAAAAGGATGATGTTATTTATAACCAGCAGAAGCAGCCTTATTTGAAC





ATCTTATGTTGAAATTGCTACTTAATACAGTGACTCATAGGAGCTTTCTA





GTGGAAATCAAATGCTCAAATGAAATAGAATTTAGTTTGTTAGGCAATAG





TGATATGTCTTTTATTGGTTGGACTCTGGAAAACACTTGACAACGAATAG





TACTTTACCCGAAGGGCACGTATCATGCACCACATAGCCTAACCACAAAC





ATTAAAGGTCTTGTAACTGTGAGCCTCAAATGAAAATACATAAGGACAGC





TCTCATACAATCAAATACAATACAAACTAGCTTTTAATTTAAATAAATAT





GTAAGTAAAGTTCAAGTGACTATAATGATTTTATATCCCTATGTATGTAT





CACAGAAATTGTGGCAAACTGTAGAAATCTATTCAAATGGAAAGTAACAA





AGCACTTTCACATTGCCTTGTATTCAAAATCCCTACTCTTCATAAAAACT





TATATTTCTTTAACAAAGCTACTTTTCTGTTTAACTCCCGGAAAACTTCG





TATTTATAACTTAAGGGGGTTTCTCCAACCAAACAATTTATTTTTGCTAG





GTACTATAGCTATATTTTTTATACAAAATTTGTGACAGCAAATGAAATTC





TAATCCCAATAGAAGAACAAACAATTTTCATGTTTCGATCTTCATATATA





TAATTCAAGAGGAAATATGCTTAACTTTGTAGATTTTTACATTTTAAATT





GCATTGTGTCTGTATCAAGTCTACTATCTTTTACCTAGATTGTCTGGAAG





ATTTAAGCTCAAGGTTACGGTTTGAGAAAAGGGTTTTGAGAGTGACCAGG





ATAGATTTAAGAATTCATTTTATACTAAAATATGGCCATAAATATTTTTA





AATACATTCAAATAGCCCTTTGCTGGCACATTTTTTCCCTTCTTTGCCAA





AACATTCCCACAGGCGGCCTAAGTCACCTCATTTTATAGGTTTAGTAGGT





TTAGCAGGCTTTATGTGCTCTAGTAGGGTTAGTAGGTTTTGTTCATATCA





GGTCTCTCTCATGGGAGTTTCCAGGGACAAGGATTGCTTCAGTTAGTATG





GCCTTAGCCATACTAGGGTATTTGCTTTAATTCTACAGAAGTTTTCTAAT





TAATATTCTGTAGCAAAAGAACTAAGATCTGGAATTCCCCCTCTTAATCT





CTTCCTAGAAATGAGATTCAGAAAGGACAGGACTGCATCCAGCCTGTTTG





GGAACTCAGACAAATGTGTGTTGTCACAGACACAAATAGAGGTCTACTAT





GAAATAATTGGCTTGCTAGTGTGCTAATGACAGACAATGCTGATTTGCTC





CAACCTCATACAGTTTCACACATAAGGACAATCATCTATGTTTCATGAAA





GTTCTATCTACTTTAACATTATTTTGAAGTGATTGGTGGTGGTATGAATT





AACAGTTTAAATTTAAATCCTAAAATTCAGTGTGAATTTTTTATAATAGC





ATAAAAATTCAAAGATGTCCATACAAGAAAAATTAAAATTTGGTTAGGTT





TAGCAGAGTTTGAGAATCCTTACTACCCTCCCACATAGTATTGTAATGTG





AATATAGGCAGTTACTATTACAGGCATAATGATGATTATGTATTAAGCAG





AAAGAAGTATCACCACCAGTTTTTTTCTTTGAATGCCCCTCAGTACTTCT





GCATTTATAGGATGGTAGACTGGTTTGGTTTAGCTCTCAAAAGTGAAAAC





ATTTAAAGTTTCCTCATTGGGTGAAAAAAATTAAAAAGAGTGAGAGACTG





AAAACTGCAGCCCACCTACGTTTAATCATTAATAGTGAGCCCTTCAGTGA





ACTTAGGTCCTGATTTTGGAGTTTGGAGTCTGACCTTTCCCCAAAGATAA





ACATGATTGTTGCAGGTTCTGAAGAGGGTCACTCCCTCACTGGCTGCCAT





TGAAAGAGTCCACTTCTCAGTGACTCCTAGCTGGGCACTGGATGCAGTTG





AGGATTGCTGGTCAATATG






8) ApoC III. Apolipoprotein C-III is a protein component of very low density lipoprotein (VLDL). APOC3 inhibits lipoprotein lipase and hepatic lipase; it is thought to inhibit hepatic uptake of triglyceride-rich particles (reviewed in Mendevil et al., Arteriosclerosis, Thrombosis and Vascular Biology 30 (2): 239-45). The APOA1, APOC3 and APOA4 genes are closely linked in both rat and human genomes. The A-I and A-IV genes are transcribed from the same strand, while the A-1 and C-III genes are convergently transcribed. An increase in apoC-III levels induces the development of hypertriglyceridemia. Two novel susceptibility haplotypes (specifically, P2-S2-X1 and P1-S2-X1) have been discovered in ApoAI-CIII-AIV gene cluster on chromosome 11q23; these confer approximately threefold higher risk of coronary heart disease in normal as well as non-insulin diabetes mellitus. Apo-CIII delays the catabolism of triglyceride rich particles. Elevations of Apo-CIII found in genetic variation studies may predispose patients to non-alcoholic fatty liver disease.


ISIS-APOCIIIRx is an antisense drug designed to reduce apolipoprotein C-III, or apoC-III, protein production and lower triglycerides. ApoC-III regulates triglyceride metabolism in the blood and is an independent cardiovascular risk factor. People who do not produce apoC-III have lower levels of triglycerides and lower instances of cardiovascular disease. ApoC-III is elevated in patients with dyslipidemia, or an abnormal concentration of lipids in the blood, and is frequently associated with multiple metabolic abnormalities, such as insulin resistance and/or metabolic syndrome. In human population studies, lower levels of apoC-III and triglycerides correlated with a lower rate of cardiovascular events. In certain populations, apoC-III mediates insulin resistance, which can make metabolic syndrome worse.


Protein: ApoC-III Gene: APOC3 (Homo sapiens, chromosome 11, 116700624-116703787 [NCBI Reference Sequence: NC000011.9]; start site location: 116701299; strand: positive)












Gene Identification


















GeneID
345



HGNC
610



HPRD
00132



MIM
107720




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












1956
GAGTCGGTGGTCCAGGAGGGGCCGC
1614





1957
CTGCGGCTGAGGTGTCATTCGTGACTCAG
4214





1992
GCGGGCGGGTGAGACAGAAGCGCC
4130





1993
CCTCGCGAGCGTGGGTGCACGC
3985





2028
CGATGTCTCCCTCGAGATCACA
3717





2054
GGACGGACGGATATCTGAGGCCAG
2195





2062
CGTCCCCGCCACGTTGAAAGGC
3954





2089
TCTCGGACATGCTCAAATGGTGCAGGCG
4080





2108
CACCGACAGGAGCCAATAGTGCAACG
4065





2127
GTCCGGCAGAGGGACCCATGCTGACG
4940





2136
CGTGAGGCACATGTCCGTGTG
3511





2170
CAGATGCAGCAAGCGGGCGGGAGAG
798





2176
CCACGCTGCTGTCCCGCCAGCCCTGCAG
848





2206
ACCCGCCCCCACCCTGTGTGCCCCCACCC
1276



GCCCCCACCCTGTGTGCCCCC





2225
CGCTCAGAGCCCGAGGCCTTTG
1352



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












1956
GAGTCGGTGGTCCAGGAGGGGCCGC
1614





1957
CTGCGGCTGAGGTGTCATTCGTGACTCAG
4214





1958
TGCGGCTGAGGTGTCATTCG
4215





1959
GCGGCTGAGGTGTCATTCGT
4216





1960
CGGCTGAGGTGTCATTCGTG
4217





1961
GGCTGAGGTGTCATTCGTGA
4218





1962
GCTGAGGTGTCATTCGTGAC
4219





1963
CTGAGGTGTCATTCGTGACT
4220





1964
TGAGGTGTCATTCGTGACTC
4221





1965
GAGGTGTCATTCGTGACTCA
4222





1966
AGGTGTCATTCGTGACTCAG
4223





1967
GGTGTCATTCGTGACTCAGT
4224





1968
GTGTCATTCGTGACTCAGTC
4225





1969
TGTCATTCGTGACTCAGTCT
4226





1970
GTCATTCGTGACTCAGTCTC
4227





1971
TCATTCGTGACTCAGTCTCC
4228





1972
CATTCGTGACTCAGTCTCCT
4229





1973
ATTCGTGACTCAGTCTCCTC
4230





1974
TTCGTGACTCAGTCTCCTCC
4231





1975
TCGTGACTCAGTCTCCTCCT
4232





1976
CGTGACTCAGTCTCCTCCTC
4233





1977
ACTGCGGCTGAGGTGTCATT
4213





1978
AACTGCGGCTGAGGTGTCAT
4212





1979
AAACTGCGGCTGAGGTGTCA
4211





1980
CAAACTGCGGCTGAGGTGTC
4210





1981
TCAAACTGCGGCTGAGGTGT
4209





1982
GTCAAACTGCGGCTGAGGTG
4208





1983
GGTCAAACTGCGGCTGAGGT
4207





1984
AGGTCAAACTGCGGCTGAGG
4206





1985
GAGGTCAAACTGCGGCTGAG
4205





1986
GGAGGTCAAACTGCGGCTGA
4204





1987
TGGAGGTCAAACTGCGGCTG
4203





1988
CTGGAGGTCAAACTGCGGCT
4202





1989
CCTGGAGGTCAAACTGCGGC
4201





1990
TCCTGGAGGTCAAACTGCGG
4200





1991
GTCCTGGAGGTCAAACTGCG
4199





1992
GCGGGCGGGTGAGACAGAAGCGCC
4130





1993
CCTCGCGAGCGTGGGTGCACGC
3985





1994
CTCGCGAGCGTGGGTGCACG
3986





1995
TCGCGAGCGTGGGTGCACGC
3987





1996
CGCGAGCGTGGGTGCACGCA
3988





1997
GCGAGCGTGGGTGCACGCAT
3989





1998
CGAGCGTGGGTGCACGCATG
3990





1999
GAGCGTGGGTGCACGCATGG
3991





2000
AGCGTGGGTGCACGCATGGG
3992





2001
GCGTGGGTGCACGCATGGGC
3993





2002
CGTGGGTGCACGCATGGGCT
3994





2003
GTGGGTGCACGCATGGGCTG
3995





2004
TGGGTGCACGCATGGGCTGT
3996





2005
GGGTGCACGCATGGGCTGTG
3997





2006
GGTGCACGCATGGGCTGTGC
3998





2007
GTGCACGCATGGGCTGTGCC
3999





2008
TGCACGCATGGGCTGTGCCA
4000





2009
GCACGCATGGGCTGTGCCAG
4001





2010
CACGCATGGGCTGTGCCAGT
4002





2011
ACGCATGGGCTGTGCCAGTC
4003





2012
CGCATGGGCTGTGCCAGTCC
4004





2013
CCCTCGCGAGCGTGGGTGCA
3984





2014
CCCCTCGCGAGCGTGGGTGC
3983





2015
TCCCCTCGCGAGCGTGGGTG
3982





2016
GTCCCCTCGCGAGCGTGGGT
3981





2017
GGTCCCCTCGCGAGCGTGGG
3980





2018
AGGTCCCCTCGCGAGCGTGG
3979





2019
CAGGTCCCCTCGCGAGCGTG
3978





2020
GCAGGTCCCCTCGCGAGCGT
3977





2021
AGCAGGTCCCCTCGCGAGCG
3976





2022
CAGCAGGTCCCCTCGCGAGC
3975





2023
GCAGCAGGTCCCCTCGCGAG
3974





2024
GGCAGCAGGTCCCCTCGCGA
3973





2025
AGGCAGCAGGTCCCCTCGCG
3972





2026
AAGGCAGCAGGTCCCCTCGC
3971





2027
AAAGGCAGCAGGTCCCCTCG
3970





2028
CGATGTCTCCCTCGAGATCACA
3717





2029
GATGTCTCCCTCGAGATCAC
3718





2030
ATGTCTCCCTCGAGATCACA
3719





2031
TGTCTCCCTCGAGATCACAC
3720





2032
GTCTCCCTCGAGATCACACA
3721





2033
TCTCCCTCGAGATCACACAG
3722





2034
CTCCCTCGAGATCACACAGG
3723





2035
TCCCTCGAGATCACACAGGC
3724





2036
CCCTCGAGATCACACAGGCC
3725





2037
CCTCGAGATCACACAGGCCT
3726





2038
CTCGAGATCACACAGGCCTT
3727





2039
TCGAGATCACACAGGCCTTT
3728





2040
CGAGATCACACAGGCCTTTC
3729





2041
GCGATGTCTCCCTCGAGATC
3716





2042
GGCGATGTCTCCCTCGAGAT
3715





2043
AGGCGATGTCTCCCTCGAGA
3714





2044
GAGGCGATGTCTCCCTCGAG
3713





2045
AGAGGCGATGTCTCCCTCGA
3712





2046
GAGAGGCGATGTCTCCCTCG
3711





2047
GGAGAGGCGATGTCTCCCTC
3710





2048
TGGAGAGGCGATGTCTCCCT
3709





2049
TTGGAGAGGCGATGTCTCCC
3708





2050
CTTGGAGAGGCGATGTCTCC
3707





2051
GCTTGGAGAGGCGATGTCTC
3706





2052
GGCTTGGAGAGGCGATGTCT
3705





2053
AGGCTTGGAGAGGCGATGTC
3704





2054
GGACGGACGGATATCTGAGGCCAG
2195





2055
GACGGACGGATATCTGAGGC
2196





2056
ACGGACGGATATCTGAGGCC
2197





2057
CGGACGGATATCTGAGGCCA
2198





2058
GGACGGATATCTGAGGCCAG
2199





2059
GACGGATATCTGAGGCCAGG
2200





2060
ACGGATATCTGAGGCCAGGA
2201





2061
CGGATATCTGAGGCCAGGAG
2202





2062
CGTCCCCGCCACGTTGAAAGGC
3954





2063
GTCCCCGCCACGTTGAAAGG
3955





2064
TCCCCGCCACGTTGAAAGGC
3956





2065
CCCCGCCACGTTGAAAGGCA
3957





2066
CCCGCCACGTTGAAAGGCAG
3958





2067
CCGCCACGTTGAAAGGCAGC
3959





2068
CGCCACGTTGAAAGGCAGCA
3960





2069
GCCACGTTGAAAGGCAGCAG
3961





2070
CCACGTTGAAAGGCAGCAGG
3962





2071
CACGTTGAAAGGCAGCAGGT
3963





2072
ACGTTGAAAGGCAGCAGGTC
3964





2073
CGTTGAAAGGCAGCAGGTCC
3965





2074
ACGTCCCCGCCACGTTGAAA
3953





2075
CACGTCCCCGCCACGTTGAA
3952





2076
TCACGTCCCCGCCACGTTGA
3951





2077
GTCACGTCCCCGCCACGTTG
3950





2078
GGTCACGTCCCCGCCACGTT
3949





2079
AGGTCACGTCCCCGCCACGT
3948





2080
CAGGTCACGTCCCCGCCACG
3947





2081
ACAGGTCACGTCCCCGCCAC
3946





2082
AACAGGTCACGTCCCCGCCA
3945





2083
TAACAGGTCACGTCCCCGCC
3944





2084
TTAACAGGTCACGTCCCCGC
3943





2085
ATTAACAGGTCACGTCCCCG
3942





2086
CATTAACAGGTCACGTCCCC
3941





2087
TCATTAACAGGTCACGTCCC
3940





2088
TTCATTAACAGGTCACGTCC
3939





2089
TCTCGGACATGCTCAAATGGTGCAGGCG
4080





2090
CTCGGACATGCTCAAATGGT
4081





2091
TCGGACATGCTCAAATGGTG
4082





2092
CGGACATGCTCAAATGGTGC
4083





2093
CTCTCGGACATGCTCAAATG
4079





2094
GCTCTCGGACATGCTCAAAT
4078





2095
TGCTCTCGGACATGCTCAAA
4077





2096
ATGCTCTCGGACATGCTCAA
4076





2097
GATGCTCTCGGACATGCTCA
4075





2098
GGATGCTCTCGGACATGCTC
4074





2099
TGGATGCTCTCGGACATGCT
4073





2100
GTGGATGCTCTCGGACATGC
4072





2101
GGTGGATGCTCTCGGACATG
4071





2102
TGGTGGATGCTCTCGGACAT
4070





2103
CTGGTGGATGCTCTCGGACA
4069





2104
TCTGGTGGATGCTCTCGGAC
4068





2105
CTCTGGTGGATGCTCTCGGA
4067





2106
ACTCTGGTGGATGCTCTCGG
4066





2107
CACTCTGGTGGATGCTCTCG
4065





2108
CACCGACAGGAGCCAATAGTGCAACG
4876





2109
ACCGACAGGAGCCAATAGTG
4877





2110
CCGACAGGAGCCAATAGTGC
4878





2111
CGACAGGAGCCAATAGTGCA
4879





2112
TCACCGACAGGAGCCAATAG
4875





2113
CTCACCGACAGGAGCCAATA
4874





2114
ACTCACCGACAGGAGCCAAT
4873





2115
CACTCACCGACAGGAGCCAA
4872





2116
GCACTCACCGACAGGAGCCA
4871





2117
TGCACTCACCGACAGGAGCC
4870





2118
CTGCACTCACCGACAGGAGC
4869





2119
ACTGCACTCACCGACAGGAG
4868





2120
CACTGCACTCACCGACAGGA
4867





2121
GCACTGCACTCACCGACAGG
4866





2122
GGCACTGCACTCACCGACAG
4865





2123
AGGCACTGCACTCACCGACA
4864





2124
CAGGCACTGCACTCACCGAC
4863





2125
TCAGGCACTGCACTCACCGA
4862





2126
GTCAGGCACTGCACTCACCG
4861





2127
GTCCGGCAGAGGGACCCATGCTGACG
4940





2128
TCCGGCAGAGGGACCCATGC
4941





2129
CCGGCAGAGGGACCCATGCT
4942





2130
CGGCAGAGGGACCCATGCTG
4943





2131
GGTCCGGCAGAGGGACCCAT
4939





2132
TGGTCCGGCAGAGGGACCCA
4938





2133
GTGGTCCGGCAGAGGGACCC
4937





2134
TGTGGTCCGGCAGAGGGACC
4936





2135
GTGTGGTCCGGCAGAGGGAC
4935





2136
CGTGAGGCACATGTCCGTGTG
3511





2137
GTGAGGCACATGTCCGTGTG
3512





2138
TGAGGCACATGTCCGTGTGA
3513





2139
GAGGCACATGTCCGTGTGAC
3514





2140
AGGCACATGTCCGTGTGACC
3515





2141
GGCACATGTCCGTGTGACCT
3516





2142
GCACATGTCCGTGTGACCTG
3517





2143
CACATGTCCGTGTGACCTGC
3518





2144
ACATGTCCGTGTGACCTGCC
3519





2145
CATGTCCGTGTGACCTGCCT
3520





2146
ATGTCCGTGTGACCTGCCTG
3521





2147
TGTCCGTGTGACCTGCCTGT
3522





2148
GTCCGTGTGACCTGCCTGTC
3523





2149
TCCGTGTGACCTGCCTGTCC
3524





2150
CCGTGTGACCTGCCTGTCCC
3525





2151
CGTGTGACCTGCCTGTCCCT
3526





2152
ACGTGAGGCACATGTCCGTG
3510





2153
TACGTGAGGCACATGTCCGT
3509





2154
ATACGTGAGGCACATGTCCG
3508





2155
CATACGTGAGGCACATGTCC
3507





2156
GCATACGTGAGGCACATGTC
3506





2157
AGCATACGTGAGGCACATGT
3505





2158
AAGCATACGTGAGGCACATG
3504





2159
GAAGCATACGTGAGGCACAT
3503





2160
TGAAGCATACGTGAGGCACA
3502





2161
TTGAAGCATACGTGAGGCAC
3501





2162
CTTGAAGCATACGTGAGGCA
3500





2163
CCTTGAAGCATACGTGAGGC
3499





2164
CCCTTGAAGCATACGTGAGG
3498





2165
CCCCTTGAAGCATACGTGAG
3497





2166
GCCCCTTGAAGCATACGTGA
3496





2167
GGCCCCTTGAAGCATACGTG
3495





2168
GGGCCCCTTGAAGCATACGT
3494





2169
AGGGCCCCTTGAAGCATACG
3493





2170
CAGATGCAGCAAGCGGGCGGGAGAG
798





2171
CCAGATGCAGCAAGCGGGCG
797





2172
TCCAGATGCAGCAAGCGGGC
796





2173
GTCCAGATGCAGCAAGCGGG
795





2174
TGTCCAGATGCAGCAAGCGG
794





2175
GTGTCCAGATGCAGCAAGCG
793





2176
CCACGCTGCTGTCCCGCCAGCCCTGCAG
848





2177
CACGCTGCTGTCCCGCCAGC
849





2178
ACGCTGCTGTCCCGCCAGCC
850





2179
CGCTGCTGTCCCGCCAGCCC
851





2180
GCTGCTGTCCCGCCAGCCCT
852





2181
CTGCTGTCCCGCCAGCCCTG
853





2182
TGCTGTCCCGCCAGCCCTGC
854





2183
GCTGTCCCGCCAGCCCTGCA
855





2184
CTGTCCCGCCAGCCCTGCAG
856





2185
TGTCCCGCCAGCCCTGCAGC
857





2186
GTCCCGCCAGCCCTGCAGCC
858





2187
TCCCGCCAGCCCTGCAGCCC
859





2188
CCCGCCAGCCCTGCAGCCCA
860





2189
CCGCCAGCCCTGCAGCCCAG
861





2190
CGCCAGCCCTGCAGCCCAGA
862





2191
TCCACGCTGCTGTCCCGCCA
847





2192
GTCCACGCTGCTGTCCCGCC
846





2193
AGTCCACGCTGCTGTCCCGC
845





2194
GAGTCCACGCTGCTGTCCCG
844





2195
TGAGTCCACGCTGCTGTCCC
843





2196
CTGAGTCCACGCTGCTGTCC
842





2197
ACTGAGTCCACGCTGCTGTC
841





2198
GACTGAGTCCACGCTGCTGT
840





2199
AGACTGAGTCCACGCTGCTG
839





2200
GAGACTGAGTCCACGCTGCT
838





2201
GGAGACTGAGTCCACGCTGC
837





2202
AGGAGACTGAGTCCACGCTG
836





2203
TAGGAGACTGAGTCCACGCT
835





2204
CTAGGAGACTGAGTCCACGC
834





2205
CCTAGGAGACTGAGTCCACG
833





2206
ACCCGCCCCCACCCTGTGTGCCCCCCG
1276





2207
CCCGCCCCCACCCTGTGTGC
1277





2208
CCGCCCCCACCCTGTGTGCC
1278





2209
CGCCCCCACCCTGTGTGCCC
1279





2210
CACCCGCCCCCACCCTGTGT
1275





2211
CCACCCGCCCCCACCCTGTG
1274





2212
CCCACCCGCCCCCACCCTGT
1273





2213
CCCCACCCGCCCCCACCCTG
1272





2214
CCCCCACCCGCCCCCACCCT
1271





2215
CCCCCCACCCGCCCCCACCC
1270





2216
GCCCCCCACCCGCCCCCACC
1269





2217
AGCCCCCCACCCGCCCCCAC
1268





2218
CAGCCCCCCACCCGCCCCCA
1267





2219
GCAGCCCCCCACCCGCCCCC
1266





2220
AGCAGCCCCCCACCCGCCCC
1265





2221
CAGCAGCCCCCCACCCGCCC
1264





2222
CCAGCAGCCCCCCACCCGCC
1263





2223
CCCAGCAGCCCCCCACCCGC
1262





2224
ACCCAGCAGCCCCCCACCCG
1261





2225
CGCTCAGAGCCCGAGGCCTTTG
1352





2226
GCTCAGAGCCCGAGGCCTTT
1353





2227
CTCAGAGCCCGAGGCCTTTG
1354





2228
TCAGAGCCCGAGGCCTTTGC
1355





2229
CAGAGCCCGAGGCCTTTGCC
1356





2230
AGAGCCCGAGGCCTTTGCCC
1357





2231
GAGCCCGAGGCCTTTGCCCC
1358





2232
AGCCCGAGGCCTTTGCCCCT
1359





2233
GCCCGAGGCCTTTGCCCCTC
1360





2234
CCCGAGGCCTTTGCCCCTCC
1361





2235
CCGAGGCCTTTGCCCCTCCC
1362





2236
CGAGGCCTTTGCCCCTCCCT
1363





2237
CCGCTCAGAGCCCGAGGCCT
1351





2238
GCCGCTCAGAGCCCGAGGCC
1350





2239
GGCCGCTCAGAGCCCGAGGC
1349





2240
AGGCCGCTCAGAGCCCGAGG
1348





2241
AAGGCCGCTCAGAGCCCGAG
1347





2242
CAAGGCCGCTCAGAGCCCGA
1346





2243
CCAAGGCCGCTCAGAGCCCG
1345





2244
GCCAAGGCCGCTCAGAGCCC
1344





2245
GGCCAAGGCCGCTCAGAGCC
1343





2246
GGGCCAAGGCCGCTCAGAGC
1342





2247
AGGGCCAAGGCCGCTCAGAG
1341





2248
AAGGGCCAAGGCCGCTCAGA
1340





2249
GAAGGGCCAAGGCCGCTCAG
1339





2250
AGAAGGGCCAAGGCCGCTCA
1338





2251
GAGAAGGGCCAAGGCCGCTC
1337



















Hot Zones (Relative upstream location to gene start site)







700-900


1100-1400


1550-1700


2100-2300


3450-4300


4700-5000









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11957)







GAGACATAACCATTGTACCTGCCTCCTAGGCTGTGAGGATTCACTGAGAT





GATCTTATAGTGCTTGCAACAATGTCTGGCACATAGGAAAAGTGATCACT





AAATGTTAGCCACGTCTTACTCCTGCAAGGCTCACCTCCCTGGAACCCAT





CGGTCCCAACCCTGCTCCTGAATCAGGCACAGTCCAGCTTGCAGCGGGAG





CAAAGGTCAGTACTCAGTGCCCCTGTCCCTTCCCCAGGCCAGAGGGGAGG





AGGAGACTGAGTCACGAATGACACCTCAGCCGCAGTTTGACCTCCAGGAC





TTACAGTCCTAGCAGCCGGTGCCACTAGCATGTGAGAGGTCCAGAGGCGC





TTCTGTCTCACCCGCCCGCCTGGGTGCACCCATGCTGGGAGCGCCTGCAC





CATTTGAGCATGTCCGAGAGCATCCACCAGAGTGTGTGTGGATTCACAGA





AGTGTGCAAATCACTAAGAACCAAGGGACTGGCACAGCCCATGCGTGCAC





CCACGCTCGCGAGGGGACCTGCTGCCTTTCAACGTGGCGGGGACGTGACC





TGTTAATGAATGTATTTACTTCCCAAAGTCTGAGGGTACGTTTTGCATCA





ATCTGTAGATGGATTTGTTTTGGGGAGCAGGGAGAGAATGAGAGCCCCCT





GTGCTCAGTCTTAGAGGGTGCAAGTAGCTGATGGGAAGAGCAGACTGCCT





TCCAGCCAGGCCTGGTCCTGTGAGTCAGGGACGTCCATCTTAGTGGGCAT





GAAAGGCCTGTGTGATCTCGAGGGAGACATCGCCTCTCCAAGCCTCTCCT





TATCTGTGCAACAGGCAGACTTAATGATTGGTGAGGCAATGAGGCTGATA





GCTCAGCATTAGCTACAGCCACCCCTCCTGGCCAACCACACAGGGATCAA





ACCAGGGGTCAGTCCAGAGGTCAGAGTCAGGAGCAGACAACTCAGATCCA





GCCAGGGACAGGCAGGTCACACGGACATGTGCCTCACGTATGCTTCAAGG





GGCCCTCCCCCGGGCAGAACTGAAGGACAGCTCCTGTTGCCATAGGAGGG





AGCTGGGTGAGATACTAGGAGGAACTTCCGGCATGATGATGTGTGATGAA





CAAGGGCCTCTGGCCAACAGGTCTGAATCAGGGCTGCCCAGCCCAGCCTG





GTGGGAAGGGCATGGAGCATGGGGGCTCATGTACTAAACCTCACCTGGAC





ACAAGGTGAAACAGCCCAACCCCAGAGGACCATTTTTGGCCCCGGATGGT





CAAATCCCCTCTTCCTCCCATCTACCACTGGCTTCTCCCTGGAGCAGTCT





TCATCCCAGGGGAGCCATGATGGGAGAGAGGGGCAGCGCAGGCTGGCCAC





CAAGAGATCCCCTGCCGGGGTGCAGGTTGGACTGTTGGTGAGGGGCCACA





GGTATTCTCAGGTACCAAGCCCTTGGAAGGAGACAAGGTACCAGGCTTCC





TGGAGGTGTGCTACATCTAGCTCAGCACCCTGCCAGGTCTCTCTACCCAC





ATGTCCTGACCTCCCTGGGTCCGTTGCCATGCGGGAGAGAGAGGCCAGGC





TCCTCCAGACCCTCTGCAGAGATGGAAAGGCTTGGAGGGTCTGGGGCCAC





GGGACCCCGCCAGCCCATTCTAGCACACCCGGGCCCATAGACCTTGTTGC





CTGCCCCTGCCTGGATCTGGGTCCCCACTGTGCCTTTGCCTCTGGGGCTA





TGGAGCAGGCCGCAGCAGAAGAGGAAAGGGCATCCCCAATACCAAATCCT





CCAGTGACCACTTCTTCACCTTCTACCCCACCACCAAAGTCTGCAGGAGA





CTTGAGACAGGTTTGTTCTGGGCGTGTGACTGATGCCTCTATAGGGGTCT





CAGTGCTCTAAGCCGTCTGGTATTTGCCTGGGGTGTGTGAAGACCTGGAT





TAAGGTTCCCAGCCTTACTACTAATGGGCTGTGCACTTGGAGCCCTTAGA





GCCTTAGGTTTCTAACCTATAAAATGGACTTAACGTCTACTTCACAGGGT





TCTATTTGCATTTTAACAGAAAACAAAGTCTTAAGTCAAAGGAATGAATC





TCTCTCTCTCTCTCTCTCTCTCTTTTTTAGACCAAGTCTAGCTCTGTCAC





TGGAGTGCAATGGTGCGATCTCTGCTCACTGCAACCTCCACCTCCGGGGT





TCAAGCAATTCTCGTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCGT





GCATCACCATGCTCGGCTAATTTTTTGTATTTTTAGTAGAGACTGGGTTT





CGCCATGTTGCCCAGGCTGGTCTCGAACTCCTGGCCTCAGATATCCGTCC





GTCCCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGTGCCCA





GCCAGGAATGGATCGCTAATAGAGGAATTCCAAGTCTCACCCACCGATAA





AGAATTCTGAGGGCAGAGCCGGGCCACTTTCTCAGGCCTCTGATTTCATA





CTGTGGTGTTAGTTACTTCTGAGAGGACAGCTTGCTGCCAGAGCTCTATT





TTTTATGTTAGAGGCTCCTTCTGCCTGCAGACTCTGCTGTCTGGGAAGGG





CACAGCGTTAGGAGGGAGAGGGAGGTGTGAGTCCCTCCATGGACCCGCTG





CTTTGTACTTCTCTATCTCATTTCCTTTTCAGCACCACTCTGGGCAATCA





GTATTCCAGCCCCATTTTATCCTCAGAAAATTGAGGCTCTGAGATGTTAT





CTCTGTGACCTGGGTCCTATTACGTGCCAAAGGCATCATTTAAGCCTAAG





ATGTCCTGGCTCCAAGGTGTCAGCATCTGGAAGACAGGCGCCCTCATCCT





GCCATCCCTGCTGCGGCTTCACTGTGGGCCCAGGGGACATCTCAGCCCCG





AGAAGGGTCAGCGGCCCCTCCTGGACCACCGACTCCCCGCAGAACTCCTC





TGTGCCCTCTCCTCACCAGACCTTGTTCCTCCCAGTTGCTCCCACAGCCA





GGGGGCAGTGAGGGCTGCTCTTCCCCCAGCCCCACTGAGGAACCCAGGAA





GGTGAACGAGAGAATCAGTCCTGGTGGGGGCTGGGGAGGGCCCCAGACAT





GAGACCAGCTCCTCCCCCAGGGGATGTTATCAGTGGGTCCAGAGGGCAAA





ATAGGGAGCCTGGTGGAGGGAGGGGCAAAGGCCTCGGGCTCTGAGCGGCC





TTGGCCCTTCTCCACCAACCCCTGCCCTACACTAAGGGGGAGGCAGCGGG





GGGCACACAGGGTGGGGGCGGGTGGGGGGCTGCTGGGTGAGCAGCACTCG





CCTGCCTGGATTGAAACCCAGAGATGGAGGTGCTGGGAGGGGCTGTGAGA





GCTCAGCCCTGTAACCAGGCCTTGCCGGAGCCACTGATGCCTGGTCTTCT





GTGCCTTTACTCCAAACACCCCCCAGCCCAAGCCACCCACTTGTTCTCAA





GTCTGAAGAAGCCCCTCACCCCTCTACTCCAGGCTGTGTTCAGGGCTTGG





GGCTGGTGGAGGGAGGGGCCTGAAATTCCAGTGTGAAAGGCTGAGATGGG





CCCGAGGCCCCTGGCCTATGTCCAAGCCATTTCCCCTCTCACCAGCCTCT





CCCTGGGGAGCCAGTCAGCTAGGAAGGAATGAGGGCTCCCCAGGCCCACC





CCCAGTTCCTGAGCTCATCTGGGCTGCAGGGCTGGCGGGACAGCAGCGTG





GACTCAGTCTCCTAGGGATTTCCCAACTCTCCCGCCCGCTTGCTGCATCT





GGACACCCTGCCTCAGGCCCTCATCTCCACTGGTCAGCAGGTGACCTTTG





CCCAGCGCCCTGGGTCCTCAGTGCCTGCTGCCCTGGAGATGATATAAAAC





AGGTCAGAACCCTCCTGCCTGTCTGCTCAGTTCATCCCTAGAGGCAGCTG





CTCCAGGTAATGCCCTCTGGGGAGGGGAAAGAGGAGGGGAGGAGGATGAA





GAGGGGCAAGAGGAGCTCCCTGCCCAGCCCAGCCAGCAAGCCTGGAGAAG





CACTTGCTAGAGCTAAGGAAGCCTCGGAGCTGGACGGGTGCCCCCCACCC





CTCATCATAACCTGAAGAACATGGAGGCCCGGGAGGGGTGTCACTTGCCC





AAAGCTACACAGGGGGTGGGGCTGGAAGTGGCTCCAAGTGCAGGTTCCCC





CCTCATTCTTCAGGCTTAGGGCTGGAGGAAGCCTTAGACAGCCCAGTCCT





ACCCCAGACAGGGAAACTGAGGCCTGGAGAGGGCCAGAAATCACCCAAAG





ACACACAGCATGTTGGCTGGACTGGACGGAGATCAGTCCAGACCGCAGGT





GCCTTGATGTTCAGTCTGGTGGGTTTTCTGCTCCATCCCACCCACCTCCC





TTTGGGCCTCGATCCCTCGCCCCTCACCAGTCCCCCTTCTGAGAGCCCGT





ATTAGCAGGGAGCCGGCCCCTACTCCTTCTGGCAGACCCAGCTAAGGTTC





TACCTTAGGGGCCACGCCACCTCCCCAGGGAGGGGTCCAGAGGCATGGGG





ACCTGGGGTGCCCCTCACAGGACACTTCCTTGCAGGAACAGAGGTGCCAT







G








9) APO B. Apolipoprotein B (ApoB) are the primary apolipoproteins of chylomicrons and low-density lipoproteins (LDL) and is required for lipoprotein formation during the transport of cholesterol to tissues. ApoB on the LDL particle acts as a ligand for LDL receptors in various cells throughout the body. High levels of ApoB can lead to plaques that cause vascular disease (atherosclerosis), leading to heart disease. There is considerable evidence that levels of ApoB are a better indicator of heart disease risk than total cholesterol or LDL (Contois et al, 2011; J. Clin. Lipid. 5 (4): 264-272).


There are two forms of ApoB (ApoB48 and ApoB100), with tissue regulated editing of ApoB48 and ApoB100 (reviewed in Davidson 2000; Ann. Rev. Nutr.; 20: 169-193). Editing is restricted to those transcripts expressed in the small intestine. This shorter version of the protein has a function specific to the small intestine. Editing results in a codon change creating an in frame stop codon leading to translation of a truncated protein, ApoB48. This stop codon results in the translation of a protein which lacks the carboxyl terminus which contains the protein's LDLR binding domain. The full protein ApoB100 which has nearly 4500 amino acid is present in VLDL and LDL. The main function of the full length liver expressed ApoB100 is as ligand for activation of the LDL-R. However editing results in a protein lacking this LDL-R binding region of the protein. This alters the function of the protein and the shorter ApoB48 protein as specific functions relative to the small intestine. ApoB48 is identical to the amino terminal 48% of ApoB100 (Knott et al., 1986; Nature 323 (6090): 734-8). The function of this isoform is in fat absorption of the small intestine and is involved in the synthesis, assembly and secretion of chylomicrons. These chylomicrons transport dietary lipids to tissues while the remaining chylomicrons along with associated residual lipids are in 2-3 hours taken up by the liver via the interaction of apolipoprotein E (ApoE) with lipoprotein receptors. It is the dominant ApoB protein in the small intestine of most mammals and the key protein in the exogenous pathway of lipoprotein metabolism.


Protein: ApoB Gene: APOB (Homo sapiens, chromosome 2, 21224301-21266945 [NCBI Reference Sequence: NC000002.11]; start site location: 21266817; strand: negative)












Gene Identification


















GeneID
338



HGNC
603



HPRD
00133



MIM
107730




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












2252
CGGTGGGGCGGCTCCTGGGCTGC
10





2329
CCTCGCGGCCCTGGCTGGCTGGGCG
46





2406
AACCGAGAAGGGCACTCAGCCCCG
88





2440
CGGCGCCCGCACCCCATTTATAGG
136





2451
GTCCAAAGGGCGCCTCCCGGGCC
195





2475
CGTCTTCAGTGCTCTGGCGCGGCC
341





2513
CACCGGAAGCTTCAGCCAGCGCTCGCTG
988





2552
CGAGTGGGAGGCGGCCAGGAGCAAGCCG
1281





2553
CGTACACTCACGGAAATGCTGTAAAG
2533





2576
CGTCACAGCCAATAATGAGCGTACGC
4862



















Targeted Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












2252
CGGTGGGGCGGCTCCTGGGCTGC
10





2253
GGTGGGGCGGCTCCTGGGCT
11





2254
GTGGGGCGGCTCCTGGGCTG
12





2255
TGGGGCGGCTCCTGGGCTGC
13





2256
GGGGCGGCTCCTGGGCTGCG
14





2257
GGGCGGCTCCTGGGCTGCGG
15





2258
GGCGGCTCCTGGGCTGCGGC
16





2259
GCGGCTCCTGGGCTGCGGCC
17





2260
CGGCTCCTGGGCTGCGGCCT
18





2261
GGCTCCTGGGCTGCGGCCTG
19





2262
GCTCCTGGGCTGCGGCCTGG
20





2263
CTCCTGGGCTGCGGCCTGGC
21





2264
TCCTGGGCTGCGGCCTGGCC
22





2265
CCTGGGCTGCGGCCTGGCCT
23





2266
CTGGGCTGCGGCCTGGCCTC
24





2267
TGGGCTGCGGCCTGGCCTCG
25





2268
GGGCTGCGGCCTGGCCTCGG
26





2269
GGCTGCGGCCTGGCCTCGGC
27





2270
GCTGCGGCCTGGCCTCGGCC
28





2271
CTGCGGCCTGGCCTCGGCCT
29





2272
TGCGGCCTGGCCTCGGCCTC
30





2273
GCGGCCTGGCCTCGGCCTCG
31





2274
CGGCCTGGCCTCGGCCTCGC
32





2275
GGCCTGGCCTCGGCCTCGCG
33





2276
GCCTGGCCTCGGCCTCGCGG
34





2277
CCTGGCCTCGGCCTCGCGGC
35





2278
CTGGCCTCGGCCTCGCGGCC
36





2279
TGGCCTCGGCCTCGCGGCCC
37





2280
GGCCTCGGCCTCGCGGCCCT
38





2281
GCCTCGGCCTCGCGGCCCTG
39





2282
CCTCGGCCTCGCGGCCCTGG
40





2283
CTCGGCCTCGCGGCCCTGGC
41





2284
TCGGCCTCGCGGCCCTGGCT
42





2285
CGGCCTCGCGGCCCTGGCTG
43





2286
GGCCTCGCGGCCCTGGCTGG
44





2287
GCCTCGCGGCCCTGGCTGGC
45





2288
CCTCGCGGCCCTGGCTGGCT
46





2289
CTCGCGGCCCTGGCTGGCTG
47





2290
TCGCGGCCCTGGCTGGCTGG
48





2291
CGCGGCCCTGGCTGGCTGGG
49





2292
GCGGCCCTGGCTGGCTGGGC
50





2293
CGGCCCTGGCTGGCTGGGCG
51





2294
GGCCCTGGCTGGCTGGGCGG
52





2295
GCCCTGGCTGGCTGGGCGGG
53





2296
CCCTGGCTGGCTGGGCGGGC
54





2297
CCTGGCTGGCTGGGCGGGCT
55





2298
CTGGCTGGCTGGGCGGGCTC
56





2299
TGGCTGGCTGGGCGGGCTCC
57





2300
GGCTGGCTGGGCGGGCTCCT
58





2301
GCTGGCTGGGCGGGCTCCTC
59





2302
CTGGCTGGGCGGGCTCCTCA
60





2303
TGGCTGGGCGGGCTCCTCAG
61





2304
GGCTGGGCGGGCTCCTCAGC
62





2305
GCTGGGCGGGCTCCTCAGCG
63





2306
CTGGGCGGGCTCCTCAGCGG
64





2307
TGGGCGGGCTCCTCAGCGGC
65





2308
GGGCGGGCTCCTCAGCGGCA
66





2309
GGCGGGCTCCTCAGCGGCAG
67





2310
GCGGGCTCCTCAGCGGCAGC
68





2311
CGGGCTCCTCAGCGGCAGCA
69





2312
GGGCTCCTCAGCGGCAGCAA
70





2313
GGCTCCTCAGCGGCAGCAAC
71





2314
GCTCCTCAGCGGCAGCAACC
72





2315
CTCCTCAGCGGCAGCAACCG
73





2316
TCCTCAGCGGCAGCAACCGA
74





2317
CCTCAGCGGCAGCAACCGAG
75





2318
CTCAGCGGCAGCAACCGAGA
76





2319
TCAGCGGCAGCAACCGAGAA
77





2320
GCGGTGGGGCGGCTCCTGGG
9





2321
TGCGGTGGGGCGGCTCCTGG
8





2322
CTGCGGTGGGGCGGCTCCTG
7





2323
GCTGCGGTGGGGCGGCTCCT
6





2324
AGCTGCGGTGGGGCGGCTCC
5





2325
CAGCTGCGGTGGGGCGGCTC
4





2326
CCAGCTGCGGTGGGGCGGCT
3





2327
GCCAGCTGCGGTGGGGCGGC
2





2328
CGCCAGCTGCGGTGGGGCGG
1





2329
CCTCGCGGCCCTGGCTGGCTGGGCG
46





2330
CTCGCGGCCCTGGCTGGCTG
47





2331
TCGCGGCCCTGGCTGGCTGG
48





2332
CGCGGCCCTGGCTGGCTGGG
49





2333
GCGGCCCTGGCTGGCTGGGC
50





2334
CGGCCCTGGCTGGCTGGGCG
51





2335
GGCCCTGGCTGGCTGGGCGG
52





2336
GCCCTGGCTGGCTGGGCGGG
53





2337
CCCTGGCTGGCTGGGCGGGC
54





2338
CCTGGCTGGCTGGGCGGGCT
55





2339
CTGGCTGGCTGGGCGGGCTC
56





2340
TGGCTGGCTGGGCGGGCTCC
57





2341
GGCTGGCTGGGCGGGCTCCT
58





2342
GCTGGCTGGGCGGGCTCCTC
59





2343
CTGGCTGGGCGGGCTCCTCA
60





2344
TGGCTGGGCGGGCTCCTCAG
61





2345
GGCTGGGCGGGCTCCTCAGC
62





2346
GCTGGGCGGGCTCCTCAGCG
63





2347
CTGGGCGGGCTCCTCAGCGG
64





2348
TGGGCGGGCTCCTCAGCGGC
65





2349
GGGCGGGCTCCTCAGCGGCA
66





2350
GGCGGGCTCCTCAGCGGCAG
67





2351
GCGGGCTCCTCAGCGGCAGC
68





2352
CGGGCTCCTCAGCGGCAGCA
69





2353
GGGCTCCTCAGCGGCAGCAA
70





2354
GGCTCCTCAGCGGCAGCAAC
71





2355
GCTCCTCAGCGGCAGCAACC
72





2356
CTCCTCAGCGGCAGCAACCG
73





2357
TCCTCAGCGGCAGCAACCGA
74





2358
CCTCAGCGGCAGCAACCGAG
75





2359
CTCAGCGGCAGCAACCGAGA
76





2360
TCAGCGGCAGCAACCGAGAA
77





2361
GCCTCGCGGCCCTGGCTGGC
45





2362
GGCCTCGCGGCCCTGGCTGG
44





2363
CGGCCTCGCGGCCCTGGCTG
43





2364
TCGGCCTCGCGGCCCTGGCT
42





2365
CTCGGCCTCGCGGCCCTGGC
41





2366
CCTCGGCCTCGCGGCCCTGG
40





2367
GCCTCGGCCTCGCGGCCCTG
39





2368
GGCCTCGGCCTCGCGGCCCT
38





2369
TGGCCTCGGCCTCGCGGCCC
37





2370
CTGGCCTCGGCCTCGCGGCC
36





2371
CCTGGCCTCGGCCTCGCGGC
35





2372
GCCTGGCCTCGGCCTCGCGG
34





2373
GGCCTGGCCTCGGCCTCGCG
33





2374
CGGCCTGGCCTCGGCCTCGC
32





2375
GCGGCCTGGCCTCGGCCTCG
31





2376
TGCGGCCTGGCCTCGGCCTC
30





2377
CTGCGGCCTGGCCTCGGCCT
29





2378
GCTGCGGCCTGGCCTCGGCC
28





2379
GGCTGCGGCCTGGCCTCGGC
27





2380
GGGCTGCGGCCTGGCCTCGG
26





2381
TGGGCTGCGGCCTGGCCTCG
25





2382
CTGGGCTGCGGCCTGGCCTC
24





2383
CCTGGGCTGCGGCCTGGCCT
23





2384
TCCTGGGCTGCGGCCTGGCC
22





2385
CTCCTGGGCTGCGGCCTGGC
21





2386
GCTCCTGGGCTGCGGCCTGG
20





2387
GGCTCCTGGGCTGCGGCCTG
19





2388
CGGCTCCTGGGCTGCGGCCT
18





2389
GCGGCTCCTGGGCTGCGGCC
17





2390
GGCGGCTCCTGGGCTGCGGC
16





2391
GGGCGGCTCCTGGGCTGCGG
15





2392
GGGGCGGCTCCTGGGCTGCG
14





2393
TGGGGCGGCTCCTGGGCTGC
13





2394
GTGGGGCGGCTCCTGGGCTG
12





2395
GGTGGGGCGGCTCCTGGGCT
11





2396
CGGTGGGGCGGCTCCTGGGC
10





2397
GCGGTGGGGCGGCTCCTGGG
9





2398
TGCGGTGGGGCGGCTCCTGG
8





2399
CTGCGGTGGGGCGGCTCCTG
7





2400
GCTGCGGTGGGGCGGCTCCT
6





2401
AGCTGCGGTGGGGCGGCTCC
5





2402
CAGCTGCGGTGGGGCGGCTC
4





2403
CCAGCTGCGGTGGGGCGGCT
3





2404
GCCAGCTGCGGTGGGGCGGC
2





2405
CGCCAGCTGCGGTGGGGCGG
1





2406
AACCGAGAAGGGCACTCAGCCCCG
88





2407
ACCGAGAAGGGCACTCAGCC
89





2408
CCGAGAAGGGCACTCAGCCC
90





2409
CGAGAAGGGCACTCAGCCCC
91





2410
GAGAAGGGCACTCAGCCCCG
92





2411
AGAAGGGCACTCAGCCCCGC
93





2412
GAAGGGCACTCAGCCCCGCA
94





2413
AAGGGCACTCAGCCCCGCAG
95





2414
AGGGCACTCAGCCCCGCAGG
96





2415
GGGCACTCAGCCCCGCAGGT
97





2416
GGCACTCAGCCCCGCAGGTC
98





2417
GCACTCAGCCCCGCAGGTCC
99





2418
CACTCAGCCCCGCAGGTCCC
100





2419
ACTCAGCCCCGCAGGTCCCG
101





2420
CTCAGCCCCGCAGGTCCCGG
102





2421
TCAGCCCCGCAGGTCCCGGT
103





2422
CAGCCCCGCAGGTCCCGGTG
104





2423
AGCCCCGCAGGTCCCGGTGG
105





2424
GCCCCGCAGGTCCCGGTGGG
106





2425
CCCCGCAGGTCCCGGTGGGA
107





2426
CCCGCAGGTCCCGGTGGGAA
108





2427
CCGCAGGTCCCGGTGGGAAT
109





2428
CGCAGGTCCCGGTGGGAATG
110





2429
GCAGGTCCCGGTGGGAATGC
111





2430
CAGGTCCCGGTGGGAATGCG
112





2431
AGGTCCCGGTGGGAATGCGC
113





2432
GGTCCCGGTGGGAATGCGCG
114





2433
GTCCCGGTGGGAATGCGCGG
115





2434
TCCCGGTGGGAATGCGCGGC
116





2435
CCCGGTGGGAATGCGCGGCC
117





2436
CAACCGAGAAGGGCACTCAG
87





2437
GCAACCGAGAAGGGCACTCA
86





2438
AGCAACCGAGAAGGGCACTC
85





2439
CAGCAACCGAGAAGGGCACT
84





2440
CGGCGCCCGCACCCCATTTATAGG
136





2441
GGCGCCCGCACCCCATTTAT
137





2442
GCGCCCGCACCCCATTTATA
138





2443
CGCCCGCACCCCATTTATAG
139





2444
GCCCGCACCCCATTTATAGG
140





2445
CCCGCACCCCATTTATAGGA
141





2446
CCGCACCCCATTTATAGGAA
142





2447
CGCACCCCATTTATAGGAAG
143





2448
CCGGCGCCCGCACCCCATTT
135





2449
GCCGGCGCCCGCACCCCATT
134





2450
GGCCGGCGCCCGCACCCCAT
133





2451
GTCCAAAGGGCGCCTCCCGGGCC
195





2452
TCCAAAGGGCGCCTCCCGGG
196





2453
CCAAAGGGCGCCTCCCGGGC
197





2454
CAAAGGGCGCCTCCCGGGCC
198





2455
AAAGGGCGCCTCCCGGGCCT
199





2456
AAGGGCGCCTCCCGGGCCTG
200





2457
AGGGCGCCTCCCGGGCCTGA
201





2458
GGGCGCCTCCCGGGCCTGAC
202





2459
GGCGCCTCCCGGGCCTGACC
203





2460
GCGCCTCCCGGGCCTGACCT
204





2461
CGCCTCCCGGGCCTGACCTG
205





2462
GCCTCCCGGGCCTGACCTGT
206





2463
CCTCCCGGGCCTGACCTGTT
207





2464
CTCCCGGGCCTGACCTGTTT
208





2465
TCCCGGGCCTGACCTGTTTG
209





2466
CCCGGGCCTGACCTGTTTGC
210





2467
CCGGGCCTGACCTGTTTGCT
211





2468
CGGGCCTGACCTGTTTGCTT
212





2469
GGTCCAAAGGGCGCCTCCCG
194





2470
AGGTCCAAAGGGCGCCTCCC
193





2471
AAGGTCCAAAGGGCGCCTCC
192





2472
AAAGGTCCAAAGGGCGCCTC
191





2473
AAAAGGTCCAAAGGGCGCCT
190





2474
CAAAAGGTCCAAAGGGCGCC
189





2475
CGTCTTCAGTGCTCTGGCGCGGCC
341





2476
GTCTTCAGTGCTCTGGCGCG
342





2477
TCTTCAGTGCTCTGGCGCGG
343





2478
CTTCAGTGCTCTGGCGCGGC
344





2479
TTCAGTGCTCTGGCGCGGCC
345





2480
TCAGTGCTCTGGCGCGGCCC
346





2481
CAGTGCTCTGGCGCGGCCCT
347





2482
AGTGCTCTGGCGCGGCCCTT
348





2483
GTGCTCTGGCGCGGCCCTTC
349





2484
TGCTCTGGCGCGGCCCTTCC
350





2485
GCTCTGGCGCGGCCCTTCCT
351





2486
CTCTGGCGCGGCCCTTCCTG
352





2487
TCTGGCGCGGCCCTTCCTGT
353





2488
CTGGCGCGGCCCTTCCTGTG
354





2489
TGGCGCGGCCCTTCCTGTGT
355





2490
GGCGCGGCCCTTCCTGTGTC
356





2491
GCGCGGCCCTTCCTGTGTCT
357





2492
CGCGGCCCTTCCTGTGTCTC
358





2493
GCGGCCCTTCCTGTGTCTCA
359





2494
CGGCCCTTCCTGTGTCTCAG
360





2495
GCGTCTTCAGTGCTCTGGCG
340





2496
AGCGTCTTCAGTGCTCTGGC
339





2497
AAGCGTCTTCAGTGCTCTGG
338





2498
CAAGCGTCTTCAGTGCTCTG
337





2499
CCAAGCGTCTTCAGTGCTCT
336





2500
CCCAAGCGTCTTCAGTGCTC
335





2501
CCCCAAGCGTCTTCAGTGCT
334





2502
TCCCCAAGCGTCTTCAGTGC
333





2503
TTCCCCAAGCGTCTTCAGTG
332





2504
CTTCCCCAAGCGTCTTCAGT
331





2505
CCTTCCCCAAGCGTCTTCAG
330





2506
CCCTTCCCCAAGCGTCTTCA
329





2507
TCCCTTCCCCAAGCGTCTTC
328





2508
TTCCCTTCCCCAAGCGTCTT
327





2509
GTTCCCTTCCCCAAGCGTCT
326





2510
GGTTCCCTTCCCCAAGCGTC
325





2511
GGGTTCCCTTCCCCAAGCGT
324





2512
TGGGTTCCCTTCCCCAAGCG
323





2513
CACCGGAAGCTTCAGCCAGCGCTCGCTG
988





2514
ACCGGAAGCTTCAGCCAGCG
989





2515
CCGGAAGCTTCAGCCAGCGC
990





2516
CGGAAGCTTCAGCCAGCGCT
991





2517
GGAAGCTTCAGCCAGCGCTC
992





2518
GAAGCTTCAGCCAGCGCTCG
993





2519
AAGCTTCAGCCAGCGCTCGC
994





2520
AGCTTCAGCCAGCGCTCGCT
995





2521
GCTTCAGCCAGCGCTCGCTG
996





2522
CTTCAGCCAGCGCTCGCTGC
997





2523
TTCAGCCAGCGCTCGCTGCC
998





2524
TCAGCCAGCGCTCGCTGCCT
999





2525
CAGCCAGCGCTCGCTGCCTC
1000





2526
AGCCAGCGCTCGCTGCCTCT
1001





2527
GCCAGCGCTCGCTGCCTCTG
1002





2528
CCAGCGCTCGCTGCCTCTGC
1003





2529
CAGCGCTCGCTGCCTCTGCC
1004





2530
AGCGCTCGCTGCCTCTGCCC
1005





2531
GCGCTCGCTGCCTCTGCCCA
1006





2532
CGCTCGCTGCCTCTGCCCAG
1007





2533
GCTCGCTGCCTCTGCCCAGC
1008





2534
CTCGCTGCCTCTGCCCAGCT
1009





2535
TCGCTGCCTCTGCCCAGCTG
1010





2536
CGCTGCCTCTGCCCAGCTGG
1011





2537
CCACCGGAAGCTTCAGCCAG
987





2538
CCCACCGGAAGCTTCAGCCA
986





2539
TCCCACCGGAAGCTTCAGCC
985





2540
TTCCCACCGGAAGCTTCAGC
984





2541
TTTCCCACCGGAAGCTTCAG
983





2542
ATTTCCCACCGGAAGCTTCA
982





2543
CATTTCCCACCGGAAGCTTC
981





2544
CCATTTCCCACCGGAAGCTT
980





2545
CCCATTTCCCACCGGAAGCT
979





2546
GCCCATTTCCCACCGGAAGC
978





2547
TGCCCATTTCCCACCGGAAG
977





2548
CTGCCCATTTCCCACCGGAA
976





2549
ACTGCCCATTTCCCACCGGA
975





2550
CACTGCCCATTTCCCACCGG
974





2551
GCACTGCCCATTTCCCACCG
973





2552
CGAGTGGGAGGCGGCCAGGAGCAAGCCG
1281





2553
CGTACACTCACGGAAATGCTGTAAAG
2533





2554
GTACACTCACGGAAATGCTG
2534





2555
TACACTCACGGAAATGCTGT
2535





2556
ACACTCACGGAAATGCTGTA
2536





2557
CACTCACGGAAATGCTGTAA
2537





2558
GCGTACACTCACGGAAATGC
2532





2559
TGCGTACACTCACGGAAATG
2531





2560
TTGCGTACACTCACGGAAAT
2530





2561
CTTGCGTACACTCACGGAAA
2529





2562
ACTTGCGTACACTCACGGAA
2528





2563
GACTTGCGTACACTCACGGA
2527





2564
TGACTTGCGTACACTCACGG
2526





2565
CTGACTTGCGTACACTCACG
2525





2566
GCTGACTTGCGTACACTCAC
2524





2567
AGCTGACTTGCGTACACTCA
2523





2568
GAGCTGACTTGCGTACACTC
2522





2569
TGAGCTGACTTGCGTACACT
2521





2570
TTGAGCTGACTTGCGTACAC
2520





2571
GTTGAGCTGACTTGCGTACA
2519





2572
TGTTGAGCTGACTTGCGTAC
2518





2573
TTGTTGAGCTGACTTGCGTA
2517





2574
ATTGTTGAGCTGACTTGCGT
2516





2575
AATTGTTGAGCTGACTTGCG
2515





2576
CGTCACAGCCAATAATGAGCGTACGC
4862





2577
GTCACAGCCAATAATGAGCG
4863





2578
TCACAGCCAATAATGAGCGT
4864





2579
CACAGCCAATAATGAGCGTA
4865





2580
ACAGCCAATAATGAGCGTAC
4866





2581
CAGCCAATAATGAGCGTACG
4867





2582
AGCCAATAATGAGCGTACGC
4868





2583
GCCAATAATGAGCGTACGCA
4869





2584
CCAATAATGAGCGTACGCAA
4870





2585
ACGTCACAGCCAATAATGAG
4861





2586
GACGTCACAGCCAATAATGA
4860





2587
AGACGTCACAGCCAATAATG
4859





2588
CAGACGTCACAGCCAATAAT
4858





2589
TCAGACGTCACAGCCAATAA
4857





2590
ATCAGACGTCACAGCCAATA
4856





2591
AATCAGACGTCACAGCCAAT
4855





2592
TAATCAGACGTCACAGCCAA
4854





2593
ATAATCAGACGTCACAGCCA
4853





2594
CATAATCAGACGTCACAGCC
4852





2595
GCATAATCAGACGTCACAGC
4851





2596
GGCATAATCAGACGTCACAG
4850





2597
GGGCATAATCAGACGTCACA
4849





2598
AGGGCATAATCAGACGTCAC
4848





2599
AAGGGCATAATCAGACGTCA
4847





2600
GAAGGGCATAATCAGACGTC
4846



















Hot Zones (Relative upstream location to gene start site)







 1-600


 700-1400


2450-2650


3450-3700


4600-5000
















Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11958)







TGCATATGAAAGAAACCTATTCACATGGACCATATTACATTATAATCACA





GTGTTTACTGCTTGACTACCATCTGCCTGGCCTAGCAAGGGTGTCAGTGA





GGAAGAGAGGACAAGGGGTACCAATCTGTGAACTACACATGGTTCTTGCT





CTCCCAGCTTCTCTCTCCCATTGGCAAGGCAACAGGTAAACACATGAAAA





ATCAAATAATGCTATAAGAGAAAAATGTATTCAGGACAACAACAGGTTTG





TATGAAGGCCTTTCATCATCGTTGTCCTACCTAGAAACTGAATGACAGGG





AATCAGAGTCACAAGCTATGAAGTCTAACTGGGCTGTTCCCAGAGAAAGA





TTCAGTGCAGTAGGTGGGGCTGCAGCCAGCCCTGGGTGGGTGGAAGGATG





ACATCCACATAGGCAAGAGGGTGATAATTCACTTACGCAGCTCCTCACTG





CACATTGAACCCTGCTGACTTCTGGCTTCTCTCCCGGGAGGAACTGCGAC





TCAACATTCTGACCTTATCTCTTGGGTAGCAGAATGATGGAGAAGGAAAG





TTTCTTTTTGCTTCTCGCAGGGGTTAATCATCCATCTGGAATGCCTACAT





TTGGTTGACAATGGCTCACCCTATCATCTTCCTCCTGAACCATTCACCTA





AATGTGCCATTTCTTTCCTGATAGTTCTCATTTGTGTGTGTGTGTGTGTG





TGTGTGTGTGTGCACGTGCTCACACATGCATGCTGTCACTGGGTAAACAG





GCCACCCTGGGCACAGTTCCATCTACAATGTTTGAAGTTTACTTTCCAGC





TTCTGGGCATCATTTGCAATTATAATGCTGTCATAGGCAGAAACGAGATA





GGCTAATTAATCGTTGTCAATACTGATCCCTATTTGCCAGATGAGATTTT





GGAGCAGCATGGCTGGGAATAATTGGTATAGACTGTATTTCCTTGCTTTA





TGTCACTGGAAATATTTATTTAAGCATCACGGTCGCTATGCATAAATATC





CTGGAAAATGGGGTATAGCTGAATGGTGCAGATTCATTCATTCATATTCA





GCAAATTATGTTCTAAGCACCTACTTCAGTATGTGAACAGCACTAAACTC





AGAATATTGGTCTGCTGGGGTCCTTTATTAGCTTCCATGATTCCCTGAAC





TTGGCCAAGACCCTTCTGGTCGGCTGCAGATAGGCACAATGGATAGTTTT





GCTTCTAGATAATGTAACTGGGACATTCAGCATTATCTATCGCCTTGAAA





TTCCTCTAGTCAGGTGGCTTTCTAATGGGTACCCAGAGCCCTATGACTAC





CCAGATTGATGGTGCACCCAACAGGACTTTGCATTTATGAGCTGATAAGT





CACAGTCACTAGCTGAGATTAATCTGTGTGACACCAGAATGTGTCTCTAT





CTAAAGGAAAAGGGATGAAGGGTGATATCTTTGGTCACAAGTAATGTATT





TCCATGTAGTCTTTGACAAAGGATCTAAGTGGATTTTGTAATTGAAGAAA





AATCTATGCACTAATCTTTACAGCATTTCCGTGAGTGTACGCAAGTCAGC





TCAACAATTCAACATTTGCTCTGTGGGGTTGTGCTAGACCCTGTCAGGGG





ATAACTACTGCTGGCTGGGGCCCAGTTCAGGGAAGACTTGCCAAAGACCA





TCAGGAAAAGAGGGAAGCTGAGTCTTAGGTTTCTTCCTTTAGAGATGGTG





ACAGTCCTCTCACCACCTCCAAGCATCTCACAATGTTTCCCTGCCTCCAA





GTCATCAAATTCATTTTTGATTCCTACTTCATAAAAATTACATTCTCCCA





GCACTTTGGGAGGCCAAGGCGGGCAGATCATGAGGTCAGGAGTTCAAGAC





CAGCCTGATCAACATGGTGAAACACCGTCTCTACTAAAAATACAAAAATT





AGCTGGGCATAGTGGCACTCACCTGTTATCTCAGTTACTTGGGAGGCTAA





GGCAGGAGAATCGCTTAAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGA





TTGTACCACTACACTCCAGCCTGGGTGACAGAGGGAGACTCCATCTCAAA





TAAATAAATTAAAAAAAAAAATATATATATATATGTATATATTCTCTATG





GATGCTGACCATTGGACCCTGGTTTCATCTGCACGTAACAGAGTAAGCTT





GGACTTGTGCTTGTAAATTAAAGCTCGACACCTCCTTTTGGCTTCTCTAT





ACCTGAATATTCTTACTCACTCTCCTTAATGTGAATATGCATGGAAGCAG





GACCATTTCCTCAAACACTAGCAGCAGCGAACCCTGTGGAAAGTCAGTCC





ACATAGAATAATTCAAATAAAGTGTTCAGAGAAATGGGGTTTCAGAGCAA





TTACTTTTTCCAGACCTTTCACAAATCAGTGGTGTAGGTATGACCAGCCT





TGAGTTGAGACCTCTGTAATATCCATCTTTAATAACATTAATATGCTGTG





GATGAGCAACTGATCACTGGAGGGAGTTTAGCTGCCCATAGGAGTTCATG





GCTAATGACAATATCTGAATAAGGACAGGTGTGGAGCCCAGGTGCAGGAA





GCAGGCGAAGGTCTTTCTGTGAGTCTCCTCTGAGGGAACTGGGTCTTTAT





ACATAGTTACTGTTTCAGAATTGATCCTTCTGGAATCATCAGTCTTCACC





AGTAGCTTGTTACATCTGGGGTTATCTCATAATTCAAACAAAGCTGACAA





GTTGTAACAATGAGCACACACTGACTTCTGCAACAGGCGCTGTCCACTTC





CCATCCGCACTCTACCGGCTTGCTCCTGGCCGCCTCCCACTCGCCTTCCT





GGGTGGTCCCCCAGCAGTTATACCTACCTGGTTGTCGCCCCCTCTATCCT





ACCACAATTGCTCACTAGCGGTTTCCTGCGTACACAGCTTGTCTCCCTAA





CCAGAGTGGAGGTGCCTTGGGGACACAGCCAGGCTCAGACATTCACTCAG





CTCATCATAGTGCCATCCCATCAATAACCCCTTCTGAGTGATCCTGGGTT





AGTAAACCGAGTGTCCCTGAAATTCCACTACCGCTGATTCCCTCCAGCTG





GGCAGAGGCAGCGAGCGCTGGCTGAAGCTTCCGGTGGGAAATGGGCAGTG





CCTAGAAGAGAAGGAAACGATGCATGAGAAGGTTCCAGATGTCTATGAGG





AACATGACGTGTCCTGTCCACTACTCTGCTTTTCCTCGTCCGCCTCCCCA





CCACTGGAGGAAACCTAGAAGCTGGTGCAGGAAATCCTCCTCTCAACAAC





CCAAGAACACTTTGCACAAGAGGGGTGCGCCCTCGGAGGTTGCTCTTCCC





CAGAGGCCTCTCCTCGCTGGGGTTTCTTGAAGACAGATACTTGGACTCCT





GCTGGGACCAGGCAGGCCACCCATCCTCAGGGGCAGTGACTGGTCACTCA





CCAGACCTCCCTGCATCCCCCTTCTCTCTCCTCCCCCAGCACGGGCTGAA





CCCCGCAGCCACAGATTCTGATCAGGATTAGGGTGTGGGTGCAAATCCAA





GGTCCACCAAAATGGAAAAGAAGTAACCGATGGGAACACGTCTCCACCAA





GACAGCGCTCAGGACTGGTTCTCCTCGTGGCTCCCAATTCAGTCCAGGAG





AAGCAGAGATTTTGTCCCCATGGTGGGTCATCTGAAGAAGGCACCCCTGG





TCAGGGCAGGCTTCTCAGACCCTGAGGCGCTGGCCATGGCCCCACTGAGA





CACAGGAAGGGCCGCGCCAGAGCACTGAAGACGCTTGGGGAAGGGAACCC





ACCTGGGACCCAGCCCCTGGTGGCTGCGGCTGCATCCCAGGTGGGCCCCC





TCCCCGAGGCTCTTCAAGGCTCAAAGAGAAGCCAGTGTAGAAAAGCAAAC





AGGTCAGGCCCGGGAGGCGCCCTTTGGACCTTTTGCAATCCTGGCGCTCT





TGCAGCCTGGGCTTCCTATAAATGGGGTGCGGGCGCCGGCCGCGCATTCC





CACCGGGACCTGCGGGGCTGAGTGCCCTTCTCGGTTGCTGCCGCTGAGGA





GCCCGCCCAGCCAGCCAGGGCCGCGAGGCCGAGGCCAGGCCGCAGCCCAG





GAGCCGCCCCACCGCAGCTGGCGATG






10) IL17. Interleukin 17 is a cytokine is a potent mediator in delayed-type reactions by increasing chemokine production in various tissues to recruit monocytes and neutrophils to the site of inflammation. IL-17 is produced by T-helper cells and is induced by IL-23 which results in destructive tissue damage in delayed-type reactions. Interleukin 17 as a family functions as a proinflammatory cytokine that responds to the invasion of the immune system by extracellular pathogens and induces destruction of the pathogen's cellular matrix. Interleukin 17 acts synergistically with tumor necrosis factor and interleukin-1 (Chiricozzi et al., J Invest Dermatol. 2011 March; 131(3):677-87, Miossec et al., N. Engl. J. Med. 361 (9): 888-98). Most notably IL is involved in inducing many immune signaling molecules and mediating proinflammatory responses (e.g. allergic responses). IL-17 induces the production of many other cytokines (such as IL-6, G-CSF, GM-CSF, IL-1β, TGF-β, TNF-α), chemokines (including IL-8, GRO-α, and MCP-1), and prostaglandins (e.g., PGE2) from many cell types (fibroblasts, endothelial cells, epithelial cells, keratinocytes, and macrophages). The release of cytokines causes many functions, such as airway remodeling, a characteristic of IL-17 responses. The increased expression of chemokines attracts other cells including neutrophils. IL-17 function is also essential to a subset of CD4+ T-Cells called T helper 17 (Th17) cells. As a result of these roles, the IL-17 family has been linked to many immune/autoimmune related diseases including rheumatoid arthritis, psoriasis, ankylosing spondylitis asthma, lupus, allograft rejection and anti-tumor immunity (reviewed in Miossec and Kolls, Nature Reviews Drug Discovery 11, 763-776).


Protein: IL17 Gene: IL17A (Homo sapiens, chromosome 6, 52051185-52055436 [NCBI Reference Sequence: NC000006.11]; start site location: 52051230; strand: positive)












Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site





2601
CTTGTTTGTATCCGCATGGCTGTGCTC
4451





2616
CGAGACCGTTGAGGTGGAGTG
3148





2635
GGTCACTTACGTGGCGTGTCGC
107





2664
GACAAAATGTAGCGCTATCG
55



















Target Shift Sequences











Relative




upstream




location


Sequence ID

to gene


No:
Sequence (5′-3′)
start site












2601
CTTGTTTGTATCCGCATGGCTGTGCTC
4451





2602
TTGTTTGTATCCGCATGGCT
4452





2603
TGTTTGTATCCGCATGGCTG
4453





2604
GTTTGTATCCGCATGGCTGT
4454





2605
TTTGTATCCGCATGGCTGTG
4455





2606
TTGTATCCGCATGGCTGTGC
4456



















Gene Identification


















GeneID
3605



HGNC
5981



HPRD
04396



MIM
603149
























2607
TGTATCCGCATGGCTGTGCT
4457





2608
GTATCCGCATGGCTGTGCTC
4458





2609
TATCCGCATGGCTGTGCTCC
4459





2610
ATCCGCATGGCTGTGCTCCT
4460





2611
TCCGCATGGCTGTGCTCCTG
4461





2612
CCGCATGGCTGTGCTCCTGA
4462





2613
CGCATGGCTGTGCTCCTGAG
4463





2614
GCTTGTTTGTATCCGCATGG
4450





2615
TGCTTGTTTGTATCCGCATG
4449





2616
CGAGACCGTTGAGGTGGAGTG
3148





2617
CCGAGACCGTTGAGGTGGAG
3147





2618
TCCGAGACCGTTGAGGTGGA
3146





2619
ATCCGAGACCGTTGAGGTGG
3145





2620
AATCCGAGACCGTTGAGGTG
3144





2621
CAATCCGAGACCGTTGAGGT
3143





2622
TCAATCCGAGACCGTTGAGG
3142





2623
TTCAATCCGAGACCGTTGAG
3141





2624
TTTCAATCCGAGACCGTTGA
3140





2625
GTTTCAATCCGAGACCGTTG
3139





2626
GGTTTCAATCCGAGACCGTT
3138





2627
AGGTTTCAATCCGAGACCGT
3137





2628
CAGGTTTCAATCCGAGACCG
3136





2629
TCAGGTTTCAATCCGAGACC
3135





2630
CTCAGGTTTCAATCCGAGAC
3134





2631
ACTCAGGTTTCAATCCGAGA
3133





2632
GACTCAGGTTTCAATCCGAG
3132





2633
TGACTCAGGTTTCAATCCGA
3131





2634
CTGACTCAGGTTTCAATCCG
3130





2635
GGTCACTTACGTGGCGTGTCGC
107





2636
GTCACTTACGTGGCGTGTCG
108





2637
TCACTTACGTGGCGTGTCGC
109





2638
CACTTACGTGGCGTGTCGCA
110





2639
ACTTACGTGGCGTGTCGCAG
111





2640
CTTACGTGGCGTGTCGCAGT
112





2641
TTACGTGGCGTGTCGCAGTG
113





2642
TACGTGGCGTGTCGCAGTGG
114





2643
ACGTGGCGTGTCGCAGTGGG
115





2644
CGTGGCGTGTCGCAGTGGGT
116





2645
GTGGCGTGTCGCAGTGGGTT
117





2646
TGGCGTGTCGCAGTGGGTTC
118





2647
GGCGTGTCGCAGTGGGTTCA
119





2648
GCGTGTCGCAGTGGGTTCAG
120





2649
CGTGTCGCAGTGGGTTCAGG
121





2650
GTGTCGCAGTGGGTTCAGGG
122





2651
TGTCGCAGTGGGTTCAGGGG
123





2652
GTCGCAGTGGGTTCAGGGGT
124





2653
TCGCAGTGGGTTCAGGGGTG
125





2654
CGCAGTGGGTTCAGGGGTGA
126





2655
TGGTCACTTACGTGGCGTGT
106





2656
GTGGTCACTTACGTGGCGTG
105





2657
TGTGGTCACTTACGTGGCGT
104





2658
CTGTGGTCACTTACGTGGCG
103





2659
TCTGTGGTCACTTACGTGGC
102





2660
TTCTGTGGTCACTTACGTGG
101





2661
CTTCTGTGGTCACTTACGTG
100





2662
CCTTCTGTGGTCACTTACGT
99





2663
TCCTTCTGTGGTCACTTACG
98





2664
GACAAAATGTAGCGCTATCG
55





2665
GGACAAAATGTAGCGCTATC
54



















Hot Zones (Relative upstream location to gene start site)







 1-150


2900-3250


4250-4600









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11959)







CACTGTTCAGGACGGCCCTCAGGAGCACAGCCATGCGGATACAAACAAGC





ATTATGCTGGAGAGGAACAATGATGCTATCAGGTTGGTACCAAGACTGAT





ACTTCCTATTTAAGAAATCATGTTAATTATATAGGTATTAAGTTCTGGTT





TTTGCAAGACAACATCGGTAACCTCAGAGATGAACTTCTAGTATGTAATA





GTATTGATATCTTCAAATTCAGGGTAGATGATCTAGAGCTTGATAAACTG





GGTCTAAATCTGAGTCTCAATTAAATCCTGATTTTATCAACTCCCCAAGG





CCTTCCAGATGGCTCTCTATTGCAAATCTTCTCCTCTCTAAACATCACGT





CTTCCTTTTAAATGTCTGTTTGACATTGCTCCTTGTGTGCTGGCCCATTT





GCAAAGTATCAGCCCCTACATTTAAAATCCAAGAGAATTCTCTCCAACGA





CTCATTTATTCTCTCTATATTAAGTGAAGATCAAGAGAGTAGTCTTGCCT





GGTGATGTGCACAGCATTAATCAAAATGGCTCCAATCTTTTTGAACAGCC





ACCATCTTTTATTAACTTTAAGCAGAAACAATGGCATGATGCCTCCTCCT





ATACTGAGACCTTTGTTACTTTTATAAAATGGCTATAGAATATAAATTTA





AAATATATTAATCTCTCAATGGTAACCTTACTACCTAAGCAAAAATTAAA





ATTTATTTATTTTATCTTTTAGCAAGCCTTAATTTTCCACCACACTGAGA





CAAAAGACTCAAAAATACTCTCTCCAGGACACAAAAGGAAAAATTTTTCT





TTCCATCCCTTACATTATTCTCTATTGCAAGTAGAAAGAAATACTGTTTA





ATGGCCTAATAATTTCAAGGAGCCTTGAAAATCATTTCTCTAAATCAAGA





AGGGCAGAAACATTTTACCACTATCATCCCTTCAAATGCATGTTTGTCTC





CTGGAAATCTTTCCCTGTCTCCAGTTGCATACTTGCCCCCACCCATTGAA





GCTCTGAACTCACAACATGCAGTTCCCCATTGCTTATGGTGATCTGTTTC





AAGCCCTCAGAGAAGCAAGATTGATAAACCTGGAAGACAATCACTAACAA





AATAATCATCCCTAATTTACTACTCCCATTTGTTCTTTACTATATTCATC





TCCAGAAAATCATAGATGATCAAAAGATTACCTGGTGCAAAACTCATTTT





ATAAGACAGGAAACTAAGCCTCAAAGAGGTGAGGTACCCAAGGGCATGGG





TAGTTAGTGGCAGATTCACAGTGAAAACAAAGGTGTCCTCTCATTCAGTG





TTCTAGGCACTCTAATGCCCAGTCCAGCATGCACTCCACCTCAACGGTCT





CGGATTGAAACCTGAGTCAGCTGGCTCTGCAGACAAATGCAGAGGAAGAG





CCCTGCCCACTGTGAACACACTCTTACACTTCCAGCTGCTCCTCCAGGAG





CCACAGGCTTCCAGCTCAAGCAAACGTCTGGGAAATCAGCCATACTCAAG





GCTGCACACACCCAGCTCCAACCACCATGTCAAAATGATCCTTTTAACAC





TTCTGTGAAAACCCATTTTGTTTCCCCATTTTATTTTAAAGCATTTCAAA





GCATAGCACACAGGCTGAATTACATAGGCACAGGAGGCAAGACTAGGGAA





AACAGCTAGAGTCAGCTTCTCCCCCTGCAACTTCAATCAAAATAGTTCAC





AGTAAGCACATTCTCCCCTCCTTCTTCCTTGCCAGAAAGCAACAACAAGG





AATCCTCCACTCCAGGGTGATCCTGAATAGGCTATAGCCTCATCACACTA





AGTTCAAAAGGATCAGAATGCAGAGCCAAGGCACTAGACAACTCAGTAGG





GTTATTGAGATGCAGGTAGGTTCTAAGAAGAATATAGAAAATTCTGAACT





TCTCAAATAACATTACTCATACTGTCAATTAATCAAAATGTTGAACAGCT





ATTACTTACTAGACACTATGCTAAGTGCTACAAAGACCAATAAGACTACT





TGTCTTCAGGTAGCTTGTAGTCTAGCAAGAAATGAGCTACAAAGAAAACA





AGAAAGTCAGTATGTAAATGAATGGCATGCAATACACTAGAAATATGCAT





GAACAGCCCTGTATCAGAGAAGAACAAGCAACACAAAAGCAGTCTGTGAA





GACCCATGTTGTATAAAGGGCCACATTAGGCACCATAGGAGTCACAAAGT





TGAAGAACATACTAGCCTTGAAGGCTGACAGTAAAATCTAAACATGGAAA





TAAACACATATCTTACCCATAGCTTTTAAAGCCAAATGAAACACATTACA





AAATGAAAGAAAAGTTACTAGAGAGGTAGGTGTAAGCTACATGTGATGGA





TGGAACTATTTATTTCAACTGAGGTAATCAGGCCAGACCTGTGAGATACA





TTTAAACAGGATTTTGAAGGACAAGTAGCATTTTGATAACCTGAGGATGG





GGAAGGGCATTTCAGAAACAATACCTTAACAAAGGGTGGGTAAGCTTTGA





AAGAAGGCCTGGAGAAAAATCAGGACCCCATCATCCCAGGTCCTGGAGCA





TGGTGGGGGGTAAGGCTAGAAAGGAAGTTGTACGAACTCAAATATTAATT





CAAATGCTAAGAGGCTTACCCTTCATTCTGTATGCAAGCTAATGGCAGAA





GAAAAGGCACAATTAGAGCCATGCTTTGAGAATCATTATTGAAAGCATGT





CGAAGATGGTCTGAAGGAAGCAATTGGGAAAAGCAAGCATAGCTCATCCA





AGTGGGTGAGAGTGTGAGTTAGAGGAAGCTTGGAAATTGGTGATGTGAGA





GATGCTGCAGCTTCTGGGATTGCTGCCTGGTCGTGTGTAGAGGAGGGGCA





GTAGGGCTCATTCTGAATCTTGTCTTGAAAAGCACATAGATAGTGATGCC





AAAACCAGGACTACGGAAATCACTTGAAGCTGTATCCTACCTCCTCCTCC





ATCTGTATCTGCTTCACCTATCAAGGATATCTACTATTGCCACTAAAATT





CAGGTGCTTATGGCCTCCCTCATTCATCAGCCAGGGTTTATCTGGCCAGG





AAAGAGAAGCCCCTTCAGGCATTTGCAACAGAGGGAGTTTAAGTCAGAGA





ACTAGTCACCCTGGTAGTTGAGATTGCCATCAGCAAGAAGCTGTTACCAT





TTGAAGGCTGCAGGGACAAAGGGAGTGAGCAGTCCTCTGGGAGACTGAGG





AAGGAAGCTCCTGGCTTCTCCCCACTTTCCACTTTCCACTTCCCACTTTT





ACTCATCTGTCCTCCAATTCCCTTTTGGCTGAGCCTAGCTGAAACCCAGC





TGACAGGGGAGTTTGAGCAAGCAGCCTCCAGGGTCAGCCCTCTGAGTTAC





AGGTAGAGCAGGACAGGGAGGAATGGATCTCAGGACAAACAGGTTCAGGA





TCCGGCAAACTAATTTTACACTCCAGCCATTGAGTTGGAACTACTGGCCA





GCCTCCCCCCGAGTTAGCATGTAGAATATGGGATACCAGCTGAGTGCCTG





AGAGTTATCATTCACCTCAGTGGGGGTAGGGGCGGAGAAGGGTGACATAT





AGCCAGCCACATCTATATCCACTGGCCCTTCCTTGTCCTAGTCCTCTGTA





TTCCTGAGAAGGAACTATTCTCAAGGACCTGAGTCCAAGTTCATCTTACT





TAGAGTACAGAGAAAAGAACCGCTAACTCCTTCTCTCTTTCCCCCATCAT





GTCTCCTCTCCTTTCTAGTTCTCATCACTCTCTACTCCCCCCTGCCCCCC





TTTTCTCCATCTCCATCACCTTTGTCCAGTCTCTATCCCCATTTTCAATT





CCTTCCTCAAAACACCAAGTTGCTTGGTAGCATGCAGGGTTGGAACATGC





CTTTAACAGAAAATCTCGTGTCTCTTGAACCTAGTTATTTATTCCTTGAG





CAGAGTAGATATTCAACAAAAGAATTGTTAAATTCAATTAAATAGGATAT





ATCTTATTATTAAATATTTTTTTCATTTTTTGTTTACTTATATGATGGGA





ACTTGAGTAGTTTCCGGAATTGTCTCCACAACACCTGGCCAAGGAATCTG





TGAGGAAAAGAAAGATCAAATGGAAAATCAAGGTACATGACACCAGAAGA





CCTACATGTTACTTCAAACTTTTTCTTCCTCATGAACCATTAAAATAGAG





CATAACTCTTCTGGCAGCTGTACATATGTTCATAAATACATGATATTGAC





CCATAGCATAGCAGCTCTGCTCAGCTTCTAACAAGTAAGAATGAAAAGAG





GACATGGTCTTTAGGAACATGAATTTCTGCCCTTCCCATTTTCCTTCAGA





AGGAGAGATTCTTCTATGACCTCATTGGGGGCGGAAATTTTAACCAAAAT





GGTGTCACCCCTGAACCCACTGCGACACGCCACGTAAGTGACCACAGAAG





GAGAAAAGCCCTATAAAAAGAGAGACGATAGCGCTACATTTTGTCCATCT





CATAGCAGGCACAAACTCATCCATCCCCAGTTGATTGGAAGAAACAACGA







TG








11) MMP2. Matrix metalloproteinase-2 (MMP-2) is also known as 72 kDa type IV collagenase and gelatinase A is an enzyme that in humans is encoded by the MMP2 gene (Devarajan et al, 1992; J. Biol. Chem. 267 (35): 25228-32). The matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMPs are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. This gene encodes an enzyme which degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response. Mutations in the MMP2 gene are associated with Torg-Winchester syndrome, multicentric osteolysis and arthritis syndrome (Martignetti et al., 2001, Nat. Genet. 28 (3): 261-5).


Protein: MMP2 Gene: MMP2 (Homo sapiens, chromosome 16, 55513081-55540586 [NCBI Reference Sequence: NC000016.9]; start site location: 55513392; strand: positive)












Gene Identification


















GeneID
4313



HGNC
7166



HPRD
00386



MIM
120360




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












2666
GCTCCCTGGCCCCGCGCGTCGC
9





2732
CCGCGGCGCAGGGCTGCGCTCCGAG
85





2865
GCCGCCTGCTACTCCTGGCCTC
453





2869
GCGCACTCGGGCCCGCCCCTCTCTGCCC
361





2891
CGCTCCGAGGGTCCGCTGGCTCGG
101





3024
GTCCACCCTCAGTGCACGACCTCGT
478





3066
CACCGCCTGAGGAAGTCTGGATGC
239





3101
TGCCTCTCTCGCGATCTGGGCG
512





3131
GAGGGACGCCGGCTTGGCTAGGAC
618



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












2666
GCTCCCTGGCCCCGCGCGTCGC
7





2667
CTCCCTGGCCCCGCGCGTCG
8





2668
TCCCTGGCCCCGCGCGTCGC
9





2669
CCCTGGCCCCGCGCGTCGCC
10





2670
CCTGGCCCCGCGCGTCGCCC
11





2671
CTGGCCCCGCGCGTCGCCCG
12





2672
TGGCCCCGCGCGTCGCCCGG
13





2673
GGCCCCGCGCGTCGCCCGGG
14





2674
GCCCCGCGCGTCGCCCGGGG
15





2675
CCCCGCGCGTCGCCCGGGGG
16





2676
CCCGCGCGTCGCCCGGGGGT
17





2677
CCGCGCGTCGCCCGGGGGTC
18





2678
CGCGCGTCGCCCGGGGGTCG
19





2679
GCGCGTCGCCCGGGGGTCGC
20





2680
CGCGTCGCCCGGGGGTCGCT
21





2681
GCGTCGCCCGGGGGTCGCTG
22





2682
CGTCGCCCGGGGGTCGCTGG
23





2683
GTCGCCCGGGGGTCGCTGGC
24





2684
TCGCCCGGGGGTCGCTGGCT
25





2685
CGCCCGGGGGTCGCTGGCTC
26





2686
GCCCGGGGGTCGCTGGCTCG
27





2687
CCCGGGGGTCGCTGGCTCGG
28





2688
CCGGGGGTCGCTGGCTCGGT
29





2689
CGGGGGTCGCTGGCTCGGTG
30





2690
GGGGGTCGCTGGCTCGGTGC
31





2691
GGGGTCGCTGGCTCGGTGCG
32





2692
GGGTCGCTGGCTCGGTGCGT
33





2693
GGTCGCTGGCTCGGTGCGTG
34





2694
GTCGCTGGCTCGGTGCGTGT
35





2695
TCGCTGGCTCGGTGCGTGTG
36





2696
CGCTGGCTCGGTGCGTGTGG
37





2697
GCTGGCTCGGTGCGTGTGGC
38





2698
CTGGCTCGGTGCGTGTGGCC
39





2699
TGGCTCGGTGCGTGTGGCCG
40





2700
GGCTCGGTGCGTGTGGCCGC
41





2701
GCTCGGTGCGTGTGGCCGCC
42





2702
CTCGGTGCGTGTGGCCGCCT
43





2703
TCGGTGCGTGTGGCCGCCTC
44





2704
CGGTGCGTGTGGCCGCCTCG
45





2705
GGTGCGTGTGGCCGCCTCGC
46





2706
GTGCGTGTGGCCGCCTCGCC
47





2707
TGCGTGTGGCCGCCTCGCCG
48





2708
GCGTGTGGCCGCCTCGCCGC
49





2709
CGTGTGGCCGCCTCGCCGCC
50





2710
GTGTGGCCGCCTCGCCGCCT
51





2711
TGTGGCCGCCTCGCCGCCTG
52





2712
GTGGCCGCCTCGCCGCCTGG
53





2713
TGGCCGCCTCGCCGCCTGGT
54





2714
GGCCGCCTCGCCGCCTGGTT
55





2715
GCCGCCTCGCCGCCTGGTTG
56





2716
CCGCCTCGCCGCCTGGTTGG
57





2717
CGCCTCGCCGCCTGGTTGGA
58





2718
GCCTCGCCGCCTGGTTGGAG
59





2719
CCTCGCCGCCTGGTTGGAGC
60





2720
CTCGCCGCCTGGTTGGAGCC
61





2721
TCGCCGCCTGGTTGGAGCCT
62





2722
CGCCGCCTGGTTGGAGCCTG
63





2723
GCCGCCTGGTTGGAGCCTGC
64





2724
CCGCCTGGTTGGAGCCTGCT
65





2725
CGCCTGGTTGGAGCCTGCTC
66





2726
CGCTCCCTGGCCCCGCGCGT
6





2727
GCGCTCCCTGGCCCCGCGCG
5





2728
AGCGCTCCCTGGCCCCGCGC
4





2729
TAGCGCTCCCTGGCCCCGCG
3





2730
GTAGCGCTCCCTGGCCCCGC
2





2731
CGTAGCGCTCCCTGGCCCCG
1





2732
CCGCGGCGCAGGGCTGCGCTCCGAG
85





2733
CGCGGCGCAGGGCTGCGCTC
86





2734
GCGGCGCAGGGCTGCGCTCC
87





2735
CGGCGCAGGGCTGCGCTCCG
88





2736
GGCGCAGGGCTGCGCTCCGA
89





2737
GCGCAGGGCTGCGCTCCGAG
90





2738
CGCAGGGCTGCGCTCCGAGG
91





2739
GCAGGGCTGCGCTCCGAGGG
92





2740
CAGGGCTGCGCTCCGAGGGT
93





2741
AGGGCTGCGCTCCGAGGGTC
94





2742
GGGCTGCGCTCCGAGGGTCC
95





2743
GGCTGCGCTCCGAGGGTCCG
96





2744
GCTGCGCTCCGAGGGTCCGC
97





2745
CTGCGCTCCGAGGGTCCGCT
98





2746
TGCGCTCCGAGGGTCCGCTG
99





2747
GCGCTCCGAGGGTCCGCTGG
100





2748
CGCTCCGAGGGTCCGCTGGC
101





2749
GCTCCGAGGGTCCGCTGGCT
102





2750
CTCCGAGGGTCCGCTGGCTC
103





2751
TCCGAGGGTCCGCTGGCTCG
104





2752
CCGAGGGTCCGCTGGCTCGG
105





2753
CGAGGGTCCGCTGGCTCGGT
106





2754
GAGGGTCCGCTGGCTCGGTG
107





2755
AGGGTCCGCTGGCTCGGTGG
108





2756
GGGTCCGCTGGCTCGGTGGC
109





2757
GGTCCGCTGGCTCGGTGGCC
110





2758
GTCCGCTGGCTCGGTGGCCT
111





2759
TCCGCTGGCTCGGTGGCCTG
112





2760
CCGCTGGCTCGGTGGCCTGG
113





2761
CGCTGGCTCGGTGGCCTGGG
114





2762
GCTGGCTCGGTGGCCTGGGG
115





2763
CTGGCTCGGTGGCCTGGGGT
116





2764
TGGCTCGGTGGCCTGGGGTT
117





2765
GGCTCGGTGGCCTGGGGTTT
118





2766
GCTCGGTGGCCTGGGGTTTG
119





2767
CTCGGTGGCCTGGGGTTTGC
120





2768
TCGGTGGCCTGGGGTTTGCC
121





2769
CGGTGGCCTGGGGTTTGCCC
122





2770
GGTGGCCTGGGGTTTGCCCG
123





2771
GTGGCCTGGGGTTTGCCCGG
124





2772
TGGCCTGGGGTTTGCCCGGC
125





2773
GGCCTGGGGTTTGCCCGGCT
126





2774
GCCTGGGGTTTGCCCGGCTC
127





2775
CCTGGGGTTTGCCCGGCTCA
128





2776
CTGGGGTTTGCCCGGCTCAG
129





2777
TGGGGTTTGCCCGGCTCAGC
130





2778
GGGGTTTGCCCGGCTCAGCG
131





2779
GGGTTTGCCCGGCTCAGCGG
132





2780
GGTTTGCCCGGCTCAGCGGC
133





2781
GTTTGCCCGGCTCAGCGGCT
134





2782
TTTGCCCGGCTCAGCGGCTC
135





2783
TTGCCCGGCTCAGCGGCTCA
136





2784
TGCCCGGCTCAGCGGCTCAT
137





2785
GCCCGGCTCAGCGGCTCATG
138





2786
CCCGGCTCAGCGGCTCATGG
139





2787
CCGGCTCAGCGGCTCATGGT
140





2788
CGGCTCAGCGGCTCATGGTC
141





2789
GGCTCAGCGGCTCATGGTCC
142





2790
GCTCAGCGGCTCATGGTCCG
143





2791
CTCAGCGGCTCATGGTCCGG
144





2792
TCAGCGGCTCATGGTCCGGC
145





2793
CAGCGGCTCATGGTCCGGCC
146





2794
AGCGGCTCATGGTCCGGCCC
147





2795
GCGGCTCATGGTCCGGCCCC
148





2796
CGGCTCATGGTCCGGCCCCC
149





2797
GGCTCATGGTCCGGCCCCCG
150





2798
GCTCATGGTCCGGCCCCCGC
151





2799
CTCATGGTCCGGCCCCCGCG
152





2800
TCATGGTCCGGCCCCCGCGC
153





2801
CATGGTCCGGCCCCCGCGCC
154





2802
ATGGTCCGGCCCCCGCGCCC
155





2803
TGGTCCGGCCCCCGCGCCCC
156





2804
GGTCCGGCCCCCGCGCCCCA
157





2805
GTCCGGCCCCCGCGCCCCAG
158





2806
TCCGGCCCCCGCGCCCCAGC
159





2807
CCGGCCCCCGCGCCCCAGCC
160





2808
CGGCCCCCGCGCCCCAGCCC
161





2809
GGCCCCCGCGCCCCAGCCCC
162





2810
GCCCCCGCGCCCCAGCCCCC
163





2811
CCCCCGCGCCCCAGCCCCCG
164





2812
CCCCGCGCCCCAGCCCCCGC
165





2813
CCCGCGCCCCAGCCCCCGCC
166





2814
CCGCGCCCCAGCCCCCGCCG
167





2815
CGCGCCCCAGCCCCCGCCGC
168





2816
GCGCCCCAGCCCCCGCCGCC
169





2817
CGCCCCAGCCCCCGCCGCCG
170





2818
GCCCCAGCCCCCGCCGCCGC
171





2819
CCCCAGCCCCCGCCGCCGCC
172





2820
CCCAGCCCCCGCCGCCGCCG
173





2821
CCAGCCCCCGCCGCCGCCGC
174





2822
CAGCCCCCGCCGCCGCCGCC
175





2823
AGCCCCCGCCGCCGCCGCCG
176





2824
GCCCCCGCCGCCGCCGCCGC
177





2825
CCCCCGCCGCCGCCGCCGCC
178





2826
CCCCGCCGCCGCCGCCGCCG
179





2827
CCCGCCGCCGCCGCCGCCGC
180





2828
CCCCCGCCGCCGCCGCCGCC
181





2829
CCCCGCCGCCGCCGCCGCCG
182





2830
GCCCCCGCCGCCGCCGCCGC
183





2831
CCGCCGCCGCCGCCGCCGCA
184





2832
CGCCGCCGCCGCCGCCGCAG
185





2833
GCCGCCGCCGCCGCCGCAGG
186





2834
CCGCCGCCGCCGCCGCAGGT
187





2835
CGCCGCCGCCGCCGCAGGTC
188





2836
GCCGCCGCCGCCGCAGGTCC
189





2837
CCGCCGCCGCCGCAGGTCCT
190





2838
CGCCGCCGCCGCAGGTCCTG
191





2839
GCCGCCGCCGCAGGTCCTGG
192





2840
CCGCCGCCGCAGGTCCTGGC
193





2841
CGCCGCCGCAGGTCCTGGCA
194





2842
GCCGCCGCAGGTCCTGGCAA
195





2843
CCGCCGCAGGTCCTGGCAAT
196





2844
CGCCGCAGGTCCTGGCAATC
197





2845
GCCGCAGGTCCTGGCAATCC
198





2846
CCGCAGGTCCTGGCAATCCC
199





2847
CGCAGGTCCTGGCAATCCCT
200





2848
TCCGCGGCGCAGGGCTGCGC
84





2849
CTCCGCGGCGCAGGGCTGCG
83





2850
GCTCCGCGGCGCAGGGCTGC
82





2851
TGCTCCGCGGCGCAGGGCTG
81





2852
CTGCTCCGCGGCGCAGGGCT
80





2853
CCTGCTCCGCGGCGCAGGGC
79





2854
GCCTGCTCCGCGGCGCAGGG
78





2855
AGCCTGCTCCGCGGCGCAGG
77





2856
GAGCCTGCTCCGCGGCGCAG
76





2857
GGAGCCTGCTCCGCGGCGCA
75





2858
TGGAGCCTGCTCCGCGGCGC
74





2859
TTGGAGCCTGCTCCGCGGCG
73





2860
GTTGGAGCCTGCTCCGCGGC
72





2861
GGTTGGAGCCTGCTCCGCGG
71





2862
TGGTTGGAGCCTGCTCCGCG
70





2863
CTGGTTGGAGCCTGCTCCGC
69





2864
CCTGGTTGGAGCCTGCTCCG
68





2865
GCCGCCTGCTACTCCTGGCCTC
453





2866
CCGCCTGCTACTCCTGGCCT
454





2867
CGCCTGCTACTCCTGGCCTC
455





2868
GGCCGCCTGCTACTCCTGGC
452





2869
GCGCACTCGGGCCCGCCCCTCTCTGCCC
361





2870
CGCACTCGGGCCCGCCCCTC
362





2871
GCACTCGGGCCCGCCCCTCT
363





2872
CACTCGGGCCCGCCCCTCTC
364





2873
ACTCGGGCCCGCCCCTCTCT
365





2874
CTCGGGCCCGCCCCTCTCTG
366





2875
TCGGGCCCGCCCCTCTCTGC
367





2876
CGGGCCCGCCCCTCTCTGCC
368





2877
GGGCCCGCCCCTCTCTGCCC
369





2878
GGCCCGCCCCTCTCTGCCCC
370





2879
GCCCGCCCCTCTCTGCCCCA
371





2880
CCCGCCCCTCTCTGCCCCAC
372





2881
CCGCCCCTCTCTGCCCCACC
373





2882
CGCCCCTCTCTGCCCCACCC
374





2883
GGCGCACTCGGGCCCGCCCC
360





2884
GGGCGCACTCGGGCCCGCCC
359





2885
GGGGCGCACTCGGGCCCGCC
358





2886
GGGGGCGCACTCGGGCCCGC
357





2887
GGGGGGCGCACTCGGGCCCG
356





2888
CGGGGGGCGCACTCGGGCCC
355





2889
GCGGGGGGCGCACTCGGGCC
354





2890
GGCGGGGGGCGCACTCGGGC
353





2891
CGCTCCGAGGGTCCGCTGGCTCGG
101





2892
GCTCCGAGGGTCCGCTGGCT
102





2893
CTCCGAGGGTCCGCTGGCTC
103





2894
TCCGAGGGTCCGCTGGCTCG
104





2895
CCGAGGGTCCGCTGGCTCGG
105





2896
CGAGGGTCCGCTGGCTCGGT
106





2897
GAGGGTCCGCTGGCTCGGTG
107





2898
AGGGTCCGCTGGCTCGGTGG
108





2899
GGGTCCGCTGGCTCGGTGGC
109





2900
GGTCCGCTGGCTCGGTGGCC
110





2901
GTCCGCTGGCTCGGTGGCCT
111





2902
TCCGCTGGCTCGGTGGCCTG
112





2903
CCGCTGGCTCGGTGGCCTGG
113





2904
CGCTGGCTCGGTGGCCTGGG
114





2905
GCTGGCTCGGTGGCCTGGGG
115





2906
CTGGCTCGGTGGCCTGGGGT
116





2907
TGGCTCGGTGGCCTGGGGTT
117





2908
GGCTCGGTGGCCTGGGGTTT
118





2909
GCTCGGTGGCCTGGGGTTTG
119





2910
CTCGGTGGCCTGGGGTTTGC
120





2911
TCGGTGGCCTGGGGTTTGCC
121





2912
CGGTGGCCTGGGGTTTGCCC
122





2913
GGTGGCCTGGGGTTTGCCCG
123





2914
GTGGCCTGGGGTTTGCCCGG
124





2915
TGGCCTGGGGTTTGCCCGGC
125





2916
GGCCTGGGGTTTGCCCGGCT
126





2917
GCCTGGGGTTTGCCCGGCTC
127





2918
CCTGGGGTTTGCCCGGCTCA
128





2919
CTGGGGTTTGCCCGGCTCAG
129





2920
TGGGGTTTGCCCGGCTCAGC
130





2921
GGGGTTTGCCCGGCTCAGCG
131





2922
GGGTTTGCCCGGCTCAGCGG
132





2923
GGTTTGCCCGGCTCAGCGGC
133





2924
GTTTGCCCGGCTCAGCGGCT
134





2925
TTTGCCCGGCTCAGCGGCTC
135





2926
TTGCCCGGCTCAGCGGCTCA
136





2927
TGCCCGGCTCAGCGGCTCAT
137





2928
GCCCGGCTCAGCGGCTCATG
138





2929
CCCGGCTCAGCGGCTCATGG
139





2930
CCGGCTCAGCGGCTCATGGT
140





2931
CGGCTCAGCGGCTCATGGTC
141





2932
GGCTCAGCGGCTCATGGTCC
142





2933
GCTCAGCGGCTCATGGTCCG
143





2934
CTCAGCGGCTCATGGTCCGG
144





2935
TCAGCGGCTCATGGTCCGGC
145





2936
CAGCGGCTCATGGTCCGGCC
146





2937
AGCGGCTCATGGTCCGGCCC
147





2938
GCGGCTCATGGTCCGGCCCC
148





2939
CGGCTCATGGTCCGGCCCCC
149





2940
GGCTCATGGTCCGGCCCCCG
150





2941
GCTCATGGTCCGGCCCCCGC
151





2942
CTCATGGTCCGGCCCCCGCG
152





2943
TCATGGTCCGGCCCCCGCGC
153





2944
CATGGTCCGGCCCCCGCGCC
154





2945
ATGGTCCGGCCCCCGCGCCC
155





2946
TGGTCCGGCCCCCGCGCCCC
156





2947
GGTCCGGCCCCCGCGCCCCA
157





2948
GTCCGGCCCCCGCGCCCCAG
158





2949
TCCGGCCCCCGCGCCCCAGC
159





2950
CCGGCCCCCGCGCCCCAGCC
160





2951
CGGCCCCCGCGCCCCAGCCC
161





2952
GGCCCCCGCGCCCCAGCCCC
162





2953
GCCCCCGCGCCCCAGCCCCC
163





2954
CCCCCGCGCCCCAGCCCCCG
164





2955
CCCCGCGCCCCAGCCCCCGC
165





2956
CCCGCGCCCCAGCCCCCGCC
166





2957
CCGCGCCCCAGCCCCCGCCG
167





2958
CGCGCCCCAGCCCCCGCCGC
168





2959
GCGCCCCAGCCCCCGCCGCC
169





2960
CGCCCCAGCCCCCGCCGCCG
170





2961
GCCCCAGCCCCCGCCGCCGC
171





2962
CCCCAGCCCCCGCCGCCGCC
172





2963
CCCAGCCCCCGCCGCCGCCG
173





2964
CCAGCCCCCGCCGCCGCCGC
174





2965
CAGCCCCCGCCGCCGCCGCC
175





2966
AGCCCCCGCCGCCGCCGCCG
176





2967
GCCCCCGCCGCCGCCGCCGC
177





2968
CCCCCGCCGCCGCCGCCGCC
178





2969
CCCCGCCGCCGCCGCCGCCG
179





2970
CCCGCCGCCGCCGCCGCCGC
180





2971
CCGCCGCCGCCGCCGCCGCC
181





2972
CGCCGCCGCCGCCGCCGCCG
182





2973
GCCGCCGCCGCCGCCGCCGC
183





2974
CCGCCGCCGCCGCCGCCGCA
184





2975
CGCCGCCGCCGCCGCCGCAG
185





2976
GCCGCCGCCGCCGCCGCAGG
186





2977
CCGCCGCCGCCGCCGCAGGT
187





2978
CGCCGCCGCCGCCGCAGGTC
188





2979
GCCGCCGCCGCCGCAGGTCC
189





2980
CCGCCGCCGCCGCAGGTCCT
190





2981
CGCCGCCGCCGCAGGTCCTG
191





2982
GCCGCCGCCGCAGGTCCTGG
192





2983
CCGCCGCCGCAGGTCCTGGC
193





2984
CGCCGCCGCAGGTCCTGGCA
194





2985
GCCGCCGCAGGTCCTGGCAA
195





2986
CCGCCGCAGGTCCTGGCAAT
196





2987
CGCCGCAGGTCCTGGCAATC
197





2988
GCCGCAGGTCCTGGCAATCC
198





2989
CCGCAGGTCCTGGCAATCCC
199





2990
CGCAGGTCCTGGCAATCCCT
200





2991
GCGCTCCGAGGGTCCGCTGG
100





2992
TGCGCTCCGAGGGTCCGCTG
99





2993
CTGCGCTCCGAGGGTCCGCT
98





2994
GCTGCGCTCCGAGGGTCCGC
97





2995
GGCTGCGCTCCGAGGGTCCG
96





2996
GGGCTGCGCTCCGAGGGTCC
95





2997
AGGGCTGCGCTCCGAGGGTC
94





2998
CAGGGCTGCGCTCCGAGGGT
93





2999
GCAGGGCTGCGCTCCGAGGG
92





3000
CGCAGGGCTGCGCTCCGAGG
91





3001
GCGCAGGGCTGCGCTCCGAG
90





3002
GGCGCAGGGCTGCGCTCCGA
89





3003
CGGCGCAGGGCTGCGCTCCG
88





3004
GCGGCGCAGGGCTGCGCTCC
87





3005
CGCGGCGCAGGGCTGCGCTC
86





3006
CCGCGGCGCAGGGCTGCGCT
85





3007
TCCGCGGCGCAGGGCTGCGC
84





3008
CTCCGCGGCGCAGGGCTGCG
83





3009
GCTCCGCGGCGCAGGGCTGC
82





3010
TGCTCCGCGGCGCAGGGCTG
81





3011
CTGCTCCGCGGCGCAGGGCT
80





3012
CCTGCTCCGCGGCGCAGGGC
79





3013
GCCTGCTCCGCGGCGCAGGG
78





3014
AGCCTGCTCCGCGGCGCAGG
77





3015
GAGCCTGCTCCGCGGCGCAG
76





3016
GGAGCCTGCTCCGCGGCGCA
75





3017
TGGAGCCTGCTCCGCGGCGC
74





3018
TTGGAGCCTGCTCCGCGGCG
73





3019
GTTGGAGCCTGCTCCGCGGC
72





3020
GGTTGGAGCCTGCTCCGCGG
71





3021
TGGTTGGAGCCTGCTCCGCG
70





3022
CTGGTTGGAGCCTGCTCCGC
69





3023
CCTGGTTGGAGCCTGCTCCG
68





3024
GTCCACCCTCAGTGCACGACCTCGT
478





3025
TCCACCCTCAGTGCACGACC
479





3026
CCACCCTCAGTGCACGACCT
480





3027
CACCCTCAGTGCACGACCTC
481





3028
ACCCTCAGTGCACGACCTCG
482





3029
CCCTCAGTGCACGACCTCGT
483





3030
CCTCAGTGCACGACCTCGTC
484





3031
CTCAGTGCACGACCTCGTCA
485





3032
TCAGTGCACGACCTCGTCAC
486





3033
CAGTGCACGACCTCGTCACC
487





3034
AGTGCACGACCTCGTCACCC
488





3035
GTGCACGACCTCGTCACCCC
489





3036
TGCACGACCTCGTCACCCCA
490





3037
GCACGACCTCGTCACCCCAC
491





3038
CACGACCTCGTCACCCCACT
492





3039
ACGACCTCGTCACCCCACTT
493





3040
CGACCTCGTCACCCCACTTG
494





3041
GACCTCGTCACCCCACTTGC
495





3042
ACCTCGTCACCCCACTTGCC
496





3043
CCTCGTCACCCCACTTGCCT
497





3044
CTCGTCACCCCACTTGCCTC
498





3045
TCGTCACCCCACTTGCCTCT
499





3046
CGTCACCCCACTTGCCTCTC
500





3047
CGTCCACCCTCAGTGCACGA
477





3048
ACGTCCACCCTCAGTGCACG
476





3049
TACGTCCACCCTCAGTGCAC
475





3050
CTACGTCCACCCTCAGTGCA
474





3051
TCTACGTCCACCCTCAGTGC
473





3052
CTCTACGTCCACCCTCAGTG
472





3053
CCTCTACGTCCACCCTCAGT
471





3054
GCCTCTACGTCCACCCTCAG
470





3055
GGCCTCTACGTCCACCCTCA
469





3056
TGGCCTCTACGTCCACCCTC
468





3057
CTGGCCTCTACGTCCACCCT
467





3058
CCTGGCCTCTACGTCCACCC
466





3059
TCCTGGCCTCTACGTCCACC
465





3060
CTCCTGGCCTCTACGTCCAC
464





3061
ACTCCTGGCCTCTACGTCCA
463





3062
TACTCCTGGCCTCTACGTCC
462





3063
CTACTCCTGGCCTCTACGTC
461





3064
GCTACTCCTGGCCTCTACGT
460





3065
TGCTACTCCTGGCCTCTACG
459





3066
CACCGCCTGAGGAAGTCTGGATGC
256





3067
ACCGCCTGAGGAAGTCTGGA
257





3068
CCGCCTGAGGAAGTCTGGAT
258





3069
CGCCTGAGGAAGTCTGGATG
259





3070
CCACCGCCTGAGGAAGTCTG
255





3071
GCCACCGCCTGAGGAAGTCT
254





3072
AGCCACCGCCTGAGGAAGTC
253





3073
CAGCCACCGCCTGAGGAAGT
252





3074
CCAGCCACCGCCTGAGGAAG
251





3075
TCCAGCCACCGCCTGAGGAA
250





3076
CTCCAGCCACCGCCTGAGGA
249





3077
CCTCCAGCCACCGCCTGAGG
248





3078
GCCTCCAGCCACCGCCTGAG
247





3079
AGCCTCCAGCCACCGCCTGA
246





3080
CAGCCTCCAGCCACCGCCTG
245





3081
GCAGCCTCCAGCCACCGCCT
244





3082
CGCAGCCTCCAGCCACCGCC
243





3083
GCGCAGCCTCCAGCCACCGC
242





3084
TGCGCAGCCTCCAGCCACCG
241





3085
ATGCGCAGCCTCCAGCCACC
240





3086
GATGCGCAGCCTCCAGCCAC
239





3087
AGATGCGCAGCCTCCAGCCA
238





3088
CAGATGCGCAGCCTCCAGCC
237





3089
CCAGATGCGCAGCCTCCAGC
236





3090
CCCAGATGCGCAGCCTCCAG
235





3091
CCCCAGATGCGCAGCCTCCA
234





3092
GCCCCAGATGCGCAGCCTCC
233





3093
AGCCCCAGATGCGCAGCCTC
232





3094
AAGCCCCAGATGCGCAGCCT
231





3095
AAAGCCCCAGATGCGCAGCC
230





3096
TAAAGCCCCAGATGCGCAGC
229





3097
TTAAAGCCCCAGATGCGCAG
228





3098
TTTAAAGCCCCAGATGCGCA
227





3099
GTTTAAAGCCCCAGATGCGC
226





3100
TGTTTAAAGCCCCAGATGCG
225





3101
TGCCTCTCTCGCGATCTGGGCG
512





3102
GCCTCTCTCGCGATCTGGGC
513





3103
CCTCTCTCGCGATCTGGGCG
514





3104
CTCTCTCGCGATCTGGGCGC
515





3105
TCTCTCGCGATCTGGGCGCA
516





3106
CTCTCGCGATCTGGGCGCAC
517





3107
TCTCGCGATCTGGGCGCACA
518





3108
CTCGCGATCTGGGCGCACAG
519





3109
TCGCGATCTGGGCGCACAGC
520





3110
CGCGATCTGGGCGCACAGCC
521





3111
GCGATCTGGGCGCACAGCCT
522





3112
CGATCTGGGCGCACAGCCTC
523





3113
GATCTGGGCGCACAGCCTCA
524





3114
ATCTGGGCGCACAGCCTCAG
525





3115
TCTGGGCGCACAGCCTCAGA
526





3116
CTGGGCGCACAGCCTCAGAA
527





3117
TGGGCGCACAGCCTCAGAAC
528





3118
GGGCGCACAGCCTCAGAACC
529





3119
GGCGCACAGCCTCAGAACCC
530





3120
GCGCACAGCCTCAGAACCCC
531





3121
CGCACAGCCTCAGAACCCCC
532





3122
TTGCCTCTCTCGCGATCTGG
511





3123
CTTGCCTCTCTCGCGATCTG
510





3124
ACTTGCCTCTCTCGCGATCT
509





3125
CACTTGCCTCTCTCGCGATC
508





3126
CCACTTGCCTCTCTCGCGAT
507





3127
CCCACTTGCCTCTCTCGCGA
506





3128
CCCCACTTGCCTCTCTCGCG
505





3129
ACCCCACTTGCCTCTCTCGC
504





3130
CACCCCACTTGCCTCTCTCG
503





3131
GAGGGACGCCGGCTTGGCTAGGAC
618





3132
AGGGACGCCGGCTTGGCTAG
619





3133
GGGACGCCGGCTTGGCTAGG
620





3134
GGACGCCGGCTTGGCTAGGA
621





3135
GACGCCGGCTTGGCTAGGAC
622





3136
ACGCCGGCTTGGCTAGGACA
623





3137
CGCCGGCTTGGCTAGGACAC
624





3138
GCCGGCTTGGCTAGGACACC
625





3139
CCGGCTTGGCTAGGACACCC
626





3140
CGGCTTGGCTAGGACACCCT
627





3141
GGAGGGACGCCGGCTTGGCT
617





3142
AGGAGGGACGCCGGCTTGGC
616





3143
TAGGAGGGACGCCGGCTTGG
615





3144
CTAGGAGGGACGCCGGCTTG
614





3145
ACTAGGAGGGACGCCGGCTT
613





3146
TACTAGGAGGGACGCCGGCT
612





3147
CTACTAGGAGGGACGCCGGC
611





3148
ACTACTAGGAGGGACGCCGG
610





3149
TACTACTAGGAGGGACGCCG
609





3150
GTACTACTAGGAGGGACGCC
608





3151
GGTACTACTAGGAGGGACGC
607





3152
CGGTACTACTAGGAGGGACG
606





3153
GCGGTACTACTAGGAGGGAC
605



















Hot Zones (Relative upstream location to gene start site)







  1-1100


1250-3050


3950-4250









Examples









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11960)


TAAGCTTGCTTGACGCAGGGTAGTCACAAACCTTCAATTTGCAAAAT





TGCTATCTCTGCACAGCACAGTAGGGCAAAGTGTGAATAAAATGAGGTAA





CCTGTACCTCCAGCTAAAGTCCCAGAATTAACTTTCCTTGGCTCCAGTGG





ATTCACAAGCCGGTATCTGAATCATCACCTCACCAAGATGCCTGGATCTG





CCTTTTAGCCCAGCTTGGGTCACATTGCCACTGTGGAGCCAGGAGGTGGG





TCACATCTGCTGAATTCAGACCTAGAGTTGGGGAGAAGTAGCTTCCCAAT





GGGAAACTAAGGGGCAGCTACTAAAAGTAGGAGGACAGGGTCTTGGGAAG





GCTTACATGGCACACGGCCACTACCTCCCTCAATGCTCTGTCCCCTGCTT





AGTGTCCCGCACTGTAATTTCTGCCTCTTCATCAATAAAACACCACCTTA





ATGCCACTGTACCCCAGCACCAAAAACAGTGTTCATCAAAAACTTCCCGA





ATAAATGACAGAATTCATGTCATATCGCGACGTCTTCTAATCACAGCCTG





CGTAGTTTTCTGGGGCTGCTGTAAAAAAGCACTACAGACTGGGTGGCTTA





CAACAGAAATTTATTCTCTCAGAGCTCTGAGACTAGAAGTCCAAAACCAA





CATGTCAGCAGGGCCACGCTCCCTCTGAAGCCTCTGGGGGAAGAATTCCT





TCTTGTCTCTTCTAGCTTCTGGGTTGCAGGCAACTCCTTGGGTTGCAGGC





ATTGCTCCAATTTCTGCCTCCATGGTCACATGGAGTTCTTCTTGCTGTGT





GTCTCTGTGTCCAAAGTTTTGTCTTCTTATCATGACAACAGGCTTTGGAT





TAGAGCCCACTCATCTTAACTTGATTGTATCTGCAAAGACCCTATTTCCA





TGTGAGGGCACAGTCACAGGCATTGGGACTTGAACATATCTTTTTGGCAA





CACAATTATATCCACTAAACAGCATTTTTGCATCTATATTAAGAATGACT





AAAAGATGCTGCAGTAACAAACATATCCCAAAAGCTCCATGGTTCGTTGC





CTAAGAGTTTGTTTTTCACTTACGAAGTCTGTAGTGGGTCTGGTTGCTTT





CATTTTACGACTTTGCTAGATCAACACAGGGCTCCCAGGGTTACCGTGGC





AGGGGAAGAGAGATATACAGGAGTGCACAGGGGCCCTGGAGCATATTGCA





TGTGCTCACCAACAAGCCCATTATCATCAGATACTGCCTGTTCTCTCCTC





GTCCCCTGGGCCATTCTAGGCCCCAAGTGAGGGTTCTTGGATCTCACACA





AGAAGGAATTTGAGGCAAGTCCATAAAGTGAAAGCAAGTTTATTAAGAAA





GTAAGGGAATAAAAGAATGGCTATTTCATCGGCAGATCAGCCCCAAAAGC





TGCTGGTTGCCCATTTTTATGGTTATTTCTTGATTATATGCTAAACAAGG





GGTAAATTATTCATGCTTCTGCCTTTTAGGCCGTATAGGATAACTTCCTG





ACGTTGCCATGGCATATGTAAACAGTCGTGGCGCTGGTGGGAGTGTGGCA





GTAAGGCTGACCAGAGGTTTTTCTCATCATCATCTTGGTTTTGGTGGGTC





TTGGCCAGCTTCTTTACTGCAACCTGTTTTATCAGCAAGGTCTTTATGAC





CTGTATCTTGTGCCAGCCTCCTATCTCATTTCGTGATTAGGATTGCCTTA





ATTTACTGGTAATGCAGGCCAGCAGGTCTTAGTCTAACCCCTATTCAAGA





TGGAGTTGCTCTGGTTCCAATGCCTCTGACATAGTCATTGCTGGGCACAG





AAGCCTCTCTCTCACTGAGTGCTGCTTCTGCAGCCATTGCCATCTCTGAA





TGGGCACCAAGCCCCACACTGGAAACCGATACCCTTGGAATGCCAAAACC





ACAGAGGCTGTGAAGAGGTACAGTCAAAGCTGCCCTCTGCCAGAGGAGCT





CCAAAGCATGTTATGCAGACTCCAGAGACTTTCTGAAAAGGTTAAAACTC





AAATTGGGCAAGTGTAAATGAACAACACCTAGTGAAGGGAGTCACATACA





AGGCAATACAATAGAGAGTGGTGAGGACTGTGGCAAACCAAAGTATGTGC





CTCATCTAAAGGGAGCAGTCACTACTCAACTTCAGCAAATTATTGCCATA





TGGAAACTGGCATCCAGTATTGCCAGATTTTTGGGAAATTTTTTTAAAAA





AAGAAAACCAGAAAGTCAGATTTTTACATGAAGTTTCCCAAATTTCAAAA





TGCTGTTCAGGCTGGATTTAGCCCACAGGCCACGAGTTTGCAGCCCCTGC





TTTAGTGAGATAACTTTTTCCATTTTCACTCTCAGCTCTCAGCTCTCCAA





CTTGGCTCTCTGGCTATCCACAGGACGTGGACATGAGCCCAGTGGGGCTG





GGCCAGGAGGCAATCCCCCTTCCCAACTGACCTCAGTCTCGCCCTCTCCA





AAACAGCCAAGGTTTGTCACTGGGTCAGGCTGAAGGGCCTGGCTCCCTCC





TGCGGGGCAAGGTCCCTCCCAAGAGGGTCCTTTAAAACTGACTCTGGAAA





GTCAGAGCACACACCCACCAGACAAGCCTGAACTTGTCTGAAGCCCACTG





AGACCCAAGCCGCAGAGACTTTTCTAGCTGTGATGATCAAGACATAATCG





TGACCTCCAATGCCCCCCACAAGTATATTGCTCCTGATTCTTTCAGCCCC





TGACCTTACTTCTCAAACTGTTCCCTGCTGACCCCCAGTCCTATCTGCCC





CCTTCCTAGGCTGGTCCTTACTGACCCCTCCAGCTCCATCCCCTCACCCT





GTGCCCCACCTTTTTCAGATAGAAAAAACTTTCTTCTCCAGTGCCTCTTG





CTGTTTTTCATCTCTGGGCCATTGTCAATGTTCCCTAAAACATTCCCCAT





ATTCCCCACCCAGCACTCCACCTCTTTAGCTCTTCAGGTCTCAGCTCAGA





AGTCACTTCTTCCAGGAAGCCTTCCTTGATTGTCTTTACTAGTTTAGGGG





CTGAAGTCAGGCGTTCCCAACAGCCTGCTGGAGTTCCCCATCACAGCTTA





TCTCTCAACTGTCTTTCCTGAGAGAGGGAGAAGACATTCCTCAGAGACGG





TTGTCACAGGGAGAACTTCAAAATTGGGATTCGACCTGAGAGGCCACATG





GATTCTTGGCTTGGCGCAGGAAAGGATTCAAGAGTGAGTGGGGAATTCGT





GGAACTGAGGGCTCCTCCCCTTTTTAGACCATATAGGGTAAACCTCCCCA





CATTGCCATGGCATTTATAAACTGCCATGGCACTGGTGGGTGCTTCCTTT





AACATGCTAATGCATTATAATTAGCGTAAAATGAGCAGTGAGGATGACCA





GAGGTCGCTTTCTTTGCCATCTTGGTTTTGGCTGGCTTCTTCACTGCATA





CTGTTTTATCAGTGGGGTCTTTGTGACCTCTATCTTATTAAACCAGTCTT





GCCCAATTTCTATCTCATCCTGTGACCGAGAATGCGGACCCTCCTGGGAG





TGCAGCCCAGCAGGTCTCAGCCTCATTTTACCCAGCCCCCTGTTCAAGAT





GGAGTCGCTCTGGTTCCAACGTCTCTAACGCGGGGCCCCTGACTGCTCTA





TTTCCCAAGGTGTATCTAGCATCTCGCACTATACGAGGCCAAGTTAAGGC





TTACACATTTGCAGAAGGAAAGAGGTAAGGAAGCAACCTGGGACCTTCCA





CTGTCTCTGTTTCCATCTCTCTCTTTCCATCTCTGTTCATCCCAGAATCT





CTCTGTCCCTATCCCTAAATATCGAAAATTTCTGTCTCTGACCATCTATC





ATTGTGGCTGATCATCTGTTTCTGACCATTCCTTCCCGTTCCTGACCCCA





GGGAGTGCAGGGTGTCCTAGCCAAGCCGGCGTCCCTCCTAGTAGTACCGC





TGCTCTCTAACCTCAGGACGTCAAGGGCCTAGAGCGACAGATGTTTCCCA





GCAGGGGGTTCTGAGGCTGTGCGCCCAGATCGCGAGAGAGGCAAGTGGGG





TGACGAGGTCGTGCACTGAGGGTGGACGTAGAGGCCAGGAGTAGCAGGCG





GCCGGGGAAAAGAGGTGGAGAAAGGAAAAAAGAGGAGAAAAGTGGAGGAG





GGCGAGTAGGGGGGTGGGGCAGAGAGGGGCGGGCCCGAGTGCGCCCCCCG





CCCCCAGCCCCGCTCTGCCAGCTCCCTCCCAGCCCAGCCGGCTACATCTG





GCGGCTGCCCTCCCTTGTTTCCGCTGCATCCAGACTTCCTCAGGCGGTGG





CTGGAGGCTGCGCATCTGGGGCTTTAAACATACAAAGGGATTGCCAGGAC





CTGCGGCGGCGGCGGCGGCGGCGGGGGCTGGGGCGCGGGGGCCGGACCAT





GAGCCGCTGAGCCGGGCAAACCCCAGGCCACCGAGCCAGCGGACCCTCGG





AGCGCAGCCCTGCGCCGCGGAGCAGGCTCCAACCAGGCGGCGAGGCGGCC





ACACGCACCGAGCCAGCGACCCCCGGGCGACGCGCGGGGCCAGGGAGCGC





TACGATG






12) FAP. Fibroblast activation protein, alpha (FAP) also known as seprase or 170 kDa melanoma membrane-bound gelatinase is a protein that in humans is encoded by the FAP gene. FAP is a homodimeric integral membrane gelatinase belonging to the serine protease family with dipeptidyl peptidase IV (DPPIV)-like fold, featuring an alpha/beta-hydrolase domain and an eight-bladed beta-propeller domain. FAP has been found to be overexpressed in stromal fibroblasts of solid tumors and epithelial cancers, granulation tissue of healing wounds, and malignant cells of bone and soft tissue sarcomas. This protein is thought to be involved in the control of fibroblast growth or epithelial-mesenchymal interactions during development, tissue repair, and epithelial carcinogenesis (reviewed by Chiri and Charugi, Am J Cancer Res 2011; 1(4):482-497). FAP expression is seen on activated stromal fibroblasts of more than 90% of all human carcinomas. Stromal fibroblasts play an important role in the development, growth and metastasis of carcinomas. It has been shown that targeting FAP inhibits stromagenesis and growth of tumor in mice. Sibrotuzumab a monoclonal antibody and small molecules against FAP are being developed (Edosada et al., J. Biol. Chem. 2006: 281, 7437-7444).


Protein: FAP Gene: FAP (Homo sapiens, chromosome 2, 163027200-163100045 [NCBI Reference Sequence: NC000002.11]; start site location: 163099837; strand: negative)












Gene Identification


















GeneID
2191



HGNC
3590



HPRD
02674



MIM
600403




















Targeted Sequences











Relative upstream


Sequence

location


ID No:
Sequence (5′-3′)
to gene start site












3154
CAGAGCGTGGGTCACTGGATCT
39





3171
CACCAACATCTGCTTACGTTGAC
272





3177
TCCACGGACTTTTGAATACCGTGC
133



















Target Shift Sequences











Relative upstream


Sequence

location


ID No:
Sequence (5′-3′)
to gene start site












3154
CAGAGCGTGGGTCACTGGATCT
39





3155
AGAGCGTGGGTCACTGGATC
40





3156
GAGCGTGGGTCACTGGATCT
41





3157
AGCGTGGGTCACTGGATCTG
42





3158
GCGTGGGTCACTGGATCTGT
43





3159
CGTGGGTCACTGGATCTGTG
44





3160
TCAGAGCGTGGGTCACTGGA
38





3161
TTCAGAGCGTGGGTCACTGG
37





3162
CTTCAGAGCGTGGGTCACTG
36





3163
TCTTCAGAGCGTGGGTCACT
35





3164
GTCTTCAGAGCGTGGGTCAC
34





3165
TGTCTTCAGAGCGTGGGTCA
33





3166
CTGTCTTCAGAGCGTGGGTC
32





3167
TCTGTCTTCAGAGCGTGGGT
31





3168
TTCTGTCTTCAGAGCGTGGG
30





3169
ATTCTGTCTTCAGAGCGTGG
29





3170
AATTCTGTCTTCAGAGCGTG
28





3171
CACCAACATCTGCTTACGTTGAC
272





3172
ACCAACATCTGCTTACGTTG
273





3173
CCAACATCTGCTTACGTTGA
274





3174
CAACATCTGCTTACGTTGAC
275





3175
ACACCAACATCTGCTTACGT
271





3176
TACACCAACATCTGCTTACG
270





3177
TCCACGGACTTTTGAATACCGTGC
133





3178
CCACGGACTTTTGAATACCG
134





3179
CACGGACTTTTGAATACCGT
135





3180
ACGGACTTTTGAATACCGTG
136





3181
CGGACTTTTGAATACCGTGC
137





3182
GGACTTTTGAATACCGTGCC
138





3183
GACTTTTGAATACCGTGCCA
139



















Hot Zones (Relative upstream location to gene start site)







1-400









Examples









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11961)


TACCACTCAAAAGTTATGGGACTTTGGGGAAGTTATTTAGATTTTGT





GTGCATCCATGTCCTCATCTGTAAAATGAGGATAATAATAGTACGAATGT





TCTGGGGATAAAAGGAGATAGCACGTGCAAGTGCTGAGAAAAAAACGTCA





TGATCAATAAGAGTATTCAATAGACATGAACTAGTAGTAGTAATATTCTC





TAATCTAAAAATGCTAGTGAAAAAACAATATGTGTTAACAAGTTATGTTA





GTCTATAGGTGCTTACACATTCTATTTATACTATTTAAACAGTCTTCTTG





TTGGTTAACCACTTCTAAAAAGATGTAGTATTTCCCTATTTAAATGACAA





TGAAGCACTGATTTATCTTCTGAGTCTTTGTGTCCTCAGCACTCAAAGAA





ATGGGTTGTGTCTCTGTTCTGTTTCTTTTCTAACCCCATTTTGATAGTTA





ACCCTTTGGGTCTCCAAGGAGCACTTGCCCTAATTATGATAGGATAATGA





AACACTGACATCTAATTATAACATTTATGAAGGTAGTAGATGCCAATTAC





AAACTAGGAGGCATGTGGCTTTATATTCTTCCTTATGTAACAATTGTGGT





TTTAGAAAAGAGATCAGATTCAAAAAATAGTTTGAGCTATATCATTTCCC





ACTGATGCTATATTATGCCACTTCTTCCAGATCTATAACTATGTGATAGT





TATTTTGAGCTTTGAAGACCTCAGGACTCTTTCTAGCTTGGAACTCAAAA





ATCTCTTTGACGATGGGTATTTTGTTGAATCCTTTCATTTAAGCAAGTCC





CTGGAGGAAGAGCTTTTAACCCAGGCACTATATAAATAATCATCGGATTA





ATAGACCCCGATTAAAAAAAAACTGTAAACAAATTAATATTTTGAACACA





GTCCTTGTAGAGTGAAATTGTGTTCTTTTGAGATATGTGTAACAAAGTAC





TTTGAGGATGTGAACATCATTAATATTTTAGCCTTAATTATTTTACCCTC





ACAACCTTAAGTGTCCCCCAACAGCAAATCAGTGAAATGTCAATTATAAT





TTTAAAAAAAATTTATCACTTTGGAATAAAACTTTAGGAAGTATCACAAA





GAAGCAATGTAAGGTGGTAACACTGGGTCCTGTTAAAATCTTGGGCAAGT





TATCCAGTTTTTCTAGGCTGTTTCCTAATCATCAAAATGAGTTTTGGTAT





GGATCAGATGAAATAATGCATTAAAATCACTTTGTAGATAACAGTAAACA





ATAAATGTTTATTGAATCTGAGGAATCAAATGGGTAGGATGTTAGGAGCT





GTTAGGCTCTCTAGAAGCAAATTTTTACTTTAAAGAGTATAAAATCAGGC





TTATGTTTACTGCACTTGTATCCTTATTCCCCTTGTAACTTGTCCTTAAA





TAATTTGTCATGGCTTTTGGTTAATAAACACATCTCTCTTTCATCTCCCC





ACCATAAAATAAAAAGATAACATCCTTATGCTCTCAGCATGGTCTTACCT





TCAGACTCTAGAAATACATAGCTGGATGTGTTTTCTGGGAAAACATATAA





ATTAAAATCATTTTTGGCAGGTAAACATTGGCTACTAATAAATAGTTCTA





GTAAGCTCTCCTCCTTATAACCTAAGGATTTATGTTATAGCTCACTTATC





CAGTGGGCTTACCAGAATGCAGTCATATTCCAAAGTCAGCCTTACAAGGT





CCCTCTCTGGAAAGAACTCAGTTGATGAGCCTCTACTCTCCTAATTGCTG





CCCTTACATTTTTACATGACAAATCATCATCCTTTCTGGTTTTGCAGCAT





TTTAATAGACCCAGAGTTGCTTTCTGAGAAAAGTCTCAGTACTAACAAAG





GTTAGAACTAACAAAGGTTGAACTAAGGATGACATGCATGTGGTATGTGC





CCTTTCCAGTCCTCTTCCCAGGTCCATGAAGAAATCACCAACCAGTGAGA





ACACTCTTTCTACAGAACACAAACTCAGCTTCAGGCTATTTCTGAACAAG





AGCTTTAGGAAGCAAAAGGAAACAAGTATGTAAGAACATTAAGAACATAC





CTGCCATACTTATACTAGAATGTAAGTTCCTTAAGGGCACAGACTGTGTC





TGATTCATTTTTGTTTTCTCAACAAAAATGTTGATGGGGTGTTAACTAAT





TGTATAAAGTAGGAATAAGAGTCAGTTTCGTAAATGTTTTTTAAAAGTTG





ACAAAAGTATTTTCATTTTGATTCCAAAATTAAAAAAAGCTAATAAAGAT





ATTACAATATTTTAAAAATCCAAATTTTATGAGAGTTCTTGTCTGGATGA





AAATTAGAATACATTCACATTATCTCAAACGAATGAACATGTGTGACTTT





ATAAAAACAATACCTCCCTAAACCATGAATTCAGATGGAAAAACTCGACA





TCTTTATTTCTGCAGTCAGTCTCATTTTTCTTAAAACAGTTCAAACTAGT





AAGAATTTTCCAGAAGTTACAGCTTGACTCACCCAACCTTCCAAGGAAAA





AACAAAAAAACTTAAACAGACATTGTTTCACTCTCATCATTTCCCACCCT





TACTAATAGTGGCAACTTAAGTGTATCTTAAAGCACTCCAACCTCTTCAT





AGAGCCTATTAAATGAGTATCTTGTGGACACCCACACACAGTCATAGAAT





CCTAAGTGGTGCTCAGACCAGTCACATGTCAGTGCATTCTTAATTGCTAG





AGCTAACATGCTCTCAGCATGGTCTTTTAATTACACCCTAATAATTTATT





ATAGTTTCTCTCTACAATGTAAAGTCTTGGAAATCACCCACTAAAAAGTG





CCTGTGTACTCTGGGGCTTTGGCAGGCTAGGGCAGAACTTCTGAGAACAC





GGTGTGTTCCAGAGAAGACAATCAATCTGAGAGGACTTACACAGAAACAG





TTCATTCAGGACCTGGCTGCTGGCTTTTATCTGAGATCTGAGGATTTCAC





AATCACTTGGAGATACCTACAAGTGTATAGCACACCTTGGATATTACTCT





TAATGATTACTTCATTTTGTAAAGAGGTGACTCCACCAACAGCAAAGGAG





AGGGCCCAGCCCCAGCCACCAGGAATACAGTTCTCTGCCAGTAAGTGCCT





AATGACTCATTTTCCTCAACAGAATTTTCATAAGGCTGGAATTCAGGGAG





GGATGTCTGGAGAATGTCTGAAAGGAAGTTCACAAGCCACTGTCCTGCTC





TTTGCTGGAGAAAGTGTCCCGTGGTAGCCAGAGAAGTTGACTAAGGCAAA





CAGCAACATGTTTTGGTAACATTTCCCCATTACCTTTCATGTACAATCCA





AGAAAGGTTGCCATGAAGTGTTTTAATCAGGTTGGGAACATTATAAACTT





CGAAAAAAGAAAACCATTAGTGGAAAAATTAAGGACACAGTAGATTTAAC





AACTGTGTTTACGTGGAACCACAAAATCTATCCAAGTGAATTGCATTAAA





ACAGACAGAACACTCCAAGAAACTGTTGTATGTGTATTTTTTTTAATTCA





GTCAACCATTTTACTAATCTGTCAAGATGACCAATTTCTTTGGAATTATG





TAGATTTAGCCAAAATGAAATTATACATAAGATTTACTTTTCTTTTCAGA





TGCTTTTTTATTTATTTTTAAATCTTTATAATTACTAGATGTTCTCCTCT





CTCAGAAGATATTCTGAGAGGAAAGCAAAAATACCACTCTTGTAAAGCCA





TTTCCATTCTTCCAAAGGTCTGCTGGTAAATTATTCTTACTGATCTTTCC





ATCTTTCTAGCCTGTGCATACACACCTAACCCATACTAAATTTCACCAGA





TGGCATTTTATTTCTTTAAAGTAAAGCAGCCGTGGGTTTAGACAGTTGAA





TTTTTAAACTTCTGTATTTACTGAAAGTGCATATGGTGCTATATGGACAA





AGAAATTGTGCTGAAAGAAAAACATTTCTGTCTGCAATACCTCATAATCT





TCCAGAGGAAAAAAAAGTGCAGTTATATGGCACATTTCTCACAAAATCTT





ATGTGGCTTCAATGTTCTTCCTCTGTTAAAAAGTAGATATATGTTTAATG





TACAGACCTGCAAGTTTCATTATTTTAAATTCATCTTTTAGTGGCAAATA





AAAATGTTATGCAAAACCCAATGACTTGCTAAAGTGATCCTTCAGTGAAT





TCTAGAAGAAAATGCAACATAAACCTGAACTGGTAAAAAAGAAAAAATAA





AAACCTCTGTATGTCAACGTAAGCAGATGTTGGTGTAGTTACAAGGATGA





GAAGGCTATAAAACTTCCCTTGAGTCACTCACAGTTCATTTGAGGGCCAA





GAACGCCCCCAAAATCTGTTTCTAATTTTACAGAAATCTTTTGAAACTTG





GCACGGTATTCAAAAGTCCGTGGAAAGAAAAAAACCTTGTCCTGGCTTCA





GCTTCCAACTACAAAGACAGACTTGGTCCTTTTCAACGGTTTTCACAGAT





CCAGTGACCCACGCTCTGAAGACAGAATTAGCTAACTTTCAAAAACATCT





GGAAAAATG






13) P-Selectin. P-selectin is a protein that in humans is encoded by the SELP gene. P-selectin functions as a cell adhesion molecule (CAM) on the surfaces of activated endothelial cells that line the inner surface of blood vessels and activated platelets. In unactivated endothelial cells, it is stored in granules called Weibel-Palade bodies, and α-granules in unactivated platelets (McEver et al., 1989, J. Clin. Invest. 84 (1): 92-9). P-selectin is located on chromosome 1q21-q24, spans>50 kb and contains 17 exons in human. P-selectin is constitutively expressed on megakaryocytes (the precursor of platelets) and endothelial cells (Pan and McEver, 1998; J. Biol. Chem. 273 (16): 10058-67). The expression of P-selectin consists of two distinct mechanisms. One involves P-selectin synthesis by megakaryocytes and endothelial cells, and sorted into membranes of secretory granules until they are activated by agonists such as thrombin and translocated to the plasma membrane from granules. Second, an increased level of mRNA and protein is induced by inflammatory mediators such as tumor necrosis factor-a (TNF-a), LPS, interleukin-4 (IL-4) while TNF-alpha. Selectin-neutralizing monoclonal antibodies, recombinant soluble P-selectin glycoprotein ligand 1 and small-molecule inhibitors of selectins have been tested in clinical trials on patients with multiple trauma, cardiac indications and pediatricasthma, respectively (reviewed in Ley, 2003; Trends Mol. Med, 9 (6): 263-267).


Protein: P-selectin Gene: SELP (Homo sapiens, chromosome 1, 169558087-169599377 [NCBI Reference Sequence: NC000001.10]; start site location: 169599312; strand: negative)












Gene Identification


















GeneID
6403



HGNC
10721



HPRD
01433



MIM
173610




















Targeted Sequences











Relative




upstream


Sequence

location to gene


ID
Sequence (5′-3′)
start site





3184
TAGCTACGAATAAAGAAATTTGTAG
2694



















Hot Zones (Relative upstream location to gene start site)







1550-1800


2650-2800


3100-3250









Examples









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11962)


GTCAGGCTGGTCTTGACTCCTGACCTCAGGTGATCCACTCACCTTG





GCCTCCCAAAGCGCTGGGATTATGGCATGAGCCACTGAGTCTGGCTGAAT





GTTAGCTCTCTTGATGCTGTCCCATAAATCTTGTAGGCTTTCATCATTTC





TTTTCATTCTTTTTTCTCCTCTCACTGTATATTTTCAAAAACCTGTCTTC





AGTTCACAGATTCTTTCTTCTGCTTGATCAAGTCTGCTACTGGTGATTTC





TACTGCATTTCTCACTTCATTCATTATATTTTTCAGCTCCAATTTCTTTT





ATGATTTCAATCTTTCTGTTACATTTCTTATGTTGTGCATTTATTGTTTC





TCTGATTTCACCAAATTGTTTCTCTGTGTTTGCTTCAAAGTAACTGAGCT





TCTTTAAAAACAATTATCTTGAATCCATTGTCAGGCCATTTGTAGTACTC





CATTTCTTTTGGGTCAGCTACTGGGAAATTATTGTGTTTCTTAGGTGGTG





ATATTTTAATTTGGGTTTTCATGTTTCTTGCTGCCTTACACTGCTGTCTG





AGCATCTGGTGGATCTGCCCCAATTTCAGGCTGTATGGGCTGACTTTGGT





GGAGAAATACCTTCTTATGTGGAATAATGCGAGGATGCTGGCTGGGTGGG





ATGCAAAAGTTCTGACTTCAGTAGGGGCAAAGCTGTGTGGTCTCCATGCA





GATCTGTCAGCTGAGGTTGGTGTTAGTGAATACTACAGGGATCCTTAGAG





GCCAACACTGTGGGTATCTACAGTGGCAATGAGGCTGTTGAGGTTTTCAA





TTGTGACAAGTCCTCCATATCTCTTTTTTTCCCCACCTGGGAAGTCATGA





CTGAGGACATCCCTCTTGGAATTAGGTCTAACTTGCAGGCCTGCTCCTGG





TGGTGGTGACACTGGTGTCTGATGAACAGTGCCCATGGAGTGGCCAAGAG





CCAAGGCCTGAAGCATGGGCATGCATGGAGGGACCACAGCACCAGATTCA





ATTGTAGCAATGGTACCAGTGCCCAAGGCACAGGCATACTTACTATCACA





TTGATAATGGTGTGTAAAATGCAGGTACTTATAAAGCAGCTAAGGAGCCA





GGGACTTTACTGCATGCATACGCAGAGCTACAGTGGCTCCAGGATCCAGG





GTGTGGGCTAGCTCTCCTTGGTGGCTGAGCTGGTGACTAGAGCATGGACA





GGCACAGAGAAACCTTGACTCTAGGACCCAGGGTGTTCACTAGCTCACTA





TAGTGGTGGCTCTGGTGTTGGAGGTGTGGGTGTGTGTAGTACAGCCTCAG





AGACAGGGTCTGGAGCGCAGGTGTGCACATTACTACAGCAGCTCTGGAGT





TGAGAATATGGGTTACCTTTCTACAGTGGCTGAACTAGTGTCTGGAGCAA





AGACTTTCACAGAGAGAACTTGGCTTGGGGTCCCAGGGTGAGATCTAGTT





CACAACAGCAGTGACTCCAGTGTCTGAGACATGAGGAGGTGCACTGCAGC





CACAGAGCCACAGTCCAGAGTGTGAATATCTGTAGAGCAGCCACAACTTT





TGGGGATCAGGAACACACATAGACTTGTGAGAGGTGGTAACCCTGGCCCC





AGTCCTGGGGCAGTGCAACAATAGCTGCTTCTTGGTGAGGGGGTGTGAGG





GGTAGTGCAACTGTGTTTCCCTTTTTAGCATCCTGCTATGGGAATGGCTG





TTGGATAAAAGATGCCAGTGTCCTCTGTGGAGCAGGACACTGGGGGCCTC





AGTGGCTCTGTGTCACATGACTGACACAGATAGCCTACAAATTTCTTTAT





TCGTAGCTATCTCCTGGTGTCTCATATATGCCAGTCTCACCGGTGATTCT





TCTACATGGATATTCTTTCTTTTCTCCATTGTGTTGTTCCAAATTCTTTA





ACAGGCTCTTGAGCCCCATCCCCCAACTCCCCACCCTTGTGAGGGCTATT





TTGGTTTGTGTATAACTGTCTATGTTTGTTTTTTTGTTGGGGCATAAGGC





TGACATCTCCTACTCCACCATCTTGCTAATGTCACCTGCATAGGAATCTT





TTTATGCTTTCCTTATATTCACTAAAATTTAACAATATCAAACTTAAAAA





CATATGATCAATTGAACTTATTAATATCAAACTTATTATAAATAAGAAAC





TACCAGGCTGGGCATGGTGGCTCATGCCTGTAATCCCAACATTTTGGGAG





GCTGAGGTGAAAGGATCACTTGAGCCCAGGAATTCAAGACCAGCCTGGGA





AATATAGAGAGACCCTATCTCTAGAGATTTTTTTTTTTAATTAGCCAGTA





GTGATGGCACACATCTATAGTCCCAGCTACTCAGGAGGCTGAGGTGGGAG





AATTGCTTGAGCCCAGGAGGTCAAGGCTGGAGCAAGCAGTAATCATGCCA





CTGCACTCCAGCCTGGGCCGCAGAGTGAGACCCTGTCTCAAAAAAAGAAC





CTACTAGTCTACATACCACACTTCCTCATCCCCATCTGAGACTATATATA





TTTTTTCTAACATGAGGCAATGCCAAAAAGAGGGGCTGGTGAGTGAAAGT





AAGAACAGAAAGACATGGAGGCAAGTCTTATAGAATAATAGCCAACACTT





AAACTTACACTTAACAGCGTGATAGGTATTGTTCCAAACACATTAAATTC





ATTTAATGGTCCTTACATGTCTATGTATTTGGTGATTATTATCCTTATTA





TTCACATTGCTGAGTGTATTATTCTGTTCTCATGATGCTGATAGAGACAT





ACCCGAGACTGGATAACTTATTAAAAAAAAAAAGGTTTAATGGACTCACA





GTTCCACGTGGATGGGGAGTCCTCACAATCATGGTAGAAAGCAAAAGACA





CGTCTTACATGGCAGCAGGGAAGAGAGAGAAATGAGAACCAAACAAAAGG





GGTTTCCCCTTATAAAACCATCAGCTCTCATGCGACTTATTCACTACCAT





GAGAACAGTATGGGGGAAACCACCCCCATGATTCAATGATCTACCAGGTG





CCTCCCACAACCTGTGGGAATTATGGGAGCTACAATTCCAGATGAGATTT





GGGTGGGGACACAGCCAAACCACATCACTGAGGAAACTGAGTTATAGGGA





GATTAGTAACGCCCAACACAGCTGGTAGGTGGTGGAGCCAGGCAGTCTGA





CTCTAGGGTCTGGACTCTGAACTGCATCATGCTGCCAAGAAGTTCCTCAT





TTTTTCCTCTCTCTAAGTTTCCCTTATTCCCCTACAGTCATTCCTTCAAC





AGCATTTCCTTCACCATCTTTTCTACTTCTACTATATAATTAATTTTTTC





TTCTTGGTCCCAAATTCCAACGTGCAAATGCAGCCTTATATACCCTAATT





CATCTTTACCTTTAGACTTTCTTCCAATGTTTCTACTTCATTCCATTTTA





AATTTATCCATGAGATGCCTATTTACAAGCTGTAACCATCATGAAGTGAA





TGAAGAATAATACCTACTACTGTACAATAGAATTCCAAGAGTATAAATAG





GAGTTATGGCTTTCTGACTTGAAACTAAATACTTGATACTTGATTTTGCT





GTCTGAGATCAATCTGAAAAGTAATAATAATCACTAACATTTGTTGAGCA





TCAATTGTGGGCCAAGTGTCATTTCAATCACTCTGTACATATTAACTCAT





TTCATCCTACAACAACCCGGTGAGGCAAGTTCTGTTATTCTGTTTTACAG





TTGAGGAAACAGAGGCATAGAGAGCTTAAGTAGTTTGCCCAGTAGATAGC





CAGAAGAGGAGCCAGGATGGGTCTCGGGCAGTTTAACAGCACAGCTGAAG





TCTTAACCACTATGCCAACAGCTTTTTGGTCCTACACATCCCATGGGAAG





AGGAAAATAAAAAGGTATCTATTTGTATACCTTTTTATTTCTGATATAAG





AAGCAGAATTCCTTTCACATGACCTATGTCTATTTAATACGTCATTTTGA





AACTTACCAATAAAATTTCCCAAGCGCCAGAAAACTGTTAGTGGCTTTTT





CCATTTCTCTCTATTTTTTTTTGTGCTACTAATTTTGCTTCTTTCCCTCA





GAAGGCTGCCGGAATAGTAAACATTCACTGACATGTCATAATTACTGGAA





AATGGGCACTGGAAAATCACATTGTAATTAATTCAAAGCATGTTTTCCAA





ATGTACTACTTTAAATTGGAGCTTATATCATAATCCAAGGAAACCTTTGT





GTGTGTACTGTTCCCACATTGCTCAGCCTGGGATATCCAGGAGTAATTCA





CCTTGCGCCTGCCTCCAGACCATCTTCCATGGAAGGGGGTGACCCCTTGC





CTCTTGGCAACCACTATTTCTAAGCTGCCAACATTACTCTTGCATTATCA





ACATTCTAACTTCATGGGAAGGGCTGTGGTGAGTTTCTGGAATGTGAATA





GGAAGTTGTTTTTCTAAACAGCCTGACACTGAGGGGAGGCAGTGAGACTG





TAAGCAGTCTGGGTTGGGCAGAAGGCAGAAAACCAGCAGAGTCACAGAGG





AGATG






14) IL-6. Interleukin 6 (IL-6) acts as both a pro-inflammatory and anti-inflammatory cytokine IL-6 is secreted by T cells and macrophages to stimulate immune response, e.g. during infection and after trauma, especially burns or other tissue damage leading to inflammation. IL-6 also plays a role in fighting infection, as IL-6 has been shown in mice to be required for resistance against bacterium Streptococcus pneumoniae. IL-6 is relevant to many diseases such as diabetes, atherosclerosis, depression, Alzheimer's Disease, systemic lupus erythematosus, multiple myeloma, prostate cancer, behcet's disease,[22] and rheumatoid arthritis (Kishimoto, International Immunology, Vol. 22, No. 5, pp. 347-352). IL-6 is also considered a myokine, a cytokine produced from muscle, and is elevated in response to muscle contraction. It is significantly elevated with exercise, and precedes the appearance of other cytokines in the circulation. During exercise, it is thought to act in a hormone-like manner to mobilize extracellular substrates and/or augment substrate delivery. Additionally, osteoblasts secrete IL-6 to stimulate osteoclast formation. Smooth muscle cells in the tunica media of many blood vessels also produce IL-6 as a pro-inflammatory cytokine IL-6's role as an anti-inflammatory cytokine is mediated through its inhibitory effects on TNF-alpha and IL-1, and activation of IL-1ra and IL-10.


Advanced/metastatic cancer patients have higher levels of IL-6 in their blood. IL-6 is responsible for stimulating acute phase protein synthesis, as well as the production of neutrophils in the bone marrow. It supports the growth of B cells and is antagonistic to regulatory T cells. Therefore there is interest in developing anti-IL-6 agents as therapy against many of these diseases (reviewed in Barton, Expert Opin. Ther. Targets 9 (4): 737-752).


Protein: IL-6 Gene: IL-6 (Homo sapiens, chromosome 7, 22766766-22771621 [NCBI Reference Sequence: NC000007.13]; start site location: 22766882; strand: positive)












Gene Identification


















GeneID
3569



HGNC
6018



HPRD
00970



MIM
147620




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













3185

CACCGCGTGGCTTCTGCCACTTTC
723





3206

TACGGACGCAGGCACGGCTCTAG
1117





3226

CAGCTCCGCAGCCGTGCACTGTG
1722





3255

CTTCACCGATTGTCTAAACAGAGAC
1525





3256
IL6_1
TTCGTTCCCGGTGGGCTCGAGGGC
35





3276

TGCTTCCGCGTCGGCACCCAAG
1150



















Target Shift Sequences











Relative




upstream




location to


Sequence ID

gene start


No:
Sequence (5′-3′)
site












3185
CACCGCGTGGCTTCTGCCACTTTC
723





3186
ACCGCGTGGCTTCTGCCACT
724





3187
CCGCGTGGCTTCTGCCACTT
725





3188
CGCGTGGCTTCTGCCACTTT
726





3189
GCGTGGCTTCTGCCACTTTC
727





3190
CGTGGCTTCTGCCACTTTCT
728





3191
CCACCGCGTGGCTTCTGCCA
722





3192
GCCACCGCGTGGCTTCTGCC
721





3193
TGCCACCGCGTGGCTTCTGC
720





3194
TTGCCACCGCGTGGCTTCTG
719





3195
TTTGCCACCGCGTGGCTTCT
718





3196
TTTTGCCACCGCGTGGCTTC
717





3197
TTTTTGCCACCGCGTGGCTT
716





3198
CTTTTTGCCACCGCGTGGCT
715





3199
CCTTTTTGCCACCGCGTGGC
714





3200
TCCTTTTTGCCACCGCGTGG
713





3201
CTCCTTTTTGCCACCGCGTG
712





3202
ACTCCTTTTTGCCACCGCGT
711





3203
GACTCCTTTTTGCCACCGCG
710





3204
TGACTCCTTTTTGCCACCGC
709





3205
GTGACTCCTTTTTGCCACCG
708





3206
TACGGACGCAGGCACGGCTCTAG
1117





3207
ACGGACGCAGGCACGGCTCT
1118





3208
CGGACGCAGGCACGGCTCTA
1119





3209
GGACGCAGGCACGGCTCTAG
1120





3210
GACGCAGGCACGGCTCTAGG
1121





3211
ACGCAGGCACGGCTCTAGGC
1122





3212
CGCAGGCACGGCTCTAGGCT
1123





3213
GCAGGCACGGCTCTAGGCTC
1124





3214
CAGGCACGGCTCTAGGCTCT
1125





3215
AGGCACGGCTCTAGGCTCTG
1126





3216
GGCACGGCTCTAGGCTCTGA
1127





3217
GCACGGCTCTAGGCTCTGAA
1128





3218
CACGGCTCTAGGCTCTGAAT
1129





3219
ACGGCTCTAGGCTCTGAATC
1130





3220
CGGCTCTAGGCTCTGAATCT
1131





3221
CTACGGACGCAGGCACGGCT
1116





3222
ACTACGGACGCAGGCACGGC
1115





3223
AACTACGGACGCAGGCACGG
1114





3224
AAACTACGGACGCAGGCACG
1113





3225
GAAACTACGGACGCAGGCAC
1112





3226
CAGCTCCGCAGCCGTGCACTGTG
1700





3227
AGCTCCGCAGCCGTGCACTG
1701





3228
GCTCCGCAGCCGTGCACTGT
1702





3229
CTCCGCAGCCGTGCACTGTG
1703





3230
TCCGCAGCCGTGCACTGTGA
1704





3231
CCGCAGCCGTGCACTGTGAT
1705





3232
CGCAGCCGTGCACTGTGATC
1706





3233
GCAGCCGTGCACTGTGATCC
1707





3234
CAGCCGTGCACTGTGATCCG
1708





3235
AGCCGTGCACTGTGATCCGT
1709





3236
GCCGTGCACTGTGATCCGTC
1710





3237
CCGTGCACTGTGATCCGTCT
1711





3238
CGTGCACTGTGATCCGTCTA
1712





3239
GTGCACTGTGATCCGTCTAT
1713





3240
TGCACTGTGATCCGTCTATG
1714





3241
GCACTGTGATCCGTCTATGT
1715





3242
CACTGTGATCCGTCTATGTA
1716





3243
CCAGCTCCGCAGCCGTGCAC
1699





3244
CCCAGCTCCGCAGCCGTGCA
1698





3245
TCCCAGCTCCGCAGCCGTGC
1697





3246
CTCCCAGCTCCGCAGCCGTG
1696





3247
GCTCCCAGCTCCGCAGCCGT
1695





3248
TGCTCCCAGCTCCGCAGCCG
1694





3249
CTGCTCCCAGCTCCGCAGCC
1693





3250
ACTGCTCCCAGCTCCGCAGC
1692





3251
CACTGCTCCCAGCTCCGCAG
1691





3252
CCACTGCTCCCAGCTCCGCA
1690





3253
GCCACTGCTCCCAGCTCCGC
1689





3254
AGCCACTGCTCCCAGCTCCG
1688





3255
CTTCACCGATTGTCTAAACAGAGAC
1522





3256
TTCGTTCCCGGTGGGCTCGAGGGC
35





3257
TCGTTCCCGGTGGGCTCGAG
36





3258
CGTTCCCGGTGGGCTCGAGG
37





3259
GTTCCCGGTGGGCTCGAGGG
38





3260
TTCCCGGTGGGCTCGAGGGC
39





3261
TCCCGGTGGGCTCGAGGGCA
40





3262
CCCGGTGGGCTCGAGGGCAG
41





3263
CCGGTGGGCTCGAGGGCAGA
42





3264
TTTCGTTCCCGGTGGGCTCG
34





3265
CTTTCGTTCCCGGTGGGCTC
33





3266
TCTTTCGTTCCCGGTGGGCT
32





3267
CTCTTTCGTTCCCGGTGGGC
31





3268
TCTCTTTCGTTCCCGGTGGG
30





3269
TTCTCTTTCGTTCCCGGTGG
29





3270
CTTCTCTTTCGTTCCCGGTG
28





3271
GCTTCTCTTTCGTTCCCGGT
27





3272
AGCTTCTCTTTCGTTCCCGG
26





3273
GAGCTTCTCTTTCGTTCCCG
25





3274
AGAGCTTCTCTTTCGTTCCC
24





3275
TAGAGCTTCTCTTTCGTTCC
23





3276
TGCTTCCGCGTCGGCACCCAAG
1150





3277
GCTTCCGCGTCGGCACCCAA
1151





3278
CTTCCGCGTCGGCACCCAAG
1152





3279
TTCCGCGTCGGCACCCAAGA
1153





3280
TCCGCGTCGGCACCCAAGAA
1154





3281
CCGCGTCGGCACCCAAGAAT
1155





3282
CGCGTCGGCACCCAAGAATT
1156





3283
GCGTCGGCACCCAAGAATTT
1157





3284
CGTCGGCACCCAAGAATTTC
1158





3285
GTCGGCACCCAAGAATTTCT
1159





3286
TCGGCACCCAAGAATTTCTT
1160





3287
CGGCACCCAAGAATTTCTTA
1161





3288
CTGCTTCCGCGTCGGCACCC
1149





3289
TCTGCTTCCGCGTCGGCACC
1148





3290
ATCTGCTTCCGCGTCGGCAC
1147





3291
AATCTGCTTCCGCGTCGGCA
1146





3292
GAATCTGCTTCCGCGTCGGC
1145





3293
TGAATCTGCTTCCGCGTCGG
1144





3294
CTGAATCTGCTTCCGCGTCG
1143





3295
TCTGAATCTGCTTCCGCGTC
1142





3296
CTCTGAATCTGCTTCCGCGT
1141





3297
GCTCTGAATCTGCTTCCGCG
1140





3298
GGCTCTGAATCTGCTTCCGC
1139





3299
AGGCTCTGAATCTGCTTCCG
1138



















Hot Zones (Relative upstream location to gene start site)







 1-800


1050-1250


1400-1800


2850-3400









Examples

In FIG. 31, In MCF7 (human mammary breast cell line), IL61 (145) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The IL6 sequence IL61 (145) fits the independent and dependent DNAi motif claims.


The secondary structure for IL61 (145) is shown in FIG. 32.









Genetic Code (5′ Upstream Region)


(SEQ ID NO: 11963)


AGGGACCTCCCCAGCCATGGGGGCAGGGCCAAATGGGGCTTCTTCA





GGACCAGCAAAGCCATTTTTCTCATCAGCAAACTAGCTTCAGAGAAGTTT





GCAATCAGGGCACTCTCTTCCAAGCCTAGAGACCCAGGGAAAGGGGTACG





GGGGTGTCCCAAGGCAAAGAGAATCTACACTTTTTGCCCCCGGAGAGGCT





ACTTCCCTCCCAAGATGCCTGGGATTTTCCACTTCAGCAGGGGGAAGGTA





AGTCACATAGCAAAATAATGAGGGCACAGAACAGATGACCTCCCTATAGA





GTTTTGAATGAGAAACACAGCAGGGCAGATGTGCCCCTTCTCTAGTCTAG





GAGGAGCTAGGTCCAGCCCCTGAACATCCTCCCCCTCAGAAAAGCTGAGG





CCAGACTAAGAATTCACCAGACCAAGGAGCTACAACAGGACATCAGAGCT





GAGGCTGCAAAGCCAGGACTGAGACCAGACCAGGCAGGAAACTGTCAAGA





GCTTTGGTCACCAGGCCTGGCTGCCCTCCAACATCAGCTGGCTCTTTCTA





AATTGACACACCACATGTCCCTAAAATTCTCTCTTCAAGTAATACCACCA





TCAAAGCAGGACATTTCCCAGAGCCTTAGAGCCTGGTGTCTGCTCAGTGG





GACTCAACCCCAGAAGAAGCTGTTAAATCACCCACTGTTTCAGTTTACAA





ACTTCTTACGACTTGGCAACAAGTGAAACTACATTCTGGCAGCAACTGCA





AGTTCCCTAGTACCCAGGACTTCCCGTTTTTTCTTGCTGTACTCCCTCCT





GTTAAATCACAGACTCATCCATCTCCAACCCCCAGAATATAGAGAAAGAG





CACAACACTACATCTTAACTCCTGAGACGTGGAGAACACTTCTCCTCCTG





AGAGCTTAAGTACCAAATGGAAGCTACTTTTCCCCCTTGGTCTCAAATGT





ATTACTAGATTCTGAACTGGACTCCACCATCACGTAAGAAAGCAGTCATG





GGCAGTAATTCTGGGAGATCCAGATAGGACATGCCAGCCCCACACTGGTG





GCATAGGAAGCCAAGTTGCTGCTTCCTCCCTGTGCACTCCCATTTGTCTG





GCCTCTCTTGATCTCAGCTGGCGCTCACTTCACATCAGCTATGATGCAAT





CCAGCAACTAAAGTATTAGTTAATAAATGCTGACAGCACAGCCTTTTCTG





GTCACGTATTCATACTAAAATACGGGGGAGAGTTGGGGGGAGAGGGGGAT





ATATGGGAAATCTCTGTACCTTCCTCTCCATTTTGCTATGACCTAAAGCT





GCCCTTTAAAAAATACAAGGGGCTGGGCACAGTGGTTCACGCCTGTAAAC





CCAGCACTTTGGGAGGCCGAGGCGCGTGGATCACCTGAGGTCAGGAGTTC





AAGACCCGCCTGGCCAACATGGCAAAACCCCGTTTCTACTAAAAATACAA





AAAGTAGCTGGGCGTGGTCGCATGCATCTGTAGTCCCAGCTACTCAGGAG





GCTGAGGCAAGAGAATTGCTTGAACCTGGGAGGCGGCGGTTGAAGTGAGC





CAAGATCATGCCATTGCCCTCCAGCCTGGGCAACAGAGCAAGACTCCTTC





TCAAGAGAAAAAACAAAACAAAACAAGAAAAAACAAAGAATGAGCTCTCC





ACGCGAAAAATCCATTGAGATGCAAAGGAAGGAAGCTATCATTGTGGAAT





TGCACATGTCAGTTACATTAACGTTTTTGGAGCAAGGTAGAGCTCATCTC





TCCCACAAGCAAATTCCAGCCCAAAGCATTGATACTAATAAAGTGCCATG





CTGCGATGTGCAGGGGGCAGACAGTGTCTCCAAGCTCCCTACACACATGC





CTTCCCACAGTTTGCCCTTTCTTGACCCCAGAAGCATCAGGCCCCTTCAC





CCTCGAGGGCCACTATCAGGAGTTTGAATTAATGGCAATCACCATGCACA





GGGAAGGCTGTGGAATTCTGACATAAAAACACTTAGTGGAGGGCTTGGAA





AAAGTCTAGTAGGAGCAAGACGCAAGCTGGACTAATTATCTAAAACAAGA





GACCTGGTTTGGGGATCTTAATGTTCTCAAAAAAGAAAATTATTATTATT





TTTCATTTTGCACTTTGTGCCATAAAACATTTTCAACAAAACATAGAATC





TCATTTCTTTTGAGGGAAAATGATTGGGAGACCAGCTCATTGCTGGCACA





GAGGCCTGGTTCATTCATAATTCCTTCATAGGCAAGACACCAGGTGAACC





GATATAGCCGAGCTGGAAGAGCTCTCCAAGGCAGAGACTCTGAGCCAAGG





AATGTTCAAAGAGCTAGCATGTATTGTGGGATTACTATGCGCCAGGAATT





TTTTACACTGCATCACGTTCCATCTTCACAACAGCCCTAGAAAGGAAGAA





CTATTATTACCCCCGTTTTATAGGTGAATAAACAAGGGCACAGGTCCTTG





ATGTAACAGCCAGGATCAAACAGCTGGGAAGACGAGAAAACCTTTCCCAG





GCTAGGATAACAGAGGATTTGGTTGAAAATACAGGCAATTAGGTGCTACC





TCTGGGAAAAGGGGCCAGGAGAGGAAGGAGACACTTTTCCCTGCATGCCC





TGATGTCCTATTTGAACATTTTATCATGAACACGAACTTCCTATTTAAAA





AACACTTTTTATTGAAAAGATAAATCTGTGTGTTGTATTGTGTCACTCAG





TTCAAGTACTTGAAATTTATTGAATTGTATTTTCTAAAAAATAGATAGTT





GAGTAAAAGCAAGCTCACATTACATAGACGGATCACAGTGCACGGCTGCG





GAGCTGGGAGCAGTGGCTTCGTTTCATGCAGGAAAGAGAACTTGGTTCAG





GAGTGTCTACGTTGCTTAAGACAGGAGAGCACTAAAAATGAAACCATCCA





GCCATCCTCCCCCATTTTCATTTTCACACCAAAGAATCCCACCGCGGCAG





AGGACCACCGTCTCTGTTTAGACAATCGGTGAAGAATGGATGACCTCACT





TTCCCCAACAGGCGGGTCCTGAAATGTTATGCACGAAACAAAACTTGAGT





AAATGCCCAACAGAGGTCACTGTTTTATCGATCTTGAAGAGATCTCTTCT





TAGCAAAGCAAAGAAACCGATTGTGAAGGTAACACCATGTTTGGTAAATA





AGTGTTTTGGTGTTGTGCAAGGGTCTGGTTTCAGCCTGAAGCCATCTCAG





AGCTGTCTGGGTCTCTGGAGACTGGAGGGACAACCTAGTCTAGAGCCCAT





TTGCATGAGACCAAGGATCCTCCTGCAAGAGACACCATCCTGAGGGAAGA





GGGCTTCTGAACCAGCTTGACCCAATAAGAAATTCTTGGGTGCCGACGCG





GAAGCAGATTCAGAGCCTAGAGCCGTGCCTGCGTCCGTAGTTTCCTTCTA





GCTTCTTTTGATTTCAAATCAAGACTTACAGGGAGAGGGAGCGATAAACA





CAAACTCTGCAAGATGCCACAAGGTCCTCCTTTGACATCCCCAACAAAGA





GGTGAGTAGTATTCTCCCCCTTTCTGCCCTGAACCAAGTGGGCTTCAGTA





ATTTCAGGGCTCCAGGAGACCTGGGGCCCATGCAGGTGCCCCAGTGAAAC





AGTGGTGAAGAGACTCAGTGGCAATGGGGAGAGCACTGGCAGCACAAGGC





AAACCTCTGGCACAGAGAGCAAAGTCCTCACTGGGAGGATTCCCAAGGGG





TCACTTGGGAGAGGGCAGGGCAGCAGCCAACCTCCTCTAAGTGGGCTGAA





GCAGGTGAAGAAAGTGGCAGAAGCCACGCGGTGGCAAAAAGGAGTCACAC





ACTCCACCTGGAGACGCCTTGAAGTAACTGCACGAAATTTGAGGATGGCC





AGGCAGTTCTACAACAGCCGCTCACAGGGAGAGCCAGAACACAGAAGAAC





TCAGATGACTGGTAGTATTACCTTCTTCATAATCCCAGGCTTGGGGGGCT





GCGATGGAGTCAGAGGAAACTCAGTTCAGAACATCTTTGGTTTTTACAAA





TACAAATTAACTGGAACGCTAAATTCTAGCCTGTTAATCTGGTCACTGAA





AAAAAATTTTTTTTTTTTCAAAAAACATAGCTTTAGCTTATTTTTTTTCT





CTTTGTAAAACTTCGTGCATGACTTCAGCTTTACTCTTTGTCAAGACATG





CCAAAGTGCTGAGTCACTAATAAAAGAAAAAAAGAAAGTAAAGGAAGAGT





GGTTCTGCTTCTTAGCGCTAGCCTCAATGACGACCTAAGCTGCACTTTTC





CCCCTAGTTGTGTCTTGCCATGCTAAAGGACGTCACATTGCACAATCTTA





ATAAGGTTTCCAATCAGCCCCACCCGCTCTGGCCCCACCCTCACCCTCCA





ACAAAGATTTATCAAATGTGGGATTTTCCCATGAGTCTCAATATTAGAGT





CTCAACCCCCAATAAATATAGGACTGGAGATGTCTGAGGCTCATTCTGCC





CTCGAGCCCACCGGGAACGAAAGAGAAGCTCTATCTCCCCTCCAGGAGCC





CAGCTATG






15) IL-23. IL-23 is produced by dendritic cells and macrophages. Interleukin-23 (IL-23) is a heterodimeric cytokine consisting of two subunits (p40-S-S-p19): p40, a component of the IL-12 cytokine and p19, the product of the IL23 gene (also considered the IL-23 alpha subunit). IL-23 is an important part of the inflammatory response against infection. Both IL-23 and IL-12 can activate the transcription activator STAT4, and stimulate the production of interferon-gamma (IFNG). In contrast to IL-12, which acts mainly on naive CD4(+) T cells, IL-23 preferentially acts on memory CD4(+) T cells (Oppmann et al., 2001, Immunity 13 (5): 715-25).


IL-23 promotes upregulation of the matrix metalloprotease MMP9, increases angiogenesis and reduces CD8+ T-cell infiltration. In conjunction with IL-6 and TGF-β1, IL-23 stimulates naive CD4+ T cells to differentiate into a novel subset of cells called Th17 cells, which are distinct from the classical Th1 and Th2 cells. Th17 cells produce IL-17, a proinflammatory cytokine that enhances T cell priming and stimulates the production of other proinflammatory molecules such as IL-1, IL-6, TNF-alpha, NOS-2, and chemokines resulting in inflammation.


IL-23 may also play a role in the intestinal immune system which has the challenge of maintaining both a state of tolerance toward intestinal antigens and the ability to combat pathogens. This balance is partially achieved by reciprocal regulation of proinflammatory, effector CD4+ T cells and tolerizing, suppressive regulatory T cells. Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies have linked CD to a number of IL-23 pathway genes, notably IL23R (interleukin 23 receptor). Similar associations in IL-23 pathway genes have been observed in UC. IL23R is a key differentiation feature of CD4+ Th17 cells, effector cells that are critical in mediating antimicrobial defenses. However, IL-23 and Th17 cell dysregulation can lead to end-organ inflammation. The differentiation of inflammatory Th17 cells and suppressive CD4+ Treg subsets is reciprocally regulated by relative concentrations of TGFβ, with the concomitant presence of proinflammatory cytokines favoring Th17 differentiation. The identification of IL-23 pathway and Th17 expressed genes in IBD pathogenesis highlights the importance of the proper regulation of the IL-23/Th17 pathway in maintaining intestinal immune homeostasis (reviewed in Abraham and Cho, 2009; Ann. Rev. Med. 60: 97-110).


Protein: IL23 Gene: IL23A (Homo sapiens, chromosome 12, 56732663-56734194 [NCBI Reference Sequence: NC000012.11]; start site location: 56732829; strand: positive)












Gene Identification


















GeneID
51561



HGNC
15488



HPRD
12026



MIM
605580




















Targeted Sequences











Relative upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












3300
TCCCTGCATTGTAAGGCCCGCC
195





3319
CACAGCGGGGATGGGGTGGGAGGG
414





3320
GACGTCAGAATGAGGCCATCG
1296





3341
GAGCCAGCACGGTGGTGGGCGCC
1651





3365
GCGTTTGTCCCACCGGCGCCCCG
4861





3479
TAACGCCACCCAACAAGTCCGGCG
4830



















Target Shift Sequences











Relative upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












3300
TCCCTGCATTGTAAGGCCCGCC
195





3301
CCCTGCATTGTAAGGCCCGC
196





3302
CCTGCATTGTAAGGCCCGCC
197





3303
CTGCATTGTAAGGCCCGCCC
198





3304
TGCATTGTAAGGCCCGCCCT
199





3305
GCATTGTAAGGCCCGCCCTT
200





3306
CATTGTAAGGCCCGCCCTTT
201





3307
ATTGTAAGGCCCGCCCTTTA
202





3308
TTGTAAGGCCCGCCCTTTAT
203





3309
TGTAAGGCCCGCCCTTTATA
204





3310
GTAAGGCCCGCCCTTTATAC
205





3311
TAAGGCCCGCCCTTTATACC
206





3312
AAGGCCCGCCCTTTATACCA
207





3313
AGGCCCGCCCTTTATACCAG
208





3314
GGCCCGCCCTTTATACCAGC
209





3315
GCCCGCCCTTTATACCAGCA
210





3316
CCCGCCCTTTATACCAGCAG
211





3317
CCGCCCTTTATACCAGCAGG
212





3318
CGCCCTTTATACCAGCAGGT
213





3319
CACAGCGGGGATGGGGTGGGAGGG
414





3320
GACGTCAGAATGAGGCCATCG
1296





3321
ACGTCAGAATGAGGCCATCG
1297





3322
CGTCAGAATGAGGCCATCGG
1298





3323
GTCAGAATGAGGCCATCGGT
1299





3324
TCAGAATGAGGCCATCGGTG
1300





3325
CAGAATGAGGCCATCGGTGA
1301





3326
AGAATGAGGCCATCGGTGAC
1302





3327
GAATGAGGCCATCGGTGACC
1303





3328
AATGAGGCCATCGGTGACCA
1304





3329
ATGAGGCCATCGGTGACCAC
1305





3330
TGAGGCCATCGGTGACCACA
1306





3331
GAGGCCATCGGTGACCACAC
1307





3332
AGGCCATCGGTGACCACACA
1308





3333
GGCCATCGGTGACCACACAG
1309





3334
GCCATCGGTGACCACACAGC
1310





3335
CCATCGGTGACCACACAGCT
1311





3336
CATCGGTGACCACACAGCTG
1312





3337
ATCGGTGACCACACAGCTGG
1313





3338
TCGGTGACCACACAGCTGGC
1314





3339
CGGTGACCACACAGCTGGCT
1315





3340
AGACGTCAGAATGAGGCCAT
1295





3341
GAGCCAGCACGGTGGTGGGCGCC
1651





3342
AGCCAGCACGGTGGTGGGCG
1652





3343
GCCAGCACGGTGGTGGGCGC
1653





3344
CCAGCACGGTGGTGGGCGCC
1654





3345
CAGCACGGTGGTGGGCGCCT
1655





3346
AGCACGGTGGTGGGCGCCTA
1656





3347
GCACGGTGGTGGGCGCCTAT
1657





3348
CACGGTGGTGGGCGCCTATA
1658





3349
ACGGTGGTGGGCGCCTATAG
1659





3350
CGGTGGTGGGCGCCTATAGT
1660





3351
GGTGGTGGGCGCCTATAGTC
1661





3352
GTGGTGGGCGCCTATAGTCC
1662





3353
TGGTGGGCGCCTATAGTCCC
1663





3354
GGTGGGCGCCTATAGTCCCA
1664





3355
GTGGGCGCCTATAGTCCCAG
1665





3356
TGGGCGCCTATAGTCCCAGC
1666





3357
GGGCGCCTATAGTCCCAGCT
1667





3358
GGCGCCTATAGTCCCAGCTA
1668





3359
GCGCCTATAGTCCCAGCTAC
1669





3360
CGCCTATAGTCCCAGCTACT
1670





3361
TGAGCCAGCACGGTGGTGGG
1650





3362
ATGAGCCAGCACGGTGGTGG
1649





3363
AATGAGCCAGCACGGTGGTG
1648





3364
AAATGAGCCAGCACGGTGGT
1647





3365
GCGTTTGTCCCACCGGCGCCCCG
4861





3366
CGTTTGTCCCACCGGCGCCC
4862





3367
GTTTGTCCCACCGGCGCCCC
4863





3368
TTTGTCCCACCGGCGCCCCG
4864





3369
TTGTCCCACCGGCGCCCCGT
4865





3370
TGTCCCACCGGCGCCCCGTA
4866





3371
GTCCCACCGGCGCCCCGTAA
4867





3372
TCCCACCGGCGCCCCGTAAC
4868





3373
CCCACCGGCGCCCCGTAACC
4869





3374
CCACCGGCGCCCCGTAACCT
4870





3375
CACCGGCGCCCCGTAACCTC
4871





3376
ACCGGCGCCCCGTAACCTCT
4872





3377
CCGGCGCCCCGTAACCTCTT
4873





3378
CGGCGCCCCGTAACCTCTTT
4874





3379
GGCGCCCCGTAACCTCTTTT
4875





3380
GCGCCCCGTAACCTCTTTTT
4876





3381
CGCCCCGTAACCTCTTTTTC
4877





3382
GCCCCGTAACCTCTTTTTCC
4878





3383
CCCCGTAACCTCTTTTTCCG
4879





3384
CCCGTAACCTCTTTTTCCGG
4880





3385
CCGTAACCTCTTTTTCCGGC
4881





3386
CGTAACCTCTTTTTCCGGCG
4882





3387
GTAACCTCTTTTTCCGGCGC
4883





3388
TAACCTCTTTTTCCGGCGCG
4884





3389
AACCTCTTTTTCCGGCGCGT
4885





3390
ACCTCTTTTTCCGGCGCGTG
4886





3391
CCTCTTTTTCCGGCGCGTGC
4887





3392
CTCTTTTTCCGGCGCGTGCG
4888





3393
TCTTTTTCCGGCGCGTGCGT
4889





3394
CTTTTTCCGGCGCGTGCGTC
4890





3395
TTTTTCCGGCGCGTGCGTCA
4891





3396
TTTTCCGGCGCGTGCGTCAC
4892





3397
TTTCCGGCGCGTGCGTCACA
4893





3398
TTCCGGCGCGTGCGTCACAC
4894





3399
TCCGGCGCGTGCGTCACACG
4895





3400
CCGGCGCGTGCGTCACACGC
4896





3401
CGGCGCGTGCGTCACACGCT
4897





3402
GGCGCGTGCGTCACACGCTC
4898





3403
GCGCGTGCGTCACACGCTCT
4899





3404
CGCGTGCGTCACACGCTCTC
4900





3405
GCGTGCGTCACACGCTCTCT
4901





3406
CGTGCGTCACACGCTCTCTC
4902





3407
GTGCGTCACACGCTCTCTCC
4903





3408
TGCGTCACACGCTCTCTCCT
4904





3409
GCGTCACACGCTCTCTCCTG
4905





3410
CGTCACACGCTCTCTCCTGG
4906





3411
GTCACACGCTCTCTCCTGGG
4907





3412
TCACACGCTCTCTCCTGGGG
4908





3413
CACACGCTCTCTCCTGGGGT
4909





3414
ACACGCTCTCTCCTGGGGTC
4910





3415
CACGCTCTCTCCTGGGGTCG
4911





3416
ACGCTCTCTCCTGGGGTCGC
4912





3417
CGCTCTCTCCTGGGGTCGCC
4913





3418
GCTCTCTCCTGGGGTCGCCG
4914





3419
CTCTCTCCTGGGGTCGCCGT
4915





3420
TCTCTCCTGGGGTCGCCGTA
4916





3421
CTCTCCTGGGGTCGCCGTAC
4917





3422
TCTCCTGGGGTCGCCGTACC
4918





3423
CTCCTGGGGTCGCCGTACCT
4919





3424
TCCTGGGGTCGCCGTACCTG
4920





3425
CCTGGGGTCGCCGTACCTGG
4921





3426
CTGGGGTCGCCGTACCTGGC
4922





3427
TGGGGTCGCCGTACCTGGCT
4923





3428
GGGGTCGCCGTACCTGGCTC
4924





3429
GGGTCGCCGTACCTGGCTCC
4925





3430
GGTCGCCGTACCTGGCTCCT
4926





3431
GTCGCCGTACCTGGCTCCTT
4927





3432
TCGCCGTACCTGGCTCCTTC
4928





3433
CGCCGTACCTGGCTCCTTCT
4929





3434
GCCGTACCTGGCTCCTTCTG
4930





3435
CCGTACCTGGCTCCTTCTGA
4931





3436
CGTACCTGGCTCCTTCTGAT
4932





3437
TGCGTTTGTCCCACCGGCGC
4860





3438
CTGCGTTTGTCCCACCGGCG
4859





3439
GCTGCGTTTGTCCCACCGGC
4858





3440
GGCTGCGTTTGTCCCACCGG
4857





3441
TGGCTGCGTTTGTCCCACCG
4856





3442
CTGGCTGCGTTTGTCCCACC
4855





3443
TCTGGCTGCGTTTGTCCCAC
4854





3444
GTCTGGCTGCGTTTGTCCCA
4853





3445
CGTCTGGCTGCGTTTGTCCC
4852





3446
GCGTCTGGCTGCGTTTGTCC
4851





3447
GGCGTCTGGCTGCGTTTGTC
4850





3448
CGGCGTCTGGCTGCGTTTGT
4849





3449
CCGGCGTCTGGCTGCGTTTG
4848





3450
TCCGGCGTCTGGCTGCGTTT
4847





3451
GTCCGGCGTCTGGCTGCGTT
4846





3452
AGTCCGGCGTCTGGCTGCGT
4845





3453
AAGTCCGGCGTCTGGCTGCG
4844





3454
CAAGTCCGGCGTCTGGCTGC
4843





3455
ACAAGTCCGGCGTCTGGCTG
4842





3456
AACAAGTCCGGCGTCTGGCT
4841





3457
CAACAAGTCCGGCGTCTGGC
4840





3458
CCAACAAGTCCGGCGTCTGG
4839





3459
CCCAACAAGTCCGGCGTCTG
4838





3460
ACCCAACAAGTCCGGCGTCT
4837





3461
CACCCAACAAGTCCGGCGTC
4836





3462
CCACCCAACAAGTCCGGCGT
4835





3463
GCCACCCAACAAGTCCGGCG
4834





3464
CGCCACCCAACAAGTCCGGC
4833





3465
ACGCCACCCAACAAGTCCGG
4832





3466
AACGCCACCCAACAAGTCCG
4831





3467
TAACGCCACCCAACAAGTCC
4830





3468
CTAACGCCACCCAACAAGTC
4829





3469
TCTAACGCCACCCAACAAGT
4828





3470
TTCTAACGCCACCCAACAAG
4827





3471
TTTCTAACGCCACCCAACAA
4826





3472
CTTTCTAACGCCACCCAACA
4825





3473
ACTTTCTAACGCCACCCAAC
4824





3474
TACTTTCTAACGCCACCCAA
4823





3475
TTACTTTCTAACGCCACCCA
4822





3476
GTTACTTTCTAACGCCACCC
4821





3477
AGTTACTTTCTAACGCCACC
4820





3478
GAGTTACTTTCTAACGCCAC
4819





3479
TAACGCCACCCAACAAGTCCGGCG
4830





3480
AACGCCACCCAACAAGTCCG
4831





3481
ACGCCACCCAACAAGTCCGG
4832





3482
CGCCACCCAACAAGTCCGGC
4833





3483
GCCACCCAACAAGTCCGGCG
4834





3484
CCACCCAACAAGTCCGGCGT
4835





3485
CACCCAACAAGTCCGGCGTC
4836





3486
ACCCAACAAGTCCGGCGTCT
4837





3487
CCCAACAAGTCCGGCGTCTG
4838





3488
CCAACAAGTCCGGCGTCTGG
4839





3489
CAACAAGTCCGGCGTCTGGC
4840





3490
AACAAGTCCGGCGTCTGGCT
4841





3491
ACAAGTCCGGCGTCTGGCTG
4842





3492
CAAGTCCGGCGTCTGGCTGC
4843





3493
AAGTCCGGCGTCTGGCTGCG
4844





3494
AGTCCGGCGTCTGGCTGCGT
4845





3495
GTCCGGCGTCTGGCTGCGTT
4846





3496
TCCGGCGTCTGGCTGCGTTT
4847





3497
CCGGCGTCTGGCTGCGTTTG
4848





3498
CGGCGTCTGGCTGCGTTTGT
4849





3499
GGCGTCTGGCTGCGTTTGTC
4850





3500
GCGTCTGGCTGCGTTTGTCC
4851





3501
CGTCTGGCTGCGTTTGTCCC
4852





3502
GTCTGGCTGCGTTTGTCCCA
4853





3503
TCTGGCTGCGTTTGTCCCAC
4854





3504
CTGGCTGCGTTTGTCCCACC
4855





3505
TGGCTGCGTTTGTCCCACCG
4856





3506
GGCTGCGTTTGTCCCACCGG
4857





3507
GCTGCGTTTGTCCCACCGGC
4858





3508
CTGCGTTTGTCCCACCGGCG
4859





3509
TGCGTTTGTCCCACCGGCGC
4860





3510
GCGTTTGTCCCACCGGCGCC
4861





3511
CGTTTGTCCCACCGGCGCCC
4862





3512
GTTTGTCCCACCGGCGCCCC
4863





3513
TTTGTCCCACCGGCGCCCCG
4864





3514
TTGTCCCACCGGCGCCCCGT
4865





3515
TGTCCCACCGGCGCCCCGTA
4866





3516
GTCCCACCGGCGCCCCGTAA
4867





3517
TCCCACCGGCGCCCCGTAAC
4868





3518
CCCACCGGCGCCCCGTAACC
4869





3519
CCACCGGCGCCCCGTAACCT
4870





3520
CACCGGCGCCCCGTAACCTC
4871





3521
ACCGGCGCCCCGTAACCTCT
4872





3522
CCGGCGCCCCGTAACCTCTT
4873





3523
CGGCGCCCCGTAACCTCTTT
4874





3524
GGCGCCCCGTAACCTCTTTT
4875





3525
GCGCCCCGTAACCTCTTTTT
4876





3526
CGCCCCGTAACCTCTTTTTC
4877





3527
GCCCCGTAACCTCTTTTTCC
4878





3528
CCCCGTAACCTCTTTTTCCG
4879





3529
CCCGTAACCTCTTTTTCCGG
4880





3530
CCGTAACCTCTTTTTCCGGC
4881





3531
CGTAACCTCTTTTTCCGGCG
4882





3532
GTAACCTCTTTTTCCGGCGC
4883





3533
TAACCTCTTTTTCCGGCGCG
4884





3534
AACCTCTTTTTCCGGCGCGT
4885





3535
ACCTCTTTTTCCGGCGCGTG
4886





3536
CCTCTTTTTCCGGCGCGTGC
4887





3537
CTCTTTTTCCGGCGCGTGCG
4888





3538
TCTTTTTCCGGCGCGTGCGT
4889





3539
CTTTTTCCGGCGCGTGCGTC
4890





3540
TTTTTCCGGCGCGTGCGTCA
4891





3541
TTTTCCGGCGCGTGCGTCAC
4892





3542
TTTCCGGCGCGTGCGTCACA
4893





3543
TTCCGGCGCGTGCGTCACAC
4894





3544
TCCGGCGCGTGCGTCACACG
4895





3545
CCGGCGCGTGCGTCACACGC
4896





3546
CGGCGCGTGCGTCACACGCT
4897





3547
GGCGCGTGCGTCACACGCTC
4898





3548
GCGCGTGCGTCACACGCTCT
4899





3549
CGCGTGCGTCACACGCTCTC
4900





3550
GCGTGCGTCACACGCTCTCT
4901





3551
CGTGCGTCACACGCTCTCTC
4902





3552
GTGCGTCACACGCTCTCTCC
4903





3553
TGCGTCACACGCTCTCTCCT
4904





3554
GCGTCACACGCTCTCTCCTG
4905





3555
CGTCACACGCTCTCTCCTGG
4906





3556
GTCACACGCTCTCTCCTGGG
4907





3557
TCACACGCTCTCTCCTGGGG
4908





3558
CACACGCTCTCTCCTGGGGT
4909





3559
ACACGCTCTCTCCTGGGGTC
4910





3560
CACGCTCTCTCCTGGGGTCG
4911





3561
ACGCTCTCTCCTGGGGTCGC
4912





3562
CGCTCTCTCCTGGGGTCGCC
4913





3563
GCTCTCTCCTGGGGTCGCCG
4914





3564
CTCTCTCCTGGGGTCGCCGT
4915





3565
TCTCTCCTGGGGTCGCCGTA
4916





3566
CTCTCCTGGGGTCGCCGTAC
4917





3567
TCTCCTGGGGTCGCCGTACC
4918





3568
CTCCTGGGGTCGCCGTACCT
4919





3569
TCCTGGGGTCGCCGTACCTG
4920





3570
CCTGGGGTCGCCGTACCTGG
4921





3571
CTGGGGTCGCCGTACCTGGC
4922





3572
TGGGGTCGCCGTACCTGGCT
4923





3573
GGGGTCGCCGTACCTGGCTC
4924





3574
GGGTCGCCGTACCTGGCTCC
4925





3575
GGTCGCCGTACCTGGCTCCT
4926





3576
GTCGCCGTACCTGGCTCCTT
4927





3577
TCGCCGTACCTGGCTCCTTC
4928





3578
CGCCGTACCTGGCTCCTTCT
4929





3579
GCCGTACCTGGCTCCTTCTG
4930





3580
CCGTACCTGGCTCCTTCTGA
4931





3581
CGTACCTGGCTCCTTCTGAT
4932





3582
CTAACGCCACCCAACAAGTC
4829





3583
TCTAACGCCACCCAACAAGT
4828





3584
TTCTAACGCCACCCAACAAG
4827





3585
TTTCTAACGCCACCCAACAA
4826





3586
CTTTCTAACGCCACCCAACA
4825





3587
ACTTTCTAACGCCACCCAAC
4824





3588
TACTTTCTAACGCCACCCAA
4823





3589
TTACTTTCTAACGCCACCCA
4822





3590
GTTACTTTCTAACGCCACCC
4821





3591
AGTTACTTTCTAACGCCACC
4820





3592
GAGTTACTTTCTAACGCCAC
4819



















Hot Zones (Relative upstream location to gene start site)







 1-500


 950-1400


1450-1800


3390-4050


4300-5000









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11964)







AACTCCCATCCGTGATTGTTCCCTCCCCAGAGACCCCGGTAACATTCCCG





GGTAACAAGATGCCCCTGGTTATCAAATTCCCCTAGCTCTTGAGGCTGGC





TGGACGTTATCCCTCAGAGGGGGATGAGCATGGCAAATTGGGACTTGTTA





TTCTGAAGGATTCGTGGGTCCTGTGAACTCTAATTACTTTGAAATGGGTC





TAGGTTGTGAGATGTCTCAGAGCACTTTAGCTCAGCTGTTATTACTGTTT





CTAAAGGCCACATAAAGGGACTCTGATGGGAGACATTCCTCATGGAGGAT





TCAATTCTATAACATTTCTCTCAATAAAGGCTGGTAAATAGACCTTCATT





AAAGGAACCAAGAATTTAAATTTCTAGGACTCAGAGGGGTGGGGTCCTAT





ACCCAGTCAGAGATCCTACCTAGAGCCTAGACCAAGAGAAAAACACAGAT





GGTCTCTCAAACTGATTTGATCTGACTTCGCAGGTCATTAGATATAGAAT





CTCCGAAAAAGGTGGATGCTGAGAGACATAGACAGTTCCTACACTTTAAG





AAATCTCCATCTTGAGGTCTCAAATTGAGAAAGACTTAACAGACCCATGA





GAGTTACAGATCCCTAATAACCTGGGCTAAATAATCCATGTCTGCCGGGC





GCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCG





GATCACCTGAGGTCGGGAGTTCGAGACCAACCTGACCAATATGGAGAAAC





CCCGTCTCCACTAAAAATACAAAATTAGCCGGGCCTGGTGACGGGAGCCT





GTAATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCATTTGAACCTGG





GAGGCGGAGGTTGCAGTGAGCCGAGATGGCACCATTGCACTCCAGCCTGG





TCAGTAAGAGCGAAACTCCGTCTCAAAAAAAAGAAAAAAAAAAAGAAAAG





AAAAAAGGATACTGTGAGGAGACACAAGAGCATCCATGACATAGATTATT





TAGCTCAGCTGTAATTACTGTTTCTAATACAGTAATATTAGATGGTGATC





TGCCTGCCTCGGCCTCCCAAAGTTCTGGGATTACAGGTGTGAGCCACCGC





GCCCAGCCTTTTTTTTTTTTTTTTTTTGAGACAGGATCTCACTCTGTTGC





CCATGCTTAAGCGCATTGGCCCTCTCACTCACTGTAGCCTCAACCTCCTG





GGCTCAAGCGATCCTCCCACTTCAGCCTCCCAACTAGCTGTAACTACAGG





CACTGGCCACCAAACCCAGATAATTTTTTTTTTCCTGTAGAGGTGGGGTT





TTGCCACGTTACCCAGGCTGGTCTTGAACTCTTAAGCTCAAGCGATCCTC





CTGCCTCGGCCCCCCAAAGTTCTGGGATTACAGGCATGAGCCACCATACC





TGGCGTACAGTATCCAGTGTAATGCAGTGATTAAAAATTCAGGATCCAGA





CCGGGATGGTGGCTTGTGCCTGTAGTCCCAGGGGTGGAGGTTGCAGTGAA





CGGAAATGGTGCCACTGCATTCCAGCCTGGGTGACAGAGTGAGACCCTGT





CTCAACAAAACCCCCCAAAAACCAAGAACAAAAAAGAATGCAGGATCTGA





TGCTAGATTGTCTGCATTAGAACTCTAGCCACTTAAGCTGGGTGTGGTGG





CTCATGCCTGTAATCCCAGCACTTTTGGAGGCCGCAGGCGGGTGGATCAC





CTGAGATTGGGAGTTCAAGACCAGCCTGACCAACATGGAGAAACCCTGTT





TCTACTAAAAATACAAAATTAGCCACCGGGCATGGTGGTGCATGCCTGTA





ATCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAG





GCAGAGGTTACGGTGAGATGAGATGGCACCATTGCACTCCAGCCTGGGCA





ACAAGAGCGAAACTCCATCTCAAAAAAAAAAAAAAAAAAAAAGGAATTCT





AGCCACTTAGAAGCTCTGTGATCTTGGGCAAATTGCTTATCTTTGCACCT





CAGCCTCCTCCTCTGTAATATAGGGTAATAGTATCTACCTTAAAGGGTTG





TTGTGAAAATTAAATAGTTTAGTACATGTAAAGTGCTTAGACAAAGTATT





TGGCATTAAGCGAGAGTTGGATATATTAGCCATCATTATTAACCACCTGG





GGGAACTTCAACTGATTTGGAGTCTAGGCATACAACTGGAAAGACCTGCC





TAGGAGTGTCTTGTGAATGCGATTTGCATAACGGTTTAGGCCCAGCTGAC





GTCAAGGGCTCCTTATAGCTCCAGGTCAGTTGTAGCCCTGGATGTAGTTC





CTGCCACGCAACAGTCCCACAATCTCCCCACCAACCCTTCTTCCTACCCA





ACTCCTGCAGCACCAGGAAGTGAAACAAAGAGGCAGAGCCCTGTGCCTCC





AACTCACCCTTGTCCCTCTCATCCCATCCCCCAGGCTCTACTTCCTCCTC





CTTTTCATCTTTCTTTCATCTCTTATCTTTTAGGGCTCCCAGAATGGGGA





CCAGAGATGGGAAGAACATAGGAGACGTTGTACACAAGTAAGGTGAACTC





CCTATCCTGCCCCCTCCCCTTTCCTTATTCCATTGGTGTCCACCTTATTA





GGGAGAGAGGCAAAACAGTTCTCACCCAAACTCAGATAATTCTCTGATGC





TGGAAATGTTTAATCTAAAGGGTAGATTTCCATTTTTTTTTTTTTTTTTT





TGAGACAGAGTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGCGCCATC





TCGGCTCACTGCAACCTCTGCCTCCTGGCTTCAAGCGATTCTCTTGCCTC





AGCCTCCCGAGTAGCTGGGACTATAGGCGCCCACCACCGTGCTGGCTCAT





TTTTGTATTTTTAGTAGAGACAGGATTTCACCATGATGGCCAGGCTGGTC





TCGAACTCCTGACCTCATGATCCGCCTGCCTCGGCCTCCCAAAGTACTGG





GATTACAGGCGTGAGCCACTGTACCCGGCCCTTGGTAGATTTAACTTAGA





ATCGTAATATTTTTTTTTCTTCTCTTAGCTCATACCTACAGAATCATAAT





ATTTGAACCAGAAGTGTCATTGGGCAGTTTTGAATAGCTCTAAGGGAAGG





GAGACCTCCATTCAGGACAAGTTTCTCAGAAGAAAAGGGTCAACCTCTTG





GGGGAGGCTTTGGGAGCCAGCTGTGTGGTCACCGATGGCCTCATTCTGAC





GTCTTCGAAATTGTTCTGGGACCCTCCACTGGGGTCGGGGCAGTCCCGGC





TTTGGACCACCTTCCACTCCCACGCCCAACCTCACACTCTTAGCTGTTTC





ACTCGATGTTGCATCATGGAGGGTGATGAAATCGGTGTCAGTGGATTTTA





CCCATGGATGCAACAAGCTGAAGGACCAGCCAGAGTCATTGACAGTGCAC





CTTCGACTACCCAGAACTCCTGGGCTTCCTAGCCATGGGGTCCAAAGCTG





GGACTGCCCCGACCCCAGTGGAGGGTCCCAGAACAATTTGGATGACGTCA





GAATGAGGCCATGGGACTAGGTGCTGGAATGTCTAAGTTGAACTTCCAGG





CCTTATTTGCACTAGTCCTGAAAAAAACATCATCCAACTCTTATAGAGCC





TATGAAATCTTGGGCCACTAGGGTTGAGGAGTCAGGTGGTTCTTAGTCAA





TAACCCTCTTCCCACAAGAGCCTTTCTAACCTCCACTGTGAGGCCTGAAA





TGGGGAGCAATAAGACCTCATACTGGCTTCCCAGTTCTCCAAGTTCCTTC





ATGCGCATTCTCTCCCATGAAACCAGGACCATCCAGTTGAAATAATGTTG





TTTCCAACTGAGAAAAAGAAGCCCGTTTATTCCTAATAGGGGGCATCAGG





TAGGAATCAAACTTCATTGCAAACAGCTCACCATCCTATTGGGAGATGAA





TGGATGTTTCTCTGTTTTGCTTTTTCCTCAAGCAGGAGGAAGTGAGGAAA





TTAGGTTTGGGGTGGGGTAGGGGTATAGCTTTGAGAGGCAAAAAGATCAG





GGAAAGATCAAACAGGAAGGAACTTGAGACCAGATTAATTTAAATATTTG





TTCTCCCTTACCCCTCCCACCCCATCCCCGCTGTGCCCCCCATCCCCGCC





CCTTCTATAGCTATTTCGATTCCTGGAGAGCATTACACATGTGTCCCATC





CCAGGCCTCTAGCCACAGCAACCACACTACTCATTTCCCCTGGAACTGAG





GCTGCATACCTGGGCTCCCCACAGAGGGGGATGATGCAGGGAGGGGAATC





CCACCTGCTGTGAGTCACCTGCTGGTATAAAGGGCGGGCCTTACAATGCA





GGGACCTTAAAAGACTCAGAGACAAAGGGAGAAAAACAACAGGAAGCAGC





TTACAAACTCGGTGAACAACTGAGGGAACCAAACCAGAGACGCGCTGAAC





AGAGAGAATCAGGCTCAAAGCAAGTGGAAGTGGGCAGAGATTCCACCAGG





ACTGGTGCAAGGCGCAGAGCCAGCCAGATTTGAGAAGAAGGCAAAAAG







ATG








16) AKT. Akt (Protein kinase B, PKB) is a serine/threonine kinase is an important node several signaling cascades downstream of growth factor receptor tyrosine kinases. Akt plays an essential role in cell survival and altered activity has been associated with cancer and other disease conditions, such as diabetes mellitus, neurodegenerative diseases, and muscle hypotrophy. AKT plays a key role in regulating tumor formation, cell survival, insulin signaling and metabolism (lipid and glucose), growth, migration, proliferation, polarity, cell cycle progression, muscle and cardiomyocyte contractility, angiogenesis, and self-renewal of stem cells (reviewed by Liao and Hung, Am J Transl Res. 2010; 2(1): 19-42). Akt is a downstream mediator of the PI 3-K pathway, resulting in the recruitment of Akt to the plasma membrane via the PH (plexstrin homology domain) of Akt. Akt is fully activated by phosphorylation at two key sites: Ser308 (phosphorylated by PDK1) and Thr478 (phosphorylated by mTOR and DNA-PK). Akt can then phosphorylated a wide range of substrates including transcription factors (e.g. FOXO1), kinases (GSK-3, Raf-1, ASK, Chk1) and other proteins with important signaling roles (e.g. Bad, MDM2).


Protein: AKT1 Gene: AKT1 (Homo sapiens, chromosome 14, 105235686-105262080 [NCBI Reference Sequence: NC000014.8]; start site location: 105258980; strand: negative)












Gene Identification


















GeneID
207



HGNC
391



HPRD
01261



MIM
164730




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













3593

GAGGCTCCCGCGACGCTCACGCG
8





3646

TACCGGGCGTCTCAGGTTTTGCC
843





3669

TCCGAGCCGCGCACGCCTCAGGC
1562





3703

CACCAACGGACTCCGTCCGCCC
2010





3770

CCGCCGGCTGCCTCGCTGGCCCAGCG
2464





3927

TCTCGGGTCCCGGCCTCGCCCGGCGG
2556




AGC





4084

CATTCTGGCGGCGCCGCGGCTCGCG
2730





4228

CACCGGGCCGCCGCGTCCGGGCGCG
2838





4338
AKT4
CACATCCGCCTCCGCCGCCCGG
3160



















Targeted Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












3593
GAGGCTCCCGCGACGCTCACGCG
8





3594
AGGCTCCCGCGACGCTCACG
9





3595
GGCTCCCGCGACGCTCACGC
10





3596
GCTCCCGCGACGCTCACGCG
11





3597
CTCCCGCGACGCTCACGCGC
12





3598
TCCCGCGACGCTCACGCGCT
13





3599
CCCGCGACGCTCACGCGCTC
14





3600
CCGCGACGCTCACGCGCTCC
15





3601
CGCGACGCTCACGCGCTCCT
16





3602
GCGACGCTCACGCGCTCCTC
17





3603
CGACGCTCACGCGCTCCTCT
18





3604
GACGCTCACGCGCTCCTCTC
19





3605
ACGCTCACGCGCTCCTCTCA
20





3606
CGCTCACGCGCTCCTCTCAG
21





3607
GCTCACGCGCTCCTCTCAGG
22





3608
CTCACGCGCTCCTCTCAGGC
23





3609
TCACGCGCTCCTCTCAGGCT
24





3610
CACGCGCTCCTCTCAGGCTG
25





3611
ACGCGCTCCTCTCAGGCTGG
26





3612
CGCGCTCCTCTCAGGCTGGC
27





3613
GCGCTCCTCTCAGGCTGGCG
28





3614
CGCTCCTCTCAGGCTGGCGC
29





3615
GCTCCTCTCAGGCTGGCGCT
30





3616
CTCCTCTCAGGCTGGCGCTC
31





3617
TCCTCTCAGGCTGGCGCTCC
32





3618
CCTCTCAGGCTGGCGCTCCC
33





3619
CTCTCAGGCTGGCGCTCCCC
34





3620
TCTCAGGCTGGCGCTCCCCG
35





3621
CTCAGGCTGGCGCTCCCCGA
36





3622
TCAGGCTGGCGCTCCCCGAG
37





3623
CAGGCTGGCGCTCCCCGAGC
38





3624
AGGCTGGCGCTCCCCGAGCC
39





3625
GGCTGGCGCTCCCCGAGCCC
40





3626
GCTGGCGCTCCCCGAGCCCA
41





3627
CTGGCGCTCCCCGAGCCCAG
42





3628
TGGCGCTCCCCGAGCCCAGC
43





3629
GGCGCTCCCCGAGCCCAGCT
44





3630
GCGCTCCCCGAGCCCAGCTG
45





3631
CGCTCCCCGAGCCCAGCTGG
46





3632
GCTCCCCGAGCCCAGCTGGC
47





3633
CTCCCCGAGCCCAGCTGGCC
48





3634
TCCCCGAGCCCAGCTGGCCT
49





3635
CCCCGAGCCCAGCTGGCCTG
50





3636
CCCGAGCCCAGCTGGCCTGG
51





3637
CCGAGCCCAGCTGGCCTGGC
52





3638
CGAGCCCAGCTGGCCTGGCC
53





3639
CGAGGCTCCCGCGACGCTCA
7





3640
CCGAGGCTCCCGCGACGCTC
6





3641
CCCGAGGCTCCCGCGACGCT
5





3642
GCCCGAGGCTCCCGCGACGC
4





3643
TGCCCGAGGCTCCCGCGACG
3





3644
GTGCCCGAGGCTCCCGCGAC
2





3645
GGTGCCCGAGGCTCCCGCGA
1





3646
TACCGGGCGTCTCAGGTTTTGCC
843





3647
ACCGGGCGTCTCAGGTTTTG
844





3648
CCGGGCGTCTCAGGTTTTGC
845





3649
CGGGCGTCTCAGGTTTTGCC
846





3650
GGGCGTCTCAGGTTTTGCCA
847





3651
GGCGTCTCAGGTTTTGCCAG
848





3652
GCGTCTCAGGTTTTGCCAGG
849





3653
CGTCTCAGGTTTTGCCAGGC
850





3654
GTACCGGGCGTCTCAGGTTT
842





3655
TGTACCGGGCGTCTCAGGTT
841





3656
ATGTACCGGGCGTCTCAGGT
840





3657
CATGTACCGGGCGTCTCAGG
839





3658
ACATGTACCGGGCGTCTCAG
838





3659
AACATGTACCGGGCGTCTCA
837





3660
CAACATGTACCGGGCGTCTC
836





3661
CCAACATGTACCGGGCGTCT
835





3662
GCCAACATGTACCGGGCGTC
834





3663
GGCCAACATGTACCGGGCGT
833





3664
TGGCCAACATGTACCGGGCG
832





3665
TTGGCCAACATGTACCGGGC
831





3666
TTTGGCCAACATGTACCGGG
830





3667
ATTTGGCCAACATGTACCGG
829





3668
CATTTGGCCAACATGTACCG
828





3669
TCCGAGCCGCGCACGCCTCAGGC
1562





3670
CCGAGCCGCGCACGCCTCAG
1563





3671
CGAGCCGCGCACGCCTCAGG
1564





3672
GAGCCGCGCACGCCTCAGGC
1565





3673
AGCCGCGCACGCCTCAGGCA
1566





3674
GCCGCGCACGCCTCAGGCAC
1567





3675
CCGCGCACGCCTCAGGCACA
1568





3676
CGCGCACGCCTCAGGCACAG
1569





3677
GCGCACGCCTCAGGCACAGG
1570





3678
CGCACGCCTCAGGCACAGGG
1571





3679
GCACGCCTCAGGCACAGGGG
1572





3680
CACGCCTCAGGCACAGGGGG
1573





3681
ACGCCTCAGGCACAGGGGGC
1574





3682
CGCCTCAGGCACAGGGGGCT
1575





3683
CTCCGAGCCGCGCACGCCTC
1561





3684
GCTCCGAGCCGCGCACGCCT
1560





3685
GGCTCCGAGCCGCGCACGCC
1559





3686
GGGCTCCGAGCCGCGCACGC
1558





3687
AGGGCTCCGAGCCGCGCACG
1557





3688
CAGGGCTCCGAGCCGCGCAC
1556





3689
GCAGGGCTCCGAGCCGCGCA
1555





3690
GGCAGGGCTCCGAGCCGCGC
1554





3691
GGGCAGGGCTCCGAGCCGCG
1553





3692
AGGGCAGGGCTCCGAGCCGC
1552





3693
GAGGGCAGGGCTCCGAGCCG
1551





3694
CGAGGGCAGGGCTCCGAGCC
1550





3695
CCGAGGGCAGGGCTCCGAGC
1549





3696
TCCGAGGGCAGGGCTCCGAG
1548





3697
CTCCGAGGGCAGGGCTCCGA
1547





3698
ACTCCGAGGGCAGGGCTCCG
1546





3699
GACTCCGAGGGCAGGGCTCC
1545





3700
GGACTCCGAGGGCAGGGCTC
1544





3701
AGGACTCCGAGGGCAGGGCT
1543





3702
CAGGACTCCGAGGGCAGGGC
1542





3703
CACCAACGGACTCCGTCCGCCC
2010





3704
ACCAACGGACTCCGTCCGCC
2011





3705
CCAACGGACTCCGTCCGCCC
2012





3706
CAACGGACTCCGTCCGCCCT
2013





3707
AACGGACTCCGTCCGCCCTT
2014





3708
ACGGACTCCGTCCGCCCTTC
2015





3709
CGGACTCCGTCCGCCCTTCG
2016





3710
GGACTCCGTCCGCCCTTCGC
2017





3711
GACTCCGTCCGCCCTTCGCT
2018





3712
ACTCCGTCCGCCCTTCGCTC
2019





3713
CTCCGTCCGCCCTTCGCTCG
2020





3714
TCCGTCCGCCCTTCGCTCGG
2021





3715
CCGTCCGCCCTTCGCTCGGA
2022





3716
CGTCCGCCCTTCGCTCGGAT
2023





3717
GTCCGCCCTTCGCTCGGATG
2024





3718
TCCGCCCTTCGCTCGGATGA
2025





3719
CCGCCCTTCGCTCGGATGAG
2026





3720
CGCCCTTCGCTCGGATGAGG
2027





3721
GCCCTTCGCTCGGATGAGGG
2028





3722
CCCTTCGCTCGGATGAGGGA
2029





3723
CCTTCGCTCGGATGAGGGAC
2030





3724
CTTCGCTCGGATGAGGGACT
2031





3725
TTCGCTCGGATGAGGGACTC
2032





3726
TCGCTCGGATGAGGGACTCA
2033





3727
CGCTCGGATGAGGGACTCAA
2034





3728
GCTCGGATGAGGGACTCAAA
2035





3729
CTCGGATGAGGGACTCAAAG
2036





3730
TCGGATGAGGGACTCAAAGC
2037





3731
CCACCAACGGACTCCGTCCG
2009





3732
CCCACCAACGGACTCCGTCC
2008





3733
CCCCACCAACGGACTCCGTC
2007





3734
CCCCCACCAACGGACTCCGT
2006





3735
ACCCCCACCAACGGACTCCG
2005





3736
GACCCCCACCAACGGACTCC
2004





3737
GGACCCCCACCAACGGACTC
2003





3738
CGGACCCCCACCAACGGACT
2002





3739
CCGGACCCCCACCAACGGAC
2001





3740
ACCGGACCCCCACCAACGGA
2000





3741
AACCGGACCCCCACCAACGG
1999





3742
CAACCGGACCCCCACCAACG
1998





3743
GCAACCGGACCCCCACCAAC
1997





3744
GGCAACCGGACCCCCACCAA
1996





3745
AGGCAACCGGACCCCCACCA
1995





3746
GAGGCAACCGGACCCCCACC
1994





3747
AGAGGCAACCGGACCCCCAC
1993





3748
GAGAGGCAACCGGACCCCCA
1992





3749
GGAGAGGCAACCGGACCCCC
1991





3750
GGGAGAGGCAACCGGACCCC
1990





3751
CGGGAGAGGCAACCGGACCC
1989





3752
CCGGGAGAGGCAACCGGACC
1988





3753
CCCGGGAGAGGCAACCGGAC
1987





3754
TCCCGGGAGAGGCAACCGGA
1986





3755
CTCCCGGGAGAGGCAACCGG
1985





3756
GCTCCCGGGAGAGGCAACCG
1984





3757
AGCTCCCGGGAGAGGCAACC
1983





3758
CAGCTCCCGGGAGAGGCAAC
1982





3759
ACAGCTCCCGGGAGAGGCAA
1981





3760
CACAGCTCCCGGGAGAGGCA
1980





3761
ACACAGCTCCCGGGAGAGGC
1979





3762
TACACAGCTCCCGGGAGAGG
1978





3763
CTACACAGCTCCCGGGAGAG
1977





3764
TCTACACAGCTCCCGGGAGA
1976





3765
GTCTACACAGCTCCCGGGAG
1975





3766
AGTCTACACAGCTCCCGGGA
1974





3767
AAGTCTACACAGCTCCCGGG
1973





3768
GAAGTCTACACAGCTCCCGG
1972





3769
AGAAGTCTACACAGCTCCCG
1971





3770
CCGCCGGCTGCCTCGCTGGCCCAGCG
2464





3771
CGCCGGCTGCCTCGCTGGCC
2465





3772
GCCGGCTGCCTCGCTGGCCC
2466





3773
CCGGCTGCCTCGCTGGCCCA
2467





3774
CGGCTGCCTCGCTGGCCCAG
2468





3775
GGCTGCCTCGCTGGCCCAGC
2469





3776
GCTGCCTCGCTGGCCCAGCG
2470





3777
CTGCCTCGCTGGCCCAGCGC
2471





3778
TGCCTCGCTGGCCCAGCGCC
2472





3779
GCCTCGCTGGCCCAGCGCCC
2473





3780
CCTCGCTGGCCCAGCGCCCG
2474





3781
CTCGCTGGCCCAGCGCCCGG
2475





3782
TCGCTGGCCCAGCGCCCGGG
2476





3783
CGCTGGCCCAGCGCCCGGGG
2477





3784
GCTGGCCCAGCGCCCGGGGA
2478





3785
CTGGCCCAGCGCCCGGGGAG
2479





3786
TGGCCCAGCGCCCGGGGAGC
2480





3787
GGCCCAGCGCCCGGGGAGCC
2481





3788
GCCCAGCGCCCGGGGAGCCC
2482





3789
CCCAGCGCCCGGGGAGCCCC
2483





3790
CCAGCGCCCGGGGAGCCCCA
2484





3791
CAGCGCCCGGGGAGCCCCAC
2485





3792
AGCGCCCGGGGAGCCCCACG
2486





3793
GCGCCCGGGGAGCCCCACGG
2487





3794
CGCCCGGGGAGCCCCACGGC
2488





3795
GCCCGGGGAGCCCCACGGCC
2489





3796
CCCGGGGAGCCCCACGGCCC
2490





3797
CCGGGGAGCCCCACGGCCCG
2491





3798
CGGGGAGCCCCACGGCCCGC
2492





3799
GGGGAGCCCCACGGCCCGCA
2493





3800
GGGAGCCCCACGGCCCGCAG
2494





3801
GGAGCCCCACGGCCCGCAGG
2495





3802
GAGCCCCACGGCCCGCAGGG
2496





3803
AGCCCCACGGCCCGCAGGGG
2497





3804
GCCCCACGGCCCGCAGGGGC
2498





3805
CCCCACGGCCCGCAGGGGCA
2499





3806
CCCACGGCCCGCAGGGGCAC
2500





3807
CCACGGCCCGCAGGGGCACC
2501





3808
CACGGCCCGCAGGGGCACCC
2502





3809
ACGGCCCGCAGGGGCACCCC
2503





3810
CGGCCCGCAGGGGCACCCCG
2504





3811
GGCCCGCAGGGGCACCCCGA
2505





3812
GCCCGCAGGGGCACCCCGAG
2506





3813
CCCGCAGGGGCACCCCGAGC
2507





3814
CCGCAGGGGCACCCCGAGCC
2508





3815
CGCAGGGGCACCCCGAGCCC
2509





3816
GCAGGGGCACCCCGAGCCCC
2510





3817
CAGGGGCACCCCGAGCCCCA
2511





3818
AGGGGCACCCCGAGCCCCAG
2512





3819
GGGGCACCCCGAGCCCCAGC
2513





3820
GGGCACCCCGAGCCCCAGCT
2514





3821
GGCACCCCGAGCCCCAGCTC
2515





3822
GCACCCCGAGCCCCAGCTCC
2516





3823
CACCCCGAGCCCCAGCTCCA
2517





3824
ACCCCGAGCCCCAGCTCCAG
2518





3825
CCCCGAGCCCCAGCTCCAGG
2519





3826
CCCGAGCCCCAGCTCCAGGC
2520





3827
CCGAGCCCCAGCTCCAGGCC
2521





3828
CGAGCCCCAGCTCCAGGCCC
2522





3829
GAGCCCCAGCTCCAGGCCCG
2523





3830
AGCCCCAGCTCCAGGCCCGG
2524





3831
GCCCCAGCTCCAGGCCCGGC
2525





3832
CCCCAGCTCCAGGCCCGGCG
2526





3833
CCCAGCTCCAGGCCCGGCGG
2527





3834
CCAGCTCCAGGCCCGGCGGC
2528





3835
CAGCTCCAGGCCCGGCGGCG
2529





3836
AGCTCCAGGCCCGGCGGCGT
2530





3837
GCTCCAGGCCCGGCGGCGTC
2531





3838
CTCCAGGCCCGGCGGCGTCC
2532





3839
TCCAGGCCCGGCGGCGTCCC
2533





3840
CCAGGCCCGGCGGCGTCCCT
2534





3841
CAGGCCCGGCGGCGTCCCTT
2535





3842
AGGCCCGGCGGCGTCCCTTC
2536





3843
GGCCCGGCGGCGTCCCTTCT
2537





3844
GCCCGGCGGCGTCCCTTCTC
2538





3845
CCCGGCGGCGTCCCTTCTCT
2539





3846
CCGGCGGCGTCCCTTCTCTC
2540





3847
CGGCGGCGTCCCTTCTCTCG
2541





3848
GGCGGCGTCCCTTCTCTCGG
2542





3849
GCGGCGTCCCTTCTCTCGGG
2543





3850
CGGCGTCCCTTCTCTCGGGT
2544





3851
GGCGTCCCTTCTCTCGGGTC
2545





3852
GCGTCCCTTCTCTCGGGTCC
2546





3853
CGTCCCTTCTCTCGGGTCCC
2547





3854
GTCCCTTCTCTCGGGTCCCG
2548





3855
TCCCTTCTCTCGGGTCCCGG
2549





3856
CCCTTCTCTCGGGTCCCGGC
2550





3857
CCTTCTCTCGGGTCCCGGCC
2551





3858
CTTCTCTCGGGTCCCGGCCT
2552





3859
TTCTCTCGGGTCCCGGCCTC
2553





3860
TCTCTCGGGTCCCGGCCTCG
2554





3861
CTCTCGGGTCCCGGCCTCGC
2555





3862
TCTCGGGTCCCGGCCTCGCC
2556





3863
CTCGGGTCCCGGCCTCGCCC
2557





3864
TCGGGTCCCGGCCTCGCCCG
2558





3865
CGGGTCCCGGCCTCGCCCGG
2559





3866
GGGTCCCGGCCTCGCCCGGC
2560





3867
GGTCCCGGCCTCGCCCGGCG
2561





3868
GTCCCGGCCTCGCCCGGCGG
2562





3869
TCCCGGCCTCGCCCGGCGGA
2563





3870
CCCGGCCTCGCCCGGCGGAG
2564





3871
CCGGCCTCGCCCGGCGGAGC
2565





3872
CGGCCTCGCCCGGCGGAGCG
2566





3873
GGCCTCGCCCGGCGGAGCGG
2567





3874
GCCTCGCCCGGCGGAGCGGC
2568





3875
CCTCGCCCGGCGGAGCGGCC
2569





3876
CTCGCCCGGCGGAGCGGCCT
2570





3877
TCGCCCGGCGGAGCGGCCTC
2571





3878
CGCCCGGCGGAGCGGCCTCC
2572





3879
GCCCGGCGGAGCGGCCTCCC
2573





3880
CCCGGCGGAGCGGCCTCCCC
2574





3881
CCGGCGGAGCGGCCTCCCCA
2575





3882
CGGCGGAGCGGCCTCCCCAA
2576





3883
GGCGGAGCGGCCTCCCCAAG
2577





3884
GCGGAGCGGCCTCCCCAAGG
2578





3885
CGGAGCGGCCTCCCCAAGGT
2579





3886
GGAGCGGCCTCCCCAAGGTC
2580





3887
GAGCGGCCTCCCCAAGGTCA
2581





3888
AGCGGCCTCCCCAAGGTCAT
2582





3889
GCGGCCTCCCCAAGGTCATG
2583





3890
CGGCCTCCCCAAGGTCATGA
2584





3891
TCCGCCGGCTGCCTCGCTGG
2463





3892
CTCCGCCGGCTGCCTCGCTG
2462





3893
CCTCCGCCGGCTGCCTCGCT
2461





3894
ACCTCCGCCGGCTGCCTCGC
2460





3895
CACCTCCGCCGGCTGCCTCG
2459





3896
GCACCTCCGCCGGCTGCCTC
2458





3897
GGCACCTCCGCCGGCTGCCT
2457





3898
GGGCACCTCCGCCGGCTGCC
2456





3899
GGGGCACCTCCGCCGGCTGC
2455





3900
CGGGGCACCTCCGCCGGCTG
2454





3901
CCGGGGCACCTCCGCCGGCT
2453





3902
CCCGGGGCACCTCCGCCGGC
2452





3903
CCCCGGGGCACCTCCGCCGG
2451





3904
ACCCCGGGGCACCTCCGCCG
2450





3905
AACCCCGGGGCACCTCCGCC
2449





3906
CAACCCCGGGGCACCTCCGC
2448





3907
CCAACCCCGGGGCACCTCCG
2447





3908
TCCAACCCCGGGGCACCTCC
2446





3909
CTCCAACCCCGGGGCACCTC
2445





3910
TCTCCAACCCCGGGGCACCT
2444





3911
TTCTCCAACCCCGGGGCACC
2443





3912
TTTCTCCAACCCCGGGGCAC
2442





3913
CTTTCTCCAACCCCGGGGCA
2441





3914
TCTTTCTCCAACCCCGGGGC
2440





3915
GTCTTTCTCCAACCCCGGGG
2439





3916
AGTCTTTCTCCAACCCCGGG
2438





3917
GAGTCTTTCTCCAACCCCGG
2437





3918
CGAGTCTTTCTCCAACCCCG
2436





3919
GCGAGTCTTTCTCCAACCCC
2435





3920
GGCGAGTCTTTCTCCAACCC
2434





3921
CGGCGAGTCTTTCTCCAACC
2433





3922
GCGGCGAGTCTTTCTCCAAC
2432





3923
CGCGGCGAGTCTTTCTCCAA
2431





3924
CCGCGGCGAGTCTTTCTCCA
2430





3925
GCCGCGGCGAGTCTTTCTCC
2429





3926
GGCCGCGGCGAGTCTTTCTC
2428





3927
TCTCGGGTCCCGGCCTCGCCCGGCGGAGC
2556





3928
CTCGGGTCCCGGCCTCGCCC
2557





3929
TCGGGTCCCGGCCTCGCCCG
2558





3930
CGGGTCCCGGCCTCGCCCGG
2559





3931
GGGTCCCGGCCTCGCCCGGC
2560





3932
GGTCCCGGCCTCGCCCGGCG
2561





3933
GTCCCGGCCTCGCCCGGCGG
2562





3934
TCCCGGCCTCGCCCGGCGGA
2563





3935
CCCGGCCTCGCCCGGCGGAG
2564





3936
CCGGCCTCGCCCGGCGGAGC
2565





3937
CGGCCTCGCCCGGCGGAGCG
2566





3938
GGCCTCGCCCGGCGGAGCGG
2567





3939
GCCTCGCCCGGCGGAGCGGC
2568





3940
CCTCGCCCGGCGGAGCGGCC
2569





3941
CTCGCCCGGCGGAGCGGCCT
2570





3942
TCGCCCGGCGGAGCGGCCTC
2571





3943
CGCCCGGCGGAGCGGCCTCC
2572





3944
GCCCGGCGGAGCGGCCTCCC
2573





3945
CCCGGCGGAGCGGCCTCCCC
2574





3946
CCGGCGGAGCGGCCTCCCCA
2575





3947
CGGCGGAGCGGCCTCCCCAA
2576





3948
GGCGGAGCGGCCTCCCCAAG
2577





3949
GCGGAGCGGCCTCCCCAAGG
2578





3950
CGGAGCGGCCTCCCCAAGGT
2579





3951
GGAGCGGCCTCCCCAAGGTC
2580





3952
GAGCGGCCTCCCCAAGGTCA
2581





3953
AGCGGCCTCCCCAAGGTCAT
2582





3954
GCGGCCTCCCCAAGGTCATG
2583





3955
CGGCCTCCCCAAGGTCATGA
2584





3956
CTCTCGGGTCCCGGCCTCGC
2555





3957
TCTCTCGGGTCCCGGCCTCG
2554





3958
TTCTCTCGGGTCCCGGCCTC
2553





3959
CTTCTCTCGGGTCCCGGCCT
2552





3960
CCTTCTCTCGGGTCCCGGCC
2551





3961
CCCTTCTCTCGGGTCCCGGC
2550





3962
TCCCTTCTCTCGGGTCCCGG
2549





3963
GTCCCTTCTCTCGGGTCCCG
2548





3964
CGTCCCTTCTCTCGGGTCCC
2547





3965
GCGTCCCTTCTCTCGGGTCC
2546





3966
GGCGTCCCTTCTCTCGGGTC
2545





3967
CGGCGTCCCTTCTCTCGGGT
2544





3968
GCGGCGTCCCTTCTCTCGGG
2543





3969
GGCGGCGTCCCTTCTCTCGG
2542





3970
CGGCGGCGTCCCTTCTCTCG
2541





3971
CCGGCGGCGTCCCTTCTCTC
2540





3972
CCCGGCGGCGTCCCTTCTCT
2539





3973
GCCCGGCGGCGTCCCTTCTC
2538





3974
GGCCCGGCGGCGTCCCTTCT
2537





3975
AGGCCCGGCGGCGTCCCTTC
2536





3976
CAGGCCCGGCGGCGTCCCTT
2535





3977
CCAGGCCCGGCGGCGTCCCT
2534





3978
TCCAGGCCCGGCGGCGTCCC
2533





3979
CTCCAGGCCCGGCGGCGTCC
2532





3980
GCTCCAGGCCCGGCGGCGTC
2531





3981
AGCTCCAGGCCCGGCGGCGT
2530





3982
CAGCTCCAGGCCCGGCGGCG
2529





3983
CCAGCTCCAGGCCCGGCGGC
2528





3984
CCCAGCTCCAGGCCCGGCGG
2527





3985
CCCCAGCTCCAGGCCCGGCG
2526





3986
GCCCCAGCTCCAGGCCCGGC
2525





3987
AGCCCCAGCTCCAGGCCCGG
2524





3988
GAGCCCCAGCTCCAGGCCCG
2523





3989
CGAGCCCCAGCTCCAGGCCC
2522





3990
CCGAGCCCCAGCTCCAGGCC
2521





3991
CCCGAGCCCCAGCTCCAGGC
2520





3992
CCCCGAGCCCCAGCTCCAGG
2519





3993
ACCCCGAGCCCCAGCTCCAG
2518





3994
CACCCCGAGCCCCAGCTCCA
2517





3995
GCACCCCGAGCCCCAGCTCC
2516





3996
GGCACCCCGAGCCCCAGCTC
2515





3997
GGGCACCCCGAGCCCCAGCT
2514





3998
GGGGCACCCCGAGCCCCAGC
2513





3999
AGGGGCACCCCGAGCCCCAG
2512





4000
CAGGGGCACCCCGAGCCCCA
2511





4001
GCAGGGGCACCCCGAGCCCC
2510





4002
CGCAGGGGCACCCCGAGCCC
2509





4003
CCGCAGGGGCACCCCGAGCC
2508





4004
CCCGCAGGGGCACCCCGAGC
2507





4005
GCCCGCAGGGGCACCCCGAG
2506





4006
GGCCCGCAGGGGCACCCCGA
2505





4007
CGGCCCGCAGGGGCACCCCG
2504





4008
ACGGCCCGCAGGGGCACCCC
2503





4009
CACGGCCCGCAGGGGCACCC
2502





4010
CCACGGCCCGCAGGGGCACC
2501





4011
CCCACGGCCCGCAGGGGCAC
2500





4012
CCCCACGGCCCGCAGGGGCA
2499





4013
GCCCCACGGCCCGCAGGGGC
2498





4014
AGCCCCACGGCCCGCAGGGG
2497





4015
GAGCCCCACGGCCCGCAGGG
2496





4016
GGAGCCCCACGGCCCGCAGG
2495





4017
GGGAGCCCCACGGCCCGCAG
2494





4018
GGGGAGCCCCACGGCCCGCA
2493





4019
CGGGGAGCCCCACGGCCCGC
2492





4020
CCGGGGAGCCCCACGGCCCG
2491





4021
CCCGGGGAGCCCCACGGCCC
2490





4022
GCCCGGGGAGCCCCACGGCC
2489





4023
CGCCCGGGGAGCCCCACGGC
2488





4024
GCGCCCGGGGAGCCCCACGG
2487





4025
AGCGCCCGGGGAGCCCCACG
2486





4026
CAGCGCCCGGGGAGCCCCAC
2485





4027
CCAGCGCCCGGGGAGCCCCA
2484





4028
CCCAGCGCCCGGGGAGCCCC
2483





4029
GCCCAGCGCCCGGGGAGCCC
2482





4030
GGCCCAGCGCCCGGGGAGCC
2481





4031
TGGCCCAGCGCCCGGGGAGC
2480





4032
CTGGCCCAGCGCCCGGGGAG
2479





4033
GCTGGCCCAGCGCCCGGGGA
2478





4034
CGCTGGCCCAGCGCCCGGGG
2477





4035
TCGCTGGCCCAGCGCCCGGG
2476





4036
CTCGCTGGCCCAGCGCCCGG
2475





4037
CCTCGCTGGCCCAGCGCCCG
2474





4038
GCCTCGCTGGCCCAGCGCCC
2473





4039
TGCCTCGCTGGCCCAGCGCC
2472





4040
CTGCCTCGCTGGCCCAGCGC
2471





4041
GCTGCCTCGCTGGCCCAGCG
2470





4042
GGCTGCCTCGCTGGCCCAGC
2469





4043
CGGCTGCCTCGCTGGCCCAG
2468





4044
CCGGCTGCCTCGCTGGCCCA
2467





4045
GCCGGCTGCCTCGCTGGCCC
2466





4046
CGCCGGCTGCCTCGCTGGCC
2465





4047
CCGCCGGCTGCCTCGCTGGC
2464





4048
TCCGCCGGCTGCCTCGCTGG
2463





4049
CTCCGCCGGCTGCCTCGCTG
2462





4050
CCTCCGCCGGCTGCCTCGCT
2461





4051
ACCTCCGCCGGCTGCCTCGC
2460





4052
CACCTCCGCCGGCTGCCTCG
2459





4053
GCACCTCCGCCGGCTGCCTC
2458





4054
GGCACCTCCGCCGGCTGCCT
2457





4055
GGGCACCTCCGCCGGCTGCC
2456





4056
GGGGCACCTCCGCCGGCTGC
2455





4057
CGGGGCACCTCCGCCGGCTG
2454





4058
CCGGGGCACCTCCGCCGGCT
2453





4059
CCCGGGGCACCTCCGCCGGC
2452





4060
CCCCGGGGCACCTCCGCCGG
2451





4061
ACCCCGGGGCACCTCCGCCG
2450





4062
AACCCCGGGGCACCTCCGCC
2449





4063
CAACCCCGGGGCACCTCCGC
2448





4064
CCAACCCCGGGGCACCTCCG
2447





4065
TCCAACCCCGGGGCACCTCC
2446





4066
CTCCAACCCCGGGGCACCTC
2445





4067
TCTCCAACCCCGGGGCACCT
2444





4068
TTCTCCAACCCCGGGGCACC
2443





4069
TTTCTCCAACCCCGGGGCAC
2442





4070
CTTTCTCCAACCCCGGGGCA
2441





4071
TCTTTCTCCAACCCCGGGGC
2440





4072
GTCTTTCTCCAACCCCGGGG
2439





4073
AGTCTTTCTCCAACCCCGGG
2438





4074
GAGTCTTTCTCCAACCCCGG
2437





4075
CGAGTCTTTCTCCAACCCCG
2436





4076
GCGAGTCTTTCTCCAACCCC
2435





4077
GGCGAGTCTTTCTCCAACCC
2434





4078
CGGCGAGTCTTTCTCCAACC
2433





4079
GCGGCGAGTCTTTCTCCAAC
2432





4080
CGCGGCGAGTCTTTCTCCAA
2431





4081
CCGCGGCGAGTCTTTCTCCA
2430





4082
GCCGCGGCGAGTCTTTCTCC
2429





4083
GGCCGCGGCGAGTCTTTCTC
2428





4084
CATTCTGGCGGCGCCGCGGCTCGCG
2730





4085
ATTCTGGCGGCGCCGCGGCT
2731





4086
TTCTGGCGGCGCCGCGGCTC
2732





4087
TCTGGCGGCGCCGCGGCTCG
2733





4088
CTGGCGGCGCCGCGGCTCGC
2734





4089
TGGCGGCGCCGCGGCTCGCG
2735





4090
GGCGGCGCCGCGGCTCGCGC
2736





4091
GCGGCGCCGCGGCTCGCGCC
2737





4092
CGGCGCCGCGGCTCGCGCCC
2738





4093
GGCGCCGCGGCTCGCGCCCC
2739





4094
GCGCCGCGGCTCGCGCCCCG
2740





4095
CGCCGCGGCTCGCGCCCCGG
2741





4096
GCCGCGGCTCGCGCCCCGGC
2742





4097
CCGCGGCTCGCGCCCCGGCC
2743





4098
CGCGGCTCGCGCCCCGGCCC
2744





4099
GCGGCTCGCGCCCCGGCCCG
2745





4100
CGGCTCGCGCCCCGGCCCGA
2746





4101
GGCTCGCGCCCCGGCCCGAC
2747





4102
GCTCGCGCCCCGGCCCGACC
2748





4103
CCATTCTGGCGGCGCCGCGG
2729





4104
TCCATTCTGGCGGCGCCGCG
2728





4105
CTCCATTCTGGCGGCGCCGC
2727





4106
CCTCCATTCTGGCGGCGCCG
2726





4107
TCCTCCATTCTGGCGGCGCC
2725





4108
CTCCTCCATTCTGGCGGCGC
2724





4109
GCTCCTCCATTCTGGCGGCG
2723





4110
CGCTCCTCCATTCTGGCGGC
2722





4111
CCGCTCCTCCATTCTGGCGG
2721





4112
CCCGCTCCTCCATTCTGGCG
2720





4113
TCCCGCTCCTCCATTCTGGC
2719





4114
CTCCCGCTCCTCCATTCTGG
2718





4115
GCTCCCGCTCCTCCATTCTG
2717





4116
TGCTCCCGCTCCTCCATTCT
2716





4117
CTGCTCCCGCTCCTCCATTC
2715





4118
CCTGCTCCCGCTCCTCCATT
2714





4119
TCCTGCTCCCGCTCCTCCAT
2713





4120
TTCCTGCTCCCGCTCCTCCA
2712





4121
CTTCCTGCTCCCGCTCCTCC
2711





4122
ACTTCCTGCTCCCGCTCCTC
2710





4123
CACTTCCTGCTCCCGCTCCT
2709





4124
CCACTTCCTGCTCCCGCTCC
2708





4125
GCCACTTCCTGCTCCCGCTC
2707





4126
GGCCACTTCCTGCTCCCGCT
2706





4127
CGGCCACTTCCTGCTCCCGC
2705





4128
TCGGCCACTTCCTGCTCCCG
2704





4129
CTCGGCCACTTCCTGCTCCC
2703





4130
GCTCGGCCACTTCCTGCTCC
2702





4131
CGCTCGGCCACTTCCTGCTC
2701





4132
CCGCTCGGCCACTTCCTGCT
2700





4133
CCCGCTCGGCCACTTCCTGC
2699





4134
GCCCGCTCGGCCACTTCCTG
2698





4135
GGCCCGCTCGGCCACTTCCT
2697





4136
AGGCCCGCTCGGCCACTTCC
2696





4137
CAGGCCCGCTCGGCCACTTC
2695





4138
CCAGGCCCGCTCGGCCACTT
2694





4139
CCCAGGCCCGCTCGGCCACT
2693





4140
GCCCAGGCCCGCTCGGCCAC
2692





4141
CGCCCAGGCCCGCTCGGCCA
2691





4142
CCGCCCAGGCCCGCTCGGCC
2690





4143
CCCGCCCAGGCCCGCTCGGC
2689





4144
CCCCGCCCAGGCCCGCTCGG
2688





4145
TCCCCGCCCAGGCCCGCTCG
2687





4146
CTCCCCGCCCAGGCCCGCTC
2686





4147
CCTCCCCGCCCAGGCCCGCT
2685





4148
CCCTCCCCGCCCAGGCCCGC
2684





4149
GCCCTCCCCGCCCAGGCCCG
2683





4150
CGCCCTCCCCGCCCAGGCCC
2682





4151
GCGCCCTCCCCGCCCAGGCC
2681





4152
CGCGCCCTCCCCGCCCAGGC
2680





4153
CCGCGCCCTCCCCGCCCAGG
2679





4154
CCCGCGCCCTCCCCGCCCAG
2678





4155
CCCCGCGCCCTCCCCGCCCA
2677





4156
GCCCCGCGCCCTCCCCGCCC
2676





4157
CGCCCCGCGCCCTCCCCGCC
2675





4158
GCGCCCCGCGCCCTCCCCGC
2674





4159
CGCGCCCCGCGCCCTCCCCG
2673





4160
GCGCGCCCCGCGCCCTCCCC
2672





4161
CGCGCGCCCCGCGCCCTCCC
2671





4162
CCGCGCGCCCCGCGCCCTCC
2670





4163
CCCGCGCGCCCCGCGCCCTC
2669





4164
GCCCGCGCGCCCCGCGCCCT
2668





4165
GGCCCGCGCGCCCCGCGCCC
2667





4166
GGGCCCGCGCGCCCCGCGCC
2666





4167
CGGGCCCGCGCGCCCCGCGC
2665





4168
CCGGGCCCGCGCGCCCCGCG
2664





4169
GCCGGGCCCGCGCGCCCCGC
2663





4170
GGCCGGGCCCGCGCGCCCCG
2662





4171
TGGCCGGGCCCGCGCGCCCC
2661





4172
TTGGCCGGGCCCGCGCGCCC
2660





4173
CTTGGCCGGGCCCGCGCGCC
2659





4174
CCTTGGCCGGGCCCGCGCGC
2658





4175
CCCTTGGCCGGGCCCGCGCG
2657





4176
TCCCTTGGCCGGGCCCGCGC
2656





4177
CTCCCTTGGCCGGGCCCGCG
2655





4178
CCTCCCTTGGCCGGGCCCGC
2654





4179
CCCTCCCTTGGCCGGGCCCG
2653





4180
GCCCTCCCTTGGCCGGGCCC
2652





4181
CGCCCTCCCTTGGCCGGGCC
2651





4182
CCGCCCTCCCTTGGCCGGGC
2650





4183
GCCGCCCTCCCTTGGCCGGG
2649





4184
GGCCGCCCTCCCTTGGCCGG
2648





4185
GGGCCGCCCTCCCTTGGCCG
2647





4186
GGGGCCGCCCTCCCTTGGCC
2646





4187
TGGGGCCGCCCTCCCTTGGC
2645





4188
GTGGGGCCGCCCTCCCTTGG
2644





4189
CGTGGGGCCGCCCTCCCTTG
2643





4190
GCGTGGGGCCGCCCTCCCTT
2642





4191
GGCGTGGGGCCGCCCTCCCT
2641





4192
CGGCGTGGGGCCGCCCTCCC
2640





4193
CCGGCGTGGGGCCGCCCTCC
2639





4194
CCCGGCGTGGGGCCGCCCTC
2638





4195
GCCCGGCGTGGGGCCGCCCT
2637





4196
CGCCCGGCGTGGGGCCGCCC
2636





4197
GCGCCCGGCGTGGGGCCGCC
2635





4198
GGCGCCCGGCGTGGGGCCGC
2634





4199
CGGCGCCCGGCGTGGGGCCG
2633





4200
CCGGCGCCCGGCGTGGGGCC
2632





4201
CCCGGCGCCCGGCGTGGGGC
2631





4202
CCCCGGCGCCCGGCGTGGGG
2630





4203
CCCCCGGCGCCCGGCGTGGG
2629





4204
ACCCCCGGCGCCCGGCGTGG
2628





4205
CACCCCCGGCGCCCGGCGTG
2627





4206
GCACCCCCGGCGCCCGGCGT
2626





4207
TGCACCCCCGGCGCCCGGCG
2625





4208
CTGCACCCCCGGCGCCCGGC
2624





4209
CCTGCACCCCCGGCGCCCGG
2623





4210
GCCTGCACCCCCGGCGCCCG
2622





4211
AGCCTGCACCCCCGGCGCCC
2621





4212
CAGCCTGCACCCCCGGCGCC
2620





4213
GCAGCCTGCACCCCCGGCGC
2619





4214
GGCAGCCTGCACCCCCGGCG
2618





4215
CGGCAGCCTGCACCCCCGGC
2617





4216
CCGGCAGCCTGCACCCCCGG
2616





4217
GCCGGCAGCCTGCACCCCCG
2615





4218
GGCCGGCAGCCTGCACCCCC
2614





4219
GGGCCGGCAGCCTGCACCCC
2613





4220
GGGGCCGGCAGCCTGCACCC
2612





4221
TGGGGCCGGCAGCCTGCACC
2611





4222
CTGGGGCCGGCAGCCTGCAC
2610





4223
GCTGGGGCCGGCAGCCTGCA
2609





4224
GGCTGGGGCCGGCAGCCTGC
2608





4225
AGGCTGGGGCCGGCAGCCTG
2607





4226
GAGGCTGGGGCCGGCAGCCT
2606





4227
GGAGGCTGGGGCCGGCAGCC
2605





4228
CACCGGGCCGCCGCGTCCGGGCGCG
2838





4229
ACCGGGCCGCCGCGTCCGGG
2839





4230
CCGGGCCGCCGCGTCCGGGC
2840





4231
CGGGCCGCCGCGTCCGGGCG
2841





4232
GGGCCGCCGCGTCCGGGCGC
2842





4233
GGCCGCCGCGTCCGGGCGCG
2843





4234
GCCGCCGCGTCCGGGCGCGA
2844





4235
CCGCCGCGTCCGGGCGCGAG
2845





4236
CGCCGCGTCCGGGCGCGAGC
2846





4237
GCCGCGTCCGGGCGCGAGCG
2847





4238
CCGCGTCCGGGCGCGAGCGC
2848





4239
CGCGTCCGGGCGCGAGCGCG
2849





4240
GCGTCCGGGCGCGAGCGCGG
2850





4241
CGTCCGGGCGCGAGCGCGGG
2851





4242
GTCCGGGCGCGAGCGCGGGC
2852





4243
TCCGGGCGCGAGCGCGGGCC
2853





4244
CCGGGCGCGAGCGCGGGCCT
2854





4245
CGGGCGCGAGCGCGGGCCTA
2855





4246
GGGCGCGAGCGCGGGCCTAG
2856





4247
GGCGCGAGCGCGGGCCTAGC
2857





4248
GCGCGAGCGCGGGCCTAGCC
2858





4249
CGCGAGCGCGGGCCTAGCCG
2859





4250
GCGAGCGCGGGCCTAGCCGG
2860





4251
CGAGCGCGGGCCTAGCCGGG
2861





4252
GAGCGCGGGCCTAGCCGGGC
2862





4253
AGCGCGGGCCTAGCCGGGCC
2863





4254
GCGCGGGCCTAGCCGGGCCG
2864





4255
CGCGGGCCTAGCCGGGCCGC
2865





4256
GCGGGCCTAGCCGGGCCGCG
2866





4257
CGGGCCTAGCCGGGCCGCGG
2867





4258
GGGCCTAGCCGGGCCGCGGC
2868





4259
GGCCTAGCCGGGCCGCGGCC
2869





4260
GCCTAGCCGGGCCGCGGCCT
2870





4261
CCTAGCCGGGCCGCGGCCTC
2871





4262
CTAGCCGGGCCGCGGCCTCC
2872





4263
TAGCCGGGCCGCGGCCTCCG
2873





4264
AGCCGGGCCGCGGCCTCCGG
2874





4265
GCCGGGCCGCGGCCTCCGGC
2875





4266
CCGGGCCGCGGCCTCCGGCG
2876





4267
CGGGCCGCGGCCTCCGGCGC
2877





4268
GGGCCGCGGCCTCCGGCGCC
2878





4269
GGCCGCGGCCTCCGGCGCCC
2879





4270
GCCGCGGCCTCCGGCGCCCG
2880





4271
CCGCGGCCTCCGGCGCCCGC
2881





4272
CGCGGCCTCCGGCGCCCGCC
2882





4273
GCGGCCTCCGGCGCCCGCCG
2883





4274
CGGCCTCCGGCGCCCGCCGC
2884





4275
GGCCTCCGGCGCCCGCCGCT
2885





4276
GCCTCCGGCGCCCGCCGCTC
2886





4277
CCTCCGGCGCCCGCCGCTCC
2887





4278
CTCCGGCGCCCGCCGCTCCG
2888





4279
TCCGGCGCCCGCCGCTCCGC
2889





4280
CCGGCGCCCGCCGCTCCGCA
2890





4281
CGGCGCCCGCCGCTCCGCAT
2891





4282
GGCGCCCGCCGCTCCGCATC
2892





4283
GCGCCCGCCGCTCCGCATCC
2893





4284
CGCCCGCCGCTCCGCATCCC
2894





4285
GCCCGCCGCTCCGCATCCCC
2895





4286
CCCGCCGCTCCGCATCCCCG
2896





4287
CCGCCGCTCCGCATCCCCGC
2897





4288
CGCCGCTCCGCATCCCCGCG
2898





4289
GCCGCTCCGCATCCCCGCGG
2899





4290
CCGCTCCGCATCCCCGCGGG
2900





4291
CGCTCCGCATCCCCGCGGGC
2901





4292
GCTCCGCATCCCCGCGGGCC
2902





4293
CTCCGCATCCCCGCGGGCCG
2903





4294
TCCGCATCCCCGCGGGCCGG
2904





4295
CCGCATCCCCGCGGGCCGGC
2905





4296
CGCATCCCCGCGGGCCGGCG
2906





4297
GCATCCCCGCGGGCCGGCGC
2907





4298
CATCCCCGCGGGCCGGCGCT
2908





4299
ATCCCCGCGGGCCGGCGCTG
2909





4300
TCCCCGCGGGCCGGCGCTGG
2910





4301
CCCCGCGGGCCGGCGCTGGG
2911





4302
CCCGCGGGCCGGCGCTGGGC
2912





4303
CCGCGGGCCGGCGCTGGGCG
2913





4304
CGCGGGCCGGCGCTGGGCGG
2914





4305
GCGGGCCGGCGCTGGGCGGG
2915





4306
CGGGCCGGCGCTGGGCGGGG
2916





4307
GGGCCGGCGCTGGGCGGGGC
2917





4308
GGCCGGCGCTGGGCGGGGCC
2918





4309
GCCGGCGCTGGGCGGGGCCG
2919





4310
CCGGCGCTGGGCGGGGCCGG
2920





4311
CGGCGCTGGGCGGGGCCGGG
2921





4312
GGCGCTGGGCGGGGCCGGGC
2922





4313
GCGCTGGGCGGGGCCGGGCT
2923





4314
CGCTGGGCGGGGCCGGGCTG
2924





4315
GCTGGGCGGGGCCGGGCTGG
2925





4316
CTGGGCGGGGCCGGGCTGGA
2926





4317
TCACCGGGCCGCCGCGTCCG
2837





4318
CTCACCGGGCCGCCGCGTCC
2836





4319
ACTCACCGGGCCGCCGCGTC
2835





4320
GACTCACCGGGCCGCCGCGT
2834





4321
GGACTCACCGGGCCGCCGCG
2833





4322
GGGACTCACCGGGCCGCCGC
2832





4323
GGGGACTCACCGGGCCGCCG
2831





4324
CGGGGACTCACCGGGCCGCC
2830





4325
GCGGGGACTCACCGGGCCGC
2829





4326
GGCGGGGACTCACCGGGCCG
2828





4327
GGGCGGGGACTCACCGGGCC
2827





4328
CGGGCGGGGACTCACCGGGC
2826





4329
GCGGGCGGGGACTCACCGGG
2825





4330
GGCGGGCGGGGACTCACCGG
2824





4331
CGGCGGGCGGGGACTCACCG
2823





4332
ACGGCGGGCGGGGACTCACC
2822





4333
CACGGCGGGCGGGGACTCAC
2821





4334
CCACGGCGGGCGGGGACTCA
2820





4335
GCCACGGCGGGCGGGGACTC
2819





4336
GGCCACGGCGGGCGGGGACT
2818





4337
CGGCCACGGCGGGCGGGGAC
2817





4338
CACATCCGCCTCCGCCGCCCGG
3160



















Hot Zones (Relative upstream location to gene start site)







 1-350


 700-1100


1500-1650


1750-3650









Examples

In FIG. 33, In MCF7 (human mammary breast cell line), AKT4 (169) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The AKT sequence AKT4 (169) fits the independent and dependent DNAi motif claims.


The secondary structure for AKT4 (169) is shown in FIG. 34.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11965)







CGGCAGGACCGAGCGCGGCAGGCGGCTGGCCCAGCGCACGCAGCGCGGCC





CGAAGACGGGAGCAGGCGGCCGAGCACCGAGCGCTGGGCACCGGGCACCG





AGCGGCGGCGGCACGCGAGGCCCGGCCCCGAGCAGCGCCCCCGCCCGCCG





CGGCCTCCAGCCCGGCCCCGCCCAGCGCCGGCCCGCGGGGATGCGGAGCG





GCGGGCGCCGGAGGCCGCGGCCCGGCTAGGCCCGCGCTCGCGCCCGGACG





CGGCGGCCCGGTGAGTCCCCGCCCGCCGTGGCCGCCCGGGCCTGGATTTC





CTCCCCGCGGGCCGGGCCGCTTTGTTCGCGGCCGGTCGGGCCGGGGCGCG





AGCCGCGGCGCCGCCAGAATGGAGGAGCGGGAGCAGGAAGTGGCCGAGCG





GGCCTGGGCGGGGAGGGCGCGGGGCGCGCGGGCCCGGCCAAGGGAGGGCG





GCCCCACGCCGGGCGCCGGGGGTGCAGGCTGCCGGCCCCAGCCTCCCTCA





TGACCTTGGGGAGGCCGCTCCGCCGGGCGAGGCCGGGACCCGAGAGAAGG





GACGCCGCCGGGCCTGGAGCTGGGGCTCGGGGTGCCCCTGCGGGCCGTGG





GGCTCCCCGGGCGCTGGGCCAGCGAGGCAGCCGGCGGAGGTGCCCCGGGG





TTGGAGAAAGACTCGCCGCGGCCGGCCTTCAAGTTTGTGGGAGGGCCCCG





GAAGGAGACTTCGTTTCCCACGGACGAAAAGTTGTACGTGGTGGCGGGGT





ACCCAGGCTAGCCACAAAGGACTGTGACCCTCCTGGGCCCCGGAACTGCT





TCCTGTCTTGGGTGGGCCCTGGAGGTCCTGCCCGCCCATCCCAGAGGCCA





AGGCTTGGAGGGCAGCTGGGGCTTGCCCCTTAGATTGAGTATCCTGGGGC





GCTAGCGAGCTTGGTCCTGTCGGGACGGCCTCTGAGTGCTGCCTTGGTCA





GCGGGTGAGCTTGGGCCCCTGCTCTGCAGCCAGAGGCCGCCCCACATTCA





CTCCTGGGTCTCTCGGCCTTGCTCCAGGTGGCCACTTCTTGACTGCTTTG





AGTCCCTCATCCGAGCGAAGGGCGGACGGAGTCCGTTGGTGGGGGTCCGG





TTGCCTCTCCCGGGAGCTGTGTAGACTTCTCATACACCAGGGTTCTGGAG





GCAGATGGAGGAGCCCTTTCGAAAACAGAGTATTTTTTTTTAAGTTGTGA





CTTAATAATAGTAGCAAGAATATGTGCTTATGGTAAAGGCAGGCGGCAGG





TACGGAGGCTGTGGGAAGTCGGGGTCCCTCCGCCCCCACAGGCAGCCCTG





TGCTGGCCTGGTGTATACGTTTCTGTGCAGACGTACACCACCCTGTGTGA





GCACAGATGTATTTTTACACATGGCTCTGGACAGCTGTCTGACTCTGTCA





GCAGCAGGCCTTGGAGGGGCTCAGGCCCGTGTGGGGGTGGGGGGACATCC





AGAGGTCTTTGAGTCCAGCCCTCTGCCTCCAGGCCACGCCCACTCAGTGT





CGTCAGAGCCCCCTGTGCCTGAGGCGTGCGCGGCTCGGAGCCCTGCCCTC





GGAGTCCTGCGGTGCCTTCCTCGAGTCTGGCCTGCTTTCCATCCTGCTAA





GTACTTGGGGCATTTCCCTCTTTGGGTAAGGTGTGGTCTTCCCTGTCCTG





GCATTAGACACAAGGCAGTGGGCCTTCCTGCCATTCTAAGTGTAGCTTAA





GACAATCAGTGCAAAGCAACCCTTTGTGGGTGTCCAGCCCTTGCCTCGGG





AGGCCAGAAAGGTGGCCTGGGGGGAGAGCGTCTAAGCTGGCTGTGGAAAG





ACCCATGTTGGGATCCATTCCACAGAGGTCGTCAGGGGTCTCTGCCTGGC





CTGGAGGTCCCAGAGAGGACCCTCCTCCCCTCAGGAAGGCCCATCTGGAA





GGGTAGCAGAGGACTGCTCACAGGAAGAGCATGCGAAGTGCTCTTTCTGG





GGATGCCTGTAGTTGGTGATGTGGGAACTGGGTTTTGAGGGATGCCTAGG





AGTTCATCCATCAGAGGGGAAATGAGGAAGCCATGCAGGATCAATGGATA





AAGTGTGCTCAGGTGAGGGTTGGCTGGTGGGCCGCTGCAGGGCGGGGGCC





TGTCCAGTGCTCCCCCACTTACTTGCTGCCTCCCGACTGCTGTAATTATG





GGTCTGTAACCACCCTGGACTGGGTGCTCCTCACTGACGGACTTGTCTGA





ACCTCTCTTTGTCTCCAGCGCCCAGCACTGGGCCTGGCAAAACCTGAGAC





GCCCGGTACATGTTGGCCAAATGAATGAACCAGATTCAGACCGGCAGGGG





CGCTGTGGTTTAGGAGGGGCCTGGGGTTTCTCCCAGGAGGTTTTTGGGCT





TGCGCTGGAGGGCTCTGGACTCCCGTTTGCGCCAGTGGCCTGCATCCTGG





TCCTGTCTTCCTCATGTTTGAATTTCTTTGCTTTCCTAGTCTGGGGAGCA





GGGAGGAGCCCTGTGCCCTGTCCCAGGATCCATGGGTAGGAACACCATGG





ACAGGGAGAGCAAACGGGGCCATCTGTCACCAGGGGCTTAGGGAAGGCCG





AGCCAGCCTGGGTCAAAGAAGTCAAAGGGGCTGCCTGGAGGAGGCAGCCT





GTCAGCTGGTGCATCAGGTTAGGGAGGCTGGGAAGGCCTTTTGGGGATGG





GGGTGATTTGTCCAACGGCTGGGGGAGGTGGGAATGGGGAGGTGAGCAAG





GCAGCAGCTCTCAGGGCCTGGCTGTTGCGGGTGGTGGTGGCAGGGGCTGG





AGGCTCTAAGCCTAGAATAAGGAGAGGCCCAGGTCCAGGGAACTGTGTTC





AATTACATGGATTTGACACTTGGCAGCCCTGAGTGTTTTGGGGAGAGGGA





AGGCAGGCGGGCAGATGGGGGTCAGAGAGCTTAGAGGGATGGCAGCCCAC





CTGGGAAGGCAGGTGCGGGTGGAGCCCCCAGGCACGTGCAGTGGGTCTCT





GGCTCACCCAGGGCGAGGAGCTGCCCTTAGCCAGGCGTGGCCTCACATTC





AGCTTCCTTTGCTTCTCCCAGAGGCTGTGGCCAGGCCAGCTGGGCTCGGG





GAGCGCCAGCCTGAGAGGAGCGCGTGAGCGTCGCGGGAGCCTCGGGCACC







ATG








17) CRAF. RAF proto-oncogene serine/threonine-protein kinase also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1 is an enzyme is encoded by the RAF1 gene. The c-Raf protein is part of the ERK1/2 pathway as a MAP kinase kinase kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases.


Elevated C-Raf mRNA or protein levels have been identified in AML, head and neck cancer, prostate cancer and ovarian cancer (Schmidt et al., Leuk Res. 1994; 18:409-13, Riva et al., Eur J Cancer B Oral Oncol. 1995; 31B:384-91, Muhkerjhee et al., Prostate. 2005; 64:101-7). In ovarian cancer cell lines, antisense oligodeoxynucleotides (ODNs) inhibited cell proliferation in vitro (McPhillips et al., Br J Cancer. 2001; 85:1753-8) with similar results seen in lines derived from lung, cervical, prostate and colon carcinomas showed the same phenomenon.


Inhibiting cRAF may be useful against diabetic retinopathy, one of the leading causes of blindness A c-RAF inhibitor (iCo-007) is being developed for the treatment of various eye diseases that occur as complications of diabetes. In patients with diffuse diabetic macular edema presented positive results from the Phase 1 study showing that subjects tolerated iCo-007 well. In this study, a number of individuals exhibited a decrease of central macular edema compared to baseline using an analytical method called optical coherence tomography prompting the initiation of a Phase 2 study on iCo-007 in patients with diabetic macular edema.


Hereditary gain-of-function mutations of c-Raf are implicated in some rare, but severe syndromes. Mutation of c-Raf is one of the possible causes of Noonan syndrome: affected individuals have congenital heart defects, short and dysmorhic stature and several other deformities. Similar mutations in c-Raf can also cause a related condition, termed LEOPARD syndrome (Lentigo, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retarded growth, Deafness), with a complex association of defects.


Protein: c-Raf Gene: RAF1 (Homo sapiens, chromosome 3, 12625100-12705700 [NCBI Reference Sequence: NC000003.11]; start site location: 12660220; strand: negative)












Gene Identification


















GeneID
5894



HGNC
9829



HPRD
01265



MIM
164760




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












4339
GCGCGAGCCCTACTGGCAGTCG
25996





4462
CGGGGCGTGGCCTAGCGATCTGGTGGCCG
26073





4517
TTTCGAAGCTGAAGAGGTTAGGCGACG
26106





4519
CGACGCTGACTTGCTTTCAGGAG
26127





4533
AATCGAGAAGAACCGGCTTTCGG
26161





4556
CTTTGACGCGTCCTCTCCGGGC
26295





4585
CGGCTCCGCCACTTGACAGCTATGTGG
26334





4605
AGGCGGAGATTGCGGTGAGCCGAAATCGCG
27188





4609
AGGCCGCCCCAACGTCCTGTCGTTCGGCGG
25618





4677
TCTCGCCCGCTCCTCCTCCCCGCGGCGGGTG
25653





4745
CGGGAGGCGGTCACATTCGGCGCG
25690





4782
CGGAGCCCCGAGCAGCCCCCGCATCG
25730





4871
CGCGCTCCGCGCCTCAGGGCACGCGCC
25763





4960
AGCCGTTCCCGCCTCACAATCG
25840





4984
CCGCCATCTAAGATGGCGGCC
25876





5047
CGGGCGGCCCAGACGAGCGAGCCCTCG
25920





5110
CGTCCTCCCGACCTGCGACGCCACCGGC
25957



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












4339
GCGCGAGCCCTACTGGCAGTCG
25996





4340
CGCGAGCCCTACTGGCAGTC
25997





4341
GCGAGCCCTACTGGCAGTCG
25998





4342
CGAGCCCTACTGGCAGTCGA
25999





4343
GAGCCCTACTGGCAGTCGAC
26000





4344
AGCCCTACTGGCAGTCGACT
26001





4345
GCCCTACTGGCAGTCGACTT
26002





4346
CCCTACTGGCAGTCGACTTC
26003





4347
CCTACTGGCAGTCGACTTCT
26004





4348
CTACTGGCAGTCGACTTCTA
26005





4349
TACTGGCAGTCGACTTCTAA
26006





4350
ACTGGCAGTCGACTTCTAAC
26007





4351
CTGGCAGTCGACTTCTAACT
26008





4352
TGGCAGTCGACTTCTAACTT
26009





4353
GGCAGTCGACTTCTAACTTG
26010





4354
GCAGTCGACTTCTAACTTGG
26011





4355
CAGTCGACTTCTAACTTGGC
26012





4356
AGTCGACTTCTAACTTGGCT
26013





4357
GTCGACTTCTAACTTGGCTC
26014





4358
TCGACTTCTAACTTGGCTCG
26015





4359
CGACTTCTAACTTGGCTCGG
26016





4360
GACTTCTAACTTGGCTCGGG
26017





4361
ACTTCTAACTTGGCTCGGGC
26018





4362
CTTCTAACTTGGCTCGGGCA
26019





4363
TTCTAACTTGGCTCGGGCAT
26020





4364
TCTAACTTGGCTCGGGCATC
26021





4365
CTAACTTGGCTCGGGCATCC
26022





4366
TAACTTGGCTCGGGCATCCA
26023





4367
AACTTGGCTCGGGCATCCAT
26024





4368
ACTTGGCTCGGGCATCCATC
26025





4369
CTTGGCTCGGGCATCCATCG
26026





4370
TTGGCTCGGGCATCCATCGC
26027





4371
TGGCTCGGGCATCCATCGCT
26028





4372
GGCTCGGGCATCCATCGCTC
26029





4373
GCTCGGGCATCCATCGCTCT
26030





4374
CTCGGGCATCCATCGCTCTG
26031





4375
TCGGGCATCCATCGCTCTGG
26032





4376
CGGGCATCCATCGCTCTGGC
26033





4377
GGGCATCCATCGCTCTGGCC
26034





4378
GGCATCCATCGCTCTGGCCT
26035





4379
GCATCCATCGCTCTGGCCTG
26036





4380
CATCCATCGCTCTGGCCTGA
26037





4381
ATCCATCGCTCTGGCCTGAA
26038





4382
TCCATCGCTCTGGCCTGAAC
26039





4383
CCATCGCTCTGGCCTGAACT
26040





4384
CATCGCTCTGGCCTGAACTC
26041





4385
ATCGCTCTGGCCTGAACTCA
26042





4386
TCGCTCTGGCCTGAACTCAG
26043





4387
CGCTCTGGCCTGAACTCAGG
26044





4388
TGCGCGAGCCCTACTGGCAG
25995





4389
CTGCGCGAGCCCTACTGGCA
25994





4390
TCTGCGCGAGCCCTACTGGC
25993





4391
TTCTGCGCGAGCCCTACTGG
25992





4392
ATTCTGCGCGAGCCCTACTG
25991





4393
GATTCTGCGCGAGCCCTACT
25990





4394
CGATTCTGCGCGAGCCCTAC
25989





4395
CCGATTCTGCGCGAGCCCTA
25988





4396
TCCGATTCTGCGCGAGCCCT
25987





4397
CTCCGATTCTGCGCGAGCCC
25986





4398
TCTCCGATTCTGCGCGAGCC
25985





4399
CTCTCCGATTCTGCGCGAGC
25984





4400
GCTCTCCGATTCTGCGCGAG
25983





4401
GGCTCTCCGATTCTGCGCGA
25982





4402
CGGCTCTCCGATTCTGCGCG
25981





4403
CCGGCTCTCCGATTCTGCGC
25980





4404
ACCGGCTCTCCGATTCTGCG
25979





4405
CACCGGCTCTCCGATTCTGC
25978





4406
CCACCGGCTCTCCGATTCTG
25977





4407
GCCACCGGCTCTCCGATTCT
25976





4408
CGCCACCGGCTCTCCGATTC
25975





4409
ACGCCACCGGCTCTCCGATT
25974





4410
GACGCCACCGGCTCTCCGAT
25973





4411
CGACGCCACCGGCTCTCCGA
25972





4412
GCGACGCCACCGGCTCTCCG
25971





4413
TGCGACGCCACCGGCTCTCC
25970





4414
CTGCGACGCCACCGGCTCTC
25969





4415
CCTGCGACGCCACCGGCTCT
25968





4416
ACCTGCGACGCCACCGGCTC
25967





4417
GACCTGCGACGCCACCGGCT
25966





4418
CGACCTGCGACGCCACCGGC
25965





4419
CCGACCTGCGACGCCACCGG
25964





4420
CCCGACCTGCGACGCCACCG
25963





4421
TCCCGACCTGCGACGCCACC
25962





4422
CTCCCGACCTGCGACGCCAC
25961





4423
CCTCCCGACCTGCGACGCCA
25960





4424
TCCTCCCGACCTGCGACGCC
25959





4425
GTCCTCCCGACCTGCGACGC
25958





4426
CGTCCTCCCGACCTGCGACG
25957





4427
TCGTCCTCCCGACCTGCGAC
25956





4428
CTCGTCCTCCCGACCTGCGA
25955





4429
GCTCGTCCTCCCGACCTGCG
25954





4430
TGCTCGTCCTCCCGACCTGC
25953





4431
GTGCTCGTCCTCCCGACCTG
25952





4432
GGTGCTCGTCCTCCCGACCT
25951





4433
CGGTGCTCGTCCTCCCGACC
25950





4434
TCGGTGCTCGTCCTCCCGAC
25949





4435
CTCGGTGCTCGTCCTCCCGA
25948





4436
ACTCGGTGCTCGTCCTCCCG
25947





4437
GACTCGGTGCTCGTCCTCCC
25946





4438
CGACTCGGTGCTCGTCCTCC
25945





4439
TCGACTCGGTGCTCGTCCTC
25944





4440
CTCGACTCGGTGCTCGTCCT
25943





4441
CCTCGACTCGGTGCTCGTCC
25942





4442
CCCTCGACTCGGTGCTCGTC
25941





4443
GCCCTCGACTCGGTGCTCGT
25940





4444
AGCCCTCGACTCGGTGCTCG
25939





4445
GAGCCCTCGACTCGGTGCTC
25938





4446
CGAGCCCTCGACTCGGTGCT
25937





4447
GCGAGCCCTCGACTCGGTGC
25936





4448
AGCGAGCCCTCGACTCGGTG
25935





4449
GAGCGAGCCCTCGACTCGGT
25934





4450
CGAGCGAGCCCTCGACTCGG
25933





4451
ACGAGCGAGCCCTCGACTCG
25932





4452
GACGAGCGAGCCCTCGACTC
25931





4453
AGACGAGCGAGCCCTCGACT
25930





4454
CAGACGAGCGAGCCCTCGAC
25929





4455
CCAGACGAGCGAGCCCTCGA
25928





4456
CCCAGACGAGCGAGCCCTCG
25927





4457
GCCCAGACGAGCGAGCCCTC
25926





4458
GGCCCAGACGAGCGAGCCCT
25925





4459
CGGCCCAGACGAGCGAGCCC
25924





4460
GCGGCCCAGACGAGCGAGCC
25923





4461
GGCGGCCCAGACGAGCGAGC
25922





4462
CGGGGCGTGGCCTAGCGATCTGGTGGCCG
26073





4463
GGGGCGTGGCCTAGCGATCT
26074





4464
GGGCGTGGCCTAGCGATCTG
26075





4465
GGCGTGGCCTAGCGATCTGG
26076





4466
GCGTGGCCTAGCGATCTGGT
26077





4467
CGTGGCCTAGCGATCTGGTG
26078





4468
GTGGCCTAGCGATCTGGTGG
26079





4469
TGGCCTAGCGATCTGGTGGC
26080





4470
GGCCTAGCGATCTGGTGGCC
26081





4471
GCCTAGCGATCTGGTGGCCG
26082





4472
CCTAGCGATCTGGTGGCCGC
26083





4473
CTAGCGATCTGGTGGCCGCC
26084





4474
TAGCGATCTGGTGGCCGCCA
26085





4475
AGCGATCTGGTGGCCGCCAT
26086





4476
GCGATCTGGTGGCCGCCATT
26087





4477
CGATCTGGTGGCCGCCATTT
26088





4478
GATCTGGTGGCCGCCATTTC
26089





4479
ATCTGGTGGCCGCCATTTCG
26090





4480
TCTGGTGGCCGCCATTTCGA
26091





4481
CTGGTGGCCGCCATTTCGAA
26092





4482
TGGTGGCCGCCATTTCGAAG
26093





4483
GGTGGCCGCCATTTCGAAGC
26094





4484
GTGGCCGCCATTTCGAAGCT
26095





4485
TGGCCGCCATTTCGAAGCTG
26096





4486
GGCCGCCATTTCGAAGCTGA
26097





4487
GCCGCCATTTCGAAGCTGAA
26098





4488
CCGCCATTTCGAAGCTGAAG
26099





4489
CGCCATTTCGAAGCTGAAGA
26100





4490
GCCATTTCGAAGCTGAAGAG
26101





4491
CCATTTCGAAGCTGAAGAGG
26102





4492
CATTTCGAAGCTGAAGAGGT
26103





4493
CCGGGGCGTGGCCTAGCGAT
26072





4494
CCCGGGGCGTGGCCTAGCGA
26071





4495
CCCCGGGGCGTGGCCTAGCG
26070





4496
CCCCCGGGGCGTGGCCTAGC
26069





4497
GCCCCCGGGGCGTGGCCTAG
26068





4498
CGCCCCCGGGGCGTGGCCTA
26067





4499
CCGCCCCCGGGGCGTGGCCT
26066





4500
CCCGCCCCCGGGGCGTGGCC
26065





4501
CCCCGCCCCCGGGGCGTGGC
26064





4502
GCCCCGCCCCCGGGGCGTGG
26063





4503
GGCCCCGCCCCCGGGGCGTG
26062





4504
AGGCCCCGCCCCCGGGGCGT
26061





4505
CAGGCCCCGCCCCCGGGGCG
26060





4506
TCAGGCCCCGCCCCCGGGGC
26059





4507
CTCAGGCCCCGCCCCCGGGG
26058





4508
ACTCAGGCCCCGCCCCCGGG
26057





4509
AACTCAGGCCCCGCCCCCGG
26056





4510
GAACTCAGGCCCCGCCCCCG
26055





4511
TGAACTCAGGCCCCGCCCCC
26054





4512
CTGAACTCAGGCCCCGCCCC
26053





4513
CCTGAACTCAGGCCCCGCCC
26052





4514
GCCTGAACTCAGGCCCCGCC
26051





4515
GGCCTGAACTCAGGCCCCGC
26050





4516
TGGCCTGAACTCAGGCCCCG
26049





4517
TTTCGAAGCTGAAGAGGTTAGGCGACG
26105





4518
TTCGAAGCTGAAGAGGTTAG
26106





4519
CGACGCTGACTTGCTTTCAGGAG
26127





4520
GACGCTGACTTGCTTTCAGG
26128





4521
ACGCTGACTTGCTTTCAGGA
26129





4522
CGCTGACTTGCTTTCAGGAG
26130





4523
GCGACGCTGACTTGCTTTCA
26126





4524
GGCGACGCTGACTTGCTTTC
26125





4525
AGGCGACGCTGACTTGCTTT
26124





4526
TAGGCGACGCTGACTTGCTT
26123





4527
TTAGGCGACGCTGACTTGCT
26122





4528
GTTAGGCGACGCTGACTTGC
26121





4529
GGTTAGGCGACGCTGACTTG
26120





4530
AGGTTAGGCGACGCTGACTT
26119





4531
GAGGTTAGGCGACGCTGACT
26118





4532
AGAGGTTAGGCGACGCTGAC
26117





4533
AATCGAGAAGAACCGGCTTTCGG
26161





4534
ATCGAGAAGAACCGGCTTTC
26162





4535
TCGAGAAGAACCGGCTTTCG
26163





4536
CGAGAAGAACCGGCTTTCGG
26164





4537
GAGAAGAACCGGCTTTCGGC
26165





4538
AGAAGAACCGGCTTTCGGCC
26166





4539
GAAGAACCGGCTTTCGGCCA
26167





4540
AAGAACCGGCTTTCGGCCAG
26168





4541
AGAACCGGCTTTCGGCCAGC
26169





4542
GAACCGGCTTTCGGCCAGCC
26170





4543
AACCGGCTTTCGGCCAGCCA
26171





4544
ACCGGCTTTCGGCCAGCCAG
26172





4545
CCGGCTTTCGGCCAGCCAGG
26173





4546
CGGCTTTCGGCCAGCCAGGA
26174





4547
GGCTTTCGGCCAGCCAGGAG
26175





4548
GCTTTCGGCCAGCCAGGAGT
26176





4549
CTTTCGGCCAGCCAGGAGTG
26177





4550
TTTCGGCCAGCCAGGAGTGG
26178





4551
TTCGGCCAGCCAGGAGTGGC
26179





4552
TCGGCCAGCCAGGAGTGGCC
26180





4553
CGGCCAGCCAGGAGTGGCCA
26181





4554
TAATCGAGAAGAACCGGCTT
26160





4555
GTAATCGAGAAGAACCGGCT
26159





4556
CTTTGACGCGTCCTCTCCGGGC
26295





4557
TTTGACGCGTCCTCTCCGGG
26296





4558
TTGACGCGTCCTCTCCGGGC
26297





4559
TGACGCGTCCTCTCCGGGCA
26298





4560
GACGCGTCCTCTCCGGGCAC
26299





4561
ACGCGTCCTCTCCGGGCACT
26300





4562
CGCGTCCTCTCCGGGCACTT
26301





4563
GCGTCCTCTCCGGGCACTTT
26302





4564
CGTCCTCTCCGGGCACTTTA
26303





4565
GTCCTCTCCGGGCACTTTAA
26304





4566
TCCTCTCCGGGCACTTTAAT
26305





4567
CCTCTCCGGGCACTTTAATA
26306





4568
CTCTCCGGGCACTTTAATAC
26307





4569
TCTCCGGGCACTTTAATACC
26308





4570
CTCCGGGCACTTTAATACCA
26309





4571
TCCGGGCACTTTAATACCAA
26310





4572
CCGGGCACTTTAATACCAAA
26311





4573
ACTTTGACGCGTCCTCTCCG
26294





4574
AACTTTGACGCGTCCTCTCC
26293





4575
CAACTTTGACGCGTCCTCTC
26292





4576
CCAACTTTGACGCGTCCTCT
26291





4577
TCCAACTTTGACGCGTCCTC
26290





4578
GTCCAACTTTGACGCGTCCT
26289





4579
TGTCCAACTTTGACGCGTCC
26288





4580
GTGTCCAACTTTGACGCGTC
26287





4581
AGTGTCCAACTTTGACGCGT
26286





4582
CAGTGTCCAACTTTGACGCG
26285





4583
ACAGTGTCCAACTTTGACGC
26284





4584
CACAGTGTCCAACTTTGACG
26283





4585
CGGCTCCGCCACTTGACAGCTATGTGG
26334





4586
GGCTCCGCCACTTGACAGCT
26335





4587
GCTCCGCCACTTGACAGCTA
26336





4588
CTCCGCCACTTGACAGCTAT
26337





4589
TCCGCCACTTGACAGCTATG
26338





4590
CCGCCACTTGACAGCTATGT
26339





4591
CGCCACTTGACAGCTATGTG
26340





4592
ACGGCTCCGCCACTTGACAG
26333





4593
CACGGCTCCGCCACTTGACA
26332





4594
TCACGGCTCCGCCACTTGAC
26331





4595
ATCACGGCTCCGCCACTTGA
26330





4596
AATCACGGCTCCGCCACTTG
26329





4597
AAATCACGGCTCCGCCACTT
26328





4598
CAAATCACGGCTCCGCCACT
26327





4599
CCAAATCACGGCTCCGCCAC
26326





4600
ACCAAATCACGGCTCCGCCA
26325





4601
TACCAAATCACGGCTCCGCC
26324





4602
ATACCAAATCACGGCTCCGC
26323





4603
AATACCAAATCACGGCTCCG
26322





4604
TAATACCAAATCACGGCTCC
26321





4605
AGGCGGAGATTGCGGTGAGCCGAAATCGCG
27188





4606
GGCGGAGATTGCGGTGAGCC
27189





4607
GCGGAGATTGCGGTGAGCCG
27190





4608
CGGAGATTGCGGTGAGCCGA
27191





4609
AGGCCGCCCCAACGTCCTGTCGTTCGGCGG
25618





4610
GGCCGCCCCAACGTCCTGTC
25619





4611
GCCGCCCCAACGTCCTGTCG
25620





4612
CCGCCCCAACGTCCTGTCGT
25621





4613
CGCCCCAACGTCCTGTCGTT
25622





4614
GCCCCAACGTCCTGTCGTTC
25623





4615
CCCCAACGTCCTGTCGTTCG
25624





4616
CCCAACGTCCTGTCGTTCGG
25625





4617
CCAACGTCCTGTCGTTCGGC
25626





4618
CAACGTCCTGTCGTTCGGCG
25627





4619
AACGTCCTGTCGTTCGGCGG
25628





4620
ACGTCCTGTCGTTCGGCGGC
25629





4621
CGTCCTGTCGTTCGGCGGCA
25630





4622
GTCCTGTCGTTCGGCGGCAG
25631





4623
TCCTGTCGTTCGGCGGCAGC
25632





4624
CCTGTCGTTCGGCGGCAGCT
25633





4625
CTGTCGTTCGGCGGCAGCTT
25634





4626
TGTCGTTCGGCGGCAGCTTC
25635





4627
GTCGTTCGGCGGCAGCTTCT
25636





4628
TCGTTCGGCGGCAGCTTCTC
25637





4629
CGTTCGGCGGCAGCTTCTCG
25638





4630
GTTCGGCGGCAGCTTCTCGC
25639





4631
TTCGGCGGCAGCTTCTCGCC
25640





4632
TCGGCGGCAGCTTCTCGCCC
25641





4633
CGGCGGCAGCTTCTCGCCCG
25642





4634
GGCGGCAGCTTCTCGCCCGC
25643





4635
GCGGCAGCTTCTCGCCCGCT
25644





4636
CGGCAGCTTCTCGCCCGCTC
25645





4637
GGCAGCTTCTCGCCCGCTCC
25646





4638
GCAGCTTCTCGCCCGCTCCT
25647





4639
CAGCTTCTCGCCCGCTCCTC
25648





4640
AGCTTCTCGCCCGCTCCTCC
25649





4641
GCTTCTCGCCCGCTCCTCCT
25650





4642
CTTCTCGCCCGCTCCTCCTC
25651





4643
TTCTCGCCCGCTCCTCCTCC
25652





4644
TCTCGCCCGCTCCTCCTCCC
25653





4645
CTCGCCCGCTCCTCCTCCCC
25654





4646
TCGCCCGCTCCTCCTCCCCG
25655





4647
CGCCCGCTCCTCCTCCCCGC
25656





4648
GCCCGCTCCTCCTCCCCGCG
25657





4649
CCCGCTCCTCCTCCCCGCGG
25658





4650
CCGCTCCTCCTCCCCGCGGC
25659





4651
CGCTCCTCCTCCCCGCGGCG
25660





4652
GCTCCTCCTCCCCGCGGCGG
25661





4653
CTCCTCCTCCCCGCGGCGGG
25662





4654
TCCTCCTCCCCGCGGCGGGT
25663





4655
CCTCCTCCCCGCGGCGGGTG
25664





4656
CTCCTCCCCGCGGCGGGTGA
25665





4657
TCCTCCCCGCGGCGGGTGAG
25666





4658
CCTCCCCGCGGCGGGTGAGG
25667





4659
CTCCCCGCGGCGGGTGAGGG
25668





4660
TCCCCGCGGCGGGTGAGGGA
25669





4661
CCCCGCGGCGGGTGAGGGAG
25670





4662
CCCGCGGCGGGTGAGGGAGC
25671





4663
CAGGCCGCCCCAACGTCCTG
25617





4664
CCAGGCCGCCCCAACGTCCT
25616





4665
GCCAGGCCGCCCCAACGTCC
25615





4666
AGCCAGGCCGCCCCAACGTC
25614





4667
GAGCCAGGCCGCCCCAACGT
25613





4668
GGAGCCAGGCCGCCCCAACG
25612





4669
GGGAGCCAGGCCGCCCCAAC
25611





4670
AGGGAGCCAGGCCGCCCCAA
25610





4671
GAGGGAGCCAGGCCGCCCCA
25609





4672
TGAGGGAGCCAGGCCGCCCC
25608





4673
CTGAGGGAGCCAGGCCGCCC
25607





4674
CCTGAGGGAGCCAGGCCGCC
25606





4675
ACCTGAGGGAGCCAGGCCGC
25605





4676
TACCTGAGGGAGCCAGGCCG
25604





4677
TCTCGCCCGCTCCTCCTCCCCGCGGCGGGTG
25653





4678
CTCGCCCGCTCCTCCTCCCC
25654





4679
TCGCCCGCTCCTCCTCCCCG
25655





4680
CGCCCGCTCCTCCTCCCCGC
25656





4681
GCCCGCTCCTCCTCCCCGCG
25657





4682
CCCGCTCCTCCTCCCCGCGG
25658





4683
CCGCTCCTCCTCCCCGCGGC
25659





4684
CGCTCCTCCTCCCCGCGGCG
25660





4685
GCTCCTCCTCCCCGCGGCGG
25661





4686
CTCCTCCTCCCCGCGGCGGG
25662





4687
TCCTCCTCCCCGCGGCGGGT
25663





4688
CCTCCTCCCCGCGGCGGGTG
25664





4689
CTCCTCCCCGCGGCGGGTGA
25665





4690
TCCTCCCCGCGGCGGGTGAG
25666





4691
CCTCCCCGCGGCGGGTGAGG
25667





4692
CTCCCCGCGGCGGGTGAGGG
25668





4693
TCCCCGCGGCGGGTGAGGGA
25669





4694
CCCCGCGGCGGGTGAGGGAG
25670





4695
CCCGCGGCGGGTGAGGGAGC
25671





4696
TTCTCGCCCGCTCCTCCTCC
25652





4697
CTTCTCGCCCGCTCCTCCTC
25651





4698
GCTTCTCGCCCGCTCCTCCT
25650





4699
AGCTTCTCGCCCGCTCCTCC
25649





4700
CAGCTTCTCGCCCGCTCCTC
25648





4701
GCAGCTTCTCGCCCGCTCCT
25647





4702
GGCAGCTTCTCGCCCGCTCC
25646





4703
CGGCAGCTTCTCGCCCGCTC
25645





4704
GCGGCAGCTTCTCGCCCGCT
25644





4705
GGCGGCAGCTTCTCGCCCGC
25643





4706
CGGCGGCAGCTTCTCGCCCG
25642





4707
TCGGCGGCAGCTTCTCGCCC
25641





4708
TTCGGCGGCAGCTTCTCGCC
25640





4709
GTTCGGCGGCAGCTTCTCGC
25639





4710
CGTTCGGCGGCAGCTTCTCG
25638





4711
TCGTTCGGCGGCAGCTTCTC
25637





4712
GTCGTTCGGCGGCAGCTTCT
25636





4713
TGTCGTTCGGCGGCAGCTTC
25635





4714
CTGTCGTTCGGCGGCAGCTT
25634





4715
CCTGTCGTTCGGCGGCAGCT
25633





4716
TCCTGTCGTTCGGCGGCAGC
25632





4717
GTCCTGTCGTTCGGCGGCAG
25631





4718
CGTCCTGTCGTTCGGCGGCA
25630





4719
ACGTCCTGTCGTTCGGCGGC
25629





4720
AACGTCCTGTCGTTCGGCGG
25628





4721
CAACGTCCTGTCGTTCGGCG
25627





4722
CCAACGTCCTGTCGTTCGGC
25626





4723
CCCAACGTCCTGTCGTTCGG
25625





4724
CCCCAACGTCCTGTCGTTCG
25624





4725
GCCCCAACGTCCTGTCGTTC
25623





4726
CGCCCCAACGTCCTGTCGTT
25622





4727
CCGCCCCAACGTCCTGTCGT
25621





4728
GCCGCCCCAACGTCCTGTCG
25620





4729
GGCCGCCCCAACGTCCTGTC
25619





4730
AGGCCGCCCCAACGTCCTGT
25618





4731
CAGGCCGCCCCAACGTCCTG
25617





4732
CCAGGCCGCCCCAACGTCCT
25616





4733
GCCAGGCCGCCCCAACGTCC
25615





4734
AGCCAGGCCGCCCCAACGTC
25614





4735
GAGCCAGGCCGCCCCAACGT
25613





4736
GGAGCCAGGCCGCCCCAACG
25612





4737
GGGAGCCAGGCCGCCCCAAC
25611





4738
AGGGAGCCAGGCCGCCCCAA
25610





4739
GAGGGAGCCAGGCCGCCCCA
25609





4740
TGAGGGAGCCAGGCCGCCCC
25608





4741
CTGAGGGAGCCAGGCCGCCC
25607





4742
CCTGAGGGAGCCAGGCCGCC
25606





4743
ACCTGAGGGAGCCAGGCCGC
25605





4744
TACCTGAGGGAGCCAGGCCG
25604





4745
CGGGAGGCGGTCACATTCGGCGCG
25690





4746
GGGAGGCGGTCACATTCGGC
25691





4747
GGAGGCGGTCACATTCGGCG
25692





4748
GAGGCGGTCACATTCGGCGC
25693





4749
AGGCGGTCACATTCGGCGCG
25694





4750
GGCGGTCACATTCGGCGCGT
25695





4751
GCGGTCACATTCGGCGCGTC
25696





4752
CGGTCACATTCGGCGCGTCC
25697





4753
GGTCACATTCGGCGCGTCCC
25698





4754
GTCACATTCGGCGCGTCCCC
25699





4755
TCACATTCGGCGCGTCCCCA
25700





4756
CACATTCGGCGCGTCCCCAG
25701





4757
ACATTCGGCGCGTCCCCAGC
25702





4758
CATTCGGCGCGTCCCCAGCC
25703





4759
ATTCGGCGCGTCCCCAGCCC
25704





4760
TTCGGCGCGTCCCCAGCCCA
25705





4761
TCGGCGCGTCCCCAGCCCAG
25706





4762
CGGCGCGTCCCCAGCCCAGG
25707





4763
GGCGCGTCCCCAGCCCAGGG
25708





4764
GCGCGTCCCCAGCCCAGGGG
25709





4765
CGCGTCCCCAGCCCAGGGGA
25710





4766
GCGTCCCCAGCCCAGGGGAC
25711





4767
CGTCCCCAGCCCAGGGGACG
25712





4768
GTCCCCAGCCCAGGGGACGG
25713





4769
TCCCCAGCCCAGGGGACGGA
25714





4770
CCCCAGCCCAGGGGACGGAG
25715





4771
CCCAGCCCAGGGGACGGAGC
25716





4772
CCAGCCCAGGGGACGGAGCC
25717





4773
CAGCCCAGGGGACGGAGCCC
25718





4774
AGCCCAGGGGACGGAGCCCC
25719





4775
GCCCAGGGGACGGAGCCCCG
25720





4776
CCCAGGGGACGGAGCCCCGA
25721





4777
CCAGGGGACGGAGCCCCGAG
25722





4778
CAGGGGACGGAGCCCCGAGC
25723





4779
GCGGGAGGCGGTCACATTCG
25689





4780
AGCGGGAGGCGGTCACATTC
25688





4781
GAGCGGGAGGCGGTCACATT
25687





4782
CGGAGCCCCGAGCAGCCCCCGCATCG
25730





4783
GGAGCCCCGAGCAGCCCCCG
25731





4784
GAGCCCCGAGCAGCCCCCGC
25732





4785
AGCCCCGAGCAGCCCCCGCA
25733





4786
GCCCCGAGCAGCCCCCGCAT
25734





4787
CCCCGAGCAGCCCCCGCATC
25735





4788
CCCGAGCAGCCCCCGCATCG
25736





4789
CCGAGCAGCCCCCGCATCGT
25737





4790
CGAGCAGCCCCCGCATCGTA
25738





4791
GAGCAGCCCCCGCATCGTAG
25739





4792
AGCAGCCCCCGCATCGTAGC
25740





4793
GCAGCCCCCGCATCGTAGCA
25741





4794
CAGCCCCCGCATCGTAGCAA
25742





4795
AGCCCCCGCATCGTAGCAAA
25743





4796
GCCCCCGCATCGTAGCAAAC
25744





4797
CCCCCGCATCGTAGCAAACG
25745





4798
CCCCGCATCGTAGCAAACGC
25746





4799
CCCGCATCGTAGCAAACGCG
25747





4800
CCGCATCGTAGCAAACGCGC
25748





4801
CGCATCGTAGCAAACGCGCT
25749





4802
GCATCGTAGCAAACGCGCTC
25750





4803
CATCGTAGCAAACGCGCTCC
25751





4804
ATCGTAGCAAACGCGCTCCG
25752





4805
TCGTAGCAAACGCGCTCCGC
25753





4806
CGTAGCAAACGCGCTCCGCG
25754





4807
GTAGCAAACGCGCTCCGCGC
25755





4808
TAGCAAACGCGCTCCGCGCC
25756





4809
AGCAAACGCGCTCCGCGCCT
25757





4810
GCAAACGCGCTCCGCGCCTC
25758





4811
CAAACGCGCTCCGCGCCTCA
25759





4812
AAACGCGCTCCGCGCCTCAG
25760





4813
AACGCGCTCCGCGCCTCAGG
25761





4814
ACGCGCTCCGCGCCTCAGGG
25762





4815
CGCGCTCCGCGCCTCAGGGC
25763





4816
GCGCTCCGCGCCTCAGGGCA
25764





4817
CGCTCCGCGCCTCAGGGCAC
25765





4818
GCTCCGCGCCTCAGGGCACG
25766





4819
CTCCGCGCCTCAGGGCACGC
25767





4820
TCCGCGCCTCAGGGCACGCG
25768





4821
CCGCGCCTCAGGGCACGCGC
25769





4822
CGCGCCTCAGGGCACGCGCC
25770





4823
GCGCCTCAGGGCACGCGCCC
25771





4824
CGCCTCAGGGCACGCGCCCC
25772





4825
GCCTCAGGGCACGCGCCCCA
25773





4826
CCTCAGGGCACGCGCCCCAA
25774





4827
CTCAGGGCACGCGCCCCAAA
25775





4828
TCAGGGCACGCGCCCCAAAG
25776





4829
CAGGGCACGCGCCCCAAAGC
25777





4830
AGGGCACGCGCCCCAAAGCC
25778





4831
GGGCACGCGCCCCAAAGCCC
25779





4832
GGCACGCGCCCCAAAGCCCG
25780





4833
GCACGCGCCCCAAAGCCCGG
25781





4834
CACGCGCCCCAAAGCCCGGC
25782





4835
ACGCGCCCCAAAGCCCGGCC
25783





4836
CGCGCCCCAAAGCCCGGCCA
25784





4837
GCGCCCCAAAGCCCGGCCAG
25785





4838
CGCCCCAAAGCCCGGCCAGC
25786





4839
GCCCCAAAGCCCGGCCAGCT
25787





4840
CCCCAAAGCCCGGCCAGCTG
25788





4841
CCCAAAGCCCGGCCAGCTGA
25789





4842
CCAAAGCCCGGCCAGCTGAC
25790





4843
CAAAGCCCGGCCAGCTGACC
25791





4844
AAAGCCCGGCCAGCTGACCC
25792





4845
AAGCCCGGCCAGCTGACCCT
25793





4846
AGCCCGGCCAGCTGACCCTT
25794





4847
GCCCGGCCAGCTGACCCTTT
25795





4848
CCCGGCCAGCTGACCCTTTT
25796





4849
CCGGCCAGCTGACCCTTTTC
25797





4850
CGGCCAGCTGACCCTTTTCG
25798





4851
GGCCAGCTGACCCTTTTCGG
25799





4852
GCCAGCTGACCCTTTTCGGG
25800





4853
CCAGCTGACCCTTTTCGGGG
25801





4854
CAGCTGACCCTTTTCGGGGC
25802





4855
AGCTGACCCTTTTCGGGGCC
25803





4856
GCTGACCCTTTTCGGGGCCC
25804





4857
CTGACCCTTTTCGGGGCCCA
25805





4858
TGACCCTTTTCGGGGCCCAA
25806





4859
GACCCTTTTCGGGGCCCAAA
25807





4860
ACCCTTTTCGGGGCCCAAAA
25808





4861
CCCTTTTCGGGGCCCAAAAA
25809





4862
CCTTTTCGGGGCCCAAAAAA
25810





4863
CTTTTCGGGGCCCAAAAAAG
25811





4864
TTTTCGGGGCCCAAAAAAGG
25812





4865
TTTCGGGGCCCAAAAAAGGC
25813





4866
TTCGGGGCCCAAAAAAGGCA
25814





4867
ACGGAGCCCCGAGCAGCCCC
25729





4868
GACGGAGCCCCGAGCAGCCC
25728





4869
GGACGGAGCCCCGAGCAGCC
25727





4870
GGGACGGAGCCCCGAGCAGC
25726





4871
CGCGCTCCGCGCCTCAGGGCACGCGCC
25763





4872
GCGCTCCGCGCCTCAGGGCA
25764





4873
CGCTCCGCGCCTCAGGGCAC
25765





4874
GCTCCGCGCCTCAGGGCACG
25766





4875
CTCCGCGCCTCAGGGCACGC
25767





4876
TCCGCGCCTCAGGGCACGCG
25768





4877
CCGCGCCTCAGGGCACGCGC
25769





4878
CGCGCCTCAGGGCACGCGCC
25770





4879
GCGCCTCAGGGCACGCGCCC
25771





4880
CGCCTCAGGGCACGCGCCCC
25772





4881
GCCTCAGGGCACGCGCCCCA
25773





4882
CCTCAGGGCACGCGCCCCAA
25774





4883
CTCAGGGCACGCGCCCCAAA
25775





4884
TCAGGGCACGCGCCCCAAAG
25776





4885
CAGGGCACGCGCCCCAAAGC
25777





4886
AGGGCACGCGCCCCAAAGCC
25778





4887
GGGCACGCGCCCCAAAGCCC
25779





4888
GGCACGCGCCCCAAAGCCCG
25780





4889
GCACGCGCCCCAAAGCCCGG
25781





4890
CACGCGCCCCAAAGCCCGGC
25782





4891
ACGCGCCCCAAAGCCCGGCC
25783





4892
CGCGCCCCAAAGCCCGGCCA
25784





4893
GCGCCCCAAAGCCCGGCCAG
25785





4894
CGCCCCAAAGCCCGGCCAGC
25786





4895
GCCCCAAAGCCCGGCCAGCT
25787





4896
CCCCAAAGCCCGGCCAGCTG
25788





4897
CCCAAAGCCCGGCCAGCTGA
25789





4898
CCAAAGCCCGGCCAGCTGAC
25790





4899
CAAAGCCCGGCCAGCTGACC
25791





4900
AAAGCCCGGCCAGCTGACCC
25792





4901
AAGCCCGGCCAGCTGACCCT
25793





4902
AGCCCGGCCAGCTGACCCTT
25794





4903
GCCCGGCCAGCTGACCCTTT
25795





4904
CCCGGCCAGCTGACCCTTTT
25796





4905
CCGGCCAGCTGACCCTTTTC
25797





4906
CGGCCAGCTGACCCTTTTCG
25798





4907
GGCCAGCTGACCCTTTTCGG
25799





4908
GCCAGCTGACCCTTTTCGGG
25800





4909
CCAGCTGACCCTTTTCGGGG
25801





4910
CAGCTGACCCTTTTCGGGGC
25802





4911
AGCTGACCCTTTTCGGGGCC
25803





4912
GCTGACCCTTTTCGGGGCCC
25804





4913
CTGACCCTTTTCGGGGCCCA
25805





4914
TGACCCTTTTCGGGGCCCAA
25806





4915
GACCCTTTTCGGGGCCCAAA
25807





4916
ACCCTTTTCGGGGCCCAAAA
25808





4917
CCCTTTTCGGGGCCCAAAAA
25809





4918
CCTTTTCGGGGCCCAAAAAA
25810





4919
CTTTTCGGGGCCCAAAAAAG
25811





4920
TTTTCGGGGCCCAAAAAAGG
25812





4921
TTTCGGGGCCCAAAAAAGGC
25813





4922
TTCGGGGCCCAAAAAAGGCA
25814





4923
ACGCGCTCCGCGCCTCAGGG
25762





4924
AACGCGCTCCGCGCCTCAGG
25761





4925
AAACGCGCTCCGCGCCTCAG
25760





4926
CAAACGCGCTCCGCGCCTCA
25759





4927
GCAAACGCGCTCCGCGCCTC
25758





4928
AGCAAACGCGCTCCGCGCCT
25757





4929
TAGCAAACGCGCTCCGCGCC
25756





4930
GTAGCAAACGCGCTCCGCGC
25755





4931
CGTAGCAAACGCGCTCCGCG
25754





4932
TCGTAGCAAACGCGCTCCGC
25753





4933
ATCGTAGCAAACGCGCTCCG
25752





4934
CATCGTAGCAAACGCGCTCC
25751





4935
GCATCGTAGCAAACGCGCTC
25750





4936
CGCATCGTAGCAAACGCGCT
25749





4937
CCGCATCGTAGCAAACGCGC
25748





4938
CCCGCATCGTAGCAAACGCG
25747





4939
CCCCGCATCGTAGCAAACGC
25746





4940
CCCCCGCATCGTAGCAAACG
25745





4941
GCCCCCGCATCGTAGCAAAC
25744





4942
AGCCCCCGCATCGTAGCAAA
25743





4943
CAGCCCCCGCATCGTAGCAA
25742





4944
GCAGCCCCCGCATCGTAGCA
25741





4945
AGCAGCCCCCGCATCGTAGC
25740





4946
GAGCAGCCCCCGCATCGTAG
25739





4947
CGAGCAGCCCCCGCATCGTA
25738





4948
CCGAGCAGCCCCCGCATCGT
25737





4949
CCCGAGCAGCCCCCGCATCG
25736





4950
CCCCGAGCAGCCCCCGCATC
25735





4951
GCCCCGAGCAGCCCCCGCAT
25734





4952
AGCCCCGAGCAGCCCCCGCA
25733





4953
GAGCCCCGAGCAGCCCCCGC
25732





4954
GGAGCCCCGAGCAGCCCCCG
25731





4955
CGGAGCCCCGAGCAGCCCCC
25730





4956
ACGGAGCCCCGAGCAGCCCC
25729





4957
GACGGAGCCCCGAGCAGCCC
25728





4958
GGACGGAGCCCCGAGCAGCC
25727





4959
GGGACGGAGCCCCGAGCAGC
25726





4960
AGCCGTTCCCGCCTCACAATCG
25840





4961
GCCGTTCCCGCCTCACAATC
25841





4962
CCGTTCCCGCCTCACAATCG
25842





4963
CGTTCCCGCCTCACAATCGT
25843





4964
GTTCCCGCCTCACAATCGTT
25844





4965
TTCCCGCCTCACAATCGTTT
25845





4966
TCCCGCCTCACAATCGTTTT
25846





4967
CCCGCCTCACAATCGTTTTC
25847





4968
CCGCCTCACAATCGTTTTCC
25848





4969
CGCCTCACAATCGTTTTCCT
25849





4970
GCCTCACAATCGTTTTCCTC
25850





4971
CCTCACAATCGTTTTCCTCT
25851





4972
AAGCCGTTCCCGCCTCACAA
25839





4973
AAAGCCGTTCCCGCCTCACA
25838





4974
GAAAGCCGTTCCCGCCTCAC
25837





4975
AGAAAGCCGTTCCCGCCTCA
25836





4976
CAGAAAGCCGTTCCCGCCTC
25835





4977
GCAGAAAGCCGTTCCCGCCT
25834





4978
AGCAGAAAGCCGTTCCCGCC
25833





4979
CAGCAGAAAGCCGTTCCCGC
25832





4980
GCAGCAGAAAGCCGTTCCCG
25831





4981
GGCAGCAGAAAGCCGTTCCC
25830





4982
AGGCAGCAGAAAGCCGTTCC
25829





4983
AAGGCAGCAGAAAGCCGTTC
25828





4984
CCGCCATCTAAGATGGCGGCC
25876





4985
CGCCATCTAAGATGGCGGCC
25877





4986
GCCATCTAAGATGGCGGCCC
25878





4987
CCATCTAAGATGGCGGCCCA
25879





4988
CATCTAAGATGGCGGCCCAA
25880





4989
ATCTAAGATGGCGGCCCAAG
25881





4990
TCTAAGATGGCGGCCCAAGC
25882





4991
CTAAGATGGCGGCCCAAGCG
25883





4992
TAAGATGGCGGCCCAAGCGC
25884





4993
AAGATGGCGGCCCAAGCGCC
25885





4994
AGATGGCGGCCCAAGCGCCC
25886





4995
GATGGCGGCCCAAGCGCCCG
25887





4996
ATGGCGGCCCAAGCGCCCGC
25888





4997
TGGCGGCCCAAGCGCCCGCG
25889





4998
GGCGGCCCAAGCGCCCGCGA
25890





4999
GCGGCCCAAGCGCCCGCGAT
25891





5000
CGGCCCAAGCGCCCGCGATT
25892





5001
GGCCCAAGCGCCCGCGATTA
25893





5002
GCCCAAGCGCCCGCGATTAA
25894





5003
CCCAAGCGCCCGCGATTAAG
25895





5004
CCAAGCGCCCGCGATTAAGA
25896





5005
CAAGCGCCCGCGATTAAGAC
25897





5006
AAGCGCCCGCGATTAAGACT
25898





5007
AGCGCCCGCGATTAAGACTC
25899





5008
GCGCCCGCGATTAAGACTCT
25900





5009
CGCCCGCGATTAAGACTCTC
25901





5010
GCCCGCGATTAAGACTCTCG
25902





5011
CCCGCGATTAAGACTCTCGG
25903





5012
CCGCGATTAAGACTCTCGGG
25904





5013
CGCGATTAAGACTCTCGGGC
25905





5014
GCGATTAAGACTCTCGGGCG
25906





5015
CGATTAAGACTCTCGGGCGG
25907





5016
GATTAAGACTCTCGGGCGGC
25908





5017
ATTAAGACTCTCGGGCGGCC
25909





5018
TTAAGACTCTCGGGCGGCCC
25910





5019
TAAGACTCTCGGGCGGCCCA
25911





5020
AAGACTCTCGGGCGGCCCAG
25912





5021
AGACTCTCGGGCGGCCCAGA
25913





5022
GACTCTCGGGCGGCCCAGAC
25914





5023
ACTCTCGGGCGGCCCAGACG
25915





5024
CTCTCGGGCGGCCCAGACGA
25916





5025
TCTCGGGCGGCCCAGACGAG
25917





5026
CTCGGGCGGCCCAGACGAGC
25918





5027
TCGGGCGGCCCAGACGAGCG
25919





5028
CGGGCGGCCCAGACGAGCGA
25920





5029
CCCGCCATCTAAGATGGCGG
25875





5030
TCCCGCCATCTAAGATGGCG
25874





5031
CTCCCGCCATCTAAGATGGC
25873





5032
ACTCCCGCCATCTAAGATGG
25872





5033
TACTCCCGCCATCTAAGATG
25871





5034
TTACTCCCGCCATCTAAGAT
25870





5035
CTTACTCCCGCCATCTAAGA
25869





5036
TCTTACTCCCGCCATCTAAG
25868





5037
CTCTTACTCCCGCCATCTAA
25867





5038
CCTCTTACTCCCGCCATCTA
25866





5039
TCCTCTTACTCCCGCCATCT
25865





5040
TTCCTCTTACTCCCGCCATC
25864





5041
TTTCCTCTTACTCCCGCCAT
25863





5042
TTTTCCTCTTACTCCCGCCA
25862





5043
GTTTTCCTCTTACTCCCGCC
25861





5044
CGTTTTCCTCTTACTCCCGC
25860





5045
TCGTTTTCCTCTTACTCCCG
25859





5046
ATCGTTTTCCTCTTACTCCC
25858





5047
CGGGCGGCCCAGACGAGCGAGCCCTCG
25920





5048
TCGGGCGGCCCAGACGAGCG
25919





5049
CTCGGGCGGCCCAGACGAGC
25918





5050
TCTCGGGCGGCCCAGACGAG
25917





5051
CTCTCGGGCGGCCCAGACGA
25916





5052
ACTCTCGGGCGGCCCAGACG
25915





5053
GACTCTCGGGCGGCCCAGAC
25914





5054
AGACTCTCGGGCGGCCCAGA
25913





5055
AAGACTCTCGGGCGGCCCAG
25912





5056
TAAGACTCTCGGGCGGCCCA
25911





5057
TTAAGACTCTCGGGCGGCCC
25910





5058
ATTAAGACTCTCGGGCGGCC
25909





5059
GATTAAGACTCTCGGGCGGC
25908





5060
CGATTAAGACTCTCGGGCGG
25907





5061
GCGATTAAGACTCTCGGGCG
25906





5062
CGCGATTAAGACTCTCGGGC
25905





5063
CCGCGATTAAGACTCTCGGG
25904





5064
CCCGCGATTAAGACTCTCGG
25903





5065
GCCCGCGATTAAGACTCTCG
25902





5066
CGCCCGCGATTAAGACTCTC
25901





5067
GCGCCCGCGATTAAGACTCT
25900





5068
AGCGCCCGCGATTAAGACTC
25899





5069
AAGCGCCCGCGATTAAGACT
25898





5070
CAAGCGCCCGCGATTAAGAC
25897





5071
CCAAGCGCCCGCGATTAAGA
25896





5072
CCCAAGCGCCCGCGATTAAG
25895





5073
GCCCAAGCGCCCGCGATTAA
25894





5074
GGCCCAAGCGCCCGCGATTA
25893





5075
CGGCCCAAGCGCCCGCGATT
25892





5076
GCGGCCCAAGCGCCCGCGAT
25891





5077
GGCGGCCCAAGCGCCCGCGA
25890





5078
TGGCGGCCCAAGCGCCCGCG
25889





5079
ATGGCGGCCCAAGCGCCCGC
25888





5080
GATGGCGGCCCAAGCGCCCG
25887





5081
AGATGGCGGCCCAAGCGCCC
25886





5082
AAGATGGCGGCCCAAGCGCC
25885





5083
TAAGATGGCGGCCCAAGCGC
25884





5084
CTAAGATGGCGGCCCAAGCG
25883





5085
TCTAAGATGGCGGCCCAAGC
25882





5086
ATCTAAGATGGCGGCCCAAG
25881





5087
CATCTAAGATGGCGGCCCAA
25880





5088
CCATCTAAGATGGCGGCCCA
25879





5089
GCCATCTAAGATGGCGGCCC
25878





5090
CGCCATCTAAGATGGCGGCC
25877





5091
CCGCCATCTAAGATGGCGGC
25876





5092
CCCGCCATCTAAGATGGCGG
25875





5093
TCCCGCCATCTAAGATGGCG
25874





5094
CTCCCGCCATCTAAGATGGC
25873





5095
ACTCCCGCCATCTAAGATGG
25872





5096
TACTCCCGCCATCTAAGATG
25871





5097
TTACTCCCGCCATCTAAGAT
25870





5098
CTTACTCCCGCCATCTAAGA
25869





5099
TCTTACTCCCGCCATCTAAG
25868





5100
CTCTTACTCCCGCCATCTAA
25867





5101
CCTCTTACTCCCGCCATCTA
25866





5102
TCCTCTTACTCCCGCCATCT
25865





5103
TTCCTCTTACTCCCGCCATC
25864





5104
TTTCCTCTTACTCCCGCCAT
25863





5105
TTTTCCTCTTACTCCCGCCA
25862





5106
GTTTTCCTCTTACTCCCGCC
25861





5107
CGTTTTCCTCTTACTCCCGC
25860





5108
TCGTTTTCCTCTTACTCCCG
25859





5109
ATCGTTTTCCTCTTACTCCC
25858





5110
CGTCCTCCCGACCTGCGACGCCACCGGC
25957





5111
GTCCTCCCGACCTGCGACGC
25958





5112
TCCTCCCGACCTGCGACGCC
25959





5113
CCTCCCGACCTGCGACGCCA
25960





5114
CTCCCGACCTGCGACGCCAC
25961





5115
TCCCGACCTGCGACGCCACC
25962





5116
CCCGACCTGCGACGCCACCG
25963





5117
CCGACCTGCGACGCCACCGG
25964





5118
CGACCTGCGACGCCACCGGC
25965





5119
GACCTGCGACGCCACCGGCT
25966





5120
ACCTGCGACGCCACCGGCTC
25967





5121
CCTGCGACGCCACCGGCTCT
25968





5122
CTGCGACGCCACCGGCTCTC
25969





5123
TGCGACGCCACCGGCTCTCC
25970





5124
GCGACGCCACCGGCTCTCCG
25971





5125
CGACGCCACCGGCTCTCCGA
25972





5126
GACGCCACCGGCTCTCCGAT
25973





5127
ACGCCACCGGCTCTCCGATT
25974





5128
CGCCACCGGCTCTCCGATTC
25975





5129
GCCACCGGCTCTCCGATTCT
25976





5130
CCACCGGCTCTCCGATTCTG
25977





5131
CACCGGCTCTCCGATTCTGC
25978





5132
ACCGGCTCTCCGATTCTGCG
25979





5133
CCGGCTCTCCGATTCTGCGC
25980





5134
CGGCTCTCCGATTCTGCGCG
25981





5135
GGCTCTCCGATTCTGCGCGA
25982





5136
GCTCTCCGATTCTGCGCGAG
25983





5137
CTCTCCGATTCTGCGCGAGC
25984





5138
TCTCCGATTCTGCGCGAGCC
25985





5139
CTCCGATTCTGCGCGAGCCC
25986





5140
TCCGATTCTGCGCGAGCCCT
25987





5141
CCGATTCTGCGCGAGCCCTA
25988





5142
CGATTCTGCGCGAGCCCTAC
25989





5143
GATTCTGCGCGAGCCCTACT
25990





5144
ATTCTGCGCGAGCCCTACTG
25991





5145
TTCTGCGCGAGCCCTACTGG
25992





5146
TCTGCGCGAGCCCTACTGGC
25993





5147
CTGCGCGAGCCCTACTGGCA
25994





5148
TGCGCGAGCCCTACTGGCAG
25995





5149
GCGCGAGCCCTACTGGCAGT
25996





5150
CGCGAGCCCTACTGGCAGTC
25997





5151
GCGAGCCCTACTGGCAGTCG
25998





5152
CGAGCCCTACTGGCAGTCGA
25999





5153
GAGCCCTACTGGCAGTCGAC
26000





5154
AGCCCTACTGGCAGTCGACT
26001





5155
GCCCTACTGGCAGTCGACTT
26002





5156
CCCTACTGGCAGTCGACTTC
26003





5157
CCTACTGGCAGTCGACTTCT
26004





5158
CTACTGGCAGTCGACTTCTA
26005





5159
TACTGGCAGTCGACTTCTAA
26006





5160
ACTGGCAGTCGACTTCTAAC
26007





5161
CTGGCAGTCGACTTCTAACT
26008





5162
TGGCAGTCGACTTCTAACTT
26009





5163
GGCAGTCGACTTCTAACTTG
26010





5164
GCAGTCGACTTCTAACTTGG
26011





5165
CAGTCGACTTCTAACTTGGC
26012





5166
AGTCGACTTCTAACTTGGCT
26013





5167
GTCGACTTCTAACTTGGCTC
26014





5168
TCGACTTCTAACTTGGCTCG
26015





5169
CGACTTCTAACTTGGCTCGG
26016





5170
GACTTCTAACTTGGCTCGGG
26017





5171
ACTTCTAACTTGGCTCGGGC
26018





5172
CTTCTAACTTGGCTCGGGCA
26019





5173
TTCTAACTTGGCTCGGGCAT
26020





5174
TCTAACTTGGCTCGGGCATC
26021





5175
CTAACTTGGCTCGGGCATCC
26022





5176
TAACTTGGCTCGGGCATCCA
26023





5177
AACTTGGCTCGGGCATCCAT
26024





5178
ACTTGGCTCGGGCATCCATC
26025





5179
CTTGGCTCGGGCATCCATCG
26026





5180
TTGGCTCGGGCATCCATCGC
26027





5181
TGGCTCGGGCATCCATCGCT
26028





5182
GGCTCGGGCATCCATCGCTC
26029





5183
GCTCGGGCATCCATCGCTCT
26030





5184
CTCGGGCATCCATCGCTCTG
26031





5185
TCGGGCATCCATCGCTCTGG
26032





5186
CGGGCATCCATCGCTCTGGC
26033





5187
GGGCATCCATCGCTCTGGCC
26034





5188
GGCATCCATCGCTCTGGCCT
26035





5189
GCATCCATCGCTCTGGCCTG
26036





5190
CATCCATCGCTCTGGCCTGA
26037





5191
ATCCATCGCTCTGGCCTGAA
26038





5192
TCCATCGCTCTGGCCTGAAC
26039





5193
CCATCGCTCTGGCCTGAACT
26040





5194
CATCGCTCTGGCCTGAACTC
26041





5195
ATCGCTCTGGCCTGAACTCA
26042





5196
TCGCTCTGGCCTGAACTCAG
26043





5197
CGCTCTGGCCTGAACTCAGG
26044





5198
TCGTCCTCCCGACCTGCGAC
25956





5199
CTCGTCCTCCCGACCTGCGA
25955





5200
GCTCGTCCTCCCGACCTGCG
25954





5201
TGCTCGTCCTCCCGACCTGC
25953





5202
GTGCTCGTCCTCCCGACCTG
25952





5203
GGTGCTCGTCCTCCCGACCT
25951





5204
CGGTGCTCGTCCTCCCGACC
25950





5205
TCGGTGCTCGTCCTCCCGAC
25949





5206
CTCGGTGCTCGTCCTCCCGA
25948





5207
ACTCGGTGCTCGTCCTCCCG
25947





5208
GACTCGGTGCTCGTCCTCCC
25946





5209
CGACTCGGTGCTCGTCCTCC
25945





5210
TCGACTCGGTGCTCGTCCTC
25944





5211
CTCGACTCGGTGCTCGTCCT
25943





5212
CCTCGACTCGGTGCTCGTCC
25942





5213
CCCTCGACTCGGTGCTCGTC
25941





5214
GCCCTCGACTCGGTGCTCGT
25940





5215
AGCCCTCGACTCGGTGCTCG
25939





5216
GAGCCCTCGACTCGGTGCTC
25938





5217
CGAGCCCTCGACTCGGTGCT
25937





5218
GCGAGCCCTCGACTCGGTGC
25936





5219
AGCGAGCCCTCGACTCGGTG
25935





5220
GAGCGAGCCCTCGACTCGGT
25934





5221
CGAGCGAGCCCTCGACTCGG
25933





5222
ACGAGCGAGCCCTCGACTCG
25932





5223
GACGAGCGAGCCCTCGACTC
25931





5224
AGACGAGCGAGCCCTCGACT
25930





5225
CAGACGAGCGAGCCCTCGAC
25929





5226
CCAGACGAGCGAGCCCTCGA
25928





5227
CCCAGACGAGCGAGCCCTCG
25927





5228
GCCCAGACGAGCGAGCCCTC
25926





5229
GGCCCAGACGAGCGAGCCCT
25925





5230
CGGCCCAGACGAGCGAGCCC
25924





5231
GCGGCCCAGACGAGCGAGCC
25923





5232
GGCGGCCCAGACGAGCGAGC
25922



















Hot Zones (Relative upstream location to gene start site)







25500-27500









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11966)







AATACAGTCTTCCCCCACAGTTGAATATAGAATAAAATCTATTGCAAGCT





GGGTGCAGGGGCACAAGTGTGGCAGGAGTGCTTGAGCCTAGGAGTTCAAG





ACCAGCCTGGGCAACATAGTGAGACCTCATCTCAATTGAAAATATATATC





TATATAAAAAATAAAATTTATTACAGTTCATCTTGCTGGAAAACAAAATA





CTGTTTTTGTAATTAAAATTTTTTTTTTAAATTTAGAAATGGGGTCTTGC





TGTGTTGACCAGGCTGGTCTTGAACTCTTGGCCTCAAGCTGTCCTCCCAT





CTGGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAACAACTGCGCCCGGC





TGACAAAGTATTTTTTAAAGATGTACCACTAAATGGAGATTTGATTCACA





TTTGATAGTTTTTGACAGGTCTTTTCTATTTAAAAACATTACTGTTTTTG





TAGCATTATTCTGGCTTTTCCCTTAATTTAGTAAATATTTGAGTGCCTTT





GTATTCCAGATACTGAGCAAGATTGGCAGGGTTCTGCCCTTATGGAGCAG





AAGGAAGGTAGGGGGACTGACTAAAACTTGAAAACTGTCTAACATAAGTA





CCATGCAGAAAATGAAACAGTATTAATTGGCAGAAGGAGAGCAGGCTATT





TTGGCTAGTGTGGTTAGGGAAAGCCTCTCTAAAGAGATGTCTCTTGGGTG





GAGACAAGATGTGAAAAAACCAGCTTGCCTGTTTTTGGGGTTTCAGCCTT





GCAGGTGAAGAGAAACACGAAGTTCAGAAGTCTTGAGGCACAAAGTCTGG





CATGTTACGAAAGAAGGCCTTTAGACGCCTTGTCAGGGAGTTTAGATTTT





ATTCTGAGTTTTAAAACGGGAGTGACACAATGAGTTGCATTTTAAGCCTG





TTCAGGCTGTTACATGGATTATTAGGAGCTGTATCATTTCAGGCTAGTGA





GATGCTCAGATGAGTCTGCCTTCTGTCTCTTCCGTCATCTATTTCTCTCT





TATCTGGTCTTAAGCTCCTCCATCTTTTCCTTTTTAGTTGGAAAAAAACT





CAAAGATCTAGAAAAAAGAGGAGCTGTATGTACTCCTAAAAAGGGACCTC





ATAGTAACCTGGGGATAGAGTTATGTAGGAGTGAGTCAGGGCTCAGGTTG





AGGCTTTAGAGGCAGGAGGCAGCGAGATCTTGTTCTGTCATCCCCTCTTA





CAGAAATAAAATATGCCGATAAAAGTTTATAGTGTAATAGTAAAATATAA





AAACAAAAAGTAAGTAATGTAGAAAATAAAAACCCTTCACAGTCCTGCTG





AAATGATTACTGTTAACACTTTAATTCTAGAGTTCCCCATCCATTTATTT





ATTTCTAGATTTCCCTCTTTGTAGATTAATATTAAAGGGTTCAGACTTGT





TCATTTTTTGTTGTCTTGGATATCTTTTCCCACCTCTGTATATATGGATC





TACTTTATTTATCACGTGGATATTAACATGGTTTATTTAATTCCCTATTG





TTAGGTATTTGGTCTTTACCACAGTTTTTCAAGGGTATGAATAGTGCTGC





AAGGAATATGCTTACACATGTTTTTATACACTTGTCTTAGGCTTCTGTAG





GACAAATTTCTGGAGTAGAATACTAGGTCATTCTTTAAGAACATTTCAAA





CTTTTAATAGATATTACCGTATTCTTTCCCAAAAAGAATGTACAAAGACT





GTATGAGAATAACTCCATGTTGTGATCTTAAGTTGTCTCTAAACCTCTTT





GGTTTTCTTAGCTGTCATCTAAGAATACTAAGTATCTAACCTCCCTCTTG





ATTTGGGCATGTGATGTGATTTAGCATATAGTGGATATTCAGTTAGAAAC





TTTTGGTTGAAAACAAGGTTTGGATTCTGTGGTCTTTAATTCTAGGCCAT





TTCAGCTCTGACTAAAATGATTTGAGTGTTAGTGTTATATATGGGAAGGT





AAGGGCTATGGAGTCAGTGCAGCCCAGTTCAGAATCCCAGTTTGCCACTT





ACAAGCTGTGTGTGTGAGAATTTTCTCAACTGTAAAATGGGGACATAATT





CCTACCTAGAGTAATACTGTAAGTATTAAGGTGGATAATGATTGGAATGT





ATGCTGTGTATCCTGCCTCATAATAGTAAGCTTTTAGTAAATGGTAGCTA





CTGTTAATAATAAAACAAGTTTCTGAAGGAGGAAGGCTTGAAAAGATGGG





ATTCCTTATCAACCTCAAAGTTTTCTAAAGGAGGAAACCCTACCCCCCTT





ACTTCTGCATGGTTTCTGACCATGAACTGAACTCTGAACTCTGAATGAAC





TGAACTCTGAACTCTGAATGAACTGAACTCTGAACTCTGAATGTTATGGT





AGAAAATTCATGGACTTTAAATTTAAACAGATAAAGAATCTGGTTATTTT





ACCCACTGCTGGGGTGTTCTTGGGCAAGTAGCATGACTTCTGTGTCCAAA





AAAGAAAGGGTTTGCAGTGACTGAACCTGTAATCCCAGTACTTTGGGAGG





CTAAGGAGAGTGGATTGCCTGAGCTCAGGAGTTCAAGACCAGCCTGGGCA





ACATAGTGAGAGCCTTTCTCAACAAAAAAAACTGTTCTTAAAAATTAGCT





GGGCATGGTGATGCACGTCTGTGGTCCCAGCTATGTGGGAAGCTGAGGTA





GGAGAATCATTTGAGCCTGGAAAATTGAAGCTGCAGTGAGCTGTGATCAT





GTCACTGCACCCCAGCCTGGGCAACAGAGCAAGACCCTGTCTCAGAAAAT





AAATTAATTAAAAAGAAAGTGTGGATGGAGGAAGGGATTAAAAATCTGGC





TGGGCACGGTGGCTCATGCCTGTAATCCCAGGCGTGATTTGGGAGGCCGA





GGCGGACAGATCACGAGGTCAAGAGATTGAGACCATCCTGGCCAACATGG





CCAACCCCATCTCTACTAAAAATACAAAAATCAGTCGGGCGTGGTGGTGC





ATGCCTGTAATCCCGGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGA





ACCTGGGAGGTTCAGTGAGCCAAGATCGCGCCACTACACTCCAGCCTGGC





AATAGAGTGAGACTCTGTCTCAAAAGAAAAGAAAAGAAAAGAAAATCTTT





GGGGTTCTTACACAAATTAAATGAGATAATTTATTATTATTATTTTTTTT





GAGATGGAGTCTTGCTCTGTCCCCCAGGCTGGAGTGCAGTGGTGCGATCT





CAGCTCACCGCAAGCTCTGCCTCCCGGGTTCACGCCATTCCCCTGCCTCA





GCCTCCTGAGTAGCTGGGACTACAGGCGCCCGCCACCATGCCTGGCTAAT





TTTTTGTATTTTTAGTAGAGACAGGGTATCCCTGTGTTAGCTAGGATGGT





CTCGATCTCCTGACCTTGTGATCCGCCCATCTCGGCCTCCCAAAGTGCTG





GGATTACAGGTATGAGCCACCATGCCCGGCTTGAGATAATTTATAAAGTG





CCTAAAATACATCCTAGAAATATTAGTTTTTCTTCCTTGAAGTCATAAAT





TATGGCTTACACTTTTTTTCAGGTATTTCTCATAGTACTAATGTGTTGCT





CACACTCAAGGGTAGTAGTTGCTTAGGAAGAAGAGAAATGTAGTTGAAAA





AGTAATAGACTAGAAGTCTTGAGACCTGGGCTCATGTTCCAAGTTGGCTT





TTTTTTTTTTTTTTGGGAGATGGAGTCTCGCTCTTGTCCCCCAGCCTGGA





GTGCAATGACACGATATCGACTCACTGCAACCTCCACCTCCTGGGTTCAA





GTGATTTCTCCTGCCTCAGCCTCCCTAGTAGCTGGGATGACAGACACCCA





CCACCATGCCTGGCTAATTTTTGTATTTTAAGTAGTGACAGCATTTTACC





ATGTTAGCCAGGCTGGTCTTGAACTCCTGGCCTCAAGTGATGCGCTGGCC





TCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGTGCCTGGTC





CCTTGCTAAATGTTTTGTTTTGTTTTGTTTTGTTTTTGAGGTGGAGTCTT





GCTCTGTCACCCAGGCTGGAGTGCGGTGGCATGATCTCCGCTCACTGCAA





GCTCCGCCTCCCAGGTTCCCGCCATTCTCCTGCCTCAGCCTCCCGAGTAG





CTGGGACTACAGGCGCCCGCCACCACGCCCGGCTAATTTTTTGTATTTTT





AGTAGAGATGGGGTTTCACCGTGTTAGCCAGGATGGTCTCCATCTCCTGA





CCTCGTGATGCACCCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGT





GAGCCACCGTGCCCCGCAGTTGCTTGCTAAATCTTTTAACTGCTGGTCCC





ATTTTCCTCATCTATGAAATATTTAATGGAAGTGTACTATTAAAGAAACT





TTTCTTTGCTGATGAATGCAGGAGGTATCATTAAAAACCCACATAGTGCT





ATTTTCATAATTACTCTTTATGTATTGTGTTCTTGGGTTGAATACTTTTG





TTCTAGAGTTACAATTATTTGTGTTTCTTACCAGGTTTAAGAATTGTTTA





AGCTGCATCAATG






18) Beta catenin. Proto-oncogene protein Wnt-1 is a protein that in humans is encoded by the WNT1 gene (Van Ooyen et. al, 1986; Nat. Genet. 28 (3): 261-5 and Aarheden et al., 1988; Cytogenet Cell Genet 47 (1-2): 86-87). The WNT gene family consists of structurally related genes that encode secreted signaling proteins that are implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. Wnt-1 t is conserved in evolution with the protein encoded by this gene having 98% identity to the mouse Wnt1 protein at the amino acid level.


Beta-catenin (or β-catenin) is a protein that in humans is encoded by the CTNNB1 gene. β-catenin is a subunit of the cadherin protein complex and acts as an intracellular signal transducer in the Wnt signaling pathway (McDonald et al, 2009; Developmental Cell 17 (1): 9-26). Recent evidence suggests that β-catenin plays an important role in various aspects of liver biology including liver development (both embryonic and postnatal), liver regeneration following partial hepatectomy, HGF-induced hepatomegaly, liver zonation, and pathogenesis of liver cancer (Thompson and Monga, 2007; Hepatology 45 (5): 1298-305). The gene that codes for β-catenin can function as an oncogene. An increase in β-catenin production has been noted in those people with basal cell carcinoma and leads to the increase in proliferation of related tumors (Saldanha et al, 2004; Cancer Epidemiol. Biomarkers Prev. 17 (8): 2101-8. Mutations in this gene are a cause of colorectal cancer (CRC), pilomatrixoma (PTR), medulloblastoma (MDB), and ovarian cancer. Also, β-catenin binds to the product of the APC gene, which is mutated in adenomatous polyposis of the colon (reviewed in Wang et al, 2008; Cancer Epidemiol. Biomarkers Prev. 17 (8): 2101-8).


Protein: Beta-catenin Gene: CTNNB1 (Homo sapiens, chromosome 3, 41240942-41281939 [NCBI Reference Sequence: NC000003.11]; start site location: 41265560; strand: positive)












Gene Identification


















GeneID
1499



HGNC
2514



HPRD




MIM
116806




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Designed

start


ID No:
ID
Sequence (5′-3′)
site













5233
BC1
CGCATATTACTGGGTAAACTCTGTG
1411





5234

CACGCTGGATTTTCAAAACAGTTG
5



















Target Shift Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












5233
CGCATATTACTGGGTAAACTCTGTG
1411





5234
CACGCTGGATTTTCAAAACAGTTG
5





11987
CCACGCTGGATTTTCAAAAC
4



















Hot Zones (Relative upstream location to gene start site)







 1-250


1400-1500









Examples

In FIG. 35, In MCF7 (human mammary breast cell line), BC1 (191) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated control values. The β-catenin sequence BC1 fits the independent and dependent DNAi motif claims.


The secondary structure for BC1 (191) is shown in FIG. 36.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11967)







ACCCTGTAGGATGGGCGGGTGATGGTATGTATGTTAGATGTGTGGACATA





TCTATTAAAAGTTGTGTCAGATAACAGCTGGTGCTGACAAGCCCTTGGTA





AGATGGCAGCATGTTCAATATGTTCTGTGAAAATTATCTCAGTTTATGAT





CTGTCAGTATTGTGGAGCTATGCATGAAAGGACTTAAAATTCTTACCCTT





AAACTCAGTAACAGTGTTTCTAGAACTTCTGGTGATATGGGAAATTAAGA





GAATTATTTATATGCAAAGGTGTTTATTGCAGCATTGTTGGAATAATAGA





CAAAATGGGGAAGAACAAGCTCAGAATGGAGGAGGTAGCTTATAGTATAG





ACATACGATACAATCCAGATGATAATATTTTATAATAGTCTTCACAAGGA





ATTTTATATTTTTATTTTTAAAAATACATAGCAGTGAGTTTAATATACCA





AACATACCAAAATGTCATCATTTACTGTGTGGTGGACTCATATGATGGAG





ATGATAAATAAAAATATTAATTTATTTGAGGCATATATTTATGGCTGAGG





AAGGAAGACAGTTATGAAGAACAGCTCATTCTGGAAACATACTAATTTTT





CCCAGCCATAAAGAGATTTCCTATTTCTTTTTTTTTTCCATTTACCTTCT





GTTTCCTACCTGAGAAGATTTCATACTTCTAATAACCATTTGTGTACCTA





TTTAAAGACAGTACCAAAGGCATACATTTTAGTGTTTGGAGGACCAAGGG





TCATTTGATGTTTGATGCTTATTGACTATTCGAGGATGACAAGACACCTT





GAGAACACACACACCCACACCCACACCCACACCCTCACCCACCCACCCCA





CCCCCCTCCCCGAAGAAAGCTGTGAAGGAAGAAAGCAGAAAAGAACCTGG





AGTGAGTTGTAACTTAAAATGTTAGTGTTGCATGAAGTGTGTTAAAACAG





GAAGATTTGAGGAAATTGCATACATTTTCTAGATGGCAAAGTATTACTGG





TGACAGTTAATGAAAATGCATATGCATGTGTTTTTAGATTTACAAATTTT





ACTAAGAACTTTTTAAAAATCCCTGAAGGTGTATCAAAAGTTTATCATGC





TTATGAAATAGAGTAGCACTTTCTAACTTTAAAACGGGGAATAATTCTTT





GGATCTTGATTATTGGAAAAGTGAATTATGAATTGCTAGTATAAAACTGT





GGTTTTAAAATATGTCTGCTTTATATTTTTATGTAGCAGATTTACTCCTA





GTTAATAATACTCAAACTTACTGAAAACTAAGGTAATTAAGATAATTCTG





TCCTGATGGGAAGAGGAAAAATAACTTCAGTGTGAAATCTATTATATATT





AGTTGTGGCAAGATTTCTCCCATTGACTTTGACTGGAGACATTTATAGGG





TTAAAATCGGAAATAGCACGGTGAATTTTGAAGTATCCTTGTAGTTGGAA





AGAGTATTATGTTCATATTGCCAAAAAAAAGATGCATGGATGCATTAGAC





TGGATGGAAAATACATGAGAAGTTGGCTAGCCCCCTCTTTGTCAAAACAT





CACTTGGTGGTGATAAAGCTGTTGGAAAACACAGCATTCTAATGTAGTCT





GTAGTTTAATGATAATCTGTGTCTTGAAACATTTAGCGTAGTACTTATAC





AAACCTAGATGGCATAGTGTACTGCATGCCTAGCCTATATAGTATAGCCT





GTTGCTTCTAGGGTGTAAAGCTGTATAGCGTGTTACTATAGGCAGTTGAA





ACAGTGGTATTTATGTATCCTTTTTTTTTTTTTTAAATTCTTTTAAGAGA





CAGGGTCTTGCTCTGTTGCCCAGGCTGGATGCATTGGTGTGATCATAGCT





CACTATAACCTTGAACTCCTAAGTGATCCTCTTTGCCTCAGCCTCCCCAG





TGGCTAGGACTACAGGCACATACTACCACACCTGGCTAATTTTTAACATT





TTTTTGTAGAGATGGAATTTCGCTGTGTTGTCCAGGCTGGTCTTGGAACT





CTTGTGCTGCAGCAATCCACCCGCCTCCCAAAGTGTTAGAATTACAAGCC





ACTTCGCCTGGCTTGTTTACCTAAACATAGAAAAGATCCAGTAAAAATAC





AGAATTAAAATCTTGTGGGGCCACTGTAGCATATGTAGTCCATCTTGACT





GAAATGTCCTTATGCAGTGCATGATTGTACTTCATAATTTTTAAGCACTC





CTCCCTCTTGATTGGTACTTAGTGGATTTTATCATTTTTGTTTCTTCATA





ATTCTTTCTGAAATGTCTACTGGTTGGACCTTTGATCTCCTGAATTGATC





GTGATTTCTTCTGTTGTATTTTTTGTCTTTGTCATTTTTTTGTACTCTAG





GCAGTTTTCTCAATTTTAGTTTCTATTCAACTTTTTGTTTTTATTTATTC





TCTCCAGTATTTATGGAGATACTAAATTGAAGTGTTCTGTTTCTCTCTCC





ACCCTATCCCTAGTTTCAAGTTTTATCTCAGTTTCTATGGAGTCAGTTTT





TTCGTTGCTTTAAAAAAAAATTTTCCTGAAGTGATTGGTAAGTTTTGGCT





AATTGGGAGCACTAGAATTGGGCCCTTAATGGTTGGCAGGGTGTGGTGGA





GGAGAGACAGCCCTTAGTCCAAAGGCTCAGGCCAGAAAAAGAAAGAGGAA





GGCTTTCCTTTTCCTTTCCGGAGCAGGGTTCTGCCCTAGGTCTTGCTTGG





CAGTCTATTTGATTTCTTTAGCAGTTAATGCTCAGTTTTTTGGCATATGT





GGATCTGCCTCCAGAGCAGGTACAAGGTGAGTGAGTCTATGCTGTTACCT





AATTAGATCCCCATTTCTACCCTTTGTTTTTACTTCTCTATCTACTGATA





GGTTTTTACCCTCCTTCACCTCATAGGGTTGCAGTGAAGAGCAAGATGAA





TTTTTATTTATGTTGCATAAATTTTAAAAGCTAAAAAATATATATGTAAT





GTTGGGAAGTCCCAGTGTACAAATGGCTATTGTAAATTTGGAACATGAAC





TTGCTTTTTTCCATTGTAAAAATGAAATCATTATAAATTGCGGTCAAGTT





ACTAGGTCAGCCCACACAGAGTTTACCCAGTAATATGCGTAAATGTTTTG





CCTTTGCATCAACAACAAGGAAAAACAGTACTATAAAAAAATGTTCCTGG





AAGCCGGATGTATCAAAGCACTTCTGAAATAGCTATATAGCCTATAGACA





TGACCAGTTGGTTTCTGAGTCTGTTGACATTGGCCAAAGGAGAAGCTCAG





TGTAGAACATGTTTGGAGTCTCCTTTTGCAGAAATACATTGGAGGCTGGA





GTGGGGAACCAATTTTTCAGAAAGGTGGTGAAGTAGTTACATAGCCACTC





TTTTAAAGACAGTCAAAAGATAGAAACTAAGGCCAGGTGTTGGCTCACAT





CTGAGATAGGAAAATCACTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCC





CAGTATGCACCTCTGCACTCCAGCCTGGTTTGGCAAGAGACCAAAACTCT





GTCTCAAAAAAAAACAAAACATAGTTCACACTTAAATATTTTATTCCATA





TCTTTACATACCCAATATGTTAATTTATAGTTCAAGATGAACTTGTTTGG





GACAGATTTTGTAATAAAGGAAATCGTGTTATTAGAAATATCTAGAGGCC





ATGAGCCCTTAAACTGTTCTAATTTGCAAGTAGTTCCCTGTGTGATGCAG





TTTTTTTCAATATTGCACAATAAAGGCAAAATACGGACAAATTAGATGAT





AAGATTTATATAAATTTTTAAAATATTGATCAAAATATGTATCCATATTG





GTAATATTTGTATTTATAATAAATCATTGCTGTAAATTTGAACTTAGAAA





AATTTTACTAATAAAGGTGCTTTTGTGTTGCAAACTTTCATTTGAAAAGT





AATTTTTCTTTGTACCAAAAAATCTAAAATTCGCTATTCTAGTCACCAAA





ATTTGCTTTATGAAAAATAATTTTTGATGGCACTATATCAGAAAACAACT





TGTTAAAGAAAATGTGGAGTTTTTAAAATCCCACTGTACCTCTGTTATCC





AAAGGGGATCTGTGAATTTTTCTGTGAAAGGTTAAAAAAGGAGAGACCTT





TAGGAATTCAGAGAGCAGCTGATTTTTGAATAGTGTTTTCCCCTCCCTGG





CTTTTATTATTACAACTCTGTGCTTTTTCATCACCATCCTGAATATCTAT





AATTAATATTTATACTATTAATAAAAAGACATTTTTGGTAAGGAGGAGTT





TTCACTGAAGTTCAGCAGTGATGGAGCTGTGGTTGAGGTGTCTGGAGGAG





ACCATGAGGTCTGCGTTTCACTAACCTGGTAAAAGAGGATATGGGTTTTT





TTTGTGGGTGTAATAGTGACATTTAACAGGTATCCCAGTGACTTAGGAGT





ATTAATCAAGCTAAATTTAAATCCTAATGACTTTTGATTAACTTTTTTTA





GGGTATTTGAAGTATACCATACAACTGTTTTGAAAATCCAGCGTGGACA







ATG








19) PCSK9. Proprotein convertase subtilisin/kexin type 9, also known as PCSK9, is an enzyme that in humans is encoded by the PCSK9 gene. This gene encodes a proprotein convertase belonging to the proteinase K subfamily of the secretory subtilase family. The encoded protein is synthesized as a soluble zymogen that undergoes autocatalytic intramolecular processing in the endoplasmic reticulum. This protein plays a major regulatory role in cholesterol homeostasis. PCSK9 binds to the epidermal growth factor-like repeat A (EGF-A) domain of the low-density lipoprotein receptor (LDLR), inducing LDLR degradation. Reduced LDLR levels result in decreased metabolism of low-density lipoproteins, which could lead to hypercholesterolemia. Variants of PCSK9 can reduce or increase circulating cholesterol. LDL cholesterol is removed from the blood when it binds to LDL receptors on the surface of liver cells, and is taken inside the cells. When PCSK9 binds to the LDL receptor, the receptor is destroyed along with the LDL. But if PCSK9 does not bind, the receptor can return to the surface of the cell and remove more cholesterol (reviewed in Akram et al, 2010 Arterioscler Thromb Vasc Biol.; 30:1279-1281)


There are numerous approaches to inhibiting PCSK9 being developed as a means of lowering cholesterol levels (reviewed in Lambert et al., 2012; J Lipid Res. 53(12):2515-24). A number of monoclonal antibodies that bind to PCSK9 near the catalytic domain that interact with the LDLR and hence inhibit the function of PCSK9 are currently in clinical trials including AMG145, 1D05-IgG2, and SAR236553/REGN727 (Aventis/Regeneron). Peptide mimetics and oligonucleotide approaches are also being developed. These include a mimic of the EGFA domain of the LDLR that binds to PCSK9, an antisense PCSK9 oligonucleotide, a locked nucleic acid inhibitor and siRNA approaches.


Protein: PCSK9 Gene: PCSK9 (Homo sapiens, chromosome 1, 55505149-55530526 [NCBI Reference Sequence: NC000001.10]; start site location: 55505511; strand: positive)












Gene Identification


















GeneID
255738



HGNC
20001



HPRD
07080



MIM
607789




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













5235

CAGGGCGCGTGAAGGGGCGCGCGG
120





5236

GACGCGTCCCGGCCCGCCCGAGC
179





5285

GACGCCTGGGGCGCGCAGATCAC
341





5341

CAGGCCGGCGCCCTAGGGGCTCC
494





5359

CACGCCGGCGGCGCCTTGAGCC
56





5402
PC2
CAGGTTTCGGCCTCGCCCTCCC
408





5445

CATCGAGCCCGCCATCGCAGCAC
1307





5473

GAGCGCCTCGACGTCGCTGCGGAAACC
273



















Target Shift Sequence











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












5235
CAGGGCGCGTGAAGGGGCGCGCGG
120





5236
GACGCGTCCCGGCCCGCCCGAGC
179





5237
ACGCGTCCCGGCCCGCCCGA
180





5238
CGCGTCCCGGCCCGCCCGAG
181





5239
GCGTCCCGGCCCGCCCGAGC
182





5240
CGTCCCGGCCCGCCCGAGCC
183





5241
GTCCCGGCCCGCCCGAGCCA
184





5242
TCCCGGCCCGCCCGAGCCAG
185





5243
CCCGGCCCGCCCGAGCCAGT
186





5244
CCGGCCCGCCCGAGCCAGTC
187





5245
CGGCCCGCCCGAGCCAGTCT
188





5246
GGCCCGCCCGAGCCAGTCTC
189





5247
GCCCGCCCGAGCCAGTCTCA
190





5248
CCCGCCCGAGCCAGTCTCAC
191





5249
CCGCCCGAGCCAGTCTCACT
192





5250
CGCCCGAGCCAGTCTCACTG
193





5251
GCCCGAGCCAGTCTCACTGC
194





5252
CCCGAGCCAGTCTCACTGCC
195





5253
CCGAGCCAGTCTCACTGCCT
196





5254
CGAGCCAGTCTCACTGCCTG
197





5255
CGACGCGTCCCGGCCCGCCC
178





5256
ACGACGCGTCCCGGCCCGCC
177





5257
AACGACGCGTCCCGGCCCGC
176





5258
CAACGACGCGTCCCGGCCCG
175





5259
GCAACGACGCGTCCCGGCCC
174





5260
TGCAACGACGCGTCCCGGCC
173





5261
CTGCAACGACGCGTCCCGGC
172





5262
GCTGCAACGACGCGTCCCGG
171





5263
TGCTGCAACGACGCGTCCCG
170





5264
CTGCTGCAACGACGCGTCCC
169





5265
GCTGCTGCAACGACGCGTCC
168





5266
CGCTGCTGCAACGACGCGTC
167





5267
CCGCTGCTGCAACGACGCGT
166





5268
GCCGCTGCTGCAACGACGCG
165





5269
AGCCGCTGCTGCAACGACGC
164





5270
GAGCCGCTGCTGCAACGACG
163





5271
GGAGCCGCTGCTGCAACGAC
162





5272
GGGAGCCGCTGCTGCAACGA
161





5273
TGGGAGCCGCTGCTGCAACG
160





5274
CTGGGAGCCGCTGCTGCAAC
159





5275
GCTGGGAGCCGCTGCTGCAA
158





5276
AGCTGGGAGCCGCTGCTGCA
157





5277
GAGCTGGGAGCCGCTGCTGC
156





5278
GGAGCTGGGAGCCGCTGCTG
155





5279
GGGAGCTGGGAGCCGCTGCT
154





5280
TGGGAGCTGGGAGCCGCTGC
153





5281
CTGGGAGCTGGGAGCCGCTG
152





5282
GCTGGGAGCTGGGAGCCGCT
151





5283
GGCTGGGAGCTGGGAGCCGC
150





5284
TGGCTGGGAGCTGGGAGCCG
149





5285
GACGCCTGGGGCGCGCAGATCAC
319





5286
ACGCCTGGGGCGCGCAGATC
320





5287
CGCCTGGGGCGCGCAGATCA
321





5288
GCCTGGGGCGCGCAGATCAC
322





5289
CCTGGGGCGCGCAGATCACG
323





5290
CTGGGGCGCGCAGATCACGC
324





5291
TGGGGCGCGCAGATCACGCC
325





5292
GGGGCGCGCAGATCACGCCA
326





5293
GGGCGCGCAGATCACGCCAC
327





5294
GGCGCGCAGATCACGCCACC
328





5295
GCGCGCAGATCACGCCACCA
329





5296
CGCGCAGATCACGCCACCAG
330





5297
GCGCAGATCACGCCACCAGA
331





5298
CGCAGATCACGCCACCAGAG
332





5299
GCAGATCACGCCACCAGAGC
333





5300
CAGATCACGCCACCAGAGCC
334





5301
AGATCACGCCACCAGAGCCC
335





5302
GATCACGCCACCAGAGCCCC
336





5303
ATCACGCCACCAGAGCCCCA
337





5304
TCACGCCACCAGAGCCCCAT
338





5305
CACGCCACCAGAGCCCCATC
339





5306
ACGCCACCAGAGCCCCATCG
340





5307
CGCCACCAGAGCCCCATCGG
341





5308
GCCACCAGAGCCCCATCGGA
342





5309
CCACCAGAGCCCCATCGGAC
343





5310
CACCAGAGCCCCATCGGACG
344





5311
ACCAGAGCCCCATCGGACGA
345





5312
CCAGAGCCCCATCGGACGAT
346





5313
CAGAGCCCCATCGGACGATC
347





5314
AGAGCCCCATCGGACGATCC
348





5315
GAGCCCCATCGGACGATCCT
349





5316
AGCCCCATCGGACGATCCTA
350





5317
GCCCCATCGGACGATCCTAT
351





5318
CCCCATCGGACGATCCTATC
352





5319
CCCATCGGACGATCCTATCT
353





5320
CCATCGGACGATCCTATCTG
354





5321
CATCGGACGATCCTATCTGA
355





5322
ATCGGACGATCCTATCTGAT
356





5323
TCGGACGATCCTATCTGATT
357





5324
CGGACGATCCTATCTGATTA
358





5325
TGACGCCTGGGGCGCGCAGA
318





5326
TTGACGCCTGGGGCGCGCAG
317





5327
CTTGACGCCTGGGGCGCGCA
316





5328
GCTTGACGCCTGGGGCGCGC
315





5329
TGCTTGACGCCTGGGGCGCG
314





5330
GTGCTTGACGCCTGGGGCGC
313





5331
GGTGCTTGACGCCTGGGGCG
312





5332
GGGTGCTTGACGCCTGGGGC
311





5333
TGGGTGCTTGACGCCTGGGG
310





5334
GTGGGTGCTTGACGCCTGGG
309





5335
TGTGGGTGCTTGACGCCTGG
308





5336
GTGTGGGTGCTTGACGCCTG
307





5337
GGTGTGGGTGCTTGACGCCT
306





5338
GGGTGTGGGTGCTTGACGCC
305





5339
AGGGTGTGGGTGCTTGACGC
304





5340
TAGGGTGTGGGTGCTTGACG
303





5341
CAGGCCGGCGCCCTAGGGGCTCC
494





5342
AGGCCGGCGCCCTAGGGGCT
495





5343
GGCCGGCGCCCTAGGGGCTC
496





5344
GCCGGCGCCCTAGGGGCTCC
497





5345
CCGGCGCCCTAGGGGCTCCT
498





5346
CGGCGCCCTAGGGGCTCCTC
499





5347
GGCGCCCTAGGGGCTCCTCC
500





5348
GCGCCCTAGGGGCTCCTCCT
501





5349
CGCCCTAGGGGCTCCTCCTC
502





5350
GCAGGCCGGCGCCCTAGGGG
493





5351
GGCAGGCCGGCGCCCTAGGG
492





5352
AGGCAGGCCGGCGCCCTAGG
491





5353
AAGGCAGGCCGGCGCCCTAG
490





5354
GAAGGCAGGCCGGCGCCCTA
489





5355
GGAAGGCAGGCCGGCGCCCT
488





5356
TGGAAGGCAGGCCGGCGCCC
487





5357
CTGGAAGGCAGGCCGGCGCC
486





5358
GCTGGAAGGCAGGCCGGCGC
485





5359
CACGCCGGCGGCGCCTTGAGCC
58





5360
ACGCCGGCGGCGCCTTGAGC
59





5361
CGCCGGCGGCGCCTTGAGCC
60





5362
GCCGGCGGCGCCTTGAGCCT
61





5363
CCGGCGGCGCCTTGAGCCTT
62





5364
CGGCGGCGCCTTGAGCCTTG
63





5365
GGCGGCGCCTTGAGCCTTGC
64





5366
GCGGCGCCTTGAGCCTTGCG
65





5367
CGGCGCCTTGAGCCTTGCGG
66





5368
GGCGCCTTGAGCCTTGCGGT
67





5369
GCGCCTTGAGCCTTGCGGTG
68





5370
CGCCTTGAGCCTTGCGGTGG
69





5371
GCCTTGAGCCTTGCGGTGGG
70





5372
CCTTGAGCCTTGCGGTGGGG
71





5373
CTTGAGCCTTGCGGTGGGGA
72





5374
TTGAGCCTTGCGGTGGGGAG
73





5375
TGAGCCTTGCGGTGGGGAGG
74





5376
CCACGCCGGCGGCGCCTTGA
57





5377
TCCACGCCGGCGGCGCCTTG
56





5378
GTCCACGCCGGCGGCGCCTT
55





5379
GGTCCACGCCGGCGGCGCCT
54





5380
CGGTCCACGCCGGCGGCGCC
53





5381
GCGGTCCACGCCGGCGGCGC
52





5382
CGCGGTCCACGCCGGCGGCG
51





5383
GCGCGGTCCACGCCGGCGGC
50





5384
TGCGCGGTCCACGCCGGCGG
49





5385
GTGCGCGGTCCACGCCGGCG
48





5386
CGTGCGCGGTCCACGCCGGC
47





5387
CCGTGCGCGGTCCACGCCGG
46





5388
GCCGTGCGCGGTCCACGCCG
45





5389
GGCCGTGCGCGGTCCACGCC
44





5390
AGGCCGTGCGCGGTCCACGC
43





5391
GAGGCCGTGCGCGGTCCACG
42





5392
AGAGGCCGTGCGCGGTCCAC
41





5393
TAGAGGCCGTGCGCGGTCCA
40





5394
CTAGAGGCCGTGCGCGGTCC
39





5395
CCTAGAGGCCGTGCGCGGTC
38





5396
ACCTAGAGGCCGTGCGCGGT
37





5397
GACCTAGAGGCCGTGCGCGG
36





5398
AGACCTAGAGGCCGTGCGCG
35





5399
GAGACCTAGAGGCCGTGCGC
34





5400
GGAGACCTAGAGGCCGTGCG
33





5401
AGGAGACCTAGAGGCCGTGC
32





5402
CAGGTTTCGGCCTCGCCCTCCC
408





5403
AGGTTTCGGCCTCGCCCTCC
409





5404
GGTTTCGGCCTCGCCCTCCC
410





5405
GTTTCGGCCTCGCCCTCCCC
411





5406
TTTCGGCCTCGCCCTCCCCA
412





5407
TTCGGCCTCGCCCTCCCCAA
413





5408
TCGGCCTCGCCCTCCCCAAA
414





5409
CGGCCTCGCCCTCCCCAAAC
415





5410
GGCCTCGCCCTCCCCAAACA
416





5411
GCCTCGCCCTCCCCAAACAG
417





5412
CCTCGCCCTCCCCAAACAGC
418





5413
CTCGCCCTCCCCAAACAGCG
419





5414
TCGCCCTCCCCAAACAGCGT
420





5415
CGCCCTCCCCAAACAGCGTC
421





5416
GCCCTCCCCAAACAGCGTCA
422





5417
CCCTCCCCAAACAGCGTCAG
423





5418
CCTCCCCAAACAGCGTCAGA
424





5419
CTCCCCAAACAGCGTCAGAT
425





5420
TCCCCAAACAGCGTCAGATT
426





5421
CCCCAAACAGCGTCAGATTA
427





5422
CCCAAACAGCGTCAGATTAC
428





5423
CCAAACAGCGTCAGATTACG
429





5424
CAAACAGCGTCAGATTACGC
430





5425
AAACAGCGTCAGATTACGCG
431





5426
AACAGCGTCAGATTACGCGC
432





5427
ACAGCGTCAGATTACGCGCA
433





5428
CAGCGTCAGATTACGCGCAG
434





5429
AGCGTCAGATTACGCGCAGA
435





5430
GCGTCAGATTACGCGCAGAG
436





5431
CGTCAGATTACGCGCAGAGG
437





5432
GTCAGATTACGCGCAGAGGG
438





5433
TCAGATTACGCGCAGAGGGA
439





5434
TCAGGTTTCGGCCTCGCCCT
407





5435
ATCAGGTTTCGGCCTCGCCC
406





5436
GATCAGGTTTCGGCCTCGCC
405





5437
GGATCAGGTTTCGGCCTCGC
404





5438
AGGATCAGGTTTCGGCCTCG
403





5439
GAGGATCAGGTTTCGGCCTC
402





5440
GGAGGATCAGGTTTCGGCCT
401





5441
TGGAGGATCAGGTTTCGGCC
400





5442
CTGGAGGATCAGGTTTCGGC
399





5443
ACTGGAGGATCAGGTTTCGG
398





5444
GACTGGAGGATCAGGTTTCG
397





5445
CATCGAGCCCGCCATCGCAGCAC
1307





5446
ATCGAGCCCGCCATCGCAGC
1308





5447
TCGAGCCCGCCATCGCAGCA
1309





5448
CGAGCCCGCCATCGCAGCAC
1310





5449
GAGCCCGCCATCGCAGCACA
1311





5450
AGCCCGCCATCGCAGCACAG
1312





5451
GCCCGCCATCGCAGCACAGA
1313





5452
CCCGCCATCGCAGCACAGAG
1314





5453
CCGCCATCGCAGCACAGAGT
1315





5454
CGCCATCGCAGCACAGAGTA
1316





5455
GCCATCGCAGCACAGAGTAG
1317





5456
CCATCGCAGCACAGAGTAGG
1318





5457
CATCGCAGCACAGAGTAGGA
1319





5458
CCATCGAGCCCGCCATCGCA
1306





5459
CCCATCGAGCCCGCCATCGC
1305





5460
CCCCATCGAGCCCGCCATCG
1304





5461
TCCCCATCGAGCCCGCCATC
1303





5462
ATCCCCATCGAGCCCGCCAT
1302





5463
TATCCCCATCGAGCCCGCCA
1301





5464
TTATCCCCATCGAGCCCGCC
1300





5465
GTTATCCCCATCGAGCCCGC
1299





5466
AGTTATCCCCATCGAGCCCG
1298





5467
GAGTTATCCCCATCGAGCCC
1297





5468
AGAGTTATCCCCATCGAGCC
1296





5469
CAGAGTTATCCCCATCGAGC
1295





5470
TCAGAGTTATCCCCATCGAG
1294





5471
GTCAGAGTTATCCCCATCGA
1293





5472
GGTCAGAGTTATCCCCATCG
1292





5473
GAGCGCCTCGACGTCGCTGCGGAAACC
273





5474
AGCGCCTCGACGTCGCTGCG
274





5475
GCGCCTCGACGTCGCTGCGG
275





5476
CGCCTCGACGTCGCTGCGGA
276





5477
GCCTCGACGTCGCTGCGGAA
277





5478
CCTCGACGTCGCTGCGGAAA
278





5479
CTCGACGTCGCTGCGGAAAC
279





5480
TCGACGTCGCTGCGGAAACC
280





5481
CGACGTCGCTGCGGAAACCT
281





5482
GACGTCGCTGCGGAAACCTT
282





5483
ACGTCGCTGCGGAAACCTTC
283





5484
CGTCGCTGCGGAAACCTTCT
284





5485
GTCGCTGCGGAAACCTTCTA
285





5486
TCGCTGCGGAAACCTTCTAG
286





5487
CGCTGCGGAAACCTTCTAGG
287





5488
GCTGCGGAAACCTTCTAGGG
288





5489
CTGCGGAAACCTTCTAGGGT
289





5490
TGCGGAAACCTTCTAGGGTG
290





5491
GCGGAAACCTTCTAGGGTGT
291





5492
CGGAAACCTTCTAGGGTGTG
292





5493
TGAGCGCCTCGACGTCGCTG
272





5494
ATGAGCGCCTCGACGTCGCT
271





5495
CATGAGCGCCTCGACGTCGC
270





5496
CCATGAGCGCCTCGACGTCG
269





5497
ACCATGAGCGCCTCGACGTC
268





5498
AACCATGAGCGCCTCGACGT
267





5499
CAACCATGAGCGCCTCGACG
266





5500
GCAACCATGAGCGCCTCGAC
265





5501
TGCAACCATGAGCGCCTCGA
264





5502
CTGCAACCATGAGCGCCTCG
263





5503
CCTGCAACCATGAGCGCCTC
262





5504
GCCTGCAACCATGAGCGCCT
261





5505
CGCCTGCAACCATGAGCGCC
260





5506
CCGCCTGCAACCATGAGCGC
259





5507
CCCGCCTGCAACCATGAGCG
258





5508
GCCCGCCTGCAACCATGAGC
257





5509
CGCCCGCCTGCAACCATGAG
256





5510
GCGCCCGCCTGCAACCATGA
255





5511
GGCGCCCGCCTGCAACCATG
254





5512
CGGCGCCCGCCTGCAACCAT
253





5513
GCGGCGCCCGCCTGCAACCA
252





5514
GGCGGCGCCCGCCTGCAACC
251





5515
CGGCGGCGCCCGCCTGCAAC
250





5516
ACGGCGGCGCCCGCCTGCAA
249





5517
AACGGCGGCGCCCGCCTGCA
248





5518
GAACGGCGGCGCCCGCCTGC
247





5519
TGAACGGCGGCGCCCGCCTG
246





5520
CTGAACGGCGGCGCCCGCCT
245





5521
ACTGAACGGCGGCGCCCGCC
244





5522
AACTGAACGGCGGCGCCCGC
243





5523
GAACTGAACGGCGGCGCCCG
242





5524
TGAACTGAACGGCGGCGCCC
241





5525
CTGAACTGAACGGCGGCGCC
240





5526
CCTGAACTGAACGGCGGCGC
239





5527
CCCTGAACTGAACGGCGGCG
238





5528
ACCCTGAACTGAACGGCGGC
237





5529
GACCCTGAACTGAACGGCGG
236





5530
AGACCCTGAACTGAACGGCG
235





5531
CAGACCCTGAACTGAACGGC
234





5532
TCAGACCCTGAACTGAACGG
233





5533
CTCAGACCCTGAACTGAACG
232



















Hot Zones (Relative upstream location to gene start site)







 1-800


1100-1450









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11968)







CCATCCTGGGCCATTGGGCCAGCTCCAGCCTCATCCTTGAATGGTGGGTG





TACATCGCTGGGGTCCTTGCTAGATTATATTAGGGCCTCCACACACTTTA





GTTGCTCTCCGTTTGCACAATGATTTCTATATCATTAGTACCTCTTTGTC





CACTTGCCTAATTATTTCCTTAGGATAAATTCCTAAGAAATCAAATAGCT





AGGTCAGTATATAGCACATTTTCACAGTTTGCTACTGACTAGAGATATTA





AAGGTACAAAAACAGCCAGAATTAGATGTAGAGTCGCAAGGGAGTTTTGT





TACTAAGACGTCATTTCTAATCAGGGAGAAAAAATGAGTTACGGAATAAA





CGGTATTGGAACAATAGGCTAGCCTTCTGGAGAAAAATAACCTCACTCCT





TATACAAAAGTAAATCCCAGTGGAAGCCAAGATATTAAAAAAAGATTTAA





AAAAGGAGGACAATTTTTATATGATCTTGATAAGGAGGAGGCCTTTCTAA





GCACAGTACAAAATCAAGAAGTCATGAAATAAAAGGCTGATAAGTTTGAC





TCCATGAAAATTAAAATTTTCTATGGAAAAAAATACAATAAAGTCAAAAA





TCAATCAACAAACTGGAAAATAGATTTGCAACATACATAAGAGACAGCAG





GCTAATTTTGGTATTATACATAAAAAGCTATTACAAATCATCAAACAAAA





GCTCCACAGCCAAAATGAAAAAATGAAGAGACAGTTCAAAGACAAACAAA





TGTAGATAATTGTTTAACTTAAGGAAAGGTCAAAATATTTGGCAACTCTG





TGTTGGCCTGGGTGTGACCATGAGCGGTAGTTGCCAGTGGTATTCACAAA





TATACCCTTTCTCCTCCTTCTGGGCACTTGGTGTGATTGCAGTTTCCTAC





ATTTGACCTTAGGTGTGGTCATGTGTCTCGCTTAGGAGAAGGAAATGTGA





ACGGAAGTGTTGTGGGTCACTTTTGTGTGGAAGCTGCATGGAGTCACCTC





TTTGCTTTCCGTCAGCCTCAGTGTTCAGCAATGTTCTGAATGATGGTTGC





TTTATCAGTCTGGTTCTGGGGTGAGGGTAATGAAGTAGTGAAGCAAAGTC





CTTGATGGACATGTGAGGTGAGACAGAAATAAACCTTTGACATTTCAAGC





CCCTGAGATTTGGGGCGTGCATGTGCTGGAAGCAGAACCTAGCCTATTCT





GATGGATTCCTCCAGCACTGCTCGTGGGAAGACATCATCAATATAGAGCA





TTCATGTGCCCTTTATCTCGAAATTCCACTTCCAGGAATTTATGAAACAG





ATACTCTCACATGTGCAAACAGCTATGGATAAGGACAGACATGGCAACTT





GGATTGCAATAGCAAAAGACAGAAACAACCAACGGAAACACCAACCAATA





GGAAATTGGCTAAAGACATTGTGAAACATACATAGAATGAAATAATCTGC





AACCAGAAAAATAAGGCAGTAGATGTATGTGTACCAGTGTGGTTTTTATT





CCGAGATTAGGGCTAGGTTAAGACGTCAGATTAAGTTGTCCCTCTCCACC





CCACCAATATAAATAAAAAGTTAAAAGTAAATCATAAACTATTTTTACAA





TTTTAAAAAGTGGGTTAAAGAGCCCATCCAAGTAGTTTTATAAAAGTAGA





CTATCTCCGAAAAGATACCCAATAAATAGGTATATTACTTTCCTGGGGCT





GTTATAACAAGTTTCTACAAATTTGCTGGCTTCAAATAACAAAAACGTAT





TCTCTTGCAGTTATGGAAGCCAGAAGTATGGAATGAAGGGTTGCAGGGTG





GTGCCCTCTCCCAAAGCTCTAGGGGAGGAACATTCCTTGCTTCTTCCAGC





TCCTTTGGGGGCTCCTGGCATTCCTTGGCTTATGTCGGCACAGCTCTAAT





CGGCGCCTCCATTGTTACATAGGTGTTTCTGTGTCTCAAGTATCTCTCCC





CTTTCTCTTCTGATATCAGTCATTGGATTTAGGGACCATCCTAAACCCAG





GATAATCTCCTCATGAGATCCTTAGGTCAATTACATCTGCAAAGATCTCA





TTTCCAAATAAGGTCACATTCAAAAGTACCAGGGGTTAGTCTTAGACTTA





TCTTTTTGGGGGACACGATTCAACCCACTACCGTGGGTAACAGTGGTTTT





CCCTCAGAAGGTGGTGGTTCAGGAGTGGGAGGAAGATGAACTTTTCACTG





TATATCCTTTCAAACTATTCACGTTTTAAAAAAAACATTTTCATGTAAAT





TTAAAAAAATTGAACATTCACACAAAAAGATGCCCCCTCCCTTGCAAAAA





AGAGTATGCCCGTTCAAAATGTTGAAATGTACACTCACAGCAATGGTGGC





TGCAGACTCCAAGTTTCTGAGGTTGGAGAAGGTAGCCAGGGAGCATAAAA





GTGAGTTCTATCTACTCATTCAGTCTATGAGGGGAAGGCAATGGCTAGAA





AAGCATTTTGAGGGACAGTAAAAGTGGCATTTTTAGAGGGAGGAAGCCTT





GAGGATGCTTGTGGGGTGAAGGGAAAGAATAACTCAGGAAGAGGCATTTA





GGGATAAGAGGAGGAGAGGAGATAGTGGAGGTAGGTGATCCCTGCGGAGG





CCAGATTGGGGCAGGGGAGTGTCAGCTGAGTATAAGAGGATGGTCCCCTC





TGCCCTGAAGGAGGAAGGCAGGAGGGGAAAAGGATGGGTGTTGACCCAGA





AAGCACTTGTGGTGGAGGGGAGGCCCCAGAAGAGGCTTCTGACTTACCCT





GATTGCTGGTACCTCTCAGGGGAGCTGGCTGCTTATTTGCTGGCCAGGGT





GTGGGGGAACCCATTTGAGAAGAGGGAGAAGGTGACACAATTCCTTTGGG





CAACTTATGGGAGGGGTAATTGGTGAGGGATGAAAGCCCTGCCAAGTGGC





AGGAGGCCCAGCTGGGGCTGCCCCTCATAAGAGTGCAGTGGAGGATATGG





GATGAGAAGTGACTGCCCCTCTGGTTCCATCTGTCGCAGAGCCCAGGGTG





CTTCCTTCCTCCCCCACCTCCCTCAGAACACACCCACTGCATGCTGGACA





GCAGCCCCCTTCCTGGGCCTGGGGACATCCATGTCCCTCTGTGCACAGGC





TTCATCATTCTCTGGGTGCACGGTAACGACCCCGGTAGGTGAGAGGCCAA





GGTCCCAAAGGGGAGCAGCAGGGAAAGTTAGCTCCCATCTATTCTTGCTC





CAGGGGAGGCCTTTGATGAGGAAGCTGCCAAAAGCACATTGCAAATACAA





TTCCAATTACAGGCAACAGGAAGGAGAACCACCTCTGCCACCTCTGTCAG





CAAACCATGAGCTCCTACTCTGTGCTGCGATGGCGGGCTCGATGGGGATA





ACTCTGACCTTACCTCATGGAGTCACTGTCAACCCACTGGTTGCACTGTC





TTTGTGCACTGGCTCTCTGGAGTGAGGTCTTTGCAAACAAAGTGGAAAGA





GCATCAACTTTGGACTCCAGCACCTAGATTCAGAGCAGGCCATTTCACTC





GGAATCTGCTGTGCATCTGCAAGGGAGGATCATAAATTCGCCTTTGTTTC





TTCCCAGTATCGACAGCCCTTCCAGAAAGAGCAAGCCTCATGTCATGCCA





CATGTACAATCTGAGGCCAGGAGCTCTCTTTCCCCTTTTCATCCTCCTGC





CTGGTACACAATAGGTGTTTACTGGATGCTTGTCCAGTTGATTTCTTGAA





CATGGTGTGTAAAAGGAATCTTTGCAAATTGAATCTTCTGGAAAGCTGAG





CTTGTGCCTACCATAGAATTCTGAATGTACCTATATGACGTCTTTGCAAA





CTTAAAACCTGAATCTTTGTAGTATAAATCCCTTGAAATGCATGTAGGCT





GGACATCAAAAGCAAGCAATCTCTTCAAGGAGCAGCTAGTTGGTAAGGTC





AGTGTGCAGGGTGCATAAAGGGCAGAGGCCGGAGGGGGTCCAGGCTAAGT





TTAGAAGGCTGCCAGGTTAAGGCCAGTGGAAAGAATTCGGTGGGCAGCGA





GGAGTCCACAGTAGGATTGATTCAGAAGTCTCACTGGTCAGCAGGAGACA





AGGTGGACCCAGGAAACACTGAAAAGGTGGGCCCGGCAGAACTTGGAGTC





TGGCATCCCACGCAGGGTGAGAGGCGGGAGAGGAGGAGCCCCTAGGGCGC





CGGCCTGCCTTCCAGCCCAGTTAGGATTTGGGAGTTTTTTCTTCCCTCTG





CGCGTAATCTGACGCTGTTTGGGGAGGGCGAGGCCGAAACCTGATCCTCC





AGTCCGGGGGTTCCGTTAATGTTTAATCAGATAGGATCGTCCGATGGGGC





TCTGGTGGCGTGATCTGCGCGCCCCAGGCGTCAAGCACCCACACCCTAGA





AGGTTTCCGCAGCGACGTCGAGGCGCTCATGGTTGCAGGCGGGCGCCGCC





GTTCAGTTCAGGGTCTGAGCCTGGAGGAGTGAGCCAGGCAGTGAGACTGG





CTCGGGCGGGCCGGGACGCGTCGTTGCAGCAGCGGCTCCCAGCTCCCAGC





CAGGATTCCGCGCGCCCCTTCACGCGCCCTGCTCCTGAACTTCAGCTCCT





GCACAGTCCTCCCCACCGCAAGGCTCAAGGCGCCGCCGGCGTGGACCGCG





CACGGCCTCTAGGTCTCCTCGCCAGGACAGCAACCTCTCCCCTGGCCCTC







ATG








20) MEK1. MEK1 (MAP2K1) Mitogen-activated protein kinase kinase 1. Dual specificity protein kinases act as an essential component of the MAP kinase signal transduction pathway and serves as an integration point for multiple biochemical signals. MEK1 and MEK2 are members of the dual specificity protein kinase family, which act as a mitogen-activated protein (MAP) kinase kinases and as extracellular signal-regulated kinases (ERKs). Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth and proliferation, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements (reviewed by Roberts and Der; 2007 Oncogene 26, 3291-3310).


Genetic alterations that activate the mitogen-activated protein kinase (MAP kinase) pathway occur commonly in cancer. For example, the majority of melanomas harbor mutations in the BRAF oncogene, which confers enhanced sensitivity to pharmacologic MAP kinase inhibition (e.g., RAF or MEK inhibitors). Most mutations conferring resistance to MEK inhibition in vitro populated the allosteric drug binding pocket or alpha-helix C and showed robust (approximately 100-fold) resistance to allosteric MEK inhibition (reviewed in Emery et al, 2009; Proc Natl Acad Sci.; 106(48):20411-20416). Other mutations affected MEK1 codons located within or abutting the N-terminal negative regulatory helix (helix A), which also undergo gain-of-function germline mutations in cardiofaciocutaneous (CFC) syndrome. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.


Protein: MEK1 Gene: MAP2K1 (Homo sapiens, chromosome 15, 66679211-66783882 [NCBI Reference Sequence: NC000015.9]; start site location: 66679686; strand: positive)












Gene Identification


















GeneID
5604



HGNC
6840



HPRD
01469



MIM
176872




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













5534

CAAGTCCGGGCCGCGGGCCCCGGGGC
93





5716
MEK1_2
GCGCCCCGCGCGGTCCCGTCAGCGC
133





5898

GCGGAGCGGGCTGAACGTGCG
249





5900

GACTGGAGGCCGGGGGAGGGGCGGGG
433





5901

GACCCGGGTAACGCGCTTCCAAC
5





5924
MEK1_1
CACTCGGCTCCGCCCCTATTGC
507





6000

TACGTCACGGGAGCGCGGCGCAC
578





6077

GTCGCGGACGCCGTGGCGCCCTCTGTC
619





6154

CACTCGCCGTCATGCCCGGATCC
1183



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












5534
CAAGTCCGGGCCGCGGGCCCCGGGGC
93





5535
AAGTCCGGGCCGCGGGCCCC
94





5536
AGTCCGGGCCGCGGGCCCCG
95





5537
GTCCGGGCCGCGGGCCCCGG
96





5538
TCCGGGCCGCGGGCCCCGGG
97





5539
CCGGGCCGCGGGCCCCGGGG
98





5540
CGGGCCGCGGGCCCCGGGGC
99





5541
GGGCCGCGGGCCCCGGGGCT
100





5542
GGCCGCGGGCCCCGGGGCTG
101





5543
GCCGCGGGCCCCGGGGCTGC
102





5544
CCGCGGGCCCCGGGGCTGCC
103





5545
CGCGGGCCCCGGGGCTGCCT
104





5546
GCGGGCCCCGGGGCTGCCTT
105





5547
CGGGCCCCGGGGCTGCCTTC
106





5548
GGGCCCCGGGGCTGCCTTCA
107





5549
GGCCCCGGGGCTGCCTTCAG
108





5550
GCCCCGGGGCTGCCTTCAGC
109





5551
CCCCGGGGCTGCCTTCAGCG
110





5552
CCCGGGGCTGCCTTCAGCGG
111





5553
CCGGGGCTGCCTTCAGCGGG
112





5554
CGGGGCTGCCTTCAGCGGGT
113





5555
GGGGCTGCCTTCAGCGGGTG
114





5556
GGGCTGCCTTCAGCGGGTGC
115





5557
GGCTGCCTTCAGCGGGTGCG
116





5558
GCTGCCTTCAGCGGGTGCGC
117





5559
CTGCCTTCAGCGGGTGCGCC
118





5560
TGCCTTCAGCGGGTGCGCCC
119





5561
GCCTTCAGCGGGTGCGCCCC
120





5562
CCTTCAGCGGGTGCGCCCCG
121





5563
CTTCAGCGGGTGCGCCCCGC
122





5564
TTCAGCGGGTGCGCCCCGCG
123





5565
TCAGCGGGTGCGCCCCGCGC
124





5566
CAGCGGGTGCGCCCCGCGCG
125





5567
AGCGGGTGCGCCCCGCGCGG
126





5568
GCGGGTGCGCCCCGCGCGGT
127





5569
CGGGTGCGCCCCGCGCGGTC
128





5570
GGGTGCGCCCCGCGCGGTCC
129





5571
GGTGCGCCCCGCGCGGTCCC
130





5572
GTGCGCCCCGCGCGGTCCCG
131





5573
TGCGCCCCGCGCGGTCCCGT
132





5574
GCGCCCCGCGCGGTCCCGTC
133





5575
CGCCCCGCGCGGTCCCGTCA
134





5576
GCCCCGCGCGGTCCCGTCAG
135





5577
CCCCGCGCGGTCCCGTCAGC
136





5578
CCCGCGCGGTCCCGTCAGCG
137





5579
CCGCGCGGTCCCGTCAGCGC
138





5580
CGCGCGGTCCCGTCAGCGCC
139





5581
GCGCGGTCCCGTCAGCGCCG
140





5582
CGCGGTCCCGTCAGCGCCGA
141





5583
GCGGTCCCGTCAGCGCCGAG
142





5584
CGGTCCCGTCAGCGCCGAGG
143





5585
GGTCCCGTCAGCGCCGAGGG
144





5586
GTCCCGTCAGCGCCGAGGGG
145





5587
TCCCGTCAGCGCCGAGGGGC
146





5588
CCCGTCAGCGCCGAGGGGCC
147





5589
CCGTCAGCGCCGAGGGGCCG
148





5590
CGTCAGCGCCGAGGGGCCGG
149





5591
GTCAGCGCCGAGGGGCCGGT
150





5592
TCAGCGCCGAGGGGCCGGTA
151





5593
CAGCGCCGAGGGGCCGGTAG
152





5594
AGCGCCGAGGGGCCGGTAGC
153





5595
GCGCCGAGGGGCCGGTAGCG
154





5596
CGCCGAGGGGCCGGTAGCGG
155





5597
GCCGAGGGGCCGGTAGCGGT
156





5598
CCGAGGGGCCGGTAGCGGTC
157





5599
CGAGGGGCCGGTAGCGGTCT
158





5600
GAGGGGCCGGTAGCGGTCTC
159





5601
AGGGGCCGGTAGCGGTCTCA
160





5602
GGGGCCGGTAGCGGTCTCAG
161





5603
GGGCCGGTAGCGGTCTCAGT
162





5604
GGCCGGTAGCGGTCTCAGTG
163





5605
GCCGGTAGCGGTCTCAGTGG
164





5606
CCGGTAGCGGTCTCAGTGGA
165





5607
CGGTAGCGGTCTCAGTGGAC
166





5608
GGTAGCGGTCTCAGTGGACC
167





5609
GTAGCGGTCTCAGTGGACCC
168





5610
TAGCGGTCTCAGTGGACCCC
169





5611
AGCGGTCTCAGTGGACCCCC
170





5612
GCGGTCTCAGTGGACCCCCG
171





5613
CGGTCTCAGTGGACCCCCGC
172





5614
GGTCTCAGTGGACCCCCGCC
173





5615
GTCTCAGTGGACCCCCGCCC
174





5616
TCTCAGTGGACCCCCGCCCC
175





5617
CTCAGTGGACCCCCGCCCCA
176





5618
TCAGTGGACCCCCGCCCCAC
177





5619
CAGTGGACCCCCGCCCCACC
178





5620
AGTGGACCCCCGCCCCACCC
179





5621
GTGGACCCCCGCCCCACCCG
180





5622
TGGACCCCCGCCCCACCCGC
181





5623
GGACCCCCGCCCCACCCGCC
182





5624
GACCCCCGCCCCACCCGCCC
183





5625
ACCCCCGCCCCACCCGCCCG
184





5626
CCCCCGCCCCACCCGCCCGG
185





5627
CCCCGCCCCACCCGCCCGGG
186





5628
CCCGCCCCACCCGCCCGGGA
187





5629
CCGCCCCACCCGCCCGGGAC
188





5630
CGCCCCACCCGCCCGGGACT
189





5631
GCCCCACCCGCCCGGGACTC
190





5632
CCCCACCCGCCCGGGACTCG
191





5633
CCCACCCGCCCGGGACTCGG
192





5634
CCACCCGCCCGGGACTCGGC
193





5635
CACCCGCCCGGGACTCGGCT
194





5636
ACCCGCCCGGGACTCGGCTT
195





5637
CCCGCCCGGGACTCGGCTTC
196





5638
CCGCCCGGGACTCGGCTTCG
197





5639
CGCCCGGGACTCGGCTTCGC
198





5640
GCCCGGGACTCGGCTTCGCG
199





5641
CCCGGGACTCGGCTTCGCGC
200





5642
CCGGGACTCGGCTTCGCGCG
201





5643
CGGGACTCGGCTTCGCGCGC
202





5644
GGGACTCGGCTTCGCGCGCA
203





5645
GGACTCGGCTTCGCGCGCAG
204





5646
GACTCGGCTTCGCGCGCAGA
205





5647
ACTCGGCTTCGCGCGCAGAG
206





5648
CTCGGCTTCGCGCGCAGAGA
207





5649
TCGGCTTCGCGCGCAGAGAG
208





5650
CGGCTTCGCGCGCAGAGAGC
209





5651
GGCTTCGCGCGCAGAGAGCC
210





5652
GCTTCGCGCGCAGAGAGCCG
211





5653
CTTCGCGCGCAGAGAGCCGA
212





5654
TTCGCGCGCAGAGAGCCGAA
213





5655
TCGCGCGCAGAGAGCCGAAA
214





5656
CCAAGTCCGGGCCGCGGGCC
92





5657
ACCAAGTCCGGGCCGCGGGC
91





5658
GACCAAGTCCGGGCCGCGGG
90





5659
GGACCAAGTCCGGGCCGCGG
89





5660
AGGACCAAGTCCGGGCCGCG
88





5661
CAGGACCAAGTCCGGGCCGC
87





5662
GCAGGACCAAGTCCGGGCCG
86





5663
CGCAGGACCAAGTCCGGGCC
85





5664
GCGCAGGACCAAGTCCGGGC
84





5665
TGCGCAGGACCAAGTCCGGG
83





5666
CTGCGCAGGACCAAGTCCGG
82





5667
GCTGCGCAGGACCAAGTCCG
81





5668
CGCTGCGCAGGACCAAGTCC
80





5669
CCGCTGCGCAGGACCAAGTC
79





5670
CCCGCTGCGCAGGACCAAGT
78





5671
GCCCGCTGCGCAGGACCAAG
77





5672
CGCCCGCTGCGCAGGACCAA
76





5673
GCGCCCGCTGCGCAGGACCA
75





5674
CGCGCCCGCTGCGCAGGACC
74





5675
CCGCGCCCGCTGCGCAGGAC
73





5676
CCCGCGCCCGCTGCGCAGGA
72





5677
CCCCGCGCCCGCTGCGCAGG
71





5678
GCCCCGCGCCCGCTGCGCAG
70





5679
TGCCCCGCGCCCGCTGCGCA
69





5680
CTGCCCCGCGCCCGCTGCGC
68





5681
GCTGCCCCGCGCCCGCTGCG
67





5682
CGCTGCCCCGCGCCCGCTGC
66





5683
GCGCTGCCCCGCGCCCGCTG
65





5684
TGCGCTGCCCCGCGCCCGCT
64





5685
CTGCGCTGCCCCGCGCCCGC
63





5686
GCTGCGCTGCCCCGCGCCCG
62





5687
CGCTGCGCTGCCCCGCGCCC
61





5688
CCGCTGCGCTGCCCCGCGCC
60





5689
CCCGCTGCGCTGCCCCGCGC
59





5690
TCCCGCTGCGCTGCCCCGCG
58





5691
CTCCCGCTGCGCTGCCCCGC
57





5692
CCTCCCGCTGCGCTGCCCCG
56





5693
TCCTCCCGCTGCGCTGCCCC
55





5694
TTCCTCCCGCTGCGCTGCCC
54





5695
CTTCCTCCCGCTGCGCTGCC
53





5696
GCTTCCTCCCGCTGCGCTGC
52





5697
CGCTTCCTCCCGCTGCGCTG
51





5698
TCGCTTCCTCCCGCTGCGCT
50





5699
CTCGCTTCCTCCCGCTGCGC
49





5700
TCTCGCTTCCTCCCGCTGCG
48





5701
CTCTCGCTTCCTCCCGCTGC
47





5702
CCTCTCGCTTCCTCCCGCTG
46





5703
ACCTCTCGCTTCCTCCCGCT
45





5704
CACCTCTCGCTTCCTCCCGC
44





5705
GCACCTCTCGCTTCCTCCCG
43





5706
AGCACCTCTCGCTTCCTCCC
42





5707
CAGCACCTCTCGCTTCCTCC
41





5708
GCAGCACCTCTCGCTTCCTC
40





5709
GGCAGCACCTCTCGCTTCCT
39





5710
GGGCAGCACCTCTCGCTTCC
38





5711
AGGGCAGCACCTCTCGCTTC
37





5712
GAGGGCAGCACCTCTCGCTT
36





5713
GGAGGGCAGCACCTCTCGCT
35





5714
GGGAGGGCAGCACCTCTCGC
34





5715
GGGGAGGGCAGCACCTCTCG
33





5716
GCGCCCCGCGCGGTCCCGTCAGCGC
133





5717
CGCCCCGCGCGGTCCCGTCA
134





5718
GCCCCGCGCGGTCCCGTCAG
135





5719
CCCCGCGCGGTCCCGTCAGC
136





5720
CCCGCGCGGTCCCGTCAGCG
137





5721
CCGCGCGGTCCCGTCAGCGC
138





5722
CGCGCGGTCCCGTCAGCGCC
139





5723
GCGCGGTCCCGTCAGCGCCG
140





5724
CGCGGTCCCGTCAGCGCCGA
141





5725
GCGGTCCCGTCAGCGCCGAG
142





5726
CGGTCCCGTCAGCGCCGAGG
143





5727
GGTCCCGTCAGCGCCGAGGG
144





5728
GTCCCGTCAGCGCCGAGGGG
145





5729
TCCCGTCAGCGCCGAGGGGC
146





5730
CCCGTCAGCGCCGAGGGGCC
147





5731
CCGTCAGCGCCGAGGGGCCG
148





5732
CGTCAGCGCCGAGGGGCCGG
149





5733
GTCAGCGCCGAGGGGCCGGT
150





5734
TCAGCGCCGAGGGGCCGGTA
151





5735
CAGCGCCGAGGGGCCGGTAG
152





5736
AGCGCCGAGGGGCCGGTAGC
153





5737
GCGCCGAGGGGCCGGTAGCG
154





5738
CGCCGAGGGGCCGGTAGCGG
155





5739
GCCGAGGGGCCGGTAGCGGT
156





5740
CCGAGGGGCCGGTAGCGGTC
157





5741
CGAGGGGCCGGTAGCGGTCT
158





5742
GAGGGGCCGGTAGCGGTCTC
159





5743
AGGGGCCGGTAGCGGTCTCA
160





5744
GGGGCCGGTAGCGGTCTCAG
161





5745
GGGCCGGTAGCGGTCTCAGT
162





5746
GGCCGGTAGCGGTCTCAGTG
163





5747
GCCGGTAGCGGTCTCAGTGG
164





5748
CCGGTAGCGGTCTCAGTGGA
165





5749
CGGTAGCGGTCTCAGTGGAC
166





5750
GGTAGCGGTCTCAGTGGACC
167





5751
GTAGCGGTCTCAGTGGACCC
168





5752
TAGCGGTCTCAGTGGACCCC
169





5753
AGCGGTCTCAGTGGACCCCC
170





5754
GCGGTCTCAGTGGACCCCCG
171





5755
CGGTCTCAGTGGACCCCCGC
172





5756
GGTCTCAGTGGACCCCCGCC
173





5757
GTCTCAGTGGACCCCCGCCC
174





5758
TCTCAGTGGACCCCCGCCCC
175





5759
CTCAGTGGACCCCCGCCCCA
176





5760
TCAGTGGACCCCCGCCCCAC
177





5761
CAGTGGACCCCCGCCCCACC
178





5762
AGTGGACCCCCGCCCCACCC
179





5763
GTGGACCCCCGCCCCACCCG
180





5764
TGGACCCCCGCCCCACCCGC
181





5765
GGACCCCCGCCCCACCCGCC
182





5766
GACCCCCGCCCCACCCGCCC
183





5767
ACCCCCGCCCCACCCGCCCG
184





5768
CCCCCGCCCCACCCGCCCGG
185





5769
CCCCGCCCCACCCGCCCGGG
186





5770
CCCGCCCCACCCGCCCGGGA
187





5771
CCGCCCCACCCGCCCGGGAC
188





5772
CGCCCCACCCGCCCGGGACT
189





5773
GCCCCACCCGCCCGGGACTC
190





5774
CCCCACCCGCCCGGGACTCG
191





5775
CCCACCCGCCCGGGACTCGG
192





5776
CCACCCGCCCGGGACTCGGC
193





5777
CACCCGCCCGGGACTCGGCT
194





5778
ACCCGCCCGGGACTCGGCTT
195





5779
CCCGCCCGGGACTCGGCTTC
196





5780
CCGCCCGGGACTCGGCTTCG
197





5781
CGCCCGGGACTCGGCTTCGC
198





5782
GCCCGGGACTCGGCTTCGCG
199





5783
CCCGGGACTCGGCTTCGCGC
200





5784
CCGGGACTCGGCTTCGCGCG
201





5785
CGGGACTCGGCTTCGCGCGC
202





5786
GGGACTCGGCTTCGCGCGCA
203





5787
GGACTCGGCTTCGCGCGCAG
204





5788
GACTCGGCTTCGCGCGCAGA
205





5789
ACTCGGCTTCGCGCGCAGAG
206





5790
CTCGGCTTCGCGCGCAGAGA
207





5791
TCGGCTTCGCGCGCAGAGAG
208





5792
CGGCTTCGCGCGCAGAGAGC
209





5793
GGCTTCGCGCGCAGAGAGCC
210





5794
GCTTCGCGCGCAGAGAGCCG
211





5795
CTTCGCGCGCAGAGAGCCGA
212





5796
TTCGCGCGCAGAGAGCCGAA
213





5797
TCGCGCGCAGAGAGCCGAAA
214





5798
TGCGCCCCGCGCGGTCCCGT
132





5799
GTGCGCCCCGCGCGGTCCCG
131





5800
GGTGCGCCCCGCGCGGTCCC
130





5801
GGGTGCGCCCCGCGCGGTCC
129





5802
CGGGTGCGCCCCGCGCGGTC
128





5803
GCGGGTGCGCCCCGCGCGGT
127





5804
AGCGGGTGCGCCCCGCGCGG
126





5805
CAGCGGGTGCGCCCCGCGCG
125





5806
TCAGCGGGTGCGCCCCGCGC
124





5807
TTCAGCGGGTGCGCCCCGCG
123





5808
CTTCAGCGGGTGCGCCCCGC
122





5809
CCTTCAGCGGGTGCGCCCCG
121





5810
GCCTTCAGCGGGTGCGCCCC
120





5811
TGCCTTCAGCGGGTGCGCCC
119





5812
CTGCCTTCAGCGGGTGCGCC
118





5813
GCTGCCTTCAGCGGGTGCGC
117





5814
GGCTGCCTTCAGCGGGTGCG
116





5815
GGGCTGCCTTCAGCGGGTGC
115





5816
GGGGCTGCCTTCAGCGGGTG
114





5817
CGGGGCTGCCTTCAGCGGGT
113





5818
CCGGGGCTGCCTTCAGCGGG
112





5819
CCCGGGGCTGCCTTCAGCGG
111





5820
CCCCGGGGCTGCCTTCAGCG
110





5821
GCCCCGGGGCTGCCTTCAGC
109





5822
GGCCCCGGGGCTGCCTTCAG
108





5823
GGGCCCCGGGGCTGCCTTCA
107





5824
CGGGCCCCGGGGCTGCCTTC
106





5825
GCGGGCCCCGGGGCTGCCTT
105





5826
CGCGGGCCCCGGGGCTGCCT
104





5827
CCGCGGGCCCCGGGGCTGCC
103





5828
GCCGCGGGCCCCGGGGCTGC
102





5829
GGCCGCGGGCCCCGGGGCTG
101





5830
GGGCCGCGGGCCCCGGGGCT
100





5831
CGGGCCGCGGGCCCCGGGGC
99





5832
CCGGGCCGCGGGCCCCGGGG
98





5833
TCCGGGCCGCGGGCCCCGGG
97





5834
GTCCGGGCCGCGGGCCCCGG
96





5835
AGTCCGGGCCGCGGGCCCCG
95





5836
AAGTCCGGGCCGCGGGCCCC
94





5837
CAAGTCCGGGCCGCGGGCCC
93





5838
CCAAGTCCGGGCCGCGGGCC
92





5839
ACCAAGTCCGGGCCGCGGGC
91





5840
GACCAAGTCCGGGCCGCGGG
90





5841
GGACCAAGTCCGGGCCGCGG
89





5842
AGGACCAAGTCCGGGCCGCG
88





5843
CAGGACCAAGTCCGGGCCGC
87





5844
GCAGGACCAAGTCCGGGCCG
86





5845
CGCAGGACCAAGTCCGGGCC
85





5846
GCGCAGGACCAAGTCCGGGC
84





5847
TGCGCAGGACCAAGTCCGGG
83





5848
CTGCGCAGGACCAAGTCCGG
82





5849
GCTGCGCAGGACCAAGTCCG
81





5850
CGCTGCGCAGGACCAAGTCC
80





5851
CCGCTGCGCAGGACCAAGTC
79





5852
CCCGCTGCGCAGGACCAAGT
78





5853
GCCCGCTGCGCAGGACCAAG
77





5854
CGCCCGCTGCGCAGGACCAA
76





5855
GCGCCCGCTGCGCAGGACCA
75





5856
CGCGCCCGCTGCGCAGGACC
74





5857
CCGCGCCCGCTGCGCAGGAC
73





5858
CCCGCGCCCGCTGCGCAGGA
72





5859
CCCCGCGCCCGCTGCGCAGG
71





5860
GCCCCGCGCCCGCTGCGCAG
70





5861
TGCCCCGCGCCCGCTGCGCA
69





5862
CTGCCCCGCGCCCGCTGCGC
68





5863
GCTGCCCCGCGCCCGCTGCG
67





5864
CGCTGCCCCGCGCCCGCTGC
66





5865
GCGCTGCCCCGCGCCCGCTG
65





5866
TGCGCTGCCCCGCGCCCGCT
64





5867
CTGCGCTGCCCCGCGCCCGC
63





5868
GCTGCGCTGCCCCGCGCCCG
62





5869
CGCTGCGCTGCCCCGCGCCC
61





5870
CCGCTGCGCTGCCCCGCGCC
60





5871
CCCGCTGCGCTGCCCCGCGC
59





5872
TCCCGCTGCGCTGCCCCGCG
58





5873
CTCCCGCTGCGCTGCCCCGC
57





5874
CCTCCCGCTGCGCTGCCCCG
56





5875
TCCTCCCGCTGCGCTGCCCC
55





5876
TTCCTCCCGCTGCGCTGCCC
54





5877
CTTCCTCCCGCTGCGCTGCC
53





5878
GCTTCCTCCCGCTGCGCTGC
52





5879
CGCTTCCTCCCGCTGCGCTG
51





5880
TCGCTTCCTCCCGCTGCGCT
50





5881
CTCGCTTCCTCCCGCTGCGC
49





5882
TCTCGCTTCCTCCCGCTGCG
48





5883
CTCTCGCTTCCTCCCGCTGC
47





5884
CCTCTCGCTTCCTCCCGCTG
46





5885
ACCTCTCGCTTCCTCCCGCT
45





5886
CACCTCTCGCTTCCTCCCGC
44





5887
GCACCTCTCGCTTCCTCCCG
43





5888
AGCACCTCTCGCTTCCTCCC
42





5889
CAGCACCTCTCGCTTCCTCC
41





5890
GCAGCACCTCTCGCTTCCTC
40





5891
GGCAGCACCTCTCGCTTCCT
39





5892
GGGCAGCACCTCTCGCTTCC
38





5893
AGGGCAGCACCTCTCGCTTC
37





5894
GAGGGCAGCACCTCTCGCTT
36





5895
GGAGGGCAGCACCTCTCGCT
35





5896
GGGAGGGCAGCACCTCTCGC
34





5897
GGGGAGGGCAGCACCTCTCG
33





5898
GCGGAGCGGGCTGAACGTGCG
249





5899
CGGAGCGGGCTGAACGTGCG
250





5900
GACTGGAGGCCGGGGGAGGGGCGGGG
433





5901
GACCCGGGTAACGCGCTTCCAAC
5





5902
ACCCGGGTAACGCGCTTCCA
6





5903
CCCGGGTAACGCGCTTCCAA
7





5904
CCGGGTAACGCGCTTCCAAC
8





5905
CGGGTAACGCGCTTCCAACT
9





5906
GGGTAACGCGCTTCCAACTC
10





5907
GGTAACGCGCTTCCAACTCC
11





5908
GTAACGCGCTTCCAACTCCG
12





5909
TAACGCGCTTCCAACTCCGG
13





5910
AACGCGCTTCCAACTCCGGG
14





5911
ACGCGCTTCCAACTCCGGGG
15





5912
CGCGCTTCCAACTCCGGGGG
16





5913
GCGCTTCCAACTCCGGGGGG
17





5914
CGCTTCCAACTCCGGGGGGA
18





5915
GCTTCCAACTCCGGGGGGAG
19





5916
CTTCCAACTCCGGGGGGAGG
20





5917
TTCCAACTCCGGGGGGAGGG
21





5918
TCCAACTCCGGGGGGAGGGC
22





5919
CCAACTCCGGGGGGAGGGCA
23





5920
GGACCCGGGTAACGCGCTTC
4





5921
TGGACCCGGGTAACGCGCTT
3





5922
TTGGACCCGGGTAACGCGCT
2





5923
TTTGGACCCGGGTAACGCGC
1





5924
CACTCGGCTCCGCCCCTATTGC
507





5925
ACTCGGCTCCGCCCCTATTG
508





5926
CTCGGCTCCGCCCCTATTGC
509





5927
TCGGCTCCGCCCCTATTGCC
510





5928
CGGCTCCGCCCCTATTGCCT
511





5929
GGCTCCGCCCCTATTGCCTC
512





5930
GCTCCGCCCCTATTGCCTCG
513





5931
CTCCGCCCCTATTGCCTCGC
514





5932
TCCGCCCCTATTGCCTCGCA
515





5933
CCGCCCCTATTGCCTCGCAG
516





5934
CGCCCCTATTGCCTCGCAGA
517





5935
GCCCCTATTGCCTCGCAGAC
518





5936
CCCCTATTGCCTCGCAGACA
519





5937
CCCTATTGCCTCGCAGACAA
520





5938
CCTATTGCCTCGCAGACAAC
521





5939
CTATTGCCTCGCAGACAACC
522





5940
TATTGCCTCGCAGACAACCA
523





5941
ATTGCCTCGCAGACAACCAA
524





5942
TTGCCTCGCAGACAACCAAT
525





5943
TGCCTCGCAGACAACCAATG
526





5944
GCCTCGCAGACAACCAATGG
527





5945
CCTCGCAGACAACCAATGGG
528





5946
CTCGCAGACAACCAATGGGG
529





5947
TCGCAGACAACCAATGGGGG
530





5948
CGCAGACAACCAATGGGGGC
531





5949
CCACTCGGCTCCGCCCCTAT
506





5950
CCCACTCGGCTCCGCCCCTA
505





5951
TCCCACTCGGCTCCGCCCCT
504





5952
CTCCCACTCGGCTCCGCCCC
503





5953
ACTCCCACTCGGCTCCGCCC
502





5954
CACTCCCACTCGGCTCCGCC
501





5955
ACACTCCCACTCGGCTCCGC
500





5956
CACACTCCCACTCGGCTCCG
499





5957
CCACACTCCCACTCGGCTCC
498





5958
TCCACACTCCCACTCGGCTC
497





5959
TTCCACACTCCCACTCGGCT
496





5960
TTTCCACACTCCCACTCGGC
495





5961
CTTTCCACACTCCCACTCGG
494





5962
GCTTTCCACACTCCCACTCG
493





5963
CGCTTTCCACACTCCCACTC
492





5964
GCGCTTTCCACACTCCCACT
491





5965
GGCGCTTTCCACACTCCCAC
490





5966
CGGCGCTTTCCACACTCCCA
489





5967
GCGGCGCTTTCCACACTCCC
488





5968
TGCGGCGCTTTCCACACTCC
487





5969
ATGCGGCGCTTTCCACACTC
486





5970
GATGCGGCGCTTTCCACACT
485





5971
GGATGCGGCGCTTTCCACAC
484





5972
GGGATGCGGCGCTTTCCACA
483





5973
CGGGATGCGGCGCTTTCCAC
482





5974
CCGGGATGCGGCGCTTTCCA
481





5975
CCCGGGATGCGGCGCTTTCC
480





5976
ACCCGGGATGCGGCGCTTTC
479





5977
CACCCGGGATGCGGCGCTTT
478





5978
CCACCCGGGATGCGGCGCTT
477





5979
CCCACCCGGGATGCGGCGCT
476





5980
TCCCACCCGGGATGCGGCGC
475





5981
CTCCCACCCGGGATGCGGCG
474





5982
CCTCCCACCCGGGATGCGGC
473





5983
GCCTCCCACCCGGGATGCGG
472





5984
CGCCTCCCACCCGGGATGCG
471





5985
TCGCCTCCCACCCGGGATGC
470





5986
CTCGCCTCCCACCCGGGATG
469





5987
CCTCGCCTCCCACCCGGGAT
468





5988
GCCTCGCCTCCCACCCGGGA
467





5989
AGCCTCGCCTCCCACCCGGG
466





5990
AAGCCTCGCCTCCCACCCGG
465





5991
GAAGCCTCGCCTCCCACCCG
464





5992
GGAAGCCTCGCCTCCCACCC
463





5993
GGGAAGCCTCGCCTCCCACC
462





5994
GGGGAAGCCTCGCCTCCCAC
461





5995
AGGGGAAGCCTCGCCTCCCA
460





5996
AAGGGGAAGCCTCGCCTCCC
459





5997
GAAGGGGAAGCCTCGCCTCC
458





5998
GGAAGGGGAAGCCTCGCCTC
457





5999
GGGAAGGGGAAGCCTCGCCT
456





6000
TACGTCACGGGAGCGCGGCGCAC
578





6001
ACGTCACGGGAGCGCGGCGC
579





6002
CGTCACGGGAGCGCGGCGCA
580





6003
GTCACGGGAGCGCGGCGCAC
581





6004
TCACGGGAGCGCGGCGCACT
582





6005
CACGGGAGCGCGGCGCACTG
583





6006
ACGGGAGCGCGGCGCACTGC
584





6007
CGGGAGCGCGGCGCACTGCC
585





6008
GGGAGCGCGGCGCACTGCCT
586





6009
GGAGCGCGGCGCACTGCCTG
587





6010
GAGCGCGGCGCACTGCCTGG
588





6011
AGCGCGGCGCACTGCCTGGG
589





6012
GCGCGGCGCACTGCCTGGGG
590





6013
CGCGGCGCACTGCCTGGGGG
591





6014
GCGGCGCACTGCCTGGGGGC
592





6015
CGGCGCACTGCCTGGGGGCG
593





6016
GGCGCACTGCCTGGGGGCGG
594





6017
GCGCACTGCCTGGGGGCGGG
595





6018
CGCACTGCCTGGGGGCGGGG
596





6019
GCACTGCCTGGGGGCGGGGT
597





6020
CACTGCCTGGGGGCGGGGTC
598





6021
ACTGCCTGGGGGCGGGGTCC
599





6022
CTGCCTGGGGGCGGGGTCCG
600





6023
TGCCTGGGGGCGGGGTCCGT
601





6024
GCCTGGGGGCGGGGTCCGTC
602





6025
CCTGGGGGCGGGGTCCGTCG
603





6026
CTGGGGGCGGGGTCCGTCGC
604





6027
TGGGGGCGGGGTCCGTCGCG
605





6028
GGGGGCGGGGTCCGTCGCGG
606





6029
GGGGCGGGGTCCGTCGCGGA
607





6030
GGGCGGGGTCCGTCGCGGAC
608





6031
GGCGGGGTCCGTCGCGGACG
609





6032
GCGGGGTCCGTCGCGGACGC
610





6033
CGGGGTCCGTCGCGGACGCC
611





6034
GGGGTCCGTCGCGGACGCCG
612





6035
GGGTCCGTCGCGGACGCCGT
613





6036
GGTCCGTCGCGGACGCCGTG
614





6037
GTCCGTCGCGGACGCCGTGG
615





6038
TCCGTCGCGGACGCCGTGGC
616





6039
CCGTCGCGGACGCCGTGGCG
617





6040
CGTCGCGGACGCCGTGGCGC
618





6041
GTCGCGGACGCCGTGGCGCC
619





6042
TCGCGGACGCCGTGGCGCCC
620





6043
CGCGGACGCCGTGGCGCCCT
621





6044
GCGGACGCCGTGGCGCCCTC
622





6045
CGGACGCCGTGGCGCCCTCT
623





6046
GGACGCCGTGGCGCCCTCTG
624





6047
GACGCCGTGGCGCCCTCTGT
625





6048
ACGCCGTGGCGCCCTCTGTC
626





6049
CGCCGTGGCGCCCTCTGTCG
627





6050
GCCGTGGCGCCCTCTGTCGC
628





6051
CCGTGGCGCCCTCTGTCGCC
629





6052
CGTGGCGCCCTCTGTCGCCC
630





6053
GTGGCGCCCTCTGTCGCCCC
631





6054
TGGCGCCCTCTGTCGCCCCG
632





6055
GGCGCCCTCTGTCGCCCCGA
633





6056
GCGCCCTCTGTCGCCCCGAG
634





6057
CGCCCTCTGTCGCCCCGAGG
635





6058
GCCCTCTGTCGCCCCGAGGC
636





6059
CCCTCTGTCGCCCCGAGGCA
637





6060
CCTCTGTCGCCCCGAGGCAA
638





6061
CTCTGTCGCCCCGAGGCAAG
639





6062
TCTGTCGCCCCGAGGCAAGC
640





6063
CTGTCGCCCCGAGGCAAGCA
641





6064
TGTCGCCCCGAGGCAAGCAG
642





6065
GTCGCCCCGAGGCAAGCAGG
643





6066
TCGCCCCGAGGCAAGCAGGT
644





6067
CGCCCCGAGGCAAGCAGGTG
645





6068
GCCCCGAGGCAAGCAGGTGG
646





6069
CCCCGAGGCAAGCAGGTGGA
647





6070
CCCGAGGCAAGCAGGTGGAC
648





6071
CCGAGGCAAGCAGGTGGACC
649





6072
CGAGGCAAGCAGGTGGACCC
650





6073
ATACGTCACGGGAGCGCGGC
577





6074
AATACGTCACGGGAGCGCGG
576





6075
AAATACGTCACGGGAGCGCG
575





6076
GAAATACGTCACGGGAGCGC
574





6077
GTCGCGGACGCCGTGGCGCCCTCTGTC
619





6078
TCGCGGACGCCGTGGCGCCC
620





6079
CGCGGACGCCGTGGCGCCCT
621





6080
GCGGACGCCGTGGCGCCCTC
622





6081
CGGACGCCGTGGCGCCCTCT
623





6082
GGACGCCGTGGCGCCCTCTG
624





6083
GACGCCGTGGCGCCCTCTGT
625





6084
ACGCCGTGGCGCCCTCTGTC
626





6085
CGCCGTGGCGCCCTCTGTCG
627





6086
GCCGTGGCGCCCTCTGTCGC
628





6087
CCGTGGCGCCCTCTGTCGCC
629





6088
CGTGGCGCCCTCTGTCGCCC
630





6089
GTGGCGCCCTCTGTCGCCCC
631





6090
TGGCGCCCTCTGTCGCCCCG
632





6091
GGCGCCCTCTGTCGCCCCGA
633





6092
GCGCCCTCTGTCGCCCCGAG
634





6093
CGCCCTCTGTCGCCCCGAGG
635





6094
GCCCTCTGTCGCCCCGAGGC
636





6095
CCCTCTGTCGCCCCGAGGCA
637





6096
CCTCTGTCGCCCCGAGGCAA
638





6097
CTCTGTCGCCCCGAGGCAAG
639





6098
TCTGTCGCCCCGAGGCAAGC
640





6099
CTGTCGCCCCGAGGCAAGCA
641





6100
TGTCGCCCCGAGGCAAGCAG
642





6101
GTCGCCCCGAGGCAAGCAGG
643





6102
TCGCCCCGAGGCAAGCAGGT
644





6103
CGCCCCGAGGCAAGCAGGTG
645





6104
GCCCCGAGGCAAGCAGGTGG
646





6105
CCCCGAGGCAAGCAGGTGGA
647





6106
CCCGAGGCAAGCAGGTGGAC
648





6107
CCGAGGCAAGCAGGTGGACC
649





6108
CGAGGCAAGCAGGTGGACCC
650





6109
CGTCGCGGACGCCGTGGCGC
618





6110
CCGTCGCGGACGCCGTGGCG
617





6111
TCCGTCGCGGACGCCGTGGC
616





6112
GTCCGTCGCGGACGCCGTGG
615





6113
GGTCCGTCGCGGACGCCGTG
614





6114
GGGTCCGTCGCGGACGCCGT
613





6115
GGGGTCCGTCGCGGACGCCG
612





6116
CGGGGTCCGTCGCGGACGCC
611





6117
GCGGGGTCCGTCGCGGACGC
610





6118
GGCGGGGTCCGTCGCGGACG
609





6119
GGGCGGGGTCCGTCGCGGAC
608





6120
GGGGCGGGGTCCGTCGCGGA
607





6121
GGGGGCGGGGTCCGTCGCGG
606





6122
TGGGGGCGGGGTCCGTCGCG
605





6123
CTGGGGGCGGGGTCCGTCGC
604





6124
CCTGGGGGCGGGGTCCGTCG
603





6125
GCCTGGGGGCGGGGTCCGTC
602





6126
TGCCTGGGGGCGGGGTCCGT
601





6127
CTGCCTGGGGGCGGGGTCCG
600





6128
ACTGCCTGGGGGCGGGGTCC
599





6129
CACTGCCTGGGGGCGGGGTC
598





6130
GCACTGCCTGGGGGCGGGGT
597





6131
CGCACTGCCTGGGGGCGGGG
596





6132
GCGCACTGCCTGGGGGCGGG
595





6133
GGCGCACTGCCTGGGGGCGG
594





6134
CGGCGCACTGCCTGGGGGCG
593





6135
GCGGCGCACTGCCTGGGGGC
592





6136
CGCGGCGCACTGCCTGGGGG
591





6137
GCGCGGCGCACTGCCTGGGG
590





6138
AGCGCGGCGCACTGCCTGGG
589





6139
GAGCGCGGCGCACTGCCTGG
588





6140
GGAGCGCGGCGCACTGCCTG
587





6141
GGGAGCGCGGCGCACTGCCT
586





6142
CGGGAGCGCGGCGCACTGCC
585





6143
ACGGGAGCGCGGCGCACTGC
584





6144
CACGGGAGCGCGGCGCACTG
583





6145
TCACGGGAGCGCGGCGCACT
582





6146
GTCACGGGAGCGCGGCGCAC
581





6147
CGTCACGGGAGCGCGGCGCA
580





6148
ACGTCACGGGAGCGCGGCGC
579





6149
TACGTCACGGGAGCGCGGCG
578





6150
ATACGTCACGGGAGCGCGGC
577





6151
AATACGTCACGGGAGCGCGG
576





6152
AAATACGTCACGGGAGCGCG
575





6153
GAAATACGTCACGGGAGCGC
574





6154
CACTCGCCGTCATGCCCGGATCC
1183





6155
ACTCGCCGTCATGCCCGGAT
1184





6156
CTCGCCGTCATGCCCGGATC
1185





6157
TCGCCGTCATGCCCGGATCC
1186





6158
CGCCGTCATGCCCGGATCCT
1187





6159
GCCGTCATGCCCGGATCCTT
1188





6160
CCGTCATGCCCGGATCCTTT
1189





6161
CGTCATGCCCGGATCCTTTT
1190





6162
GTCATGCCCGGATCCTTTTT
1191





6163
TCATGCCCGGATCCTTTTTG
1192





6164
CATGCCCGGATCCTTTTTGT
1193





6165
ATGCCCGGATCCTTTTTGTA
1194





6166
TGCCCGGATCCTTTTTGTAT
1195





6167
GCCCGGATCCTTTTTGTATT
1196





6168
GCACTCGCCGTCATGCCCGG
1182





6169
GGCACTCGCCGTCATGCCCG
1181





6170
AGGCACTCGCCGTCATGCCC
1180





6171
CAGGCACTCGCCGTCATGCC
1179





6172
ACAGGCACTCGCCGTCATGC
1178





6173
TACAGGCACTCGCCGTCATG
1177





6174
TTACAGGCACTCGCCGTCAT
1176





6175
ATTACAGGCACTCGCCGTCA
1175





6176
GATTACAGGCACTCGCCGTC
1174





6177
GGATTACAGGCACTCGCCGT
1173





6178
GGGATTACAGGCACTCGCCG
1172





6179
TGGGATTACAGGCACTCGCC
1171





6180
CTGGGATTACAGGCACTCGC
1170





6181
GCTGGGATTACAGGCACTCG
1169



















Hot Zones (Relative upstream location to gene start site)







 1-950


1050-1500









Examples

In FIG. 37, In HCT-116 (human colorectal carcinoma), MEK11 (216) and MEK12 (212) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The MEK1 sequences MEK11 (216) and MEK12 (212) fit the independent and dependent DNAi motif claims.


The secondary structures for MEK11 (216) and MEK12 (212) are shown in FIGS. 38 and 39.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11969)







ACATATAGTTCAGTCTTATTCTTGTCTGTATGGTCAGCACTTATGTTAGG





CCCTCAGGAAAAGTTGACAGAACCGATGGATCACTGCCGGTCTGAAAAGG





AAATGAGGAAAACAAATTCTCCTACCTTGAACTATTCTGCAAACTTTAAC





CATTGGGGTAATTGTTTATCTGGGCTTCTTGGATCATGATAAGGGCTTAG





GGTTTACTCAGTGGAGGCCAACCCAGCATGCATAGAATCATAATATTTCA





ATATTAAAAAGAATGCTGCATTTTACACAGAGTGGAAGTGAGGCCTTGAA





AATTTCAATTAATTGCTCAAAGTCCTAATAGTTTTTATTTGAACTAGTAA





ATATAAAATTATACCAGAATTCAGATAGACTGCCTTGATAATAGATTACT





TTGAAAAGTTTCAATTTTTTTTTTTTTTTTGAGATAGTCTCACTGTGTTG





CACAGGCTGGAGTACAGTGGAGTGATCTTGGCTCACTGTAACCTCCACCT





CCTGGGTTCAAGTGATTCTCCAGCTTCAGCCTCCCAAGTAGCTGGGACTA





CAGGCACCCGCCACCACATTCAGATAATTTTTGTATTTTTAGTAAAGACA





GGGTTTCACCATGTTGGCCAGGCTTGGTCTTGAACTCCTGACCTCAGGTG





ATCCTCCCACCTCAGCCTCCCAAAGTGCTGGGATTAAAGGTGTGAGCCAC





CACCACACCTGGCCTTCAATTCACTTTTTAATGTTTATTATTTTACTCTG





ATACTAAAAATTATGCATGTTTAACATGAATAAGGACACACTTCTACACA





CACATGCATACATTTACATCTATGCCTCTATATTAAAAAGTATGGGGGAA





AGAAATGGGGAGATGTAGGTCAAAGAATATAAAGCAGCAGATATGTAGGA





TGAAGAAGTCTAGAGATCTAATGTACAACATGAAGACCATAGTTAATAAC





ATTGTATTTTATTTGCGTTTTTTGTTAAATAAGTAGATTTTAGCTGCTCG





TCATACTTTACACAAGCCTTTATGTGACGGTATAGATATGTTAATTCACT





TCACTATAGTAACCATTTTACTATCTATATATATCCCATAACATCATGTT





ACAAACCTCAAATATACACAATAAAATTTATTTTTATTTATTTAATTTAT





TTATTTATTTTTGAGACGGAGTCTTGTTCTGTCGCCCAGGCTGGAGTGCA





GTGGCGCGATCTCGGCTCACTGCAAGCTCCACCTCCCGGGTTCACACCAT





TCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCACCCACCACCA





CGCCCGGCTAATTTTTTGTATTTTTTAGTAGAGATGGGGTTTCACCGTGT





TAGCCAGGATGGTCTCGATTTCCTGACCTCGTGATCTGCCCACCTCAGCC





TCCCAAAGTGCTGGGATTACAGGCATGAGCCACCGCGCCCGGCCTATTTT





ATTTATTTTTGAGACAGAGTCTTGCTCTGTTGCCCAGGCTGGAGTGCAGT





GGTGCAATCTCGGCTCACTGCAAACTCTGCCTCCCTGGTTCAGGCAATTA





TCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGTGCCCACCACCATG





CCTGGCTAATTTTTGTAATTTAGTAGAGACGGGGTTTCACCATGTTGGCC





AGGCTGATCTTGAAGTCCTGACCTCAAGTGATCTTCCAGCTTTGGCCTCA





CAAAGTGCTGGGATTACAGGTGGTAGCCGCCACTGCATCCACCCAGAATA





ATTTATTTTTTAAAAAACTATGAGTTCAGGCCGGGCGCAGTGGCTCACGC





CTGTAAACCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACCTGAGGTC





AGGAGTTTGAGACCAGCCTGGCCAACATGGTGAAATCCTGTCTCTACTAA





AAATACAAAATTAGCCAGGCATGGTGGTGCATGCCTGTAATCCCAGCTAC





TTGGGAGGCTGAGGCAGGAGAATCACTTGAGCTTGGGAGGTGGAGGTTGC





AATGAGCCAAGGTTGCGCCATTGCACTCAAGCCTGGGCAAAAAGAGCAAA





ACGCCACTCAAAAACAAAAACAAAACAAAACAAAAACACCCCCCCAAAAA





ACAAAACAAAACAATGAGTTCACACTGATACCTCCAATTCCAATACAATA





GCGTAAGGTATTCTCCCTTCCCATACTTCTAACGTCATTCTACCACAGTG





AGAAAGCTGGCTCTGTCATGCTTAATATATTTAGTGACTTAATCAACCAT





CCTGAATGCAACTAACCTCCCATCTAAGCTTCTAGGCCTTCCCCACTTGG





ATGCCTTGTTCTCCCCTCTTGGGCCCTACGGCTAAGACTTTGTGTAGGAC





TGCCTCCCAGGTGTTCAAGCCCTCTTCATTTTCTCAGGTTCCTCAGCCTC





CTTACCTGCTAGGTCACCAACACCTGGCTGTGGATAACCAGGTGTAGATG





TTTCCTTTGTTCTGTACACGTTTCCTTTGTTCTGTACACCTAATGTCTTT





GACACTTAGTATTTTAGGATGGGAAAGGGGAAGAGGAACACTGAATGTGC





ACTTTTAAATGGGTATTGTGCCTCTTATTAAGCTCTTTATTCACATCTTA





TTTCTTTAGTAATTCACAGAATTGGAATTTTTGGATTAAAGTTCTTTTTT





TTTTTGAGACGGGGTCTCACTCTGTCGCCCAGGCTGGAGTGCAGTGGTGT





GATCTTGGATCACTGCAACCTCCGCCTCCCGAGTTCAAGCAATTCTCTGC





CTCAGCCCCCCAAGTAGTTGGGATTACAGGCACCCGCCACCACGCCCAGC





TAATTTTTTGTATTTTTAGTAGAGATGGGTTTCACCATCTTGGCCAGGCT





GGTCTTGAACTCCTGACCTCGTGATCCACCCGTCTCGGCCTCCCAAAGTT





CTGGAATTACAGGCGTGAGCCACCGCGCCTGGCCTGGATGAAAGTTTTTT





TAAAGGGAGTCTTGCTCTGTAGCCCTGGCTGGTGTGCAGTGGTGTGATCA





TAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGTGATCCTCCAGCCTCA





GCCTCCTCAGTAGCTTGGACGACAGCTGCACACAACCATGCCCAGCTAAT





AGAGACGGGGGACTCACTATGTTGCCCAGGCTAGTCTCGAACTCCTGGGC





TCAAGTGATCCTCTTGCCTGGGCCTCCCAAAATTGGGATTACAGGCGTGA





GCCACCGCTCCTGGCCCGAAAGAGTGTTTTTAAGGCTTTAAAAAAATATT





GCCAACATGGTGAAAACCCGTTTCTACAAAAATACAAAAAGGATCCGGGC





ATGACGGCGAGTGCCTGTAATCCCAGCTACTCAGGAGACTGAGGCAGGAG





AATCGCTTGAACGTGGGAGGCAGAGGTGGTAGTTAGCGGAGATCGCGCCA





CTACACTCCAGGCTGGGCAACTGAGGGAGACACCGTCTTAAAAAAAAAAA





AGTTCCCAAGTCTAAAAAAAAAAAAATCATCAATCTGCTCTCAAAAACTG





TCGCAACAATTTACAATCTCATCAGCACTGAGTATCCATTTCCTTGCACC





CTTCTCAGTAGTATTACCATTAAACAAACAAAATTTATATGCGTCAGTTT





GTTGGGCTCAAAGGAGCCTCTCGACAAGTTTCCTATTCCCCACGCTGCCT





CTCCTCTGGACACAGGAAGGGGTCCTTTTCCTTATTTATTTTGTTATTTC





ATTTTCGTCAACACGGCTCGGCTTGGGGACAGGGGTCGGGGGCAGGCCGG





TTACCGCAGAGGTGGAGGCCGCGCGGCACCTGGCCTGGAGAGCTCACCAC





ACAGCGACACAGACTTCTTCTCAGCTGGGTCCACCTGCTTGCCTCGGGGC





GACAGAGGGCGCCACGGCGTCCGCGACGGACCCCGCCCCCAGGCAGTGCG





CCGCGCTCCCGTGACGTATTTCCGCGTCATCTGCCGCCGAGGCTTGCCCC





CATTGGTTGTCTGCGAGGCAATAGGGGCGGAGCCGAGTGGGAGTGTGGAA





AGCGCCGCATCCCGGGTGGGAGGCGAGGCTTCCCCTTCCCCGCCCCTCCC





CCGGCCTCCAGTCCCTCCCAGGGCCGCTTCGCAGAGCGGCTAGGAGCACG





GCGGCGGCGGCACTTTCCCCGGCAGGAGCTGGAGCTGGGCTCTGGTGCGC





GCGCGGCTGTGCCGCCCGAGCCGGAGGGACTGGTTGGTTGAGAGAGAGAG





AGGAAGGGAATCCCGGGCTGCCGAACCGCACGTTCAGCCCGCTCCGCTCC





TGCAGGGCAGCCTTTCGGCTCTCTGCGCGCGAAGCCGAGTCCCGGGCGGG





TGGGGCGGGGGTCCACTGAGACCGCTACCGGCCCCTCGGCGCTGACGGGA





CCGCGCGGGGCGCACCCGCTGAAGGCAGCCCCGGGGCCCGCGGCCCGGAC





TTGGTCCTGCGCAGCGGGCGCGGGGCAGCGCAGCGGGAGGAAGCGAGAGG





TGCTGCCCTCCCCCCGGAGTTGGAAGCGCGTTACCCGGGTCCAAAATG






21) MEK1 and MEK2 (MAP2K2) Mitogen-activated protein kinase kinase 1. Dual specificity protein kinases act as an essential component of the MAP kinase signal transduction pathway and serves as an integration point for multiple biochemical signals. MEK1 and MEK2 are members of the dual specificity protein kinase family, which act as a mitogen-activated protein (MAP) kinase kinases and as extracellular signal-regulated kinases (ERKs). Binding of extracellular ligands such as growth factors, cytokines and hormones to their cell-surface receptors activates RAS and this initiates RAF1 activation. RAF1 then further activates the dual-specificity protein kinases MAP2K1/MEK1 and MAP2K2/MEK2. Both MAP2K1/MEK1 and MAP2K2/MEK2 function specifically in the MAPK/ERK cascade, and catalyze the concomitant phosphorylation of a threonine and a tyrosine residue in a Thr-Glu-Tyr sequence located in the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK2, leading to their activation and further transduction of the signal within the MAPK/ERK cascade. Depending on the cellular context, this pathway mediates diverse biological functions such as cell growth and proliferation, adhesion, survival and differentiation, predominantly through the regulation of transcription, metabolism and cytoskeletal rearrangements (reviewed by Roberts and Der; 2007 Oncogene 26, 3291-3310).


Genetic alterations that activate the mitogen-activated protein kinase (MAP kinase) pathway occur commonly in cancer. For example, the majority of melanomas harbor mutations in the BRAF oncogene, which confers enhanced sensitivity to pharmacologic MAP kinase inhibition (e.g., RAF or MEK inhibitors). Most mutations conferring resistance to MEK inhibition in vitro populated the allosteric drug binding pocket or alpha-helix C and showed robust (approximately 100-fold) resistance to allosteric MEK inhibition (reviewed in Emery et al, 2009; Proc Natl Acad Sci.; 106(48):20411-20416). Other mutations affected MEK1 codons located within or abutting the N-terminal negative regulatory helix (helix A), which also undergo gain-of-function germline mutations in cardiofaciocutaneous (CFC) syndrome. One target of the MAPK/ERK cascade is peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that promotes differentiation and apoptosis. MAP2K1/MEK1 has been shown to export PPARG from the nucleus. The MAPK/ERK cascade is also involved in the regulation of endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC), as well as in the fragmentation of the Golgi apparatus during mitosis.


Protein: MEK2 Gene: MAP2K2 (Homo sapiens, chromosome 19, 4090319-4124126 [NCBI Reference Sequence: NC000019.9]; start site location: 4123872; strand: negative)












Gene Identification


















GeneID
5605



HGNC
6842



HPRD
03164



MIM
601263




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













6182

CGCCGCAGCCCGAGTCCGAGAGG
226





6202

GAGGGGCGCTGGGGCTGAGGCGAGCG
165





6203

CTCGCGATAACGGGATCGGGAGCCGCG
290





6235
MEK2_1
CCGACGCGAGGCGGTGCCGGGACCGG
391





6240

CACGGCGCGTGTGCCCAAGCGC
436





6299

CGTGGACACACGCCCCTAGCCC
643





6341

TAGACACTTCGGTGAATCGTGCCGC
1622



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












6182
CGCCGCAGCCCGAGTCCGAGAGG
226





6183
GCCGCAGCCCGAGTCCGAGA
227





6184
CCGCAGCCCGAGTCCGAGAG
228





6185
CGCAGCCCGAGTCCGAGAGG
229





6186
GCAGCCCGAGTCCGAGAGGC
230





6187
CAGCCCGAGTCCGAGAGGCA
231





6188
AGCCCGAGTCCGAGAGGCAG
232





6189
GCCCGAGTCCGAGAGGCAGG
233





6190
CCCGAGTCCGAGAGGCAGGG
234





6191
ACGCCGCAGCCCGAGTCCGA
225





6192
GACGCCGCAGCCCGAGTCCG
224





6193
TGACGCCGCAGCCCGAGTCC
223





6194
CTGACGCCGCAGCCCGAGTC
222





6195
GCTGACGCCGCAGCCCGAGT
221





6196
GGCTGACGCCGCAGCCCGAG
220





6197
AGGCTGACGCCGCAGCCCGA
219





6198
AAGGCTGACGCCGCAGCCCG
218





6199
GAAGGCTGACGCCGCAGCCC
217





6200
AGAAGGCTGACGCCGCAGCC
216





6201
AAGAAGGCTGACGCCGCAGC
215





6202
GAGGGGCGCTGGGGCTGAGGCGAGCG
165





6203
CTCGCGATAACGGGATCGGGAGCCGCG
291





6204
TCGCGATAACGGGATCGGGA
292





6205
TCTCGCGATAACGGGATCGG
290





6206
TTCTCGCGATAACGGGATCG
289





6207
CTTCTCGCGATAACGGGATC
288





6208
GCTTCTCGCGATAACGGGAT
287





6209
GGCTTCTCGCGATAACGGGA
286





6210
CGGCTTCTCGCGATAACGGG
285





6211
CCGGCTTCTCGCGATAACGG
284





6212
ACCGGCTTCTCGCGATAACG
283





6213
GACCGGCTTCTCGCGATAAC
282





6214
GGACCGGCTTCTCGCGATAA
281





6215
CGGACCGGCTTCTCGCGATA
280





6216
GCGGACCGGCTTCTCGCGAT
279





6217
CGCGGACCGGCTTCTCGCGA
278





6218
TCGCGGACCGGCTTCTCGCG
277





6219
ATCGCGGACCGGCTTCTCGC
276





6220
GATCGCGGACCGGCTTCTCG
275





6221
AGATCGCGGACCGGCTTCTC
274





6222
AAGATCGCGGACCGGCTTCT
273





6223
CAAGATCGCGGACCGGCTTC
272





6224
ACAAGATCGCGGACCGGCTT
271





6225
CACAAGATCGCGGACCGGCT
270





6226
CCACAAGATCGCGGACCGGC
269





6227
GCCACAAGATCGCGGACCGG
268





6228
GGCCACAAGATCGCGGACCG
267





6229
CGGCCACAAGATCGCGGACC
266





6230
GCGGCCACAAGATCGCGGAC
265





6231
GGCGGCCACAAGATCGCGGA
264





6232
GGGCGGCCACAAGATCGCGG
263





6233
GGGGCGGCCACAAGATCGCG
262





6234
AGGGGCGGCCACAAGATCGC
261





6235
CCGACGCGAGGCGGTGCCGGGACCGG
391





6236
CGACGCGAGGCGGTGCCGGG
392





6237
ACCGACGCGAGGCGGTGCCG
390





6238
GACCGACGCGAGGCGGTGCC
389





6239
AGACCGACGCGAGGCGGTGC
388





6240
CACGGCGCGTGTGCCCAAGCGC
436





6241
ACGGCGCGTGTGCCCAAGCG
437





6242
CGGCGCGTGTGCCCAAGCGC
438





6243
GGCGCGTGTGCCCAAGCGCT
439





6244
GCGCGTGTGCCCAAGCGCTT
440





6245
CGCGTGTGCCCAAGCGCTTG
441





6246
GCGTGTGCCCAAGCGCTTGG
442





6247
CGTGTGCCCAAGCGCTTGGG
443





6248
GTGTGCCCAAGCGCTTGGGG
444





6249
TGTGCCCAAGCGCTTGGGGC
445





6250
GTGCCCAAGCGCTTGGGGCA
446





6251
TGCCCAAGCGCTTGGGGCAT
447





6252
GCCCAAGCGCTTGGGGCATG
448





6253
CCCAAGCGCTTGGGGCATGA
449





6254
CCAAGCGCTTGGGGCATGAG
450





6255
CAAGCGCTTGGGGCATGAGG
451





6256
AAGCGCTTGGGGCATGAGGC
452





6257
AGCGCTTGGGGCATGAGGCG
453





6258
GCGCTTGGGGCATGAGGCGC
454





6259
CGCTTGGGGCATGAGGCGCG
455





6260
GCTTGGGGCATGAGGCGCGG
456





6261
CTTGGGGCATGAGGCGCGGG
457





6262
CCACGGCGCGTGTGCCCAAG
435





6263
ACCACGGCGCGTGTGCCCAA
434





6264
TACCACGGCGCGTGTGCCCA
433





6265
TTACCACGGCGCGTGTGCCC
432





6266
CTTACCACGGCGCGTGTGCC
431





6267
CCTTACCACGGCGCGTGTGC
430





6268
GCCTTACCACGGCGCGTGTG
429





6269
TGCCTTACCACGGCGCGTGT
428





6270
TTGCCTTACCACGGCGCGTG
427





6271
CTTGCCTTACCACGGCGCGT
426





6272
GCTTGCCTTACCACGGCGCG
425





6273
CGCTTGCCTTACCACGGCGC
424





6274
TCGCTTGCCTTACCACGGCG
423





6275
CTCGCTTGCCTTACCACGGC
422





6276
CCTCGCTTGCCTTACCACGG
421





6277
CCCTCGCTTGCCTTACCACG
420





6278
GCCCTCGCTTGCCTTACCAC
419





6279
CGCCCTCGCTTGCCTTACCA
418





6280
GCGCCCTCGCTTGCCTTACC
417





6281
GGCGCCCTCGCTTGCCTTAC
416





6282
GGGCGCCCTCGCTTGCCTTA
415





6283
CGGGCGCCCTCGCTTGCCTT
414





6284
CCGGGCGCCCTCGCTTGCCT
413





6285
ACCGGGCGCCCTCGCTTGCC
412





6286
GACCGGGCGCCCTCGCTTGC
411





6287
GGACCGGGCGCCCTCGCTTG
410





6288
GGGACCGGGCGCCCTCGCTT
409





6289
CGGGACCGGGCGCCCTCGCT
408





6290
CCGGGACCGGGCGCCCTCGC
407





6291
GCCGGGACCGGGCGCCCTCG
406





6292
TGCCGGGACCGGGCGCCCTC
405





6293
GTGCCGGGACCGGGCGCCCT
404





6294
GGTGCCGGGACCGGGCGCCC
403





6295
CGGTGCCGGGACCGGGCGCC
402





6296
GCGGTGCCGGGACCGGGCGC
401





6297
GGCGGTGCCGGGACCGGGCG
400





6298
AGGCGGTGCCGGGACCGGGC
399





6299
CGTGGACACACGCCCCTAGCCC
648





6300
GTGGACACACGCCCCTAGCC
649





6301
TGGACACACGCCCCTAGCCC
650





6302
GGACACACGCCCCTAGCCCC
651





6303
GACACACGCCCCTAGCCCCC
652





6304
ACACACGCCCCTAGCCCCCA
653





6305
CACACGCCCCTAGCCCCCAC
654





6306
ACACGCCCCTAGCCCCCACC
655





6307
CACGCCCCTAGCCCCCACCG
656





6308
ACGCCCCTAGCCCCCACCGC
657





6309
CGCCCCTAGCCCCCACCGCC
658





6310
GCCCCTAGCCCCCACCGCCT
659





6311
CCCCTAGCCCCCACCGCCTT
660





6312
CCCTAGCCCCCACCGCCTTA
661





6313
CCTAGCCCCCACCGCCTTAG
662





6314
CTAGCCCCCACCGCCTTAGA
663





6315
TAGCCCCCACCGCCTTAGAG
664





6316
AGCCCCCACCGCCTTAGAGT
665





6317
GCCCCCACCGCCTTAGAGTG
666





6318
CCCCCACCGCCTTAGAGTGT
667





6319
CCCCACCGCCTTAGAGTGTC
668





6320
CCCACCGCCTTAGAGTGTCA
669





6321
CCACCGCCTTAGAGTGTCAG
670





6322
CACCGCCTTAGAGTGTCAGT
671





6323
ACCGCCTTAGAGTGTCAGTT
672





6324
CCGCCTTAGAGTGTCAGTTA
673





6325
CGCCTTAGAGTGTCAGTTAC
674





6326
GCGTGGACACACGCCCCTAG
647





6327
AGCGTGGACACACGCCCCTA
646





6328
AAGCGTGGACACACGCCCCT
645





6329
CAAGCGTGGACACACGCCCC
644





6330
GCAAGCGTGGACACACGCCC
643





6331
GGCAAGCGTGGACACACGCC
642





6332
TGGCAAGCGTGGACACACGC
641





6333
TTGGCAAGCGTGGACACACG
640





6334
TTTGGCAAGCGTGGACACAC
639





6335
TTTTGGCAAGCGTGGACACA
638





6336
TTTTTGGCAAGCGTGGACAC
637





6337
CTTTTTGGCAAGCGTGGACA
636





6338
TCTTTTTGGCAAGCGTGGAC
635





6339
ATCTTTTTGGCAAGCGTGGA
634





6340
AATCTTTTTGGCAAGCGTGG
633





6341
TAGACACTTCGGTGAATCGTGCCGC
1598





6342
AGACACTTCGGTGAATCGTG
1599





6343
GACACTTCGGTGAATCGTGC
1600





6344
ACACTTCGGTGAATCGTGCC
1601





6345
CACTTCGGTGAATCGTGCCG
1602





6346
ACTTCGGTGAATCGTGCCGC
1603





6347
CTTCGGTGAATCGTGCCGCT
1604





6348
TTCGGTGAATCGTGCCGCTA
1605





6349
TCGGTGAATCGTGCCGCTAT
1606





6350
CGGTGAATCGTGCCGCTATG
1607





6351
GGTGAATCGTGCCGCTATGA
1608





6352
GTGAATCGTGCCGCTATGAA
1609





6353
TGAATCGTGCCGCTATGAAC
1610





6354
GAATCGTGCCGCTATGAACA
1611





6355
AATCGTGCCGCTATGAACAC
1612





6356
ATCGTGCCGCTATGAACACA
1613





6357
TCGTGCCGCTATGAACACAG
1614





6358
CGTGCCGCTATGAACACAGA
1615





6359
GTGCCGCTATGAACACAGAT
1616





6360
TGCCGCTATGAACACAGATG
1617





6361
GCCGCTATGAACACAGATGT
1618





6362
CCGCTATGAACACAGATGTA
1619





6363
CGCTATGAACACAGATGTAC
1620





6364
CTAGACACTTCGGTGAATCG
1597





6365
ACTAGACACTTCGGTGAATC
1596





6366
CACTAGACACTTCGGTGAAT
1595





6367
CCACTAGACACTTCGGTGAA
1594





6368
GCCACTAGACACTTCGGTGA
1593





6369
TGCCACTAGACACTTCGGTG
1592





6370
CTGCCACTAGACACTTCGGT
1591





6371
TCTGCCACTAGACACTTCGG
1590





6372
ATCTGCCACTAGACACTTCG
1589



















Hot Zones (Relative upstream location to gene start site)







 1-750


 900-1700


2550-2900


4150-4500









Examples

In FIG. 40, In HCT-116 (human colorectal carcinoma cell line), MEK21 (224) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The MEK2 sequences MEK21 (224) fits the independent and dependent DNAi motif claims.


The secondary structure for MEK21 (224) is shown in FIG. 41.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11970)







GGAACTACAGGTGCCCGCCACCACGCCTGGCTAATTTTTTTGTATTTTTA





GTAGAGACAGGGTTTCACTGTGTTAGCCAGGATGGTCTCTGGTCTCGATC





TCCTGACCTCGTGATCTGCCTGCCTCAGCCTCCCAAAGTGCTGGGATTAC





AGGCGTGAGCCACCGCGCCCGGCCTTGTATTTTTAGTAGAGACAGGGTTT





GTCCATGTTGGTCAGGCTGGTATCGAACTCCCGACCTCAGGTGATCCACC





CGCCTCGGCCTCCCAAAGTGCAGGGATTATAGGCATGAGCCACCACATCT





GGTCTTCTTCTTTTTTTTTTTTTTTTTGAGACAGAGTCTCCCTCAGGCTG





GAGTGCGGTGGCACGATCTTGGCTCACTGCAACCTCCACCTCTCAGGTTC





AAGTAATTCTCGTGCCTCAGCCTCCCAAGTAGCTGAGACTACAGGCACCT





GCCACCATGCCCAGCTAATTTTTTTTTTTTTTCCGAGATGGAGCCTTACT





CTGTTGCCCAGGCTGGAGTGCAGGGGCACAATCTTGGCTCACTGCAACCT





CCACCTCCGGGGTTCAAGCAGTTCTCCTGCCTCAGCCTCCCGAGTAGCTG





GGATTACAGGTGCCCACCACCATGCCCGGCTAATTTTTGTGTGTTTTTAG





TAGAGACGGGGTTTCACCATGTTGGTCAGGCTGGTCTTGAACTCTTGACC





TCAGGTGATCTGCCCACCTCGGCTTGCCAAAGTGCTGTGATTACACCCGT





GACCAGCCTAATTTTTGTATATTTAGTAGAGATGGGGTTTCACCATGTTG





GCCAGGCTGGACTCGAACTCCTGACCTCAAGTGATCACCTGCTTTGGCCT





CCCAAAGTGCTGGGATTGCAGGTGTGAGCCACCACACCCGGCCTCTCCTT





ATTTTAATGGCTCATTGTTAAACATTTACCAGCTCACTACTGCTGGGTGC





AGAGGAAGAGAATGAACTAAAAAGGCAGTGAACAGACTTTCTGGAGTAAG





GGGAAGTGTTACATGGATGTATAGAGTTGTAATAATCCAAGAAATTGAAC





TTCAGAAACTTGTGCATTAATAGGTGAGTGCAGTGGCTCACGGCTCTAGT





CCCAGCACTGCTGAGGACGAGGCAGGAGGATCGCTTGAGCCTAGGAGTGT





GAGACCAGCCTGAGTGACATGGAGAAACCCTGTCTGGACAAAAAATACAA





AAATTAGCCGAGTGTGGTGGCGTATGTTTGTAGCCAGGGCTACTAGGGAG





GCTGAGGTGGGAGAATCGCTTGAGCCAGGGAGGTGGAGGCTGCAGAGAGT





TATGATCGTGCCACTGCACTCCAGCCTGAGGCCTGGGTGACAGAGTCAGA





ACTTGTCTTAAAAAGAAAAAAAAAGCCTAAAATAGGATAAAATGGGAGAA





AGATTGCTAGGCAAAACAGAAGGAACATGGAAATAGCCCTGTCTCTGAAA





GGGCCTGTCCTTATTTGAGGCCACATATGCATCCATCTGAATTTTGGACA





AGCGGGTGGGAGCGATGAGAAGTAAAACTGAAAGGCCCAGATTGTAAAAA





CCCAGGAGCAGGCTTCCCCAGGAGCAGTGTTTTGTTTGTTGTTTTGTTTT





GTTTTGTTTTTTTCGAGATGGAGTCTCGGTCGGTCGCCCAGGCTGGAGTG





CAATGGCGTGATCTCGGCTCACTGCAACCTCCACCTCCCGGGTTTAAGCG





ATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCACGCATCAC





CACACCCAGTTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGT





TGGCCAGGATAGTCTCAATCTCTTGACCTCATGATCCACCTGCCTTGGCT





TCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAGTTGG





TTGGTTTTGTTTTTTGAGCGTGAGTCTGGCTCTGTCGCCCAGGCTGGAAT





GCGATGGCACAATCTCGGCTCACTGCAACCTCCGCCTCCGGGGTTCAGTT





ATCCCACCTCAGCCTCCCTAGTAGCTGGAATTACAGCCACCCGCCACCAC





ACCTGTGTAATTTTTGTATTTTTAGTAGAGACGAGGTTTCACCATGTTGG





CCAGGTTGGTCTCGAACTCCTGACCTCAAGTGATCAGCCCACCTCAGCTT





CCCAGGGTCCTGGGATTACAGGTGTGAGCCACGGCACCTGGCAAAAAATT





AAATTTTTTTTTGTTCTGTTTTATTGGAGACGGAGTCTTACTTTGTCGCC





CAGGCTGGAGGGCAGTGGTGCAATCTTGGCTCACTGCAACGTCTGCCCCC





CGGGTTCAAGCGATTCTCCTGCCTCAGCCGCCTGAGTAGCTGAGACTATA





GGCACACACCGCCAGGCCTGGCTAATTTTTGTATTTTATTTATTTATTTG





TTTGTTTGTTTGTTTGTTTGATTTTTTTGAGACGAAGTCTCGCTCTTGTC





TCCCAAGCTGGAGTGCAATGGCGTGATCTTGGCTCACTGCAACCTCTGCC





TCCCGGGTTCAAGCAATTCTTCTGCCTCAACCTCGCGAGTAGCTGGGATT





ACAGGCACGCGCCACCATGCCCGGCTAATTTTTGTATTTTTTTGTTTTAG





TAGAGACGGGGTTTCACCATGTTGGCCAGACTCGTCTTCAACTCCTGACC





TCAGGTGATCCACCCGCCTCGACCTCCCAAAGTGCTGGGATTACAGGCGT





GAGCCACCGCGCCCAGCCTATGACCTTTCTTATAAAGTGGTACGGCTATT





GTATTAAATAGTAAGGTGGTGCTTCAAAAAGTTCAACATAGAATTACCAT





ATAATCCAGTAATTCCTCTTCAGAACATATACCCAAAAGAACTCAAGGCA





AGGACTCAAACAGATATTTGTACATCTGTGTTCATAGCGGCACGATTCAC





CGAAGTGTCTAGTGGCAGATAAATGGATAAGCAAAATATAGTCCATGCAC





ACAATAGAATATTATTCAGCCTTAAAAAGGAGGAAAATCCTGACTGGGTG





CGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGATCGAGGCGGGTGG





ATCACGAGGTCAGGAGATGGAGACCATCCTGGCTAACACGGTGAAACCCC





GTCTCTACTAAAAATACAAAAAAATTAGCCGGGCATGGTGGTGGGCACCT





GTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGG





GAGGCAGAGTTTGCAGTGGGCCGAGATCGCACCACTGCACTCCAGCCTGG





GTGACAGAGCGAGACTCCGTCTCAAAAAAAAAAAAAGGGAAATTTTTCTT





TTTTTTTTTTTTTCTGCTCTTTTTTGGAGCAGGGCTACCCGATTGGAAGT





ATGCCCGGAGTAGTCAAGTGGGTAAATTCTAACACAGGTTACAACGTGGA





TCTAACACAGCTACAACAGGCACCTTGAGGACGTGGCCCTCAGTGAAATA





TGCCAGCCACAAAGGGACAAAACCTGTGTGATCCTACTCATATGAAGTCC





CTAGAATCATCAGATTCACAGGAAGTACGACGTTGGGTTCCAGGGGCTGG





GGAGGGGGATAGGGAGTGAGGTTTCATAGGGGACAGTGTTTCAGTTTCGG





AAGATGAGAAAATTCTGGAGATGGTGGTGGTGGTGGTTGCTTAATGCCGC





TGAGCTGTGCATTTAGAAATGGTTAAAATGACAAGTTTTATGTTATGTGT





ATTTTATAATAAAAATGTTTCAACATGCGCATAGTAATATATGCAATTTT





ATTTGTCAATTAAAATAAATTTTAAAAATGTTTTAGAGTGGCCTTGTTCT





GATGAAGGAGGGGGAGTAACTGACACTCTAAGGCGGTGGGGGCTAGGGGC





GTGTGTCCACGCTTGCCAAAAAGATTAAATGGACTCTGGGTGGGTCTCGT





CCACTGTTCTGGGGTCTTACGGGTTCTCTCAGCCCCAGCCTGGGGCACCA





CAGGCTCTCAGGAGTCTGGCTACCCTGCCCACCTGTGCACGACCATCACC





CCAGCCTTCATCCCTCCGTCTCCTCCCCTGCTCCCGCGCCTCATGCCCCA





AGCGCTTGGGCACACGCGCCGTGGTAAGGCAAGCGAGGGCGCCCGGTCCC





GGCACCGCCTCGCGTCGGTCTCCGCCCCTTTCCCCTCCGAAAGGCGGCCT





TGTGCTGCTGCGCAGGCGCGGCGGCTGGGGGTGGGGTCCATCGCGGCTCC





CGATCCCGTTATCGCGAGAAGCCGGTCCGCGATCTTGTGGCCGCCCCTCC





CCTCCCCCTGCCTCTCGGACTCGGGCTGCGGCGTCAGCCTTCTTCGGGCC





TCGGCAGCGGTAGCGGCTCGCTCGCCTCAGCCCCAGCGCCCCTCGGCTAC





CCTCGGCCCAGGCCCGCAGCGCCGCCCGCCCTCGGCCGCCCCGACGCCGG





CCTGGGCCGCGGCCGCAGCCCCGGGCTCGCGTAGGCGCCGACCGCTCCCG





GCCCGCCCCCTATGGGCCCCGGCTAGAGGCGCCGCCGCCGCCGGCCCGCG





GAGCCCCGATG






22. CD4. CD4 (cluster of differentiation 4) is a glycoprotein found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic cells. In humans, the CD4 protein is encoded by the CD4 gene (Isobe et al., Proc. Natl. Acad. Sci. U.S.A. 1986; 83 (12): 4399-402). CD4+ T helper cells are white blood cells that are an essential part of the human immune system, often referred to as CD4 cells, T-helper cells or T4 cells. These helper cells send signals to other types of immune cells, including CD8 killer cells which in turn destroy and kill the infection or virus. If CD4 cells become depleted, for example in untreated HIV infection, or following immune suppression prior to a transplant, the body is left vulnerable to a wide range of infections that it would otherwise have been able to fight.


HIV-1 uses CD4 to gain entry into host T-cells and achieves this by binding to the viral envelope protein known as gp120 (Kwong et al., Nature 393 (6686): 648-59). The binding to CD4 creates a shift in the conformation of gp120 allowing HIV-1 to bind to a co-receptor expressed on the host cell. These co-receptors are chemokine receptors CCR5 or CXCR4. Following a structural change in another viral protein (gp41), HIV inserts a fusion peptide into the host cell that allows the outer membrane of the virus to fuse with the cell membrane. CD4 is also expressed in neoplasms derived from from T helper cells, e.g. peripheral T cell lymphoma and related malignant conditions and has been associated with a number of autoimmune diseases such as vitiligo and type I diabetes mellitus (Zamani et al., Clin. Exp. Dermatol. 35 (5): 521-4).


Protein: CD4 Gene: CD4 (Homo sapiens, chromosome 12, 6898638-6929976 [NCBI Reference Sequence: NC000012.11]; start site location: 6909305; strand: positive)












Gene Identification


















GeneID
920



HGNC
1678



HPRD
01740



MIM
186940




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site





6373
GAGCCACTGCGCCCGGCCTCATTAAGGGCAT
12485





6406
CGAACAACTTCATTACAATTCGACAAGCGC
13299





6407
CGTAGTTAAGCGTGTACCAGCCCAAGGC
13189





6421
GAGCGGTGACCGTGTCTGTCTTAG
13751





6447
CGGTTTGCAGATTCCAGACCCGATGGACG
15100



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site





6373
GAGCCACTGCGCCCGGCCTCATTAAGGGCAT
12485





6374
AGCCACTGCGCCCGGCCTCA
12486





6375
GCCACTGCGCCCGGCCTCAT
12487





6376
CCACTGCGCCCGGCCTCATT
12488





6377
CACTGCGCCCGGCCTCATTA
12489





6378
ACTGCGCCCGGCCTCATTAA
12490





6379
CTGCGCCCGGCCTCATTAAG
12491





6380
TGCGCCCGGCCTCATTAAGG
12492





6381
GCGCCCGGCCTCATTAAGGG
12493





6382
CGCCCGGCCTCATTAAGGGC
12494





6383
GCCCGGCCTCATTAAGGGCA
12495





6384
CCCGGCCTCATTAAGGGCAT
12496





6385
CCGGCCTCATTAAGGGCATT
12497





6386
CGGCCTCATTAAGGGCATTC
12498





6387
CGAGCCACTGCGCCCGGCCT
12484





6388
ACGAGCCACTGCGCCCGGCC
12483





6389
CACGAGCCACTGCGCCCGGC
12482





6390
GCACGAGCCACTGCGCCCGG
12481





6391
GGCACGAGCCACTGCGCCCG
12480





6392
AGGCACGAGCCACTGCGCCC
12479





6393
CAGGCACGAGCCACTGCGCC
12478





6394
ACAGGCACGAGCCACTGCGC
12477





6395
TACAGGCACGAGCCACTGCG
12476





6396
TTACAGGCACGAGCCACTGC
12475





6397
ATTACAGGCACGAGCCACTG
12474





6398
GATTACAGGCACGAGCCACT
12473





6399
GGATTACAGGCACGAGCCAC
12472





6400
GGGATTACAGGCACGAGCCA
12471





6401
TGGGATTACAGGCACGAGCC
12470





6402
CTGGGATTACAGGCACGAGC
12469





6403
GCTGGGATTACAGGCACGAG
12468





6404
TGCTGGGATTACAGGCACGA
12467





6405
GTGCTGGGATTACAGGCACG
12466





6406
CGAACAACTTCATTACAATTCGACAAGCGC
13299





6407
CGTAGTTAAGCGTGTACCAGCCCAAGGC
13189





6408
GTAGTTAAGCGTGTACCAGC
13190





6409
TAGTTAAGCGTGTACCAGCC
13191





6410
AGTTAAGCGTGTACCAGCCC
13192





6411
GTTAAGCGTGTACCAGCCCA
13193





6412
TTAAGCGTGTACCAGCCCAA
13194





6413
TAAGCGTGTACCAGCCCAAG
13195





6414
AAGCGTGTACCAGCCCAAGG
13196





6415
AGCGTGTACCAGCCCAAGGC
13197





6416
GCGTGTACCAGCCCAAGGCA
13198





6417
CGTGTACCAGCCCAAGGCAC
13199





6418
ACGTAGTTAAGCGTGTACCA
13188





6419
TACGTAGTTAAGCGTGTACC
13187





6420
GTACGTAGTTAAGCGTGTAC
13186





6421
GAGCGGTGACCGTGTCTGTCTTAG
13751





6422
AGCGGTGACCGTGTCTGTCT
13752





6423
GCGGTGACCGTGTCTGTCTT
13753





6424
CGGTGACCGTGTCTGTCTTA
13754





6425
GGTGACCGTGTCTGTCTTAG
13755





6426
GTGACCGTGTCTGTCTTAGT
13756





6427
TGACCGTGTCTGTCTTAGTT
13757





6428
GACCGTGTCTGTCTTAGTTA
13758





6429
ACCGTGTCTGTCTTAGTTAG
13759





6430
CCGTGTCTGTCTTAGTTAGC
13760





6431
CGTGTCTGTCTTAGTTAGCA
13761





6432
AGAGCGGTGACCGTGTCTGT
13750





6433
CAGAGCGGTGACCGTGTCTG
13749





6434
CCAGAGCGGTGACCGTGTCT
13748





6435
GCCAGAGCGGTGACCGTGTC
13747





6436
GGCCAGAGCGGTGACCGTGT
13746





6437
AGGCCAGAGCGGTGACCGTG
13745





6438
CAGGCCAGAGCGGTGACCGT
13744





6439
ACAGGCCAGAGCGGTGACCG
13743





6440
CACAGGCCAGAGCGGTGACC
13742





6441
TCACAGGCCAGAGCGGTGAC
13741





6442
CTCACAGGCCAGAGCGGTGA
13740





6443
GCTCACAGGCCAGAGCGGTG
13739





6444
AGCTCACAGGCCAGAGCGGT
13738





6445
TAGCTCACAGGCCAGAGCGG
13737





6446
CTAGCTCACAGGCCAGAGCG
13736





6447
CGGTTTGCAGATTCCAGACCCGATGGACG
15100





6448
CCGGTTTGCAGATTCCAGAC
15099





6449
ACCGGTTTGCAGATTCCAGA
15098





6450
CACCGGTTTGCAGATTCCAG
15097





6451
CCACCGGTTTGCAGATTCCA
15096





6452
CCCACCGGTTTGCAGATTCC
15095





6453
GCCCACCGGTTTGCAGATTC
15094





6454
GGCCCACCGGTTTGCAGATT
15093





6455
GGGCCCACCGGTTTGCAGAT
15092





6456
TGGGCCCACCGGTTTGCAGA
15091





6457
TTGGGCCCACCGGTTTGCAG
15090





6458
TTTGGGCCCACCGGTTTGCA
15089





6459
CTTTGGGCCCACCGGTTTGC
15088





6460
GCTTTGGGCCCACCGGTTTG
15087





6461
AGCTTTGGGCCCACCGGTTT
15086





6462
TAGCTTTGGGCCCACCGGTT
15085





6463
CTAGCTTTGGGCCCACCGGT
15084





6464
TCTAGCTTTGGGCCCACCGG
15083





6465
CTCTAGCTTTGGGCCCACCG
15082



















Hot Zones (Relative upstream location to gene start site)







12350-12500


13100-13300


13700-13800


15000-15200









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11971)







ATCTAATCTATCTATATCTGTCTATCTATCTTTATGTATCTATCTTATCT





ATTGATCTATCTATCTTTTTTTTTTTTTGAGACAGAGTCACTCTGTCACC





CAGGCTGGAGTGCAGTGGCACGATCTCGGCTCACTGCAACCTCCGCCTCC





CGGGTTCAAGCGATTCTCCTACCTCAGCCTCCTCAGTAGCTGGGACTACC





CACCACCACTCCTGGCTAATTTTTGTATTTTCAGTAGAGATAGGGTTTCA





CTATGTTGGCCAGGCTGGTCTCCAACTCCTGACCTAAAGTGATCCACCCA





CCTTGGTTTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCTGG





ACATATATCTATCTTTTTTTTTTTTGAGATGGAGTCTCGCTCTGTTGCCC





AGGCTGGAGTGCAGTGGCGTGATTTCGGCTCACTGCAACCTCCGCCTCCC





GGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGAGATTACAG





ACGTGCGTCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGATGGGA





TTTCACTATGTTGGCCAGGCTGGTCTCGTACTCCCGACCTCAGGTGATCC





ACTTGCCTTGGCCTCCCAAAGTGCTGGAATTACAGGTGTGAGCCACTGCA





TCCGGCCTTATATATCTATCTTGTCTGTCTGACTGTCTAATCTAATTCAT





CTATTTTATCTGTTTATCTTATCTATCATCTATTTATCTAATCTATCTGT





CTGTATGTCTGTTTTTTTTTTGTTTTTTTTTTTTTTTTGAGATAGAGTCT





TGCTCTGTCGCCGAGGCTGGAGTGCGGTGGCGCGATCTCAGCTCACTGCT





GAACCTCCGCCTCCTGGGTTCTAAGCGATTCTCCTGCCTCAATCTTTGGA





GTAGCTGGGATTACAGGCCCGTACCACTGTGCCCGGCTAATTTTGTATTT





TTAGTAGAGAAGGGTTTCACCATGTTGGTCAGGCTTGTATTGAACTCCTG





ACCTCAGGTGATCTACCCGCCTAAGCCTCCCAAAGTGCTGGGAGTACAGG





TGTGAGCCACTGTGTCTGTCCCTAAATGTCTGTCTCTATCTATCTATCTA





TCTATCTATCTATCTATCTATCTAATCTATCTTTCTGTCTAACCTAATCT





ATTTTATCTATCTTATTCATCATCTATCTAATCTGTCTGTATGTTTATCT





AATCTATTTACCTAATCTATCAATCTATCATCTAATCTATCTAATCTGTC





TATCTAATCTATTTTATCTATCTATCTATCTGTCCATCCATCTATCTACC





TACCTGTCTATCTCAAGCACCTACCACGTATTAAGCCCTGGCTACCTCCT





CTTCCAGGCAGATGGAGTAACTGGAGGCAGCTAACAAAGATGGAGTCACT





TTTCTTATCTTCTCCTAAACCACCGTAAGAGGACCAAGCCCCCACACCTT





CTGAGTGCCCCATTCCTCTCCACAGATTGTGTCTTAGTGCCCAGCAGGAA





ACACAGTCCACCTCCCATGGTTCAAGAGATTGTAGAAAGGGGGTTATTCA





CATAGGTTAAGGGAATCAATCAATTTGAAGCACAGACACTATTAACAGCA





GGAAGAGTCCTGAAGAAGTGAAAATGGTGTTTCTGGAACCCAGAGAGTGC





TTGCACTCTGGATAAGGGGCCACCCCACAGAAGCTGTGGAGGGGCAGGGC





TGCAGGTGAGGATGAACACACAGCTATTGACAGAAAATATGCCCAGGGCA





GGGATAGAGTAGGAAAAATATCCCAGCTTCTTTCCCCCACCCTTCCATCT





CATCTCTGAAAGGCACTTCCCACTGGCCAGCCCCGACTGGTGCTGGAGGG





CAAGAGAGCCTATGAGCCATGTGTGGCTGTCAGCCCCTTGGTGGAGAGCC





ACAGACAGGATGGAGAGTGGCTGGCAGGGCCCCGTGGGGATGAACAGCTT





GGATTGGGGCGACTGGGCTTCATCCAGGCTGGGCTGGATGTGTGCATACA





TTTCAGTGACCCGTTTTAGAAACAGAATTAATATGGTGAATAGAGAAAGA





AGAAATCAGTGACTTTCGCTCCTCCATACAATTCAATTTGGCTTAAGTTA





GCCAAAGCCATACCAAGTCCTCTCTCTATGTCTCAGCTGCTGCCAGGCTT





GTGGTGGCCACACAGCTGGCTAGACTGTCATCTCTGTCCTCAAGGGGCTC





AAGCTAGAGGAGGAGAGTTGAGAAACCAAATCACTATACACAAAGTAGAA





GGTGGAACACACCCAGGAGCATGTCAACGGGGTGCTGTGGGACTTCAGAG





TAGGCAGATCGTCACCAAGCTTCAACGGCAAAGATGCCACTGGGGGAAAG





AAGGACCAAGCTTGGAAGACAGAGTAAGTCTGGAGGCAAGATCTTGTCTC





ACCAGCAGGGGCCAGGTCCATGGTGACACCTTCCCCAGGCAGTCACCTCT





CTGAGCCCACTTTATATCCTAGGCCTGGATTCAAAGACACTTGAGCCCTG





CTCCAGCCTTCCTTTGAGGTGCTATCTTGGTGCCTTTCCTATAATCACTG





CTCCAGTCCCATGTCATCTGGTCCCCAGTTACCACATCAAGCTTCCCGAA





GCTCCACACAGACCATGCCACATCTTTACCAAAAAATCAGCAGTGGGTCC





CCTCACCTCCAGGACAAAGCTCCAGCTCTTCGACCTGCCTGTCAATATTT





GCAATCACTGCCTGCACAAATTAGCTGGGTGTTGTCATGAAAGGATCACT





TGAGCCCAGGAGTTCCAGGCTGCAATGACCTATGATTGAACCACTGCACT





CTGGCCTGGGTGACAGAGTGGATCTAAACTAAAAATAAAAAGATTTACAG





TCAAGCCTCAAAGGCTTTTCCCATACCTTCTTCCACCATCACCTCCCTGA





GCCCTCTCTTTCCTCCGAAGCCTCCTCGCACATCCCTACCACCTTTGCAC





ACCTCAGAATGGGGACACCTCTCCCCTTTCCTCTCCATCTAACTTATGGT





TTTCAAACTTGAGCGTGATCAGTTACCTGGAGATTTGTGAAAACCCAGAT





GACTAGACCCACCCCCAGTTTCTGATTCAGCAGGTCTGGGGTGGGGCCGA





GGATCTGCATTTCTAACAAGTTCCCAGGTCATGTTGCCGCTGCTACTGAT





CCAGGACTTTGGGAATCGCTCCTCTAATCTACAGCTGTCCATTCCCCATG





GTCCATTCAGAGCCTCTCTGCCCTGCCCCCACCACCCCCAGTCTCGCCTG





TCTGCCAAGCGCACAGGAAACTCTCCTTCATCCAAACCCTGGACCAACGC





CTTCTGCTTGGCCCACTCAGAGGCCTTGTAGGGTTGGTCTGATATTGGAC





AGAGAAATGGCCCTCTGCTCTTTCTCCCCTGACCTCTCTGAAGGGGGCCT





GCCCCTCCACACCTGTGGGTATTTCTCGCAAGGTGGAGACAAGAGACTGA





GAAAAGAAATAAGACACAGAGAAAGTATAGAGGAATAAAAGTGGGCCCAG





GGGACCGGCGCTCAGCAAGTGAGGACCTGCACCGGTGCTGGTCTCTGAGT





TCCCTCAGTATTTATTGATCACTATCTTTACTATCTCCGCGAGGGGAATG





TGGTGGGGCTATAGGGTGAAGGTGAGGAGAGGGTCAGCAGAAAAACATAT





GAGCAAAGACTCTGTGTCATAAATAAGTTTAAGGAAAGGTGCTGTGCCTG





GATGTGCTAGATTTATGTTTAACTTTACACAAACATCTCAGTGTAGTAAA





GAGTAACAGAGCAGTATTGCCGCCATGATGTCTCGCCTCCAGACATAAGG





CAGTTTTCTCCTCTCTCAAAATAGAATGTATGATCGGTTTTACACCGGGT





CATTCCATTCCCAGGGACGAGCAGGAGACAGATGCCTTCCTCTTATCTCA





ACCGAATAGAGGCCTTCCTCCTTCACTAATCCTCCTCAGCACAGACCCTT





TACGGGTGTCGGGCTGGGGGGCTGTAAGGTCTTTCCCTTCCCATGAGGCC





ATATCTCAGGCTGTCTCAGTGGGGGGAAACCTGGACAATACCTAGGCTTT





CTCGGGCAGGGGTTCCTGCGGCCTTCCACAGTGTATTGTGTCTCTGGTTA





ATAGAGAACGGAGAATGGTGATGACTTTCACCAAGCACACTGCCTGCAAG





AACTTTTCTTTTTTTTTTTTTTTGAGACAGAGTCTTGCTCTGTCGCCCAG





GCTGGAGTGCAGTGGCGCGATCTCGGCTCACTGCCACCTCTGCCTCCCGG





GTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGC





GCCCGCCACCACGCCCGGCTAATTTTTTTGTATTTTTTTAGTAGAGATGG





GGTTTCACCGTGTTCACCAGGATGGTCTCGATCTCCTGACCTCATGATCC





GCCCGCCTTGGCCTCCCAAAATGCTGGGATTACACGTGTGAGGCAAGAAC





TTTTTAAAAGTGCATCTTGCGCAGCCCTAGATCCATTAAACCTTGATTCA





ATACAGGACATGTTTTTGTGAGCACAGGGTTGGGACAAAAGTTACAGATT





AACAGCATCTCAAAGCAGAACAATTTTTCTTAGTACAGATCAAAATGGAG





TTTCTTATGTCTTCCTTTTTCTACATAGACACAGTAACAATCTGATCTCT





CTTTCTTTTCCCCATACCTCTCACGCTGTATCAGGCCCCAATTCTTGGGA





ACGTCACCTTAGAACTGTCCCACACATTTCTACAGCCACTTGGCTCAGGC





CCTTTGCTGACCAGGATGGTTGCAGTTCTGCCTTTGGTGCCTCGCCTCCT





CCAGTTCTTTCACTCAGCAGCTGCAGGGGTCCACGTGGCAAATCTAATAA





TCTTCTTCTCTATAGAAAATCCTCTGCTGGCTCTCTAGTGCCCAGGATCC





AGTCCCAGCATCTCAGCACGGCCTTCAAGCATTTCCACGTCCTGGCCTGG





CTCCATGGTCTCCCCGCCAATTTGCCACCTTCTCCATGCATCCTTTTCTG





ATCCCCTCCTCACTCATCCCAGCAAAGAACCCCCTCCTGGCCTGAGCATA





GCATTTCGTGGTGTGTATCTCAGAGCATCCAGTTAGGGGTGTGCAAGTTT





ACTTTGTTACTGGCTGATGTTGTGAAGTCCCAAGTTGTTGGTGCCGCAAA





CAAAAAATTGGACATGACACACACAAATAGCAAAGCAGCAAAAGTTTATT





AAGCACAGTACGATCCACTATGGATCAAGGATGACCTGCGAATGGTATCA





GCATCACTTTGCTATATTTCATGGCCTTTTCTATGTGTTTTTTTTCTCTT





TTTCCTCAAGCTGCCTAAGCTTTAGCCAGCATGTGCCTTTTGGTTGACAG





GTGGGTTGCTTAGTTTCTTGGCCTCTGTGTGTTTACGTGTCATTTCCTTC





CCATAGTTTTAAGTACATGCATGATATGCACTCTGTAGGCATGAACCTTA





AGTAGCTAATTACTATACGGGGTCATTTTGAGGATATCTTTTCTCTGTAG





TACATGTGCATCTTTTTTTGCAGTGGTGCAATCTTGGCTCACTGCAACCT





CCTCCTCCCTGGTTCAAGTGATTCTCCTGCCTCAGCTTCCTAAGCACCTG





AGACTACAGGTGCATGCCACCACGCCCGGCTAATTTTTGTATTTTTAGTA





GAGATGGGGTTTCACCATGTTGGCCAGGCTGATCTCGAACTCCTGACCGC





AAGTGATCCACCCACCTCGGCCTCCCAAAGCACTGGGATTACAGGCATGA





GCCACCGCACCCAGCCTAGTATATGCCCATCTCTTAGGAGCTGCTCCTAA





CTGGTTTGGTTTGGATCTAGCCAGCCATGGGGCTCCTTATTCACTTATTT





ATCTTCTGTTTTTGCTCACCTGCCTCTTTCTCTTGCTTCTGCTCCTACTC





ATTCCTTCCTTAATCCAACCTCCAATTCCCTCTGCTATTCTCCTGCCTCA





AGTTCACTAGGCTGGCTGCAAGGGTCCTGAGGGAGAGGTTGTGTATCGCC





CCTGTATACTCCAGGTCCAGTAAATGTTTGCTGACTAATGATTGGCATTT





CCCTCAGGCCCTGCCATTTCTGTGGGCTCAGGTCCCTACTGGCTCAGGCC





CCTGCCTCCCTCGGCAAGGCCACAATG






23) WNT1 WNT1 (wingless-type MMTV integration site family, member 1) is a member of the WNT protein family of secreted molecules that are involved in intercellular signaling during development. WNT proteins have been shown to have regulatory roles in the cell fate process and have been associated with tumorigenesis. WNT proteins stimulate either the canonical or non-canonical intracellular signal transduction cascades. WNT proteins bind to the extracellular Frizzled (Fz) receptor family. Binding of WNT to the Fz and low density lipoprotein related protein 5/6 receptor complex, disrupts downstream protein complexes which inhibits the destruction of β-catenin. β-catenin enters the nucleus and complexes with TCF to initiate WNT-related gene expression. WNT1 has been associated multiple cancers including hepatitis B virus-related and hepatitis C virus-related hepatocellular carcinoma, gastric cancer, pancreatic cancer, breast cancer, and lung cancer.


Protein: Wnt-1 Gene: WNT1 (Homo sapiens, chromosome 12, 49372236-49376396 [NCBI Reference Sequence: NC000012.11]; start site location: 49372434; strand: positive)












Gene Identification


















GeneID
7471



HGNC
12774



HPRD
01276



MIM
164820




















Targeted Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












6466
CGCGCGCCCGCCTCACTCAGCTGAGCG
442





6537
CGTCATTCTGTTGCCCTTTGTACCTCG
1226





6545
CGCCACGGGCGCATCCATCCCTCCTGGG
4454





6579
CACCGCCCTCTAGCCGCCTGCGGG
4960





6580
TTGCGGCGACTTTGGTTGTTGCCCGCGACGGT
34



















Target Shift Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












6466
CGCGCGCCCGCCTCACTCAGCTGAGCG
442





6467
GCGCGCCCGCCTCACTCAGC
443





6468
CGCGCCCGCCTCACTCAGCT
444





6469
GCGCCCGCCTCACTCAGCTG
445





6470
CGCCCGCCTCACTCAGCTGA
446





6471
GCCCGCCTCACTCAGCTGAG
447





6472
CCCGCCTCACTCAGCTGAGC
448





6473
CCGCCTCACTCAGCTGAGCG
449





6474
CGCCTCACTCAGCTGAGCGT
450





6475
GCCTCACTCAGCTGAGCGTC
451





6476
CCTCACTCAGCTGAGCGTCC
452





6477
CTCACTCAGCTGAGCGTCCG
453





6478
TCACTCAGCTGAGCGTCCGG
454





6479
CACTCAGCTGAGCGTCCGGA
455





6480
ACTCAGCTGAGCGTCCGGAG
456





6481
CTCAGCTGAGCGTCCGGAGC
457





6482
TCAGCTGAGCGTCCGGAGCC
458





6483
CAGCTGAGCGTCCGGAGCCC
459





6484
AGCTGAGCGTCCGGAGCCCG
460





6485
GCTGAGCGTCCGGAGCCCGT
461





6486
CTGAGCGTCCGGAGCCCGTC
462





6487
TGAGCGTCCGGAGCCCGTCG
463





6488
GAGCGTCCGGAGCCCGTCGA
464





6489
AGCGTCCGGAGCCCGTCGAG
465





6490
GCGTCCGGAGCCCGTCGAGG
466





6491
CGTCCGGAGCCCGTCGAGGA
467





6492
GTCCGGAGCCCGTCGAGGAC
468





6493
TCCGGAGCCCGTCGAGGACT
469





6494
CCGGAGCCCGTCGAGGACTA
470





6495
CGGAGCCCGTCGAGGACTAG
471





6496
GGAGCCCGTCGAGGACTAGC
472





6497
GAGCCCGTCGAGGACTAGCA
473





6498
AGCCCGTCGAGGACTAGCAT
474





6499
GCCCGTCGAGGACTAGCATC
475





6500
CCCGTCGAGGACTAGCATCC
476





6501
CCGTCGAGGACTAGCATCCG
477





6502
CGTCGAGGACTAGCATCCGC
478





6503
GTCGAGGACTAGCATCCGCC
479





6504
TCGAGGACTAGCATCCGCCA
480





6505
CGAGGACTAGCATCCGCCAG
481





6506
GAGGACTAGCATCCGCCAGG
482





6507
AGGACTAGCATCCGCCAGGG
483





6508
GGACTAGCATCCGCCAGGGG
484





6509
GACTAGCATCCGCCAGGGGG
485





6510
ACTAGCATCCGCCAGGGGGC
486





6511
CTAGCATCCGCCAGGGGGCG
487





6512
TAGCATCCGCCAGGGGGCGC
488





6513
AGCATCCGCCAGGGGGCGCG
489





6514
GCATCCGCCAGGGGGCGCGG
490





6515
CATCCGCCAGGGGGCGCGGC
491





6516
ATCCGCCAGGGGGCGCGGCG
492





6517
TCCGCCAGGGGGCGCGGCGA
493





6518
CCGCCAGGGGGCGCGGCGAG
494





6519
ACGCGCGCCCGCCTCACTCA
441





6520
CACGCGCGCCCGCCTCACTC
440





6521
CCACGCGCGCCCGCCTCACT
439





6522
CCCACGCGCGCCCGCCTCAC
438





6523
TCCCACGCGCGCCCGCCTCA
437





6524
CTCCCACGCGCGCCCGCCTC
436





6525
CCTCCCACGCGCGCCCGCCT
435





6526
CCCTCCCACGCGCGCCCGCC
434





6527
ACCCTCCCACGCGCGCCCGC
433





6528
CACCCTCCCACGCGCGCCCG
432





6529
ACACCCTCCCACGCGCGCCC
431





6530
GACACCCTCCCACGCGCGCC
430





6531
GGACACCCTCCCACGCGCGC
429





6532
GGGACACCCTCCCACGCGCG
428





6533
TGGGACACCCTCCCACGCGC
427





6534
TTGGGACACCCTCCCACGCG
426





6535
CTTGGGACACCCTCCCACGC
425





6536
CCTTGGGACACCCTCCCACG
424





6537
CGTCATTCTGTTGCCCTTTGTACCTCG
1226





6538
GCGTCATTCTGTTGCCCTTT
1225





6539
TGCGTCATTCTGTTGCCCTT
1224





6540
ATGCGTCATTCTGTTGCCCT
1223





6541
TATGCGTCATTCTGTTGCCC
1222





6542
GTATGCGTCATTCTGTTGCC
1221





6543
TGTATGCGTCATTCTGTTGC
1220





6544
GTGTATGCGTCATTCTGTTG
1219





6545
CGCCACGGGCGCATCCATCCCTCCTGGG
4454





6546
GCCACGGGCGCATCCATCCC
4455





6547
CCACGGGCGCATCCATCCCT
4456





6548
CACGGGCGCATCCATCCCTC
4457





6549
ACGGGCGCATCCATCCCTCC
4458





6550
CGGGCGCATCCATCCCTCCT
4459





6551
GGGCGCATCCATCCCTCCTG
4460





6552
GGCGCATCCATCCCTCCTGG
4461





6553
GCGCATCCATCCCTCCTGGG
4462





6554
CGCATCCATCCCTCCTGGGC
4463





6555
CCGCCACGGGCGCATCCATC
4453





6556
ACCGCCACGGGCGCATCCAT
4452





6557
CACCGCCACGGGCGCATCCA
4451





6558
TCACCGCCACGGGCGCATCC
4450





6559
CTCACCGCCACGGGCGCATC
4449





6560
GCTCACCGCCACGGGCGCAT
4448





6561
AGCTCACCGCCACGGGCGCA
4447





6562
GAGCTCACCGCCACGGGCGC
4446





6563
TGAGCTCACCGCCACGGGCG
4445





6564
CTGAGCTCACCGCCACGGGC
4444





6565
GCTGAGCTCACCGCCACGGG
4443





6566
AGCTGAGCTCACCGCCACGG
4442





6567
CAGCTGAGCTCACCGCCACG
4441





6568
GCAGCTGAGCTCACCGCCAC
4440





6569
CGCAGCTGAGCTCACCGCCA
4439





6570
GCGCAGCTGAGCTCACCGCC
4438





6571
AGCGCAGCTGAGCTCACCGC
4437





6572
CAGCGCAGCTGAGCTCACCG
4436





6573
GCAGCGCAGCTGAGCTCACC
4435





6574
GGCAGCGCAGCTGAGCTCAC
4434





6575
GGGCAGCGCAGCTGAGCTCA
4433





6576
TGGGCAGCGCAGCTGAGCTC
4432





6577
GTGGGCAGCGCAGCTGAGCT
4431





6578
GGTGGGCAGCGCAGCTGAGC
4430





6579
CACCGCCCTCTAGCCGCCTGCGGG
0





6580
TTGCGGCGACTTTGGTTGTTGCCCGCGACGGT
34





6581
TGCGGCGACTTTGGTTGTTG
35





6582
GCGGCGACTTTGGTTGTTGC
36





6583
CGGCGACTTTGGTTGTTGCC
37





6584
GGCGACTTTGGTTGTTGCCC
38





6585
GCGACTTTGGTTGTTGCCCG
39





6586
CGACTTTGGTTGTTGCCCGC
40





6587
GACTTTGGTTGTTGCCCGCG
41





6588
ACTTTGGTTGTTGCCCGCGA
42





6589
CTTTGGTTGTTGCCCGCGAC
43





6590
TTTGGTTGTTGCCCGCGACG
44





6591
TTGGTTGTTGCCCGCGACGG
45





6592
TGGTTGTTGCCCGCGACGGT
46





6593
GGTTGTTGCCCGCGACGGTG
47





6594
GTTGTTGCCCGCGACGGTGG
48





6595
TTGTTGCCCGCGACGGTGGG
49





6596
TGTTGCCCGCGACGGTGGGA
50





6597
GTTGCCCGCGACGGTGGGAC
51





6598
TTGCCCGCGACGGTGGGACG
52





6599
TGCCCGCGACGGTGGGACGG
53





6600
GCCCGCGACGGTGGGACGGG
54





6601
CCCGCGACGGTGGGACGGGA
55





6602
CCGCGACGGTGGGACGGGAC
56





6603
GTTGCGGCGACTTTGGTTGT
33





6604
AGTTGCGGCGACTTTGGTTG
32





6605
CAGTTGCGGCGACTTTGGTT
31





6606
GCAGTTGCGGCGACTTTGGT
30





6607
TGCAGTTGCGGCGACTTTGG
29





6608
CTGCAGTTGCGGCGACTTTG
28





6609
GCTGCAGTTGCGGCGACTTT
27





6610
TGCTGCAGTTGCGGCGACTT
26





6611
GTGCTGCAGTTGCGGCGACT
25





6612
TGTGCTGCAGTTGCGGCGAC
24





6613
CTGTGCTGCAGTTGCGGCGA
23





6614
TCTGTGCTGCAGTTGCGGCG
22





6615
CTCTGTGCTGCAGTTGCGGC
21





6616
GCTCTGTGCTGCAGTTGCGG
20





6617
CGCTCTGTGCTGCAGTTGCG
19





6618
CCGCTCTGTGCTGCAGTTGC
18





6619
CCCGCTCTGTGCTGCAGTTG
17





6620
GCCCGCTCTGTGCTGCAGTT
16





6621
TGCCCGCTCTGTGCTGCAGT
15





6622
TTGCCCGCTCTGTGCTGCAG
14





6623
TTTGCCCGCTCTGTGCTGCA
13





6624
CTTTGCCCGCTCTGTGCTGC
12





6625
GCTTTGCCCGCTCTGTGCTG
11





6626
GGCTTTGCCCGCTCTGTGCT
10





6627
TGGCTTTGCCCGCTCTGTGC
9





6628
CTGGCTTTGCCCGCTCTGTG
8





6629
CCTGGCTTTGCCCGCTCTGT
7





6630
GCCTGGCTTTGCCCGCTCTG
6





6631
TGCCTGGCTTTGCCCGCTCT
5





6632
CTGCCTGGCTTTGCCCGCTC
4





6633
CCTGCCTGGCTTTGCCCGCT
3





6634
GCCTGCCTGGCTTTGCCCGC
2





6635
GGCCTGCCTGGCTTTGCCCG
1



















Hot Zones (Relative upstream location to gene start site)







  1-1000


1050-1450


1600-1900


3300-3800


4250-4700


4750-5000









Examples

In FIG. 42, In MCF7 (human mammary breast cell line), WNT11, WNT12, WNT13 produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated control values. The WNT1 sequences WNT11, WNT12, and WNT13 fit the independent and dependent DNAi motif claims.


The secondary structures for WNT11, WNT12, and WNT13 are shown in FIG. 43, FIG. 44, and FIG. 45.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11972)







CCCGGGGAACCCAAATTATAGGCCCAGGAGGGATGGATGCGCCCGTGGCG





GTGAGCTCAGCTGCGCTGCCCACCCTCCGCTTAATGCGCCTTCTGCTGCA





GCACCGTAGGCCACCACCTGGAGGCACCAAAGGGTCTGCGGGCCGACTGC





ATACTGGACTCTCAGGAAGGCCCCACTTTCAGCAGTCCACTCCAACAAAT





CCATGGGATTACCTTAGACAGAATTTTGCCCCCTTCTGTACTCAGGCCTA





ATGGATGGGCTGTGCCTTCCCAGCCCAAGGGGGCAGTGCTGCCTGCGGGT





GCTTCAAAGGAGGGTAGGCTCCTCTGCCCACAAACTCTAAACCCTGGAGC





CCTGCTTCCTCCCCAGATCCCAAAGTCAAGGCAAAGCCCCTCTCCCCTCT





AACATCTCACCTCTAACCCTATTCCAGGGGGGTGGTTTGCTACTGATTTT





CAACTTCAAGCCTTTAAAGTCATCCACGGTCAAAACTGATACAGAGAAAA





ATGAAGCAGGGTAAAGGAGATTAGTAGTGGGATTCTATTTTATAAAGGGG





GAGGGAAAACAAACTGAAGGAACAAATACATGGAGAGATCTGAGGAAGAG





CATTTTAGAAGACAGAAAAGCAGGTGCACAGACCCTTAGAAAGGAGCATG





CTTGGTTCAAAGGATTAGAAAAGAGGCCAGTGAGGCTAGTGGGGAGAAAT





TCGCAAGGAAGAGAGTGGTAGGCAATGAAGCTGGAGGGCTAGGAAGGAGG





CCCCTTTACTTTGAGTGACATGGGGTCTCGCTGGAAAATTTTGAGCAGAG





AAATGAACTAATCAGACTTCTGTTTTAGGAAAGATGGCTCTGGGCTGGGC





GCAGTGGCTCATGCCTGTAATCCCAGTACTTTGGGAGGCCGACGTGGGCA





GATCACGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCC





CACCTCTACTAAAAATACAAAAATTAGGTGGGAGTGTTGGTGGGCGCCTG





TAATCCCAGCTACTCGGTACGCTGAGGCAGGAGAATCGCTTGAAACCGGA





AGGTGGAGGTTACAGTGAGCCGAGATCATACCACTGCACTCCAGTCTGCA





CAACAAGAGCAAAACTCCGTCTCAAAAAAAAAAAAAAAGAAAGAAAGAAA





GAAAGAAATTGGCTCTAGTAATTAAATCAACCCTTTTGATTTTTGCAGTA





AAATGGAGCACTGAAATGGAGCAATCTTGGGCAGTAATGTGGGGTCTAAT





GAAGTTTTTGGGTTTTTCAGATGGGTACTATTGCAGCATGTCTGCATGCT





TATGTGTATGTTCCAGGAGAGAGATAAGTGGATGATGCAGGAAAGAAAGA





GGGGACAGTTGATATCATGATTATTTGATCTAAATAGAAAGTTGGGTGCT





TGTTTTGGCAGCACATATACTAAAATTGGAATGATATAGAGATTAGCATG





GCCCCTGCACAAGGATGACATGCAAATTTGTGAAGCATTTCATATTTTGA





AAAAGAAATGTCAGCCAGGTCATAAACAGTGTGACCCAGATCTAGGGGCC





TTACCCTCTTGCCCCCTACTCCTGGTGTGTGGAATGTTGGAACAAAGCAC





AGTGGCTCCTTTCCTCTCTTCCCACCTCTGCTTGACAACAGTCGTCAAAG





ACAGGGCTTCCATATTTTCCAGCCAGCCTCCCACCCTCACGGTGTTGTAT





CAATCCACCAGGCCAAAAGATGTGACCCAGGCCCCAGTGGGAAGAAACTC





ATAAGGGATAAAGGACAGGCTCCCCGTGATACATTGTCCATTTACTTGAG





CTATCTATGCTGGGTGCTCTCTGCAGGGACTACTGGCTTTTGGATCTACG





GAGGGTGCTGGACCACTACACCTTTTCCCTCTGGGGTGGATCCTTGGAAG





GGCCAGATATACTAGGCTGGGCAAAAGGGAAGAAAAAAGGGAAAGAAGGA





CATTTCTTTCTAAAATAACTTCCATCAGGCTTCATTTGGGTTAATATGCA





TCTCATTTAAAACACAAGTGCCCGGGAATATTAATGAAACTTACCTGGCA





TTTATTCCTTAGAGTGATTTCCCTGCCTTAGAAGGGAATCCTAGTCATTT





CTGGGACTTGAGACTTTAGGTTCAGGCCTGGGGAAATTTCTCAGTCAGAA





GGCATCCTAAAAGACAAGGGAGATGAAAAAAATGAGAGCTAGAACTCAAA





AGGGAGGCAGAAAGGCCCAAAAAATTATTTTTACCCATCAATTTTGAGAA





GGGTTCCCAGCCTGTAATTGCTGCACACTGGCAAGCAGCTGGTAAGGTCG





AAAGAGCATGGGCTTTGAGTCAAATTGGTCTGGGTTTTAATCTGGCTCTA





CCATTGATTCATTTATTAGACGTGGACCTTGGACAAGTGCCTGATCTATT





TTTAATTCTGCAAAATGGGGAGAGAGAAGAGATCTTCCCTCCTTCCAGGG





GCCATGTGTGTGGTGGTGGGGCATGATAACCAGGCTGGCAGTGCCCCCTA





TTCCCCATATAGGGAAAAGCAGCCACTTTTTTTTTTTTTTTCAGATGAAG





TCTTGCTCTGTAGCCCAGACTGGAGTGCAATGGCGTGATCTCGGCTCACT





GCAATCTCCACCTCCCGGGTTCAAGCCATTCTCCTGCCTCAGCCTCCTGA





GTAGCTGGGACTACAGGTGTGCGCCACCACACTCAGCTAATTTTTGTATT





TTTATTAGAGATGGGATTCCACTATGTTGGCCAGGATGGTCTCGATCTCC





TGACCTCATGATCCACCTGCCTCGGCCTCCCAAAGTGCGGGGATTATAGG





CATGAGCCACCGCGCCCAGCCTGTCACTTCTTCAATAGGAGGCCTAAATG





GCCTTGAAGCTGAGTAGGAGTCCCTGGGAGAGAAGAGAAAAGTGTACAAT





GGATGAGATGGTCACAGGCACTCTGGGTATCCCAGTGTGGTGGGAACTAG





AGCTTTAGGGAAAGACAGAAACTTGGCAGAAACATCCAAAGAGAAGCAAA





CACATGGAGGCACAAGTTTCCTCATCTAGGTTCAATGTAGCCAGCAACCC





TTGTCTTCCCAGTCCTCTCCATCACCATACATACAGTGGACATCCGCACC





ATTTCCCATCCTTTCTGAGCCTAGGCCTCAGAGACTTAGCCACTCCAGGC





TGGGTTCACCTCAATACCATCTTGGTTGTAGGCTCGGCTCTCTCCCCCAA





TGACATGCACTGGTTGACACATACCACAGTGTGACACGCCATAGGATGCC





ACGAGGTACAAAGGGCAACAGAATGACGCATACACACATATTTAATCTTC





CCATGCACATGCTCATCCACCCACTCCACACACAGTCCAGACACTCTGCA





TCCCTCAATCATGCTTCTGAGTCTCCTGTCGACAGTTGCCACCTCCTTCC





TGACACACTGCCCCAGGCGGTGACTGTGACAAGGTGACTCCATGACCTTT





TCTGACTTGAGCTAAATTCCAAAATTCTTTGGAAAGTTTCCTAACATCCT





TCGTCAGAACAAGGAGTTTCTGCACGTACCAACACACAGGAGGATGCACC





CTCAGAACACAGCACATTCTCACTCCCACCCATATTCACGTTGTTCCACT





TCACACACACACACACACACACACACACACACAGCCACTTGTGCGCTTCT





TCTGGCGCACATGAGCAAACTGCCTGTTGCTTTAGGTTTCTCTCCACCGC





TAGGCTCCTTTTGGTTAGCTCACCCCCACAACTCATCCCCGGGATTTCCC





TGACCACAGCCGCACTCACGCCCCCGTCTCCCCTTTTTCCTTCTCTGTCC





AGCCATCGGGGGTTCCTGGGCGGTTAAGCATCTCCCCGGAGTCGCTGCCC





AGAACCACAGCTTTCCTTCCGACACTCAGGATGGGGGAGAGAGGGGACGT





CGGAGGGGCCCGGGGTGACGTCGAGGGGACAACCCCACCGCGGGCGGCGA





GGCGGGCTGGGCCCCTGGCGGGCTCTCCCCGCAGCACACTCTCGCCGCGC





CCCCTGGCGGATGCTAGTCCTCGACGGGCTCCGGACGCTCAGCTGAGTGA





GGCGGGCGCGCGTGGGAGGGTGTCCCAAGGGGAGGGGTCCGCGGCCAGTG





CAGGCCCGGAGGCGGGGGCCACCGGGCAGGGGGCGGGGGTGAGCCCCGAC





GGCCAACCCGTCAGCTCTCGGCTCAGACGGGCGGGAACCACAGCCCCGCT





CGCTGCCCATTGTCTGCGCCCCTAACCGGTGCGCCCTGGTGCCACAGTGC





GGCCCGGAGGGGCAGCCTCCTCCCGTCACTTCAGCCAGCGCCGCAACTAT





AAGAGGCGGTGCCGCCCGCCGTGGCCGCCTCAGCCCACCAGCCGGGACCG





CGAGCCATGCTGTCCGCCGCCCGCCCCCAGGGTTGTTAAAGCCAGACTGC





GAACTCTCGCCACTGCCGCCACCGCCGCGTCCCGTCCCACCGTCGCGGGC





AACAACCAAAGTCGCCGCAACTGCAGCACAGAGCGGGCAAAGCCAGGCAG





GCCATG






24) Clusterin. Clusterin is a heterodimeric glycoprotein produced by a wide array of tissues and found in most biologic fluids. A number of physiologic functions have been proposed for clusterin based on its distribution and in vitro properties. These include complement regulation, lipid transport, sperm maturation, initiation of apoptosis, endocrine secretion, membrane protection, and promotion of cell interactions. A prominent and defining feature of clusterin is its induction in such disease states as glomerulonephritis, polycystic kidney disease, renal tubular injury, neurodegenerative conditions including Alzheimer's disease, atherosclerosis, and myocardial infarction (reviewed by Rosenberg and Silkensen, Int. J. Biochem Cell Biol. 1995: 27 (7) 633-645. Genome-wide association studies found a statistical association between a SNP within the clusterin gene and the risk of having Alzheimer's disease (Lambert et al., 2009: Nat. Genet. 41 (10): 1094-1099). Other studies, Alzheimer's patients have more clusterin in their blood (Schrijvers et al. 2011 JAMA 305 (13): 1322-1326).


Clusterin acts as cell-survival protein and is over-expressed in response to anti-cancer agents. An antisense approach to inhibiting clusterin (Curtisen) has shown promising results in combination with currently available chemotherapies in several tumor types. The FDA granted Custirsen two Fast Track Designations as a treatment in combination with first-line and second-line docetaxel for progressive metastatic prostate cancer.


Protein: Clusterin Gene: CLU (Homo sapiens, chromosome 8, 27454434-27472328 [NCBI Reference Sequence: NC000008.10]; start site location: 27468088; strand: negative)












Gene Identification


















GeneID
1191



HGNC
2095



HPRD




MIM
185430




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












6636
CGTCCCGCCCACCTGCTGCCTGCAGCAG
78





6660
CGACAATCAGCGAGGCACACAGGCT
330





6689
CGGAGAGTAGAGAGGGTTCGCAGTGGCCC
718





6690
CCACGGGGCACAGGCCATAGCCCCG
890





6709
CTCGTGCTCTCAGGCGGCGGTTGCGCCG
3865





6752
CCGGGAGGTGGGGGCCGGTGCAGCACCGG
4260





6753
TCGCGTGCCCATCTGGGAGCCCCTCTCACG
4395



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












6636
CGTCCCGCCCACCTGCTGCCTGCAGCAG
78





6637
GTCCCGCCCACCTGCTGCCT
79





6638
TCCCGCCCACCTGCTGCCTG
80





6639
CCCGCCCACCTGCTGCCTGC
81





6640
CCGCCCACCTGCTGCCTGCA
82





6641
CGCCCACCTGCTGCCTGCAG
83





6642
GCGTCCCGCCCACCTGCTGC
77





6643
GGCGTCCCGCCCACCTGCTG
76





6644
TGGCGTCCCGCCCACCTGCT
75





6645
CTGGCGTCCCGCCCACCTGC
74





6646
GCTGGCGTCCCGCCCACCTG
73





6647
TGCTGGCGTCCCGCCCACCT
72





6648
CTGCTGGCGTCCCGCCCACC
71





6649
CCTGCTGGCGTCCCGCCCAC
70





6650
GCCTGCTGGCGTCCCGCCCA
69





6651
AGCCTGCTGGCGTCCCGCCC
68





6652
CAGCCTGCTGGCGTCCCGCC
67





6653
ACAGCCTGCTGGCGTCCCGC
66





6654
GACAGCCTGCTGGCGTCCCG
65





6655
AGACAGCCTGCTGGCGTCCC
64





6656
TAGACAGCCTGCTGGCGTCC
63





6657
CTAGACAGCCTGCTGGCGTC
62





6658
GCTAGACAGCCTGCTGGCGT
61





6659
AGCTAGACAGCCTGCTGGCG
60





6660
CGACAATCAGCGAGGCACACAGGCT
330





6661
GACAATCAGCGAGGCACACA
331





6662
ACAATCAGCGAGGCACACAG
332





6663
CAATCAGCGAGGCACACAGG
333





6664
AATCAGCGAGGCACACAGGC
334





6665
ATCAGCGAGGCACACAGGCT
335





6666
TCAGCGAGGCACACAGGCTT
336





6667
CAGCGAGGCACACAGGCTTT
337





6668
AGCGAGGCACACAGGCTTTC
338





6669
GCGAGGCACACAGGCTTTCT
339





6670
CGAGGCACACAGGCTTTCTG
340





6671
CCGACAATCAGCGAGGCACA
329





6672
CCCGACAATCAGCGAGGCAC
328





6673
CCCCGACAATCAGCGAGGCA
327





6674
TCCCCGACAATCAGCGAGGC
326





6675
CTCCCCGACAATCAGCGAGG
325





6676
CCTCCCCGACAATCAGCGAG
324





6677
TCCTCCCCGACAATCAGCGA
323





6678
ATCCTCCCCGACAATCAGCG
322





6679
CATCCTCCCCGACAATCAGC
321





6680
ACATCCTCCCCGACAATCAG
320





6681
CACATCCTCCCCGACAATCA
319





6682
CCACATCCTCCCCGACAATC
318





6683
GCCACATCCTCCCCGACAAT
317





6684
AGCCACATCCTCCCCGACAA
316





6685
AAGCCACATCCTCCCCGACA
315





6686
CAAGCCACATCCTCCCCGAC
314





6687
CCAAGCCACATCCTCCCCGA
313





6688
TCCAAGCCACATCCTCCCCG
312





6689
CGGAGAGTAGAGAGGGTTCGCAGTGGCCC
718





6690
CCACGGGGCACAGGCCATAGCCCCG
890





6691
CACGGGGCACAGGCCATAGC
891





6692
ACGGGGCACAGGCCATAGCC
892





6693
CGGGGCACAGGCCATAGCCC
893





6694
GCCACGGGGCACAGGCCATA
889





6695
AGCCACGGGGCACAGGCCAT
888





6696
GAGCCACGGGGCACAGGCCA
887





6697
TGAGCCACGGGGCACAGGCC
886





6698
CTGAGCCACGGGGCACAGGC
885





6699
CCTGAGCCACGGGGCACAGG
884





6700
CCCTGAGCCACGGGGCACAG
883





6701
GCCCTGAGCCACGGGGCACA
882





6702
TGCCCTGAGCCACGGGGCAC
881





6703
CTGCCCTGAGCCACGGGGCA
880





6704
GCTGCCCTGAGCCACGGGGC
879





6705
GGCTGCCCTGAGCCACGGGG
878





6706
TGGCTGCCCTGAGCCACGGG
877





6707
CTGGCTGCCCTGAGCCACGG
876





6708
GCTGGCTGCCCTGAGCCACG
875





6709
CTCGTGCTCTCAGGCGGCGGTTGCGCCG
3865





6710
TCGTGCTCTCAGGCGGCGGT
3866





6711
CGTGCTCTCAGGCGGCGGTT
3867





6712
GTGCTCTCAGGCGGCGGTTG
3868





6713
TGCTCTCAGGCGGCGGTTGC
3869





6714
GCTCTCAGGCGGCGGTTGCG
3870





6715
CTCTCAGGCGGCGGTTGCGC
3871





6716
TCTCAGGCGGCGGTTGCGCC
3872





6717
CTCAGGCGGCGGTTGCGCCG
3873





6718
TCAGGCGGCGGTTGCGCCGG
3874





6719
CAGGCGGCGGTTGCGCCGGG
3875





6720
AGGCGGCGGTTGCGCCGGGG
3876





6721
GGCGGCGGTTGCGCCGGGGC
3877





6722
GCGGCGGTTGCGCCGGGGCC
3878





6723
CGGCGGTTGCGCCGGGGCCC
3879





6724
GGCGGTTGCGCCGGGGCCCC
3880





6725
GCGGTTGCGCCGGGGCCCCT
3881





6726
CGGTTGCGCCGGGGCCCCTG
3882





6727
GGTTGCGCCGGGGCCCCTGG
3883





6728
GTTGCGCCGGGGCCCCTGGC
3884





6729
TTGCGCCGGGGCCCCTGGCT
3885





6730
TGCGCCGGGGCCCCTGGCTC
3886





6731
GCGCCGGGGCCCCTGGCTCA
3887





6732
CGCCGGGGCCCCTGGCTCAG
3888





6733
GCCGGGGCCCCTGGCTCAGC
3889





6734
CCGGGGCCCCTGGCTCAGCT
3890





6735
CGGGGCCCCTGGCTCAGCTG
3891





6736
GCTCGTGCTCTCAGGCGGCG
3864





6737
AGCTCGTGCTCTCAGGCGGC
3863





6738
GAGCTCGTGCTCTCAGGCGG
3862





6739
GGAGCTCGTGCTCTCAGGCG
3861





6740
TGGAGCTCGTGCTCTCAGGC
3860





6741
TTGGAGCTCGTGCTCTCAGG
3859





6742
GTTGGAGCTCGTGCTCTCAG
3858





6743
GGTTGGAGCTCGTGCTCTCA
3857





6744
TGGTTGGAGCTCGTGCTCTC
3856





6745
GTGGTTGGAGCTCGTGCTCT
3855





6746
TGTGGTTGGAGCTCGTGCTC
3854





6747
TTGTGGTTGGAGCTCGTGCT
3853





6748
ATTGTGGTTGGAGCTCGTGC
3852





6749
AATTGTGGTTGGAGCTCGTG
3851





6750
GAATTGTGGTTGGAGCTCGT
3850





6751
AGAATTGTGGTTGGAGCTCG
3849





6752
CCGGGAGGTGGGGGCCGGTGCAGCACCGG
4260





6753
TCGCGTGCCCATCTGGGAGCCCCTCTCACG
4395





6754
CGCGTGCCCATCTGGGAGCC
4396





6755
GCGTGCCCATCTGGGAGCCC
4397





6756
CGTGCCCATCTGGGAGCCCC
4398





6757
CTCGCGTGCCCATCTGGGAG
4394





6758
ACTCGCGTGCCCATCTGGGA
4393





6759
AACTCGCGTGCCCATCTGGG
4392





6760
GAACTCGCGTGCCCATCTGG
4391





6761
TGAACTCGCGTGCCCATCTG
4390





6762
CTGAACTCGCGTGCCCATCT
4389





6763
CCTGAACTCGCGTGCCCATC
4388





6764
GCCTGAACTCGCGTGCCCAT
4387





6765
AGCCTGAACTCGCGTGCCCA
4386





6766
GAGCCTGAACTCGCGTGCCC
4385





6767
AGAGCCTGAACTCGCGTGCC
4384





6768
AAGAGCCTGAACTCGCGTGC
4383





6769
GAAGAGCCTGAACTCGCGTG
4382





6770
GGAAGAGCCTGAACTCGCGT
4381





6771
GGGAAGAGCCTGAACTCGCG
4380





6772
AGGGAAGAGCCTGAACTCGC
4379





6773
TAGGGAAGAGCCTGAACTCG
4378



















Hot Zones (Relative upstream location to gene start site)







 1-950


1000-1300


2050-3000


3550-4500









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11973)







AATGTGAAGGTTAAGGTCAGTAGGGCCAGGGAACTGTGAGATTGTGTCTT





GGACTGGGACAGACAGCCGGGCTAACCGCGTGAGAGGGGCTCCCAGATGG





GCACGCGAGTTCAGGCTCTTCCCTACTGGAAGCGCCGAGCGGCCGCACCT





CAGGGTCTCTCCTGGAGCCAGCACAGCTATTCGTGGTGATGATGCGCCCC





CCGGCGCCCCCAGCCCGGTGCTGCACCGGCCCCCACCTCCCGGCTTCCAG





AAAGCTCCCCTTGCTTTCCGCGGCATTCTTTGGGCGTGAGTCATGCAGGT





TTGCAGCCAGCCCCAAAGGGGGTGTGTGCGCGAGCAGAGCGCTATAAATA





CGGCGCCTCCCAGTGCCCACAACGCGGCGTCGCCAGGAGGAGCGCGCGGG





CACAGGGTGCCGCTGACCGGTGAGATGTCCCCGTCTTCCCTACCCTTGAG





CAGAGCCACACCAGGACGGATGGGCGGGCAGGGGATGGCAGCCAGGCAGA





GAGGGATGACACAGCTCGCAGTCACAACCCCTGCGCTTTCGACGGAGCCC





AGGAAGCCAGGGAGGGGAGGTGGCCGGAGCCCCATCACCAGGCAGCTGAG





CCAGGGGCCCCGGCGCAACCGCCGCCTGAGAGCACGAGCTCCAACCACAA





TTCTGTGGTGGGGGGGTAAATAGAACAGATATAATGATCATCCTTTCGCA





AAGATGGGGAAACTGAGACCTGGAGACCTGCCGCGTTGCGGGAGACCCAG





GCTAGCAGGTGACAGAGCTGGCCTGCACCGAGCTCCTTCCTGCAGCATAT





CCTCTGCGAAGATGCGGATCTCTCAGTTGTGGCTTTCGGCTTGCATGCAT





GAGTCATCTAGTTTTCTTCTAAATTCTCTAGCTCTCTGGACACTGTTGCC





TGTAAGTATGAGGCTGCGGATTTCAGTATATGCTGCAACCACCGAAATCC





GACTTTTTCTGCCTCCTAATGCATCTGAGGTGCATCAGAGAAAAGTCACA





CAAGATCCACCAGGCCTCAGACCTCTGATTCCACAGTCTCATTTTACAGA





TGATAATCTGAGGCCTGGAGAGGTTTAGGACTGGTGCCAACACTAAACAG





CAAATAAGTATCAGAATTGGGATTCGAGCCAAAGCCTCTTGACCTTCCAG





AATTTCTGGACCTAGTTAAAAAAAATATGATTTTTATTATTATTTTTTAA





ACGGAGAGGTTAGGAATTTAAAGGAAAGTACAGATACTATATAAAAAAAG





ATGCCCATGAAAATGTTAAGTTATAATAATAGTGGAGCATTGGGCACAAC





TGAAATGGCCAATCTTGTGAGAATGGTAAAATAAACTTAGGTCCGTGAGT





AAGTGGAGTATTACATAGCCATAAAAGTATGCCCTTAAAGAATATTTGAA





GATGGTGAATGTGAAGAATCTTGTATAAACTGCATGGAAGACAGAAGGAA





ATATACCACAGTGCTAACCTTTGCCTCTGGGTGATATGAATTACCGGTGA





TTATTTTTCTTATTTTCCTTTTGGTTTAGTTTTCTCCATTTGAAGAAGCA





GATAGGAGCCGGGGCTTTGGGATTGAAACCCTCACCATCTGTGTGCCCTC





TTCACTGTCTTCCCATCCTCCCCACGGCTCCCTGTTCACAGTCATTGATT





TTCTTTCTTTCTTTTCTCTCTTTTTTTTTTTTTTTCCTGAGACCAAGTCT





CACTCTGTTGCCCAGGCTGGAGTAGAGTAGCGCCATCTCGGCTCACTGCA





ACCTCCGCCATCCGGGTTCAAGCAGTTCTCATGCCTCAGCCTCTGAGTAG





CTGGGACTACAGGCGCATGCTGCTACATCCGGCTAATTTTTGTATTTTTA





GTAGAGACATGGTTTCACCACCTTGGCCAGGCTGGTCTCGAACTCCTGAT





CTCAAGTAATCCGCCTGTCTTGGCCTCCCAAAGTGCTGGGGTGACAGGTG





TGAATCAATGCGCCCTGCCAGGTCATTGATTTTCTTAAGCCTCCAGCCCT





GCCCTGCTTGGAAACGTTTTGGGAAGCTGCTCAGTTCAAAGTTCCCAGGA





GGGTGTGCCTGGAGGGGAGTTGCTCCCAAAGTCTGCCTGCTCCCCCCGCC





CCCCCTGCCCCCCACCCCCCGCCATCTTCTCCTCCTCCTCTTCCCCTGAG





CAGCCCCTTTGTCCACAGAACCGGCCTTTTCTGGTAGAAGGAGCAAGGCC





AAGTGGTTTAAGCCTTCTTAGGGAGAATGAGGCTGTGTGGTAGTGCTGGG





GACTCGAGGGCCTTGGCCTTGGCATGGCTCTTCCACCCAGGGCAGCTGGC





AGCCAGGCTCCCAGGAGGCAGAGGAGATGAGGGGGGAGGTGAGTCCGAGC





AAAGGAAAGGAGGTCGGCTGTGCAGTCACGGTTCTAGAACATTCCTTGGA





TCAGCAGCATCCATATCACCTGCAGACTGGCTGGAAAAGCAGTCTCAGAA





CCAACATTATAACCAGCCCTGCAGTGATTCATAAGTACTTTAAAAAGTGG





TCAATCATTTCAGCAAAGCAGAGCCACACAGTCCGGGGGACCACAGGTGG





CCTCTGTGTGCTTGTCTCGGTTTTCCTGCCCCTCTCCAGACATGTTGATT





AGACACTGCCAATGCCCAGCCTCAGACCTCAGTCTAATTTGGAAGTAGTC





AGAATTTACTATGATTACATAAGACCCTCGTGTTTACAGAACACATTCCC





CTCTCTGAGGTCTGGATTAGATCCATTTTACAGATGAAGAAACTGAGGCT





CAGATATTTAAGTGACTTGGAATCAAGGAAAGAATACTGGACTAGGGGTC





GGGAGGGCTGGGCTCTCATCCCAGGGTTACCATGAGCATGCTGTGGACTC





TAGGGAGTCCCATGCCCTCTCTGGGCTTCAGCCTCACCGCTAGGGTAGAG





AGGTTGGGTGAGAGAACGACCTCCTTCCCAGGTCTGAGCTGGATGGTTCA





CCAGGGACCCCAGGCTCCCTGGAGCAGACTCTGTGCCCGCTGCTGAGTCT





GGAATTCCTTTCCTGTATCTTGCCTTTGGCTGCCCCATTCTTCATGGCCC





AGCACCCTGTCTTCTGGTCAGAACCTAGTTCTGAATGGGTTTTTCCAGAA





GTTGTTGCTTTCAGGGGCCCCTGGCAGAGAGGTGTTTCTGGCTGGCTTTG





TCTCTCTGGCATGACAAAGGCTCTGTTCCTGCTGGAGGCATTTCAGGGCT





CAGTGGGCAGCTGGGGCAGAGCCCGTGAGACCACAGCCTTCCTGGTGAGC





CCGGTCTCCGCCCCCTACCCCATCTCTGGGGAAGGCGCTGACCCCATCTC





TTCTCCCACGCTGCTCCCTGGCTCTTTGCGCCTGATTACTTCTCATGAGA





GGCACTCCTTGTTAATGTGCTACTGAGTGTCCAGATGGGCCTGCTGGGCT





GAGCGGGCTTTGGATGTGAACCATTTCAGGAAGGGGAACCCCATCGTCCT





GTTGGTTCTGTGATGGCAAATGGGTGAGCTCAGATAAGCAGTTCTTGGGA





GGGGCATGGTGGGGGTGGAGTGCAGGGGGAGGGGTTTCTGTTTTATGCAA





CAGCCTCAGCTTCTGGGAAAGGGTCCATTGTGTAAGACCGGGGCTATGGC





CTGTGCCCCGTGGCTCAGGGCAGCCAGCCCAGTGGTGGCAGGAACACTGG





CAGGGCAGCCTGCTGTCGGCTTAGAGGGGATGGGCAGTGTGGAGGGCCTG





GCAGAGCAAGAGGACTCATCCTTCCAAAGGGACTTTCTCTGGGAAGCCTG





CTCCTCGGGCCACTGCGAACCCTCTCTACTCTCCGAAGGGAATTGTCCTT





CCTGGCTTCCACTACTTCCACCCCTGAATGCACAGGCAGCCCGGCCCAAG





TCTCCCACTAGGGATGCAGATGGATTCGGTGTGAAGGGCTGGCTGCTGTT





GCCTCCGGCTCTTGAAAGTCAAGTTCAGGTGGTGCTGAGACTCCCTGGGG





GCTGCAGCGCTGTGGTGAATGGGGAGCGTCTGCTGGGGTGAAGGTTTAGG





TGCACATTGCAGAGGACGTGGCTGGTCTCTGGGATGCAGTCCCTCTGTGG





AGGTGGCATGGGGAGGGACGGATGCATGACCTAAGGGGGGTATTTTCAGT





GTCTGACATGATCGATACCACTCTGGACAAGGAGGCCAGGATGCAGAAAG





CCTGTGTGCCTCGCTGATTGTCGGGGAGGATGTGGCTTGGACAAGAGCCT





GGTTCCTCCGATGCCAGGGTTCTTGTTTCTTCCACTCAACATTGCTGTCC





TGCAGTCCCTCCCTCCCTGCACCTCCTGCCTTCGCTTTCATTCGAGGTGT





CCATGGCAAGTCTGGTCATTTCCCCCCATTTCCTCAGGAATAAAAGTGCA





GCAGTGCCTGCTGTGGGGACAGCTGAGGGCAGTGAGGCCCTGGGGAGCTG





CTGCAGGCAGCAGGTGGGCGGGACGCCAGCAGGCTGTCTAGCTGTTCCCA





TGATGGTCTCCTGTTCTCTGCAGAGGCGTGCAAAGACTCCAGAATTGGAG





GCATG






25. NRAS. The neuroblastoma RAS viral oncogene homolog (N-ras) oncogene is a member of the Ras gene family. It is mapped on chromosome 1, and it is activated in HL60, a promyelocytic leukemia line. The mammalian ras gene family consists of the harvey and kirsten ras genes (HRAS and KRAS), an inactive pseudogene of each (c-Hras2 and c-Kras1) and the N-ras gene. They differ significantly only in the C-terminal 40 amino acids. These ras genes have GTP/GDP binding and GTPase activity, and their normal function may be as G-like regulatory proteins involved in the normal control of cell growth. Mutations which change amino acid residues 12, 13 or 61 activate the potential of N-ras to transform cultured cells and are implicated in a variety of human tumors. The N-ras gene specifies two main transcripts of 2 Kb and 4.3 Kb. The difference between the two transcripts is a simple extension through the termination site of the 2 Kb transcript. The N-ras gene consists of seven exons (-I, I, II, III, IV, V, VI). The smaller 2 Kb transcript contains the VIa exon, and the larger 4.3 Kb transcript contains the VIb exon which is just a longer form of the VIa exon. Both transcripts encode identical proteins as they differ only the 3′ untranslated region (reviewed in Marshall et al., 1982 Nature 299 (5879): 171-3 and Shimizu et al., 1983 PNAS 80 (2): 383-7).


Protein: NRAS Gene: NRAS (Homo sapiens, chromosome 1, 115247085-115259515 [NCBI Reference Sequence: NC000001.10]; start site location: 115258781; strand: negative)












Gene Identification


















GeneID
4893



HGNC
7989



HPRD
01273



MIM
164790




















Targeted Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site












6774
CCCCGCCCTCAGCCTAAGCAATGGA
234





6793
GACCCCGGAACCGCCATGAACAGCCC
559





6818
CCCGCTACGTAATCAGTCGGCGCCCCA
613





6961
AACGCAAAAACACCGGATTAATATCGGCCT
142





6963
ATAAACGGCCTCTTTACCCAGAGATCA
850





6971
CGCCACCTTAAGTTTTTCCAGGCTGC
1779



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site












6774
CCCCGCCCTCAGCCTAAGCAATGGA
234





6775
CCCGCCCTCAGCCTAAGCAA
235





6776
CCGCCCTCAGCCTAAGCAAT
236





6777
CGCCCTCAGCCTAAGCAATG
237





6778
GCCCCGCCCTCAGCCTAAGC
233





6779
GGCCCCGCCCTCAGCCTAAG
232





6780
GGGCCCCGCCCTCAGCCTAA
231





6781
TGGGCCCCGCCCTCAGCCTA
230





6782
TTGGGCCCCGCCCTCAGCCT
229





6783
CTTGGGCCCCGCCCTCAGCC
228





6784
CCTTGGGCCCCGCCCTCAGC
227





6785
TCCTTGGGCCCCGCCCTCAG
226





6786
GTCCTTGGGCCCCGCCCTCA
225





6787
AGTCCTTGGGCCCCGCCCTC
224





6788
CAGTCCTTGGGCCCCGCCCT
223





6789
ACAGTCCTTGGGCCCCGCCC
222





6790
AACAGTCCTTGGGCCCCGCC
221





6791
CAACAGTCCTTGGGCCCCGC
220





6792
TCAACAGTCCTTGGGCCCCG
219





6793
GACCCCGGAACCGCCATGAACAGCCC
559





6794
ACCCCGGAACCGCCATGAAC
560





6795
CCCCGGAACCGCCATGAACA
561





6796
CCCGGAACCGCCATGAACAG
562





6797
CCGGAACCGCCATGAACAGC
563





6798
CGGAACCGCCATGAACAGCC
564





6799
GGAACCGCCATGAACAGCCC
565





6800
GAACCGCCATGAACAGCCCC
566





6801
AACCGCCATGAACAGCCCCC
567





6802
ACCGCCATGAACAGCCCCCA
568





6803
CCGCCATGAACAGCCCCCAC
569





6804
CGCCATGAACAGCCCCCACC
570





6805
AGACCCCGGAACCGCCATGA
558





6806
GAGACCCCGGAACCGCCATG
557





6807
GGAGACCCCGGAACCGCCAT
556





6808
TGGAGACCCCGGAACCGCCA
555





6809
TTGGAGACCCCGGAACCGCC
554





6810
GTTGGAGACCCCGGAACCGC
553





6811
TGTTGGAGACCCCGGAACCG
552





6812
ATGTTGGAGACCCCGGAACC
551





6813
AATGTTGGAGACCCCGGAAC
550





6814
AAATGTTGGAGACCCCGGAA
549





6815
AAAATGTTGGAGACCCCGGA
548





6816
AAAAATGTTGGAGACCCCGG
547





6817
GAAAAATGTTGGAGACCCCG
546





6818
CCCGCTACGTAATCAGTCGGCGCCCCA
613





6819
CCGCTACGTAATCAGTCGGC
614





6820
CGCTACGTAATCAGTCGGCG
615





6821
GCTACGTAATCAGTCGGCGC
616





6822
CTACGTAATCAGTCGGCGCC
617





6823
TACGTAATCAGTCGGCGCCC
618





6824
ACGTAATCAGTCGGCGCCCC
619





6825
CGTAATCAGTCGGCGCCCCA
620





6826
GTAATCAGTCGGCGCCCCAG
621





6827
TAATCAGTCGGCGCCCCAGG
622





6828
AATCAGTCGGCGCCCCAGGC
623





6829
ATCAGTCGGCGCCCCAGGCG
624





6830
TCAGTCGGCGCCCCAGGCGC
625





6831
CAGTCGGCGCCCCAGGCGCC
626





6832
AGTCGGCGCCCCAGGCGCCT
627





6833
GTCGGCGCCCCAGGCGCCTG
628





6834
TCGGCGCCCCAGGCGCCTGA
629





6835
CGGCGCCCCAGGCGCCTGAG
630





6836
GGCGCCCCAGGCGCCTGAGT
631





6837
GCGCCCCAGGCGCCTGAGTC
632





6838
CGCCCCAGGCGCCTGAGTCC
633





6839
GCCCCAGGCGCCTGAGTCCC
634





6840
CCCCAGGCGCCTGAGTCCCC
635





6841
CCCAGGCGCCTGAGTCCCCG
636





6842
CCAGGCGCCTGAGTCCCCGC
637





6843
CAGGCGCCTGAGTCCCCGCC
638





6844
AGGCGCCTGAGTCCCCGCCC
639





6845
GGCGCCTGAGTCCCCGCCCC
640





6846
GCGCCTGAGTCCCCGCCCCG
641





6847
CGCCTGAGTCCCCGCCCCGG
642





6848
GCCTGAGTCCCCGCCCCGGC
643





6849
CCTGAGTCCCCGCCCCGGCC
644





6850
CTGAGTCCCCGCCCCGGCCA
645





6851
TGAGTCCCCGCCCCGGCCAC
646





6852
GAGTCCCCGCCCCGGCCACG
647





6853
AGTCCCCGCCCCGGCCACGT
648





6854
GTCCCCGCCCCGGCCACGTG
649





6855
TCCCCGCCCCGGCCACGTGG
650





6856
CCCCGCCCCGGCCACGTGGG
651





6857
CCCGCCCCGGCCACGTGGGC
652





6858
CCGCCCCGGCCACGTGGGCC
653





6859
CGCCCCGGCCACGTGGGCCT
654





6860
GCCCCGGCCACGTGGGCCTC
655





6861
CCCCGGCCACGTGGGCCTCC
656





6862
CCCGGCCACGTGGGCCTCCG
657





6863
CCGGCCACGTGGGCCTCCGA
658





6864
CGGCCACGTGGGCCTCCGAA
659





6865
GGCCACGTGGGCCTCCGAAC
660





6866
GCCACGTGGGCCTCCGAACC
661





6867
CCACGTGGGCCTCCGAACCA
662





6868
CACGTGGGCCTCCGAACCAC
663





6869
ACGTGGGCCTCCGAACCACG
664





6870
CGTGGGCCTCCGAACCACGA
665





6871
GTGGGCCTCCGAACCACGAG
666





6872
TGGGCCTCCGAACCACGAGT
667





6873
GGGCCTCCGAACCACGAGTC
668





6874
GGCCTCCGAACCACGAGTCA
669





6875
GCCTCCGAACCACGAGTCAT
670





6876
CCTCCGAACCACGAGTCATG
671





6877
CTCCGAACCACGAGTCATGC
672





6878
TCCGAACCACGAGTCATGCG
673





6879
CCGAACCACGAGTCATGCGG
674





6880
CGAACCACGAGTCATGCGGC
675





6881
GAACCACGAGTCATGCGGCA
676





6882
AACCACGAGTCATGCGGCAG
677





6883
ACCACGAGTCATGCGGCAGG
678





6884
CCACGAGTCATGCGGCAGGC
679





6885
CACGAGTCATGCGGCAGGCC
680





6886
ACGAGTCATGCGGCAGGCCG
681





6887
CGAGTCATGCGGCAGGCCGC
682





6888
GAGTCATGCGGCAGGCCGCA
683





6889
AGTCATGCGGCAGGCCGCAC
684





6890
GTCATGCGGCAGGCCGCACC
685





6891
TCATGCGGCAGGCCGCACCC
686





6892
CATGCGGCAGGCCGCACCCA
687





6893
ATGCGGCAGGCCGCACCCAG
688





6894
TGCGGCAGGCCGCACCCAGA
689





6895
GCGGCAGGCCGCACCCAGAC
690





6896
CGGCAGGCCGCACCCAGACC
691





6897
GGCAGGCCGCACCCAGACCC
692





6898
GCAGGCCGCACCCAGACCCG
693





6899
CAGGCCGCACCCAGACCCGC
694





6900
AGGCCGCACCCAGACCCGCC
695





6901
GGCCGCACCCAGACCCGCCC
696





6902
GCCGCACCCAGACCCGCCCC
697





6903
CCGCACCCAGACCCGCCCCT
698





6904
CGCACCCAGACCCGCCCCTC
699





6905
GCACCCAGACCCGCCCCTCC
700





6906
CACCCAGACCCGCCCCTCCC
701





6907
ACCCAGACCCGCCCCTCCCA
702





6908
CCCAGACCCGCCCCTCCCAC
703





6909
CCAGACCCGCCCCTCCCACA
704





6910
CAGACCCGCCCCTCCCACAC
705





6911
AGACCCGCCCCTCCCACACG
706





6912
GACCCGCCCCTCCCACACGG
707





6913
ACCCGCCCCTCCCACACGGG
708





6914
CCCGCCCCTCCCACACGGGA
709





6915
CCGCCCCTCCCACACGGGAC
710





6916
CGCCCCTCCCACACGGGACG
711





6917
GCCCCTCCCACACGGGACGT
712





6918
CCCCTCCCACACGGGACGTT
713





6919
CCCTCCCACACGGGACGTTT
714





6920
CCTCCCACACGGGACGTTTC
715





6921
CTCCCACACGGGACGTTTCA
716





6922
TCCCACACGGGACGTTTCAA
717





6923
CCCACACGGGACGTTTCAAT
718





6924
CCACACGGGACGTTTCAATA
719





6925
CACACGGGACGTTTCAATAA
720





6926
GCCCGCTACGTAATCAGTCG
612





6927
CGCCCGCTACGTAATCAGTC
611





6928
CCGCCCGCTACGTAATCAGT
610





6929
CCCGCCCGCTACGTAATCAG
609





6930
CCCCGCCCGCTACGTAATCA
608





6931
GCCCCGCCCGCTACGTAATC
607





6932
GGCCCCGCCCGCTACGTAAT
606





6933
CGGCCCCGCCCGCTACGTAA
605





6934
CCGGCCCCGCCCGCTACGTA
604





6935
TCCGGCCCCGCCCGCTACGT
603





6936
TTCCGGCCCCGCCCGCTACG
602





6937
CTTCCGGCCCCGCCCGCTAC
601





6938
ACTTCCGGCCCCGCCCGCTA
600





6939
CACTTCCGGCCCCGCCCGCT
599





6940
GCACTTCCGGCCCCGCCCGC
598





6941
GGCACTTCCGGCCCCGCCCG
597





6942
CGGCACTTCCGGCCCCGCCC
596





6943
GCGGCACTTCCGGCCCCGCC
595





6944
AGCGGCACTTCCGGCCCCGC
594





6945
GAGCGGCACTTCCGGCCCCG
593





6946
GGAGCGGCACTTCCGGCCCC
592





6947
AGGAGCGGCACTTCCGGCCC
591





6948
AAGGAGCGGCACTTCCGGCC
590





6949
CAAGGAGCGGCACTTCCGGC
589





6950
CCAAGGAGCGGCACTTCCGG
588





6951
ACCAAGGAGCGGCACTTCCG
587





6952
CACCAAGGAGCGGCACTTCC
586





6953
CCACCAAGGAGCGGCACTTC
585





6954
CCCACCAAGGAGCGGCACTT
584





6955
CCCCACCAAGGAGCGGCACT
583





6956
CCCCCACCAAGGAGCGGCAC
582





6957
GCCCCCACCAAGGAGCGGCA
581





6958
AGCCCCCACCAAGGAGCGGC
580





6959
CAGCCCCCACCAAGGAGCGG
579





6960
ACAGCCCCCACCAAGGAGCG
578





6961
AACGCAAAAACACCGGATTAATATCGGCCT
142





6962
GAACGCAAAAACACCGGATT
141





6963
ATAAACGGCCTCTTTACCCAGAGATCA
850





6964
TAAACGGCCTCTTTACCCAG
851





6965
AAACGGCCTCTTTACCCAGA
852





6966
AACGGCCTCTTTACCCAGAG
853





6967
ACGGCCTCTTTACCCAGAGA
854





6968
CGGCCTCTTTACCCAGAGAT
855





6969
GATAAACGGCCTCTTTACCC
849





6970
AGATAAACGGCCTCTTTACC
848





6971
CGCCACCTTAAGTTTTTCCAGGCTGC
1779





6972
GCGCCACCTTAAGTTTTTCC
1778





6973
GGCGCCACCTTAAGTTTTTC
1777





6974
AGGCGCCACCTTAAGTTTTT
1776





6975
AAGGCGCCACCTTAAGTTTT
1775





6976
TAAGGCGCCACCTTAAGTTT
1774





6977
ATAAGGCGCCACCTTAAGTT
1773





6978
TATAAGGCGCCACCTTAAGT
1772





6979
CTATAAGGCGCCACCTTAAG
1771





6980
ACTATAAGGCGCCACCTTAA
1770





6981
TACTATAAGGCGCCACCTTA
1769





6982
ATACTATAAGGCGCCACCTT
1768





6983
GATACTATAAGGCGCCACCT
1767





6984
TGATACTATAAGGCGCCACC
1766





6985
TTGATACTATAAGGCGCCAC
1765



















Hot Zones (Relative upstream location to gene start site)







 1-950


1700-2000









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11974)







CCACATCCACAAAGCACACCATTAATCCACTATGATCAAGTTGGGGGGAA





TCTGGTGAAGGGTTCTGAATATCTCCCTCTTCATCCCTCCCGAAATCTGG





AATACTTATTCTATTGAGCTATTACACCAGTTTTAACACCTTCCTCGTGT





TATGTTTAAAAAAATAAATAAATTTAAGAAAACCATTTTAAATAATGCAC





AGTTGCAGCCTGGAAAAACTTAAGGTGGCGCCTTATAGTATCAATTTTAG





GAGCTTTATTTGGTGCATTTAACGCAACTGGTAATTGCAGAATCCACTTT





GCCTGTGTAAGTGAAAAATATAGACTGTTATCTTGTTGGCCCTATGAAAT





TCTGCACTTTTCATTATATACTCTACCTTCATTAATTACTTCTGGCAAGA





TGTTCTGCCTTAGCACTCAGTTGCATTCTTTTCCTTTTTCTTCCTGTTCA





TTATGCTTTAATTCTGAGGACCATATGAGGGTAGAATATATTATCTTTTA





AAAATTACAAAAATTTGTATAGGCAAACCATTTCTTAAAGTTGATGGCCA





AATTTTAAAATGTTATTTTTCATATCATTTATAATCTTGTCACAATCCAC





TTAAAGAAGTTTGGTTATATTTCAGTGAAAATTTTCTTCCAGAGTAGGTT





TTTTTTCGTGGGTTGGGGGGTAACTTTACTACAATTAGTAAGTATGGTGC





AGAATTTCATGCAAATGAGGAGTGCCAGCAGTGTGATAATTTAAACATAT





TTAAACAAAAACAAAAAAAATGAATGCACAAACTTGCTGCTGCTTAGATC





ACTGCAGCTTCTAGGACCCGGTTTCTTTTACTGATTTAAAAACAAAACAA





AAAAAAATAAAAAAGTTGTGCCTGAAATGAATCTTGTTTTTTTTTATAAG





TAGCCGCCTGGTTACTGTGTCCTGTAAAATACAGACACTTGACCCTTGGT





GTAGCTTCTGTTCAACTTTATATCACGGGAATGGATGGGTCTGATTTCTT





GGCCCTCTTCTTGAATTGGCCATATACAGGGTCCCTGGCCAGTGGACTGA





AGGCTTTGTCTAAGATGACAAGGGTCAGCTCAGGGGATGTGGGGGAGGGC





GGTTTTATCTTCCCCCTTGTCGTTTGAGGTTTTGATCTCTGGGTAAAGAG





GCCGTTTATCTTTGTAAACACGAAACATTTTTGCTTTCTCCAGTTTTCTG





TTAATGGCGAAAGAATGGAAGCGAATAAAGTTTTACTGATTTTTGAGACA





CTAGCACCTAGCGCTTTCATTATTGAAACGTCCCGTGTGGGAGGGGCGGG





TCTGGGTGCGGCCTGCCGCATGACTCGTGGTTCGGAGGCCCACGTGGCCG





GGGCGGGGACTCAGGCGCCTGGGGCGCCGACTGATTACGTAGCGGGCGGG





GCCGGAAGTGCCGCTCCTTGGTGGGGGCTGTTCATGGCGGTTCCGGGGTC





TCCAACATTTTTCCCGGCTGTGGTCCTAAATCTGTCCAAAGCAGAGGCAG





TGGAGCTTGAGGTAAGTTTATCTCATGCATAGTGTTCGGCTTTGGGCTGT





GGAATGTTCAGGCGTTTCACTGATGCCAGAAATGGAGCAGAATCTATCAG





CTGGAGACAAAGGCCTTGGGCGGGGGTCCTTCCATTTGGTGCCTACGTGG





GGAGATCTTTGGAGACAGAAGGGAGAATGGGAAGGAGTTGCGGCCTGGAG





GCTTCCTGCTAGAGCTGAGAAGCCTTCGGGGAGTAATAGGAAGGGGGATT





TCCATTGCTTAGGCTGAGGGCGGGGCCCAAGGACTGTTGAAAAATAGCTA





AGGATGGGGGTTGCTAGAAAACTACTCCAGAAGTGTGAGGCCGATATTAA





TCCGGTGTTTTTGCGTTCTCTAGTCACTTTAAGAACCAAATGGAAGGTCA





CACTAGGGTTTTCATTTCCATTGATTATAGAAAGCTTTAAAGTACTGTAG





ATGTGGCTCGCCAATTAACCCTGATTACTGGTTTCCAACAGGTTCTTGCT





GGTGTGAAATG






26. EZH2. Histone-lysine N-methyltransferase (EZH2) is an enzyme that belongs to the Polycomb-group (PcG) family. PcG family members form multimeric protein complexes, which are involved in maintaining the transcriptional repressive state of genes over successive cell generations. EZH2 acts mainly as a gene silencer; it performs this role by the addition of three methyl groups to Lysine 27 of histone 3, a modification leading to chromatin condensation (Cao et al., 2002, Science 298 (5595): 1039-43). Mutations in in the EZH2 gene cause Weaver syndrome (Gibson et al., 2011: Am J Hum Genet 90 (1): 110-8). EZH2 overproduction may cause cancer due to increase in histone methylation. This histone methylation may play a role in silencing the expression of tumor suppressor genes, which may cause certain cancers. The microRNA produced by miR-101 normally inhibits translation of the messenger RNA coding for EZH2. Loss of this microRNA gene therefore leads to increased production of EZH2.


Protein: EZH2 Gene: EZH2 (Homo sapiens, chromosome 7, 148504464-148581441 [NCBI Reference Sequence: NC000007.13]; start site location: 148544390; strand: negative)












Gene Identification


















GeneID
2146



HGNC
3527



HPRD
03342



MIM
601573




















Targeted Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site












6986
TCCCGACAAGGGGTGACAGAGGC
1002





7002
CGTGAATTCAAGAGTTGCTTAGGCC
1059





7003
GACTACCGGTGCCCGCCACCACGCCAGGC
2856





7035
CCCCCGCCAACCCCACAGCGGATGCCCCC
34593459



CGCCAACCCCACAGCGGATGC



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene


No:
Sequence (5′-3′)
start site












6986
TCCCGACAAGGGGTGACAGAGGC
1002





6987
ATCCCGACAAGGGGTGACAG
1001





6988
CATCCCGACAAGGGGTGACA
1000





6989
GCATCCCGACAAGGGGTGAC
999





6990
AGCATCCCGACAAGGGGTGA
998





6991
CAGCATCCCGACAAGGGGTG
997





6992
ACAGCATCCCGACAAGGGGT
996





6993
CACAGCATCCCGACAAGGGG
995





6994
GCACAGCATCCCGACAAGGG
994





6995
AGCACAGCATCCCGACAAGG
993





6996
CAGCACAGCATCCCGACAAG
992





6997
GCAGCACAGCATCCCGACAA
991





6998
TGCAGCACAGCATCCCGACA
990





6999
CTGCAGCACAGCATCCCGAC
989





7000
GCTGCAGCACAGCATCCCGA
988





7001
TGCTGCAGCACAGCATCCCG
987





7002
CGTGAATTCAAGAGTTGCTTAGGCC
1059





7003
GACTACCGGTGCCCGCCACCACGCCAGGC
2856





7004
ACTACCGGTGCCCGCCACCA
2857





7005
CTACCGGTGCCCGCCACCAC
2858





7006
TACCGGTGCCCGCCACCACG
2859





7007
ACCGGTGCCCGCCACCACGC
2860





7008
CCGGTGCCCGCCACCACGCC
2861





7009
CGGTGCCCGCCACCACGCCA
2862





7010
GGTGCCCGCCACCACGCCAG
2863





7011
GTGCCCGCCACCACGCCAGG
2864





7012
TGCCCGCCACCACGCCAGGC
2865





7013
GCCCGCCACCACGCCAGGCT
2866





7014
CCCGCCACCACGCCAGGCTA
2867





7015
CCGCCACCACGCCAGGCTAA
2868





7016
CGCCACCACGCCAGGCTAAT
2869





7017
GCCACCACGCCAGGCTAATT
2870





7018
CCACCACGCCAGGCTAATTT
2871





7019
CACCACGCCAGGCTAATTTT
2872





7020
ACCACGCCAGGCTAATTTTT
2873





7021
CCACGCCAGGCTAATTTTTT
2874





7022
CACGCCAGGCTAATTTTTTG
2875





7023
GGACTACCGGTGCCCGCCAC
2855





7024
GGGACTACCGGTGCCCGCCA
2854





7025
TGGGACTACCGGTGCCCGCC
2853





7026
GTGGGACTACCGGTGCCCGC
2852





7027
GGTGGGACTACCGGTGCCCG
2851





7028
AGGTGGGACTACCGGTGCCC
2850





7029
TAGGTGGGACTACCGGTGCC
2849





7030
GTAGGTGGGACTACCGGTGC
2848





7031
AGTAGGTGGGACTACCGGTG
2847





7032
AAGTAGGTGGGACTACCGGT
2846





7033
CAAGTAGGTGGGACTACCGG
2845





7034
CCAAGTAGGTGGGACTACCG
2844





7035
GACCGCCCCCCGCCAACCCCACAGCGG
3453





7036
ACCGCCCCCCGCCAACCCCA
3454





7037
CCGCCCCCCGCCAACCCCAC
3455





7038
CGCCCCCCGCCAACCCCACA
3456





7039
GCCCCCCGCCAACCCCACAG
3457





7040
CCCCCCGCCAACCCCACAGC
3458





7041
CCCCCGCCAACCCCACAGCG
3459





7042
CCCCGCCAACCCCACAGCGG
3460





7043
CCCGCCAACCCCACAGCGGA
3461





7044
CCGCCAACCCCACAGCGGAT
3462





7045
CGCCAACCCCACAGCGGATG
3463





7046
GCCAACCCCACAGCGGATGC
3464





7047
CCAACCCCACAGCGGATGCC
3465





7048
CAACCCCACAGCGGATGCCT
3466





7049
AACCCCACAGCGGATGCCTA
3467





7050
ACCCCACAGCGGATGCCTAA
3468





7051
CCCCACAGCGGATGCCTAAA
3469





7052
CCCACAGCGGATGCCTAAAG
3470





7053
CCACAGCGGATGCCTAAAGC
3471





7054
CACAGCGGATGCCTAAAGCT
3472





7055
ACAGCGGATGCCTAAAGCTG
3473





7056
CAGCGGATGCCTAAAGCTGC
3474





7057
AGCGGATGCCTAAAGCTGCA
3475





7058
GCGGATGCCTAAAGCTGCAG
3476





7059
CGGATGCCTAAAGCTGCAGA
3477





7060
AGACCGCCCCCCGCCAACCC
3452





7061
AAGACCGCCCCCCGCCAACC
3451





7062
CAAGACCGCCCCCCGCCAAC
3450





7063
CCAAGACCGCCCCCCGCCAA
3449





7064
CCCAAGACCGCCCCCCGCCA
3448





7065
TCCCAAGACCGCCCCCCGCC
3447





7066
CTCCCAAGACCGCCCCCCGC
3446





7067
TCTCCCAAGACCGCCCCCCG
3445





7068
ATCTCCCAAGACCGCCCCCC
3444





7069
TATCTCCCAAGACCGCCCCC
3443





7070
TTATCTCCCAAGACCGCCCC
3442





7071
CTTATCTCCCAAGACCGCCC
3441





7072
ACTTATCTCCCAAGACCGCC
3440





7073
CACTTATCTCCCAAGACCGC
3439





7074
CCACTTATCTCCCAAGACCG
3438



















Hot Zones (Relative upstream location to gene start site)







 1-300


 900-1100


2600-3100


3400-4200









Examples

In FIG. 46, In MCF7 (human mammary breast cell line), EZH22 (271) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The EZH2 sequence EZH22 (271) fits the independent and dependent DNAi motif claims.


The secondary structure for EZH22 (271) is shown in FIG. 47.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11975)







CACAGGCTCAAGAGATCCTCCCACCTCAGCTTCCTGAGTAGTTGGGACCA





CAGGTGTGCGCCACTACACCTGGCTTGCTTGCTTGCTTATTTATTGATTT





GAGATGGGAGTCTCACTATATTGCCTAGGCTGGTCTTGAACTCCTGGGCT





CAATCCTCCAACCTTGGCCTCCCAAAATGCTGGGTTTACAGGCTTGAACC





ACTGTACGTGGCCTTGAATCTGTGTTTTAATACTATGCTTACTTGGCTGT





GGTGTTGTGAAAAGATCACTGAAAATGGAGTCAGAGGCCTGATTTGAGCC





AGTCGTTTGTTGTGGGGGAAGGAGGTCAGGGGAGCTAACATCTAAAGGCT





CACTATATGCCAGGCACAGAACCAAGTGTGTTTGCATGTATATTTCGTTT





TTGTTGCCAGACTTTGAGGTAGGTTTTATGGATAAGGTCTTTAAGGCAAT





ATCAGCTTCCTTTTAAAAAAGAAATTCCGGAAACTGAGTTTTAGGCTGAA





GATCTCTAACTGGTAGTAGGGACAACTGAACCACAGGGTCCTAACTGACC





CTGCGATTTATCTCCTTTTGCGGGGGGTTTCTTGATAATAGGGTGCACTT





TACCTCATTTTTTGGCTCAAGCATGGATAGGCCACCCTTCCTTTTCATAC





CTATAGCTAAGCTTTACAAATGATATGCTGATAAGATACAAGCTACTCGT





TATTCATGTGGGTTAATAGACCTGTTTGTTTGCTTGTTTTTAAGTCTATA





GCCGCCCCACCCCCAATCTACAATTTCACCTTCTAAGGTTTTAGTTACTC





ATTCAAACTGCAGTCTGAAAATGTTACGATATTTTGAGAGAGAGAAGACT





CTAGCTACGTAACTTTTGTAACAATATATTGTTATAATTGTTCATTTTAC





CATTAGTTATTGCTGTCAGTCTCTTACTGTGCCTTATTTATAAATTAAAC





TTCATGGGTATGTACGTATAGGAAAAAACATGGTATATTTAGAGTTTAGT





ACTATCTGCAGCTTTAGGCATCCGCTGTGGGGTTGGCGGGGGGCGGTCTT





GGGAGATAAGTGGGGACTACTGTACAATTATCAGGCACACACAGGCTCTG





GGATTTTACAAATGAGTAAAAGTGGTTCTTGCTGTTGAAGCACTTACAGT





GGGAATAGAGTGAAATACATGAAAATGTGATTTTAATATGTTATAAATGC





TATGATGGTGGGAGTTTGTTTTGTGTAAAACATCCTTTTAATTGGTACTT





TAAATTTTAATATTCTTTCACAGGTCTACCTATTTAGTCTTACACTTTCA





AAGAACTACCTGGATGCTGTAGATTTTCATGATATACTTTATTAGGTATG





TTATTAATGGTAGAAACAGCATGGAAAGTCTTCCAGAATATTAGACAAGG





ACAGTTCTAGTACTAAAACATAAAATGCTAACTAATGTCTTCATCAAGAC





ATAAAATATGTATCTTAAAAAATAAATTGTAAGCCAGGCGCAGTGGCTCA





CACCTGTAATCCCAGCACTTTGGGAGGCTGAGGCGGGTGGATCACAAGGT





CAGGAGATTGAGACCATCCTGGCTAACACGGTGAAACCCTGTCTCTACTA





AAAATACAAAAAATTAGCCTGGCGTGGTGGCGGGCACCGGTAGTCCCACC





TACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGCAGAGCT





TGCAGTGAGCGGAGATTGCACCACCGCACTCCAGCTTGGGGGACAGAGTG





AGACTCCATCTCAAAAAAAAAGAAATTGTAATAACACCCACATTATACAT





CAGTGAAAACTAAACACGTTACTACCCTAGGCCTTATTGCACAGGGGTGC





TACCTCCAAGGAGAAATTTGTCTAGGCAGCAGATGGACTAGAGGTGATTA





GCCTATGAGCGAATGAGGCTACAGATCATTCCTTTTTATCTGATTCCTTT





TCTTTCTAGTTCCTAGGCCTTGGAAGCACTAAGTGGTCTTAAGTAATTTG





CATAGAATTAGTTGAGTTCATCTGTTAACTAACTAGCAGATAGGAAGAAA





ACTATTGTCATGAAATTATTTAAAAAATAATAATGCTCCAGTTTCTTCTC





ATCTTTGATGTCCTTTGGTCCTACCTCACTGCCTTCCTAACACCATTTTC





TGCTTTACCTCAAAGCTGGGGTCATCTTGAGTTTAGCCTGCTTAATCCGA





GTGACTGTCAGCTTTATTCCACTTTAGCAACTCGCAGGCAAGGCCACACT





TGGAAACTTTTCACTTGGAATAGTTCTATCTTGGTGATTTCATCAGCCTT





CTTTATGTCAAATACACTCAAATTCCTGCCCATTCTTATCTCTTCGTTCC





CTTCAGGTCCTTAGTCCTTTTAATTTGTGACTTTCATTCTCCAGGTCCAT





TCTTATTAAATGTCTGCCAGCCAGACTTTAGTTGCCCCCTGTCCAGCTTT





CTCTTGCTCAGACCTAAGATTTCTTTAGGTTCTTTCTTTGCCTTTTGAAA





TCCAGCTCAGCTTTTAAGATTGAGTTCCTTGTTACCTTTCCTGCCATCCT





TCTGCAGTTCCTAATATTCTTTTCTTTCTCCCAAAGTGCTTTTGTATAAA





CAGTCAGCCTTCCATATCCGTGAGTTCCAAATCCATGGATCCTGAATTCA





TGGATTTAACCAGCTGCAGATAAAAAATATTCAGAAAAAAAAAGATGGTT





GCATCTGTACTGAACATGTCTGTACTGTTTTGCTTGTCATTATTTTCTAA





ACAATACAGTATAACAACTATTTACATGGCATTTACATTGTATTAGGGAT





TATAAGTAATCTAGAGGTGATTTAAAGTATATGGGAGTCTCTTATATCCC





AGGAAGCCAGGTAAAAAAAAAAAGTATATGGGAGGCTATGCATAGGTGAT





ATGCAAATATTACACCACTTTATATCACGGACTTTTGAGCATCTGTGGAT





TTTGGTATCCGAGGGGTGTCCTGGAACCAGTTCCCCAGGGATACTGAAGT





ATGTCTGTCTATCTCATACTATATTTTTCCCTTTGTCTTAGGTAGACTAT





CAGCTCCATAGGGGCAAGGATTTAATAATATTTGTATATTCATTTTATTC





AAGTTCGTATACACTGCTTGGGTCATAATATTTATTACATGCTTGAGAAA





ATGAATTTCTTCGCCCCTTTGTTACAGCTCTGAGTAAACAGCCATCTGCC





TTCTCTGTCATCTGTTGGTGGTTGAGTATTTCTGTAGAAAGTTACCCATT





GGCCTCAGGACTCTTACTCTAAATCTTCTTCTTAGGCAGTTTTCTCTGTG





CATGAAGTTTTTATGTAAACAAATAGATGAAGCCTGCCCTACTCATTTAT





TTGCTCAAGCCAGAAAGTCACCTTCTTCTTCACTTTCCATATTTAAATCA





TCATTTGGTGGAATTTTGGCCTAAGCAACTCTTGAATTCACGTACTTTTC





CCTGTCATCGCCAGTGTGGTGTAGAAGCCTCTGTCACCCCTTGTCGGGAT





GCTGTGCTGCAGCATCATCTAACCTGGTTGCAGTTATTCTTTCACTCCCT





CACCGCACACCCTTTTACTTAAAACACTAAAAGTGGCTTCTCATTGTTCT





TAAGATAAAGCACAAATTGTTAGTGTGGCCTGTAAAGCTTTGCATAGCCT





GACAGAGAATGTCCTGCTAATAATTTGAAGGTACAGGATGATTTTAATAC





TTTAGGAGAAAATGTTCTAGGAAAAGACGCTTGTTTAGACTTAAGGTGAG





GACTCTGCAGTATGAATTAGACATCTGGTGAACTATAAGCTGTCCCCGCA





TTTAAACATAATTGGTTCTGAGAGCCTGCAACTAAAGATAAGGCAGAAGA





ATTTACTTTGCATTTCCTGCATTCCTCTTTTCGCTTGATAGCAGAAACCC





CTCATGTTAATAAAGGTGGCACAAGAGGCAAAAATACAGACTTTATCACA





GTGTTTAAGGAGAGGTGCATGATTAAGTGTGTGGGGAGAGAGTACCTTTG





TACATTTTATTATATGGTGAACTGTATGTTTTCTACTTTTAGTACTGTTT





GTAAATTTTACTTCTTCTTGGATTTACCTTTTTCAGTTATATTATTCCAT





TATGCCTTGCTACTGTAACAGCTAATGATGAAAAACAGGATCTGTCTTTA





TATTTTCTTCCCTCCACAAATGTGGATCTCATAGAGTTGAAAACTAGGTT





GTGATATAGTATAGTATACCTAATTCCTGTAATGGGATCATGTTCCTATA





ATATGGCCGCAATTTAGTGTAGAATTTTTGTAAATAAAAGTGTATTTTAA





GTTTAACTTAAACTTTCAATGAAGTGTTTTAAGGATTTAACCATGCAGCA





CAAATGAGCACCTTTCTGTAAATGCCAACAGTGTAATATGTGTCATTTCT





TCACTGATTGTTAGTTTGCTGCGGATTAAAACACAGGTGATCATATTCAG





GCTGGTTAGATTAGTGATTTTAATATGAAACCATTGCTTTTAGAATAATC







ATG








27. HDACs, such as HDAC1.


Histone deacetylases (HDACs) are part of a vast family of enzymes that have crucial roles in numerous biological processes, largely through their repressive influence on transcription (reviewed by Haberland et al, 2009 Nature Reviews Genetics 10, 32-42. HDAC1 is an enzyme that belongs the histone deacetylase family and is a component of the histone deacetylase complex (Taunton et al, Science 272 (5260): 408-11) Histone acetylation and deacetylation, is catalyzed by multisubunit complexes and is key in the expression of gene expression. It also interacts with retinoblastoma tumor-suppressor protein and this complex is a key element in the control of cell proliferation and differentiation. Together with metastasis-associated protein-2 MTA2, it deacetylates p53 and modulates its effect on cell growth and apoptosis.


Protein: HDAC1 Gene: HDAC1 (Homo sapiens, chromosome 1, 32757708-32799224 [NCBI Reference Sequence: NC000001.10]; start site location: 32757771; strand: positive)












Gene Identification


















GeneID
3065



HGNC
4852



HPRD
03143



MIM
601241




















Targeted Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site












7075
CGCCTCCCGTCCCTACCGTCAGTCGGT
7





7141
CGGTCCGTCCGCCCTCCCGCCCGCGG
30





7207
CGCCAACTTGTGGTCCTACAGTCAACAAG
1740





7226
CGCAGACACGGGCCCGGAACTCGG
173





7258
CGCCCGGCCTAGGAGGGCAGGTTTCTC
1252



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site












7075
CGCCTCCCGTCCCTACCGTCAGTCGGT
7





7076
GCCTCCCGTCCCTACCGTCA
8





7077
CCTCCCGTCCCTACCGTCAG
9





7078
CTCCCGTCCCTACCGTCAGT
10





7079
TCCCGTCCCTACCGTCAGTC
11





7080
CCCGTCCCTACCGTCAGTCG
12





7081
CCGTCCCTACCGTCAGTCGG
13





7082
CGTCCCTACCGTCAGTCGGT
14





7083
GTCCCTACCGTCAGTCGGTC
15





7084
TCCCTACCGTCAGTCGGTCC
16





7085
CCCTACCGTCAGTCGGTCCG
17





7086
CCTACCGTCAGTCGGTCCGT
18





7087
CTACCGTCAGTCGGTCCGTC
19





7088
TACCGTCAGTCGGTCCGTCC
20





7089
ACCGTCAGTCGGTCCGTCCG
21





7090
CCGTCAGTCGGTCCGTCCGC
22





7091
CGTCAGTCGGTCCGTCCGCC
23





7092
GTCAGTCGGTCCGTCCGCCC
24





7093
TCAGTCGGTCCGTCCGCCCT
25





7094
CAGTCGGTCCGTCCGCCCTC
26





7095
AGTCGGTCCGTCCGCCCTCC
27





7096
GTCGGTCCGTCCGCCCTCCC
28





7097
TCGGTCCGTCCGCCCTCCCG
29





7098
CGGTCCGTCCGCCCTCCCGC
30





7099
GGTCCGTCCGCCCTCCCGCC
31





7100
GTCCGTCCGCCCTCCCGCCC
32





7101
TCCGTCCGCCCTCCCGCCCG
33





7102
CCGTCCGCCCTCCCGCCCGC
34





7103
CGTCCGCCCTCCCGCCCGCG
35





7104
GTCCGCCCTCCCGCCCGCGG
36





7105
TCCGCCCTCCCGCCCGCGGC
37





7106
CCGCCCTCCCGCCCGCGGCT
38





7107
CGCCCTCCCGCCCGCGGCTC
39





7108
GCCCTCCCGCCCGCGGCTCC
40





7109
CCCTCCCGCCCGCGGCTCCG
41





7110
CCTCCCGCCCGCGGCTCCGC
42





7111
CTCCCGCCCGCGGCTCCGCT
43





7112
TCCCGCCCGCGGCTCCGCTC
44





7113
CCCGCCCGCGGCTCCGCTCA
45





7114
CCGCCCGCGGCTCCGCTCAG
46





7115
CGCCCGCGGCTCCGCTCAGC
47





7116
GCCCGCGGCTCCGCTCAGCG
48





7117
CCCGCGGCTCCGCTCAGCGT
49





7118
CCGCGGCTCCGCTCAGCGTC
50





7119
CGCGGCTCCGCTCAGCGTCC
51





7120
GCGGCTCCGCTCAGCGTCCG
52





7121
CGGCTCCGCTCAGCGTCCGA
53





7122
GGCTCCGCTCAGCGTCCGAC
54





7123
GCTCCGCTCAGCGTCCGACC
55





7124
CTCCGCTCAGCGTCCGACCC
56





7125
TCCGCTCAGCGTCCGACCCA
57





7126
CCGCTCAGCGTCCGACCCAG
58





7127
CGCTCAGCGTCCGACCCAGG
59





7128
GCTCAGCGTCCGACCCAGGG
60





7129
CTCAGCGTCCGACCCAGGGG
61





7130
TCAGCGTCCGACCCAGGGGG
62





7131
CAGCGTCCGACCCAGGGGGG
63





7132
AGCGTCCGACCCAGGGGGGA
64





7133
GCGTCCGACCCAGGGGGGAG
65





7134
CGTCCGACCCAGGGGGGAGG
66





7135
TCGCCTCCCGTCCCTACCGT
6





7136
CTCGCCTCCCGTCCCTACCG
5





7137
GCTCGCCTCCCGTCCCTACC
4





7138
TGCTCGCCTCCCGTCCCTAC
3





7139
TTGCTCGCCTCCCGTCCCTA
2





7140
CTTGCTCGCCTCCCGTCCCT
1





7141
CGGTCCGTCCGCCCTCCCGCCCGCGG
30





7142
GGTCCGTCCGCCCTCCCGCC
31





7143
GTCCGTCCGCCCTCCCGCCC
32





7144
TCCGTCCGCCCTCCCGCCCG
33





7145
CCGTCCGCCCTCCCGCCCGC
34





7146
CGTCCGCCCTCCCGCCCGCG
35





7147
GTCCGCCCTCCCGCCCGCGG
36





7148
TCCGCCCTCCCGCCCGCGGC
37





7149
CCGCCCTCCCGCCCGCGGCT
38





7150
CGCCCTCCCGCCCGCGGCTC
39





7151
GCCCTCCCGCCCGCGGCTCC
40





7152
CCCTCCCGCCCGCGGCTCCG
41





7153
CCTCCCGCCCGCGGCTCCGC
42





7154
CTCCCGCCCGCGGCTCCGCT
43





7155
TCCCGCCCGCGGCTCCGCTC
44





7156
CCCGCCCGCGGCTCCGCTCA
45





7157
CCGCCCGCGGCTCCGCTCAG
46





7158
CGCCCGCGGCTCCGCTCAGC
47





7159
GCCCGCGGCTCCGCTCAGCG
48





7160
CCCGCGGCTCCGCTCAGCGT
49





7161
CCGCGGCTCCGCTCAGCGTC
50





7162
CGCGGCTCCGCTCAGCGTCC
51





7163
GCGGCTCCGCTCAGCGTCCG
52





7164
CGGCTCCGCTCAGCGTCCGA
53





7165
GGCTCCGCTCAGCGTCCGAC
54





7166
GCTCCGCTCAGCGTCCGACC
55





7167
CTCCGCTCAGCGTCCGACCC
56





7168
TCCGCTCAGCGTCCGACCCA
57





7169
CCGCTCAGCGTCCGACCCAG
58





7170
CGCTCAGCGTCCGACCCAGG
59





7171
GCTCAGCGTCCGACCCAGGG
60





7172
CTCAGCGTCCGACCCAGGGG
61





7173
TCAGCGTCCGACCCAGGGGG
62





7174
CAGCGTCCGACCCAGGGGGG
63





7175
AGCGTCCGACCCAGGGGGGA
64





7176
GCGTCCGACCCAGGGGGGAG
65





7177
CGTCCGACCCAGGGGGGAGG
66





7178
TCGGTCCGTCCGCCCTCCCG
29





7179
GTCGGTCCGTCCGCCCTCCC
28





7180
AGTCGGTCCGTCCGCCCTCC
27





7181
CAGTCGGTCCGTCCGCCCTC
26





7182
TCAGTCGGTCCGTCCGCCCT
25





7183
GTCAGTCGGTCCGTCCGCCC
24





7184
CGTCAGTCGGTCCGTCCGCC
23





7185
CCGTCAGTCGGTCCGTCCGC
22





7186
ACCGTCAGTCGGTCCGTCCG
21





7187
TACCGTCAGTCGGTCCGTCC
20





7188
CTACCGTCAGTCGGTCCGTC
19





7189
CCTACCGTCAGTCGGTCCGT
18





7190
CCCTACCGTCAGTCGGTCCG
17





7191
TCCCTACCGTCAGTCGGTCC
16





7192
GTCCCTACCGTCAGTCGGTC
15





7193
CGTCCCTACCGTCAGTCGGT
14





7194
CCGTCCCTACCGTCAGTCGG
13





7195
CCCGTCCCTACCGTCAGTCG
12





7196
TCCCGTCCCTACCGTCAGTC
11





7197
CTCCCGTCCCTACCGTCAGT
10





7198
CCTCCCGTCCCTACCGTCAG
9





7199
GCCTCCCGTCCCTACCGTCA
8





7200
CGCCTCCCGTCCCTACCGTC
7





7201
TCGCCTCCCGTCCCTACCGT
6





7202
CTCGCCTCCCGTCCCTACCG
5





7203
GCTCGCCTCCCGTCCCTACC
4





7204
TGCTCGCCTCCCGTCCCTAC
3





7205
TTGCTCGCCTCCCGTCCCTA
2





7206
CTTGCTCGCCTCCCGTCCCT
1





7207
CGCCAACTTGTGGTCCTACAGTCAACAAG
1740





7208
CCGCCAACTTGTGGTCCTAC
1739





7209
GCCGCCAACTTGTGGTCCTA
1738





7210
AGCCGCCAACTTGTGGTCCT
1737





7211
TAGCCGCCAACTTGTGGTCC
1736





7212
TTAGCCGCCAACTTGTGGTC
1735





7213
GTTAGCCGCCAACTTGTGGT
1734





7214
AGTTAGCCGCCAACTTGTGG
1733





7215
AAGTTAGCCGCCAACTTGTG
1732





7216
TAAGTTAGCCGCCAACTTGT
1731





7217
CTAAGTTAGCCGCCAACTTG
1730





7218
TCTAAGTTAGCCGCCAACTT
1729





7219
CTCTAAGTTAGCCGCCAACT
1728





7220
GCTCTAAGTTAGCCGCCAAC
1727





7221
TGCTCTAAGTTAGCCGCCAA
1726





7222
TTGCTCTAAGTTAGCCGCCA
1725





7223
ATTGCTCTAAGTTAGCCGCC
1724





7224
CATTGCTCTAAGTTAGCCGC
1723





7225
ACATTGCTCTAAGTTAGCCG
1722





7226
CGCAGACACGGGCCCGGAACTCGG
173





7227
GCAGACACGGGCCCGGAACT
174





7228
CAGACACGGGCCCGGAACTC
175





7229
AGACACGGGCCCGGAACTCG
176





7230
GACACGGGCCCGGAACTCGG
177





7231
ACACGGGCCCGGAACTCGGC
178





7232
CACGGGCCCGGAACTCGGCA
179





7233
ACGGGCCCGGAACTCGGCAG
180





7234
CGGGCCCGGAACTCGGCAGG
181





7235
GGGCCCGGAACTCGGCAGGG
182





7236
GGCCCGGAACTCGGCAGGGG
183





7237
GCCCGGAACTCGGCAGGGGG
184





7238
CCCGGAACTCGGCAGGGGGC
185





7239
CCGGAACTCGGCAGGGGGCA
186





7240
GCGCAGACACGGGCCCGGAA
172





7241
TGCGCAGACACGGGCCCGGA
171





7242
TTGCGCAGACACGGGCCCGG
170





7243
CTTGCGCAGACACGGGCCCG
169





7244
GCTTGCGCAGACACGGGCCC
168





7245
AGCTTGCGCAGACACGGGCC
167





7246
CAGCTTGCGCAGACACGGGC
166





7247
TCAGCTTGCGCAGACACGGG
165





7248
ATCAGCTTGCGCAGACACGG
164





7249
AATCAGCTTGCGCAGACACG
163





7250
CAATCAGCTTGCGCAGACAC
162





7251
CCAATCAGCTTGCGCAGACA
161





7252
GCCAATCAGCTTGCGCAGAC
160





7253
AGCCAATCAGCTTGCGCAGA
159





7254
CAGCCAATCAGCTTGCGCAG
158





7255
CCAGCCAATCAGCTTGCGCA
157





7256
TCCAGCCAATCAGCTTGCGC
156





7257
CTCCAGCCAATCAGCTTGCG
155





7258
CGCCCGGCCTAGGAGGGCAGGTTTCTC
1252





7259
GCCCGGCCTAGGAGGGCAGG
1253





7260
CCCGGCCTAGGAGGGCAGGT
1254





7261
CCGGCCTAGGAGGGCAGGTT
1255





7262
CGGCCTAGGAGGGCAGGTTT
1256





7263
GCGCCCGGCCTAGGAGGGCA
1251





7264
AGCGCCCGGCCTAGGAGGGC
1250





7265
CAGCGCCCGGCCTAGGAGGG
1249





7266
ACAGCGCCCGGCCTAGGAGG
1248





7267
CACAGCGCCCGGCCTAGGAG
1247





7268
CCACAGCGCCCGGCCTAGGA
1246





7269
GCCACAGCGCCCGGCCTAGG
1245





7270
AGCCACAGCGCCCGGCCTAG
1244





7271
GAGCCACAGCGCCCGGCCTA
1243





7272
TGAGCCACAGCGCCCGGCCT
1242





7273
GTGAGCCACAGCGCCCGGCC
1241





7274
CGTGAGCCACAGCGCCCGGC
1240





7275
GCGTGAGCCACAGCGCCCGG
1239





7276
GGCGTGAGCCACAGCGCCCG
1238





7277
GGGCGTGAGCCACAGCGCCC
1237





7278
CGGGCGTGAGCCACAGCGCC
1236





7279
ACGGGCGTGAGCCACAGCGC
1235





7280
TACGGGCGTGAGCCACAGCG
1234





7281
TTACGGGCGTGAGCCACAGC
1233





7282
ATTACGGGCGTGAGCCACAG
1232





7283
GATTACGGGCGTGAGCCACA
1231





7284
AGATTACGGGCGTGAGCCAC
1230





7285
GAGATTACGGGCGTGAGCCA
1229





7286
TGAGATTACGGGCGTGAGCC
1228





7287
CTGAGATTACGGGCGTGAGC
1227





7288
GCTGAGATTACGGGCGTGAG
1226





7289
TGCTGAGATTACGGGCGTGA
1225





7290
ATGCTGAGATTACGGGCGTG
1224





7291
TATGCTGAGATTACGGGCGT
1223





7292
ATATGCTGAGATTACGGGCG
1222





7293
AATATGCTGAGATTACGGGC
1221





7294
CAATATGCTGAGATTACGGG
1220





7295
CCAATATGCTGAGATTACGG
1219





7296
CCCAATATGCTGAGATTACG
1218



















Hot Zones (Relative upstream location to gene start site)







 1-650


 850-1300


1700-2050


2250-2550


2800-3700


4350-5000









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11976)







CCAGGCTGATCTCAAACTCCTAAGCTCAAGTGATCCATGTTCCTCAGCCT





CCCAAAGTGCTGGGATTATAGGCGTGAGCCATAGCGTCCAGCCCTGACTT





ACATTTTAAAAGGATGGCTCTTGCTGCTGTCTTGAAAATAGACTGAGTTA





GTCAGTTTATAAAACTGGGGAGATTTTGCATAAAACTCCAGATTTCTGCC





TTCTCTTGAAAAATAGGGGCTAGGTGCGTTGGCTCACTCCTATAATCCCA





GCATTTTGGAAGGCCAAGGTGGGCAGATTGCTTGAGCCCAGGAGTTTAAG





ACCAGACTGGACAACATGGCAAAACCCTGTCTCTACCAAAAAAAAAAAAA





AATTAGCAGGGTGTGGTGGTGCACACCTGCAGTCCCAGCTACTCAGGAGG





CAAGCTTGTATTCCTAGCTACTTAGGAGGATAGTTTGAGCCCAGGAAGTC





AAGGCTGCAGTGAGCATGATCCTGCCATTGCACTCCAGCCAGAGCAAAAA





AGAGAGCGAAACCCCATCTCAAAAAAAAGGGAAGATTTAGCTATGTTGGA





CTTACCTGTCCTCATGGAGCTGAATAATGGCCACCCCTCCAGGTAGGGCC





TGAACTCTACCTTTGCCAGAGTCCCCTCCACTCCCTGTTGGTCTTAGACA





ATGAAACTGAGTGTTAGTAGCTATTTACCACCAAGCTCATGCTTGTTGTT





CTTATAATAAAGATAAATGGTTTAATAAATGGTATGATAAAGAAAATTAT





ATTATGGTATTATACCATTTAATAAATGGTATAATAAAGAAAATGGTTTT





TTGCACCCACATTTCCATTAAAAAGTGAGAAAATTAAAGATACCTGAGGA





TGGCAGAGTGTTTGATGAAAGATAGGGAAATGTTGGCCAGGCACCGTGGC





TCACACCTGTAATCCCAGCAGTTTAGGAGGCCGGGGCAGGCGGATCACAA





GGTCAGGAGTTCAAGATCAGCCTGGCCAACATAGTGAAACCCCGTCTCTA





CTAAAAATACAAAAAATTAGCCGGGAGTGGTGGCAGGTGCCTACAATCCC





AGCTACTCGGAAGGCTGAATGGCGCGATCTCAGCTCATTGCAACCTCTGC





CTCCCAGGTTCAAGCCATTCTTCTGCCTTAGCCTCCCTAGTAGCTGGGAT





TACAGGCGCCTGCCACCATGCCTAGCTAATTTTTATATTTTTAGTAGACG





TGGGGTTTCGCCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTTGGGT





GATCTGCCCGCCTCGGTCTCCCAAACTGCTGGGATTACAGGAGTGAGCCA





CAGTGCCCGGCCTCTAATTTTTATTTTTAATTTTTTTAATTTTTATTTTT





TTAATTTTTATTTTATTTATTTTTTGTAATTTTTAAAATATACAAAAAAA





GGGCCGGGTGTGGTGGCTCACGCCTGTAATCCCAGCACTTTTTGGGAGGC





TGAGGTGGGTGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACA





TGGTGAAACCCTGTCTCTACTAAAAATATAAAAAAATTAGCCGGGCCTGG





TGGCAGGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGACAGGAGAATG





GCGTGAACTCGAGAGGTGGAGCTTGCAGTGAGCCAAGATCGCACCACTAC





ACTCCAGCCTGGGCGACAGAGTGAGACTTCATCTCAAAAAAAAAAAAAAT





TATATATATATATATACATATATATATGCAAACAAAGAGCATCTGAGTCA





TAATAATGTAAATCTATCACCTGACTGACCTGCTGCCACACCTCATGATC





TCATCTGATCCCCACACTCCTTCTCTTTGGGATACTGTGTACAGCCATAG





CGTGGGTGAACTTTGTATTCCTATCCTCCCCATTTTTGTTATTTTATTTT





ATTTCTTATTTATTTGAGACAGAGTCTCACTCTGTCATCCAGACTGTAAT





GCAGTGGCCTGATCTCGGCTCACTGCAACCTCCACCTCCCGGTTTCAAGC





GAATCTCCTGCCTCAGCCTCCTAAGTAGCTGGGACCTACAGGCACACACC





ACCACGCCCAGCTAATTTTTGCATTTTTAATAGAGACGGGGTTTCACCGT





GCTGGGCAGGCTGGTCTCGAACTCCTGACCTCAGGTGATTTGCCCACCTC





AGCCTTCCAAATTGTTAGGATTACAGGCATGAGTCACTGTGCCCGGCCTC





CTCCCCATTTTATAACAAGGGAAATGGAGGCCCAGAATGGTTAAGTAAAC





CCACCCAGGGCTAGCTGAGAATTAGCAACAGAGAACTGGGAGTAGAATTT





GTTCCCTGGCCCTTTGCTGTTTCTATTATAAGCCACCCAGTCTTAGATTT





TCTGTTACCTTATAATTAATGACTCAAATGCAGTTTCTGAGTGAGAAACA





CAAGTCCCAAACACTCTTTAAAGAGGCATAAAGATGTATCTTGTTGTTTT





CTTTTGTTTGAGACAAGGCCTGGCTCTATTGCCCAGGCTGGAGTGTGGTG





ACATGATCTTGGCTCACTGCAACATCTGTCTCCTGGGCTCAAGCCATCAT





CCCACCTCAGCCTCCTGAGTAGCTGGAACTACAGGAGCGCGCCCCCACAC





CTGGGTAATTTTTCTATTTTTTGTAGAGATGGGGTTTTGCCATGTTGCCC





AGGCTGGTCTCGAACTCCTGAGCTCAAGTGATCCACCCATCTTGGCCTCC





CAAAGTGCTGGGATTACAGGCGTGAGCCACTGTGCCCAGCCTCTTGTTGA





CTGTAGGACCACAAGTTGGCGGCTAACTTAGAGCAATGTTTGGCACACAG





GAAGCACTCATTAAATATTGACATTATTGTAGTTATTTTAATAGCCCAGC





ATTGCACTTTTAGGTCTTTCAGCTTTCAGTGATGATCAGTTGATAATTGA





TGATCTGGTGGAGTGGTTCTTAATGGTAGAGTTGGGGGCAATTTTACACT





CCCTTACACCCCACTAATCTTCCCCCCAACCCAATGGTAAAGCTATTGCA





CAGTACTTGGCAATGTCTAGAGACAATTTTGGTTGTCACAGCCTGGGGGG





AAGGTGCTACTGGCATCTAGTGGGTAGAGGCTAAGGATGCTGCTTAATTT





TTTTTTTTTTTGAGACAAGAGTTTCACTCTAGTTGCCCAGGCACAGAACA





GCTTCACAGAAGCTGTTAATGCACAGAATAGCTTCCTACAAAAAAGCATT





ACCTGGCCCAAAATGTCATTAGCTACCAGGCTGAGAAACCTGCCCTCCTA





GGCCGGGCGCTGTGGCTCACGCCCGTAATCTCAGCATATTGGGAGGCCGA





GGTGGGCGGATCCTGAGGTCAGGAGTTCGAGACCACCTGGACCAACACGG





AGAAACCCAGTCTCTACCAAAAATACAAAATTAGCCGGGCATGGTGGCAC





ATGCTTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAACCGCTTGA





ACACAGAGGCAGAGATTGTGGTGAGCCGAGATCACACCATTGCACTCCAG





CCTGGGCAACTAGAGCGAAACTCTTGTCTCAAAAAAAAAAAAAAAAAAAA





AAACAGGGAAAGAAAAGAAAGGAAACCTGCCCTCCTATCATAGGATAATC





CCATTTCCTCCTGTCTAAAGAGACGCCTACTTAGTCATCCTGGGTGACTG





CATCAGGGAGGTAGATTTTGGAGTCTGAAAGGCTGGGTTCTGTCACTTTG





TTACAGTGCCTCTGGTGCAAAGAAAGCATTTTAAAAACCCTGTACAATTA





AAAAATTGAATTTAATTACTTTGTGTAACTTTGAATAATTCACAGAAGTC





TGAACTTCTTTATCCTGTCCTGTAAAATGGAGGTAAAAAGCCCTTGGCCG





AGAGCTGTTTTGAGGAAAAACTGAAATAACATTGGTAAAGTGTCGCACAG





TACTTGGCACACAGCAGCCCCTCGACAAACATTAGCTTTCTTTCCCTTTC





TTGTCGGTTTCTTCCTCTCCAAACCCGCGTGTTGCTTTTCTTTTTAATTA





TTTTTCTGTAGCCCTCCTTTGCGGCCACAAACTCGCTTTCTAACCCAGGT





TCAGCCCTTTTATTGGCTGAGTGACCTTGTGCAAGTCACTTTTCCCCTGT





AGGCCTCGGTTTATTCTCCGTAAAATCAGAAAGTTGGCCTCCGATCTCCA





AGCACGCTTTTCACGACGAAGTGGGACTGTTAAGTTTACAGAGCTGCTTT





CCTCCCCCGGGACTGATGGTACGGTCCCCGGGCGGCTCCCCACCCATCTG





TCGCAGACCTTGGTACAGGCCCAGGGGGCCCTCGGCGGCCTCTCCGGGCT





GCCCTTGCCCCCTGCCGAGTTCCGGGCCCGTGTCTGCGCAAGCTGATTGG





CTGGAGCGGTGCCCGGGCTGCGCGGCTATAGGTGAGCCCAGGAGGGGACG





GGCGGGGCGGGCCGGAGGCCCGCCCCCTCCCCCCTGGGTCGGACGCTGAG





CGGAGCCGCGGGCGGGAGGGCGGACGGACCGACTGACGGTAGGGACGGGA





GGCGAGCAAGATG






28. PD-1. Programmed cell death protein 1 (PD-1) is also known as CD279 (cluster of differentiation 279). This gene encodes a cell surface membrane protein of the immunoglobulin superfamily. This protein is expressed in pro-B cells and is thought to play a role in their differentiation. PD-1 has two ligands, PD-L1 and PD-L2. PD-L1 protein is upregulated on macrophages and dendritic cells (DC) in response to LPS and GM-CSF treatment, and on T cells and B cells upon TCR and B cell receptor signaling.


Monoclonal antibodies blocking PD-1 may overcome immune resistance and boost the immune system are being developed for the treatment of cancer (Weber 2010, Semin. Oncol. 37 (5): 430-9). Nivolumab, a representative antibody, produced complete or partial responses in non-small-cell lung cancer, melanoma, and renal-cell cancer, in a clinical trial with a total of 296 patients; colon and pancreatic cancer did not have a response (Topalian et al., 2012: N Engl J Med 2012; 366:2443-2454). In HIV, drugs targeting PD-1 may augment immune responses and/or facilitate HIV eradication.


Protein: PD-1 Gene: PDCD1 (Homo sapiens, chromosome 2, 242792033-242801058 [NCBI Reference Sequence: NC000002.11]; start site location: 242800990; strand: negative)












Gene Identification


















GeneID
5133



HGNC
8760



HPRD
02590



MIM
600244




















Targeted Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












7297
TGCCGCCTTCTCCACTGCTCAGGCG
23





7316
ACCGCCTGACAGCTGGCGCGGCTGCCTGGC
1061





7379
CTGCGAGGCGCGGCCACGGCG
1171





7396
CGAGGAGGAAAGGCAGGCGGAGTCCG
3395





7397
CAGCGAAGCTGCAGAACGTCCCCATCACCACG
4268





7439
CGACAGCCGTGGGAAGGTGCAGTACG
4388





7440
CGGGATTCCCTGGAGATGCCTCCAGCGCG
4422





7466
AGGCGGTCCCAGGGCTCAGGTGTGGG
2229





7498
GCGTGCACCCCGTGGCCAGCTC
3813





7526
CAACGTACACGCAATCCACAAC
2832



















Target Shift Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












7297
TGCCGCCTTCTCCACTGCTCAGGCG
23





7298
GCCGCCTTCTCCACTGCTCA
24





7299
CCGCCTTCTCCACTGCTCAG
25





7300
CGCCTTCTCCACTGCTCAGG
26





7301
GTGCCGCCTTCTCCACTGCT
22





7302
AGTGCCGCCTTCTCCACTGC
21





7303
GAGTGCCGCCTTCTCCACTG
20





7304
AGAGTGCCGCCTTCTCCACT
19





7305
CAGAGTGCCGCCTTCTCCAC
18





7306
CCAGAGTGCCGCCTTCTCCA
17





7307
ACCAGAGTGCCGCCTTCTCC
16





7308
CACCAGAGTGCCGCCTTCTC
15





7309
CCACCAGAGTGCCGCCTTCT
14





7310
CCCACCAGAGTGCCGCCTTC
13





7311
CCCCACCAGAGTGCCGCCTT
12





7312
GCCCCACCAGAGTGCCGCCT
11





7313
AGCCCCACCAGAGTGCCGCC
10





7314
CAGCCCCACCAGAGTGCCGC
9





7315
GCAGCCCCACCAGAGTGCCG
8





7316
ACCGCCTGACAGCTGGCGCGGCTGCCTGGC
1061





7317
CCGCCTGACAGCTGGCGCGG
1062





7318
CGCCTGACAGCTGGCGCGGC
1063





7319
GCCTGACAGCTGGCGCGGCT
1064





7320
CCTGACAGCTGGCGCGGCTG
1065





7321
CTGACAGCTGGCGCGGCTGC
1066





7322
TGACAGCTGGCGCGGCTGCC
1067





7323
GACAGCTGGCGCGGCTGCCT
1068





7324
ACAGCTGGCGCGGCTGCCTG
1069





7325
CAGCTGGCGCGGCTGCCTGG
1070





7326
AGCTGGCGCGGCTGCCTGGC
1071





7327
GCTGGCGCGGCTGCCTGGCT
1072





7328
CTGGCGCGGCTGCCTGGCTC
1073





7329
TGGCGCGGCTGCCTGGCTCC
1074





7330
GGCGCGGCTGCCTGGCTCCG
1075





7331
GCGCGGCTGCCTGGCTCCGA
1076





7332
CGCGGCTGCCTGGCTCCGAG
1077





7333
GCGGCTGCCTGGCTCCGAGA
1078





7334
CGGCTGCCTGGCTCCGAGAG
1079





7335
GGCTGCCTGGCTCCGAGAGA
1080





7336
GCTGCCTGGCTCCGAGAGAC
1081





7337
CTGCCTGGCTCCGAGAGACA
1082





7338
TGCCTGGCTCCGAGAGACAC
1083





7339
GCCTGGCTCCGAGAGACACT
1084





7340
CCTGGCTCCGAGAGACACTC
1085





7341
CTGGCTCCGAGAGACACTCG
1086





7342
TGGCTCCGAGAGACACTCGG
1087





7343
GGCTCCGAGAGACACTCGGC
1088





7344
GCTCCGAGAGACACTCGGCC
1089





7345
CTCCGAGAGACACTCGGCCC
1090





7346
TCCGAGAGACACTCGGCCCG
1091





7347
CCGAGAGACACTCGGCCCGG
1092





7348
CGAGAGACACTCGGCCCGGC
1093





7349
GAGAGACACTCGGCCCGGCT
1094





7350
AGAGACACTCGGCCCGGCTC
1095





7351
GAGACACTCGGCCCGGCTCT
1096





7352
AGACACTCGGCCCGGCTCTG
1097





7353
GACACTCGGCCCGGCTCTGA
1098





7354
ACACTCGGCCCGGCTCTGAA
1099





7355
CACTCGGCCCGGCTCTGAAG
1100





7356
ACTCGGCCCGGCTCTGAAGG
1101





7357
CTCGGCCCGGCTCTGAAGGG
1102





7358
TCGGCCCGGCTCTGAAGGGA
1103





7359
CGGCCCGGCTCTGAAGGGAA
1104





7360
GGCCCGGCTCTGAAGGGAAA
1105





7361
GCCCGGCTCTGAAGGGAAAA
1106





7362
CCCGGCTCTGAAGGGAAAAC
1107





7363
CCGGCTCTGAAGGGAAAACA
1108





7364
CGGCTCTGAAGGGAAAACAT
1109





7365
AACCGCCTGACAGCTGGCGC
1060





7366
AAACCGCCTGACAGCTGGCG
1059





7367
GAAACCGCCTGACAGCTGGC
1058





7368
AGAAACCGCCTGACAGCTGG
1057





7369
TAGAAACCGCCTGACAGCTG
1056





7370
CTAGAAACCGCCTGACAGCT
1055





7371
GCTAGAAACCGCCTGACAGC
1054





7372
GGCTAGAAACCGCCTGACAG
1053





7373
AGGCTAGAAACCGCCTGACA
1052





7374
GAGGCTAGAAACCGCCTGAC
1051





7375
CGAGGCTAGAAACCGCCTGA
1050





7376
GCGAGGCTAGAAACCGCCTG
1049





7377
AGCGAGGCTAGAAACCGCCT
1048





7378
AAGCGAGGCTAGAAACCGCC
1047





7379
CTGCGAGGCGCGGCCACGGCG
1171





7380
TGCGAGGCGCGGCCACGGCG
1172





7381
GCGAGGCGCGGCCACGGCGA
1173





7382
CGAGGCGCGGCCACGGCGAG
1174





7383
TCTGCGAGGCGCGGCCACGG
1170





7384
GTCTGCGAGGCGCGGCCACG
1169





7385
TGTCTGCGAGGCGCGGCCAC
1168





7386
ATGTCTGCGAGGCGCGGCCA
1167





7387
GATGTCTGCGAGGCGCGGCC
1166





7388
TGATGTCTGCGAGGCGCGGC
1165





7389
ATGATGTCTGCGAGGCGCGG
1164





7390
GATGATGTCTGCGAGGCGCG
1163





7391
AGATGATGTCTGCGAGGCGC
1162





7392
AAGATGATGTCTGCGAGGCG
1161





7393
AAAGATGATGTCTGCGAGGC
1160





7394
CAAAGATGATGTCTGCGAGG
1159





7395
TCAAAGATGATGTCTGCGAG
1158





7396
CGAGGAGGAAAGGCAGGCGGAGTCCG
3395





7397
CAGCGAAGCTGCAGAACGTCCCCATCACCACG
4268





7398
AGCGAAGCTGCAGAACGTCC
4269





7399
GCGAAGCTGCAGAACGTCCC
4270





7400
CGAAGCTGCAGAACGTCCCC
4271





7401
GAAGCTGCAGAACGTCCCCA
4272





7402
AAGCTGCAGAACGTCCCCAT
4273





7403
AGCTGCAGAACGTCCCCATC
4274





7404
GCTGCAGAACGTCCCCATCA
4275





7405
CTGCAGAACGTCCCCATCAC
4276





7406
TGCAGAACGTCCCCATCACC
4277





7407
GCAGAACGTCCCCATCACCA
4278





7408
CAGAACGTCCCCATCACCAC
4279





7409
AGAACGTCCCCATCACCACG
4280





7410
GAACGTCCCCATCACCACGG
4281





7411
AACGTCCCCATCACCACGGG
4282





7412
ACGTCCCCATCACCACGGGG
4283





7413
CGTCCCCATCACCACGGGGT
4284





7414
GTCCCCATCACCACGGGGTC
4285





7415
TCCCCATCACCACGGGGTCC
4286





7416
CCCCATCACCACGGGGTCCT
4287





7417
CCCATCACCACGGGGTCCTC
4288





7418
CCATCACCACGGGGTCCTCC
4289





7419
CATCACCACGGGGTCCTCCG
4290





7420
ATCACCACGGGGTCCTCCGG
4291





7421
TCACCACGGGGTCCTCCGGG
4292





7422
CACCACGGGGTCCTCCGGGT
4293





7423
ACCACGGGGTCCTCCGGGTG
4294





7424
CCACGGGGTCCTCCGGGTGC
4295





7425
CACGGGGTCCTCCGGGTGCC
4296





7426
ACGGGGTCCTCCGGGTGCCC
4297





7427
CGGGGTCCTCCGGGTGCCCT
4298





7428
GGGGTCCTCCGGGTGCCCTT
4299





7429
GGGTCCTCCGGGTGCCCTTG
4300





7430
GGTCCTCCGGGTGCCCTTGG
4301





7431
GTCCTCCGGGTGCCCTTGGC
4302





7432
TCCTCCGGGTGCCCTTGGCA
4303





7433
CCTCCGGGTGCCCTTGGCAA
4304





7434
CTCCGGGTGCCCTTGGCAAT
4305





7435
TCCGGGTGCCCTTGGCAATA
4306





7436
CCGGGTGCCCTTGGCAATAC
4307





7437
CGGGTGCCCTTGGCAATACA
4308





7438
ACAGCGAAGCTGCAGAACGT
4267





7439
CGACAGCCGTGGGAAGGTGCAGTACG
4388





7440
CGGGATTCCCTGGAGATGCCTCCAGCGCG
4422





7441
CCGGGATTCCCTGGAGATGC
4421





7442
TCCGGGATTCCCTGGAGATG
4420





7443
TTCCGGGATTCCCTGGAGAT
4419





7444
CTTCCGGGATTCCCTGGAGA
4418





7445
CCTTCCGGGATTCCCTGGAG
4417





7446
TCCTTCCGGGATTCCCTGGA
4416





7447
ATCCTTCCGGGATTCCCTGG
4415





7448
CATCCTTCCGGGATTCCCTG
4414





7449
GCATCCTTCCGGGATTCCCT
4413





7450
CGCATCCTTCCGGGATTCCC
4412





7451
ACGCATCCTTCCGGGATTCC
4411





7452
TACGCATCCTTCCGGGATTC
4410





7453
GTACGCATCCTTCCGGGATT
4409





7454
AGTACGCATCCTTCCGGGAT
4408





7455
CAGTACGCATCCTTCCGGGA
4407





7456
GCAGTACGCATCCTTCCGGG
4406





7457
TGCAGTACGCATCCTTCCGG
4405





7458
GTGCAGTACGCATCCTTCCG
4404





7459
GGTGCAGTACGCATCCTTCC
4403





7460
AGGTGCAGTACGCATCCTTC
4402





7461
AAGGTGCAGTACGCATCCTT
4401





7462
GAAGGTGCAGTACGCATCCT
4400





7463
GGAAGGTGCAGTACGCATCC
4399





7464
GGGAAGGTGCAGTACGCATC
4398





7465
TGGGAAGGTGCAGTACGCAT
4397





7466
AGGCGGTCCCAGGGCTCAGGTGTGGG
2229





7467
GGCGGTCCCAGGGCTCAGGT
2230





7468
GCGGTCCCAGGGCTCAGGTG
2231





7469
CGGTCCCAGGGCTCAGGTGT
2232





7470
TAGGCGGTCCCAGGGCTCAG
2228





7471
ATAGGCGGTCCCAGGGCTCA
2227





7472
GATAGGCGGTCCCAGGGCTC
2226





7473
AGATAGGCGGTCCCAGGGCT
2225





7474
CAGATAGGCGGTCCCAGGGC
2224





7475
GCAGATAGGCGGTCCCAGGG
2223





7476
AGCAGATAGGCGGTCCCAGG
2222





7477
AAGCAGATAGGCGGTCCCAG
2221





7478
GAAGCAGATAGGCGGTCCCA
2220





7479
CGAAGCAGATAGGCGGTCCC
2219





7480
CCGAAGCAGATAGGCGGTCC
2218





7481
CCCGAAGCAGATAGGCGGTC
2217





7482
CCCCGAAGCAGATAGGCGGT
2216





7483
ACCCCGAAGCAGATAGGCGG
2215





7484
CACCCCGAAGCAGATAGGCG
2214





7485
CCACCCCGAAGCAGATAGGC
2213





7486
CCCACCCCGAAGCAGATAGG
2212





7487
CCCCACCCCGAAGCAGATAG
2211





7488
ACCCCACCCCGAAGCAGATA
2210





7489
GACCCCACCCCGAAGCAGAT
2209





7490
GGACCCCACCCCGAAGCAGA
2208





7491
GGGACCCCACCCCGAAGCAG
2207





7492
TGGGACCCCACCCCGAAGCA
2206





7493
CTGGGACCCCACCCCGAAGC
2205





7494
CCTGGGACCCCACCCCGAAG
2204





7495
TCCTGGGACCCCACCCCGAA
2203





7496
GTCCTGGGACCCCACCCCGA
2202





7497
GGTCCTGGGACCCCACCCCG
2201





7498
GCGTGCACCCCGTGGCCAGCTC
3813





7499
CGTGCACCCCGTGGCCAGCT
3814





7500
GTGCACCCCGTGGCCAGCTC
3815





7501
TGCACCCCGTGGCCAGCTCA
3816





7502
GCACCCCGTGGCCAGCTCAT
3817





7503
CACCCCGTGGCCAGCTCATA
3818





7504
ACCCCGTGGCCAGCTCATAT
3819





7505
CCCCGTGGCCAGCTCATATC
3820





7506
CCCGTGGCCAGCTCATATCT
3821





7507
CCGTGGCCAGCTCATATCTA
3822





7508
CGTGGCCAGCTCATATCTAA
3823





7509
GGCGTGCACCCCGTGGCCAG
3812





7510
AGGCGTGCACCCCGTGGCCA
3811





7511
CAGGCGTGCACCCCGTGGCC
3810





7512
ACAGGCGTGCACCCCGTGGC
3809





7513
CACAGGCGTGCACCCCGTGG
3808





7514
CCACAGGCGTGCACCCCGTG
3807





7515
ACCACAGGCGTGCACCCCGT
3806





7516
GACCACAGGCGTGCACCCCG
3805





7517
GGACCACAGGCGTGCACCCC
3804





7518
GGGACCACAGGCGTGCACCC
3803





7519
TGGGACCACAGGCGTGCACC
3802





7520
CTGGGACCACAGGCGTGCAC
3801





7521
GCTGGGACCACAGGCGTGCA
3800





7522
AGCTGGGACCACAGGCGTGC
3799





7523
TAGCTGGGACCACAGGCGTG
3798





7524
GTAGCTGGGACCACAGGCGT
3797





7525
AGTAGCTGGGACCACAGGCG
3796





7526
CAACGTACACGCAATCCACAAC
2832





7527
AACGTACACGCAATCCACAA
2833





7528
ACGTACACGCAATCCACAAC
2834





7529
CGTACACGCAATCCACAACA
2835





7530
GTACACGCAATCCACAACAC
2836





7531
TACACGCAATCCACAACACA
2837





7532
ACACGCAATCCACAACACAT
2838





7533
CACGCAATCCACAACACATA
2839





7534
ACGCAATCCACAACACATAC
2840





7535
CGCAATCCACAACACATACA
2841





7536
CCAACGTACACGCAATCCAC
2831





7537
CCCAACGTACACGCAATCCA
2830





7538
CCCCAACGTACACGCAATCC
2829





7539
TCCCCAACGTACACGCAATC
2828





7540
ATCCCCAACGTACACGCAAT
2827





7541
AATCCCCAACGTACACGCAA
2826





7542
CAATCCCCAACGTACACGCA
2825





7543
ACAATCCCCAACGTACACGC
2824





7544
CACAATCCCCAACGTACACG
2823





7545
GCACAATCCCCAACGTACAC
2822





7546
TGCACAATCCCCAACGTACA
2821





7547
ATGCACAATCCCCAACGTAC
2820





7548
CATGCACAATCCCCAACGTA
2819





7549
ACATGCACAATCCCCAACGT
2818





7550
AACATGCACAATCCCCAACG
2817



















Hot Zones (Relative upstream location to gene start site)







  1-1450


1850-2350


2750-3000


3100-3600


3650-4050


4100-5000









Examples

In FIG. 48, In MCF7 (human mammary breast cell line), PD1 (293) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The PD1 sequence PD1 (293) fits the independent and dependent DNAi motif claims.


The secondary structure for PD1 (293) is shown in FIG. 49.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11977)







ACCACAGCCTGGATGGCTCGGCACAGAGAGGAACGGGCTGCTGAAACACA





CGCGCTGGAGGCATCTCCAGGGAATCCCGGAAGGATGCGTACTGCACCTT





CCCACGGCTGTCGCTGGAATGAAACAGTGATGGGGGTGGAGGGCAGGCTC





GTGGCCACCAGCAGGGAGGTGGGTGTATTGCCAAGGGCACCCGGAGGACC





CCGTGGTGATGGGGACGTTCTGCAGCTTCGCTGTCAGGGGATGCAGGAGC





CTTCGCTTGTGCCCACATTGTGCAGCCTTTGATAGGCACACATTAGCCAG





AAACGGGGACTCAGGATGGGATCGAGGTGTCACATCAAAGTCATTAACCT





GGTTGTGACGTTGTCCTGTGGTTTTCCAAACTGTTATCATTCAGAGAGAC





TGAGCAGAGTGTATGAGGAAACATCTGTGTAATTTCTTACAACTGCAAGT





AAATCTACAATTATCTCAATTGTAAATGATACAATACTCAACCAAAACAT





ACAACCATCAGCCAGGTGTGGTGGCTCACGCCTGTAATCCCAACTCTTTG





GGAGTCCAAGGTGGGAGAATTGCTGGAGGCCCGGAGTTTGAGACCAGCCT





GGGTAACATAAAGAGACCTCCTCTGCCCCCACCCCAAATTCTACAAAAAA





AAAAAATGTTAGATATGAGCTGGCCACGGGGTGCACGCCTGTGGTCCCAG





CTACTCAGGAGGCTGAGGTCGGAGGATCGCTTGAGCCCAGGAGGTCGAGG





CTGCAGTGAGCCAAGATCACACCACTGCACTCCAGCCTGGGTGCAGAGCA





AGACCCTGTCTCTAAAAGAAAATAAACAGACAAAAACCACATACAACTTT





GCTTGTTGTAAATTATCTTTTAACTGAATGCCCTGGATTGAATCTGGCTG





CTGCCATCCCAGGGCCAGTGATTTGGATGGGGTATGACCCTCTGTGAGGA





AGGAGCAGGCGGTGGGGGAAGGGCCTGGGTGTCCAGGTTCCCTGGGAAGG





AAGGCTGAGAAAAGGAGATGGGGGAGGGGTGCGCAGGGCCGGCCAGCCAA





GGGCCCCTTAGCCCCATCTACCCTGCTCCCCGGACTCCGCCTGCCTTTCC





TCCTCGTGACAGAAGACAGTGGAAGCCTACTGGGTGGAAGGCACGGGCTT





AGGATGTGTGTGGGAGGAAAGTGTGTGTGCTGGGGAGCATGTATGTTTGG





GAGTTGTGTGTGTTGGAAATCGTGTGTTGGGGATTGTGTGTATATTGCAG





ATTTTGTATGTGTGTTGGGGATTGTGGTGTGTGGGTGTTGTAGATTGCGT





GTTGGGGATTGTGTTGGGGATTGTGTATGTGTTGGGGGTTGTGTGTGTGT





TGGGGATTGTGTGTGGGGGAGATTGTGTGTGTGTGCTGGGGATTGGGTGT





GTTGGGGATTGTGTGTGTGTTGAGGATTGTGTGTGGGGGAGATTCTGTGT





GTGTGCTGGGGATTGGGTGTGTTGGGGATTGTGTGTGTATTGGGAATTGT





GTGTGTGTTGAGGATTGTGTGTGTTGGGGATTTGTGTGTGTGTTGGGGAT





TCTGTGCATGTTGGGAGTTGTGTGTGAGTTGGGGACAATGTGTACAGAGG





ATTGTGTGTTGGAAATTTTGTGTGTGCGTTGGGAATTTTGTGTATGTGTT





GTGGATTGCGTGTACGTTGGGGATTGTGCATGTTGGGAATTTTGTGTGTG





TGTTGAGAATTGTGTGTGAGGGAATTGTGTGTGTTTGAGATTGTGTGTGT





ATTGGGAATTGTGTGTGTGTTGAGGATTGTGTGTGTTCTGAGGATTGTAT





GTGTTGGGAATTTTGTGTGTGTGTTGAGGATTGTGTGTGTTGGGGATTCT





ACGTATGTTGAAAGTTGTGTGTGTGTTGGGATTGTGTGTGTGTTGTGGAT





TGTGTGTGTTGGGAATTGTGTGTGTGTGTTGAGGATTGTGTGCAGGGGGA





TTGTGTGTGTTGGAGATTGTATGTGTTGGGAATTTTGTGTGTGTGTTGGG





GACTGTGTATGTTTTGGGGATTGTGTGTGTTGGGAATTTTGTGTGTGTGT





TGAGGATTGTGTGTGGGGGGATTGTGTGTGTTGGAGATTGTGTGTGTGTT





GGGGACTGTGTGTGTGTTGGGGACTGTGTGTGTTGGGGTGTGGTGTGTTG





GAAATCGTGTGTTGGGGACACCGTATGTGTTTGGGGGAGGGTGTCAATAA





GTGGTCTGGAGTGTGATATTGGGGTGCAGGCTCCATGAGTCCCCACCCCA





CACCTGAGCCCTGGGACCGCCTATCTGCTTCGGGGTGGGGTCCCAGGACC





CTGTAGGTTCAGCCTACTAGTCCAGGCCCAATGCCCAATGCCTGCATCCC





TGCAGGCCCTGTGCTCTCCAGGCTCAGACCCCTCGCAGCCCTGCAGACCC





TCCCTGGGTCCATGTGTCTCTTTGCAGGTGCTCCAGCGAGTAGCAATGTG





GAGAGACCATCAGGCAGCCCTGGCCTCAGTGGCCGCAGTCCCCTGGCTCC





ACGCTGGGCCCACCCCACCAGGTCTCCTCTCCCATGGCCCAGGGGCCTTC





AGTGGGACTGAGAGGAGGAGGGAAGGAGAGTGGGTGACAGGGAAGAACTG





CAGGGAGAGAGGAGAGGGGTGGGAGAAGGAGAAGGAAGGAAGGGGTAGGA





TGGAAGCTGGGTTTCTCCCTGTGCCCGCCCCCTACTCCAGGACATGTGTC





CAAGCCCTGGCAGGTGGAATTTTGGGGGCAGGGCCTTGGTGGTGAGGAGA





CCTTCCAGGGGTCTGATAGCATCTCCCATCTCAGAGCCCACCTCCTGGGC





CCAGCCTCCCCTCCAGCCCACACAGTGGCATTCCCAGTCCTCAGAGGACA





GCTTCGTCCCACAAAGCTCAGAGCCTTGAGGAAGGCCCACTGCTGCCCTG





GAACAGAGACAGCATTCAACAGAGGTTGGAACAAGGCTCTACAGGGCTGG





GGGCAGAGGGAGGTTCTGTCCAGAATCTGCCTTCAGGACAAGTACAGCCA





GCAGGGGCAGCTTAGCCACTTATCCACTGCCTGGGCGAGGCACAGGGCTA





TGGAGGCACCTACCAACCAACAGTTCTCCAGCCCCAGAGCCCCAGCCCCT





GAGGCACAAGGGTGGGTGTGCCAGGAGACAGTTGCTGCGGGCCACCTTAG





CTGTCTGGCAGCACAGTGGGTGCTGCCAGGCTCCCTGGGGGCCCCCCGCC





AAGCCCACCTGGCCAGCTGGGCCCCCCCCACCTCCCCACCAAGCCACCCA





CACAGCCTCACATCTCTGAGACCCGGGAGTGGCCCTTTGTTCATAAACGA





GAGCTTCCTCGCCGTGGCCGCGCCTCGCAGACATCATCTTTGATGCTCTT





TTTCCACTGTTTCGGTGCTTTAATGTTTTCCCTTCAGAGCCGGGCCGAGT





GTCTCTCGGAGCCAGGCAGCCGCGCCAGCTGTCAGGCGGTTTCTAGCCTC





GCTTCGGTTATTTTAAGCTGATGAGCCTGACGCATCTCATCACTAATATC





AGCAGTTTCATTTCTCCTGTTTTCCATTCGCTGTAATAAAATGCTCAGCA





CAGAATACAAGGAGATAAGCAAGCCATTTCACAAACGCCGGGCCGCCAGC





CAGGCCCAGGCACTGGACCCCCTGAACCACCCCACCCTGGCACGAGTGGG





CTGGAGGGCAGGGCCCCGGGGAAGAAGGTCAAGGCTGGAAGGGGAGGTCA





GCCTCACAGCCAGCCCCTGCCACCGCCCCAGCCCCCCCGTCAGGCTGTTG





CAGGCATCACACGGTGGAAAGATCTGGAACTGTGGCCATGGTGTGAGGCC





ATCCACAAGGTGGAAGCTTTGAGGGGGAGCCGATTAGCCATGGACAGTTG





TCATTCAGTAGGGTCACCTGTGCCCCAGCGAAGGGGGATGGGCCGGGAAG





GCAGAGGCCAGGCACCTGCCCCCAGCAGGGGCAGAGGCTGTGGGCAGCCG





GGAGGCTCCCAGAGGCTCCGACAGAATGGGAGTGGGGTTGAGCCCACCCC





TCACTGCAGCCCAGGAACCTGAGCCCAGAGGGGGCCACCCACCTTCCCCA





GGCAGGGAGGCCCGGCCCCCAGGGAGATGGGGGGGATGGGGGAGGAGAAG





GGCCTGCCCCCACCCGGCAGCCTCAGGAGGGGCAGCTCGGGCGGGATATG





GAAAGAGGCCACAGCAGTGAGCAGAGACACAGAGGAGGAAGGGGCCCTGA





GCTGGGGAGACCCCCACGGGGTAGGGCGTGGGGGCCACGGGCCCACCTCC





TCCCCATCTCCTCTGTCTCCCTGTCTCTGTCTCTCTCTCCCTCCCCCACC





CTCTCCCCAGTCCTACCCCCTCCTCACCCCTCCTCCCCCAGCACTGCCTC





TGTCACTCTCGCCCACGTGGATGTGGAGGAAGAGGGGGCGGGAGCAAGGG





GCGGGCACCCTCCCTTCAACCTGACCTGGGACAGTTTCCCTTCCGCTCAC





CTCCGCCTGAGCAGTGGAGAAGGCGGCACTCTGGTGGGGCTGCTCCAGGC







ATG








29. BCL2. Bcl-2 (B-cell lymphoma 2) is the founding member of the Bcl-2 family of apoptosis regulator proteins encoded by the BCL2 gene that was first described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas (Tsujimoto et al. Science 226 (4678): 1097-99). The dysregulation of cell death is a defining characteristic of malignant cells and BCL-2 protein plays a key and central role. BCL-2 confers an anti-apoptotic phenotype that contributes to the genesis of hematopoietic and lymphatic cancers. In many cases of diffuse large B-cell (DLBCL) and follicular lymphomas (FL), BCL2 overexpression is driven by the t(14,18) chromosomal rearrangement of the BCL2 oncogene. In chronic lymphocytic leukemia, impaired degradation of BCL2 mRNA causes continuous production of BCL2. The Bcl-2 gene has been implicated in a number of cancers, including melanoma, breast, prostate, chronic lymphocytic leukemia, skin, sarcoma, and lung carcinomas, as well as schizophrenia and autoimmunity. It is also thought to be involved in resistance to conventional cancer treatment and evidence also suggests that decreased apoptosis may play a role in the development of cancer.


Protein: BCL2 Gene: BCL2 (Homo sapiens, chromosome 18, 63123346-63319778 [NCBI Reference Sequence: NC000018.10]; start site location: 63318666; strand: negative)












Gene Identification


















GeneID
596



HGNC
990



MIM
151430




















Targeted Sequences













Relative





upstream





location to


Sequence
Design

gene start


ID
ID
Sequence (5′-3′)
site





13682

TGTCCACCTGAACACCTAGTCC
2388









In FIG. 50, In MDA-MB-231 (human breast cell line), BL2 at 10 μM showed increased inhibition compared to BL3 and BL4 (10 μM). The BL2 (structure shown below) fits the independent and dependent DNAi motif claims. Both BL3 and BL4 contained a single mismatched base meaning neither sequence had 100% homology to its complementary strand. This demonstrates that many times even a single mismatch to the complementary strand decreases the inhibitory effects of a DNAi oligonucleotide. The mismatches for BL3 and BL4 are noted below with the mismatched letter highlighted and bolded. It should also be noted that a 20-mer version of BL2 demonstrated similar significant inhibition (data not shown) as the 24-mer version of BL2 shown in FIGS. 50, 51, and 52.


In FIG. 51, M14 (human melanoma cell line), BL2 at 10 μM showed increased inhibition compared to BL3 and BL4 (10 μM). The BL2 (structure shown below) fits the independent and dependent DNAi motif claims. Both BL3 and BL4 contained a single mismatched base meaning neither sequence had 100% homology to its complementary strand. This demonstrates that many times even a single mismatch to the complementary strand decreases the inhibitory effects of a DNAi oligonucleotide. The mismatches for BL3 and BL4 are noted below with the mismatched letter highlighted and bolded. It should also be noted that a 20-mer version of BL2 demonstrated similar significant inhibition (data not shown) as the 24-mer version of BL2 shown in FIGS. 50, 51, and 52.


BL3: ACCGGCGCTCGGCGCGCGGA (SEQ ID NO: 13825)(needed to have a G in place of the C for 100% homology)


BL4: GACGCGCCGGGCCGGGCGGA (SEQ ID NO: 13826) (needed to have an A in place of the C for 100% homology)


In FIG. 52, as a counter screen to test for nonspecific toxicity, BL2 and BL7 were tested at 10 μM in NMuMG (a normal murine mouse mammary gland cell line) and measured at 24 and 96 hours post exposure. As would be expected, BL2 has no cytotoxicity against a normal, nontumorigenic mouse cell line because it was designed for homology with the human genome and only has a maximum of 67% homology across the entire mouse genome. BL7, however, has approximately 90% homology across the entire mouse genome. This demonstrates that duplication and high overlap with non-targeted regions of the genome leads to non-specific cytotoxicity.


The secondary structure for BL2 are shown in FIG. 53. Sequence 302 (BL2) is shown in FIG. 53.


In FIG. 54, In HCT-116 (human colorectal carcinoma), BL9 produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The BCL2 sequence BL9 will not form a secondary structure under physiological conditions.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13683)







CCTCCCAAAGTGCTGAGATTACAGGCATGAGCAACCACACCTGGCCGATA





CATACCTATATTAAACATTAGTATGTTCATGTTAGAATAATGTACCTTTT





GAATTTCATAAACTTGGAGAATATTTATATTGATGATGGATGAAAGAACT





TTCTTGGATGGATGAAGAGAGTAACGCTGTGAAACAACCAGCAGGTGGCG





AAAACTGGCAATCAAAAGCTTTTTGTTTGGTGGCCTGGGGAATGAAGACG





GAAAGAAAACACAGGCCATTCAGACTCTTGATACAATCTCCATTCCCTGC





ATCTTGTTTTTTTTCTCTTCCTGGTGCCACGCTACTTGTAGAATCCAACC





AGGTAAAGCTGCCAAAAGGGTCATCCATTGGCTCTTACAAGTAGAAAACA





TCTTGGAAAGTGAAAAGTCCACTGTGCATATGTTTGTAAGGTTGTTGGAA





GGTCTCAGGCATAGATCTAGGATTCAAATCCAGTTACTCCTGCCTCAGGC





TGGTGTTCCCTCCCCCACCTCAGCATTGCCCAAAGACGAGTAGTCAATGT





CACATACTTCCTGGGAATACTTGCCCTTATGCTTTAAAATGGAATCTAAT





AAACATGGAATCTGAACGCAGGAATGGTTTCACTCTTTCATTTGAAAGAG





TATCTAGAACATTCCCAGGGAAAATATAACCCCTAGCCAAAGACTGCAAT





ACAGACCTGTCTCAAGACTGATTATAGCCAAGATGCCACATAAGGAATCA





GTCTGGGAAAATCCATAGAGTGAGGCTCTGTGGGAGCAAAGGAAGACGAA





AATCAGTCAGCTTTTCTTTCTCTGGAAGTAGGGGATCCGTTTCCTTCTGG





CTGCCCCCTTTGCAGAAGTACAGTTTCTTTTGCAGGTTTGTCCTATCATT





TCCTCACTCATATGCTGAGTATTAGGAGCTTGAAGCCTTTCAATTCCTCT





TAGGTAATTTTGGGGCTTTAAAATACGCTTTCAAGATTTCTAAACCATAC





TGTTGTGCAATTGGTATGAATTTATGTGAGAACATTTATTCTAGGTCAAT





CTATACCCAGTGTCTATCCAGACCAAAACACCTCCCACGCGCATAAAAGG





GACTCTGTCCCAACCATCAGAAGGGCAAGAAGGAGGATCTCCTTTCATCC





CCTCTTGCCTGGATAAGAAATTTGTACCCAGGCCCCCATTCCTATGTGAG





AGAAGTTGGCTTGTTGGGCTGATGGGATACAATAAATGAAGAAATAAAAT





AAAAACACCCAAGAGAGATGGCAGTGCGTATAGTCCCAGCTATTCATGAG





GCTGAGGTGGGAGAATCCTTCGAGCCCAGAAGTTCGAGTCCAGCCTGGGC





AACATAGCAAAAGCCATCTCTTAAAAAAAAAAAAAAAAGGCCAACTAAGT





AAAAATTAAAAAAATCATAATTTGGTGTGCTTTTCTGGCTTTTTAAAGAA





TGTTTTGATTTTAGAGTAGGAATGAGACAAAATAAAGATGTCAGGCAGGG





CACAGTGGCTCATGTCTGTAATCCCAGCACTTTGGGAGGCTGAGGCAGGC





GGATAACGAGGTCAGGAGTTCGAGACCAGCCTGGCCAGTATGGCGAAACC





CCGTCTCTACTAAAAATACAAAAATTAGCAGAGCGTAGTGGCGTGCACGT





GTAATCCCAGCTACTCAGGAGGCTGAGGCAGAATTGCTTGAGCCTGGGAG





GCAGAGGTTGCAGTGAGCTGAGATCGCACCACTGCACACCAGCCTCCAAG





ATACAACAGAGCAAGACTCTGTCTCAAAAAAAAAAAAAAAGTCATAGCAT





ATTTGTACACATTGTAGTACTCATTTGTCATCTTTCTTGACCCCAATAAT





CCAGTGTCCCTATATATTTGCACTCGAGCCCTATTAAGTAAGCCGCTGTG





CTTCTAGAAGACCTTTTTCTTTTCTTGGTGCTTTGTCAAAGACTCTTGGA





GATAAAAATACACACGTGCAACTTGTTTGTCCTCTTGTCCTTTTTTGCTA





GGGGCTATTCATGCTGATTAATTTAAAACTGTCTGCTTGCGCGTACACAC





GTCTGCGAGTGTGAATGTGTATGTGTGTATCTATGTACCTCATTTGAGAA





AGTGCGGCCAACTAGGATTGGCTACGAGGCAAAGGTGGAGACCTTTAGGA





GCCCACCCACCCCAGCGTTAGGACGGTGGGCCTGAAAGTTACTATATGGA





AGTCCTCATCGTGTAGCACTAAACCAGTGTAAAAGGTGTTAGGGACAGAG





GGAAAACATTGACTTAAACTGTCGTAAAGCCCTTGATAAACCCCTTCCCT





GGAGCGCTGAGTTCTGCATGGCCTGGGCCACGGACTAGGTGTTCAGGTGG





ACACGGGCGGGGATGCGCGTGCGTGTGTAGTGCGCGGACACCTAGGAAGC





TACTTGAAAGTAAACACCACGCTCGGGGCGTCCCTAGACATTGCTTAAAA





CGTGCAGAGTCACCTGTCTTCACAGCAGGGCAGCGCTGAGGTCCCACTGC





TGGGGGCGGTGGGGGGCGGCATTGGCCTGGGTCTTCCCCCGGCGGCCGAG





CGCCGGTAACACAACGTGTGTGTGTGTAGGCGCGTGTACACACTCTCATA





CACGGCTAGAAAGGGTCCAGGCGACACACACACTCCCACATACACGGCTA





GAAAAGGTCCAGGCGAGACACACACACACACACACACACACACACACACT





CCACACACACTCACACGGCCAGAAAGGGTCCAGGCGGTTCCCGGCGCTTT





TCCAGCCCTTGTTTTCATGGCGCACCCTCCCGCCAGCCGCCCCCCTCCGC





ACTCCGTCGTCCGCCCGGCCCGGCCGCGTGCGGTTCCCCGGGAGCCCCCA





CCCCGTCGCGGACCCCAGCGACCACCAAGTCCGCACGCGGCCTGCCGCAG





GCCTGAGCAGAAGGCCCCGCGCACACCCACCGCGCCGCGGCCGCGCGGGA





GGCCTGTGCCGCCCGCGCCACCCACTGGCCGGGCCCCGCGGGCGCAGCGG





AGCGGGCGGGTGGCCGGCCCGGACGCGCCCTCCCCGGCCGCGGCCCCGCG





CGCCATGTGCCCCCGGCGGGACGCGCCACTCCCGGGCCTGCCGCGGCGCC





TTTAACCCGGGCCAGGGAGCGGGGCGGAGGGGGCGGTCGGGTGGCTCAGA





GGAGGGCTCTTTCTTTCTTCTTTTTTTGAATGAACCGTGTGACGTTACGC





ACAGGAAACCGGTCGGGCTGTGCAGAGAATGAAGTAAGAGGACAGGCACC





ACAGCCCCGCTCCCGCCCCCTTCCTCCCGCGCCCGCCCCTCCGCGCCGCC





TGCCCGCCCGCCCGCCGCGCTCCCGCCCGCCGCTCTCCGTGGCCCCGCCG





CGCTGCCGCCGCCGCCGCTGCCAGCGAAGGTGCCGGGGCTCCGGGCCCTC





CCTGCCGGCGGCCGTCAGCGCTCGGAGCGGGCTGCGCGGCGGGAGCTCCG





GGAGGCGGCCGTAGCCAGCGCCGCCGCGCAGGACCAGGAGGAGGAGAAAG





GGTGCGCAGCCCGGAGGCGGGGTGCGCCGGTGGGGTGCAGCGGAAGAGGG





GGTCCAGGGGGGAGAACTTCGTAGCAGTCATCCTTTTTAGGAAAAGAGGG





AAAAAATAAAACCCTCCCCCACCACCTCCTTCTCCCCACCCCTCGCCGCA





CCACACACAGCGCGGGCTTCTAGCGCTCGGCACCGGCGGGCCAGGCGCGT





CCTGCCTTCATTTATCCAGCAGCTTTTCGGAAAATGCATTTGCTGTTCGG





AGTTTAATCAGAAGAGGATTCCTGCCTCCGTCCCCGGCTCCTTCATCGTC





CCCTCTCCCCTGTCTCTCTCCTGGGGAGGCGTGAAGCGGTCCCGTGGATA





GAGATTCATGCCTGTGCCCGCGCGTGTGTGCGCGCGTGTAAATTGCCGAG





AAGGGGAAAACATCACAGGACTTCTGCGAATACCGGACTGAAAATTGTAA





TTCATCTGCCGCCGCCGCTGCCTTTTTTTTTTCTCGAGCTCTTGAGATCT





CCGGTTGGGATTCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTGGGA





ATCGATCTGGAAATCCTCCTAATTTTTACTCCCTCTCCCCGCGACTCCTG





ATTCATTGGGAAGTTTCAAATCAGCTATAACTGGAGAGTGCTGAAGATTG





ATGGGATCGTTGCCTTATGCATTTGTTTTGGTTTTACAAAAAGGAAACTT





GACAGAGGATCATGCTGTACTTAAAAAATACAAGTAAGTTCTCTGCACAG





GAAATTGGTTTAATGTAACTTTCAATGGAAACCTTTGAGATTTTTTACTT





AAAGTGCATTCGAGTAAATTTAATTTCCAGGCAGCTTAATACATTCTTTT





TAGCCGTGTTACTTGTAGTGTGTATGCCCTGCTTTCACTCAGTGTGTACA





GGGAAACGCACCTGATTTTTTACTTATTAGTTTGTTTTTTCTTTAACCTT





TCAGCATCACAGAGGAAGTAGACTGATATTAACAATACTTACTAATAATA





ACGTGCCTCATGAAATAAAGATCCGAAAGGAATTGGAATAAAAATTTCCT





GCATCTCATGCCAAGGGGGAAACACCAGAATCAAGTGTTCCGCGTGATTG





AAGACACCCCCTCGTCCAAGAATGCAAAGCACATCCAATAAAATAGCTGG





ATTATAACTCCTCTTCTTTCTCTGGGGGCCGTGGGGTGGGAGCTGGGGCG





AGAGGTGCCGTTGGCCCCCGTTGCTTTTCCTCTGGGAAGGATG






BCL2


Apoptosis also plays a very active role in regulating the immune system. When functional, apoptosis causes immune unresponsiveness to self-antigens via both central and peripheral tolerance. When defective, it may contribute to autoimmune diseases (Li et al., Clin. Dev. Immunol. 13 (2-4): 273-82 and reviewed by Tischner et al., Cell Death and Disease (2010) 1, e48), such as type 1 diabetes, manifested as aberrant T cell AICD and defective peripheral tolerance. Dendritic cells are the most important antigen presenting cells of the immune system such that their activity must be tightly regulated by such mechanisms as apoptosis and their lifespan may be controlled in part by BCL-2. Other inflammatory diseases include inflammatory bowel disease, psoriatic arthritis, lupus, heart disease, and Alzheimer's and schizophrenia.


Given its biological importance, BCL2 is a prime candidate for targeted therapies. Numerous approaches that block or modulate production of BCL2 at the DNA level (e.g., retinoids and histone deacetylase inhibitors), RNA level (targeted antisense oligonucleotides such oblimersen and SPC2996 or siRNA approaches), or the protein level (gossypol, obatoclax, ABT-737, ABT-263, ABT-199) have been reported and a few have entered clinical development.


30. CMYC. Myc (c-Myc) is a regulator gene that codes for protein that is a transcription factor. In the human genome, Myc is located on chromosome 8 and is believed to regulate expression of 15% of all genes (Gearhart et al., N Engl J Med 2007; 357:1469-1472). CMYC activates expression of many genes through binding on consensus sequences (Enhancer Box sequences (E-boxes)) and recruiting histone acetyltransferases (HATs). This means that CMYC is activated upon various mitogenic signals such as Wnt, Shh and EGF (via the MAPK/ERK pathway). By modifying the expression of its target genes, Myc activation results in numerous biological effects. CMYC has the capability to drive cell proliferation (upregulates cyclins, downregulates p21), but it also plays a very important role in regulating cell growth (upregulates ribosomal RNA and proteins), apoptosis (downregulates Bcl-2), differentiation and stem cell self-renewal. CMYC is a very strong proto-oncogene and it is very often found to be upregulated in many types of cancers. Myc overexpression stimulates gene amplification (Denis et al., Oncogene 6 (8): 1453-7), presumably through DNA over-replication.


It can also act as a transcriptional repressor. By binding Miz-1 transcription factor and displacing the p300 co-activator, it inhibits expression of Miz-1 target genes. In addition, myc has a direct role in the control of DNA replication (Dominguez-Sola et al., Nature 448 (7152): 445-51).


Mutated CMYC is found in many cancers, causing it to be constitutively expressed thereby driving the unregulated expression of many genes involved in cell proliferation. A common human translocation involving CMYC is t(8; 14) which is critical to the development of most cases of Burkitt's Lymphoma. Malfunctions in Myc have also been found in carcinoma of the cervix, colon, breast, lung and stomach (Prochownik, 2004; Expert Rev Anticancer Ther.; 4(2):289-302).


Because CMYC is part of a dynamic network whose members interact selectively with one another and with various transcriptional coregulators and histone-modifying enzymes, it is an attractive therapeutic target. Several approaches including small molecules, peptides, and oligonucleotide therapeutics have been pursued. However, knowledge of which pathway should be attacked (c-Myc transcription, translation, interaction with other myc network members, DNA binding and transcriptional activation) is crucial. Clinical efficacy will likely require intervention at several levels, perhaps in combination with traditional chemotherapeutic drugs or agents that target other oncoproteins (reviewed by Levens, 2010; Genes and Cancer 1: 547).


CMYC


Protein: CMYC Gene: CMYC (Homo sapiens, chromosome 8, 128748315-128753680 [NCBI Reference Sequence: NC000008.10]; start site location: 128748840; strand: positive)












Gene Identification


















GeneID
4609



HGNC
7553



MIM
190080




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













7551

CGATGAGGGTATTAACTCTGGC
335580





7552

CGGGGGTCCTCAGCCGTCCAGACC
518





7602

CGCTTATGGGGAGGGTGGGGAGGG
634





7603

CGGTGGGCGGAGATTAGCGAGAGA
559





7606

GGCGCTTATGGGGAGGGTGGGGAGGG
632





506

CCTGGCACGTGTCCCTGGTCAAG
3482





507

CACGTGCGGCCTGTCAAGAGATGA
5926



















Target Shift Sequences











Relative




upstream


Sequence

location to gene


ID No:
Sequence (5′-3′)
start site












7551
CGATGAGGGTATTAACTCTGGC
335580





7552
CGGGGGTCCTCAGCCGTCCAGACC
518





7553
GGGGGTCCTCAGCCGTCCAG
519





7554
GGGGTCCTCAGCCGTCCAGA
520





7555
GGGTCCTCAGCCGTCCAGAC
521





7556
GGTCCTCAGCCGTCCAGACC
522





7557
GTCCTCAGCCGTCCAGACCC
523





7558
TCCTCAGCCGTCCAGACCCT
524





7559
CCTCAGCCGTCCAGACCCTC
525





7560
CTCAGCCGTCCAGACCCTCG
526





7561
TCAGCCGTCCAGACCCTCGC
527





7562
CAGCCGTCCAGACCCTCGCA
528





7563
AGCCGTCCAGACCCTCGCAT
529





7564
GCCGTCCAGACCCTCGCATT
530





7565
CCGTCCAGACCCTCGCATTA
531





7566
CGTCCAGACCCTCGCATTAT
532





7567
GTCCAGACCCTCGCATTATA
533





7568
TCCAGACCCTCGCATTATAA
534





7569
CCAGACCCTCGCATTATAAA
535





7570
CAGACCCTCGCATTATAAAG
536





7571
AGACCCTCGCATTATAAAGG
537





7572
GACCCTCGCATTATAAAGGG
538





7573
ACCCTCGCATTATAAAGGGC
539





7574
CCCTCGCATTATAAAGGGCC
540





7575
CCTCGCATTATAAAGGGCCG
541





7576
CTCGCATTATAAAGGGCCGG
542





7577
TCGCATTATAAAGGGCCGGT
543





7578
CGCATTATAAAGGGCCGGTG
544





7579
GCATTATAAAGGGCCGGTGG
545





7580
CATTATAAAGGGCCGGTGGG
546





7581
ATTATAAAGGGCCGGTGGGC
547





7582
TTATAAAGGGCCGGTGGGCG
548





7583
TCGGGGGTCCTCAGCCGTCC
517





7584
CTCGGGGGTCCTCAGCCGTC
516





7585
GCTCGGGGGTCCTCAGCCGT
515





7586
AGCTCGGGGGTCCTCAGCCG
514





7587
CAGCTCGGGGGTCCTCAGCC
513





7588
ACAGCTCGGGGGTCCTCAGC
512





7589
CACAGCTCGGGGGTCCTCAG
511





7590
GCACAGCTCGGGGGTCCTCA
510





7591
AGCACAGCTCGGGGGTCCTC
509





7592
CAGCACAGCTCGGGGGTCCT
508





7593
GCAGCACAGCTCGGGGGTCC
507





7594
AGCAGCACAGCTCGGGGGTC
506





7595
GAGCAGCACAGCTCGGGGGT
505





7596
CGAGCAGCACAGCTCGGGGG
504





7597
GCGAGCAGCACAGCTCGGGG
503





7598
CGCGAGCAGCACAGCTCGGG
502





7599
CCGCGAGCAGCACAGCTCGG
501





7600
GCCGCGAGCAGCACAGCTCG
500





7601
GGCCGCGAGCAGCACAGCTC
499





7602
CGCTTATGGGGAGGGTGGGGAGGG
634





7603
CGGTGGGCGGAGATTAGCGAGAGA
559





7604
CCGGTGGGCGGAGATTAGCG
558





7605
GCCGGTGGGCGGAGATTAGC
557





7606
GGCGCTTATGGGGAGGGTGGGGAGGG
632





13684
CCTGGCACGTGTCCCTGGTCAAG
3479





13685
CTGGCACGTGTCCCTGGTCA
3480





13686
TGGCACGTGTCCCTGGTCAA
3481





13687
GGCACGTGTCCCTGGTCAAG
3482





13688
GCACGTGTCCCTGGTCAAGT
3483





13689
CACGTGTCCCTGGTCAAGTA
3484





13690
ACGTGTCCCTGGTCAAGTAG
3485





13691
CGTGTCCCTGGTCAAGTAGG
3486





13692
ACCTGGCACGTGTCCCTGGT
3478





13693
TACCTGGCACGTGTCCCTGG
3477





13694
TTACCTGGCACGTGTCCCTG
3476





13695
TTTACCTGGCACGTGTCCCT
3475





13696
ATTTACCTGGCACGTGTCCC
3474





13697
AATTTACCTGGCACGTGTCC
3473





13698
AAATTTACCTGGCACGTGTC
3472





13699
GAAATTTACCTGGCACGTGT
3471





13700
GGAAATTTACCTGGCACGTG
3470





13701
AGGAAATTTACCTGGCACGT
3469





13702
AAGGAAATTTACCTGGCACG
3468





13703
CACGTGCGGCCTGTCAAGAGATGA
5928





13704
ACGTGCGGCCTGTCAAGAGA
5929





13705
CGTGCGGCCTGTCAAGAGAT
5930





13706
GTGCGGCCTGTCAAGAGATG
5931





13707
TGCGGCCTGTCAAGAGATGA
5932





13708
GCGGCCTGTCAAGAGATGAG
5933





13709
CGGCCTGTCAAGAGATGAGG
5934





13710
TCACGTGCGGCCTGTCAAGA
5927





13711
GTCACGTGCGGCCTGTCAAG
5926





13712
AGTCACGTGCGGCCTGTCAA
5925





13713
AAGTCACGTGCGGCCTGTCA
5924





13714
CAAGTCACGTGCGGCCTGTC
5923





13715
TCAAGTCACGTGCGGCCTGT
5922





13716
TTCAAGTCACGTGCGGCCTG
5921





13717
CTTCAAGTCACGTGCGGCCT
5920





13718
CCTTCAAGTCACGTGCGGCC
5919





13719
TCCTTCAAGTCACGTGCGGC
5918





13720
TTCCTTCAAGTCACGTGCGG
5917





13721
ATTCCTTCAAGTCACGTGCG
5916





13722
AATTCCTTCAAGTCACGTGC
5915



















Hot Zones (Relative upstream location to gene start site)







  1-1880


2150-2240


2420-3050


3230-4130


4310-4400


5900-6000


335000-336000









Examples

In FIG. 55, CM7 at 10 μM showed statistically significant inhibition compared to control values in MCF-7 (human breast cancer cell line). CM7 (structure shown below) fits the independent and dependent DNAi motif claims


In FIG. 56, CM7 at 10 μM showed statistically significant inhibition compared to control values in MDA-MB-231 (human breast cancer cell line). CM7 (structure shown below) fits the independent and dependent DNAi motif claims.


In FIG. 57, In MCF7 (human mammary breast cell line), CM7, CM12, CM13, and CM14 produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated control values. The CMYC sequences CM7, CM12, CM13, and CM14 fit the independent and dependent DNAi motif claims.


The secondary structure for CM7 is shown in FIG. 58. Sequence 317 (CM7) is shown in FIG. 58. The secondary structures for CM12, CM13, and CM14 are shown in FIG. 59, FIG. 60, FIG. 61.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13723)







TGATTGTGGCCAGGCACTACAGCTCACACCTACAATCCCAGCTACTCTGG





AGGCTGAGGTGCGAGGATGGCTTGAGCCCAGGAGTTCAAGACCAGCCTAG





GCAACATAGTGAGACCCTGTCTCTAAAAGGTTTTCTAAAATTAGCCAGGT





GCATATGCCTGCAGTTCCAGATTCTCAGAAGCCAGAAGTGGGGAGGATCT





CTGGAGTTCAGGAGTTTGGGACCACGGTAAGCTATGATTGTGTTACTGCA





CACCAGTTTGGGTGACAGAGCGAGACCCCTTCTCTCAAAACAAATAAATA





AGATTGTGGTGATAGCTATACAACCCTGTGAATAACTAAAAATTGTTGAA





CCATGCACTTTAAGTGCATGAATTTTATGGCATGTGAACTTTATCTCAAT





AAGGCTGCCATTACAAAGCTAAAAAGGGAGGCAGGTGCATGAGCACATAT





ATGTCTAATATTAGCTAAAATAGTATCACCATTATTAAATAAACTTTTAA





AAAATACCTTCTTTCTGAGAATGCAATTCTTCCTTATAATCAGAACCATG





AATATACCAGGAAACTTTTTAAATCAGGGAACAAATGCCTACGAAGGACA





GGCACAAGCCAGAAAGGGACTATGGATGAATTAAGTGGGCTGAGCATATG





GGAGCGGTGGAGACTGGGGCAAACTGAACAGCTCCTGGCCCTTTTAAAAG





AAATCGGCTGCTCCTCAACTTCCATCCACTTCTGAATGCAGTTCCAGAAT





TACCAAATCTGCCTGTTTAAGGAAAGGCACAAATTCAGATTGTTAATGTG





AAATCTATTGACTTGTAAGTGTTGGCACCTATTTTTAAATGTTATAAATG





CTGAGAGGGTCAAAACCTGTCATCCAAGCCAACCTACCAGTAAGCAAGAC





TTGGTCCTCAAGCAAGTTTGCTGCCTCTGCTTTGAGTACTTTAGCATGAC





TTTCAAAACCTCCCACCTCCCCCTCGCCCTGCCTAAACCCACTTTACCCC





TCACCACCACTGCAAGAAGTTATCCAAGCTATGAAGAGAGACAGAAGAAT





TCATACATAAATAAAGAGTCCCAAAACATTCTCAAAGATGCCAAAGTCAG





GCTAGGGTGGCATGGAGAGGGAGTGGGGCATAAAGTTTTTGATTCCTAAT





CTAATTAGAGAGCCCTATAACAGATTCTTTGTTCAAAGACCAAATTTAAT





TTACAATTTTATATCTCCAGTGAAGTCAGCTTTTATTAATTTCCAGCACA





ATATTTGGATATACTGGCCAGAACTTCAATGAGTTCCTATTTAGTGTTTA





ATCTTCTAATGCATTCCAATTAATTATTTCAGTTTTATGGCAAACTGTCT





TCAGCCAACATCCAAGCTGGACACCCCATGCCTCTCCACTCACCCAAAAA





ACCAGCTCGGGAGGTGTCAATATAATGACTTAAGATGCTGAATGGTAAAG





GACAGGATTGGAAGGAAATTGCGCCTGCAATTATGCACTAATGCTTCACC





AGAGAAGCAGATGGCATTCCTTGCATAAATTATTATTTATCCTTGGAATT





CCCCTCTGCCTATTACCAAATCAACCCTTGAAAACAAGTCTTTGTTGGGT





CTGTGAAGTCCCCTGGCCAGTTTCCAATGTCTGCTCCCTCCCTCACATCC





CACCCTCCAGAGCTGCAGCGAGGGTAAGAACTCCAACATGGCCCACAGGC





AAGGGTTTCCGAAAGCATCGACGTTCTAAATACATTTGGACGGAGGTGCA





CAGAAAGGAGTCCGCTTTATTTTGCAGACTGGGAATCCAGATGCAATGAC





CACAGGCAGAAAGCATGGAGCAGAACCTCCCAGCCTCGGCTGTACCCCCA





GTGATAAGGCTTGCCACGTGTGGACGTCACCAGGTTGCCCACCACAGCAC





GGGGCTTAGGCTGTACTGTGCATTCTCTCATGGAATCCTTGAACAAGGAT





TGAGGTGGGCAATGATGTTCCACTTTGAGGAAATGAAATGAAGAAACCAG





AGACTCTGAGACAAAGAAAAGGGCTTTGGGTTTTTTTGTGTTTTTTGGCT





TTTTATTTATTTATTTATTTTGTACAGATGAGGTCTCACTTTGTTGCCCA





GATTGGTCTCAAAGAATGGTGCTTTGGATTAGATCTTATTGTGATGAAAA





ATAAAAAAAAATTAAAAATTTTTTAATTTAAAAAGAATACTGCTTTTTTT





TTTTTTTTTTAACAGGGTCTCTCTCTATAGCCCCTCTCTATAGAGTGTAC





AGTGGCACAATCTCAGCCCGCTGCAACCTCTGCCTCCCAGGTTCAAGCGA





TCTTCCCACCTCAGCCTCCTGAATAGTTAGGACTACAGGCATGTGCCACC





ACGCCTGGTTAATCTTTTGTAGAGATGGGGTTTCGCCATGTTGCCCAGGC





TGGTCTTGAACTCCTGAGCTCAAGCGATCTGGCCACCTCAGCCTCCCAGA





GTGCTGGGATTACAGGTGTGAACCACCATGCCCAGCCAGAACACTGTTAA





CCTTAACATCAACAGGCAGCTACCATTTTCGAGTGCCTGCAATGTCATTT





AACCTTTAGGAACAGCTCTGGGAGACAGCTATAGTTGTTGCCATTTTCTG





CAGATTGAGAAACTGAGGCTCAGTTAAGTGACGTAATTCTAAGGCACCAC





ACCCAGTCAAGCGCAGTGACAGAATTCGAACTCTGGCTTGTAGGGATTCA





CAGGACTGCCAAAGCTTACGCTAACCCATTTCTTCTCCTGTGCACCATCA





TTGCCTCATTCTCTGCCCTCATTTTCTTTATTTATTTTTATTTATTTATT





TTTCTTTTTTTGAGATGGAGCTTCACTCTTGTTGCCCAGGCTGGAGTGCA





ATGGCACGATCTCGGCTCACTGCAACCTCCACCTCCCGCGTTCAAGAGAT





TCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCATGCACCACCA





CGCCCAGCTAATTTTGTATTTTTAGTAGAGACGGGGTTTCTCCATGTTGG





TCAGGCTGGTCTCGAATTCCCTACCTCAGGTGATCCACCCGCCTCGGCCT





CCCAAAGTGCTGTGATTGCAGGCGTGAGCCACCGTGCCCAGCCGCTCTGC





CCTCATTTTCTCCCCAAAACCAAAGTCTACTTTACAAGCACAGATATTAC





TAACTTGTCTTACGAAACTTTCCAGAAGAAAGAGAAAGAATATATGTTTT





ACCAAGCCCCTTGGAGGACAAGGATTTGTTTCTGTATCCACTGTCTCGAT





ACTCATGGTGCCTTTTACCCCTTGGCATTATGCCCCAGGAAAGTGGCAAA





AGTAAGAGGTAACCTCTCCTTCCTTCCTTATTTCCCTAAGGAAATTTGCT





CTGGTCACCAGCAGCAGAGAAATAGAAAGCGCCGGGCACCTGGCTCGACT





GGGGCAGTGACAGGGCAGAGGCGGCCCAGGTTATGGTATCAAAAGGTTTC





TGGTGCTGAATCTCATGACTACTATTCACCGTGTGAGTTTAAGCAAGTCC





CTGCAACACCTCAATTTTCCCCATCTGTTAAATGGAATTTTAACCTACAC





CTCCTAGGATTACTATGGAGATTTAAGGAGGCAATGCAGTGGGGCTTTCT





AACCTTTTTAACTCACTGAGATACATTTCCCGTATCGTCCAAGTGCAGAC





ACACACACACACACACACACAGAGAGAGAGAGAGAGAGAAAAGAATACTT





CATCTGCAACACACTTTGATATTTTCTGTGCCAGCCCATTTTGTGAAATT





GCTCATCATGATTCATTAAATTCATTTCTTATTTACTATTTTTAAATTTT





TATACATGCAGGGGGCTCAAGTGAGGATTTCTTTCATGTATACATTGCAT





AGTCGTCAAGTCTGGTCATTAAATGTATTCATTATCCAAATAGTGAACAT





TGTTAAATTGATTTCATGATCCACTAAGGGGTCATCATTTGCCATTTTAA





AACTCTGACAGTATGAGCTTCTCCCTAGCCCAGTTCCTGTTACCATCTTC





CCATTCTTCCCTTCCTTCTTCAATTCAGATAGGATTTTCCTCCAGAGGGA





TTATAAAGTTGCGAGGAAAGCGCCTGCAGGGGGTGCTGTTCCACACTGTT





GTTGAAGTGTGGTTTGGTTTTTATTTCGTTGCATTTGCTTTTCGGTCAAT





GAGGGCAATTCATCTGGAATGACCCCCATCCTCGTCACCCTTGCTCCAAC





GATGTTGGGGCCCAGCTCATCAACAAGGACACCTGAACAGAGCCCTACCC





ATTGATGGAACCGAAGCAAGGGCAAGGAAGAGTTCTCAACCCTTCTCTCT





ATATACGATTAAAACTGGGTTAGGCTAGGTGTGCCCTCAGCTCAGAAGCT





CTCTCTAATAGCATTCCTTCACTAAGCACTTACAGAGTGCCTACCACGTG





CCAGGCATTGTGCTGGGCTCTGGAGACCACCTACTCTGTGAATGGCACCT





TGAGGCTTGATGGGTGAGAACGCGAGTAAAACACAATCCATACTGACCCC





AGAAGCTTCTCCTCAAGGAATCAGACATTAAAAAGCACAAAAACTATAAA





GTTGATTTTTTTTTTTTTTTTTTTTTTGAGACAAGAGTCTTGCTCTGTCA





CCCAGGCTGGAGTGCTGTGGCACCATCTGGGCTCACGGCAACCTCCACCA





CCCAGGTTCAAGCAATTCTCCTGCCTCAGCCTCTCGAGTAGCTGGGATCA





CAGGCATGCGCCACCATGCCCCGCTAATTTTTGTCATTTTTAGTAGAGAC





AGGGTTTCACCATCTTGGCCAGACTGGTCTCGAAATTCTGACCTCGGGTG





ATCTGCTCACCTCAGCCTCCCAAAGTGATGGGATTACAGGCATGAGCCGC





TGCATCTCTGGCCAAAACTTGAATGTTTGTTTGTTTTGAGACAGGATCTC





ACTCTGTCATCCAGACTGGAGCACAGTGACACAATCTTGGCTCACTGCAG





CCTCAACAGCCACGGCTCAAGCAATCTTCCTCCTCCACCTCAGTTTTCCA





AGTAGATAGGATTACAGCCATGAGGCACTGCACCCAGCTAATTTTTTTTT





TTTAATTTTTTTGTAGAGACAGGGTCTTACTGTGTTGCTCAGGCTGGTCT





CAAACTCCTGGGCTCAAGTGATCTGCCGGCCTTGGCCTCCCGAAATGCTG





GGATTACAGGTACGAGCCACCACGCCTGGCCAAACTTGTATTTTCTAAGA





CAGAAGAATGAGGGGATGGTTTAAACTCTCAAGGGAAGGGGAAAGGATCA





TGAAAAGCTCCTACAGGAAGATGCTTGAGTTGGATTACTAAGACATATGA





GCAGAGATGGCAGGCTGGCAGCCTGAGGGCCACCTCTGCCCATAGACATG





CTTTGCTTCTCCATATCATTTTTTTTCCCAACACACTGCTGCTGGCTTGA





AATCTCCATATAATTCTTACAATAAGTTGTTAACATTTTAAAACCTGGAT





TTCCACCTTCCCTGAAAAACTGGAAGCATTTCCACCCATGGGCCCATATT





TCAGGGTAACCACCAGAGCAGGTGCCAAATGGGAGCCACCAGACCTACAC





AGGCAAATGCTCTCCAGTTTACCAGTCTCCACCACTCCCTATTGTATTCT





TCGTTTACATTTCCTGCCAAACCTCTGTAAGCATCTGAGTTGGCAACCCT





TGATGTGTTAGCGGAAAATGTGGATCAGAAGTTAGAAAGAGTTTCTAAAC





CTGGTTGTTGATTTACGCTTTATGCTTTGAAGGAAAACAGTTTTTCCAAT





GCCCAGATCCACTCACCAAGACAAAAAAAAAAGCAAGCTGTAGATTTCAG





TAGCAGCCTTGTCTAGCCAGCAATAAAGGTGCCCTGGGTTTCCAGGACCA





CACCCCAGGGATTAGCCCCGGGGCATCATATGAATTCAGTGAAAGGCGGG





AAATCCTAACATAAAGCGTTGATTCGTATTAAATAGGAACAATGCCTAAT





TCTGCCTTCCTGAACTTCCAGAATTTTGCTTTTTCTGAATAGAGTGATCT





GCAAAACAGCATACACTTGGAATAGTAAGTCGTGCAAGAGTTGGAGACAG





GAAGGGGGTGGGTTTGGAATTGTCTCCAAACATTAGATAATCTCTTTGTG





ATTCTAAACCTCAACTTGACAAGCTTGTATTAGTCCACAATTTTTCACAC





TTGATGAAGTGATAAAGGACATCAATTTCATGGAACTCACTATGAAACAC





CATGCAATATTGATACATTTAACTTAAAACAGCTCAATACATAACTTTCT





GCTAAATCTGGAACTCACATTAACAATTGCTAACATTTGCTGAGTGTGGG





CCAGACAGCAGGCTCTGTGCTGAATGCCTTATCTCACTTAATTCCTGTAA





CACCTTCAATAAGATAGGTGCTACAATTATAGTAATCCCATTTTACAGAT





GAGAAAAGTGAGATTCAGAGAGGTCATGTGACTTGACAGATTTATCAGGT





GATCATGACAGAGTAGTCCTCCAACCAAGCTGATTCAGCAACCCGTCCTT





ATATTCTAGATTCTTGTGTAGCCAAAAAGTTATTGAGAAAGTCTGCCCAT





TGACTTCATTCTCTTACCCAGTGTAGAGTCAGCATACATTCATTCACATT





AACTATGGGCCAGACTTGATTCCTGGCCTTGGGACTTTTTTTTTTTTTTG





GCAGGGGCTGATAACATTCTATTTTATTTATTTATTTATTTCTCTCTCTT





TTCTTTTAATTATACTTTAAGTTCTGGGATACATGTGCAGAACATGCAGG





TTTGTTACATAGGTATACACATGCCATGGTGGTTTGCTGCACCTACCAAC





CCATCATCTACATTAGATATCTCTTCTAATGCTACCCCTCCTCTAGACCC





CCGGGACATTTATAATCTCATGAAGAAGAGAAAAAGGAGGCCTTTCTCTG





ACAGCTAGAAAACCACAGTTAGTCTATTTTAGCCGGAGACCCTGGATTCT





ACCCTGAGAACAAAGGTTTATGTTTCAGCAGCTTAATTAGAGGTTTTCCA





GAACTTTTTCTGGCTCCATGCTTTTATGATTCTGTAAGATGATCATGGGA





AAAGGAAGAGTCCACAGAGAAAATGGGGCTTGAACTTGGGCTGGGAGGAA





AGGTGGTTCTTAGATAAATCAAGAAGAGAAGAGACAGTAAGTCTGGGGAA





CTGCCTGAACCAAAGTGCTGAGGTGGAAACTTGTGTGTCACTCAGAGTGG





CTGTAAATAGACCTGTTTCTCTGAAGTGCAGAGTTGGTAAGAAATAGGGT





AAGATAAGGAGGAGGCCAGATGCATGAGGGCTTGGAATTCCAAGCTCATA





ATGGAGAACCTCATTTTGGACCATGGGGGTCAACTGAAGAATTTTAAATG





AAGAGGAAAATTAATCAGTGTGCAAGGTTAAATGGAGTGGCAGAGACTAG





GAGCTATTAGGAATCTACTGCAAGATGATTCTAACAGCCATAGGTAGTGG





GTAAAAGAGGAAAGTGAGCCAATAAGGGAAACAGAAGAACAAGTTGAATA





TGTGGGAATATAATCAGGAGAATGTGGAGTGAACCCAGGGATTCTCAACC





TCAGCACTGGTGACATTTTGAGCCCCACTCTCTGTTGTGGGAGCCGTCCT





GTGCAATGTAGGACATTTAGCAGCATCGTTGGCCTCTACCCACTAAAAAC





GCCAAGTAGTAAGGCCCCATCCCTTAGTGACAACCCAAAATGTCTCCAGA





CATTGCCAATTGCCTCTGGTTGAGACCCACTGATTTATGGAAATCAAAAG





AATAATCATTTCCAAAAGCCTGACAGCAAACAGCAAAGTCCAAAAATAAA





ATGAGAACAAGACCATTGGCTTTGGTGGTTGGAGGTCATGAGATACCTTC





AAGAAAGCACCCTCTATAATATCAAGTCCATGTAGAAGACGTTACAGAGG





AAACAAACAATATAAAAGTGAAAACAACCAAGGGTGAGCTACTCTCAGAA





AGTATGCCTTTGAAAAGAAAGTCAGAAGCCATAGCTTGGGATCTCTGCAG





ATCCCTAAAAGAATAGATTCCTATTCTACTGACTTTCTATGAAGATCAAA





TTGTAAAAAGCAAAAGTTTCTCTCCAAGGGTTTCCTTTGCAGTGACCTGT





ATGTCCAACCACGCAAGGGCCCATTGTGGGGACATATGTTGTCCAAAAGG





ACCATAGCAGAGACAGGCCAGTGAGCCAAAGTGTGGAAACTTTTGAGACT





GGCTTGAGCTTGGCACTTATAGAACAATAAACCAAGCCTTTGAAGGGGTT





CAACAAAGGAACCATTTGTCCACTCTAGTAGCTACAAAGTAAGGCAGGGT





TGCAGCAAAGAACAAAAAAATAAAAGAAGGCCAAGCTGGAGGTATGACCA





AAGTTTACTAGGTCCATTCTGAGACCTTCTGCTAGGGTCTGAGATCTAGA





AGACAGTGAATAAGGAAACAAACCCAAAACTCAACGCAACACAGGATATG





GAAGCTCTCAGGCCTGACGTTAACAGCATCTACTATTTTTCTTCTCAGCT





ACTTTAATGAATGCAGTATACTAAAAGCCAGGAGGGGAAGGGACAACACT





AAGCAAAAAACATGCATTTTTTAAAATGCACAGATTTTCTTCACTGCCGT





TTTTGTTATCATTCCTATGAATTAGTGATGCCGAATTTCATTTTCTCATC





TGCTGAAGAGCTTTCCTGTGTTCCTCTCGTTGGAACACATGCTTGGCATT





AAAATGCTTGTGAGAACTTCTCTTCCTTTAACGTTCCCTGGCTAGCTTGG





TTTTTAATCTAACAGCCCTTCTTTCAAAATGATCCTTCCACTGGAGATAG





ATATTTATCATTCTCTTCCTTCACCTCATCTCTTGACAGGCCGCACGTGA





CTTGAAGGAATTTTTCAAATAGCAGCTCAGCCACCCTGAGGGGCTTCAGT





CTCACCCCTAAGTTCGCTGGCTTTTTCTTCACCACGTCCAGTTGCTTTCC





ATCTTATTAACTGCTCTTTTCACTAGAGGACCAACTCAGTAGGAAATTTT





TTGAGAGGTGGAGAAAGAGATGTTCAAAGAAGGTGTTGGGGTCGGGGGAA





ACTGGTTTTATTTTATACAAGTCACACATTCTGAATCTTCCCTTTTGTGT





CTCTGGGGAGAAAGGAGAAAGTTTGATCAAATCGCTCATTATTTCTGCAC





TTCTTTCTTTTTTCCTAAGTATAAAAATATATGACTACTACTACTGTGAG





ACTATGTGATTGTGAGAATGAATGATTCTTTTTTTTTTTTTTTTTTTTTT





GAAACGGAGTCTCTCGCTGTCACCCAGGCTGGAGTGCAGTAGCACGATCT





TGGCTCACTGCAACATCTGCCTCCCGGGTTCAAGCAATTCTCCTGCCTCA





GCCTCCTGAGTAGCTGGGACTACAGGTGCGCTCCACCACCCCCAGCTAAT





TTTTGTATTTTTAGTGGAGACGGGGTTTCACCATGTTGGTCAGGCTGGTC





TTGAACTCCTGACCTCATGATCCTCTCACCTCGGCCTCACAAAGTGCTAG





GATTACAGGCGCATGGCCAAGAATGAATGATTATTTGTGCCTTCCTATGT





GAAAAAAAAATGTTTCCTCTAGCTACACACTATTCTGTTCTGTGAGGCCG





CCCCATCAGACTGTTGACCTAGAGTCCCAACCCCGGCCCTCCAGGAGACC





TGCCTGTTCTTAGAAGCCCAACCCACTCAGCAGCAGCTCCAAATAACAGG





GGGAGCCAACAAAAAAGAGTGCTGCTAGAGCAACAAGCAAGGGGCAATTA





GTCAGAAGGCAACTTCCATGGTCTTCCAAAAAAAATTGAGGTGAAAGACC





AAAGATGTCCCTAAAATGTCTTCCTAAAAGATAAACTTCATCAACTACCT





CTGACTGGTCAGTATTAAGAACCACTTTCAGGCCAGGTGTCATGGTTCAC





GCCTGTAACTCCATCTACTCCAGAGGCTGAGGCAGGACAATTGCTTCAGG





CCGGAGGATTGCTTGAGGCCAGGAGCTGGAGACCAAGCCTGAGCAACACA





GTGAGACCTCATCTCTACCAAAAATGTACCTCTATTAAAAAACAAAAAAG





AAGAAGAAGAAGAAGAAGAAGGAGAGGAGGCTGGGTATGGTGGCTAATGC





CTTTGTAATCCCAGAACTTTGGAAGGCTGAGGCAGGAGAATCACTTAGGC





TGAGGCAGGAGAATCACCAGAGTCTAGGAGTTTGAGACCAGCCTGGGCAA





CATAGTGAGACCCCCATCTCTACAAAAAAAAAAATTCAAAAATTAGCCAA





GCGTGGGGTTTGTGCCTGTAGACCCAACTACTCAGGAGGCTCAGGTAGGA





GGATCACCTGAGTCCAGGGAGGTCGAGGCTGCAGTGAGTCATGATTATTC





CACTGCCTTCCAGCCTAGACTACAGGGTGAGACCCTGTCTTAAAAAAAAA





ATTAAAGAAGAAAAAACTCTCTTTTCTTTTCTTTCTTTCTTCTTCTTCTT





TTCTTTTTTTTTTTTTCTTTTTTTTTTTTTAGAGATGGCACGTCACCACA





TTGCCCAGGCTGTTGTCGAACTCCTGGCCTCAAACGATGCTCCCACTTGA





GCCTCCCAAAGTGCTGGGACTACAAGCATAAGCCACCACACACGGCCTTT





TCCTTTCTTTTTCTATTTCTCAATGGATTTTTCCAATGGACACGTATCAC





TTTGGTAGTTATACATGATACTAGTTGTAATCTCAGCCATTTTTCAACCC





AGCAAATGTCTATTCTAGGTCAAATATGTCTCAAAAATTACTAAAAGAAA





ATCAGTTATGTCCTTTAACCTGGCTGAGGTCTGGCTTTGTTTTCTCTCAT





GTAAAAATGGAGATGGCACAAAACAACTCCAAGCTGTTACTTGAAAGTAA





CACCTCAGGTGATGTCACCAGCCTGAGGGAGAGTGAGGTTAAGTTCTGAA





CCCACAGGCATTATATCTGCCTGGGGTTCACATGCCCTACACTGGACTGG





CATAATTTGAGAGTCAGATCCGAAGATGTGGTATATCCGCCATCTTTAGC





AACTTTCAAAAACTACCCTATGAGGTCAAGCTGGACCTACTTTTGGTTTT





GCCATTGTTGTTTGTTTGTTGTTGAGGGTTTTCTTTGAGGGGCGGGGAGT





GCATGCCCCTGTGGAGAGCACTCATTTAGCTTCAATTAGAGTAATGCCAA





AAGTGCCAGATTCCTGGGAAATCAGCCTACAAGGCTCCTGCGGGAAGGAA





CCTCCACTGCCAGAAGTCCTTAGGGCATCTAAGTGATCAGACACCGTCAG





GGATTCTTTGCCCCGTAAAAACCTACTTGACCAGGGACACGTGCCAGGTA





AATTTCCTTCACATTTACTTCAACCTTATTGCATACTCATTTTAGTATTA





AAACCTTTAATAAAATGCTCCTATTCCTTCACACTTTTTTTCTATGAGAT





CTCAAATACCCCTTCTTGCTATTAAAAAAAATCACTTATTATTCACCAGC





CCAATATTTTAAAAGTAAAAATAATAAGCCAAGGCCAGGAGCGATGACTC





GCACTTGTATTCCCAGCAGTTTCAGAGGCAAAGGCCGAAGGATCGCTTTA





ACCGAGGAGTTTGAGACCAGCCTGGGCAACATGACCAGACTGCCTCTCTA





CAAAAAGTTTAAAAAATTAACCGGGTGTGGTGGTGCACTGCACTCCCAGC





TACTGGGCTGGGGTATCAGGCTGAGGTAGGAGGTTTGCTTTGAGCCCGGG





GGGATCGAGGCTGCAGTGAGCTTTGATTGTGCCACTGCACTCCAGCCTGG





GTGACAGAAGGAGACCCTGTCTCAAAAATAATAAGAATAATAATTAATAA





TAATAGGCCAAACCAAATACCCATCACCTTCTGCTGTGCCTCCCCTTTCC





CCAATAAATCCAGTGTCTTGCTTTCAAATTTTGTGGTTAAAAAAGATGAT





GAGTTTCTAAGACGTGGGGGCTAAAGCTTGTTTGGCCGTTTTAGGGTTTG





TTGGAATTTTTTTTTCGTCTATGTACTTGTGAATTATTTCACGTTTGCCA





TTACCGGTTCTCCATAGGGTGATGTTCATTAGCAGTGGTGATAGGTTAAT





TTTCACCATCTCTTATGCGGTTGAATAGTCACCTCTGAACCACTTTTTCC





TCCAGTAACTCCTCTTTCTTCGGACCTTCTGCAGCCAACCTGAAAGAATA





ACAAGGAGGTGGCTGGAAACTTGTTTTAAGGAACCGCCTGTCCTTCCCCC





GCTGGAAACCTTGCACCTCGGACGCTCCTGCTCCTGCCCCCACCTGACCC





CCGCCCTCGTTGACATCCAGGCGCGATGATCTCTGCTGCCAGTAGAGGGC





ACACTTACTTTACTTTCGCAAACCTGAACGCGGGTGCTGCCCAGAGAGGG





GGCGGAGGGAAAGACGCTTTGCAGCAAAATCCAGCATAGCGATTGGTTGC





TCCCCGCGTTTGCGGCAAAGGCCTGGAGGCAGGAGTAATTTGCAATCCTT





AAAGCTGAATTGTGCAGTGCATCGGATTTGGAAGCTACTATATTCACTTA





ACACTTGAACGCTGAGCTGCAAACTCAACGGGTAATAACCCATCTTGAAC





AGCGTACATGCTATACACGCACCCCTTTCCCCCGAATTGTTTTCTCTTTT





GGAGGTGGTGGAGGGAGAGAAAAGTTTACTTAAAATGCCTTTGGGTGAGG





GACCAAGGATGAGAAGAATGTTTTTTGTTTTTCATGCCGTGGAATAACAC





AAAATAAAAAATCCCGAGGGAATATACATTATATATTAAATATAGATCAT





TTCAGGGAGCAAACAAATCATGTGTGGGGCTGGGCAACTAGCTAAGTCGA





AGCGTAAATAAAATGTGAATACACGTTTGCGGGTTACATACAGTGCACTT





TCACTAGTATTCAGAAAAAATTGTGAGTCAGTGAACTAGGAAATTAATGC





CTGGAAGGCAGCCAAATTTTAATTAGCTCAAGACTCCCCCCCCCCCAAAA





AAAGGCACGGAAGTAATACTCCTCTCCTCTTCTTTGATCAGAATCGATGC





ATTTTTTGTGCATGACCGCATTTCCAATAATAAAAGGGGAAAGAGGACCT





GGAAAGGAATTAAACGTCCGGTTTGTCCGGGGAGGAAAGAGTTAACGGTT





TTTTTCACAAGGGTCTCTGCTGACTCCCCCGGCTCGGTCCACAAGCTCTC





CACTTGCCCCTTTTAGGAAGTCCGGTCCCGCGGTTCGGGTACCCCCTGCC





CCTCCCATATTCTCCCGTCTAGCACCTTTGATTTCTCCCAAACCCGGCAG





CCCGAGACTGTTGCAAACCGGCGCCACAGGGCGCAAAGGGGATTTGTCTC





TTCTGAAACCTGGCTGAGAAATTGGGAACTCCGTGTGGGAGGCGTGGGGG





TGGGACGGTGGGGTACAGACTGGCAGAGAGCAGGCAACCTCCCTCTCGCC





CTAGCCCAGCTCTGGAACAGGCAGACACATCTCAGGGCTAAACAGACGCC





TCCCGCACGGGGCCCCACGGAAGCCTGAGCAGGCGGGGCAGGAGGGGCGG





TATCTGCTGCTTTGGCAGCAAATTGGGGGACTCAGTCTGGGTGGAAGGTA





TCCAATCCAGATAGCTGTGCATACATAATGCATAATACATGACTCCCCCC





AACAAATGCAATGGGAGTTTATTCATAACGCGCTCTCCAAGTATACGTGG





CAATGCGTTGCTGGGTTATTTTAATCATTCTAGGCATCGTTTTCCTCCTT





ATGCCTCTATCATTCCTCCCTATCTACACTAACATCCCACGCTCTGAACG





CGCGCCCATTAATACCCTTCTTTCCTCCACTCTCCCTGGGACTCTTGATC





AAAGCGCGGCCCTTTCCCCAGCCTTAGCGAGGCGCCCTGCAGCCTGGTAC





GCGCGTGGCGTGGCGGTGGGCGCGCAGTGCGTTCTCGGTGTGGAGGGCAG





CTGTTCCGCCTGCGATGATTTATACTCACAGGACAAGGATGCGGTTTGTC





AAACAGTACTGCTACGGAGGAGCAGCAGAGAAAGGGAGAGGGTTTGAGAG





GGAGCAAAAGAAAATGGTAGGCGCGCGTAGTTAATTCATGCGGCTCTCTT





ACTCTGTTTACATCCTAGAGCTAGAGTGCTCGGCTGCCCGGCTGAGTCTC





CTCCCCACCTTCCCCACCCTCCCCACCCTCCCCATAAGCGCCCCTCCCGG





GTTCCCAAAGCAGAGGGCGTGGGGGAAAAGAAAAAAGATCCTCTCTCGCT





AATCTCCGCCCACCGGCCCTTTATAATGCGAGGGTCTGGACGGCTGAGGA





CCCCCGAGCTGTGCTGCTCGCGGCCGCCACCGCCGGGCCCCGGCCGTCCC





TGGCTCCCCTCCTGCCTCGAGAAGGGCAGGGCTTCTCAGAGGCTTGGCGG





GAAAAAGAACGGAGGGAGGGATCGCGCTGAGTATAAAAGCCGGTTTTCGG





GGCTTTATCTAACTCGCTGTAGTAATTCCAGCGAGAGGCAGAGGGAGCGA





GCGGGCGGCCGGCTAGGGTGGAAGAGCCGGGCGAGCAGAGCTGCGCTGCG





GGCGTCCTGGGAAGGGAGATCCGGAGCGAATAGGGGGCTTCGCCTCTGGC





CCAGCCCTCCCGCTGATCCCCCAGCCAGCGGTCCGCAACCCTTGCCGCAT





CCACGAAACTTTGCCCATAGCAGCGGGCGGGCACTTTGCACTGGAACTTA





CAACACCCGAGCAAGGACGCGACTCTCCCGACGCGGGGAGGCTATTCTGC





CCATTTGGGGACACTTCCCCGCCGCTGCCAGGACCCGCTTCTCTGAAAGG





CTCTCCTTGCAGCTGCTTAGACGCTG






31. APP


Amyloid beta (A4) precursor protein is encoded by the APP gene. The amyloid precursor protein (APP) is found in many tissues and organs, including the brain and spinal cord (central nervous system). Its function is not well understood, however, it is believed to bind other proteins on the surface of cells or help cells attach to one another, thereby directing the migration of nerve cells during early development. APP is cleaved by enzymes to create smaller peptides (soluble amyloid precursor protein (sAPP) and amyloid beta (β) peptide) which may be released outside the cell. sAPP has growth-promoting properties and may play a role in the formation of nerve cells (neurons) in the brain both before and after birth. The sAPP peptide may also control the function of certain other proteins by turning off (inhibiting) their activity. Alzheimer's disease (AD) pathogenesis is widely believed to be driven by the production and deposition of the amyloid-beta peptide (Murphy and Levin (2010) J Alzheimers Dis. 19(1):311-23).


Protein: Beta Amyloid Gene: APP (Homo sapiens, chromosome 21, 27252861-27543446 [NCBI Reference Sequence: NC000021.8]; start site location: 27542938; strand: negative)












Gene Identification


















GeneID
351



HGNC
620



MIM
104760




















Targeted Sequences













Relative upstream


Sequence
Design

location to gene start


ID No:
ID
Sequence (5′-3′)
site













7607

CGCGACCCTGCGCGGGGCACCG
1





7741

GTGCGAGTGGGATCCGCCGCG
34





7875

CGCGCCGCCACCGCCGCCGTCTCCCGG
68





8009

CGCGCACGCTCCTCCGCGTGCTCTCG
101





8143

CCGAGGAAACTGACGGAGCCCGAGCGCGG
137





8145

CGAGTCAGCTGATCCGGCCCACCCCG
186





8310

CGAGAGAGACCCCTAGCGGCGCCG
221





8475

CGCCCGCTCGCGCCGGGAGGGGCCCTCG
256





8640

CGCGCCCACAGGTGCACGCGCCCTTGGCG
289





8805

GGCCGACGGCCCACCTGGGCTTCG
351





8825

CGCTGAGGCTCTAGAAAAGTCGAGAG
446





8843

CTCGTCCCCGTGAGCTTGAATCATCCGACCC
480





8912

AGGCGTTTCTGGAAGAGAATGAGAACG
604





8927

CGTCAAAAGCAGGCACGAGCAACCTG
701





8928

GAACGAACCAAAGGAGCAAGGCG
742





8929

CGCTGACAAGGGTGCCTAGGCCCGG
1318





8948

CGCAATTCCGTATTTGTTCCGG
1738





8969

GTACGTTGGCAGACGCAGTGACG
4923



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene start


ID No:
Sequence (5′-3′)
site












7607
CGCGACCCTGCGCGGGGCACCG
1





7608
GCGACCCTGCGCGGGGCACC
2





7609
CGACCCTGCGCGGGGCACCG
3





7610
GACCCTGCGCGGGGCACCGA
4





7611
ACCCTGCGCGGGGCACCGAG
5





7612
CCCTGCGCGGGGCACCGAGT
6





7613
CCTGCGCGGGGCACCGAGTG
7





7614
CTGCGCGGGGCACCGAGTGC
8





7615
TGCGCGGGGCACCGAGTGCG
9





7616
GCGCGGGGCACCGAGTGCGC
10





7617
CGCGGGGCACCGAGTGCGCT
11





7618
GCGGGGCACCGAGTGCGCTG
12





7619
CGGGGCACCGAGTGCGCTGC
13





7620
GGGGCACCGAGTGCGCTGCT
14





7621
GGGCACCGAGTGCGCTGCTG
15





7622
GGCACCGAGTGCGCTGCTGT
16





7623
GCACCGAGTGCGCTGCTGTG
17





7624
CACCGAGTGCGCTGCTGTGC
18





7625
ACCGAGTGCGCTGCTGTGCG
19





7626
CCGAGTGCGCTGCTGTGCGA
20





7627
CGAGTGCGCTGCTGTGCGAG
21





7628
GAGTGCGCTGCTGTGCGAGT
22





7629
AGTGCGCTGCTGTGCGAGTG
23





7630
GTGCGCTGCTGTGCGAGTGG
24





7631
TGCGCTGCTGTGCGAGTGGG
25





7632
GCGCTGCTGTGCGAGTGGGA
26





7633
CGCTGCTGTGCGAGTGGGAT
27





7634
GCTGCTGTGCGAGTGGGATC
28





7635
CTGCTGTGCGAGTGGGATCC
29





7636
TGCTGTGCGAGTGGGATCCG
30





7637
GCTGTGCGAGTGGGATCCGC
31





7638
CTGTGCGAGTGGGATCCGCC
32





7639
TGTGCGAGTGGGATCCGCCG
33





7640
GTGCGAGTGGGATCCGCCGC
34





7641
TGCGAGTGGGATCCGCCGCG
35





7642
GCGAGTGGGATCCGCCGCGT
36





7643
CGAGTGGGATCCGCCGCGTC
37





7644
GAGTGGGATCCGCCGCGTCC
38





7645
AGTGGGATCCGCCGCGTCCT
39





7646
GTGGGATCCGCCGCGTCCTT
40





7647
TGGGATCCGCCGCGTCCTTG
41





7648
GGGATCCGCCGCGTCCTTGC
42





7649
GGATCCGCCGCGTCCTTGCT
43





7650
GATCCGCCGCGTCCTTGCTC
44





7651
ATCCGCCGCGTCCTTGCTCT
45





7652
TCCGCCGCGTCCTTGCTCTG
46





7653
CCGCCGCGTCCTTGCTCTGC
47





7654
CGCCGCGTCCTTGCTCTGCC
48





7655
GCCGCGTCCTTGCTCTGCCC
49





7656
CCGCGTCCTTGCTCTGCCCG
50





7657
CGCGTCCTTGCTCTGCCCGC
51





7658
GCGTCCTTGCTCTGCCCGCG
52





7659
CGTCCTTGCTCTGCCCGCGC
53





7660
GTCCTTGCTCTGCCCGCGCC
54





7661
TCCTTGCTCTGCCCGCGCCG
55





7662
CCTTGCTCTGCCCGCGCCGC
56





7663
CTTGCTCTGCCCGCGCCGCC
57





7664
TTGCTCTGCCCGCGCCGCCA
58





7665
TGCTCTGCCCGCGCCGCCAC
59





7666
GCTCTGCCCGCGCCGCCACC
60





7667
CTCTGCCCGCGCCGCCACCG
61





7668
TCTGCCCGCGCCGCCACCGC
62





7669
CTGCCCGCGCCGCCACCGCC
63





7670
TGCCCGCGCCGCCACCGCCG
64





7671
GCCCGCGCCGCCACCGCCGC
65





7672
CCCGCGCCGCCACCGCCGCC
66





7673
CCGCGCCGCCACCGCCGCCG
67





7674
CGCGCCGCCACCGCCGCCGT
68





7675
GCGCCGCCACCGCCGCCGTC
69





7676
CGCCGCCACCGCCGCCGTCT
70





7677
GCCGCCACCGCCGCCGTCTC
71





7678
CCGCCACCGCCGCCGTCTCC
72





7679
CGCCACCGCCGCCGTCTCCC
73





7680
GCCACCGCCGCCGTCTCCCG
74





7681
CCACCGCCGCCGTCTCCCGG
75





7682
CACCGCCGCCGTCTCCCGGG
76





7683
ACCGCCGCCGTCTCCCGGGG
77





7684
CCGCCGCCGTCTCCCGGGGC
78





7685
CGCCGCCGTCTCCCGGGGCC
79





7686
GCCGCCGTCTCCCGGGGCCC
80





7687
CCGCCGTCTCCCGGGGCCCC
81





7688
CGCCGTCTCCCGGGGCCCCC
82





7689
GCCGTCTCCCGGGGCCCCCG
83





7690
CCGTCTCCCGGGGCCCCCGC
84





7691
CGTCTCCCGGGGCCCCCGCG
85





7692
GTCTCCCGGGGCCCCCGCGC
86





7693
TCTCCCGGGGCCCCCGCGCA
87





7694
CTCCCGGGGCCCCCGCGCAC
88





7695
TCCCGGGGCCCCCGCGCACG
89





7696
CCCGGGGCCCCCGCGCACGC
90





7697
CCGGGGCCCCCGCGCACGCT
91





7698
CGGGGCCCCCGCGCACGCTC
92





7699
GGGGCCCCCGCGCACGCTCC
93





7700
GGGCCCCCGCGCACGCTCCT
94





7701
GGCCCCCGCGCACGCTCCTC
95





7702
GCCCCCGCGCACGCTCCTCC
96





7703
CCCCCGCGCACGCTCCTCCG
97





7704
CCCCGCGCACGCTCCTCCGC
98





7705
CCCGCGCACGCTCCTCCGCG
99





7706
CCGCGCACGCTCCTCCGCGT
100





7707
CGCGCACGCTCCTCCGCGTG
101





7708
GCGCACGCTCCTCCGCGTGC
102





7709
CGCACGCTCCTCCGCGTGCT
103





7710
GCACGCTCCTCCGCGTGCTC
104





7711
CACGCTCCTCCGCGTGCTCT
105





7712
ACGCTCCTCCGCGTGCTCTC
106





7713
CGCTCCTCCGCGTGCTCTCG
107





7714
GCTCCTCCGCGTGCTCTCGC
108





7715
CTCCTCCGCGTGCTCTCGCC
109





7716
TCCTCCGCGTGCTCTCGCCT
110





7717
CCTCCGCGTGCTCTCGCCTA
111





7718
CTCCGCGTGCTCTCGCCTAC
112





7719
TCCGCGTGCTCTCGCCTACC
113





7720
CCGCGTGCTCTCGCCTACCG
114





7721
CGCGTGCTCTCGCCTACCGC
115





7722
GCGTGCTCTCGCCTACCGCT
116





7723
CGTGCTCTCGCCTACCGCTG
117





7724
GTGCTCTCGCCTACCGCTGC
118





7725
TGCTCTCGCCTACCGCTGCC
119





7726
GCTCTCGCCTACCGCTGCCG
120





7727
CTCTCGCCTACCGCTGCCGA
121





7728
TCTCGCCTACCGCTGCCGAG
122





7729
CTCGCCTACCGCTGCCGAGG
123





7730
TCGCCTACCGCTGCCGAGGA
124





7731
CGCCTACCGCTGCCGAGGAA
125





7732
GCCTACCGCTGCCGAGGAAA
126





7733
CCTACCGCTGCCGAGGAAAC
127





7734
CTACCGCTGCCGAGGAAACT
128





7735
TACCGCTGCCGAGGAAACTG
129





7736
ACCGCTGCCGAGGAAACTGA
130





7737
CCGCTGCCGAGGAAACTGAC
131





7738
CGCTGCCGAGGAAACTGACG
132





7739
GCTGCCGAGGAAACTGACGG
133





7740
CTGCCGAGGAAACTGACGGA
134





7741
GTGCGAGTGGGATCCGCCGCG
34





7742
TGCGAGTGGGATCCGCCGCG
35





7743
GCGAGTGGGATCCGCCGCGT
36





7744
CGAGTGGGATCCGCCGCGTC
37





7745
GAGTGGGATCCGCCGCGTCC
38





7746
AGTGGGATCCGCCGCGTCCT
39





7747
GTGGGATCCGCCGCGTCCTT
40





7748
TGGGATCCGCCGCGTCCTTG
41





7749
GGGATCCGCCGCGTCCTTGC
42





7750
GGATCCGCCGCGTCCTTGCT
43





7751
GATCCGCCGCGTCCTTGCTC
44





7752
ATCCGCCGCGTCCTTGCTCT
45





7753
TCCGCCGCGTCCTTGCTCTG
46





7754
CCGCCGCGTCCTTGCTCTGC
47





7755
CGCCGCGTCCTTGCTCTGCC
48





7756
GCCGCGTCCTTGCTCTGCCC
49





7757
CCGCGTCCTTGCTCTGCCCG
50





7758
CGCGTCCTTGCTCTGCCCGC
51





7759
GCGTCCTTGCTCTGCCCGCG
52





7760
CGTCCTTGCTCTGCCCGCGC
53





7761
GTCCTTGCTCTGCCCGCGCC
54





7762
TCCTTGCTCTGCCCGCGCCG
55





7763
CCTTGCTCTGCCCGCGCCGC
56





7764
CTTGCTCTGCCCGCGCCGCC
57





7765
TTGCTCTGCCCGCGCCGCCA
58





7766
TGCTCTGCCCGCGCCGCCAC
59





7767
GCTCTGCCCGCGCCGCCACC
60





7768
CTCTGCCCGCGCCGCCACCG
61





7769
TCTGCCCGCGCCGCCACCGC
62





7770
CTGCCCGCGCCGCCACCGCC
63





7771
TGCCCGCGCCGCCACCGCCG
64





7772
GCCCGCGCCGCCACCGCCGC
65





7773
CCCGCGCCGCCACCGCCGCC
66





7774
CCGCGCCGCCACCGCCGCCG
67





7775
CGCGCCGCCACCGCCGCCGT
68





7776
GCGCCGCCACCGCCGCCGTC
69





7777
CGCCGCCACCGCCGCCGTCT
70





7778
GCCGCCACCGCCGCCGTCTC
71





7779
CCGCCACCGCCGCCGTCTCC
72





7780
CGCCACCGCCGCCGTCTCCC
73





7781
GCCACCGCCGCCGTCTCCCG
74





7782
CCACCGCCGCCGTCTCCCGG
75





7783
CACCGCCGCCGTCTCCCGGG
76





7784
ACCGCCGCCGTCTCCCGGGG
77





7785
CCGCCGCCGTCTCCCGGGGC
78





7786
CGCCGCCGTCTCCCGGGGCC
79





7787
GCCGCCGTCTCCCGGGGCCC
80





7788
CCGCCGTCTCCCGGGGCCCC
81





7789
CGCCGTCTCCCGGGGCCCCC
82





7790
GCCGTCTCCCGGGGCCCCCG
83





7791
CCGTCTCCCGGGGCCCCCGC
84





7792
CGTCTCCCGGGGCCCCCGCG
85





7793
GTCTCCCGGGGCCCCCGCGC
86





7794
TCTCCCGGGGCCCCCGCGCA
87





7795
CTCCCGGGGCCCCCGCGCAC
88





7796
TCCCGGGGCCCCCGCGCACG
89





7797
CCCGGGGCCCCCGCGCACGC
90





7798
CCGGGGCCCCCGCGCACGCT
91





7799
CGGGGCCCCCGCGCACGCTC
92





7800
GGGGCCCCCGCGCACGCTCC
93





7801
GGGCCCCCGCGCACGCTCCT
94





7802
GGCCCCCGCGCACGCTCCTC
95





7803
GCCCCCGCGCACGCTCCTCC
96





7804
CCCCCGCGCACGCTCCTCCG
97





7805
CCCCGCGCACGCTCCTCCGC
98





7806
CCCGCGCACGCTCCTCCGCG
99





7807
CCGCGCACGCTCCTCCGCGT
100





7808
CGCGCACGCTCCTCCGCGTG
101





7809
GCGCACGCTCCTCCGCGTGC
102





7810
CGCACGCTCCTCCGCGTGCT
103





7811
GCACGCTCCTCCGCGTGCTC
104





7812
CACGCTCCTCCGCGTGCTCT
105





7813
ACGCTCCTCCGCGTGCTCTC
106





7814
CGCTCCTCCGCGTGCTCTCG
107





7815
GCTCCTCCGCGTGCTCTCGC
108





7816
CTCCTCCGCGTGCTCTCGCC
109





7817
TCCTCCGCGTGCTCTCGCCT
110





7818
CCTCCGCGTGCTCTCGCCTA
111





7819
CTCCGCGTGCTCTCGCCTAC
112





7820
TCCGCGTGCTCTCGCCTACC
113





7821
CCGCGTGCTCTCGCCTACCG
114





7822
CGCGTGCTCTCGCCTACCGC
115





7823
GCGTGCTCTCGCCTACCGCT
116





7824
CGTGCTCTCGCCTACCGCTG
117





7825
GTGCTCTCGCCTACCGCTGC
118





7826
TGCTCTCGCCTACCGCTGCC
119





7827
GCTCTCGCCTACCGCTGCCG
120





7828
CTCTCGCCTACCGCTGCCGA
121





7829
TCTCGCCTACCGCTGCCGAG
122





7830
CTCGCCTACCGCTGCCGAGG
123





7831
TCGCCTACCGCTGCCGAGGA
124





7832
CGCCTACCGCTGCCGAGGAA
125





7833
GCCTACCGCTGCCGAGGAAA
126





7834
CCTACCGCTGCCGAGGAAAC
127





7835
CTACCGCTGCCGAGGAAACT
128





7836
TACCGCTGCCGAGGAAACTG
129





7837
ACCGCTGCCGAGGAAACTGA
130





7838
CCGCTGCCGAGGAAACTGAC
131





7839
CGCTGCCGAGGAAACTGACG
132





7840
GCTGCCGAGGAAACTGACGG
133





7841
CTGCCGAGGAAACTGACGGA
134





7842
TGTGCGAGTGGGATCCGCCG
33





7843
CTGTGCGAGTGGGATCCGCC
32





7844
GCTGTGCGAGTGGGATCCGC
31





7845
TGCTGTGCGAGTGGGATCCG
30





7846
CTGCTGTGCGAGTGGGATCC
29





7847
GCTGCTGTGCGAGTGGGATC
28





7848
CGCTGCTGTGCGAGTGGGAT
27





7849
GCGCTGCTGTGCGAGTGGGA
26





7850
TGCGCTGCTGTGCGAGTGGG
25





7851
GTGCGCTGCTGTGCGAGTGG
24





7852
AGTGCGCTGCTGTGCGAGTG
23





7853
GAGTGCGCTGCTGTGCGAGT
22





7854
CGAGTGCGCTGCTGTGCGAG
21





7855
CCGAGTGCGCTGCTGTGCGA
20





7856
ACCGAGTGCGCTGCTGTGCG
19





7857
CACCGAGTGCGCTGCTGTGC
18





7858
GCACCGAGTGCGCTGCTGTG
17





7859
GGCACCGAGTGCGCTGCTGT
16





7860
GGGCACCGAGTGCGCTGCTG
15





7861
GGGGCACCGAGTGCGCTGCT
14





7862
CGGGGCACCGAGTGCGCTGC
13





7863
GCGGGGCACCGAGTGCGCTG
12





7864
CGCGGGGCACCGAGTGCGCT
11





7865
GCGCGGGGCACCGAGTGCGC
10





7866
TGCGCGGGGCACCGAGTGCG
9





7867
CTGCGCGGGGCACCGAGTGC
8





7868
CCTGCGCGGGGCACCGAGTG
7





7869
CCCTGCGCGGGGCACCGAGT
6





7870
ACCCTGCGCGGGGCACCGAG
5





7871
GACCCTGCGCGGGGCACCGA
4





7872
CGACCCTGCGCGGGGCACCG
3





7873
GCGACCCTGCGCGGGGCACC
2





7874
CGCGACCCTGCGCGGGGCAC
1





7875
CGCGCCGCCACCGCCGCCGTCTCCCGG
68





7876
GCGCCGCCACCGCCGCCGTC
69





7877
CGCCGCCACCGCCGCCGTCT
70





7878
GCCGCCACCGCCGCCGTCTC
71





7879
CCGCCACCGCCGCCGTCTCC
72





7880
CGCCACCGCCGCCGTCTCCC
73





7881
GCCACCGCCGCCGTCTCCCG
74





7882
CCACCGCCGCCGTCTCCCGG
75





7883
CACCGCCGCCGTCTCCCGGG
76





7884
ACCGCCGCCGTCTCCCGGGG
77





7885
CCGCCGCCGTCTCCCGGGGC
78





7886
CGCCGCCGTCTCCCGGGGCC
79





7887
GCCGCCGTCTCCCGGGGCCC
80





7888
CCGCCGTCTCCCGGGGCCCC
81





7889
CGCCGTCTCCCGGGGCCCCC
82





7890
GCCGTCTCCCGGGGCCCCCG
83





7891
CCGTCTCCCGGGGCCCCCGC
84





7892
CGTCTCCCGGGGCCCCCGCG
85





7893
GTCTCCCGGGGCCCCCGCGC
86





7894
TCTCCCGGGGCCCCCGCGCA
87





7895
CTCCCGGGGCCCCCGCGCAC
88





7896
TCCCGGGGCCCCCGCGCACG
89





7897
CCCGGGGCCCCCGCGCACGC
90





7898
CCGGGGCCCCCGCGCACGCT
91





7899
CGGGGCCCCCGCGCACGCTC
92





7900
GGGGCCCCCGCGCACGCTCC
93





7901
GGGCCCCCGCGCACGCTCCT
94





7902
GGCCCCCGCGCACGCTCCTC
95





7903
GCCCCCGCGCACGCTCCTCC
96





7904
CCCCCGCGCACGCTCCTCCG
97





7905
CCCCGCGCACGCTCCTCCGC
98





7906
CCCGCGCACGCTCCTCCGCG
99





7907
CCGCGCACGCTCCTCCGCGT
100





7908
CGCGCACGCTCCTCCGCGTG
101





7909
GCGCACGCTCCTCCGCGTGC
102





7910
CGCACGCTCCTCCGCGTGCT
103





7911
GCACGCTCCTCCGCGTGCTC
104





7912
CACGCTCCTCCGCGTGCTCT
105





7913
ACGCTCCTCCGCGTGCTCTC
106





7914
CGCTCCTCCGCGTGCTCTCG
107





7915
GCTCCTCCGCGTGCTCTCGC
108





7916
CTCCTCCGCGTGCTCTCGCC
109





7917
TCCTCCGCGTGCTCTCGCCT
110





7918
CCTCCGCGTGCTCTCGCCTA
111





7919
CTCCGCGTGCTCTCGCCTAC
112





7920
TCCGCGTGCTCTCGCCTACC
113





7921
CCGCGTGCTCTCGCCTACCG
114





7922
CGCGTGCTCTCGCCTACCGC
115





7923
GCGTGCTCTCGCCTACCGCT
116





7924
CGTGCTCTCGCCTACCGCTG
117





7925
GTGCTCTCGCCTACCGCTGC
118





7926
TGCTCTCGCCTACCGCTGCC
119





7927
GCTCTCGCCTACCGCTGCCG
120





7928
CTCTCGCCTACCGCTGCCGA
121





7929
TCTCGCCTACCGCTGCCGAG
122





7930
CTCGCCTACCGCTGCCGAGG
123





7931
TCGCCTACCGCTGCCGAGGA
124





7932
CGCCTACCGCTGCCGAGGAA
125





7933
GCCTACCGCTGCCGAGGAAA
126





7934
CCTACCGCTGCCGAGGAAAC
127





7935
CTACCGCTGCCGAGGAAACT
128





7936
TACCGCTGCCGAGGAAACTG
129





7937
ACCGCTGCCGAGGAAACTGA
130





7938
CCGCTGCCGAGGAAACTGAC
131





7939
CGCTGCCGAGGAAACTGACG
132





7940
GCTGCCGAGGAAACTGACGG
133





7941
CTGCCGAGGAAACTGACGGA
134





7942
CCGCGCCGCCACCGCCGCCG
67





7943
CCCGCGCCGCCACCGCCGCC
66





7944
GCCCGCGCCGCCACCGCCGC
65





7945
TGCCCGCGCCGCCACCGCCG
64





7946
CTGCCCGCGCCGCCACCGCC
63





7947
TCTGCCCGCGCCGCCACCGC
62





7948
CTCTGCCCGCGCCGCCACCG
61





7949
GCTCTGCCCGCGCCGCCACC
60





7950
TGCTCTGCCCGCGCCGCCAC
59





7951
TTGCTCTGCCCGCGCCGCCA
58





7952
CTTGCTCTGCCCGCGCCGCC
57





7953
CCTTGCTCTGCCCGCGCCGC
56





7954
TCCTTGCTCTGCCCGCGCCG
55





7955
GTCCTTGCTCTGCCCGCGCC
54





7956
CGTCCTTGCTCTGCCCGCGC
53





7957
GCGTCCTTGCTCTGCCCGCG
52





7958
CGCGTCCTTGCTCTGCCCGC
51





7959
CCGCGTCCTTGCTCTGCCCG
50





7960
GCCGCGTCCTTGCTCTGCCC
49





7961
CGCCGCGTCCTTGCTCTGCC
48





7962
CCGCCGCGTCCTTGCTCTGC
47





7963
TCCGCCGCGTCCTTGCTCTG
46





7964
ATCCGCCGCGTCCTTGCTCT
45





7965
GATCCGCCGCGTCCTTGCTC
44





7966
GGATCCGCCGCGTCCTTGCT
43





7967
GGGATCCGCCGCGTCCTTGC
42





7968
TGGGATCCGCCGCGTCCTTG
41





7969
GTGGGATCCGCCGCGTCCTT
40





7970
AGTGGGATCCGCCGCGTCCT
39





7971
GAGTGGGATCCGCCGCGTCC
38





7972
CGAGTGGGATCCGCCGCGTC
37





7973
GCGAGTGGGATCCGCCGCGT
36





7974
TGCGAGTGGGATCCGCCGCG
35





7975
GTGCGAGTGGGATCCGCCGC
34





7976
TGTGCGAGTGGGATCCGCCG
33





7977
CTGTGCGAGTGGGATCCGCC
32





7978
GCTGTGCGAGTGGGATCCGC
31





7979
TGCTGTGCGAGTGGGATCCG
30





7980
CTGCTGTGCGAGTGGGATCC
29





7981
GCTGCTGTGCGAGTGGGATC
28





7982
CGCTGCTGTGCGAGTGGGAT
27





7983
GCGCTGCTGTGCGAGTGGGA
26





7984
TGCGCTGCTGTGCGAGTGGG
25





7985
GTGCGCTGCTGTGCGAGTGG
24





7986
AGTGCGCTGCTGTGCGAGTG
23





7987
GAGTGCGCTGCTGTGCGAGT
22





7988
CGAGTGCGCTGCTGTGCGAG
21





7989
CCGAGTGCGCTGCTGTGCGA
20





7990
ACCGAGTGCGCTGCTGTGCG
19





7991
CACCGAGTGCGCTGCTGTGC
18





7992
GCACCGAGTGCGCTGCTGTG
17





7993
GGCACCGAGTGCGCTGCTGT
16





7994
GGGCACCGAGTGCGCTGCTG
15





7995
GGGGCACCGAGTGCGCTGCT
14





7996
CGGGGCACCGAGTGCGCTGC
13





7997
GCGGGGCACCGAGTGCGCTG
12





7998
CGCGGGGCACCGAGTGCGCT
11





7999
GCGCGGGGCACCGAGTGCGC
10





8000
TGCGCGGGGCACCGAGTGCG
9





8001
CTGCGCGGGGCACCGAGTGC
8





8002
CCTGCGCGGGGCACCGAGTG
7





8003
CCCTGCGCGGGGCACCGAGT
6





8004
ACCCTGCGCGGGGCACCGAG
5





8005
GACCCTGCGCGGGGCACCGA
4





8006
CGACCCTGCGCGGGGCACCG
3





8007
GCGACCCTGCGCGGGGCACC
2





8008
CGCGACCCTGCGCGGGGCAC
1





8009
CGCGCACGCTCCTCCGCGTGCTCTCG
101





8010
GCGCACGCTCCTCCGCGTGC
102





8011
CGCACGCTCCTCCGCGTGCT
103





8012
GCACGCTCCTCCGCGTGCTC
104





8013
CACGCTCCTCCGCGTGCTCT
105





8014
ACGCTCCTCCGCGTGCTCTC
106





8015
CGCTCCTCCGCGTGCTCTCG
107





8016
GCTCCTCCGCGTGCTCTCGC
108





8017
CTCCTCCGCGTGCTCTCGCC
109





8018
TCCTCCGCGTGCTCTCGCCT
110





8019
CCTCCGCGTGCTCTCGCCTA
111





8020
CTCCGCGTGCTCTCGCCTAC
112





8021
TCCGCGTGCTCTCGCCTACC
113





8022
CCGCGTGCTCTCGCCTACCG
114





8023
CGCGTGCTCTCGCCTACCGC
115





8024
GCGTGCTCTCGCCTACCGCT
116





8025
CGTGCTCTCGCCTACCGCTG
117





8026
GTGCTCTCGCCTACCGCTGC
118





8027
TGCTCTCGCCTACCGCTGCC
119





8028
GCTCTCGCCTACCGCTGCCG
120





8029
CTCTCGCCTACCGCTGCCGA
121





8030
TCTCGCCTACCGCTGCCGAG
122





8031
CTCGCCTACCGCTGCCGAGG
123





8032
TCGCCTACCGCTGCCGAGGA
124





8033
CGCCTACCGCTGCCGAGGAA
125





8034
GCCTACCGCTGCCGAGGAAA
126





8035
CCTACCGCTGCCGAGGAAAC
127





8036
CTACCGCTGCCGAGGAAACT
128





8037
TACCGCTGCCGAGGAAACTG
129





8038
ACCGCTGCCGAGGAAACTGA
130





8039
CCGCTGCCGAGGAAACTGAC
131





8040
CGCTGCCGAGGAAACTGACG
132





8041
GCTGCCGAGGAAACTGACGG
133





8042
CTGCCGAGGAAACTGACGGA
134





8043
CCGCGCACGCTCCTCCGCGT
100





8044
CCCGCGCACGCTCCTCCGCG
99





8045
CCCCGCGCACGCTCCTCCGC
98





8046
CCCCCGCGCACGCTCCTCCG
97





8047
GCCCCCGCGCACGCTCCTCC
96





8048
GGCCCCCGCGCACGCTCCTC
95





8049
GGGCCCCCGCGCACGCTCCT
94





8050
GGGGCCCCCGCGCACGCTCC
93





8051
CGGGGCCCCCGCGCACGCTC
92





8052
CCGGGGCCCCCGCGCACGCT
91





8053
CCCGGGGCCCCCGCGCACGC
90





8054
TCCCGGGGCCCCCGCGCACG
89





8055
CTCCCGGGGCCCCCGCGCAC
88





8056
TCTCCCGGGGCCCCCGCGCA
87





8057
GTCTCCCGGGGCCCCCGCGC
86





8058
CGTCTCCCGGGGCCCCCGCG
85





8059
CCGTCTCCCGGGGCCCCCGC
84





8060
GCCGTCTCCCGGGGCCCCCG
83





8061
CGCCGTCTCCCGGGGCCCCC
82





8062
CCGCCGTCTCCCGGGGCCCC
81





8063
GCCGCCGTCTCCCGGGGCCC
80





8064
CGCCGCCGTCTCCCGGGGCC
79





8065
CCGCCGCCGTCTCCCGGGGC
78





8066
ACCGCCGCCGTCTCCCGGGG
77





8067
CACCGCCGCCGTCTCCCGGG
76





8068
CCACCGCCGCCGTCTCCCGG
75





8069
GCCACCGCCGCCGTCTCCCG
74





8070
CGCCACCGCCGCCGTCTCCC
73





8071
CCGCCACCGCCGCCGTCTCC
72





8072
GCCGCCACCGCCGCCGTCTC
71





8073
CGCCGCCACCGCCGCCGTCT
70





8074
GCGCCGCCACCGCCGCCGTC
69





8075
CGCGCCGCCACCGCCGCCGT
68





8076
CCGCGCCGCCACCGCCGCCG
67





8077
CCCGCGCCGCCACCGCCGCC
66





8078
GCCCGCGCCGCCACCGCCGC
65





8079
TGCCCGCGCCGCCACCGCCG
64





8080
CTGCCCGCGCCGCCACCGCC
63





8081
TCTGCCCGCGCCGCCACCGC
62





8082
CTCTGCCCGCGCCGCCACCG
61





8083
GCTCTGCCCGCGCCGCCACC
60





8084
TGCTCTGCCCGCGCCGCCAC
59





8085
TTGCTCTGCCCGCGCCGCCA
58





8086
CTTGCTCTGCCCGCGCCGCC
57





8087
CCTTGCTCTGCCCGCGCCGC
56





8088
TCCTTGCTCTGCCCGCGCCG
55





8089
GTCCTTGCTCTGCCCGCGCC
54





8090
CGTCCTTGCTCTGCCCGCGC
53





8091
GCGTCCTTGCTCTGCCCGCG
52





8092
CGCGTCCTTGCTCTGCCCGC
51





8093
CCGCGTCCTTGCTCTGCCCG
50





8094
GCCGCGTCCTTGCTCTGCCC
49





8095
CGCCGCGTCCTTGCTCTGCC
48





8096
CCGCCGCGTCCTTGCTCTGC
47





8097
TCCGCCGCGTCCTTGCTCTG
46





8098
ATCCGCCGCGTCCTTGCTCT
45





8099
GATCCGCCGCGTCCTTGCTC
44





8100
GGATCCGCCGCGTCCTTGCT
43





8101
GGGATCCGCCGCGTCCTTGC
42





8102
TGGGATCCGCCGCGTCCTTG
41





8103
GTGGGATCCGCCGCGTCCTT
40





8104
AGTGGGATCCGCCGCGTCCT
39





8105
GAGTGGGATCCGCCGCGTCC
38





8106
CGAGTGGGATCCGCCGCGTC
37





8107
GCGAGTGGGATCCGCCGCGT
36





8108
TGCGAGTGGGATCCGCCGCG
35





8109
GTGCGAGTGGGATCCGCCGC
34





8110
TGTGCGAGTGGGATCCGCCG
33





8111
CTGTGCGAGTGGGATCCGCC
32





8112
GCTGTGCGAGTGGGATCCGC
31





8113
TGCTGTGCGAGTGGGATCCG
30





8114
CTGCTGTGCGAGTGGGATCC
29





8115
GCTGCTGTGCGAGTGGGATC
28





8116
CGCTGCTGTGCGAGTGGGAT
27





8117
GCGCTGCTGTGCGAGTGGGA
26





8118
TGCGCTGCTGTGCGAGTGGG
25





8119
GTGCGCTGCTGTGCGAGTGG
24





8120
AGTGCGCTGCTGTGCGAGTG
23





8121
GAGTGCGCTGCTGTGCGAGT
22





8122
CGAGTGCGCTGCTGTGCGAG
21





8123
CCGAGTGCGCTGCTGTGCGA
20





8124
ACCGAGTGCGCTGCTGTGCG
19





8125
CACCGAGTGCGCTGCTGTGC
18





8126
GCACCGAGTGCGCTGCTGTG
17





8127
GGCACCGAGTGCGCTGCTGT
16





8128
GGGCACCGAGTGCGCTGCTG
15





8129
GGGGCACCGAGTGCGCTGCT
14





8130
CGGGGCACCGAGTGCGCTGC
13





8131
GCGGGGCACCGAGTGCGCTG
12





8132
CGCGGGGCACCGAGTGCGCT
11





8133
GCGCGGGGCACCGAGTGCGC
10





8134
TGCGCGGGGCACCGAGTGCG
9





8135
CTGCGCGGGGCACCGAGTGC
8





8136
CCTGCGCGGGGCACCGAGTG
7





8137
CCCTGCGCGGGGCACCGAGT
6





8138
ACCCTGCGCGGGGCACCGAG
5





8139
GACCCTGCGCGGGGCACCGA
4





8140
CGACCCTGCGCGGGGCACCG
3





8141
GCGACCCTGCGCGGGGCACC
2





8142
CGCGACCCTGCGCGGGGCAC
1





8143
CCGAGGAAACTGACGGAGCCCGAGCGCGG
137





8144
CGAGGAAACTGACGGAGCCC
138





8145
CGAGTCAGCTGATCCGGCCCACCCCG
186





8146
GAGTCAGCTGATCCGGCCCA
187





8147
AGTCAGCTGATCCGGCCCAC
188





8148
GTCAGCTGATCCGGCCCACC
189





8149
TCAGCTGATCCGGCCCACCC
190





8150
CAGCTGATCCGGCCCACCCC
191





8151
AGCTGATCCGGCCCACCCCG
192





8152
GCTGATCCGGCCCACCCCGC
193





8153
CTGATCCGGCCCACCCCGCT
194





8154
TGATCCGGCCCACCCCGCTC
195





8155
GATCCGGCCCACCCCGCTCG
196





8156
ATCCGGCCCACCCCGCTCGG
197





8157
TCCGGCCCACCCCGCTCGGC
198





8158
CCGGCCCACCCCGCTCGGCA
199





8159
CGGCCCACCCCGCTCGGCAC
200





8160
GGCCCACCCCGCTCGGCACC
201





8161
GCCCACCCCGCTCGGCACCC
202





8162
CCCACCCCGCTCGGCACCCG
203





8163
CCACCCCGCTCGGCACCCGA
204





8164
CACCCCGCTCGGCACCCGAG
205





8165
ACCCCGCTCGGCACCCGAGA
206





8166
CCCCGCTCGGCACCCGAGAG
207





8167
CCCGCTCGGCACCCGAGAGA
208





8168
CCGCTCGGCACCCGAGAGAG
209





8169
CGCTCGGCACCCGAGAGAGA
210





8170
GCTCGGCACCCGAGAGAGAC
211





8171
CTCGGCACCCGAGAGAGACC
212





8172
TCGGCACCCGAGAGAGACCC
213





8173
CGGCACCCGAGAGAGACCCC
214





8174
GGCACCCGAGAGAGACCCCT
215





8175
GCACCCGAGAGAGACCCCTA
216





8176
CACCCGAGAGAGACCCCTAG
217





8177
ACCCGAGAGAGACCCCTAGC
218





8178
CCCGAGAGAGACCCCTAGCG
219





8179
CCGAGAGAGACCCCTAGCGG
220





8180
CGAGAGAGACCCCTAGCGGC
221





8181
GAGAGAGACCCCTAGCGGCG
222





8182
AGAGAGACCCCTAGCGGCGC
223





8183
GAGAGACCCCTAGCGGCGCC
224





8184
AGAGACCCCTAGCGGCGCCG
225





8185
GAGACCCCTAGCGGCGCCGC
226





8186
AGACCCCTAGCGGCGCCGCC
227





8187
GACCCCTAGCGGCGCCGCCG
228





8188
ACCCCTAGCGGCGCCGCCGG
229





8189
CCCCTAGCGGCGCCGCCGGG
230





8190
CCCTAGCGGCGCCGCCGGGG
231





8191
CCTAGCGGCGCCGCCGGGGA
232





8192
CTAGCGGCGCCGCCGGGGAA
233





8193
TAGCGGCGCCGCCGGGGAAC
234





8194
AGCGGCGCCGCCGGGGAACT
235





8195
GCGGCGCCGCCGGGGAACTG
236





8196
CGGCGCCGCCGGGGAACTGC
237





8197
GGCGCCGCCGGGGAACTGCG
238





8198
GCGCCGCCGGGGAACTGCGC
239





8199
CGCCGCCGGGGAACTGCGCC
240





8200
GCCGCCGGGGAACTGCGCCC
241





8201
CCGCCGGGGAACTGCGCCCG
242





8202
CGCCGGGGAACTGCGCCCGC
243





8203
GCCGGGGAACTGCGCCCGCT
244





8204
CCGGGGAACTGCGCCCGCTC
245





8205
CGGGGAACTGCGCCCGCTCG
246





8206
GGGGAACTGCGCCCGCTCGC
247





8207
GGGAACTGCGCCCGCTCGCG
248





8208
GGAACTGCGCCCGCTCGCGC
249





8209
GAACTGCGCCCGCTCGCGCC
250





8210
AACTGCGCCCGCTCGCGCCG
251





8211
ACTGCGCCCGCTCGCGCCGG
252





8212
CTGCGCCCGCTCGCGCCGGG
253





8213
TGCGCCCGCTCGCGCCGGGA
254





8214
GCGCCCGCTCGCGCCGGGAG
255





8215
CGCCCGCTCGCGCCGGGAGG
256





8216
GCCCGCTCGCGCCGGGAGGG
257





8217
CCCGCTCGCGCCGGGAGGGG
258





8218
CCGCTCGCGCCGGGAGGGGC
259





8219
CGCTCGCGCCGGGAGGGGCC
260





8220
GCTCGCGCCGGGAGGGGCCC
261





8221
CTCGCGCCGGGAGGGGCCCT
262





8222
TCGCGCCGGGAGGGGCCCTC
263





8223
CGCGCCGGGAGGGGCCCTCG
264





8224
GCGCCGGGAGGGGCCCTCGC
265





8225
CGCCGGGAGGGGCCCTCGCG
266





8226
GCCGGGAGGGGCCCTCGCGC
267





8227
CCGGGAGGGGCCCTCGCGCC
268





8228
CGGGAGGGGCCCTCGCGCCC
269





8229
GGGAGGGGCCCTCGCGCCCC
270





8230
GGAGGGGCCCTCGCGCCCCG
271





8231
GAGGGGCCCTCGCGCCCCGC
272





8232
AGGGGCCCTCGCGCCCCGCG
273





8233
GGGGCCCTCGCGCCCCGCGC
274





8234
GGGCCCTCGCGCCCCGCGCC
275





8235
GGCCCTCGCGCCCCGCGCCC
276





8236
GCCCTCGCGCCCCGCGCCCA
277





8237
CCCTCGCGCCCCGCGCCCAC
278





8238
CCTCGCGCCCCGCGCCCACA
279





8239
CTCGCGCCCCGCGCCCACAG
280





8240
TCGCGCCCCGCGCCCACAGG
281





8241
CGCGCCCCGCGCCCACAGGT
282





8242
GCGCCCCGCGCCCACAGGTG
283





8243
CGCCCCGCGCCCACAGGTGC
284





8244
GCCCCGCGCCCACAGGTGCA
285





8245
CCCCGCGCCCACAGGTGCAC
286





8246
CCCGCGCCCACAGGTGCACG
287





8247
CCGCGCCCACAGGTGCACGC
288





8248
CGCGCCCACAGGTGCACGCG
289





8249
GCGCCCACAGGTGCACGCGC
290





8250
CGCCCACAGGTGCACGCGCC
291





8251
GCCCACAGGTGCACGCGCCC
292





8252
CCCACAGGTGCACGCGCCCT
293





8253
CCACAGGTGCACGCGCCCTT
294





8254
CACAGGTGCACGCGCCCTTG
295





8255
ACAGGTGCACGCGCCCTTGG
296





8256
CAGGTGCACGCGCCCTTGGC
297





8257
AGGTGCACGCGCCCTTGGCG
298





8258
GGTGCACGCGCCCTTGGCGC
299





8259
GTGCACGCGCCCTTGGCGCC
300





8260
TGCACGCGCCCTTGGCGCCG
301





8261
GCACGCGCCCTTGGCGCCGC
302





8262
CACGCGCCCTTGGCGCCGCC
303





8263
ACGCGCCCTTGGCGCCGCCT
304





8264
CGCGCCCTTGGCGCCGCCTG
305





8265
GCGCCCTTGGCGCCGCCTGC
306





8266
CGCCCTTGGCGCCGCCTGCA
307





8267
GCCCTTGGCGCCGCCTGCAC
308





8268
CCCTTGGCGCCGCCTGCACC
309





8269
CCTTGGCGCCGCCTGCACCC
310





8270
CTTGGCGCCGCCTGCACCCC
311





8271
TTGGCGCCGCCTGCACCCCA
312





8272
TGGCGCCGCCTGCACCCCAC
313





8273
GGCGCCGCCTGCACCCCACG
314





8274
GCGCCGCCTGCACCCCACGC
315





8275
CGCCGCCTGCACCCCACGCG
316





8276
GCCGCCTGCACCCCACGCGC
317





8277
CCGCCTGCACCCCACGCGCC
318





8278
CGCCTGCACCCCACGCGCCC
319





8279
GCCTGCACCCCACGCGCCCC
320





8280
CCTGCACCCCACGCGCCCCC
321





8281
CTGCACCCCACGCGCCCCCT
322





8282
TGCACCCCACGCGCCCCCTC
323





8283
GCACCCCACGCGCCCCCTCC
324





8284
CACCCCACGCGCCCCCTCCG
325





8285
ACCCCACGCGCCCCCTCCGC
326





8286
CCCCACGCGCCCCCTCCGCT
327





8287
CCCACGCGCCCCCTCCGCTC
328





8288
CCACGCGCCCCCTCCGCTCC
329





8289
CACGCGCCCCCTCCGCTCCC
330





8290
ACGCGCCCCCTCCGCTCCCC
331





8291
CGCGCCCCCTCCGCTCCCCG
332





8292
GCGCCCCCTCCGCTCCCCGG
333





8293
CGCCCCCTCCGCTCCCCGGC
334





8294
GCCCCCTCCGCTCCCCGGCC
335





8295
GCGAGTCAGCTGATCCGGCC
185





8296
GGCGAGTCAGCTGATCCGGC
184





8297
AGGCGAGTCAGCTGATCCGG
183





8298
CAGGCGAGTCAGCTGATCCG
182





8299
CCAGGCGAGTCAGCTGATCC
181





8300
GCCAGGCGAGTCAGCTGATC
180





8301
AGCCAGGCGAGTCAGCTGAT
179





8302
GAGCCAGGCGAGTCAGCTGA
178





8303
AGAGCCAGGCGAGTCAGCTG
177





8304
CAGAGCCAGGCGAGTCAGCT
176





8305
TCAGAGCCAGGCGAGTCAGC
175





8306
CTCAGAGCCAGGCGAGTCAG
174





8307
GCTCAGAGCCAGGCGAGTCA
173





8308
GGCTCAGAGCCAGGCGAGTC
172





8309
GGGCTCAGAGCCAGGCGAGT
171





8310
CGAGAGAGACCCCTAGCGGCGCCG
221





8311
GAGAGAGACCCCTAGCGGCG
222





8312
AGAGAGACCCCTAGCGGCGC
223





8313
GAGAGACCCCTAGCGGCGCC
224





8314
AGAGACCCCTAGCGGCGCCG
225





8315
GAGACCCCTAGCGGCGCCGC
226





8316
AGACCCCTAGCGGCGCCGCC
227





8317
GACCCCTAGCGGCGCCGCCG
228





8318
ACCCCTAGCGGCGCCGCCGG
229





8319
CCCCTAGCGGCGCCGCCGGG
230





8320
CCCTAGCGGCGCCGCCGGGG
231





8321
CCTAGCGGCGCCGCCGGGGA
232





8322
CTAGCGGCGCCGCCGGGGAA
233





8323
TAGCGGCGCCGCCGGGGAAC
234





8324
AGCGGCGCCGCCGGGGAACT
235





8325
GCGGCGCCGCCGGGGAACTG
236





8326
CGGCGCCGCCGGGGAACTGC
237





8327
GGCGCCGCCGGGGAACTGCG
238





8328
GCGCCGCCGGGGAACTGCGC
239





8329
CGCCGCCGGGGAACTGCGCC
240





8330
GCCGCCGGGGAACTGCGCCC
241





8331
CCGCCGGGGAACTGCGCCCG
242





8332
CGCCGGGGAACTGCGCCCGC
243





8333
GCCGGGGAACTGCGCCCGCT
244





8334
CCGGGGAACTGCGCCCGCTC
245





8335
CGGGGAACTGCGCCCGCTCG
246





8336
GGGGAACTGCGCCCGCTCGC
247





8337
GGGAACTGCGCCCGCTCGCG
248





8338
GGAACTGCGCCCGCTCGCGC
249





8339
GAACTGCGCCCGCTCGCGCC
250





8340
AACTGCGCCCGCTCGCGCCG
251





8341
ACTGCGCCCGCTCGCGCCGG
252





8342
CTGCGCCCGCTCGCGCCGGG
253





8343
TGCGCCCGCTCGCGCCGGGA
254





8344
GCGCCCGCTCGCGCCGGGAG
255





8345
CGCCCGCTCGCGCCGGGAGG
256





8346
GCCCGCTCGCGCCGGGAGGG
257





8347
CCCGCTCGCGCCGGGAGGGG
258





8348
CCGCTCGCGCCGGGAGGGGC
259





8349
CGCTCGCGCCGGGAGGGGCC
260





8350
GCTCGCGCCGGGAGGGGCCC
261





8351
CTCGCGCCGGGAGGGGCCCT
262





8352
TCGCGCCGGGAGGGGCCCTC
263





8353
CGCGCCGGGAGGGGCCCTCG
264





8354
GCGCCGGGAGGGGCCCTCGC
265





8355
CGCCGGGAGGGGCCCTCGCG
266





8356
GCCGGGAGGGGCCCTCGCGC
267





8357
CCGGGAGGGGCCCTCGCGCC
268





8358
CGGGAGGGGCCCTCGCGCCC
269





8359
GGGAGGGGCCCTCGCGCCCC
270





8360
GGAGGGGCCCTCGCGCCCCG
271





8361
GAGGGGCCCTCGCGCCCCGC
272





8362
AGGGGCCCTCGCGCCCCGCG
273





8363
GGGGCCCTCGCGCCCCGCGC
274





8364
GGGCCCTCGCGCCCCGCGCC
275





8365
GGCCCTCGCGCCCCGCGCCC
276





8366
GCCCTCGCGCCCCGCGCCCA
277





8367
CCCTCGCGCCCCGCGCCCAC
278





8368
CCTCGCGCCCCGCGCCCACA
279





8369
CTCGCGCCCCGCGCCCACAG
280





8370
TCGCGCCCCGCGCCCACAGG
281





8371
CGCGCCCCGCGCCCACAGGT
282





8372
GCGCCCCGCGCCCACAGGTG
283





8373
CGCCCCGCGCCCACAGGTGC
284





8374
GCCCCGCGCCCACAGGTGCA
285





8375
CCCCGCGCCCACAGGTGCAC
286





8376
CCCGCGCCCACAGGTGCACG
287





8377
CCGCGCCCACAGGTGCACGC
288





8378
CGCGCCCACAGGTGCACGCG
289





8379
GCGCCCACAGGTGCACGCGC
290





8380
CGCCCACAGGTGCACGCGCC
291





8381
GCCCACAGGTGCACGCGCCC
292





8382
CCCACAGGTGCACGCGCCCT
293





8383
CCACAGGTGCACGCGCCCTT
294





8384
CACAGGTGCACGCGCCCTTG
295





8385
ACAGGTGCACGCGCCCTTGG
296





8386
CAGGTGCACGCGCCCTTGGC
297





8387
AGGTGCACGCGCCCTTGGCG
298





8388
GGTGCACGCGCCCTTGGCGC
299





8389
GTGCACGCGCCCTTGGCGCC
300





8390
TGCACGCGCCCTTGGCGCCG
301





8391
GCACGCGCCCTTGGCGCCGC
302





8392
CACGCGCCCTTGGCGCCGCC
303





8393
ACGCGCCCTTGGCGCCGCCT
304





8394
CGCGCCCTTGGCGCCGCCTG
305





8395
GCGCCCTTGGCGCCGCCTGC
306





8396
CGCCCTTGGCGCCGCCTGCA
307





8397
GCCCTTGGCGCCGCCTGCAC
308





8398
CCCTTGGCGCCGCCTGCACC
309





8399
CCTTGGCGCCGCCTGCACCC
310





8400
CTTGGCGCCGCCTGCACCCC
311





8401
TTGGCGCCGCCTGCACCCCA
312





8402
TGGCGCCGCCTGCACCCCAC
313





8403
GGCGCCGCCTGCACCCCACG
314





8404
GCGCCGCCTGCACCCCACGC
315





8405
CGCCGCCTGCACCCCACGCG
316





8406
GCCGCCTGCACCCCACGCGC
317





8407
CCGCCTGCACCCCACGCGCC
318





8408
CGCCTGCACCCCACGCGCCC
319





8409
GCCTGCACCCCACGCGCCCC
320





8410
CCTGCACCCCACGCGCCCCC
321





8411
CTGCACCCCACGCGCCCCCT
322





8412
TGCACCCCACGCGCCCCCTC
323





8413
GCACCCCACGCGCCCCCTCC
324





8414
CACCCCACGCGCCCCCTCCG
325





8415
ACCCCACGCGCCCCCTCCGC
326





8416
CCCCACGCGCCCCCTCCGCT
327





8417
CCCACGCGCCCCCTCCGCTC
328





8418
CCACGCGCCCCCTCCGCTCC
329





8419
CACGCGCCCCCTCCGCTCCC
330





8420
ACGCGCCCCCTCCGCTCCCC
331





8421
CGCGCCCCCTCCGCTCCCCG
332





8422
GCGCCCCCTCCGCTCCCCGG
333





8423
CGCCCCCTCCGCTCCCCGGC
334





8424
GCCCCCTCCGCTCCCCGGCC
335





8425
CCGAGAGAGACCCCTAGCGG
220





8426
CCCGAGAGAGACCCCTAGCG
219





8427
ACCCGAGAGAGACCCCTAGC
218





8428
CACCCGAGAGAGACCCCTAG
217





8429
GCACCCGAGAGAGACCCCTA
216





8430
GGCACCCGAGAGAGACCCCT
215





8431
CGGCACCCGAGAGAGACCCC
214





8432
TCGGCACCCGAGAGAGACCC
213





8433
CTCGGCACCCGAGAGAGACC
212





8434
GCTCGGCACCCGAGAGAGAC
211





8435
CGCTCGGCACCCGAGAGAGA
210





8436
CCGCTCGGCACCCGAGAGAG
209





8437
CCCGCTCGGCACCCGAGAGA
208





8438
CCCCGCTCGGCACCCGAGAG
207





8439
ACCCCGCTCGGCACCCGAGA
206





8440
CACCCCGCTCGGCACCCGAG
205





8441
CCACCCCGCTCGGCACCCGA
204





8442
CCCACCCCGCTCGGCACCCG
203





8443
GCCCACCCCGCTCGGCACCC
202





8444
GGCCCACCCCGCTCGGCACC
201





8445
CGGCCCACCCCGCTCGGCAC
200





8446
CCGGCCCACCCCGCTCGGCA
199





8447
TCCGGCCCACCCCGCTCGGC
198





8448
ATCCGGCCCACCCCGCTCGG
197





8449
GATCCGGCCCACCCCGCTCG
196





8450
TGATCCGGCCCACCCCGCTC
195





8451
CTGATCCGGCCCACCCCGCT
194





8452
GCTGATCCGGCCCACCCCGC
193





8453
AGCTGATCCGGCCCACCCCG
192





8454
CAGCTGATCCGGCCCACCCC
191





8455
TCAGCTGATCCGGCCCACCC
190





8456
GTCAGCTGATCCGGCCCACC
189





8457
AGTCAGCTGATCCGGCCCAC
188





8458
GAGTCAGCTGATCCGGCCCA
187





8459
CGAGTCAGCTGATCCGGCCC
186





8460
GCGAGTCAGCTGATCCGGCC
185





8461
GGCGAGTCAGCTGATCCGGC
184





8462
AGGCGAGTCAGCTGATCCGG
183





8463
CAGGCGAGTCAGCTGATCCG
182





8464
CCAGGCGAGTCAGCTGATCC
181





8465
GCCAGGCGAGTCAGCTGATC
180





8466
AGCCAGGCGAGTCAGCTGAT
179





8467
GAGCCAGGCGAGTCAGCTGA
178





8468
AGAGCCAGGCGAGTCAGCTG
177





8469
CAGAGCCAGGCGAGTCAGCT
176





8470
TCAGAGCCAGGCGAGTCAGC
175





8471
CTCAGAGCCAGGCGAGTCAG
174





8472
GCTCAGAGCCAGGCGAGTCA
173





8473
GGCTCAGAGCCAGGCGAGTC
172





8474
GGGCTCAGAGCCAGGCGAGT
171





8475
CGCCCGCTCGCGCCGGGAGGGGCCCTCG
256





8476
GCCCGCTCGCGCCGGGAGGG
257





8477
CCCGCTCGCGCCGGGAGGGG
258





8478
CCGCTCGCGCCGGGAGGGGC
259





8479
CGCTCGCGCCGGGAGGGGCC
260





8480
GCTCGCGCCGGGAGGGGCCC
261





8481
CTCGCGCCGGGAGGGGCCCT
262





8482
TCGCGCCGGGAGGGGCCCTC
263





8483
CGCGCCGGGAGGGGCCCTCG
264





8484
GCGCCGGGAGGGGCCCTCGC
265





8485
CGCCGGGAGGGGCCCTCGCG
266





8486
GCCGGGAGGGGCCCTCGCGC
267





8487
CCGGGAGGGGCCCTCGCGCC
268





8488
CGGGAGGGGCCCTCGCGCCC
269





8489
GGGAGGGGCCCTCGCGCCCC
270





8490
GGAGGGGCCCTCGCGCCCCG
271





8491
GAGGGGCCCTCGCGCCCCGC
272





8492
AGGGGCCCTCGCGCCCCGCG
273





8493
GGGGCCCTCGCGCCCCGCGC
274





8494
GGGCCCTCGCGCCCCGCGCC
275





8495
GGCCCTCGCGCCCCGCGCCC
276





8496
GCCCTCGCGCCCCGCGCCCA
277





8497
CCCTCGCGCCCCGCGCCCAC
278





8498
CCTCGCGCCCCGCGCCCACA
279





8499
CTCGCGCCCCGCGCCCACAG
280





8500
TCGCGCCCCGCGCCCACAGG
281





8501
CGCGCCCCGCGCCCACAGGT
282





8502
GCGCCCCGCGCCCACAGGTG
283





8503
CGCCCCGCGCCCACAGGTGC
284





8504
GCCCCGCGCCCACAGGTGCA
285





8505
CCCCGCGCCCACAGGTGCAC
286





8506
CCCGCGCCCACAGGTGCACG
287





8507
CCGCGCCCACAGGTGCACGC
288





8508
CGCGCCCACAGGTGCACGCG
289





8509
GCGCCCACAGGTGCACGCGC
290





8510
CGCCCACAGGTGCACGCGCC
291





8511
GCCCACAGGTGCACGCGCCC
292





8512
CCCACAGGTGCACGCGCCCT
293





8513
CCACAGGTGCACGCGCCCTT
294





8514
CACAGGTGCACGCGCCCTTG
295





8515
ACAGGTGCACGCGCCCTTGG
296





8516
CAGGTGCACGCGCCCTTGGC
297





8517
AGGTGCACGCGCCCTTGGCG
298





8518
GGTGCACGCGCCCTTGGCGC
299





8519
GTGCACGCGCCCTTGGCGCC
300





8520
TGCACGCGCCCTTGGCGCCG
301





8521
GCACGCGCCCTTGGCGCCGC
302





8522
CACGCGCCCTTGGCGCCGCC
303





8523
ACGCGCCCTTGGCGCCGCCT
304





8524
CGCGCCCTTGGCGCCGCCTG
305





8525
GCGCCCTTGGCGCCGCCTGC
306





8526
CGCCCTTGGCGCCGCCTGCA
307





8527
GCCCTTGGCGCCGCCTGCAC
308





8528
CCCTTGGCGCCGCCTGCACC
309





8529
CCTTGGCGCCGCCTGCACCC
310





8530
CTTGGCGCCGCCTGCACCCC
311





8531
TTGGCGCCGCCTGCACCCCA
312





8532
TGGCGCCGCCTGCACCCCAC
313





8533
GGCGCCGCCTGCACCCCACG
314





8534
GCGCCGCCTGCACCCCACGC
315





8535
CGCCGCCTGCACCCCACGCG
316





8536
GCCGCCTGCACCCCACGCGC
317





8537
CCGCCTGCACCCCACGCGCC
318





8538
CGCCTGCACCCCACGCGCCC
319





8539
GCCTGCACCCCACGCGCCCC
320





8540
CCTGCACCCCACGCGCCCCC
321





8541
CTGCACCCCACGCGCCCCCT
322





8542
TGCACCCCACGCGCCCCCTC
323





8543
GCACCCCACGCGCCCCCTCC
324





8544
CACCCCACGCGCCCCCTCCG
325





8545
ACCCCACGCGCCCCCTCCGC
326





8546
CCCCACGCGCCCCCTCCGCT
327





8547
CCCACGCGCCCCCTCCGCTC
328





8548
CCACGCGCCCCCTCCGCTCC
329





8549
CACGCGCCCCCTCCGCTCCC
330





8550
ACGCGCCCCCTCCGCTCCCC
331





8551
CGCGCCCCCTCCGCTCCCCG
332





8552
GCGCCCCCTCCGCTCCCCGG
333





8553
CGCCCCCTCCGCTCCCCGGC
334





8554
GCCCCCTCCGCTCCCCGGCC
335





8555
GCGCCCGCTCGCGCCGGGAG
255





8556
TGCGCCCGCTCGCGCCGGGA
254





8557
CTGCGCCCGCTCGCGCCGGG
253





8558
ACTGCGCCCGCTCGCGCCGG
252





8559
AACTGCGCCCGCTCGCGCCG
251





8560
GAACTGCGCCCGCTCGCGCC
250





8561
GGAACTGCGCCCGCTCGCGC
249





8562
GGGAACTGCGCCCGCTCGCG
248





8563
GGGGAACTGCGCCCGCTCGC
247





8564
CGGGGAACTGCGCCCGCTCG
246





8565
CCGGGGAACTGCGCCCGCTC
245





8566
GCCGGGGAACTGCGCCCGCT
244





8567
CGCCGGGGAACTGCGCCCGC
243





8568
CCGCCGGGGAACTGCGCCCG
242





8569
GCCGCCGGGGAACTGCGCCC
241





8570
CGCCGCCGGGGAACTGCGCC
240





8571
GCGCCGCCGGGGAACTGCGC
239





8572
GGCGCCGCCGGGGAACTGCG
238





8573
CGGCGCCGCCGGGGAACTGC
237





8574
GCGGCGCCGCCGGGGAACTG
236





8575
AGCGGCGCCGCCGGGGAACT
235





8576
TAGCGGCGCCGCCGGGGAAC
234





8577
CTAGCGGCGCCGCCGGGGAA
233





8578
CCTAGCGGCGCCGCCGGGGA
232





8579
CCCTAGCGGCGCCGCCGGGG
231





8580
CCCCTAGCGGCGCCGCCGGG
230





8581
ACCCCTAGCGGCGCCGCCGG
229





8582
GACCCCTAGCGGCGCCGCCG
228





8583
AGACCCCTAGCGGCGCCGCC
227





8584
GAGACCCCTAGCGGCGCCGC
226





8585
AGAGACCCCTAGCGGCGCCG
225





8586
GAGAGACCCCTAGCGGCGCC
224





8587
AGAGAGACCCCTAGCGGCGC
223





8588
GAGAGAGACCCCTAGCGGCG
222





8589
CGAGAGAGACCCCTAGCGGC
221





8590
CCGAGAGAGACCCCTAGCGG
220





8591
CCCGAGAGAGACCCCTAGCG
219





8592
ACCCGAGAGAGACCCCTAGC
218





8593
CACCCGAGAGAGACCCCTAG
217





8594
GCACCCGAGAGAGACCCCTA
216





8595
GGCACCCGAGAGAGACCCCT
215





8596
CGGCACCCGAGAGAGACCCC
214





8597
TCGGCACCCGAGAGAGACCC
213





8598
CTCGGCACCCGAGAGAGACC
212





8599
GCTCGGCACCCGAGAGAGAC
211





8600
CGCTCGGCACCCGAGAGAGA
210





8601
CCGCTCGGCACCCGAGAGAG
209





8602
CCCGCTCGGCACCCGAGAGA
208





8603
CCCCGCTCGGCACCCGAGAG
207





8604
ACCCCGCTCGGCACCCGAGA
206





8605
CACCCCGCTCGGCACCCGAG
205





8606
CCACCCCGCTCGGCACCCGA
204





8607
CCCACCCCGCTCGGCACCCG
203





8608
GCCCACCCCGCTCGGCACCC
202





8609
GGCCCACCCCGCTCGGCACC
201





8610
CGGCCCACCCCGCTCGGCAC
200





8611
CCGGCCCACCCCGCTCGGCA
199





8612
TCCGGCCCACCCCGCTCGGC
198





8613
ATCCGGCCCACCCCGCTCGG
197





8614
GATCCGGCCCACCCCGCTCG
196





8615
TGATCCGGCCCACCCCGCTC
195





8616
CTGATCCGGCCCACCCCGCT
194





8617
GCTGATCCGGCCCACCCCGC
193





8618
AGCTGATCCGGCCCACCCCG
192





8619
CAGCTGATCCGGCCCACCCC
191





8620
TCAGCTGATCCGGCCCACCC
190





8621
GTCAGCTGATCCGGCCCACC
189





8622
AGTCAGCTGATCCGGCCCAC
188





8623
GAGTCAGCTGATCCGGCCCA
187





8624
CGAGTCAGCTGATCCGGCCC
186





8625
GCGAGTCAGCTGATCCGGCC
185





8626
GGCGAGTCAGCTGATCCGGC
184





8627
AGGCGAGTCAGCTGATCCGG
183





8628
CAGGCGAGTCAGCTGATCCG
182





8629
CCAGGCGAGTCAGCTGATCC
181





8630
GCCAGGCGAGTCAGCTGATC
180





8631
AGCCAGGCGAGTCAGCTGAT
179





8632
GAGCCAGGCGAGTCAGCTGA
178





8633
AGAGCCAGGCGAGTCAGCTG
177





8634
CAGAGCCAGGCGAGTCAGCT
176





8635
TCAGAGCCAGGCGAGTCAGC
175





8636
CTCAGAGCCAGGCGAGTCAG
174





8637
GCTCAGAGCCAGGCGAGTCA
173





8638
GGCTCAGAGCCAGGCGAGTC
172





8639
GGGCTCAGAGCCAGGCGAGT
171





8640
CGCGCCCACAGGTGCACGCGCCCTTGGCG
289





8641
GCGCCCACAGGTGCACGCGC
290





8642
CGCCCACAGGTGCACGCGCC
291





8643
GCCCACAGGTGCACGCGCCC
292





8644
CCCACAGGTGCACGCGCCCT
293





8645
CCACAGGTGCACGCGCCCTT
294





8646
CACAGGTGCACGCGCCCTTG
295





8647
ACAGGTGCACGCGCCCTTGG
296





8648
CAGGTGCACGCGCCCTTGGC
297





8649
AGGTGCACGCGCCCTTGGCG
298





8650
GGTGCACGCGCCCTTGGCGC
299





8651
GTGCACGCGCCCTTGGCGCC
300





8652
TGCACGCGCCCTTGGCGCCG
301





8653
GCACGCGCCCTTGGCGCCGC
302





8654
CACGCGCCCTTGGCGCCGCC
303





8655
ACGCGCCCTTGGCGCCGCCT
304





8656
CGCGCCCTTGGCGCCGCCTG
305





8657
GCGCCCTTGGCGCCGCCTGC
306





8658
CGCCCTTGGCGCCGCCTGCA
307





8659
GCCCTTGGCGCCGCCTGCAC
308





8660
CCCTTGGCGCCGCCTGCACC
309





8661
CCTTGGCGCCGCCTGCACCC
310





8662
CTTGGCGCCGCCTGCACCCC
311





8663
TTGGCGCCGCCTGCACCCCA
312





8664
TGGCGCCGCCTGCACCCCAC
313





8665
GGCGCCGCCTGCACCCCACG
314





8666
GCGCCGCCTGCACCCCACGC
315





8667
CGCCGCCTGCACCCCACGCG
316





8668
GCCGCCTGCACCCCACGCGC
317





8669
CCGCCTGCACCCCACGCGCC
318





8670
CGCCTGCACCCCACGCGCCC
319





8671
GCCTGCACCCCACGCGCCCC
320





8672
CCTGCACCCCACGCGCCCCC
321





8673
CTGCACCCCACGCGCCCCCT
322





8674
TGCACCCCACGCGCCCCCTC
323





8675
GCACCCCACGCGCCCCCTCC
324





8676
CACCCCACGCGCCCCCTCCG
325





8677
ACCCCACGCGCCCCCTCCGC
326





8678
CCCCACGCGCCCCCTCCGCT
327





8679
CCCACGCGCCCCCTCCGCTC
328





8680
CCACGCGCCCCCTCCGCTCC
329





8681
CACGCGCCCCCTCCGCTCCC
330





8682
ACGCGCCCCCTCCGCTCCCC
331





8683
CGCGCCCCCTCCGCTCCCCG
332





8684
GCGCCCCCTCCGCTCCCCGG
333





8685
CGCCCCCTCCGCTCCCCGGC
334





8686
GCCCCCTCCGCTCCCCGGCC
335





8687
CCGCGCCCACAGGTGCACGC
288





8688
CCCGCGCCCACAGGTGCACG
287





8689
CCCCGCGCCCACAGGTGCAC
286





8690
GCCCCGCGCCCACAGGTGCA
285





8691
CGCCCCGCGCCCACAGGTGC
284





8692
GCGCCCCGCGCCCACAGGTG
283





8693
CGCGCCCCGCGCCCACAGGT
282





8694
TCGCGCCCCGCGCCCACAGG
281





8695
CTCGCGCCCCGCGCCCACAG
280





8696
CCTCGCGCCCCGCGCCCACA
279





8697
CCCTCGCGCCCCGCGCCCAC
278





8698
GCCCTCGCGCCCCGCGCCCA
277





8699
GGCCCTCGCGCCCCGCGCCC
276





8700
GGGCCCTCGCGCCCCGCGCC
275





8701
GGGGCCCTCGCGCCCCGCGC
274





8702
AGGGGCCCTCGCGCCCCGCG
273





8703
GAGGGGCCCTCGCGCCCCGC
272





8704
GGAGGGGCCCTCGCGCCCCG
271





8705
GGGAGGGGCCCTCGCGCCCC
270





8706
CGGGAGGGGCCCTCGCGCCC
269





8707
CCGGGAGGGGCCCTCGCGCC
268





8708
GCCGGGAGGGGCCCTCGCGC
267





8709
CGCCGGGAGGGGCCCTCGCG
266





8710
GCGCCGGGAGGGGCCCTCGC
265





8711
CGCGCCGGGAGGGGCCCTCG
264





8712
TCGCGCCGGGAGGGGCCCTC
263





8713
CTCGCGCCGGGAGGGGCCCT
262





8714
GCTCGCGCCGGGAGGGGCCC
261





8715
CGCTCGCGCCGGGAGGGGCC
260





8716
CCGCTCGCGCCGGGAGGGGC
259





8717
CCCGCTCGCGCCGGGAGGGG
258





8718
GCCCGCTCGCGCCGGGAGGG
257





8719
CGCCCGCTCGCGCCGGGAGG
256





8720
GCGCCCGCTCGCGCCGGGAG
255





8721
TGCGCCCGCTCGCGCCGGGA
254





8722
CTGCGCCCGCTCGCGCCGGG
253





8723
ACTGCGCCCGCTCGCGCCGG
252





8724
AACTGCGCCCGCTCGCGCCG
251





8725
GAACTGCGCCCGCTCGCGCC
250





8726
GGAACTGCGCCCGCTCGCGC
249





8727
GGGAACTGCGCCCGCTCGCG
248





8728
GGGGAACTGCGCCCGCTCGC
247





8729
CGGGGAACTGCGCCCGCTCG
246





8730
CCGGGGAACTGCGCCCGCTC
245





8731
GCCGGGGAACTGCGCCCGCT
244





8732
CGCCGGGGAACTGCGCCCGC
243





8733
CCGCCGGGGAACTGCGCCCG
242





8734
GCCGCCGGGGAACTGCGCCC
241





8735
CGCCGCCGGGGAACTGCGCC
240





8736
GCGCCGCCGGGGAACTGCGC
239





8737
GGCGCCGCCGGGGAACTGCG
238





8738
CGGCGCCGCCGGGGAACTGC
237





8739
GCGGCGCCGCCGGGGAACTG
236





8740
AGCGGCGCCGCCGGGGAACT
235





8741
TAGCGGCGCCGCCGGGGAAC
234





8742
CTAGCGGCGCCGCCGGGGAA
233





8743
CCTAGCGGCGCCGCCGGGGA
232





8744
CCCTAGCGGCGCCGCCGGGG
231





8745
CCCCTAGCGGCGCCGCCGGG
230





8746
ACCCCTAGCGGCGCCGCCGG
229





8747
GACCCCTAGCGGCGCCGCCG
228





8748
AGACCCCTAGCGGCGCCGCC
227





8749
GAGACCCCTAGCGGCGCCGC
226





8750
AGAGACCCCTAGCGGCGCCG
225





8751
GAGAGACCCCTAGCGGCGCC
224





8752
AGAGAGACCCCTAGCGGCGC
223





8753
GAGAGAGACCCCTAGCGGCG
222





8754
CGAGAGAGACCCCTAGCGGC
221





8755
CCGAGAGAGACCCCTAGCGG
220





8756
CCCGAGAGAGACCCCTAGCG
219





8757
ACCCGAGAGAGACCCCTAGC
218





8758
CACCCGAGAGAGACCCCTAG
217





8759
GCACCCGAGAGAGACCCCTA
216





8760
GGCACCCGAGAGAGACCCCT
215





8761
CGGCACCCGAGAGAGACCCC
214





8762
TCGGCACCCGAGAGAGACCC
213





8763
CTCGGCACCCGAGAGAGACC
212





8764
GCTCGGCACCCGAGAGAGAC
211





8765
CGCTCGGCACCCGAGAGAGA
210





8766
CCGCTCGGCACCCGAGAGAG
209





8767
CCCGCTCGGCACCCGAGAGA
208





8768
CCCCGCTCGGCACCCGAGAG
207





8769
ACCCCGCTCGGCACCCGAGA
206





8770
CACCCCGCTCGGCACCCGAG
205





8771
CCACCCCGCTCGGCACCCGA
204





8772
CCCACCCCGCTCGGCACCCG
203





8773
GCCCACCCCGCTCGGCACCC
202





8774
GGCCCACCCCGCTCGGCACC
201





8775
CGGCCCACCCCGCTCGGCAC
200





8776
CCGGCCCACCCCGCTCGGCA
199





8777
TCCGGCCCACCCCGCTCGGC
198





8778
ATCCGGCCCACCCCGCTCGG
197





8779
GATCCGGCCCACCCCGCTCG
196





8780
TGATCCGGCCCACCCCGCTC
195





8781
CTGATCCGGCCCACCCCGCT
194





8782
GCTGATCCGGCCCACCCCGC
193





8783
AGCTGATCCGGCCCACCCCG
192





8784
CAGCTGATCCGGCCCACCCC
191





8785
TCAGCTGATCCGGCCCACCC
190





8786
GTCAGCTGATCCGGCCCACC
189





8787
AGTCAGCTGATCCGGCCCAC
188





8788
GAGTCAGCTGATCCGGCCCA
187





8789
CGAGTCAGCTGATCCGGCCC
186





8790
GCGAGTCAGCTGATCCGGCC
185





8791
GGCGAGTCAGCTGATCCGGC
184





8792
AGGCGAGTCAGCTGATCCGG
183





8793
CAGGCGAGTCAGCTGATCCG
182





8794
CCAGGCGAGTCAGCTGATCC
181





8795
GCCAGGCGAGTCAGCTGATC
180





8796
AGCCAGGCGAGTCAGCTGAT
179





8797
GAGCCAGGCGAGTCAGCTGA
178





8798
AGAGCCAGGCGAGTCAGCTG
177





8799
CAGAGCCAGGCGAGTCAGCT
176





8800
TCAGAGCCAGGCGAGTCAGC
175





8801
CTCAGAGCCAGGCGAGTCAG
174





8802
GCTCAGAGCCAGGCGAGTCA
173





8803
GGCTCAGAGCCAGGCGAGTC
172





8804
GGGCTCAGAGCCAGGCGAGT
171





8805
GGCCGACGGCCCACCTGGGCTTCG
351





8806
GCCGACGGCCCACCTGGGCT
352





8807
CCGACGGCCCACCTGGGCTT
353





8808
CGACGGCCCACCTGGGCTTC
354





8809
GACGGCCCACCTGGGCTTCG
355





8810
ACGGCCCACCTGGGCTTCGT
356





8811
CGGCCCACCTGGGCTTCGTG
357





8812
GGCCCACCTGGGCTTCGTGA
358





8813
GCCCACCTGGGCTTCGTGAA
359





8814
CCCACCTGGGCTTCGTGAAC
360





8815
CCACCTGGGCTTCGTGAACA
361





8816
CACCTGGGCTTCGTGAACAG
362





8817
ACCTGGGCTTCGTGAACAGT
363





8818
CCTGGGCTTCGTGAACAGTG
364





8819
CTGGGCTTCGTGAACAGTGG
365





8820
TGGGCTTCGTGAACAGTGGG
366





8821
GGGCTTCGTGAACAGTGGGA
367





8822
GGCTTCGTGAACAGTGGGAG
368





8823
GCTTCGTGAACAGTGGGAGG
369





8824
CTTCGTGAACAGTGGGAGGG
370





8825
CGCTGAGGCTCTAGAAAAGTCGAGAG
446





8826
ACGCTGAGGCTCTAGAAAAG
445





8827
GACGCTGAGGCTCTAGAAAA
444





8828
GGACGCTGAGGCTCTAGAAA
443





8829
AGGACGCTGAGGCTCTAGAA
442





8830
TAGGACGCTGAGGCTCTAGA
441





8831
CTAGGACGCTGAGGCTCTAG
440





8832
CCTAGGACGCTGAGGCTCTA
439





8833
TCCTAGGACGCTGAGGCTCT
438





8834
GTCCTAGGACGCTGAGGCTC
437





8835
AGTCCTAGGACGCTGAGGCT
436





8836
GAGTCCTAGGACGCTGAGGC
435





8837
TGAGTCCTAGGACGCTGAGG
434





8838
GTGAGTCCTAGGACGCTGAG
433





8839
GGTGAGTCCTAGGACGCTGA
432





8840
AGGTGAGTCCTAGGACGCTG
431





8841
AAGGTGAGTCCTAGGACGCT
430





8842
AAAGGTGAGTCCTAGGACGC
429





8843
CTCGTCCCCGTGAGCTTGAATCATCCGACCC
480





8844
TCGTCCCCGTGAGCTTGAAT
481





8845
CGTCCCCGTGAGCTTGAATC
482





8846
GTCCCCGTGAGCTTGAATCA
483





8847
TCCCCGTGAGCTTGAATCAT
484





8848
CCCCGTGAGCTTGAATCATC
485





8849
CCCGTGAGCTTGAATCATCC
486





8850
CCGTGAGCTTGAATCATCCG
487





8851
CGTGAGCTTGAATCATCCGA
488





8852
GTGAGCTTGAATCATCCGAC
489





8853
TGAGCTTGAATCATCCGACC
490





8854
GAGCTTGAATCATCCGACCC
491





8855
AGCTTGAATCATCCGACCCC
492





8856
GCTTGAATCATCCGACCCCG
493





8857
CTTGAATCATCCGACCCCGC
494





8858
TTGAATCATCCGACCCCGCA
495





8859
TGAATCATCCGACCCCGCAG
496





8860
GAATCATCCGACCCCGCAGG
497





8861
AATCATCCGACCCCGCAGGC
498





8862
ATCATCCGACCCCGCAGGCC
499





8863
TCATCCGACCCCGCAGGCCT
500





8864
CATCCGACCCCGCAGGCCTC
501





8865
ATCCGACCCCGCAGGCCTCC
502





8866
TCCGACCCCGCAGGCCTCCC
503





8867
CCGACCCCGCAGGCCTCCCG
504





8868
CGACCCCGCAGGCCTCCCGG
505





8869
GACCCCGCAGGCCTCCCGGG
506





8870
ACCCCGCAGGCCTCCCGGGG
507





8871
CCCCGCAGGCCTCCCGGGGG
508





8872
CCCGCAGGCCTCCCGGGGGT
509





8873
CCGCAGGCCTCCCGGGGGTG
510





8874
CGCAGGCCTCCCGGGGGTGT
511





8875
GCAGGCCTCCCGGGGGTGTC
512





8876
CAGGCCTCCCGGGGGTGTCG
513





8877
AGGCCTCCCGGGGGTGTCGT
514





8878
GGCCTCCCGGGGGTGTCGTA
515





8879
GCCTCCCGGGGGTGTCGTAT
516





8880
CCTCCCGGGGGTGTCGTATA
517





8881
CTCCCGGGGGTGTCGTATAA
518





8882
TCCCGGGGGTGTCGTATAAA
519





8883
CCCGGGGGTGTCGTATAAAG
520





8884
CCGGGGGTGTCGTATAAAGG
521





8885
GCTCGTCCCCGTGAGCTTGA
479





8886
TGCTCGTCCCCGTGAGCTTG
478





8887
CTGCTCGTCCCCGTGAGCTT
477





8888
CCTGCTCGTCCCCGTGAGCT
476





8889
TCCTGCTCGTCCCCGTGAGC
475





8890
CTCCTGCTCGTCCCCGTGAG
474





8891
GCTCCTGCTCGTCCCCGTGA
473





8892
CGCTCCTGCTCGTCCCCGTG
472





8893
GCGCTCCTGCTCGTCCCCGT
471





8894
AGCGCTCCTGCTCGTCCCCG
470





8895
GAGCGCTCCTGCTCGTCCCC
469





8896
AGAGCGCTCCTGCTCGTCCC
468





8897
GAGAGCGCTCCTGCTCGTCC
467





8898
CGAGAGCGCTCCTGCTCGTC
466





8899
TCGAGAGCGCTCCTGCTCGT
465





8900
GTCGAGAGCGCTCCTGCTCG
464





8901
AGTCGAGAGCGCTCCTGCTC
463





8902
AAGTCGAGAGCGCTCCTGCT
462





8903
AAAGTCGAGAGCGCTCCTGC
461





8904
AAAAGTCGAGAGCGCTCCTG
460





8905
GAAAAGTCGAGAGCGCTCCT
459





8906
AGAAAAGTCGAGAGCGCTCC
458





8907
TAGAAAAGTCGAGAGCGCTC
457





8908
CTAGAAAAGTCGAGAGCGCT
456





8909
TCTAGAAAAGTCGAGAGCGC
455





8910
CTCTAGAAAAGTCGAGAGCG
454





8911
GCTCTAGAAAAGTCGAGAGC
453





8912
AGGCGTTTCTGGAAGAGAATGAGAACG
604





8913
GGCGTTTCTGGAAGAGAATG
605





8914
GCGTTTCTGGAAGAGAATGA
606





8915
CGTTTCTGGAAGAGAATGAG
607





8916
CAGGCGTTTCTGGAAGAGAA
603





8917
GCAGGCGTTTCTGGAAGAGA
602





8918
GGCAGGCGTTTCTGGAAGAG
601





8919
GGGCAGGCGTTTCTGGAAGA
600





8920
GGGGCAGGCGTTTCTGGAAG
599





8921
TGGGGCAGGCGTTTCTGGAA
598





8922
GTGGGGCAGGCGTTTCTGGA
597





8923
GGTGGGGCAGGCGTTTCTGG
596





8924
AGGTGGGGCAGGCGTTTCTG
595





8925
GAGGTGGGGCAGGCGTTTCT
594





8926
AGAGGTGGGGCAGGCGTTTC
593





8927
CGTCAAAAGCAGGCACGAGCAACCTG
701





8928
GAACGAACCAAAGGAGCAAGGCG
742





8929
CGCTGACAAGGGTGCCTAGGCCCGG
1318





8930
GCGCTGACAAGGGTGCCTAG
1317





8931
TGCGCTGACAAGGGTGCCTA
1316





8932
TTGCGCTGACAAGGGTGCCT
1315





8933
ATTGCGCTGACAAGGGTGCC
1314





8934
CATTGCGCTGACAAGGGTGC
1313





8935
TCATTGCGCTGACAAGGGTG
1312





8936
CTCATTGCGCTGACAAGGGT
1311





8937
GCTCATTGCGCTGACAAGGG
1310





8938
TGCTCATTGCGCTGACAAGG
1309





8939
TTGCTCATTGCGCTGACAAG
1308





8940
CTTGCTCATTGCGCTGACAA
1307





8941
CCTTGCTCATTGCGCTGACA
1306





8942
CCCTTGCTCATTGCGCTGAC
1305





8943
TCCCTTGCTCATTGCGCTGA
1304





8944
CTCCCTTGCTCATTGCGCTG
1303





8945
TCTCCCTTGCTCATTGCGCT
1302





8946
CTCTCCCTTGCTCATTGCGC
1301





8947
TCTCTCCCTTGCTCATTGCG
1300





8948
CGCAATTCCGTATTTGTTCCGG
1738





8949
GCAATTCCGTATTTGTTCCG
1739





8950
CAATTCCGTATTTGTTCCGG
1740





8951
AATTCCGTATTTGTTCCGGG
1741





8952
ATTCCGTATTTGTTCCGGGT
1742





8953
TTCCGTATTTGTTCCGGGTC
1743





8954
TCCGTATTTGTTCCGGGTCT
1744





8955
CCGTATTTGTTCCGGGTCTG
1745





8956
CGTATTTGTTCCGGGTCTGC
1746





8957
GTATTTGTTCCGGGTCTGCA
1747





8958
TATTTGTTCCGGGTCTGCAT
1748





8959
ATTTGTTCCGGGTCTGCATG
1749





8960
TTTGTTCCGGGTCTGCATGA
1750





8961
TTGTTCCGGGTCTGCATGAG
1751





8962
TGTTCCGGGTCTGCATGAGC
1752





8963
GTTCCGGGTCTGCATGAGCA
1753





8964
TTCCGGGTCTGCATGAGCAA
1754





8965
TCCGGGTCTGCATGAGCAAA
1755





8966
CCGGGTCTGCATGAGCAAAT
1756





8967
CGGGTCTGCATGAGCAAATA
1757





8968
CCGCAATTCCGTATTTGTTC
1737





8969
GTACGTTGGCAGACGCAGTGACG
4923





8970
TACGTTGGCAGACGCAGTGA
4924





8971
ACGTTGGCAGACGCAGTGAC
4925





8972
CGTTGGCAGACGCAGTGACG
4926





8973
GTTGGCAGACGCAGTGACGT
4927





8974
TTGGCAGACGCAGTGACGTA
4928





8975
TGGCAGACGCAGTGACGTAT
4929





8976
GGCAGACGCAGTGACGTATT
4930





8977
GCAGACGCAGTGACGTATTT
4931





8978
CAGACGCAGTGACGTATTTG
4932





8979
AGACGCAGTGACGTATTTGA
4933





8980
GACGCAGTGACGTATTTGAG
4934





8981
ACGCAGTGACGTATTTGAGA
4935





8982
CGCAGTGACGTATTTGAGAG
4936





8983
GCAGTGACGTATTTGAGAGT
4937





8984
TGTACGTTGGCAGACGCAGT
4922





8985
ATGTACGTTGGCAGACGCAG
4921





8986
CATGTACGTTGGCAGACGCA
4920





8987
TCATGTACGTTGGCAGACGC
4919





8988
ATCATGTACGTTGGCAGACG
4918





8989
TATCATGTACGTTGGCAGAC
4917





8990
GTATCATGTACGTTGGCAGA
4916





8991
GGTATCATGTACGTTGGCAG
4915





8992
GGGTATCATGTACGTTGGCA
4914





8993
TGGGTATCATGTACGTTGGC
4913





8994
CTGGGTATCATGTACGTTGG
4912





8995
GCTGGGTATCATGTACGTTG
4911





8996
TGCTGGGTATCATGTACGTT
4910





8997
TTGCTGGGTATCATGTACGT
4909





8998
CTTGCTGGGTATCATGTACG
4908



















Hot Zones (Relative upstream location to gene start site)







  1-800


1200-1800


4800-5100









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11978)







TGAAGACTATAGCCCCTTTCTTTTGGCTGATTTCTCCCTTTTGGAATGGG





AATGTTTACCCAGTGCTGGTACTCCCATTATATCTTGGAAGTAAATAACT





TGTTTTGATTTTACAGGCTCATAGATGGAAAGAGATGAGTCTCAGATGAG





ACTTTGGACTTGGAATTTGGACTTTGGACTTTTGAGTTAATGCTGGAACA





AGTCAAGACCTTGGAGGACTGTTGGGAAGGCATGATTGTATTTTGAAATG





AGAGAGGGACATGAGATTTGAGAGGGGCTGGGGCAGAATGATATAGTTTG





TGTACTTATCCCCACCCAAATCTCATGTGGAATTGTAATCCCTAGTATTG





GAGGCGGGACCTGGTAGGAGGTGATTGGATCATGGGGGTGGATTACTCAT





GAATCGTTTAGCACTATCTGTTTGTTGCTGTCCTTGTGATGAGTGACTTC





TCATGAGATCTGGCTGTTTAAAAGTGTGTGGCACCATGCTTTCTCTTGTT





CCCGGTCTGGTCATGTGACATCCCTACTCCCCCTTCACCTTCCATCATGA





TTGTAAGTTTCCTGAGGCCTCACCAGAAGCCAAGCAGATGCCAGCATCAG





GCTTCCTGCAAAGCCTGAAGAATCATAAGCTGATTAAATCTCTCTCTCTT





TTTTTTTGAGATGGAGTCTCATCCTGTGGCCCACGCTGGAAGGCAGTGGC





ACTATCTCTGCTCTGAGGCTCAAGTGATTCTCCTGCCTCAGCCTCCTGAG





TAGCTAGGATTACAGGTGCATGCCACCACACCCAGCTAATTTTTGTATTT





TTAGTAGAGATGAGGTTTCACCACGTTGGCCAGGCTGGTCTCGAACTCCT





GACCTAAGGTTATCTGTCCACCTCAGCTTCCCAAAGTGCTGGGATTACAG





GTGTGAGCCATTGCACCCGGCCTCTTTTCTTTATAAACTACCTAGTCTCA





GATATTTCTTTTTGGCAATGCAAGAATGGCCTAATACACCAAGATTTGTG





TTTTCACCATTTTTTTTCTGTTTATAACCATGTTATTTTACTGTTTATCT





GAGAAAAGAACCTGGCCTGTTAGTATTTTTTATCGACTGACAAACTCACC





AGAATAAAGTGGGTATTAGGACCCTTGGTTCTGCAAGATTTTGGTAACAG





AATCTGTTTTCACTAATTGTTGGGAAACAGAAATGATATTCCTTTTAGAC





CTAGCTCCCTAAACCTTTTCCTCGTTTTGCTTTTTGGTACAATAATGAGG





GCTGGCAGGGCTACTTGACACCATTAGCAGTAGACAAATTTTTCAATAAG





GACTAACAGAGAAAAACTATGGAAATTCTGATTTATTGTTTGGCCGAGAG





AGTTCTCTGTCTCCTTGTGCCCTTGCTCTCCATGTATATTTTATGAGACA





TTTCAGCAAAGGCATCTCTCAAAATTAATCCCATAGCTGTCTCCTTCAAT





TCTCCTCCTTGAAACTCTTCACCAATCTTCATAGGGCCTTGGCCACTTCT





TGAGGGCCCTCCCACCAGATGATTAAAGGCAATACAGTGAACGAAAGTCT





TATTCCGAGACTTGTCTTTGTAAACTTAGTGATCCTTCTTCCTTTTCACT





TACGAAAATTTAAAGAGAAGCAGTCTCAAATGTGAACTGAATGCCGTCCC





ATTACTCCCCCAAACTGGGAAGAAGCTGGTCATATACTTGCACATTTATA





TAATAAATATTCAAAGACTCTAATCTGGTATCTTCCATATAACACACACT





TTAACTCCTATTTTAAACTTTCAAAAGGCTTTTTATGGCATCTTATGCCC





TACTTTAAAATGTCTGTCAGCCTAATATTTCTACTTTTTTTTTATTAATT





TATTTTCAAGGTCATGTGTGAAAACAACTTTCAGTGAAAAGAACCCATCT





GCTTTGACAAAAATGTACACTATAAACCTTCACTTCTACAAGGGTCTAAA





AAAATTCAAGGGTTTGATTCGAATGCTTCCAAACCACATTCCCTAAAGCA





TGCTTTGTGCAACACTAGGAGTTGGTGCAGCAAACAAAAACAAGGAATGG





GGAGAGGTGCCAGGCAGGCGCGGTGGCTCATGCCTGTAATCCCAGCACTT





TGGGTGACCCAGGCAGGTGGATCACTTGAGGTCAGGAGTTCGAGATCAGT





CAACATGGTGAAACCCCGTCTCTTCTAAAATACAAAAATTAGCTAGGTGT





GTGTGCACGTAATCCCAGCACTTTGTGAGGCTGAGGTGGGTGGATCACTT





GAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTC





TACTAAAAATACAAAAAAAAAAATTAGCCGGGTATGGTGGCACACACCTG





TAATCCCAGCCACTCAGGAGGCTGAGGCATGAGAATTGCTTGATCCCTGG





AGGCAGAGGTTGCAGTGAGCAGAGATCATGCCTGGGGAAAAGAGAGAGAC





TATGTCTCAAAAAAAAAAAAAAGAAAAAAGAAATAGGGAGAGGGAGTGAT





GCTACATACTGAAGCTACCTACCCTCTTTAAAATTCAAAATGCAGATTAT





CATCTTAAAGAATTGTATGCATTTTAAAGTGAAGGTATTTGTTTAATTTT





GTTTAACCTCTTATTTCTCAAAGTTACTTGATTACAGAATTCTTTTCGGG





TATGCATGCAATACCGAGCAACATATGACCGAGCTAGGGTTCCATGGTAC





ACAGTTTGGAACTTGTGCTAGAAAATGTTACTCATTATTTTATAAGAAGT





ATTATTCCAAGGCATCTATGCATTGGAAAATAATCTTGATATGAAATATG





ACTCGATCCCTTCTCATACCATATTTACAGGGTATGGTGGTTAACTTTAT





GTGTCCACTTGTCTCTTAGCCCATCCTGGGTTAAGGGATGCCCAGACAGC





TGGTAAAATATTATTTCTGGGAGAGTCTGTGAGAGTATTTCTGGAAGAGA





TTAGCATTTGAATCAATAGACTGGGTATCAAAAACCCATCCTCACTAATG





TGAGTGGGCATCATTCAATTAACTGAGCATAGGAATCATAAAAGAGGTGG





AGGAAGGCAAATTTGCTCTCTCTTCTGAAGCTGGGACATCCATCATCTGC





TCCTGCCCTTGACTTCAGAGCTCCAGGTTCTTGAGCCTTCAATACCAGCA





GACACTCTTCAGCCCTTCAGCTTCACATGCAAGAATTACACTGGATTTCC





TGGTTCTTCGGCTTGCAGGGGGCACATATTGGAACTTCTTGGCCTTTATA





ATCTCCTGAGCCAATTCCTATAAGAAGTGTCTTTATATATCTATATATAT





CCCATTGGTTCTGTTTGTTTGGAAAACCCTGATACACAGGGCTATCTATA





GCTCACCCCCCAAGTACTAAGTCTCCAGATGATTATTAGGTTCTTATAAA





CACAAAATATATATGCTTATTTTGTAATATCAGGTTGTTAACTTCATCTG





AGTAGTTTTCAGCACATATGATGGGGATAAGTCATCAGTTATGACAGACA





ACTTCCGGAGTTACATCACCAATGTTCATCTATCACTCACCTTTGCTTCA





AACTTTATGCATCATATTCAAGTTAATTCCTATTGCATGTACTTCTGATT





TCCACCTACAAAATGAACATTAAATTTATTATTTCCCTCATTTAAAAAAA





AAGATTTCAGGCCAGGTGCAGTGGCTCATGCCTGCAATCACAGCACTTTG





GGAGGCTGAGGCGGGTGGATCACTTGAGGCCAGGAGTTCAAGACCAGCCT





AGGCAACATGATGAAACCCCTATCTCTACTAAAAATACAAAATACAAAAA





AAAAAAAAATTAGCCAGGTGTATGTGTGCCTGCAATCCCACCCCTACTCA





GGAGGCTGAGGCAGGAGGATAGCTTGAGTTCTGGAGGCGGAGGTTGCCGT





GAGCCAAGATCACGCCACTGTACTCAAGCCTGGGCAAGACAGCAAGACTG





AGACTCTGTCTCAAAAAAAAAAAAAAAAAAAGTTTTCAAATCACTTTTTC





TCCTTTGCAGTTCAGCATTGTCACTAAAGGTGTCCAGGTTAGACAGAACT





GGGTACAAACCCTCCTTTCTCTTCCCCTTACTCTTTCACCTCTTCATTTG





TGACATGCAATGTTAACCCAATACAACTCATGAGTATTCAGAGATCCCGT





CTGTATACGTCCTCAGCCTGACATACTGTAATCCTTAGGCATCCTTATTA





GTAATAAGATGTCCTTGTGTGATTTTTTCACAAACTTTTCACAGACCCTA





TCTATGTTCATTCCTGGAACCTCTGGCACATTCTTCTTCCTTCTCTTCCC





AATCTCAACTTTTTCATCCTCTGAATCTCCCTATACTTTCCCCGTGGACA





AGCCTCTAGAAATGTTAAAATGTCAGATCATGATTGGTAAATCTGTAGTG





ACTAATTGCCCACTGCTGCCTATTCCATCTGACCTAAATTCCTCAGGTCT





TCTAACATTAAGACCTCTTCCTGGCCGGTTGTGCTGGCTCATGCCTGTAA





TTCCAACACTTTAGGCAGCTGAGGCAGGCAGATCACTTGAGGTCAAGAGT





TCAAGACCAGCCTGGCCAACATGGTGAAGCCCTGTCTGTACTAAAAAATA





CAAAAATTAGCCGGACCTGGTGGTGCGTGCCTGTAATCCCAGCTACTCGG





GAGGCTGAGTCAGGAGAATCACTTGAACCCGGGGCAGCGGGGGAGGCTGC





AGTGAGTGGAGATCAAACCACCGCACTCCAGCCCAGGTGACAGAGCAAGA





GTCAGTCTCAAAAAAAAAAAAACAAAAAAAAAAACCTCTTCCTATAGCTA





ACTCCCACTTACCACCCCCATCATGAACACTCTTGATGTATTTACATGGT





TTCTCCTTCGAACATCCTCCTTTCTTCTTTCTTAATGGTTGTTATCAAAT





ACCCTGATAAAAAACAAAAACAAAAAACCTCCTCTGAAGGTCCCTTATTC





ACCCTTCCAACGCTACAGGTCTGTAACTCTCATTTTCTTTTTAAAAAATT





TTTATTTTTTTAATTTATTTTATTTTTTTTTTCAGACGGAGTCTTGCTCT





GTCGCCCAGGCTGGAGTGCAGTGACACGATCTCGGCTCACTGCAACCTCC





ACTTCCCAGGTTCAAGCAATTCTCCTGCCTCAGCCTCCTGAGTTGCTGGG





ATTACAGGTGCCTACCACCACACCTGACCTCAAGTAACCCACCCACCTCG





ACCTCCCAAAGTGCTGAGAATACAGGTGTGAGCCATCATGCCTGGCCAAA





ATTTTTAAATTTTAAAAAATATATTTTATTTTTTGTAGAGACAGGGTCTC





ATTTTGAGCCCAAACTGGTCTTGAACTCCTAGGCTCAAGTGATCCTCCTG





CCTTGGCCTCCCAAAATGCTGGGATTATAGGCACAAGCCACCAGGCCTGA





TCCTTACTTTTCTTCTGATGAATTCACATATATGTGCACAAATACTTTAT





ACTAAATTGTATTTACTGATGTACTTTTTTCACTGTGCCTTTTCTTTTTC





TTGCCCAGATATTTTTCTCATATAAACATTAGCTCCTTAATGGGAGCAAA





TGAACCAGTTTTTTTTTAATTCCCACCCAAAGTGAGAATATAAAAATTTT





TTATTGATCCACCAATACTGAACACTTTCATTTCTAATAGTTATATTTAA





CTGAATAAATTACACACGGGACAAAAATGTTATTTAAGGGATAAAGTTGG





GTGTTTGCTCAGGGACAACGTTGTATATTGAATGATTTGGTGCTTTTGTG





AATTTATCATTCAAAAGACCATCGTGATGGCTAAATAACAGAAAGGAGAG





CTTTATTGGCAATATCAATTTGCAAACCCGGAAGACATAGTCTTCGGTGT





ATGCTGAATGTGGTCTCTCTTCAAAAGAGAGGAAGGACAGTTGGGTTTCA





TGCCTCACAGGGTCTGTTTCACACAGTGGAGTCATACATATTCAGCAGGT





TTGGAGGAAAAGATATACATATTTATGAGGGGAGCTGAGTGCATGTGCAA





TGGGTAAATATGTATGTGACATCCCATGTACACTTTGGGGCAGGGTTTTA





GTGTTAAAATGAGGTAAAATTTGGCTCTTTACATCAAAAGGTGAACTACA





GGACCCAAAGACAGTTTGTGCACAGCCTCTAATAAACTGGCTGACACTGG





CTTAAGGTCTGCAATTGCTTATCAGAAAAGAATGTTTGTAAGGCTGGTCC





TCATTCCAATTAGAGTTGTAGTGGTCTGGGTTGTAAATCACAGGATGGGG





CTGATAGTTCCTATTATTAGGGAGTTTAGAGCCATAGAAATTGAGAAATT





GGTCATGCCAGCCAGTCCCCGAACCCTAACCCTGTAGGTAACTTTGTTTC





CTTAACCTTACAGTCCATCTTAGGTGATAAAGGGGTGTCTGTTTTGGTAT





CTCACATCACAAATTGTTGGTTGGTTTGTGTGTTTGTTTCATCATTCAGG





ATGTTGTTTCTTTAGGGAATGTGAACCTGAATTCTCAAGGCTTGTTAGAC





TGTAATGTTCCCATTCATTTTAGGTTTAGCTCATGCTTCTCTAGCCACAG





CCTTCACTTGGATTTTAAAAGTTGAATTACTCATCAAAGTCTCTAGGACA





CGAAAGACAATCCTTAGGTATGATTTGACCAGTAAAAAAGAGATCCAGCT





GCCTTGAAGCATAAGATCCCCTCGGCTCCAATGTCTATCACTAATATTCA





GTGTGGCAAGGATCCCAGGCCACAGAGCTGTGGCTTCCTGCAGCTGCTCT





GGGGAGTGACTCTCTTGGAGCATGTGATGTGGTCTTCCATTGTGCAGGAC





CAGCCCAGTGGCATCCTTTCAACACCTCTGGCAAGCAGCCTTTCCAAGCA





CGGGTGCCGTCTGAAAACAGGAGGCATATCTTTCACATCCTAGGCACACG





CCCTAGGGAGTGGTCAGGGTTTTGTCCAGTTCTCAGCAAACTAGCTACAG





CTCCATCCCTTACTCCCACACTCAAGAGAGATACTAGAATACAACTGAGA





GTAGCCTGATATGATGCTAACCTCGAGTTGCTTTTATTTAAATTAAAATA





AATCAACCAGACACAGTGGCTCATGCCTATAATCCCTGCATTTTAGGAGA





TCAAGGAGGGTGGATCACGAGCTCAGGAGTTTAAGACCAACCTGGATAAC





ATGGCAAGACCCCATCTCTACAAAAAGTACACAAATTAGCTGGACATGGT





AGTGCGCACCTGTAGCCCCAGCTACTCTGGAGGCTGAGGTGAAGGATCAC





TTGAGCCCAGGAGGTAGAGGTTGCAGTGAGCTGAGATTGTGCCACTGCTA





ATAATTAATTAAATAATTAATTAAATTAATAAATCGTGCCACTTTATTAA





ATAAATAAAACAAGAGTAAATCACTCACAAATTTGGAGCTTTTATTAGCA





AAACATTACTTAGGAAATCTAAATAAATAACACGGGGTTGACAGCCATTG





TTCTAACTGGCAGCCCCTGGCAAGCTCAAAGCCAGGATTATGCTGGTCAC





TTAAGTGACAGCTATTGCGAATTGTTGTTCTCTCAAGAAAAAAGAACCGA





TTTCTATGGTAAACCAGGCACTGTGCTGGGTGCCTTTACAATTCATCACC





ACACCACCTAATGAAAGGAGCATTCTTCAGAAACTGTAGTGCTCAGGCTT





TCTCAAGGCCTGAGTTCTTTTCCACCAGAGCATATTGTTGCCCTATTATC





CAAAGTTCTCTAAGGAAGAGAACTGACGTAAGACCCACATGGCTCCATTA





CATCTTCTGGCTACTTGATTGATTTTCATACTCCCTACCTCTGGGGTTGG





TATGTACTATCTATTTCTTTCTCCTCTCGTTCTTCCTTTTTATTCCATAA





AATACAGGAATATTCCTGTACATTAGTCCTTGCAGCAACCTTGGAATTAC





TACATTCCTCAAACAAGTTATGGAAGCCAGCTGCCAATATTGGTCCCTGG





TTAAACAGTGAATTCTGTTGTTCCATAGAGTTACTACTGAAATACCTAAG





CCATTTTGTAAAATATAATTTAGTTGATCTGAAGGCTGTCTCTAAAGCAG





TTTTATGTAGTGATTACAGAGAAGGACTAATTTCAAGAGTATTTTATTGT





TTAAAAAAATGTAAACATTTTATGGATGCACTAGTGAAGTAAAGACCAAT





AAATGAAGCAGTAACTTTAATAAAAGGGTAAGTAAAATGTCACATCCTCT





GCCTATATTCAGGTCTGTTAGGTATGTGTAGTTAAATGTAGGTAAGTTAG





TTGATAATTATTTATTTAAGCATTTCTTTATGTCTACTCATTAAAAAGAA





AAAAAGATTAAAAGAATGTTACTATGTGAAAAACTGCCCATCACTGGGGA





AAAGAATTTTATTATGCAAAGCTTCAACGCTATTTACAGTTTAGACTTTT





GTAGCTATTGAAGGCTGACATTGAGATAAAGAAGTTAATCATGTCCTTCT





GTCTTGGAGGAGGTAGAAAGAGATGAGAATGAATACAATTCAGGATCTAC





TTCTGGTCTTTGATGAGGAGTTAGCACACGGTTCTGGGAGGAAAGACAGG





TTAAGAGGCATGTGAAACTCTCAAATACGTCACTGCGTCTGCCAACGTAC





ATGATACCCAGCAAGCTCACATCTTCATGGAAAGCATGGTAATTCCCAAC





ACTACCGGAAGTCTGGAGTGGCTAAGTAATCCATATATTCAACCAGGAAG





CAGCTAAAGAAATATTCTAATTACCTAGGAAGGTTTCTGATTTCAAAAGG





ACATGAATAAAAAGTAGAAGGAATCCACTCCCAAGGACGGACATCAGAGT





AGCTTAAAATGTGAGAATAATTTTAGGGGAATTTTAGAGGTTTGGTTATA





GACTTATGTTCCCCCAAAATTCATATGTTGAAGCCCTAACCCCCAGTACC





TTAGAACATGACTGTATTTGGGTAGGGCCTTTGAAGAGCTAATTAAATTA





AGGCCACTGGCGTGGGCCCTAATATAATCTGGCTGGTATTCTTGTAAGAG





GAGGAGATTAGGACACACAGAAATACCAGAGGTACCTGTGCAGAGGAAAG





AACGTGTGAGGACTTAGCAAGGGTGCAGCCATCTGCAAGCCAAGGAGACC





TCTGAGGATTCCAATCCTATCTGCATCTTGATCTTAGACTTTTCTGGAAC





TGTGAGAAAATAAATTTCTTGGTTTAAGCCACCCAGTCTGTGATATTTTG





TTATGGCAGCTCTAGTAAACTAATACAGATTTTAAATGTCATTAAATGTC





AATGTTTAAGCTTTGACAAAATTTTCTAAAGGAAAGTATAAAAGGTCATT





TTCTTTCTTTTCAGAGCCTGATGATTGCGGGAGGGGTAAGCCAGCTGCAT





GGGGATCATGATGCAATGCTGATGCAGGACAGACAGAAAGTAGATCTCTT





CCATTTCTATTTTTTTTTTTTCTGTTGAGTTGAATGATCTTCAGACTGAA





AATGAAAGAAAGGTCACTGGAAATAAAGGCCAAAGATGAGTGACAGGATT





ATAGAATAAGTCTTAGCTGTTCTAAAGAAGGACATATTATGTACCCCCAC





CCCCAAATTCATATGTTGAAGTCCTAACCCGACAGTGTCTCAAAATGTGA





CCATATTTGGAGATAGGGTCAAAGATGTAATTAAGGTTAAATGAGGTCAT





TAGCATGGATCCTAACCCAATATCTGCTGTCCTTATAACAAGAGGAGATT





AGGGCACAGTAAGACACAGAGGGAAGACCATGTGAGAATACAGGGAGAAG





GTGGCCATCTGCAAGCCAAGGAGAGAGGCCTCAGAAGTAACCAACTCAGC





CAACACCTCGATTTCAGACTTCCAGCCTCCTGAAATGTGAGGAAATACAT





TTCTGGTGTTTGATCCATCCAGTCTATGGTAAGTTATGGCACCCCTGCAG





GGTTCATCTGGCTCAGACTTAACGATTGCTTTTGGTGATATTTATAGGGC





ACAGATAACAGCCTAAACACAAGACGACAGAAACGCGGCCCAGCAGACTA





TGCATAAAATAGAAATGGGGTATCTGGACCAATTGGAGTCTGCAGTGGGA





TGCGGTTACTAAAACAGTCAAATGCAACATGAGGCTCCAGGCAGAGTAGT





GGGCAACATCTCCCATGTTGCAGCAGTCAGAGCACACTTCGAGTACTGTA





AAAAGACACAGACAAGCCAGAACACATTTAGAGAATGGCCAAGGTGTGGA





AGGAACCAGAAACCATGCCATTATGCAACTGTTGAAGGAAGTGCCTGTTT





TACCTTGTGAAGAGAAGACTCTAGAGGAAGAAGTAGCATGAAAACCGCTG





GCAAATTTGTAAAGATCTGAAGTGTGGAAAAGAATTATTCTGCTTGGTCA





CTGGGGATACAAGGATATCTGAGTGGGAGTTTAAAGGCGGGGGATGTGAG





CTTTAAATGGGATAAGAACATTCTAGTAACCAGAAATGCCCAAAGATAGA





ATGCACAGTCTGGAGAGCCAGTGAATATCTCACAAATGGAGACACTTGAA





ACTAGGATGGGGATGCTGTTGTAGGAATTCCAGCAGACAAGTGGTTGTTG





GTTCCTTCCCCAACTTTGTAGGGTTATAACTAGGGATGTTCCTGCGTTTT





CTGCTTGGAGGATCTGCAAGACACCTCAGGGCAGGAAATGGCATTAAATG





CAGAACAGAGCTAGTGGCTGAAAAGCAAAAAGCCATCAGGATCTCTGAGT





AGTGAAGGAACCAGAGAACATGCAGGCAATGTCCATCATTCTGACGCAAT





CAGCAGCATAATCATCTTCCCCCAGGAACATCTTGACCAGGGAATGTGTC





AGTGTGGTGAATTTCAACAGTGGAAAGAGAAACTGCTAAATCTAAGAACT





TTAATTTTTATAGATTATGATCTCATCTCTACAATTTTGAATTTCATGCT





CAATAAAAGTTCCTTACTCTCTTTTTTTTTTTTTGAGACGGAGTCTCGCT





CTGTCGCCCAGGCTGGAGTGCAGTGGCGCGATCTCGGCTCACTTCAAGCT





CAGCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCCAGTAGCTG





GGACTACAGGCGCCCGCCACGACGCCCGGCTAATTTTTTGTATTTTTAGT





AGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTGTTGATCTCCTGACCT





CGTGATCCGCCCGCCTCAGCCTCCCAAAGAAAAGTCCCTCACTCTTAAAG





TTGCCTCCTCCTTCCCAGGGCTGGCTTCATGGGCATGCAACCCTGGAGAG





TCTCACAGGCCCTGCGGTGGGAGGAGCCCCATGCTTGGTTTAACGCTCTG





CCATTGCCATCTTAAAATTCTTAATTTAATTTTTTTTCTTTTTTTTGAGG





TGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCAATGGCACAATCTTGGC





TCACTGCAACCTCCGCCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCT





CTGGAGTAGCTGGGATTACAGGCAGGAGTAACCACGCTCGGCTAATTTTT





GCATTTTTAGTAGAGATGGGGGTTTCACCATGTTGGCCAGGCTGGTCTAG





AACTCCTGACCTCAGGTGATCTGCCCACCTGGGCCTCCTAAAGTGCTGGG





ATTACAGGCATGAGCCACCAGGCCCGGCCTTAAAATTCTTAATAATGTAA





CAAAGGGTCTCACGTTTGCATTTTGCAGTGGACTCTGCAAGATTTGTAGC





TTTGGACCACGTTTCTCTTTGCATTCAGATACCTTCTTTTTTGCCTTATT





TGCTCATGCAGACCCGGAACAAATACGGAATTGCGGTGGGTAAATGTGGT





GCAGAAAGTGAACAACTGGGTTTGTCCTGTCACTTTAGGCTTTTCCCTGC





TGTCCCAGCTTCATGTCACTTACTTGCTATTAGATTTGGGAGTTCATTAG





CTTCATTTTCCTGATGTATAAATAGGAATAATAGTAACAGCCTCTTTGGC





TTTTGTAGGAAGTAAATGACATGAAGCGTATAAACAAATACTGCATGACA





ATAAATATTTGTCCTTATTTGTTGAGGACATCCAAAGGACATTCAGGGGC





AAAAGTAATCCAAGAGTCAAGACTGAATGCCTAGTGCGGGAAAAGACACA





CAAGACAACATTTAGGGGAGCTGGTACAGAAATGACTTCCCAGGAAGGAA





GTCTGTACCCCGCTGGCTGAGCCATCCTTCCCGGGCCTAGGCACCCTTGT





CAGCGCAATGAGCAAGGGAGAGAAGGCAGGCTGCAGTGCAGCCCTCAGAA





GGGCCAGAGCACTCCCTGGCTTCAGTCCTTCGCTCCAAGCCCTGTGTGGA





GTGGGCTGTGGCTTGGTAACTAAATGCTACTTCAGGTCAAGAGCAGGGGA





TATATCTGGGCAGTTCTAGAGCATTCTAAACTATCTGGACACTAACTGGA





CAGTGGACGGTTTGTGTTTAATCCAGGAGAAAGTGGCATGGCAGAAGGTT





CATTTCTATAATTCAGGACAGACACAATGAAGAACAAGGGCAGCGTTTGA





GGTCAGAAGTCCTCATTTACGGGGGTCGAATACGAATGATCTCTCCTAAT





TTTTCCTTCTTCCCCAACTCAGATGGATGTTACATCCCTGCTTAACAACA





AAAAAAGACCCCCCGCCCCGCAAAATCCACACTGACCACCCCCTTTAACA





AAACAAAACCAAAAACAAACAAAAATATAAGAAAGAAACAAAACCCAAGC





CCAGAACCCTGCTTTCAAGAAGAAGTAAATGGGTTGGCCGCTTCTTTGCC





AGGTCCTGCGCCTTGCTCCTTTGGTTCGTTCTAAAGATAGAAATTCCAGG





TTGCTCGTGCCTGCTTTTGACGTTGGGGGTTAAAAAATGAGGTTTTGCTG





TCTCAACAAGCAAAGAAAATCCTATTTCCTTTAAGCTTCACTCGTTCTCA





TTCTCTTCCAGAAACGCCTGCCCCACCTCTCCAAACCGAGAGAAAAAACG





AAATGCGGATAAAAACGCACCCTAGCAGCAGTCCTTTATACGACACCCCC





GGGAGGCCTGCGGGGTCGGATGATTCAAGCTCACGGGGACGAGCAGGAGC





GCTCTCGACTTTTCTAGAGCCTCAGCGTCCTAGGACTCACCTTTCCCTGA





TCCTGCACCGTCCCTCTCCTGGCCCCAGACTCTCCCTCCCACTGTTCACG





AAGCCCAGGTGGGCCGTCGGCCGGGGAGCGGAGGGGGCGCGTGGGGTGCA





GGCGGCGCCAAGGGCGCGTGCACCTGTGGGCGCGGGGCGCGAGGGCCCCT





CCCGGCGCGAGCGGGCGCAGTTCCCCGGCGGCGCCGCTAGGGGTCTCTCT





CGGGTGCCGAGCGGGGTGGGCCGGATCAGCTGACTCGCCTGGCTCTGAGC





CCCGCCGCCGCGCTCGGGCTCCGTCAGTTTCCTCGGCAGCGGTAGGCGAG





AGCACGCGGAGGAGCGTGCGCGGGGGCCCCGGGAGACGGCGGCGGTGGCG





GCGCGGGCAGAGCAAGGACGCGGCGGATCCCACTCGCACAGCAGCGCACT





CGGTGCCCCGCGCAGGGTCGCGATG






32. HAMP


Hepcidin is a peptide hormone produced by the liver. Hepcidin plays a role in maintaining iron balance by inhibiting iron absorption across the gut mucosa and transport of iron from macrophages which serve as a depot of iron storage and transport. Hepcidin production in the liver increases when iron enters liver cells from the blood thereby causing its release into the blood. In contrast, in states of high hepcidin (e.g. inflammation), serum iron levels drop because iron remains trapped in macrophages, resulting in anemia (Ganz T. 2003. Blood 102 (3): 783-8). Beta-thalassemia a common congenital anemia is characterized by excessive iron absorption and overload of iron associated with low levels hepcidin levels. In this situation, increasing expression of hepcidin may be therapeutic to treat the abnormal iron absorption in individuals with β-thalassemia and related disorders. Mutations in this gene cause hemochromatosis type 2B, also known as juvenile hemochromatosis, a disease caused by severe iron overload resulting in cardiomyopathy, cirrhosis, and endocrine failure.


Protein: HAMP Gene: HAMP (Homo sapiens, chromosome 19, 35773410-35776064 [NCBI Reference Sequence: NC000019.9]; start site location: 35773482; strand: positive)












Gene Identification


















GeneID
57817



HGNC
15598



HPRD
05925



MIM
606464




















Targeted Sequences













Relative upstream


Sequence
Design

location to gene start


ID No:
ID
Sequence (5′-3′)
site













8999

CGTGCCGTCTGTCTGGCTGTCCCAC
1





9005

CGAGTGACAGTCGCTTTTATGGGGC
60





9035

CGGGGCATGGCCAGCAGCCGCCAGG
424





9086

CGTGTGCCCGATCCGCACGTGGTGT
563





9121

CGACAGGCTGACGGGCCAAGCTTGG
2344





9150

CGGATGGGCAGGGAGGATACCGTTT
3109





9151

CGTGGGCGGCGGCGGCTGCGTGGTG
3287



















Target Shift Sequences











Relative




upstream


Sequence

location to gene


ID No:
Sequence (5′-3′)
start site












8999
CGTGCCGTCTGTCTGGCTGTCCCAC
1





9000
GTGCCGTCTGTCTGGCTGTC
2





9001
TGCCGTCTGTCTGGCTGTCC
3





9002
GCCGTCTGTCTGGCTGTCCC
4





9003
CCGTCTGTCTGGCTGTCCCA
5





9004
CGTCTGTCTGGCTGTCCCAC
6





9005
CGAGTGACAGTCGCTTTTATGGGGC
60





9006
GAGTGACAGTCGCTTTTATG
61





9007
AGTGACAGTCGCTTTTATGG
62





9008
GTGACAGTCGCTTTTATGGG
63





9009
TGACAGTCGCTTTTATGGGG
64





9010
GACAGTCGCTTTTATGGGGC
65





9011
ACAGTCGCTTTTATGGGGCC
66





9012
CAGTCGCTTTTATGGGGCCT
67





9013
AGTCGCTTTTATGGGGCCTG
68





9014
GTCGCTTTTATGGGGCCTGC
69





9015
TCGCTTTTATGGGGCCTGCC
70





9016
CGCTTTTATGGGGCCTGCCA
71





9017
CCGAGTGACAGTCGCTTTTA
59





9018
ACCGAGTGACAGTCGCTTTT
58





9019
GACCGAGTGACAGTCGCTTT
57





9020
GGACCGAGTGACAGTCGCTT
56





9021
GGGACCGAGTGACAGTCGCT
55





9022
TGGGACCGAGTGACAGTCGC
54





9023
CTGGGACCGAGTGACAGTCG
53





9024
TCTGGGACCGAGTGACAGTC
52





9025
GTCTGGGACCGAGTGACAGT
51





9026
TGTCTGGGACCGAGTGACAG
50





9027
GTGTCTGGGACCGAGTGACA
49





9028
GGTGTCTGGGACCGAGTGAC
48





9029
TGGTGTCTGGGACCGAGTGA
47





9030
CTGGTGTCTGGGACCGAGTG
46





9031
TCTGGTGTCTGGGACCGAGT
45





9032
CTCTGGTGTCTGGGACCGAG
44





9033
GCTCTGGTGTCTGGGACCGA
43





9034
TGCTCTGGTGTCTGGGACCG
42





9035
CGGGGCATGGCCAGCAGCCGCCAGG
424





9036
GGGGCATGGCCAGCAGCCGC
425





9037
GGGCATGGCCAGCAGCCGCC
426





9038
GGCATGGCCAGCAGCCGCCA
427





9039
GCATGGCCAGCAGCCGCCAG
428





9040
CATGGCCAGCAGCCGCCAGG
429





9041
ATGGCCAGCAGCCGCCAGGC
430





9042
TGGCCAGCAGCCGCCAGGCT
431





9043
GGCCAGCAGCCGCCAGGCTC
432





9044
GCCAGCAGCCGCCAGGCTCC
433





9045
CCAGCAGCCGCCAGGCTCCT
434





9046
CAGCAGCCGCCAGGCTCCTC
435





9047
AGCAGCCGCCAGGCTCCTCA
436





9048
GCAGCCGCCAGGCTCCTCAG
437





9049
CAGCCGCCAGGCTCCTCAGG
438





9050
AGCCGCCAGGCTCCTCAGGA
439





9051
GCCGCCAGGCTCCTCAGGAG
440





9052
CCGCCAGGCTCCTCAGGAGT
441





9053
CGCCAGGCTCCTCAGGAGTG
442





9054
ACGGGGCATGGCCAGCAGCC
423





9055
CACGGGGCATGGCCAGCAGC
422





9056
ACACGGGGCATGGCCAGCAG
421





9057
CACACGGGGCATGGCCAGCA
420





9058
GCACACGGGGCATGGCCAGC
419





9059
TGCACACGGGGCATGGCCAG
418





9060
ATGCACACGGGGCATGGCCA
417





9061
CATGCACACGGGGCATGGCC
416





9062
ACATGCACACGGGGCATGGC
415





9063
TACATGCACACGGGGCATGG
414





9064
CTACATGCACACGGGGCATG
413





9065
CCTACATGCACACGGGGCAT
412





9066
GCCTACATGCACACGGGGCA
411





9067
CGCCTACATGCACACGGGGC
410





9068
TCGCCTACATGCACACGGGG
409





9069
ATCGCCTACATGCACACGGG
408





9070
CATCGCCTACATGCACACGG
407





9071
CCATCGCCTACATGCACACG
406





9072
CCCATCGCCTACATGCACAC
405





9073
CCCCATCGCCTACATGCACA
404





9074
TCCCCATCGCCTACATGCAC
403





9075
TTCCCCATCGCCTACATGCA
402





9076
CTTCCCCATCGCCTACATGC
401





9077
ACTTCCCCATCGCCTACATG
400





9078
CACTTCCCCATCGCCTACAT
399





9079
TCACTTCCCCATCGCCTACA
398





9080
CTCACTTCCCCATCGCCTAC
397





9081
ACTCACTTCCCCATCGCCTA
396





9082
CACTCACTTCCCCATCGCCT
395





9083
CCACTCACTTCCCCATCGCC
394





9084
TCCACTCACTTCCCCATCGC
393





9085
CTCCACTCACTTCCCCATCG
392





9086
CGTGTGCCCGATCCGCACGTGGTGT
563





9087
GTGTGCCCGATCCGCACGTG
564





9088
TGTGCCCGATCCGCACGTGG
565





9089
GTGCCCGATCCGCACGTGGT
566





9090
TGCCCGATCCGCACGTGGTG
567





9091
GCCCGATCCGCACGTGGTGT
568





9092
CCCGATCCGCACGTGGTGTT
569





9093
CCGATCCGCACGTGGTGTTT
570





9094
CGATCCGCACGTGGTGTTTT
571





9095
GATCCGCACGTGGTGTTTTC
572





9096
ATCCGCACGTGGTGTTTTCC
573





9097
TCCGCACGTGGTGTTTTCCC
574





9098
CCGCACGTGGTGTTTTCCCA
575





9099
CGCACGTGGTGTTTTCCCAG
576





9100
GCACGTGGTGTTTTCCCAGT
577





9101
CACGTGGTGTTTTCCCAGTG
578





9102
ACGTGGTGTTTTCCCAGTGT
579





9103
CGTGGTGTTTTCCCAGTGTC
580





9104
GCGTGTGCCCGATCCGCACG
562





9105
AGCGTGTGCCCGATCCGCAC
561





9106
CAGCGTGTGCCCGATCCGCA
560





9107
TCAGCGTGTGCCCGATCCGC
559





9108
ATCAGCGTGTGCCCGATCCG
558





9109
CATCAGCGTGTGCCCGATCC
557





9110
GCATCAGCGTGTGCCCGATC
556





9111
AGCATCAGCGTGTGCCCGAT
555





9112
AAGCATCAGCGTGTGCCCGA
554





9113
CAAGCATCAGCGTGTGCCCG
553





9114
GCAAGCATCAGCGTGTGCCC
552





9115
GGCAAGCATCAGCGTGTGCC
551





9116
GGGCAAGCATCAGCGTGTGC
550





9117
AGGGCAAGCATCAGCGTGTG
549





9118
CAGGGCAAGCATCAGCGTGT
548





9119
GCAGGGCAAGCATCAGCGTG
547





9120
AGCAGGGCAAGCATCAGCGT
546





9121
CGACAGGCTGACGGGCCAAGCTTGG
2344





9122
GACAGGCTGACGGGCCAAGC
2345





9123
ACAGGCTGACGGGCCAAGCT
2346





9124
CAGGCTGACGGGCCAAGCTT
2347





9125
AGGCTGACGGGCCAAGCTTG
2348





9126
GGCTGACGGGCCAAGCTTGG
2349





9127
GCTGACGGGCCAAGCTTGGC
2350





9128
CTGACGGGCCAAGCTTGGCG
2351





9129
TGACGGGCCAAGCTTGGCGC
2352





9130
GACGGGCCAAGCTTGGCGCC
2353





9131
ACGGGCCAAGCTTGGCGCCC
2354





9132
CGGGCCAAGCTTGGCGCCCT
2355





9133
GGGCCAAGCTTGGCGCCCTG
2356





9134
GGCCAAGCTTGGCGCCCTGG
2357





9135
GCCAAGCTTGGCGCCCTGGC
2358





9136
CCAAGCTTGGCGCCCTGGCC
2359





9137
CAAGCTTGGCGCCCTGGCCA
2360





9138
AAGCTTGGCGCCCTGGCCAT
2361





9139
AGCTTGGCGCCCTGGCCATC
2362





9140
GCTTGGCGCCCTGGCCATCT
2363





9141
CTTGGCGCCCTGGCCATCTG
2364





9142
TTGGCGCCCTGGCCATCTGC
2365





9143
TGGCGCCCTGGCCATCTGCC
2366





9144
GGCGCCCTGGCCATCTGCCC
2367





9145
GCGCCCTGGCCATCTGCCCT
2368





9146
CGCCCTGGCCATCTGCCCTC
2369





9147
GCGACAGGCTGACGGGCCAA
2343





9148
GGCGACAGGCTGACGGGCCA
2342





9149
AGGCGACAGGCTGACGGGCC
2341





9150
CGGATGGGCAGGGAGGATACCGTTT
3109





9151
CGTGGGCGGCGGCGGCTGCGTGGTG
3287





9152
GTGGGCGGCGGCGGCTGCGT
3288





9153
TGGGCGGCGGCGGCTGCGTG
3289





9154
GGGCGGCGGCGGCTGCGTGG
3290





9155
GGCGGCGGCGGCTGCGTGGT
3291





9156
GCGGCGGCGGCTGCGTGGTG
3292





9157
CGGCGGCGGCTGCGTGGTGG
3293





9158
GGCGGCGGCTGCGTGGTGGT
3294





9159
GCGGCGGCTGCGTGGTGGTG
3295





9160
CGGCGGCTGCGTGGTGGTGG
3296





9161
GGCGGCTGCGTGGTGGTGGC
3297





9162
GCGGCTGCGTGGTGGTGGCG
3298





9163
CGGCTGCGTGGTGGTGGCGG
3299





9164
GGCTGCGTGGTGGTGGCGGG
3300





9165
GCTGCGTGGTGGTGGCGGGC
3301





9166
CTGCGTGGTGGTGGCGGGCG
3302





9167
TGCGTGGTGGTGGCGGGCG
3303





9168
GCGTGGTGGTGGCGGGCG
3304





9169
CGTGGTGGTGGCGGGCG
3305





9170
GTGGTGGTGGCGGGCG
3306





9171
TGGTGGTGGCGGGCG
3307





9172
GCGTGGGCGGCGGCGGCTGC
3286





9173
GGCGTGGGCGGCGGCGGCTG
3285





9174
CGGCGTGGGCGGCGGCGGCT
3284





9175
CCGGCGTGGGCGGCGGCGGC
3283





9176
GCCGGCGTGGGCGGCGGCGG
3282





9177
GGCCGGCGTGGGCGGCGGCG
3281





9178
AGGCCGGCGTGGGCGGCGGC
3280



















Hot Zones (Relative upstream location to gene start site)







 1-630


3061-3321









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11979)







CGCCCGCCACCACCACGCAGCCGCCGCCGCCCACGCCGGCCTCTGCTGCC





CCCTTCCCCAGCCCTTAGCACAGAGAGGGACACATGCCCCTCCCCCAGCT





GCGTTTTTTTATAGTAGATTTTTAACAAAAAACGGGGAGAAATAATGCAT





TTCTGTGGATACAGTGCCCACCGCCCTCCTCCACTTGGAAACGGTATCCT





CCCTGCCCATCCGTCTGTCTGTCGCCCTTCTCCCGGCCCTCACTAAGCCC





CGGCACTTCTAGTGGTCTCACCTGGAGGCAAGAGGGAGGGGACAGAGGCC





CTGCCACGTCCCGCTGCCTCCTGCTCTCTGGAGGTACTGAGACAGGGTGC





TGATGGGAAGGAGGGGAGCCTTTGGGGGGCCACCCGGGGCCTGGACCTAT





GCAGGGAGGCCACGTCCCACCCCACCTCTTGTTTCTGGGTCCCTGCTCCC





CTTTGGGGGTGTGTGTGTGTGTTTTAATTTTCTTTATGGAAAAATTGACA





AAAAAAAAATAGAGAGAGAGGTATTTAACTGCAATAAACTGGCCCCATGT





GGCCCCCGCCTTGTCTGCTTGTGTGTTTGTCCATCTCAGGAGTGGGGAGG





GGGCCTGGGGTCTGCAGAGCTCCACGAGGCATGGTTCTGCTGTTGTGCAC





ATGGCTGTGCATGGTCCCTGCCAGCTGCACCACCCATTACCCAGTGGTTG





GTTGGATGGATGGAGGAATTAAGGAATGAATGTCCCCTTTGAGGCCCTAG





ACGTGCATGAGGGTGTGGGGAGCTGGGGTCAAGGACATGTCCCATGTTGG





AGGAGAGGCAGGGGTCTCCGTGTCAACAGTTCCTGAAAACACAACCAGCC





CCTGGCCCTGCCCTGCTGGGCCAAAGCCCTCCCCTCTGCACCAGCCAATA





GTGGGGCCTGGCCTTGAGCCCCTCACCCCCAGGGAGGGCAGATGGCCAGG





GCGCCAAGCTTGGCCCGTCAGCCTGTCGCCTTGCACCAAGGCTCTGGCGC





CTGTGCTGTGACCCCTGCCCCTGCTGATGATGAAACCTGTCCTCAGCTGA





GATGCAGCGATGCCTGGTAGGGCTGGGGGCTGCTCCTGTGTCTCCCCAGG





TGAGCACACCCCTATTCACTGGGCCCTGCTTCAGCCTGCAGCACCCTTCA





ACTCCCAGGAGCTGGGCTTGCCACTCTGCTCACCTTGTGGAGCTCCATCT





GCCTTTCCTCCCCAATTCCCCCACTCCCTGCACTCGTCTCTTCCCACAAG





AGCCCTGTCTCCTTTTCCTAGCTATTCCCATCTGAGGCCATCTTTATTCA





TTTAGTTTTTAGAGACAGGGTTTCACTCTCACCCAGGCTGGGGTGCAGTG





GCACACAATCACGGCTCACTGCAGCCTTGACCAACTACAGGTGCGTAGCA





CCACAGCCAAGTTTTTGTATAGATGGGGTCTCGCTTTGTTACCCAGGCTG





TGACAAGAGGAGCCTCCCACGTGGTGTGGATGAGGAGGCAGATGGCAGGG





CCTGTGCATTTCTGTGCTTGAGTGGGCCTTGAAAGTGGTTCAGCAACCAG





GAAGAAGTGTTCATTCCTCGACAACAACATCCCCGGGCTCTGGTGACTTG





GCTGACACTGGATGGCCCTGGAATGAAAAAGGCAAAGAGGCAAAATGTGC





AAGGGCCCATCTGGAACCAAGGTTTGTTGATCCCCTGGGCCGTGTGCACC





CTGAGCTGGGCCTGGTAGTGGAAAGGAATGAAGGCACTGCAGTCAGGCAG





CCTGGGTTCATCCCCCAGCTAGTGGTGTCCTAAGGAACCGGCTCCCCAAA





AACATCCCTGGCTTGTAGTGCTTGCCAATTTCTGGGTGTCAAGACTCCCA





CTGCTGCTGATTTCAGGATACCAGCATGATGCCACTGAATGCAGAGTTTC





GAGATGTGCATGGTCTGCTATGTTGAGCCAGGTCTAGCATACCGCTGTGC





CCTGCTGTGTTTTAGGGGAGATGGGGAAACCTGGTGGGTAAGAGCAAAAG





CCCTGGAGTCAGGCTGTCCAGGCTAGAATCTCAGCTCTGCCTCTGGCTGA





GCAAGCTTGGGCCATGCCCTGATCTCTGCCTTCAGTGCCTTTTCTGTAAA





GTGAAGGAAATGAGTGTCCGACGGGGAGGAGGTTCCTAAAAGGGAGCAGG





GTCTGGGGAGCCCAGGCCTCTGGGGTTGGGTGACTGAGAAGGCAGCCCCT





GAATACAGAGCAGAGCTGAAGGTGGGGCAGTAAGTGCTGCTGGGAGAACA





GGCAGCACAGGCTGAGTTGGTGCAGAAGTGAGTCAACATATGTGCCATCG





TATAAAATGTACTCATCGGACTGTAGATGTTAGCTATTACTATTACTGCT





ATTTTATGTTTTATAGACAGGGTCTCACTCTGTCACCCAGGCTGGAGTGC





AGTCACACAATCATAGCTCACTGCAACCTCAGCCTCCTGGGCTTAAGCGA





TCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGATGTGTGCCACCACGC





CTGGCTAAATTTGTTTAAAATTTTTTTTGTAGAGATGGGGTCTCCCTATG





TTGCCCAGGCTAGTCTTGAACTTCTGGGCTCAAGCGACCCTCCTGCCTTG





GCCTCCCAAATTGCTGGGATTACAGGCATAAGCCACTGTGCTGGGCCATA





TTACTGCTGTCATTTATGGCCAAAAGTTTGCTCAAACATTTTCCAGTTAC





CAGAGCCACATCTCAAGGGTCTGACACTGGGAAAACACCACGTGCGGATC





GGGCACACGCTGATGCTTGCCCTGCTCAGGGCTATCTAGTGTTCCCTGCC





AGAACCTATGCACGTGTGGTGAGAGCTTAAAGCAATGGATGCTTCCCCCA





ACATGCCAGACACTCCTGAGGAGCCTGGCGGCTGCTGGCCATGCCCCGTG





TGCATGTAGGCGATGGGGAAGTGAGTGGAGGAGAGCGGAACCTTGATTCT





GCTCATCAAACTGCTTAACCGCTGAAGCAAAAGGGGGAACTTTTTTCCCG





ATCAGCAGAATGACATCGTGATGGGGAAAGGGCTCCCCAGATGGCTGGTG





AGCAGTGTGTGTCTGTGACCCCGTCTGCCCCACCCCCTGAACACACCTCT





GCCGGCTGAGGGTGACACAACCCTGTTCCCTGTCGCTCTGTTCCCGCTTA





TCTCTCCCGCCTTTTCGGCGCCACCACCTTCTTGGAAATGAGACAGAGCA





AAGGGGAGGGGGCTCAGACCACCGCCTCCCCTGGCAGGCCCCATAAAAGC





GACTGTCACTCGGTCCCAGACACCAGAGCAAGCTCAAGACCCAGCAGTGG





GACAGCCAGACAGACGGCACGATG






HBV


Hepatitis B is an infectious inflammatory disease of the liver caused by the hepatitis B virus (HBV). About ⅓ of the world population is believed to be infected, including 350 million who are chronic carriers. Acutely symptoms include liver inflammation, vomiting and jaundice, while chronic hepatitis B is implicated in cirrhosis and liver cancer. HBV is a DNA virus that has a circular genome of partially double-stranded DNA (Zuckerman A. J. 1996 in Baron S, et al. Baron's Medical Microbiology (4th Ed)) with a full length strand with 3020-3320 nucleotides and a short-length strand of 1700-2800 nucleotides for the short length-strand (Kay A and Zoulim F. 2007 Virus research 127 (2): 164-176). HBV uses reverse transcription to replicate: virus gains entry into the cell by endocytosis, multiplies via RNA made by a host enzyme, then reversed transcribed into viral genomic DNA. The partially double stranded viral DNA is rendered fully double stranded when transformed into covalently closed circular DNA (cccDNA). cccDNA serves as a template for transcription of four viral mRNAs encoding viral proteins called C, X, P and S critical of virus infection and replication. HBV core protein is coded for by gene C (HBcAg); its DNA polymerase is encoded by gene P; the surface antigen (HBsAg) is encoded by the S gene. HBx protein is encoded by the X gene and is believed to drive cccDNA transcription and stimulates genes to promote cell growth associated with liver cancer and the persistence of HBV.


Hepatitis B Virus (1-3215 [NCBI Reference Sequence: NC003977]; strand: negative)












Targeted Sequences













Relative





upstream





location





to


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













9179

CCGATTGGTGGAGGCAGGAGGAGG
72





9180

CGAGATTGAGATCTTCTGCGACGCGG
780





9235

CGCGGCGATTGAGACCTTCGTC
801





9290

CGTCTGCGAGGCGAGGGAGTTCTTCT
819





9345

CGATACAGAGCAGAGGCGGTGT
1200





9346

CGCGTAAAGAGAGGTGCGCCCCGTGG
1674





9360

ACGGGTCGTCCGCGGGATTCAGCGCCG
1754





9409

CGTCCCGCGCAGGATCCAGTTGG
1800





9432

CGGCTGCGAGCAAAACAAGCTGCTAG
1909





9468

CGCATGCGCCGATGGCCTATGGCCAA
1978





9496

CGCCGCAGACACATCCAGCGATA
2826





9525

GCTCCAGACCGGCTGCGA
1900





9561

CGTCCATCGCAGGATCCAGTTGG
1800





9562

CGCCGCAGACACATCCAGCGATA
2826





9591

CAAATGGCACTAGTAAACTGAG
2524





9592

GAGATTGAGATCTGCGGCGACGCGG
780





9593

CGACGCGGCGATTGAGATCTTCGTCTG
801





9594

AGGGGTCGTCCGCGGGATTCAGCGCCG
1754



















Target Shift Sequences











Relative




upstream


Sequence

location


ID No:
Sequence (5′-3′)
to start site












9179
CCGATTGGTGGAGGCAGGAGGAGG
72





9180
CGAGATTGAGATCTTCTGCGACGCGG
780





9181
GAGATTGAGATCTTCTGCGA
781





9182
AGATTGAGATCTTCTGCGAC
782





9183
GATTGAGATCTTCTGCGACG
783





9184
ATTGAGATCTTCTGCGACGC
784





9185
TTGAGATCTTCTGCGACGCG
785





9186
TGAGATCTTCTGCGACGCGG
786





9187
GAGATCTTCTGCGACGCGGC
787





9188
AGATCTTCTGCGACGCGGCG
788





9189
GATCTTCTGCGACGCGGCGA
789





9190
ATCTTCTGCGACGCGGCGAT
790





9191
TCTTCTGCGACGCGGCGATT
791





9192
CTTCTGCGACGCGGCGATTG
792





9193
TTCTGCGACGCGGCGATTGA
793





9194
TCTGCGACGCGGCGATTGAG
794





9195
CTGCGACGCGGCGATTGAGA
795





9196
TGCGACGCGGCGATTGAGAC
796





9197
GCGACGCGGCGATTGAGACC
797





9198
CGACGCGGCGATTGAGACCT
798





9199
GACGCGGCGATTGAGACCTT
799





9200
ACGCGGCGATTGAGACCTTC
800





9201
CGCGGCGATTGAGACCTTCG
801





9202
GCGGCGATTGAGACCTTCGT
802





9203
CGGCGATTGAGACCTTCGTC
803





9204
GGCGATTGAGACCTTCGTCT
804





9205
GCGATTGAGACCTTCGTCTG
805





9206
CGATTGAGACCTTCGTCTGC
806





9207
GATTGAGACCTTCGTCTGCG
807





9208
ATTGAGACCTTCGTCTGCGA
808





9209
TTGAGACCTTCGTCTGCGAG
809





9210
TGAGACCTTCGTCTGCGAGG
810





9211
GAGACCTTCGTCTGCGAGGC
811





9212
AGACCTTCGTCTGCGAGGCG
812





9213
GACCTTCGTCTGCGAGGCGA
813





9214
ACCTTCGTCTGCGAGGCGAG
814





9215
CCTTCGTCTGCGAGGCGAGG
815





9216
CTTCGTCTGCGAGGCGAGGG
816





9217
TTCGTCTGCGAGGCGAGGGA
817





9218
TCGTCTGCGAGGCGAGGGAG
818





9219
CGTCTGCGAGGCGAGGGAGT
819





9220
GTCTGCGAGGCGAGGGAGTT
820





9221
TCTGCGAGGCGAGGGAGTTC
821





9222
CTGCGAGGCGAGGGAGTTCT
822





9223
TGCGAGGCGAGGGAGTTCTT
823





9224
GCGAGGCGAGGGAGTTCTTC
824





9225
CGAGGCGAGGGAGTTCTTCT
825





9226
GAGGCGAGGGAGTTCTTCTT
826





9227
AGGCGAGGGAGTTCTTCTTC
827





9228
GGCGAGGGAGTTCTTCTTCT
828





9229
GCGAGGGAGTTCTTCTTCTA
829





9230
CGAGGGAGTTCTTCTTCTAG
830





9231
CCGAGATTGAGATCTTCTGC
779





9232
CCCGAGATTGAGATCTTCTG
778





9233
TCCCGAGATTGAGATCTTCT
777





9234
TTCCCGAGATTGAGATCTTC
776





9235
CGCGGCGATTGAGACCTTCGTC
801





9236
GCGGCGATTGAGACCTTCGT
802





9237
CGGCGATTGAGACCTTCGTC
803





9238
GGCGATTGAGACCTTCGTCT
804





9239
GCGATTGAGACCTTCGTCTG
805





9240
CGATTGAGACCTTCGTCTGC
806





9241
GATTGAGACCTTCGTCTGCG
807





9242
ATTGAGACCTTCGTCTGCGA
808





9243
TTGAGACCTTCGTCTGCGAG
809





9244
TGAGACCTTCGTCTGCGAGG
810





9245
GAGACCTTCGTCTGCGAGGC
811





9246
AGACCTTCGTCTGCGAGGCG
812





9247
GACCTTCGTCTGCGAGGCGA
813





9248
ACCTTCGTCTGCGAGGCGAG
814





9249
CCTTCGTCTGCGAGGCGAGG
815





9250
CTTCGTCTGCGAGGCGAGGG
816





9251
TTCGTCTGCGAGGCGAGGGA
817





9252
TCGTCTGCGAGGCGAGGGAG
818





9253
CGTCTGCGAGGCGAGGGAGT
819





9254
GTCTGCGAGGCGAGGGAGTT
820





9255
TCTGCGAGGCGAGGGAGTTC
821





9256
CTGCGAGGCGAGGGAGTTCT
822





9257
TGCGAGGCGAGGGAGTTCTT
823





9258
GCGAGGCGAGGGAGTTCTTC
824





9259
CGAGGCGAGGGAGTTCTTCT
825





9260
GAGGCGAGGGAGTTCTTCTT
826





9261
AGGCGAGGGAGTTCTTCTTC
827





9262
GGCGAGGGAGTTCTTCTTCT
828





9263
GCGAGGGAGTTCTTCTTCTA
829





9264
CGAGGGAGTTCTTCTTCTAG
830





9265
ACGCGGCGATTGAGACCTTC
800





9266
GACGCGGCGATTGAGACCTT
799





9267
CGACGCGGCGATTGAGACCT
798





9268
GCGACGCGGCGATTGAGACC
797





9269
TGCGACGCGGCGATTGAGAC
796





9270
CTGCGACGCGGCGATTGAGA
795





9271
TCTGCGACGCGGCGATTGAG
794





9272
TTCTGCGACGCGGCGATTGA
793





9273
CTTCTGCGACGCGGCGATTG
792





9274
TCTTCTGCGACGCGGCGATT
791





9275
ATCTTCTGCGACGCGGCGAT
790





9276
GATCTTCTGCGACGCGGCGA
789





9277
AGATCTTCTGCGACGCGGCG
788





9278
GAGATCTTCTGCGACGCGGC
787





9279
TGAGATCTTCTGCGACGCGG
786





9280
TTGAGATCTTCTGCGACGCG
785





9281
ATTGAGATCTTCTGCGACGC
784





9282
GATTGAGATCTTCTGCGACG
783





9283
AGATTGAGATCTTCTGCGAC
782





9284
GAGATTGAGATCTTCTGCGA
781





9285
CGAGATTGAGATCTTCTGCG
780





9286
CCGAGATTGAGATCTTCTGC
779





9287
CCCGAGATTGAGATCTTCTG
778





9288
TCCCGAGATTGAGATCTTCT
777





9289
TTCCCGAGATTGAGATCTTC
776





9290
CGTCTGCGAGGCGAGGGAGTTCTTCT
819





9291
GTCTGCGAGGCGAGGGAGTT
820





9292
TCTGCGAGGCGAGGGAGTTC
821





9293
CTGCGAGGCGAGGGAGTTCT
822





9294
TGCGAGGCGAGGGAGTTCTT
823





9295
GCGAGGCGAGGGAGTTCTTC
824





9296
CGAGGCGAGGGAGTTCTTCT
825





9297
GAGGCGAGGGAGTTCTTCTT
826





9298
AGGCGAGGGAGTTCTTCTTC
827





9299
GGCGAGGGAGTTCTTCTTCT
828





9300
GCGAGGGAGTTCTTCTTCTA
829





9301
CGAGGGAGTTCTTCTTCTAG
830





9302
TCGTCTGCGAGGCGAGGGAG
818





9303
TTCGTCTGCGAGGCGAGGGA
817





9304
CTTCGTCTGCGAGGCGAGGG
816





9305
CCTTCGTCTGCGAGGCGAGG
815





9306
ACCTTCGTCTGCGAGGCGAG
814





9307
GACCTTCGTCTGCGAGGCGA
813





9308
AGACCTTCGTCTGCGAGGCG
812





9309
GAGACCTTCGTCTGCGAGGC
811





9310
TGAGACCTTCGTCTGCGAGG
810





9311
TTGAGACCTTCGTCTGCGAG
809





9312
ATTGAGACCTTCGTCTGCGA
808





9313
GATTGAGACCTTCGTCTGCG
807





9314
CGATTGAGACCTTCGTCTGC
806





9315
GCGATTGAGACCTTCGTCTG
805





9316
GGCGATTGAGACCTTCGTCT
804





9317
CGGCGATTGAGACCTTCGTC
803





9318
GCGGCGATTGAGACCTTCGT
802





9319
CGCGGCGATTGAGACCTTCG
801





9320
ACGCGGCGATTGAGACCTTC
800





9321
GACGCGGCGATTGAGACCTT
799





9322
CGACGCGGCGATTGAGACCT
798





9323
GCGACGCGGCGATTGAGACC
797





9324
TGCGACGCGGCGATTGAGAC
796





9325
CTGCGACGCGGCGATTGAGA
795





9326
TCTGCGACGCGGCGATTGAG
794





9327
TTCTGCGACGCGGCGATTGA
793





9328
CTTCTGCGACGCGGCGATTG
792





9329
TCTTCTGCGACGCGGCGATT
791





9330
ATCTTCTGCGACGCGGCGAT
790





9331
GATCTTCTGCGACGCGGCGA
789





9332
AGATCTTCTGCGACGCGGCG
788





9333
GAGATCTTCTGCGACGCGGC
787





9334
TGAGATCTTCTGCGACGCGG
786





9335
TTGAGATCTTCTGCGACGCG
785





9336
ATTGAGATCTTCTGCGACGC
784





9337
GATTGAGATCTTCTGCGACG
783





9338
AGATTGAGATCTTCTGCGAC
782





9339
GAGATTGAGATCTTCTGCGA
781





9340
CGAGATTGAGATCTTCTGCG
780





9341
CCGAGATTGAGATCTTCTGC
779





9342
CCCGAGATTGAGATCTTCTG
778





9343
TCCCGAGATTGAGATCTTCT
777





9344
TTCCCGAGATTGAGATCTTC
776





9345
CGATACAGAGCAGAGGCGGTGT
1200





9346
CGCGTAAAGAGAGGTGCGCCCCGTGG
1674





9347
GCGTAAAGAGAGGTGCGCCC
1675





9348
CGTAAAGAGAGGTGCGCCCC
1676





9349
GTAAAGAGAGGTGCGCCCCG
1677





9350
TAAAGAGAGGTGCGCCCCGT
1678





9351
AAAGAGAGGTGCGCCCCGTG
1679





9352
AAGAGAGGTGCGCCCCGTGG
1680





9353
AGAGAGGTGCGCCCCGTGGT
1681





9354
GAGAGGTGCGCCCCGTGGTC
1682





9355
AGAGGTGCGCCCCGTGGTCG
1683





9356
GAGGTGCGCCCCGTGGTCGG
1684





9357
AGGTGCGCCCCGTGGTCGGC
1685





9358
GGTGCGCCCCGTGGTCGGCC
1686





9359
CCGCGTAAAGAGAGGTGCGC
1673





9360
ACGGGTCGTCCGCGGGATTCAGCGCCG
1754





9361
CGGGTCGTCCGCGGGATTCA
1755





9362
GGGTCGTCCGCGGGATTCAG
1756





9363
GGTCGTCCGCGGGATTCAGC
1757





9364
GTCGTCCGCGGGATTCAGCG
1758





9365
TCGTCCGCGGGATTCAGCGC
1759





9366
CGTCCGCGGGATTCAGCGCC
1760





9367
GTCCGCGGGATTCAGCGCCG
1761





9368
TCCGCGGGATTCAGCGCCGA
1762





9369
CCGCGGGATTCAGCGCCGAC
1763





9370
CGCGGGATTCAGCGCCGACG
1764





9371
GCGGGATTCAGCGCCGACGG
1765





9372
CGGGATTCAGCGCCGACGGG
1766





9373
GGGATTCAGCGCCGACGGGA
1767





9374
GGATTCAGCGCCGACGGGAC
1768





9375
GATTCAGCGCCGACGGGACG
1769





9376
ATTCAGCGCCGACGGGACGT
1770





9377
TTCAGCGCCGACGGGACGTA
1771





9378
TCAGCGCCGACGGGACGTAG
1772





9379
CAGCGCCGACGGGACGTAGA
1773





9380
AGCGCCGACGGGACGTAGAC
1774





9381
GCGCCGACGGGACGTAGACA
1775





9382
CGCCGACGGGACGTAGACAA
1776





9383
GACGGGTCGTCCGCGGGATT
1753





9384
AGACGGGTCGTCCGCGGGAT
1752





9385
GAGACGGGTCGTCCGCGGGA
1751





9386
CGAGACGGGTCGTCCGCGGG
1750





9387
CCGAGACGGGTCGTCCGCGG
1749





9388
CCCGAGACGGGTCGTCCGCG
1748





9389
CCCCGAGACGGGTCGTCCGC
1747





9390
GCCCCGAGACGGGTCGTCCG
1746





9391
GGCCCCGAGACGGGTCGTCC
1745





9392
CGGCCCCGAGACGGGTCGTC
1744





9393
ACGGCCCCGAGACGGGTCGT
1743





9394
AACGGCCCCGAGACGGGTCG
1742





9395
AAACGGCCCCGAGACGGGTC
1741





9396
CAAACGGCCCCGAGACGGGT
1740





9397
CCAAACGGCCCCGAGACGGG
1739





9398
CCCAAACGGCCCCGAGACGG
1738





9399
GCCCAAACGGCCCCGAGACG
1737





9400
GGCCCAAACGGCCCCGAGAC
1736





9401
AGGCCCAAACGGCCCCGAGA
1735





9402
GAGGCCCAAACGGCCCCGAG
1734





9403
AGAGGCCCAAACGGCCCCGA
1733





9404
TAGAGGCCCAAACGGCCCCG
1732





9405
GTAGAGGCCCAAACGGCCCC
1731





9406
GGTAGAGGCCCAAACGGCCC
1730





9407
CGGTAGAGGCCCAAACGGCC
1729





9408
ACGGTAGAGGCCCAAACGGC
1728





9409
CGTCCCGCGCAGGATCCAGTTGG
1800





9410
GTCCCGCGCAGGATCCAGTT
1801





9411
TCCCGCGCAGGATCCAGTTG
1802





9412
CCCGCGCAGGATCCAGTTGG
1803





9413
CCGCGCAGGATCCAGTTGGC
1804





9414
CGCGCAGGATCCAGTTGGCA
1805





9415
GCGCAGGATCCAGTTGGCAG
1806





9416
CGCAGGATCCAGTTGGCAGC
1807





9417
ACGTCCCGCGCAGGATCCAG
1799





9418
GACGTCCCGCGCAGGATCCA
1798





9419
GGACGTCCCGCGCAGGATCC
1797





9420
AGGACGTCCCGCGCAGGATC
1796





9421
AAGGACGTCCCGCGCAGGAT
1795





9422
AAAGGACGTCCCGCGCAGGA
1794





9423
CAAAGGACGTCCCGCGCAGG
1793





9424
ACAAAGGACGTCCCGCGCAG
1792





9425
GACAAAGGACGTCCCGCGCA
1791





9426
AGACAAAGGACGTCCCGCGC
1790





9427
TAGACAAAGGACGTCCCGCG
1789





9428
GTAGACAAAGGACGTCCCGC
1788





9429
CGTAGACAAAGGACGTCCCG
1787





9430
ACGTAGACAAAGGACGTCCC
1786





9431
GACGTAGACAAAGGACGTCC
1785





9432
CGGCTGCGAGCAAAACAAGCTGCTAG
1909





9433
GGCTGCGAGCAAAACAAGCT
1910





9434
GCTGCGAGCAAAACAAGCTG
1911





9435
CTGCGAGCAAAACAAGCTGC
1912





9436
TGCGAGCAAAACAAGCTGCT
1913





9437
GCGAGCAAAACAAGCTGCTA
1914





9438
CGAGCAAAACAAGCTGCTAG
1915





9439
CCGGCTGCGAGCAAAACAAG
1908





9440
ACCGGCTGCGAGCAAAACAA
1907





9441
GACCGGCTGCGAGCAAAACA
1906





9442
AGACCGGCTGCGAGCAAAAC
1905





9443
CAGACCGGCTGCGAGCAAAA
1904





9444
CCAGACCGGCTGCGAGCAAA
1903





9445
TCCAGACCGGCTGCGAGCAA
1902





9446
CTCCAGACCGGCTGCGAGCA
1901





9447
GCTCCAGACCGGCTGCGAGC
1900





9448
CGCTCCAGACCGGCTGCGAG
1899





9449
TCGCTCCAGACCGGCTGCGA
1898





9450
TTCGCTCCAGACCGGCTGCG
1897





9451
TTTCGCTCCAGACCGGCTGC
1896





9452
GTTTCGCTCCAGACCGGCTG
1895





9453
AGTTTCGCTCCAGACCGGCT
1894





9454
AAGTTTCGCTCCAGACCGGC
1893





9455
TAAGTTTCGCTCCAGACCGG
1892





9456
ATAAGTTTCGCTCCAGACCG
1891





9457
GATAAGTTTCGCTCCAGACC
1890





9458
CGATAAGTTTCGCTCCAGAC
1889





9459
CCGATAAGTTTCGCTCCAGA
1888





9460
TCCGATAAGTTTCGCTCCAG
1887





9461
TTCCGATAAGTTTCGCTCCA
1886





9462
GTTCCGATAAGTTTCGCTCC
1885





9463
GGTTCCGATAAGTTTCGCTC
1884





9464
CGGTTCCGATAAGTTTCGCT
1883





9465
TCGGTTCCGATAAGTTTCGC
1882





9466
GTCGGTTCCGATAAGTTTCG
1881





9467
TGTCGGTTCCGATAAGTTTC
1880





9468
CGCATGCGCCGATGGCCTATGGCCAA
1978





9469
GCATGCGCCGATGGCCTATG
1979





9470
CATGCGCCGATGGCCTATGG
1980





9471
ATGCGCCGATGGCCTATGGC
1981





9472
TGCGCCGATGGCCTATGGCC
1982





9473
GCGCCGATGGCCTATGGCCA
1983





9474
CGCCGATGGCCTATGGCCAA
1984





9475
GCCGATGGCCTATGGCCAAG
1985





9476
CCGATGGCCTATGGCCAAGC
1986





9477
CGATGGCCTATGGCCAAGCC
1987





9478
ACGCATGCGCCGATGGCCTA
1977





9479
CACGCATGCGCCGATGGCCT
1976





9480
CCACGCATGCGCCGATGGCC
1975





9481
TCCACGCATGCGCCGATGGC
1974





9482
TTCCACGCATGCGCCGATGG
1973





9483
GTTCCACGCATGCGCCGATG
1972





9484
GGTTCCACGCATGCGCCGAT
1971





9485
AGGTTCCACGCATGCGCCGA
1970





9486
AAGGTTCCACGCATGCGCCG
1969





9487
AAAGGTTCCACGCATGCGCC
1968





9488
CAAAGGTTCCACGCATGCGC
1967





9489
ACAAAGGTTCCACGCATGCG
1966





9490
CACAAAGGTTCCACGCATGC
1965





9491
CCACAAAGGTTCCACGCATG
1964





9492
GCCACAAAGGTTCCACGCAT
1963





9493
AGCCACAAAGGTTCCACGCA
1962





9494
GAGCCACAAAGGTTCCACGC
1961





9495
GGAGCCACAAAGGTTCCACG
1960





9496
CGCCGCAGACACATCCAGCGATA
2826





9497
GCCGCAGACACATCCAGCGA
2827





9498
CCGCAGACACATCCAGCGAT
2828





9499
CGCAGACACATCCAGCGATA
2829





9500
GCAGACACATCCAGCGATAG
2830





9501
CAGACACATCCAGCGATAGC
2831





9502
AGACACATCCAGCGATAGCC
2832





9503
GACACATCCAGCGATAGCCA
2833





9504
ACACATCCAGCGATAGCCAG
2834





9505
CACATCCAGCGATAGCCAGG
2835





9506
ACATCCAGCGATAGCCAGGA
2836





9507
CATCCAGCGATAGCCAGGAC
2837





9508
ATCCAGCGATAGCCAGGACA
2838





9509
TCCAGCGATAGCCAGGACAA
2839





9510
CCAGCGATAGCCAGGACAAG
2840





9511
CAGCGATAGCCAGGACAAGT
2841





9512
AGCGATAGCCAGGACAAGTT
2842





9513
GCGATAGCCAGGACAAGTTG
2843





9514
CGATAGCCAGGACAAGTTGG
2844





9515
ACGCCGCAGACACATCCAGC
2825





9516
AACGCCGCAGACACATCCAG
2824





9517
AAACGCCGCAGACACATCCA
2823





9518
AAAACGCCGCAGACACATCC
2822





9519
TAAAACGCCGCAGACACATC
2821





9520
ATAAAACGCCGCAGACACAT
2820





9521
GATAAAACGCCGCAGACACA
2819





9522
TGATAAAACGCCGCAGACAC
2818





9523
ATGATAAAACGCCGCAGACA
2817





9524
TATGATAAAACGCCGCAGAC
2816





9525
GCTCCAGACCGGCTGCGA
1900





9526
CTCCAGACCGGCTGCGAGCA
1901





9527
TCCAGACCGGCTGCGAGCAA
1902





9528
CCAGACCGGCTGCGAGCAAA
1903





9529
CAGACCGGCTGCGAGCAAAA
1904





9530
AGACCGGCTGCGAGCAAAAC
1905





9531
GACCGGCTGCGAGCAAAACA
1906





9532
ACCGGCTGCGAGCAAAACAA
1907





9533
CCGGCTGCGAGCAAAACAAG
1908





9534
CGGCTGCGAGCAAAACAAGC
1909





9535
GGCTGCGAGCAAAACAAGCT
1910





9536
GCTGCGAGCAAAACAAGCTG
1911





9537
CTGCGAGCAAAACAAGCTGC
1912





9538
TGCGAGCAAAACAAGCTGCT
1913





9539
GCGAGCAAAACAAGCTGCTA
1914





9540
CGAGCAAAACAAGCTGCTAG
1915





9541
CGCTCCAGACCGGCTGCGAG
1899





9542
TCGCTCCAGACCGGCTGCGA
1898





9543
TTCGCTCCAGACCGGCTGCG
1897





9544
TTTCGCTCCAGACCGGCTGC
1896





9545
GTTTCGCTCCAGACCGGCTG
1895





9546
AGTTTCGCTCCAGACCGGCT
1894





9547
AAGTTTCGCTCCAGACCGGC
1893





9548
TAAGTTTCGCTCCAGACCGG
1892





9549
ATAAGTTTCGCTCCAGACCG
1891





9550
GATAAGTTTCGCTCCAGACC
1890





9551
CGATAAGTTTCGCTCCAGAC
1889





9552
CCGATAAGTTTCGCTCCAGA
1888





9553
TCCGATAAGTTTCGCTCCAG
1887





9554
TTCCGATAAGTTTCGCTCCA
1886





9555
GTTCCGATAAGTTTCGCTCC
1885





9556
GGTTCCGATAAGTTTCGCTC
1884





9557
CGGTTCCGATAAGTTTCGCT
1883





9558
TCGGTTCCGATAAGTTTCGC
1882





9559
GTCGGTTCCGATAAGTTTCG
1881





9560
TGTCGGTTCCGATAAGTTTC
1880





9561
CGTCCATCGCAGGATCCAGTTGG
1800





9562
CGCCGCAGACACATCCAGCGATA
2826





9563
GCCGCAGACACATCCAGCGA
2827





9564
CCGCAGACACATCCAGCGAT
2828





9565
CGCAGACACATCCAGCGATA
2829





9566
GCAGACACATCCAGCGATAG
2830





9567
CAGACACATCCAGCGATAGC
2831





9568
AGACACATCCAGCGATAGCC
2832





9569
GACACATCCAGCGATAGCCA
2833





9570
ACACATCCAGCGATAGCCAG
2834





9571
CACATCCAGCGATAGCCAGG
2835





9572
ACATCCAGCGATAGCCAGGA
2836





9573
CATCCAGCGATAGCCAGGAC
2837





9574
ATCCAGCGATAGCCAGGACA
2838





9575
TCCAGCGATAGCCAGGACAA
2839





9576
CCAGCGATAGCCAGGACAAG
2840





9577
CAGCGATAGCCAGGACAAGT
2841





9578
AGCGATAGCCAGGACAAGTT
2842





9579
GCGATAGCCAGGACAAGTTG
2843





9580
CGATAGCCAGGACAAGTTGG
2844





9581
ACGCCGCAGACACATCCAGC
2825





9582
AACGCCGCAGACACATCCAG
2824





9583
AAACGCCGCAGACACATCCA
2823





9584
AAAACGCCGCAGACACATCC
2822





9585
TAAAACGCCGCAGACACATC
2821





9586
ATAAAACGCCGCAGACACAT
2820





9587
GATAAAACGCCGCAGACACA
2819





9588
TGATAAAACGCCGCAGACAC
2818





9589
ATGATAAAACGCCGCAGACA
2817





9590
TATGATAAAACGCCGCAGAC
2816





9591
CAAATGGCACTAGTAAACTGAG
2524





9592
GAGATTGAGATCTGCGGCGACGCGG
780





9593
CGACGCGGCGATTGAGATCTTCGTCTG
801





9594
AGGGGTCGTCCGCGGGATTCAGCGCCG
1754



















Hot Zones (Relative upstream location to gene start site)







245-425


785-965


1145-1235


1505-2135


2585-3125









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11980)







CTCCACAACATTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTAT





ATTTTCCTGCTGGTGGCTCCAGTTCCGGAACAGTAAACCCTGTTCCGACT





ACTGCCTCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCTGCACC





GAACATGGAGAGCACAACATCAGGATTCCTAGGACCCCTGCTCGTGTTAC





AGGCGGGGTTTTTCTTGTTGACAAGAATCCTCACAATACCACAGAGTCTA





GACTCGTGGTGGACTTCTCTCAATTTTCTAGGGGGAGCACCCACGTGTCC





TGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTCTTGTC





CTCCAACTTGTCCTGGCTATCGCTGGATGTGTCTGCGGCGTTTTATCATA





TTCCTCTTCATCCTGCTGCTATGCCTCATCTTCTTGTTGGTTCTTCTGGA





CTACCAAGGTATGTTGCCCGTTTGTCCTCTACTTCCAGGAACATCAACTA





CCAGCACGGGACCATGCAGAACCTGCACGATTCCTGCTCAAGGAACCTCT





ATGTTTCCCTCTTGTTGCTGTACAAAACCTTCGGACGGAAACTGCACTTG





TATTCCCATCCCATCATCCTGGGCTTTCGCAAGATTCCTATGGGAGTGGG





CCTCAGTCCGTTTCTCCTGGCTCAGTTTACTAGTGCCATTTGTTCAGTGG





TTCGTAGGGCTTTCCCCCACTGTTTGGCTTTCAGCTATATGGATGATGTG





GTATTGGGGGCCAAGTCTGTACAACATCTTGAGTCCCTTTTTACCTCTAT





TACCAATTTTCTTTTGTCTTTGGGTATACATTTGAACCCTAATAAAACCA





AACGTTGGGGCTACTCCCTTAACTTCATGGGATATGTAATTGGAAGTTGG





GGTACTTTACCGCAGGAACATATTGTACAAAAACTCAAGCAATGTTTTCG





AAAATTGCCTGTAAATAGACCTATTGATTGGAAAGTATGTCAAAGAATTG





TGGGTCTTTTGGGCTTTGCTGCCCCTTTTACACAATGTGGCTATCCTGCC





TTGATGCCTTTATATGCATGTATACAATCTAAGCAGGCTTTCACTTTCTC





GCCAACTTACAAGGCCTTTCTGTGTAAACAATATCTAAACCTTTACCCCG





TTGCCCGGCAACGGTCAGGTCTCTGCCAAGTGTTTGCTGACGCAACCCCC





ACGGGTTGGGGCTTGGCCATAGGCCATCGGCGCATGCGTGGAACCTTTGT





GGCTCCTCTGCCGATCCATACTGCGGAACTCCTAGCAGCTTGTTTTGCTC





GCAGCCGGTCTGGAGCGAAACTTATCGGAACCGACAACTCAGTTGTCCTC





TCTCGGAAATACACCTCCTTTCCATGGCTGCTAGGCTGTGCTGCCAACTG





GATCCTGCGCGGGACGTCCTTTGTCTACGTCCCGTCGGCGCTGAATCCCG





CGGACGACCCGTCTCGGGGCCGTTTGGGCCTCTACCGTCCCCTTCTTCAT





CTGCCGTTCCGGCCGACCACGGGGCGCACCTCTCTTTACGCGGTCTCCCC





GTCTGTGCCTTCTCATCTGCCGGACCGTGTGCACTTCGCTTCACCTCTGC





ACGTAGCATGGAGACCACCGTGAACGCCCACCAGGTCTTGCCCAAGGTCT





TACACAAGAGGACTCTTGGACTCTCAGCAATGTCAACGACCGACCTTGAG





GCATACTTCAAAGACTGTTTGTTTAAAGACTGGGAGGAGTTGGGGGAGGA





GATTAGGTTAAAGGTCTTTGTACTAGGAGGCTGTAGGCATAAATTGGTCT





GTTCACCAGCACCATGCAACTTTTTCCCCTCTGCCTAATCATCTCATGTT





CATGTCCTACTGTTCAAGCCTCCAAGCTGTGCCTTGGGTGGCTTTGGGGC





ATGGACATTGACCCGTATAAAGAATTTGGAGCTTCTGTGGAGTTACTCTC





TTTTTTGCCTTCTGACTTCTTTCCTTCTATTCGAGATCTCCTCGACACCG





CCTCTGCTCTGTATCGGGAGGCCTTAGAGTCTCCGGAACATTGTTCACCT





CACCATACAGCACTCAGGCAAGCTATTCTGTGTTGGGGTGAGTTGATGAA





TCTGGCCACCTGGGTGGGAAGTAATTTGGAAGACCCAGCATCCAGGGAAT





TAGTAGTCAGCTATGTCAATGTTAATATGGGCCTAAAAATTAGACAACTA





TTGTGGTTTCACATTTCCTGCCTTACTTTTGGAAGAGAAACTGTCCTTGA





GTATTTGGTGTCTTTTGGAGTGTGGATTCGCACTCCTCCCGCTTACAGAC





CACCAAATGCCCCTATCTTATCAACACTTCCGGAAACTACTGTTGTTAGA





CGACGAGGCAGGTCCCCTAGAAGAAGAACTCCCTCGCCTCGCAGACGAAG





GTCTCAATCGCCGCGTCGCAGAAGATCTCAATCTCGGGAATCTCAATGTT





AGTATCCCTTGGACTCATAAGGTGGGAAACTTTACTGGGCTTTATTCTTC





TACTGTACCTGTCTTTAATCCTGATTGGAAAACTCCCTCCTTTCCTCACA





TTCATTTACAGGAGGACATTATTAATAGATGTCAACAATATGTGGGCCCT





CTGACAGTTAATGAAAAAAGGAGATTAAAATTAATTATGCCTGCTAGGTT





CTATCCTAACCTTACCAAATATTTGCCCTTGGACAAAGGCATTAAACCGT





ATTATCCTGAATATGCAGTTAATCATTACTTCAAAACTAGGCATTATTTA





CATACTCTGTGGAAGGCTGGCATTCTATATAAGAGAGAAACTACACGCAG





CGCCTCATTTTGTGGGTCACCATATTCTTGGGAACAAGAGCTACAGCATG





GGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCTTTCTGT





TCCCAATCCTCTGGGATTCTTTCCCGATCACCAGTTGGACCCTGCGTTCG





GAGCCAACTCAAACAATCCAGATTGGGACTTCAACCCCAACAAGGATCAC





TGGCCAGAGGCAAATCAGGTAGGAGCGGGAGCATTTGGTCCAGGGTTCAC





CCCACCACACGGAGGCCTTTTGGGGTGGAGCCCTCAGGCTCAGGGCATAT





TGACAACACTGCCAGCAGCACCTCCTCCTGCCTCCACCAATCGGCAGTCA





GGAAGACAGCCTACTCCCATCTCTCCACCTCTAAGAGACAGTCATCCTCA





GGCCATGCAGTGGAA






PARP1


Poly [ADP-ribose] polymerase 1 (PARP-1) is an enzyme that in humans is encoded by the PARP1 gene. PARP1 works to on single strands of DNA, modifies nuclear proteins by poly ADP-ribosylation, involved in differentiation, proliferation and tumor transformation. PARP1 also has a role in repair of single-stranded DNA (ssDNA) breaks. Reducing intracellular PARP1 levels with siRNA or inhibiting PARP1 activity with small molecules reduces repair of ssDNA breaks. In the absence of PARP1, when these breaks are encountered during DNA replication, the replication fork stalls, and double-strand DNA (dsDNA) breaks accumulate. These dsDNA breaks are repaired via homologous recombination (HR) repair, a potentially error-free repair mechanism. However, both BRCA1 and BRCA2 are at least partially necessary for the HR pathway to function. Therefore, cells that are deficient in BRCA1 or BRCA2 have been shown to be highly sensitive to PARP1 inhibition or knock-down, resulting in cell death by apoptosis, in stark contrast to cells with at least one good copy of both BRCA1 and BRCA2. Many breast cancers have defects in the BRCA1/BRCA2 HR repair pathway due to mutations in either BRCA1 or BRCA2 (termed BRCAness), or other essential genes in the pathway and thus thought to be highly sensitive to PARP1 inhibitors. PARP1 inhibitors are believed to be effective for cancers with BRCAness, due to the high sensitivity of the tumors to the inhibitor and the lack of deleterious effects on the remaining healthy cells with functioning BRCA HR pathway (Bryant et al. (2005) Nature 434 (7035): 913-7 and Farmer et al. (2005) Nature 434 (7035): 917-21. This is in contrast to conventional chemotherapies, which are highly toxic to all cells and can induce DNA damage in healthy cells, leading to secondary cancer generation.


Protein: PARP1 Gene: PARP1: (Homo sapiens, chromosome 1, 226548392-226595801 [NCBI Reference Sequence NC000001.10]; start site location: 226595630; strand: negative)












Gene Identification


















GeneID
142



HGNC
270



MIM
173870




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site













9595

CCGCCAAAGCTCCGGAAGCCCGACGCC
14





9741

CCGCCTCGCCGCCTCGCGTGCGCTC
60





9887

CGGGAACGCCCACGGAACCCGCGTC
177





9933

CGGGTGGAGCTCTGCGGGCCGCTGC
269





9992

CGCCGGCCCCAAACTCTTAAGTGTG
696





10014

CGGGAAGCGCAGGCCCCCGCCTCGG
749





10045

CGTTCTAACCTGCCGTCCACAGACC
839



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












9595
CCGCCAAAGCTCCGGAAGCCCGACGCC
14





9596
CGCCAAAGCTCCGGAAGCCC
15





9597
GCCAAAGCTCCGGAAGCCCG
16





9598
CCAAAGCTCCGGAAGCCCGA
17





9599
CAAAGCTCCGGAAGCCCGAC
18





9600
AAAGCTCCGGAAGCCCGACG
19





9601
AAGCTCCGGAAGCCCGACGC
20





9602
AGCTCCGGAAGCCCGACGCC
21





9603
GCTCCGGAAGCCCGACGCCA
22





9604
CTCCGGAAGCCCGACGCCAC
23





9605
TCCGGAAGCCCGACGCCACG
24





9606
CCGGAAGCCCGACGCCACGA
25





9607
CGGAAGCCCGACGCCACGAC
26





9608
GGAAGCCCGACGCCACGACC
27





9609
GAAGCCCGACGCCACGACCT
28





9610
AAGCCCGACGCCACGACCTA
29





9611
AGCCCGACGCCACGACCTAG
30





9612
GCCCGACGCCACGACCTAGA
31





9613
CCCGACGCCACGACCTAGAA
32





9614
CCGACGCCACGACCTAGAAA
33





9615
CGACGCCACGACCTAGAAAC
34





9616
GACGCCACGACCTAGAAACA
35





9617
ACGCCACGACCTAGAAACAC
36





9618
CGCCACGACCTAGAAACACG
37





9619
GCCACGACCTAGAAACACGC
38





9620
CCACGACCTAGAAACACGCT
39





9621
CACGACCTAGAAACACGCTG
40





9622
ACGACCTAGAAACACGCTGC
41





9623
CGACCTAGAAACACGCTGCC
42





9624
GACCTAGAAACACGCTGCCG
43





9625
ACCTAGAAACACGCTGCCGC
44





9626
CCTAGAAACACGCTGCCGCC
45





9627
CTAGAAACACGCTGCCGCCT
46





9628
TAGAAACACGCTGCCGCCTC
47





9629
AGAAACACGCTGCCGCCTCG
48





9630
GAAACACGCTGCCGCCTCGC
49





9631
AAACACGCTGCCGCCTCGCC
50





9632
AACACGCTGCCGCCTCGCCG
51





9633
ACACGCTGCCGCCTCGCCGC
52





9634
CACGCTGCCGCCTCGCCGCC
53





9635
ACGCTGCCGCCTCGCCGCCT
54





9636
CGCTGCCGCCTCGCCGCCTC
55





9637
GCTGCCGCCTCGCCGCCTCG
56





9638
CTGCCGCCTCGCCGCCTCGC
57





9639
TGCCGCCTCGCCGCCTCGCG
58





9640
GCCGCCTCGCCGCCTCGCGT
59





9641
CCGCCTCGCCGCCTCGCGTG
60





9642
CGCCTCGCCGCCTCGCGTGC
61





9643
GCCTCGCCGCCTCGCGTGCG
62





9644
CCTCGCCGCCTCGCGTGCGC
63





9645
CTCGCCGCCTCGCGTGCGCT
64





9646
TCGCCGCCTCGCGTGCGCTC
65





9647
CGCCGCCTCGCGTGCGCTCA
66





9648
GCCGCCTCGCGTGCGCTCAC
67





9649
CCGCCTCGCGTGCGCTCACC
68





9650
CGCCTCGCGTGCGCTCACCC
69





9651
GCCTCGCGTGCGCTCACCCA
70





9652
CCTCGCGTGCGCTCACCCAG
71





9653
CTCGCGTGCGCTCACCCAGC
72





9654
TCGCGTGCGCTCACCCAGCC
73





9655
CGCGTGCGCTCACCCAGCCG
74





9656
GCGTGCGCTCACCCAGCCGC
75





9657
CGTGCGCTCACCCAGCCGCA
76





9658
GTGCGCTCACCCAGCCGCAG
77





9659
TGCGCTCACCCAGCCGCAGG
78





9660
GCGCTCACCCAGCCGCAGGC
79





9661
CGCTCACCCAGCCGCAGGCG
80





9662
GCTCACCCAGCCGCAGGCGC
81





9663
CTCACCCAGCCGCAGGCGCC
82





9664
TCACCCAGCCGCAGGCGCCT
83





9665
CACCCAGCCGCAGGCGCCTG
84





9666
ACCCAGCCGCAGGCGCCTGA
85





9667
CCCAGCCGCAGGCGCCTGAG
86





9668
CCAGCCGCAGGCGCCTGAGC
87





9669
CAGCCGCAGGCGCCTGAGCG
88





9670
AGCCGCAGGCGCCTGAGCGG
89





9671
GCCGCAGGCGCCTGAGCGGC
90





9672
CCGCAGGCGCCTGAGCGGCC
91





9673
CGCAGGCGCCTGAGCGGCCA
92





9674
GCAGGCGCCTGAGCGGCCAG
93





9675
CAGGCGCCTGAGCGGCCAGA
94





9676
AGGCGCCTGAGCGGCCAGAG
95





9677
GGCGCCTGAGCGGCCAGAGC
96





9678
GCGCCTGAGCGGCCAGAGCC
97





9679
CGCCTGAGCGGCCAGAGCCG
98





9680
GCCTGAGCGGCCAGAGCCGC
99





9681
CCTGAGCGGCCAGAGCCGCC
100





9682
CTGAGCGGCCAGAGCCGCCA
101





9683
TGAGCGGCCAGAGCCGCCAC
102





9684
GAGCGGCCAGAGCCGCCACC
103





9685
AGCGGCCAGAGCCGCCACCG
104





9686
GCGGCCAGAGCCGCCACCGA
105





9687
CGGCCAGAGCCGCCACCGAA
106





9688
GGCCAGAGCCGCCACCGAAC
107





9689
GCCAGAGCCGCCACCGAACA
108





9690
CCAGAGCCGCCACCGAACAC
109





9691
CAGAGCCGCCACCGAACACG
110





9692
AGAGCCGCCACCGAACACGC
111





9693
GAGCCGCCACCGAACACGCC
112





9694
AGCCGCCACCGAACACGCCG
113





9695
GCCGCCACCGAACACGCCGC
114





9696
CCGCCACCGAACACGCCGCA
115





9697
CGCCACCGAACACGCCGCAC
116





9698
GCCACCGAACACGCCGCACC
117





9699
CCACCGAACACGCCGCACCG
118





9700
CACCGAACACGCCGCACCGG
119





9701
ACCGAACACGCCGCACCGGC
120





9702
CCGAACACGCCGCACCGGCC
121





9703
CGAACACGCCGCACCGGCCA
122





9704
GAACACGCCGCACCGGCCAC
123





9705
AACACGCCGCACCGGCCACC
124





9706
ACACGCCGCACCGGCCACCG
125





9707
CACGCCGCACCGGCCACCGC
126





9708
ACGCCGCACCGGCCACCGCC
127





9709
CGCCGCACCGGCCACCGCCG
128





9710
GCCGCACCGGCCACCGCCGT
129





9711
CCGCACCGGCCACCGCCGTT
130





9712
CGCACCGGCCACCGCCGTTC
131





9713
GCACCGGCCACCGCCGTTCC
132





9714
CACCGGCCACCGCCGTTCCC
133





9715
ACCGGCCACCGCCGTTCCCT
134





9716
CCGGCCACCGCCGTTCCCTG
135





9717
CGGCCACCGCCGTTCCCTGA
136





9718
GGCCACCGCCGTTCCCTGAT
137





9719
GCCACCGCCGTTCCCTGATA
138





9720
CCACCGCCGTTCCCTGATAG
139





9721
CACCGCCGTTCCCTGATAGA
140





9722
ACCGCCGTTCCCTGATAGAT
141





9723
CCGCCGTTCCCTGATAGATT
142





9724
CGCCGTTCCCTGATAGATTG
143





9725
GCCGTTCCCTGATAGATTGC
144





9726
CCGTTCCCTGATAGATTGCT
145





9727
CGTTCCCTGATAGATTGCTG
146





9728
GCCGCCAAAGCTCCGGAAGC
13





9729
TGCCGCCAAAGCTCCGGAAG
12





9730
CTGCCGCCAAAGCTCCGGAA
11





9731
GCTGCCGCCAAAGCTCCGGA
10





9732
AGCTGCCGCCAAAGCTCCGG
9





9733
TAGCTGCCGCCAAAGCTCCG
8





9734
CTAGCTGCCGCCAAAGCTCC
7





9735
CCTAGCTGCCGCCAAAGCTC
6





9736
CCCTAGCTGCCGCCAAAGCT
5





9737
CCCCTAGCTGCCGCCAAAGC
4





9738
TCCCCTAGCTGCCGCCAAAG
3





9739
CTCCCCTAGCTGCCGCCAAA
2





9740
CCTCCCCTAGCTGCCGCCAA
1





9741
CCGCCTCGCCGCCTCGCGTGCGCTC
60





9742
CGCCTCGCCGCCTCGCGTGC
61





9743
GCCTCGCCGCCTCGCGTGCG
62





9744
CCTCGCCGCCTCGCGTGCGC
63





9745
CTCGCCGCCTCGCGTGCGCT
64





9746
TCGCCGCCTCGCGTGCGCTC
65





9747
CGCCGCCTCGCGTGCGCTCA
66





9748
GCCGCCTCGCGTGCGCTCAC
67





9749
CCGCCTCGCGTGCGCTCACC
68





9750
CGCCTCGCGTGCGCTCACCC
69





9751
GCCTCGCGTGCGCTCACCCA
70





9752
CCTCGCGTGCGCTCACCCAG
71





9753
CTCGCGTGCGCTCACCCAGC
72





9754
TCGCGTGCGCTCACCCAGCC
73





9755
CGCGTGCGCTCACCCAGCCG
74





9756
GCGTGCGCTCACCCAGCCGC
75





9757
CGTGCGCTCACCCAGCCGCA
76





9758
GTGCGCTCACCCAGCCGCAG
77





9759
TGCGCTCACCCAGCCGCAGG
78





9760
GCGCTCACCCAGCCGCAGGC
79





9761
CGCTCACCCAGCCGCAGGCG
80





9762
GCTCACCCAGCCGCAGGCGC
81





9763
CTCACCCAGCCGCAGGCGCC
82





9764
TCACCCAGCCGCAGGCGCCT
83





9765
CACCCAGCCGCAGGCGCCTG
84





9766
ACCCAGCCGCAGGCGCCTGA
85





9767
CCCAGCCGCAGGCGCCTGAG
86





9768
CCAGCCGCAGGCGCCTGAGC
87





9769
CAGCCGCAGGCGCCTGAGCG
88





9770
AGCCGCAGGCGCCTGAGCGG
89





9771
GCCGCAGGCGCCTGAGCGGC
90





9772
CCGCAGGCGCCTGAGCGGCC
91





9773
CGCAGGCGCCTGAGCGGCCA
92





9774
GCAGGCGCCTGAGCGGCCAG
93





9775
CAGGCGCCTGAGCGGCCAGA
94





9776
AGGCGCCTGAGCGGCCAGAG
95





9777
GGCGCCTGAGCGGCCAGAGC
96





9778
GCGCCTGAGCGGCCAGAGCC
97





9779
CGCCTGAGCGGCCAGAGCCG
98





9780
GCCTGAGCGGCCAGAGCCGC
99





9781
CCTGAGCGGCCAGAGCCGCC
100





9782
CTGAGCGGCCAGAGCCGCCA
101





9783
TGAGCGGCCAGAGCCGCCAC
102





9784
GAGCGGCCAGAGCCGCCACC
103





9785
AGCGGCCAGAGCCGCCACCG
104





9786
GCGGCCAGAGCCGCCACCGA
105





9787
CGGCCAGAGCCGCCACCGAA
106





9788
GGCCAGAGCCGCCACCGAAC
107





9789
GCCAGAGCCGCCACCGAACA
108





9790
CCAGAGCCGCCACCGAACAC
109





9791
CAGAGCCGCCACCGAACACG
110





9792
AGAGCCGCCACCGAACACGC
111





9793
GAGCCGCCACCGAACACGCC
112





9794
AGCCGCCACCGAACACGCCG
113





9795
GCCGCCACCGAACACGCCGC
114





9796
CCGCCACCGAACACGCCGCA
115





9797
CGCCACCGAACACGCCGCAC
116





9798
GCCACCGAACACGCCGCACC
117





9799
CCACCGAACACGCCGCACCG
118





9800
CACCGAACACGCCGCACCGG
119





9801
ACCGAACACGCCGCACCGGC
120





9802
CCGAACACGCCGCACCGGCC
121





9803
CGAACACGCCGCACCGGCCA
122





9804
GAACACGCCGCACCGGCCAC
123





9805
AACACGCCGCACCGGCCACC
124





9806
ACACGCCGCACCGGCCACCG
125





9807
CACGCCGCACCGGCCACCGC
126





9808
ACGCCGCACCGGCCACCGCC
127





9809
CGCCGCACCGGCCACCGCCG
128





9810
GCCGCACCGGCCACCGCCGT
129





9811
CCGCACCGGCCACCGCCGTT
130





9812
CGCACCGGCCACCGCCGTTC
131





9813
GCACCGGCCACCGCCGTTCC
132





9814
CACCGGCCACCGCCGTTCCC
133





9815
ACCGGCCACCGCCGTTCCCT
134





9816
CCGGCCACCGCCGTTCCCTG
135





9817
CGGCCACCGCCGTTCCCTGA
136





9818
GGCCACCGCCGTTCCCTGAT
137





9819
GCCACCGCCGTTCCCTGATA
138





9820
CCACCGCCGTTCCCTGATAG
139





9821
CACCGCCGTTCCCTGATAGA
140





9822
ACCGCCGTTCCCTGATAGAT
141





9823
CCGCCGTTCCCTGATAGATT
142





9824
CGCCGTTCCCTGATAGATTG
143





9825
GCCGTTCCCTGATAGATTGC
144





9826
CCGTTCCCTGATAGATTGCT
145





9827
CGTTCCCTGATAGATTGCTG
146





9828
GCCGCCTCGCCGCCTCGCGT
59





9829
TGCCGCCTCGCCGCCTCGCG
58





9830
CTGCCGCCTCGCCGCCTCGC
57





9831
GCTGCCGCCTCGCCGCCTCG
56





9832
CGCTGCCGCCTCGCCGCCTC
55





9833
ACGCTGCCGCCTCGCCGCCT
54





9834
CACGCTGCCGCCTCGCCGCC
53





9835
ACACGCTGCCGCCTCGCCGC
52





9836
AACACGCTGCCGCCTCGCCG
51





9837
AAACACGCTGCCGCCTCGCC
50





9838
GAAACACGCTGCCGCCTCGC
49





9839
AGAAACACGCTGCCGCCTCG
48





9840
TAGAAACACGCTGCCGCCTC
47





9841
CTAGAAACACGCTGCCGCCT
46





9842
CCTAGAAACACGCTGCCGCC
45





9843
ACCTAGAAACACGCTGCCGC
44





9844
GACCTAGAAACACGCTGCCG
43





9845
CGACCTAGAAACACGCTGCC
42





9846
ACGACCTAGAAACACGCTGC
41





9847
CACGACCTAGAAACACGCTG
40





9848
CCACGACCTAGAAACACGCT
39





9849
GCCACGACCTAGAAACACGC
38





9850
CGCCACGACCTAGAAACACG
37





9851
ACGCCACGACCTAGAAACAC
36





9852
GACGCCACGACCTAGAAACA
35





9853
CGACGCCACGACCTAGAAAC
34





9854
CCGACGCCACGACCTAGAAA
33





9855
CCCGACGCCACGACCTAGAA
32





9856
GCCCGACGCCACGACCTAGA
31





9857
AGCCCGACGCCACGACCTAG
30





9858
AAGCCCGACGCCACGACCTA
29





9859
GAAGCCCGACGCCACGACCT
28





9860
GGAAGCCCGACGCCACGACC
27





9861
CGGAAGCCCGACGCCACGAC
26





9862
CCGGAAGCCCGACGCCACGA
25





9863
TCCGGAAGCCCGACGCCACG
24





9864
CTCCGGAAGCCCGACGCCAC
23





9865
GCTCCGGAAGCCCGACGCCA
22





9866
AGCTCCGGAAGCCCGACGCC
21





9867
AAGCTCCGGAAGCCCGACGC
20





9868
AAAGCTCCGGAAGCCCGACG
19





9869
CAAAGCTCCGGAAGCCCGAC
18





9870
CCAAAGCTCCGGAAGCCCGA
17





9871
GCCAAAGCTCCGGAAGCCCG
16





9872
CGCCAAAGCTCCGGAAGCCC
15





9873
CCGCCAAAGCTCCGGAAGCC
14





9874
GCCGCCAAAGCTCCGGAAGC
13





9875
TGCCGCCAAAGCTCCGGAAG
12





9876
CTGCCGCCAAAGCTCCGGAA
11





9877
GCTGCCGCCAAAGCTCCGGA
10





9878
AGCTGCCGCCAAAGCTCCGG
9





9879
TAGCTGCCGCCAAAGCTCCG
8





9880
CTAGCTGCCGCCAAAGCTCC
7





9881
CCTAGCTGCCGCCAAAGCTC
6





9882
CCCTAGCTGCCGCCAAAGCT
5





9883
CCCCTAGCTGCCGCCAAAGC
4





9884
TCCCCTAGCTGCCGCCAAAG
3





9885
CTCCCCTAGCTGCCGCCAAA
2





9886
CCTCCCCTAGCTGCCGCCAA
1





9887
CGGGAACGCCCACGGAACCCGCGTC
177





9888
GGGAACGCCCACGGAACCCG
178





9889
GGAACGCCCACGGAACCCGC
179





9890
GAACGCCCACGGAACCCGCG
180





9891
AACGCCCACGGAACCCGCGT
181





9892
ACGCCCACGGAACCCGCGTC
182





9893
CGCCCACGGAACCCGCGTCC
183





9894
GCCCACGGAACCCGCGTCCA
184





9895
CCCACGGAACCCGCGTCCAC
185





9896
CCACGGAACCCGCGTCCACG
186





9897
CACGGAACCCGCGTCCACGG
187





9898
ACGGAACCCGCGTCCACGGG
188





9899
CGGAACCCGCGTCCACGGGG
189





9900
GGAACCCGCGTCCACGGGGC
190





9901
GAACCCGCGTCCACGGGGCG
191





9902
AACCCGCGTCCACGGGGCGG
192





9903
ACCCGCGTCCACGGGGCGGG
193





9904
CCCGCGTCCACGGGGCGGGG
194





9905
CCGCGTCCACGGGGCGGGGC
195





9906
CGCGTCCACGGGGCGGGGCC
196





9907
GCGTCCACGGGGCGGGGCCG
197





9908
CGTCCACGGGGCGGGGCCGG
198





9909
GTCCACGGGGCGGGGCCGGC
199





9910
TCCACGGGGCGGGGCCGGCG
200





9911
CCACGGGGCGGGGCCGGCGG
201





9912
CACGGGGCGGGGCCGGCGGC
202





9913
GCGGGAACGCCCACGGAACC
176





9914
CGCGGGAACGCCCACGGAAC
175





9915
CCGCGGGAACGCCCACGGAA
174





9916
GCCGCGGGAACGCCCACGGA
173





9917
GGCCGCGGGAACGCCCACGG
172





9918
TGGCCGCGGGAACGCCCACG
171





9919
CTGGCCGCGGGAACGCCCAC
170





9920
CCTGGCCGCGGGAACGCCCA
169





9921
GCCTGGCCGCGGGAACGCCC
168





9922
TGCCTGGCCGCGGGAACGCC
167





9923
ATGCCTGGCCGCGGGAACGC
166





9924
GATGCCTGGCCGCGGGAACG
165





9925
TGATGCCTGGCCGCGGGAAC
164





9926
CTGATGCCTGGCCGCGGGAA
163





9927
GCTGATGCCTGGCCGCGGGA
162





9928
TGCTGATGCCTGGCCGCGGG
161





9929
TTGCTGATGCCTGGCCGCGG
160





9930
ATTGCTGATGCCTGGCCGCG
159





9931
GATTGCTGATGCCTGGCCGC
158





9932
AGATTGCTGATGCCTGGCCG
157





9933
CGGGTGGAGCTCTGCGGGCCGCTGC
269





9934
GGGTGGAGCTCTGCGGGCCG
270





9935
GGTGGAGCTCTGCGGGCCGC
271





9936
GTGGAGCTCTGCGGGCCGCT
272





9937
TGGAGCTCTGCGGGCCGCTG
273





9938
GGAGCTCTGCGGGCCGCTGC
274





9939
GAGCTCTGCGGGCCGCTGCC
275





9940
AGCTCTGCGGGCCGCTGCCC
276





9941
GCTCTGCGGGCCGCTGCCCT
277





9942
CTCTGCGGGCCGCTGCCCTG
278





9943
TCTGCGGGCCGCTGCCCTGG
279





9944
CTGCGGGCCGCTGCCCTGGG
280





9945
TGCGGGCCGCTGCCCTGGGG
281





9946
GCGGGCCGCTGCCCTGGGGG
282





9947
CGGGCCGCTGCCCTGGGGGC
283





9948
GGGCCGCTGCCCTGGGGGCC
284





9949
GGCCGCTGCCCTGGGGGCCG
285





9950
GCCGCTGCCCTGGGGGCCGA
286





9951
CCGCTGCCCTGGGGGCCGAG
287





9952
CGCTGCCCTGGGGGCCGAGG
288





9953
GCTGCCCTGGGGGCCGAGGC
289





9954
CTGCCCTGGGGGCCGAGGCG
290





9955
TGCCCTGGGGGCCGAGGCGG
291





9956
GCCCTGGGGGCCGAGGCGGG
292





9957
CCCTGGGGGCCGAGGCGGGG
293





9958
CCTGGGGGCCGAGGCGGGGC
294





9959
CTGGGGGCCGAGGCGGGGCT
295





9960
TGGGGGCCGAGGCGGGGCTT
296





9961
CCGGGTGGAGCTCTGCGGGC
268





9962
GCCGGGTGGAGCTCTGCGGG
267





9963
TGCCGGGTGGAGCTCTGCGG
266





9964
CTGCCGGGTGGAGCTCTGCG
265





9965
CCTGCCGGGTGGAGCTCTGC
264





9966
GCCTGCCGGGTGGAGCTCTG
263





9967
CGCCTGCCGGGTGGAGCTCT
262





9968
GCGCCTGCCGGGTGGAGCTC
261





9969
GGCGCCTGCCGGGTGGAGCT
260





9970
GGGCGCCTGCCGGGTGGAGC
259





9971
CGGGCGCCTGCCGGGTGGAG
258





9972
CCGGGCGCCTGCCGGGTGGA
257





9973
CCCGGGCGCCTGCCGGGTGG
256





9974
TCCCGGGCGCCTGCCGGGTG
255





9975
TTCCCGGGCGCCTGCCGGGT
254





9976
TTTCCCGGGCGCCTGCCGGG
253





9977
GTTTCCCGGGCGCCTGCCGG
252





9978
AGTTTCCCGGGCGCCTGCCG
251





9979
GAGTTTCCCGGGCGCCTGCC
250





9980
GGAGTTTCCCGGGCGCCTGC
249





9981
CGGAGTTTCCCGGGCGCCTG
248





9982
GCGGAGTTTCCCGGGCGCCT
247





9983
GGCGGAGTTTCCCGGGCGCC
246





9984
GGGCGGAGTTTCCCGGGCGC
245





9985
GGGGCGGAGTTTCCCGGGCG
244





9986
GGGGGCGGAGTTTCCCGGGC
243





9987
GGGGGGCGGAGTTTCCCGGG
242





9988
CGGGGGGCGGAGTTTCCCGG
241





9989
CCGGGGGGCGGAGTTTCCCG
240





9990
GCCGGGGGGCGGAGTTTCCC
239





9991
GGCCGGGGGGCGGAGTTTCC
238





9992
CGCCGGCCCCAAACTCTTAAGTGTG
696





9993
GCCGGCCCCAAACTCTTAAG
697





9994
CCGGCCCCAAACTCTTAAGT
698





9995
CGGCCCCAAACTCTTAAGTG
699





9996
ACGCCGGCCCCAAACTCTTA
695





9997
CACGCCGGCCCCAAACTCTT
694





9998
CCACGCCGGCCCCAAACTCT
693





9999
ACCACGCCGGCCCCAAACTC
692





10000
TACCACGCCGGCCCCAAACT
691





10001
CTACCACGCCGGCCCCAAAC
690





10002
GCTACCACGCCGGCCCCAAA
689





10003
AGCTACCACGCCGGCCCCAA
688





10004
GAGCTACCACGCCGGCCCCA
687





10005
TGAGCTACCACGCCGGCCCC
686





10006
ATGAGCTACCACGCCGGCCC
685





10007
CATGAGCTACCACGCCGGCC
684





10008
GCATGAGCTACCACGCCGGC
683





10009
GGCATGAGCTACCACGCCGG
682





10010
GGGCATGAGCTACCACGCCG
681





10011
GGGGCATGAGCTACCACGCC
680





10012
AGGGGCATGAGCTACCACGC
679





10013
CAGGGGCATGAGCTACCACG
678





10014
CGGGAAGCGCAGGCCCCCGCCTCGG
749





10015
GGGAAGCGCAGGCCCCCGCC
750





10016
GGAAGCGCAGGCCCCCGCCT
751





10017
GAAGCGCAGGCCCCCGCCTC
752





10018
AAGCGCAGGCCCCCGCCTCG
753





10019
AGCGCAGGCCCCCGCCTCGG
754





10020
GCGCAGGCCCCCGCCTCGGG
755





10021
CGCAGGCCCCCGCCTCGGGA
756





10022
GCAGGCCCCCGCCTCGGGAA
757





10023
CAGGCCCCCGCCTCGGGAAT
758





10024
AGGCCCCCGCCTCGGGAATA
759





10025
GGCCCCCGCCTCGGGAATAT
760





10026
GCCCCCGCCTCGGGAATATA
761





10027
CCCCCGCCTCGGGAATATAG
762





10028
CCCCGCCTCGGGAATATAGT
763





10029
CCCGCCTCGGGAATATAGTT
764





10030
CCGCCTCGGGAATATAGTTG
765





10031
CGCCTCGGGAATATAGTTGA
766





10032
GCCTCGGGAATATAGTTGAT
767





10033
CCGGGAAGCGCAGGCCCCCG
748





10034
TCCGGGAAGCGCAGGCCCCC
747





10035
GTCCGGGAAGCGCAGGCCCC
746





10036
GGTCCGGGAAGCGCAGGCCC
745





10037
GGGTCCGGGAAGCGCAGGCC
744





10038
TGGGTCCGGGAAGCGCAGGC
743





10039
CTGGGTCCGGGAAGCGCAGG
742





10040
GCTGGGTCCGGGAAGCGCAG
741





10041
AGCTGGGTCCGGGAAGCGCA
740





10042
CAGCTGGGTCCGGGAAGCGC
739





10043
GCAGCTGGGTCCGGGAAGCG
738





10044
GGCAGCTGGGTCCGGGAAGC
737





10045
CGTTCTAACCTGCCGTCCACAGACC
839





10046
GTTCTAACCTGCCGTCCACA
840





10047
TTCTAACCTGCCGTCCACAG
841





10048
TCTAACCTGCCGTCCACAGA
842





10049
CTAACCTGCCGTCCACAGAC
843





10050
TAACCTGCCGTCCACAGACC
844





10051
AACCTGCCGTCCACAGACCG
845





10052
ACCTGCCGTCCACAGACCGT
846





10053
CCTGCCGTCCACAGACCGTC
847





10054
CTGCCGTCCACAGACCGTCG
848





10055
TGCCGTCCACAGACCGTCGG
849





10056
GCCGTCCACAGACCGTCGGG
850





10057
CCGTCCACAGACCGTCGGGA
851





10058
CGTCCACAGACCGTCGGGAC
852





10059
GTCCACAGACCGTCGGGACA
853





10060
TCCACAGACCGTCGGGACAA
854





10061
CCACAGACCGTCGGGACAAA
855





10062
CACAGACCGTCGGGACAAAA
856





10063
ACAGACCGTCGGGACAAAAT
857





10064
CAGACCGTCGGGACAAAATA
858





10065
AGACCGTCGGGACAAAATAC
859





10066
GACCGTCGGGACAAAATACC
860





10067
ACCGTCGGGACAAAATACCA
861





10068
CCGTCGGGACAAAATACCAA
862





10069
CGTCGGGACAAAATACCAAC
863





10070
GTCGGGACAAAATACCAACT
864





10071
TCGGGACAAAATACCAACTG
865





10072
CGGGACAAAATACCAACTGA
866





10073
GCGTTCTAACCTGCCGTCCA
838





10074
GGCGTTCTAACCTGCCGTCC
837





10075
GGGCGTTCTAACCTGCCGTC
836





10076
CGGGCGTTCTAACCTGCCGT
835





10077
ACGGGCGTTCTAACCTGCCG
834





10078
GACGGGCGTTCTAACCTGCC
833





10079
GGACGGGCGTTCTAACCTGC
832





10080
TGGACGGGCGTTCTAACCTG
831





10081
TTGGACGGGCGTTCTAACCT
830





10082
CTTGGACGGGCGTTCTAACC
829





10083
GCTTGGACGGGCGTTCTAAC
828





10084
GGCTTGGACGGGCGTTCTAA
827





10085
TGGCTTGGACGGGCGTTCTA
826





10086
CTGGCTTGGACGGGCGTTCT
825





10087
CCTGGCTTGGACGGGCGTTC
824





10088
TCCTGGCTTGGACGGGCGTT
823





10089
CTCCTGGCTTGGACGGGCGT
822





10090
CCTCCTGGCTTGGACGGGCG
821





10091
CCCTCCTGGCTTGGACGGGC
820





10092
ACCCTCCTGGCTTGGACGGG
819





10093
CACCCTCCTGGCTTGGACGG
818





10094
CCACCCTCCTGGCTTGGACG
817









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11981)







GGTGGATCTCCACATGCAGAAGAATGTAGCTGGACCCATACCTTACACCA





AATGTTTGTTGTGAGTTTATTTACTTTTTTGTGTGTGTGGAGACAGGGTC





GTGCTATGTTGTCCAGGCTGATCTAGAACTCCTTACCTAGAGACACTGCC





AAGGTAAGTGAGGGCCAAGTGGACACTGAGTGATTCTGTGCCTCACTGAG





CAAAAATAACTAAACATGGGCGAAGGAGAGCCCAATGATCCCAGGGACAA





AATGTCATCACGGGCATTCTGCGCACGCTTGCCAGGATACAGGAGAAGCA





ACCAGACACTTCATTCATCTTCTCAGAATGTTCATTAACATGTTCAGAAA





GGTGGAAAACCTTACTTGCTAAAGAGAAGGAAATTGGAGGCATGGCCAAA





AGTATTCAAGGCCCTTTATGAAAAAGAAATGAAAACTGATATCCCTCCTA





AAAGAGAAGTAAAACAGAAATTCAGAGATTCTAATGCACCCGAAAGGCCT





CCTTTGGGCTTTCACTTTGTGTTCTGAGTACTGCCCTCAAATCAAAGGAG





ATCCCGGTCTGTCCACTGGCAGTGATGCCAAGAACCTGGGAGGGACATGA





GTGACCATGCTGCAGATGGCAAGCAGCCCAAAAAGAAGGCTTCTCAACTG





AAGGAAAAGTACCAAGAGCAGAATGCTGCATATCCAGCCAAAGGAAAGCT





GATGTGGCAAAAATGATGCTGTCAAGGCCGAAAAAGGCAAGAAAAAAAAA





CAAAGCGGAGAAAGACAGAGAAGGTAAGGAAAATAAAAAATGAAGTCGAT





GATAATGACAAATAAGGTGGTTCTATGGCAGCTTTTTTTTTTTTCTCTTG





TCTATAAAGCATTTAACCTACCTGGACACAGCTCATTCCTTTTAAAGAAA





AAAATTGAAATGTAAAGCCACCTAAGATTTATTTGTAAACTGCATGATGG





CGTTCTTTTTCTGTTTTTGTATTATTAACAAGAATTATCAAGTAATTCTT





CAGACAACCCTGTCCTGGTGGTATTTTGTATAGCCACCAACTTTGCCTGG





TATACTATAGGGGTTATAAATCAGCATGGGAATTTCAAATTTAAGGCACA





GTATAAGTTAGTTATATACAAATGTGAAGTAACATTATTAATTAAACTGT





TGGCCTGTGCGAAGGGAGGGCCAACTGTGGGATTCAGTCATTCATTCAAC





AAATATTGGTGAGTGCCTGACACTGTTCCAGGCACTGAGGCTATTGCAAC





AAAACAGACACAAGCTCCTGCCCTCATGGAGCTTACATTCTGGTGAGGGA





TACAGAGCCACCAAAAAGGATGGCAGCTGGGCCATGAGAAAGGATCAAAG





TCAGGAAGTTAGAATTCGGGGATGGATTGAACATGGGACAAAAGAGAAGA





GTCAAGTTGACTACAAAGCATTTGGCCTAAGTAATGCAAAGAATGGTGGG





CCATTTCCTGAGATGGGAAGCACTAGGGTAGTTTTGGACATAAATGGAGA





TGCATATAAGCCATCCAAACTGAAATATTGAGAAGGCAGTAGGTGATAGT





TGGCTTTCCTTAGGTTCTAGGGCAGGAATTCTTAACCTTTTGTGTGTGTG





CCTAGGACCCCTTTGGTGGTCCATGAAGCCCTTTCCAGAATAAATATTGT





GGAGGAACCTACCTTAATGCAATAGTAGCTTCTAGGTACATTATCAGGCA





AACTATCCCACAAGTTACAAAACAGAAAGCCTCACAGACCAAATTATGAT





GCTTGAATTGCAGGGTTTATTGAATCAGTTTAAAACCACTTACAGCAAGA





ACTCGATGGGGTGCATAACATACACAGGATAGGGTACAGGCGAGGCAGAT





GGACCACACCACCAGAACCTAGAATTAGGGAATCCTCCCCTCCCCTCCCC





TCCCACCCCTCCCCCCTTCCCCCTCCCCTCCCCTCCCCTCCTCCCCTCCT





CTCCCATCCTCCCCTCCCCTCCCATCCTCCCCTCCCCTCCCCTTTTCTCT





TCTTTTCTTTTTTTGAGACTGTCTCACTATGTTGCCCAGGCTGGAGTGCA





ATGGCGTGATCTCGGCTCACTGCAACTTCCACCTCCTGGGTTCAAGCGAT





TCTCATGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCACGCACCACAA





TGCCCAGCTAATTTTTGTATTCTTAGTAGAGACGGGGTTTCACCATGTTG





ACCAGGCTGGTTTTGAACTCCTGACCTTAGGTGATCCACCCGCCTCAGAT





TCCCAAAGCGCTGGGATTACAGGCATGAGCCACTGCACCTGGCTAATATT





GATATGTTTTCCCTCTCTCTGCCGCATCAGCCTGTCCCACTGACAGAGTT





GAGGATGCTCAAGGCGGCTCAACAGAGGGTACCTGGAGCAACTCACACTG





CACTATCAGAGAGACACAAGTGCAAGCACACTCAGCCACAGCTGCAGCTC





ACCAATCAGCCTGCTGAACAGACCTGAACTTTAGCTGCATTTTTGGGGCA





GAGCATATGGGTGCCAGGATGGGACCATAATCTTATCACCAATGAGTGGC





CATTTAGGGATGATATAGTTGTCAACCCAGAGATGGCATGATCATGCCTT





TTGACTTGGTCATTCTCTAAGTAAAACTTTTATTTGTTCCATCATATTTT





CCACTTATTCTGTTTACCTTCAAAATATCTTTTTTTTTTTTTTTTGAGAC





AGGGTCACACTGTCACCCAGGCTAGAGTCCAGTGGCACTATCATGGCTCA





CCACAGCCTCAACCTTCAGGGCTCAGGTGATCCTCCCACTTCAGCCTCCC





GAGTAGATGGGACTACAGGCACCTGCCACCACCCCCAGCTAATTTTTGTA





GAGACAAGGTTTTGCCATGTTGTCCAGGCTGGTCTTGAACTCCTGGGCTC





AAGGGATCCGGCCACCTCAGCCTCCCAAAGTGCTAGGATTATAGGCATGA





GCCACTGTGCCCAGCCTACCTTCAACGTATCTAACTGGTTACTAACTTTT





AGGATTCGGCCTATGTCTCACAACCTTCTTGCTTACTCAACATCCTTGTC





TCTTAAGCCACTAGCTTCTTCTCTATGGTTAACACTTTTTATGAGTTTTA





TTCATCTGCTTATTTTTCTTATCCTCTATACCAGAATTGAATATTTTCAA





ATAAAGCACACTCATGTTACAATCTTTGAAATGAAAAAAAAAAATGCATA





GGATTAGAAAAGAAACCAATTTTAATAAACTATATTTTGAAGTATAGTTC





TATATTAAACAACAAGATCTAGGCCAGGTGCAGTGGCTCATGCCTGTAAT





CCCAGCAATTTGGGAAGTCGAGGTGGGAGGATTGCTTGAGGCCAGGGGTT





CAAGACCAGCCTGGGCAACATGGAGAGATTCCCCATCTCTTTCTTTACAC





ACACACACACACACACACACAAAATATCTGATAGCAACAGGTGCAGTCAT





TACCACAATTTCGAGTAGTGATGAGCTTAATAATATTTCGAGTTATCACC





AACAACTGTAAAGTAACATGAAAACGTCTGTGATGACTATTGCCCACAAA





GTCACAGGTACTGCTAATACTCCTGGTATTTGTAGTCAAATTCATAATAA





AGGAAATGCTAGGTTTCAGTTGGTATTTTGTCCCGACGGTCTGTGGACGG





CAGGTTAGAACGCCCGTCCAAGCCAGGAGGGTGGACCTAGCACTGCAGGG





TCCACCTCGGGCCAATCAACTATATTCCCGAGGCGGGGGCCTGCGCTTCC





CGGACCCAGCTGCCCTCAGGGGAGAGAGGACACACTTAAGAGTTTGGGGC





CGGCGTGGTAGCTCATGCCCCTGATCCCAGCACTTCGGGAGGCTGAGGCG





TGAAGATCACTTGTAGCAGGAGTTTGAGACCAGTCTAGCCAACTTGGCGA





GACCCTGTCCCTAAAAAAAATTTTTTTTTAATTAGCCAGTTGTGGTGAGC





GCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGTGGGAGGATCGCTGGGCT





CAGGAGTTCCAGACTGCAGTGAGCCATGATGGCGGCACTGCACTCCAGCG





CGGTGAGACTCAGTCTCAAAAATAAAAGGGGGAGGGGTTGGGGGTAAAAT





TAGTTGTGAAATCAAGTAAGACTTCCTGGGACAGAACAATCAAAGGGGTG





GCGCCGGGTCCTCCAAAGAGCTACTAGCTCAGCCCAAGCCCCGCCTCGGC





CCCCAGGGCAGCGGCCCGCAGAGCTCCACCCGGCAGGCGCCCGGGAAACT





CCGCCCCCCGGCCGGCAGGGGGCGCGCGCGCCGCCGGCCCCGCCCCGTGG





ACGCGGGTTCCGTGGGCGTTCCCGCGGCCAGGCATCAGCAATCTATCAGG





GAACGGCGGTGGCCGGTGCGGCGTGTTCGGTGGCGGCTCTGGCCGCTCAG





GCGCCTGCGGCTGGGTGAGCGCACGCGAGGCGGCGAGGCGGCAGCGTGTT





TCTAGGTCGTGGCGTCGGGCTTCCGGAGCTTTGGCGGCAGCTAGGGGAGG







ATG








TNFα


Tumor necrosis factor is a cytokine produced primarily by activated macrophages (Ml type) and other cells including CD4+ lymphocytes, NK cells and neurons (Pfeffer K. 2003 Cytokine Growth Factor Rev. 14(3-4):185-91) to regulate immune cells during an acute inflammatory response. TNF was originally characterized its ability to induce tumor cell apoptosis and cachexia, however, its roles are now recognized to impart both beneficial (inflammation and in protective immune responses against a variety of infectious pathogens) and detrimental effects (sepsis, cancer, autoimmune disease). TNF, an endogenous pyrogen, induces fever, apoptotic cell death, cachexia, inflammation, inhibits tumorigenesis and viral replication and mediates sepsis by responding to IL-1 and IL-6 producing cells. Dysregulation of TNF production has been implicated in a variety of human diseases including Alzheimer's disease, cancer, major depression and inflammatory bowel disease (IBD). TNFα can be produced ectopically in the setting of malignancy and parallels parathyroid hormone both in causing secondary hypercalcemia and in the cancers with which excessive production is associated.


Protein: TNFα Gene: TNFα (Homo sapiens, chromosome 6, 31543344-31546113 [NCBI Reference Sequence: NC000006.11]; start site location: 31543519; strand: positive)












Gene Identification


















GeneID
7124



HGNC
11892



HPRD
01855



MIM
191160




















Targeted Sequences













Relative





upstream





location



De-

to gene


Sequence
sign

start


ID No:
ID
Sequence (5′-3′)
site













10095

CGGGGAAAGAATCATTCAACCAGCGG
229





10096
TNF1
CGGTTTCTTCTCCATCGCGGGGGCG
326





10129

CTGCTCCGATTCCGAGGGGGGTCTTCT
412





10154

CTCCGTGTGGGGCTCTGGTCGGCAGCT
1464





10207

CGCAGCCCCGTGGTACATCGAGTGCAGC
2151



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene start


ID No:
Sequence (5′-3′)
site












10095
CGGGGAAAGAATCATTCAACCAGCGG
229





10096
CGGTTTCTTCTCCATCGCGGGGGCG
326





10097
GGTTTCTTCTCCATCGCGGG
327





10098
GTTTCTTCTCCATCGCGGGG
328





10099
TTTCTTCTCCATCGCGGGGG
329





10100
TTCTTCTCCATCGCGGGGGC
330





10101
TCTTCTCCATCGCGGGGGCG
331





10102
CTTCTCCATCGCGGGGGCGG
332





10103
TTCTCCATCGCGGGGGCGGG
333





10104
TCTCCATCGCGGGGGCGGGG
334





10105
CTCCATCGCGGGGGCGGGGA
335





10106
TCCATCGCGGGGGCGGGGAT
336





10107
CCATCGCGGGGGCGGGGATT
337





10108
CATCGCGGGGGCGGGGATTT
338





10109
ATCGCGGGGGCGGGGATTTG
339





10110
TCGCGGGGGCGGGGATTTGG
340





10111
TCGGTTTCTTCTCCATCGCG
325





10112
CTCGGTTTCTTCTCCATCGC
324





10113
TCTCGGTTTCTTCTCCATCG
323





10114
GTCTCGGTTTCTTCTCCATC
322





10115
TGTCTCGGTTTCTTCTCCAT
321





10116
CTGTCTCGGTTTCTTCTCCA
320





10117
TCTGTCTCGGTTTCTTCTCC
319





10118
TTCTGTCTCGGTTTCTTCTC
318





10119
CTTCTGTCTCGGTTTCTTCT
317





10120
CCTTCTGTCTCGGTTTCTTC
316





10121
ACCTTCTGTCTCGGTTTCTT
315





10122
CACCTTCTGTCTCGGTTTCT
314





10123
GCACCTTCTGTCTCGGTTTC
313





10124
TGCACCTTCTGTCTCGGTTT
312





10125
CTGCACCTTCTGTCTCGGTT
311





10126
CCTGCACCTTCTGTCTCGGT
310





10127
CCCTGCACCTTCTGTCTCGG
309





10128
GCCCTGCACCTTCTGTCTCG
308





10129
CTGCTCCGATTCCGAGGGGGGTCTTCT
412





10130
TGCTCCGATTCCGAGGGGGG
413





10131
GCTCCGATTCCGAGGGGGGT
414





10132
CTCCGATTCCGAGGGGGGTC
415





10133
TCCGATTCCGAGGGGGGTCT
416





10134
CCGATTCCGAGGGGGGTCTT
417





10135
CGATTCCGAGGGGGGTCTTC
418





10136
GATTCCGAGGGGGGTCTTCT
419





10137
ATTCCGAGGGGGGTCTTCTG
420





10138
TTCCGAGGGGGGTCTTCTGG
421





10139
TCCGAGGGGGGTCTTCTGGG
422





10140
CCGAGGGGGGTCTTCTGGGC
423





10141
CGAGGGGGGTCTTCTGGGCC
424





10142
CCTGCTCCGATTCCGAGGGG
411





10143
CCCTGCTCCGATTCCGAGGG
410





10144
TCCCTGCTCCGATTCCGAGG
409





10145
CTCCCTGCTCCGATTCCGAG
408





10146
CCTCCCTGCTCCGATTCCGA
407





10147
TCCTCCCTGCTCCGATTCCG
406





10148
ATCCTCCCTGCTCCGATTCC
405





10149
CATCCTCCCTGCTCCGATTC
404





10150
CCATCCTCCCTGCTCCGATT
403





10151
CCCATCCTCCCTGCTCCGAT
402





10152
CCCCATCCTCCCTGCTCCGA
401





10153
TCCCCATCCTCCCTGCTCCG
400





10154
CTCCGTGTGGGGCTCTGGTCGGCAGCT
1464





10155
TCCGTGTGGGGCTCTGGTCG
1465





10156
CCGTGTGGGGCTCTGGTCGG
1466





10157
CGTGTGGGGCTCTGGTCGGC
1467





10158
GTGTGGGGCTCTGGTCGGCA
1468





10159
TGTGGGGCTCTGGTCGGCAG
1469





10160
GTGGGGCTCTGGTCGGCAGC
1470





10161
TGGGGCTCTGGTCGGCAGCT
1471





10162
GGGGCTCTGGTCGGCAGCTG
1472





10163
GGGCTCTGGTCGGCAGCTGG
1473





10164
GGCTCTGGTCGGCAGCTGGC
1474





10165
GCTCTGGTCGGCAGCTGGCT
1475





10166
CTCTGGTCGGCAGCTGGCTT
1476





10167
TCTGGTCGGCAGCTGGCTTT
1477





10168
CTGGTCGGCAGCTGGCTTTC
1478





10169
TGGTCGGCAGCTGGCTTTCA
1479





10170
GGTCGGCAGCTGGCTTTCAG
1480





10171
GTCGGCAGCTGGCTTTCAGA
1481





10172
TCGGCAGCTGGCTTTCAGAG
1482





10173
CGGCAGCTGGCTTTCAGAGC
1483





10174
CCTCCGTGTGGGGCTCTGGT
1463





10175
GCCTCCGTGTGGGGCTCTGG
1462





10176
TGCCTCCGTGTGGGGCTCTG
1461





10177
ATGCCTCCGTGTGGGGCTCT
1460





10178
GATGCCTCCGTGTGGGGCTC
1459





10179
AGATGCCTCCGTGTGGGGCT
1458





10180
CAGATGCCTCCGTGTGGGGC
1457





10181
GCAGATGCCTCCGTGTGGGG
1456





10182
TGCAGATGCCTCCGTGTGGG
1455





10183
GTGCAGATGCCTCCGTGTGG
1454





10184
GGTGCAGATGCCTCCGTGTG
1453





10185
GGGTGCAGATGCCTCCGTGT
1452





10186
AGGGTGCAGATGCCTCCGTG
1451





10187
GAGGGTGCAGATGCCTCCGT
1450





10188
CGAGGGTGCAGATGCCTCCG
1449





10189
TCGAGGGTGCAGATGCCTCC
1448





10190
ATCGAGGGTGCAGATGCCTC
1447





10191
CATCGAGGGTGCAGATGCCT
1446





10192
TCATCGAGGGTGCAGATGCC
1445





10193
TTCATCGAGGGTGCAGATGC
1444





10194
CTTCATCGAGGGTGCAGATG
1443





10195
GCTTCATCGAGGGTGCAGAT
1442





10196
GGCTTCATCGAGGGTGCAGA
1441





10197
GGGCTTCATCGAGGGTGCAG
1440





10198
TGGGCTTCATCGAGGGTGCA
1439





10199
TTGGGCTTCATCGAGGGTGC
1438





10200
ATTGGGCTTCATCGAGGGTG
1437





10201
TATTGGGCTTCATCGAGGGT
1436





10202
TTATTGGGCTTCATCGAGGG
1435





10203
TTTATTGGGCTTCATCGAGG
1434





10204
GTTTATTGGGCTTCATCGAG
1433





10205
GGTTTATTGGGCTTCATCGA
1432





10206
AGGTTTATTGGGCTTCATCG
1431





10207
CGCAGCCCCGTGGTACATCGAGTGCAGC
2151





10208
GCAGCCCCGTGGTACATCGA
2152





10209
CAGCCCCGTGGTACATCGAG
2153





10210
AGCCCCGTGGTACATCGAGT
2154





10211
GCCCCGTGGTACATCGAGTG
2155





10212
CCCCGTGGTACATCGAGTGC
2156





10213
CCCGTGGTACATCGAGTGCA
2157





10214
CCGTGGTACATCGAGTGCAG
2158





10215
CGTGGTACATCGAGTGCAGC
2159





10216
GTGGTACATCGAGTGCAGCC
2160





10217
TGGTACATCGAGTGCAGCCA
2161





10218
GGTACATCGAGTGCAGCCAG
2162





10219
GTACATCGAGTGCAGCCAGG
2163





10220
TACATCGAGTGCAGCCAGGG
2164





10221
ACATCGAGTGCAGCCAGGGT
2165





10222
CATCGAGTGCAGCCAGGGTT
2166





10223
ATCGAGTGCAGCCAGGGTTC
2167





10224
TCGAGTGCAGCCAGGGTTCC
2168





10225
CGAGTGCAGCCAGGGTTCCT
2169





10226
ACGCAGCCCCGTGGTACATC
2150





10227
AACGCAGCCCCGTGGTACAT
2149





10228
GAACGCAGCCCCGTGGTACA
2148





10229
GGAACGCAGCCCCGTGGTAC
2147





10230
TGGAACGCAGCCCCGTGGTA
2146





10231
CTGGAACGCAGCCCCGTGGT
2145





10232
GCTGGAACGCAGCCCCGTGG
2144





10233
AGCTGGAACGCAGCCCCGTG
2143





10234
GAGCTGGAACGCAGCCCCGT
2142





10235
TGAGCTGGAACGCAGCCCCG
2141





10236
GTGAGCTGGAACGCAGCCCC
2140





10237
GGTGAGCTGGAACGCAGCCC
2139





10238
GGGTGAGCTGGAACGCAGCC
2138





10239
TGGGTGAGCTGGAACGCAGC
2137





10240
CTGGGTGAGCTGGAACGCAG
2136





10241
CCTGGGTGAGCTGGAACGCA
2135





10242
CCCTGGGTGAGCTGGAACGC
2134





10243
TCCCTGGGTGAGCTGGAACG
2133



















Hot Zones (Relative upstream location to gene start site)







168-450


1430-1520


2150-2240









Examples

In FIG. 62, In MCF7 (human mammary breast cell line), TNF1 (312) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The TNFα sequence TNF1 (312) fits the independent and dependent DNAi motif claims.


The secondary structure for TNF1 (312) is shown in FIG. 63.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11982)







CTCACTGTCTCTCTCTCTCTCTCTCTTTCTCTGCAGGTTCTCCCCATGAC





ACCACCTGAACGTCTCTTCCTCCCAAGGGTGTGTGGCACCACCCTACACC





TCCTCCTTCTGGGGCTGCTGCTGGTTCTGCTGCCTGGGGCCCAGGTGAGG





CAGCAGGAGAATGGGGGCTGCTGGGGTGGCTCAGCCAAACCTTGAGCCCT





AGAGCCCCCCTCAACTCTGTTCTCCCCTAGGGGCTCCCTGGTGTTGGCCT





CACACCTTCAGCTGCCCAGACTGCCCGTCAGCACCCCAAGATGCATCTTG





CCCACAGCACCCTCAAACCTGCTGCTCACCTCATTGGTAAACATCCACCT





GACCTCCCAGACATGTCCCCACCAGCTCTCCTCCTACCCCTGCCTCAGGA





ACCCAAGCATCCACCCCTCTCCCCCAACTTCCCCCACGCTAAAAAAAACA





GAGGGAGCCCACTCCTATGCCTCCCCCTGCCATCCCCCAGGAACTCAGTT





GTTCAGTGCCCACTTCCTCAGGGATTGAGACCTCTGATCCAGACCCCTGA





TCTCCCACCCCCATCCCCTATGGCTCTTCCTAGGAGACCCCAGCAAGCAG





AACTCACTGCTCTGGAGAGCAAACACGGACCGTGCCTTCCTCCAGGATGG





TTTCTCCTTGAGCAACAATTCTCTCCTGGTCCCCACCAGTGGCATCTACT





TCGTCTACTCCCAGGTGGTCTTCTCTGGGAAAGCCTACTCTCCCAAGGCC





ACCTCCTCCCCACTCTACCTGGCCCATGAGGTCCAGCTCTTCTCCTCCCA





GTACCCCTTCCATGTGCCTCTCCTCAGCTCCCAGAAGATGGTGTATCCAG





GGCTGCAGGAACCCTGGCTGCACTCGATGTACCACGGGGCTGCGTTCCAG





CTCACCCAGGGAGACCAGCTATCCACCCACACAGATGGCATCCCCCACCT





AGTCCTCAGCCCTAGTACTGTCTTCTTTGGAGCCTTCGCTCTGTAGAACT





TGGAAAAATCCAGAAAGAAAAAATAATTGATTTCAAGACCTTCTCCCCAT





TCTGCCTCCATTCTGACCATTTCAGGGGTCGTCACCACCTCTCCTTTGGC





CATTCCAACAGCTCAAGTCTTCCCTGATCAAGTCACCGGAGCTTTCAAAG





AAGGAATTCTAGGCATCCCAGGGGACCACACCTCCCTGAACCATCCCTGA





TGTCTGTCTGGCTGAGGATTTCAAGCCTGCCTAGGAATTCCCAGCCCAAA





GCTGTTGGTCTGTCCCACCAGCTAGGTGGGGCCTAGATCCACACACAGAG





GAAGAGCAGGCACATGGAGGAGCTTGGGGGATGACTAGAGGCAGGGAGGG





GACTATTTATGAAGGCAAAAAAATTAAATTATTTATTTATGGAGGATGGA





GAGAGGGGAATAATAGAAGAACATCCAAGGAGAAACAGAGACAGGCCCAA





GAGATGAAGAGTGAGAGGGCATGCGCACAAGGCTGACCAAGAGAGAAAGA





AGTAGGCATGAGGGATCACAGGGCCCCAGAAGGCAGGGAAAGGCTCTGAA





AGCCAGCTGCCGACCAGAGCCCCACACGGAGGCATCTGCACCCTCGATGA





AGCCCAATAAACCTCTTTTCTCTGAAATGCTGTCTGCTTGTGTGTGTGTG





TCTGGGAGTGAGAACTTCCCAGTCTATCTAAGGAATGGAGGGAGGGACAG





AGGGCTCAAAGGGAGCAAGAGCTGTGGGGAGAACAAAAGGATAAGGGCTC





AGAGAGCTTCAGGGATATGTGATGGACTCACCAGGTGAGGCCGCCAGACT





GCTGCAGGGGAAGCAAAGGAGAAGCTGAGAAGATGAAGGAAAAGTCAGGG





TCTGGAGGGGCGGGGGTCAGGGAGCTCCTGGGAGATATGGCCACATGTAG





CGGCTCTGAGGAATGGGTTACAGGAGACCTCTGGGGAGATGTGACCACAG





CAATGGGTAGGAGAATGTCCAGGGCTATGGAAGTCGAGTATGGGGACCCC





CCCTTAACGAAGACAGGGCCATGTAGAGGGCCCCAGGGAGTGAAAGAGCC





TCCAGGACCTCCAGGTATGGAATACAGGGGACGTTTAAGAAGATATGGCC





ACACACTGGGGCCCTGAGAAGTGAGAGCTTCATGAAAAAAATCAGGGACC





CCAGAGTTCCTTGGAAGCCAAGACTGAAACCAGCATTATGAGTCTCCGGG





TCAGAATGAAAGAAGAAGGCCTGCCCCAGTGGGGTCTGTGAATTCCCGGG





GGTGATTTCACTCCCCGGGGCTGTCCCAGGCTTGTCCCTGCTACCCCCAC





CCAGCCTTTCCTGAGGCCTCAAGCCTGCCACCAAGCCCCCAGCTCCTTCT





CCCCGCAGGGACCCAAACACAGGCCTCAGGACTCAACACAGCTTTTCCCT





CCAACCCCGTTTTCTCTCCCTCAAGGACTCAGCTTTCTGAAGCCCCTCCC





AGTTCTAGTTCTATCTTTTTCCTGCATCCTGTCTGGAAGTTAGAAGGAAA





CAGACCACAGACCTGGTCCCCAAAAGAAATGGAGGCAATAGGTTTTGAGG





GGCATGGGGACGGGGTTCAGCCTCCAGGGTCCTACACACAAATCAGTCAG





TGGCCCAGAAGACCCCCCTCGGAATCGGAGCAGGGAGGATGGGGAGTGTG





AGGGGTATCCTTGATGCTTGTGTGTCCCCAACTTTCCAAATCCCCGCCCC





CGCGATGGAGAAGAAACCGAGACAGAAGGTGCAGGGCCCACTACCGCTTC





CTCCAGATGAGCTCATGGGTTTCTCCACCAAGGAAGTTTTCCGCTGGTTG





AATGATTCTTTCCCCGCCCTCCTCTCGCCCCAGGGACATATAAAGGCAGT





TGTTGGCACACCCAGCCAGCAGACGCTCCCTCAGCAAGGACAGCAGAGGA





CCAGCTAAGAGGGAGAGAAGCAACTACAGACCCCCCCTGAAAACAACCCT





CAGACGCCACATCCCCTGACAAGCTGCCAGGCAGGTTCTCTTCCTCTCAC





ATACTGACCCACGGCTCCACCCTCTCTCCCCTGGAAAGGACACCATG






ITGA4


Integrins are ubiquitously expressed adhesion molecules. They are cell-surface receptors that exist as heterodimers of alpha and beta subunits. ITGA4 encodes an alpha 4 chain. Unlike other integrin alpha chains, alpha 4 neither contains an I-domain, nor undergoes disulfide-linked cleavage. Alpha 4 chain associates with either beta 1 chain or beta 7 chain. At physiological conditions, integrins are highly glycosylated and contain a Ca2+ or Mg2+ ion, which is essential for ligand binding. Integrin receptors are critical for cell attachment to the extracellular matrix (ECM) and this is mediated through integrin-fibronectin, -vitronectin, -collagen and -laminin interactions. Intracellularly, integrins form adhesion complexes with proteins including talin, vinculin, paxillin and alpha-actinin. They also regulate kinases, such as focal adhesion kinase and Src family kinases, to mediate attachment to the actin cytoskeleton. Integrins also have a significant role in cell signaling and can activate protein kinases involved in the regulation of cell growth, division, survival, differentiation, migration and apoptosis. Glycoprotein II/IIIb (alphaIIbeta3) is an integrin receptor found on the surface of platelets. It is involved in the cross-linking of platelets with fibrin, and so has a vital role in blood clot formation.


Protein: ITGA4 Gene: ITGA4 (CD49D) (Homo sapiens, chromosome 2, 182321619-182402474 [NCBI Reference Sequence: NC000002.11]; start site location: 182322383; strand: positive)












Gene Identification


















GeneID
3676



HGNC
6140



MIM
192975




















Targeted Sequences













Relative





upstream





location


Se-


to gene


quence
Design

start


ID No:
ID
Sequence (5′-3′)
site













10244

GCGCTCTCGGTGGGGAACATTCAACAC
1





10252

CGGGATGCGACGGTTGGCCAACGG
54





10278

CGCAGCGTGTCCGGCGCCAGCGGGC
102





10299

CGGCCCACCGCGGGCGGAGCGTTCG
160





10449

CGCGCACTCGCCCGGCCCCACTCCCG
201





10599

CGCCAGCCGGGAGCTTCGGGTGCTCGCG
235





10749

CGGGTACGGGCCGCTGGGTGGGGTCCCG
272





10899

GTGCGGAGGCGCAGGGCCGGGCTCCG
306





10900

CTACGCGCGGCTGCAGGGGGCGC
339





10938

CTGCGCAGGACTCGCGTCCTGGCCCG
375





11009

CCCGCAGAGCGCGGGATGGCTC
411





11080

CGGACCTGATGGGGCACGGGCTTCCCC
448





11117

CGGTGGTTGGGGCCTAGAAGCG
481





11154

CGCGCCCCTCGCTGTGACCGCCCAGCCCG
524





11203

CGGGGAGTGGGACTGCGGCGGGGAGCCG
580





11208

ACTCGCCGAAGGCCCCTGGGGAAC
718





11222

CGGGCTGCATGCGTGAGCAGG
840





11252

CGGCAGGCGGTTTAGGCTGTGGCTG
885





11278

CCGATTCGGATTGCTCCAGCTGG
962





11289

CGCACCCACTCAGTTGCCACGGG
1008





11327

CGGAGACCCACAACGCAACACACC
1099



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene start


ID No:
Sequence (5′-3′)
site












10244
GCGCTCTCGGTGGGGAACATTCAACAC
1





10245
CGCTCTCGGTGGGGAACATT
2





10246
GCTCTCGGTGGGGAACATTC
3





10247
CTCTCGGTGGGGAACATTCA
4





10248
TCTCGGTGGGGAACATTCAA
5





10249
CTCGGTGGGGAACATTCAAC
6





10250
TCGGTGGGGAACATTCAACA
7





10251
CGGTGGGGAACATTCAACAC
8





10252
CGGGATGCGACGGTTGGCCAACGG
54





10253
GGGATGCGACGGTTGGCCAA
55





10254
GGATGCGACGGTTGGCCAAC
56





10255
GATGCGACGGTTGGCCAACG
57





10256
ATGCGACGGTTGGCCAACGG
58





10257
TGCGACGGTTGGCCAACGGG
59





10258
GCGACGGTTGGCCAACGGGG
60





10259
CGACGGTTGGCCAACGGGGA
61





10260
ACGGGATGCGACGGTTGGCC
53





10261
CACGGGATGCGACGGTTGGC
52





10262
GCACGGGATGCGACGGTTGG
51





10263
TGCACGGGATGCGACGGTTG
50





10264
TTGCACGGGATGCGACGGTT
49





10265
GTTGCACGGGATGCGACGGT
48





10266
AGTTGCACGGGATGCGACGG
47





10267
AAGTTGCACGGGATGCGACG
46





10268
AAAGTTGCACGGGATGCGAC
45





10269
CAAAGTTGCACGGGATGCGA
44





10270
CCAAAGTTGCACGGGATGCG
43





10271
CCCAAAGTTGCACGGGATGC
42





10272
CCCCAAAGTTGCACGGGATG
41





10273
ACCCCAAAGTTGCACGGGAT
40





10274
TACCCCAAAGTTGCACGGGA
39





10275
CTACCCCAAAGTTGCACGGG
38





10276
ACTACCCCAAAGTTGCACGG
37





10277
CACTACCCCAAAGTTGCACG
36





10278
CGCAGCGTGTCCGGCGCCAGCGGGC
102





10279
GCAGCGTGTCCGGCGCCAGC
103





10280
CAGCGTGTCCGGCGCCAGCG
104





10281
AGCGTGTCCGGCGCCAGCGG
105





10282
GCGTGTCCGGCGCCAGCGGG
106





10283
CGTGTCCGGCGCCAGCGGGC
107





10284
GTGTCCGGCGCCAGCGGGCT
108





10285
TGTCCGGCGCCAGCGGGCTA
109





10286
GTCCGGCGCCAGCGGGCTAA
110





10287
TCCGGCGCCAGCGGGCTAAA
111





10288
CCGGCGCCAGCGGGCTAAAG
112





10289
CGGCGCCAGCGGGCTAAAGG
113





10290
GCGCAGCGTGTCCGGCGCCA
101





10291
GGCGCAGCGTGTCCGGCGCC
100





10292
AGGCGCAGCGTGTCCGGCGC
99





10293
GAGGCGCAGCGTGTCCGGCG
98





10294
TGAGGCGCAGCGTGTCCGGC
97





10295
ATGAGGCGCAGCGTGTCCGG
96





10296
GATGAGGCGCAGCGTGTCCG
95





10297
AGATGAGGCGCAGCGTGTCC
94





10298
GAGATGAGGCGCAGCGTGTC
93





10299
CGGCCCACCGCGGGCGGAGCGTTCG
160





10300
GGCCCACCGCGGGCGGAGCG
161





10301
GCCCACCGCGGGCGGAGCGT
162





10302
CCCACCGCGGGCGGAGCGTT
163





10303
CCACCGCGGGCGGAGCGTTC
164





10304
CACCGCGGGCGGAGCGTTCG
165





10305
ACCGCGGGCGGAGCGTTCGG
166





10306
CCGCGGGCGGAGCGTTCGGG
167





10307
CGCGGGCGGAGCGTTCGGGC
168





10308
GCGGGCGGAGCGTTCGGGCC
169





10309
CGGGCGGAGCGTTCGGGCCG
170





10310
GGGCGGAGCGTTCGGGCCGG
171





10311
GGCGGAGCGTTCGGGCCGGC
172





10312
GCGGAGCGTTCGGGCCGGCC
173





10313
CGGAGCGTTCGGGCCGGCCT
174





10314
GGAGCGTTCGGGCCGGCCTG
175





10315
GAGCGTTCGGGCCGGCCTGG
176





10316
AGCGTTCGGGCCGGCCTGGG
177





10317
GCGTTCGGGCCGGCCTGGGA
178





10318
CGTTCGGGCCGGCCTGGGAT
179





10319
GTTCGGGCCGGCCTGGGATG
180





10320
TTCGGGCCGGCCTGGGATGC
181





10321
TCGGGCCGGCCTGGGATGCC
182





10322
CGGGCCGGCCTGGGATGCCG
183





10323
GGGCCGGCCTGGGATGCCGC
184





10324
GGCCGGCCTGGGATGCCGCG
185





10325
GCCGGCCTGGGATGCCGCGC
186





10326
CCGGCCTGGGATGCCGCGCA
187





10327
CGGCCTGGGATGCCGCGCAC
188





10328
GGCCTGGGATGCCGCGCACT
189





10329
GCCTGGGATGCCGCGCACTC
190





10330
CCTGGGATGCCGCGCACTCG
191





10331
CTGGGATGCCGCGCACTCGC
192





10332
TGGGATGCCGCGCACTCGCC
193





10333
GGGATGCCGCGCACTCGCCC
194





10334
GGATGCCGCGCACTCGCCCG
195





10335
GATGCCGCGCACTCGCCCGG
196





10336
ATGCCGCGCACTCGCCCGGC
197





10337
TGCCGCGCACTCGCCCGGCC
198





10338
GCCGCGCACTCGCCCGGCCC
199





10339
CCGCGCACTCGCCCGGCCCC
200





10340
CGCGCACTCGCCCGGCCCCA
201





10341
GCGCACTCGCCCGGCCCCAC
202





10342
CGCACTCGCCCGGCCCCACT
203





10343
GCACTCGCCCGGCCCCACTC
204





10344
CACTCGCCCGGCCCCACTCC
205





10345
ACTCGCCCGGCCCCACTCCC
206





10346
CTCGCCCGGCCCCACTCCCG
207





10347
TCGCCCGGCCCCACTCCCGG
208





10348
CGCCCGGCCCCACTCCCGGT
209





10349
GCCCGGCCCCACTCCCGGTT
210





10350
CCCGGCCCCACTCCCGGTTT
211





10351
CCGGCCCCACTCCCGGTTTC
212





10352
CGGCCCCACTCCCGGTTTCT
213





10353
GGCCCCACTCCCGGTTTCTG
214





10354
GCCCCACTCCCGGTTTCTGC
215





10355
CCCCACTCCCGGTTTCTGCC
216





10356
CCCACTCCCGGTTTCTGCCG
217





10357
CCACTCCCGGTTTCTGCCGC
218





10358
CACTCCCGGTTTCTGCCGCC
219





10359
ACTCCCGGTTTCTGCCGCCA
220





10360
CTCCCGGTTTCTGCCGCCAG
221





10361
TCCCGGTTTCTGCCGCCAGC
222





10362
CCCGGTTTCTGCCGCCAGCC
223





10363
CCGGTTTCTGCCGCCAGCCG
224





10364
CGGTTTCTGCCGCCAGCCGG
225





10365
GGTTTCTGCCGCCAGCCGGG
226





10366
GTTTCTGCCGCCAGCCGGGA
227





10367
TTTCTGCCGCCAGCCGGGAG
228





10368
TTCTGCCGCCAGCCGGGAGC
229





10369
TCTGCCGCCAGCCGGGAGCT
230





10370
CTGCCGCCAGCCGGGAGCTT
231





10371
TGCCGCCAGCCGGGAGCTTC
232





10372
GCCGCCAGCCGGGAGCTTCG
233





10373
CCGCCAGCCGGGAGCTTCGG
234





10374
CGCCAGCCGGGAGCTTCGGG
235





10375
GCCAGCCGGGAGCTTCGGGT
236





10376
CCAGCCGGGAGCTTCGGGTG
237





10377
CAGCCGGGAGCTTCGGGTGC
238





10378
AGCCGGGAGCTTCGGGTGCT
239





10379
GCCGGGAGCTTCGGGTGCTC
240





10380
CCGGGAGCTTCGGGTGCTCG
241





10381
CGGGAGCTTCGGGTGCTCGC
242





10382
GGGAGCTTCGGGTGCTCGCG
243





10383
GGAGCTTCGGGTGCTCGCGC
244





10384
GAGCTTCGGGTGCTCGCGCT
245





10385
AGCTTCGGGTGCTCGCGCTG
246





10386
GCTTCGGGTGCTCGCGCTGC
247





10387
CTTCGGGTGCTCGCGCTGCT
248





10388
TTCGGGTGCTCGCGCTGCTT
249





10389
TCGGGTGCTCGCGCTGCTTC
250





10390
CGGGTGCTCGCGCTGCTTCT
251





10391
GGGTGCTCGCGCTGCTTCTC
252





10392
GGTGCTCGCGCTGCTTCTCC
253





10393
GTGCTCGCGCTGCTTCTCCG
254





10394
TGCTCGCGCTGCTTCTCCGG
255





10395
GCTCGCGCTGCTTCTCCGGG
256





10396
CTCGCGCTGCTTCTCCGGGT
257





10397
TCGCGCTGCTTCTCCGGGTA
258





10398
CGCGCTGCTTCTCCGGGTAC
259





10399
GCGCTGCTTCTCCGGGTACG
260





10400
CGCTGCTTCTCCGGGTACGG
261





10401
GCTGCTTCTCCGGGTACGGG
262





10402
CTGCTTCTCCGGGTACGGGC
263





10403
TGCTTCTCCGGGTACGGGCC
264





10404
GCTTCTCCGGGTACGGGCCG
265





10405
CTTCTCCGGGTACGGGCCGC
266





10406
TTCTCCGGGTACGGGCCGCT
267





10407
TCTCCGGGTACGGGCCGCTG
268





10408
CTCCGGGTACGGGCCGCTGG
269





10409
TCCGGGTACGGGCCGCTGGG
270





10410
CCGGGTACGGGCCGCTGGGT
271





10411
CGGGTACGGGCCGCTGGGTG
272





10412
GGGTACGGGCCGCTGGGTGG
273





10413
GGTACGGGCCGCTGGGTGGG
274





10414
GTACGGGCCGCTGGGTGGGG
275





10415
TACGGGCCGCTGGGTGGGGT
276





10416
ACGGGCCGCTGGGTGGGGTC
277





10417
CGGGCCGCTGGGTGGGGTCC
278





10418
GGGCCGCTGGGTGGGGTCCC
279





10419
GGCCGCTGGGTGGGGTCCCG
280





10420
GCCGCTGGGTGGGGTCCCGG
281





10421
CCGCTGGGTGGGGTCCCGGG
282





10422
CGCTGGGTGGGGTCCCGGGC
283





10423
GCTGGGTGGGGTCCCGGGCG
284





10424
CTGGGTGGGGTCCCGGGCGT
285





10425
TGGGTGGGGTCCCGGGCGTG
286





10426
GGGTGGGGTCCCGGGCGTGG
287





10427
GGTGGGGTCCCGGGCGTGGT
288





10428
GTGGGGTCCCGGGCGTGGTG
289





10429
TGGGGTCCCGGGCGTGGTGC
290





10430
GGGGTCCCGGGCGTGGTGCG
291





10431
GGGTCCCGGGCGTGGTGCGG
292





10432
GGTCCCGGGCGTGGTGCGGA
293





10433
GTCCCGGGCGTGGTGCGGAG
294





10434
TCCCGGGCGTGGTGCGGAGG
295





10435
CCCGGGCGTGGTGCGGAGGC
296





10436
CCGGGCGTGGTGCGGAGGCG
297





10437
CGGGCGTGGTGCGGAGGCGC
298





10438
TCGGCCCACCGCGGGCGGAG
159





10439
GTCGGCCCACCGCGGGCGGA
158





10440
AGTCGGCCCACCGCGGGCGG
157





10441
AAGTCGGCCCACCGCGGGCG
156





10442
GAAGTCGGCCCACCGCGGGC
155





10443
GGAAGTCGGCCCACCGCGGG
154





10444
GGGAAGTCGGCCCACCGCGG
153





10445
GGGGAAGTCGGCCCACCGCG
152





10446
AGGGGAAGTCGGCCCACCGC
151





10447
GAGGGGAAGTCGGCCCACCG
150





10448
GGAGGGGAAGTCGGCCCACC
149





10449
CGCGCACTCGCCCGGCCCCACTCCCG
201





10450
GCGCACTCGCCCGGCCCCAC
202





10451
CGCACTCGCCCGGCCCCACT
203





10452
GCACTCGCCCGGCCCCACTC
204





10453
CACTCGCCCGGCCCCACTCC
205





10454
ACTCGCCCGGCCCCACTCCC
206





10455
CTCGCCCGGCCCCACTCCCG
207





10456
TCGCCCGGCCCCACTCCCGG
208





10457
CGCCCGGCCCCACTCCCGGT
209





10458
GCCCGGCCCCACTCCCGGTT
210





10459
CCCGGCCCCACTCCCGGTTT
211





10460
CCGGCCCCACTCCCGGTTTC
212





10461
CGGCCCCACTCCCGGTTTCT
213





10462
GGCCCCACTCCCGGTTTCTG
214





10463
GCCCCACTCCCGGTTTCTGC
215





10464
CCCCACTCCCGGTTTCTGCC
216





10465
CCCACTCCCGGTTTCTGCCG
217





10466
CCACTCCCGGTTTCTGCCGC
218





10467
CACTCCCGGTTTCTGCCGCC
219





10468
ACTCCCGGTTTCTGCCGCCA
220





10469
CTCCCGGTTTCTGCCGCCAG
221





10470
TCCCGGTTTCTGCCGCCAGC
222





10471
CCCGGTTTCTGCCGCCAGCC
223





10472
CCGGTTTCTGCCGCCAGCCG
224





10473
CGGTTTCTGCCGCCAGCCGG
225





10474
GGTTTCTGCCGCCAGCCGGG
226





10475
GTTTCTGCCGCCAGCCGGGA
227





10476
TTTCTGCCGCCAGCCGGGAG
228





10477
TTCTGCCGCCAGCCGGGAGC
229





10478
TCTGCCGCCAGCCGGGAGCT
230





10479
CTGCCGCCAGCCGGGAGCTT
231





10480
TGCCGCCAGCCGGGAGCTTC
232





10481
GCCGCCAGCCGGGAGCTTCG
233





10482
CCGCCAGCCGGGAGCTTCGG
234





10483
CGCCAGCCGGGAGCTTCGGG
235





10484
GCCAGCCGGGAGCTTCGGGT
236





10485
CCAGCCGGGAGCTTCGGGTG
237





10486
CAGCCGGGAGCTTCGGGTGC
238





10487
AGCCGGGAGCTTCGGGTGCT
239





10488
GCCGGGAGCTTCGGGTGCTC
240





10489
CCGGGAGCTTCGGGTGCTCG
241





10490
CGGGAGCTTCGGGTGCTCGC
242





10491
GGGAGCTTCGGGTGCTCGCG
243





10492
GGAGCTTCGGGTGCTCGCGC
244





10493
GAGCTTCGGGTGCTCGCGCT
245





10494
AGCTTCGGGTGCTCGCGCTG
246





10495
GCTTCGGGTGCTCGCGCTGC
247





10496
CTTCGGGTGCTCGCGCTGCT
248





10497
TTCGGGTGCTCGCGCTGCTT
249





10498
TCGGGTGCTCGCGCTGCTTC
250





10499
CGGGTGCTCGCGCTGCTTCT
251





10500
GGGTGCTCGCGCTGCTTCTC
252





10501
GGTGCTCGCGCTGCTTCTCC
253





10502
GTGCTCGCGCTGCTTCTCCG
254





10503
TGCTCGCGCTGCTTCTCCGG
255





10504
GCTCGCGCTGCTTCTCCGGG
256





10505
CTCGCGCTGCTTCTCCGGGT
257





10506
TCGCGCTGCTTCTCCGGGTA
258





10507
CGCGCTGCTTCTCCGGGTAC
259





10508
GCGCTGCTTCTCCGGGTACG
260





10509
CGCTGCTTCTCCGGGTACGG
261





10510
GCTGCTTCTCCGGGTACGGG
262





10511
CTGCTTCTCCGGGTACGGGC
263





10512
TGCTTCTCCGGGTACGGGCC
264





10513
GCTTCTCCGGGTACGGGCCG
265





10514
CTTCTCCGGGTACGGGCCGC
266





10515
TTCTCCGGGTACGGGCCGCT
267





10516
TCTCCGGGTACGGGCCGCTG
268





10517
CTCCGGGTACGGGCCGCTGG
269





10518
TCCGGGTACGGGCCGCTGGG
270





10519
CCGGGTACGGGCCGCTGGGT
271





10520
CGGGTACGGGCCGCTGGGTG
272





10521
GGGTACGGGCCGCTGGGTGG
273





10522
GGTACGGGCCGCTGGGTGGG
274





10523
GTACGGGCCGCTGGGTGGGG
275





10524
TACGGGCCGCTGGGTGGGGT
276





10525
ACGGGCCGCTGGGTGGGGTC
277





10526
CGGGCCGCTGGGTGGGGTCC
278





10527
GGGCCGCTGGGTGGGGTCCC
279





10528
GGCCGCTGGGTGGGGTCCCG
280





10529
GCCGCTGGGTGGGGTCCCGG
281





10530
CCGCTGGGTGGGGTCCCGGG
282





10531
CGCTGGGTGGGGTCCCGGGC
283





10532
GCTGGGTGGGGTCCCGGGCG
284





10533
CTGGGTGGGGTCCCGGGCGT
285





10534
TGGGTGGGGTCCCGGGCGTG
286





10535
GGGTGGGGTCCCGGGCGTGG
287





10536
GGTGGGGTCCCGGGCGTGGT
288





10537
GTGGGGTCCCGGGCGTGGTG
289





10538
TGGGGTCCCGGGCGTGGTGC
290





10539
GGGGTCCCGGGCGTGGTGCG
291





10540
GGGTCCCGGGCGTGGTGCGG
292





10541
GGTCCCGGGCGTGGTGCGGA
293





10542
GTCCCGGGCGTGGTGCGGAG
294





10543
TCCCGGGCGTGGTGCGGAGG
295





10544
CCCGGGCGTGGTGCGGAGGC
296





10545
CCGGGCGTGGTGCGGAGGCG
297





10546
CGGGCGTGGTGCGGAGGCGC
298





10547
CCGCGCACTCGCCCGGCCCC
200





10548
GCCGCGCACTCGCCCGGCCC
199





10549
TGCCGCGCACTCGCCCGGCC
198





10550
ATGCCGCGCACTCGCCCGGC
197





10551
GATGCCGCGCACTCGCCCGG
196





10552
GGATGCCGCGCACTCGCCCG
195





10553
GGGATGCCGCGCACTCGCCC
194





10554
TGGGATGCCGCGCACTCGCC
193





10555
CTGGGATGCCGCGCACTCGC
192





10556
CCTGGGATGCCGCGCACTCG
191





10557
GCCTGGGATGCCGCGCACTC
190





10558
GGCCTGGGATGCCGCGCACT
189





10559
CGGCCTGGGATGCCGCGCAC
188





10560
CCGGCCTGGGATGCCGCGCA
187





10561
GCCGGCCTGGGATGCCGCGC
186





10562
GGCCGGCCTGGGATGCCGCG
185





10563
GGGCCGGCCTGGGATGCCGC
184





10564
CGGGCCGGCCTGGGATGCCG
183





10565
TCGGGCCGGCCTGGGATGCC
182





10566
TTCGGGCCGGCCTGGGATGC
181





10567
GTTCGGGCCGGCCTGGGATG
180





10568
CGTTCGGGCCGGCCTGGGAT
179





10569
GCGTTCGGGCCGGCCTGGGA
178





10570
AGCGTTCGGGCCGGCCTGGG
177





10571
GAGCGTTCGGGCCGGCCTGG
176





10572
GGAGCGTTCGGGCCGGCCTG
175





10573
CGGAGCGTTCGGGCCGGCCT
174





10574
GCGGAGCGTTCGGGCCGGCC
173





10575
GGCGGAGCGTTCGGGCCGGC
172





10576
GGGCGGAGCGTTCGGGCCGG
171





10577
CGGGCGGAGCGTTCGGGCCG
170





10578
GCGGGCGGAGCGTTCGGGCC
169





10579
CGCGGGCGGAGCGTTCGGGC
168





10580
CCGCGGGCGGAGCGTTCGGG
167





10581
ACCGCGGGCGGAGCGTTCGG
166





10582
CACCGCGGGCGGAGCGTTCG
165





10583
CCACCGCGGGCGGAGCGTTC
164





10584
CCCACCGCGGGCGGAGCGTT
163





10585
GCCCACCGCGGGCGGAGCGT
162





10586
GGCCCACCGCGGGCGGAGCG
161





10587
CGGCCCACCGCGGGCGGAGC
160





10588
TCGGCCCACCGCGGGCGGAG
159





10589
GTCGGCCCACCGCGGGCGGA
158





10590
AGTCGGCCCACCGCGGGCGG
157





10591
AAGTCGGCCCACCGCGGGCG
156





10592
GAAGTCGGCCCACCGCGGGC
155





10593
GGAAGTCGGCCCACCGCGGG
154





10594
GGGAAGTCGGCCCACCGCGG
153





10595
GGGGAAGTCGGCCCACCGCG
152





10596
AGGGGAAGTCGGCCCACCGC
151





10597
GAGGGGAAGTCGGCCCACCG
150





10598
GGAGGGGAAGTCGGCCCACC
149





10599
CGCCAGCCGGGAGCTTCGGGTGCTCGCG
235





10600
GCCAGCCGGGAGCTTCGGGT
236





10601
CCAGCCGGGAGCTTCGGGTG
237





10602
CAGCCGGGAGCTTCGGGTGC
238





10603
AGCCGGGAGCTTCGGGTGCT
239





10604
GCCGGGAGCTTCGGGTGCTC
240





10605
CCGGGAGCTTCGGGTGCTCG
241





10606
CGGGAGCTTCGGGTGCTCGC
242





10607
GGGAGCTTCGGGTGCTCGCG
243





10608
GGAGCTTCGGGTGCTCGCGC
244





10609
GAGCTTCGGGTGCTCGCGCT
245





10610
AGCTTCGGGTGCTCGCGCTG
246





10611
GCTTCGGGTGCTCGCGCTGC
247





10612
CTTCGGGTGCTCGCGCTGCT
248





10613
TTCGGGTGCTCGCGCTGCTT
249





10614
TCGGGTGCTCGCGCTGCTTC
250





10615
CGGGTGCTCGCGCTGCTTCT
251





10616
GGGTGCTCGCGCTGCTTCTC
252





10617
GGTGCTCGCGCTGCTTCTCC
253





10618
GTGCTCGCGCTGCTTCTCCG
254





10619
TGCTCGCGCTGCTTCTCCGG
255





10620
GCTCGCGCTGCTTCTCCGGG
256





10621
CTCGCGCTGCTTCTCCGGGT
257





10622
TCGCGCTGCTTCTCCGGGTA
258





10623
CGCGCTGCTTCTCCGGGTAC
259





10624
GCGCTGCTTCTCCGGGTACG
260





10625
CGCTGCTTCTCCGGGTACGG
261





10626
GCTGCTTCTCCGGGTACGGG
262





10627
CTGCTTCTCCGGGTACGGGC
263





10628
TGCTTCTCCGGGTACGGGCC
264





10629
GCTTCTCCGGGTACGGGCCG
265





10630
CTTCTCCGGGTACGGGCCGC
266





10631
TTCTCCGGGTACGGGCCGCT
267





10632
TCTCCGGGTACGGGCCGCTG
268





10633
CTCCGGGTACGGGCCGCTGG
269





10634
TCCGGGTACGGGCCGCTGGG
270





10635
CCGGGTACGGGCCGCTGGGT
271





10636
CGGGTACGGGCCGCTGGGTG
272





10637
GGGTACGGGCCGCTGGGTGG
273





10638
GGTACGGGCCGCTGGGTGGG
274





10639
GTACGGGCCGCTGGGTGGGG
275





10640
TACGGGCCGCTGGGTGGGGT
276





10641
ACGGGCCGCTGGGTGGGGTC
277





10642
CGGGCCGCTGGGTGGGGTCC
278





10643
GGGCCGCTGGGTGGGGTCCC
279





10644
GGCCGCTGGGTGGGGTCCCG
280





10645
GCCGCTGGGTGGGGTCCCGG
281





10646
CCGCTGGGTGGGGTCCCGGG
282





10647
CGCTGGGTGGGGTCCCGGGC
283





10648
GCTGGGTGGGGTCCCGGGCG
284





10649
CTGGGTGGGGTCCCGGGCGT
285





10650
TGGGTGGGGTCCCGGGCGTG
286





10651
GGGTGGGGTCCCGGGCGTGG
287





10652
GGTGGGGTCCCGGGCGTGGT
288





10653
GTGGGGTCCCGGGCGTGGTG
289





10654
TGGGGTCCCGGGCGTGGTGC
290





10655
GGGGTCCCGGGCGTGGTGCG
291





10656
GGGTCCCGGGCGTGGTGCGG
292





10657
GGTCCCGGGCGTGGTGCGGA
293





10658
GTCCCGGGCGTGGTGCGGAG
294





10659
TCCCGGGCGTGGTGCGGAGG
295





10660
CCCGGGCGTGGTGCGGAGGC
296





10661
CCGGGCGTGGTGCGGAGGCG
297





10662
CGGGCGTGGTGCGGAGGCGC
298





10663
CCGCCAGCCGGGAGCTTCGG
234





10664
GCCGCCAGCCGGGAGCTTCG
233





10665
TGCCGCCAGCCGGGAGCTTC
232





10666
CTGCCGCCAGCCGGGAGCTT
231





10667
TCTGCCGCCAGCCGGGAGCT
230





10668
TTCTGCCGCCAGCCGGGAGC
229





10669
TTTCTGCCGCCAGCCGGGAG
228





10670
GTTTCTGCCGCCAGCCGGGA
227





10671
GGTTTCTGCCGCCAGCCGGG
226





10672
CGGTTTCTGCCGCCAGCCGG
225





10673
CCGGTTTCTGCCGCCAGCCG
224





10674
CCCGGTTTCTGCCGCCAGCC
223





10675
TCCCGGTTTCTGCCGCCAGC
222





10676
CTCCCGGTTTCTGCCGCCAG
221





10677
ACTCCCGGTTTCTGCCGCCA
220





10678
CACTCCCGGTTTCTGCCGCC
219





10679
CCACTCCCGGTTTCTGCCGC
218





10680
CCCACTCCCGGTTTCTGCCG
217





10681
CCCCACTCCCGGTTTCTGCC
216





10682
GCCCCACTCCCGGTTTCTGC
215





10683
GGCCCCACTCCCGGTTTCTG
214





10684
CGGCCCCACTCCCGGTTTCT
213





10685
CCGGCCCCACTCCCGGTTTC
212





10686
CCCGGCCCCACTCCCGGTTT
211





10687
GCCCGGCCCCACTCCCGGTT
210





10688
CGCCCGGCCCCACTCCCGGT
209





10689
TCGCCCGGCCCCACTCCCGG
208





10690
CTCGCCCGGCCCCACTCCCG
207





10691
ACTCGCCCGGCCCCACTCCC
206





10692
CACTCGCCCGGCCCCACTCC
205





10693
GCACTCGCCCGGCCCCACTC
204





10694
CGCACTCGCCCGGCCCCACT
203





10695
GCGCACTCGCCCGGCCCCAC
202





10696
CGCGCACTCGCCCGGCCCCA
201





10697
CCGCGCACTCGCCCGGCCCC
200





10698
GCCGCGCACTCGCCCGGCCC
199





10699
TGCCGCGCACTCGCCCGGCC
198





10700
ATGCCGCGCACTCGCCCGGC
197





10701
GATGCCGCGCACTCGCCCGG
196





10702
GGATGCCGCGCACTCGCCCG
195





10703
GGGATGCCGCGCACTCGCCC
194





10704
TGGGATGCCGCGCACTCGCC
193





10705
CTGGGATGCCGCGCACTCGC
192





10706
CCTGGGATGCCGCGCACTCG
191





10707
GCCTGGGATGCCGCGCACTC
190





10708
GGCCTGGGATGCCGCGCACT
189





10709
CGGCCTGGGATGCCGCGCAC
188





10710
CCGGCCTGGGATGCCGCGCA
187





10711
GCCGGCCTGGGATGCCGCGC
186





10712
GGCCGGCCTGGGATGCCGCG
185





10713
GGGCCGGCCTGGGATGCCGC
184





10714
CGGGCCGGCCTGGGATGCCG
183





10715
TCGGGCCGGCCTGGGATGCC
182





10716
TTCGGGCCGGCCTGGGATGC
181





10717
GTTCGGGCCGGCCTGGGATG
180





10718
CGTTCGGGCCGGCCTGGGAT
179





10719
GCGTTCGGGCCGGCCTGGGA
178





10720
AGCGTTCGGGCCGGCCTGGG
177





10721
GAGCGTTCGGGCCGGCCTGG
176





10722
GGAGCGTTCGGGCCGGCCTG
175





10723
CGGAGCGTTCGGGCCGGCCT
174





10724
GCGGAGCGTTCGGGCCGGCC
173





10725
GGCGGAGCGTTCGGGCCGGC
172





10726
GGGCGGAGCGTTCGGGCCGG
171





10727
CGGGCGGAGCGTTCGGGCCG
170





10728
GCGGGCGGAGCGTTCGGGCC
169





10729
CGCGGGCGGAGCGTTCGGGC
168





10730
CCGCGGGCGGAGCGTTCGGG
167





10731
ACCGCGGGCGGAGCGTTCGG
166





10732
CACCGCGGGCGGAGCGTTCG
165





10733
CCACCGCGGGCGGAGCGTTC
164





10734
CCCACCGCGGGCGGAGCGTT
163





10735
GCCCACCGCGGGCGGAGCGT
162





10736
GGCCCACCGCGGGCGGAGCG
161





10737
CGGCCCACCGCGGGCGGAGC
160





10738
TCGGCCCACCGCGGGCGGAG
159





10739
GTCGGCCCACCGCGGGCGGA
158





10740
AGTCGGCCCACCGCGGGCGG
157





10741
AAGTCGGCCCACCGCGGGCG
156





10742
GAAGTCGGCCCACCGCGGGC
155





10743
GGAAGTCGGCCCACCGCGGG
154





10744
GGGAAGTCGGCCCACCGCGG
153





10745
GGGGAAGTCGGCCCACCGCG
152





10746
AGGGGAAGTCGGCCCACCGC
151





10747
GAGGGGAAGTCGGCCCACCG
150





10748
GGAGGGGAAGTCGGCCCACC
149





10749
CGGGTACGGGCCGCTGGGTGGGGTCCCG
272





10750
GGGTACGGGCCGCTGGGTGG
273





10751
GGTACGGGCCGCTGGGTGGG
274





10752
GTACGGGCCGCTGGGTGGGG
275





10753
TACGGGCCGCTGGGTGGGGT
276





10754
ACGGGCCGCTGGGTGGGGTC
277





10755
CGGGCCGCTGGGTGGGGTCC
278





10756
GGGCCGCTGGGTGGGGTCCC
279





10757
GGCCGCTGGGTGGGGTCCCG
280





10758
GCCGCTGGGTGGGGTCCCGG
281





10759
CCGCTGGGTGGGGTCCCGGG
282





10760
CGCTGGGTGGGGTCCCGGGC
283





10761
GCTGGGTGGGGTCCCGGGCG
284





10762
CTGGGTGGGGTCCCGGGCGT
285





10763
TGGGTGGGGTCCCGGGCGTG
286





10764
GGGTGGGGTCCCGGGCGTGG
287





10765
GGTGGGGTCCCGGGCGTGGT
288





10766
GTGGGGTCCCGGGCGTGGTG
289





10767
TGGGGTCCCGGGCGTGGTGC
290





10768
GGGGTCCCGGGCGTGGTGCG
291





10769
GGGTCCCGGGCGTGGTGCGG
292





10770
GGTCCCGGGCGTGGTGCGGA
293





10771
GTCCCGGGCGTGGTGCGGAG
294





10772
TCCCGGGCGTGGTGCGGAGG
295





10773
CCCGGGCGTGGTGCGGAGGC
296





10774
CCGGGCGTGGTGCGGAGGCG
297





10775
CGGGCGTGGTGCGGAGGCGC
298





10776
CCGGGTACGGGCCGCTGGGT
271





10777
TCCGGGTACGGGCCGCTGGG
270





10778
CTCCGGGTACGGGCCGCTGG
269





10779
TCTCCGGGTACGGGCCGCTG
268





10780
TTCTCCGGGTACGGGCCGCT
267





10781
CTTCTCCGGGTACGGGCCGC
266





10782
GCTTCTCCGGGTACGGGCCG
265





10783
TGCTTCTCCGGGTACGGGCC
264





10784
CTGCTTCTCCGGGTACGGGC
263





10785
GCTGCTTCTCCGGGTACGGG
262





10786
CGCTGCTTCTCCGGGTACGG
261





10787
GCGCTGCTTCTCCGGGTACG
260





10788
CGCGCTGCTTCTCCGGGTAC
259





10789
TCGCGCTGCTTCTCCGGGTA
258





10790
CTCGCGCTGCTTCTCCGGGT
257





10791
GCTCGCGCTGCTTCTCCGGG
256





10792
TGCTCGCGCTGCTTCTCCGG
255





10793
GTGCTCGCGCTGCTTCTCCG
254





10794
GGTGCTCGCGCTGCTTCTCC
253





10795
GGGTGCTCGCGCTGCTTCTC
252





10796
CGGGTGCTCGCGCTGCTTCT
251





10797
TCGGGTGCTCGCGCTGCTTC
250





10798
TTCGGGTGCTCGCGCTGCTT
249





10799
CTTCGGGTGCTCGCGCTGCT
248





10800
GCTTCGGGTGCTCGCGCTGC
247





10801
AGCTTCGGGTGCTCGCGCTG
246





10802
GAGCTTCGGGTGCTCGCGCT
245





10803
GGAGCTTCGGGTGCTCGCGC
244





10804
GGGAGCTTCGGGTGCTCGCG
243





10805
CGGGAGCTTCGGGTGCTCGC
242





10806
CCGGGAGCTTCGGGTGCTCG
241





10807
GCCGGGAGCTTCGGGTGCTC
240





10808
AGCCGGGAGCTTCGGGTGCT
239





10809
CAGCCGGGAGCTTCGGGTGC
238





10810
CCAGCCGGGAGCTTCGGGTG
237





10811
GCCAGCCGGGAGCTTCGGGT
236





10812
CGCCAGCCGGGAGCTTCGGG
235





10813
CCGCCAGCCGGGAGCTTCGG
234





10814
GCCGCCAGCCGGGAGCTTCG
233





10815
TGCCGCCAGCCGGGAGCTTC
232





10816
CTGCCGCCAGCCGGGAGCTT
231





10817
TCTGCCGCCAGCCGGGAGCT
230





10818
TTCTGCCGCCAGCCGGGAGC
229





10819
TTTCTGCCGCCAGCCGGGAG
228





10820
GTTTCTGCCGCCAGCCGGGA
227





10821
GGTTTCTGCCGCCAGCCGGG
226





10822
CGGTTTCTGCCGCCAGCCGG
225





10823
CCGGTTTCTGCCGCCAGCCG
224





10824
CCCGGTTTCTGCCGCCAGCC
223





10825
TCCCGGTTTCTGCCGCCAGC
222





10826
CTCCCGGTTTCTGCCGCCAG
221





10827
ACTCCCGGTTTCTGCCGCCA
220





10828
CACTCCCGGTTTCTGCCGCC
219





10829
CCACTCCCGGTTTCTGCCGC
218





10830
CCCACTCCCGGTTTCTGCCG
217





10831
CCCCACTCCCGGTTTCTGCC
216





10832
GCCCCACTCCCGGTTTCTGC
215





10833
GGCCCCACTCCCGGTTTCTG
214





10834
CGGCCCCACTCCCGGTTTCT
213





10835
CCGGCCCCACTCCCGGTTTC
212





10836
CCCGGCCCCACTCCCGGTTT
211





10837
GCCCGGCCCCACTCCCGGTT
210





10838
CGCCCGGCCCCACTCCCGGT
209





10839
TCGCCCGGCCCCACTCCCGG
208





10840
CTCGCCCGGCCCCACTCCCG
207





10841
ACTCGCCCGGCCCCACTCCC
206





10842
CACTCGCCCGGCCCCACTCC
205





10843
GCACTCGCCCGGCCCCACTC
204





10844
CGCACTCGCCCGGCCCCACT
203





10845
GCGCACTCGCCCGGCCCCAC
202





10846
CGCGCACTCGCCCGGCCCCA
201





10847
CCGCGCACTCGCCCGGCCCC
200





10848
GCCGCGCACTCGCCCGGCCC
199





10849
TGCCGCGCACTCGCCCGGCC
198





10850
ATGCCGCGCACTCGCCCGGC
197





10851
GATGCCGCGCACTCGCCCGG
196





10852
GGATGCCGCGCACTCGCCCG
195





10853
GGGATGCCGCGCACTCGCCC
194





10854
TGGGATGCCGCGCACTCGCC
193





10855
CTGGGATGCCGCGCACTCGC
192





10856
CCTGGGATGCCGCGCACTCG
191





10857
GCCTGGGATGCCGCGCACTC
190





10858
GGCCTGGGATGCCGCGCACT
189





10859
CGGCCTGGGATGCCGCGCAC
188





10860
CCGGCCTGGGATGCCGCGCA
187





10861
GCCGGCCTGGGATGCCGCGC
186





10862
GGCCGGCCTGGGATGCCGCG
185





10863
GGGCCGGCCTGGGATGCCGC
184





10864
CGGGCCGGCCTGGGATGCCG
183





10865
TCGGGCCGGCCTGGGATGCC
182





10866
TTCGGGCCGGCCTGGGATGC
181





10867
GTTCGGGCCGGCCTGGGATG
180





10868
CGTTCGGGCCGGCCTGGGAT
179





10869
GCGTTCGGGCCGGCCTGGGA
178





10870
AGCGTTCGGGCCGGCCTGGG
177





10871
GAGCGTTCGGGCCGGCCTGG
176





10872
GGAGCGTTCGGGCCGGCCTG
175





10873
CGGAGCGTTCGGGCCGGCCT
174





10874
GCGGAGCGTTCGGGCCGGCC
173





10875
GGCGGAGCGTTCGGGCCGGC
172





10876
GGGCGGAGCGTTCGGGCCGG
171





10877
CGGGCGGAGCGTTCGGGCCG
170





10878
GCGGGCGGAGCGTTCGGGCC
169





10879
CGCGGGCGGAGCGTTCGGGC
168





10880
CCGCGGGCGGAGCGTTCGGG
167





10881
ACCGCGGGCGGAGCGTTCGG
166





10882
CACCGCGGGCGGAGCGTTCG
165





10883
CCACCGCGGGCGGAGCGTTC
164





10884
CCCACCGCGGGCGGAGCGTT
163





10885
GCCCACCGCGGGCGGAGCGT
162





10886
GGCCCACCGCGGGCGGAGCG
161





10887
CGGCCCACCGCGGGCGGAGC
160





10888
TCGGCCCACCGCGGGCGGAG
159





10889
GTCGGCCCACCGCGGGCGGA
158





10890
AGTCGGCCCACCGCGGGCGG
157





10891
AAGTCGGCCCACCGCGGGCG
156





10892
GAAGTCGGCCCACCGCGGGC
155





10893
GGAAGTCGGCCCACCGCGGG
154





10894
GGGAAGTCGGCCCACCGCGG
153





10895
GGGGAAGTCGGCCCACCGCG
152





10896
AGGGGAAGTCGGCCCACCGC
151





10897
GAGGGGAAGTCGGCCCACCG
150





10898
GGAGGGGAAGTCGGCCCACC
149





10899
GTGCGGAGGCGCAGGGCCGGGCTCCG
306





10900
CTACGCGCGGCTGCAGGGGGCGC
339





10901
TACGCGCGGCTGCAGGGGGC
340





10902
ACGCGCGGCTGCAGGGGGCG
341





10903
CGCGCGGCTGCAGGGGGCGC
342





10904
GCGCGGCTGCAGGGGGCGCT
343





10905
CGCGGCTGCAGGGGGCGCTG
344





10906
GCGGCTGCAGGGGGCGCTGG
345





10907
CGGCTGCAGGGGGCGCTGGG
346





10908
CCTACGCGCGGCTGCAGGGG
338





10909
GCCTACGCGCGGCTGCAGGG
337





10910
TGCCTACGCGCGGCTGCAGG
336





10911
CTGCCTACGCGCGGCTGCAG
335





10912
TCTGCCTACGCGCGGCTGCA
334





10913
CTCTGCCTACGCGCGGCTGC
333





10914
TCTCTGCCTACGCGCGGCTG
332





10915
GTCTCTGCCTACGCGCGGCT
331





10916
CGTCTCTGCCTACGCGCGGC
330





10917
CCGTCTCTGCCTACGCGCGG
329





10918
TCCGTCTCTGCCTACGCGCG
328





10919
CTCCGTCTCTGCCTACGCGC
327





10920
GCTCCGTCTCTGCCTACGCG
326





10921
GGCTCCGTCTCTGCCTACGC
325





10922
GGGCTCCGTCTCTGCCTACG
324





10923
CGGGCTCCGTCTCTGCCTAC
323





10924
CCGGGCTCCGTCTCTGCCTA
322





10925
GCCGGGCTCCGTCTCTGCCT
321





10926
GGCCGGGCTCCGTCTCTGCC
320





10927
GGGCCGGGCTCCGTCTCTGC
319





10928
AGGGCCGGGCTCCGTCTCTG
318





10929
CAGGGCCGGGCTCCGTCTCT
317





10930
GCAGGGCCGGGCTCCGTCTC
316





10931
CGCAGGGCCGGGCTCCGTCT
315





10932
GCGCAGGGCCGGGCTCCGTC
314





10933
GGCGCAGGGCCGGGCTCCGT
313





10934
AGGCGCAGGGCCGGGCTCCG
312





10935
GAGGCGCAGGGCCGGGCTCC
311





10936
GGAGGCGCAGGGCCGGGCTC
310





10937
CGGAGGCGCAGGGCCGGGCT
309





10938
CTGCGCAGGACTCGCGTCCTGGCCCG
375





10939
TGCGCAGGACTCGCGTCCTG
376





10940
GCGCAGGACTCGCGTCCTGG
377





10941
CGCAGGACTCGCGTCCTGGC
378





10942
GCAGGACTCGCGTCCTGGCC
379





10943
CAGGACTCGCGTCCTGGCCC
380





10944
AGGACTCGCGTCCTGGCCCG
381





10945
GGACTCGCGTCCTGGCCCGG
382





10946
GACTCGCGTCCTGGCCCGGG
383





10947
ACTCGCGTCCTGGCCCGGGC
384





10948
CTCGCGTCCTGGCCCGGGCC
385





10949
TCGCGTCCTGGCCCGGGCCT
386





10950
CGCGTCCTGGCCCGGGCCTC
387





10951
GCGTCCTGGCCCGGGCCTCC
388





10952
CGTCCTGGCCCGGGCCTCCC
389





10953
GTCCTGGCCCGGGCCTCCCA
390





10954
TCCTGGCCCGGGCCTCCCAG
391





10955
CCTGGCCCGGGCCTCCCAGC
392





10956
CTGGCCCGGGCCTCCCAGCC
393





10957
TGGCCCGGGCCTCCCAGCCC
394





10958
GGCCCGGGCCTCCCAGCCCG
395





10959
GCCCGGGCCTCCCAGCCCGC
396





10960
CCCGGGCCTCCCAGCCCGCA
397





10961
CCGGGCCTCCCAGCCCGCAG
398





10962
CGGGCCTCCCAGCCCGCAGA
399





10963
GGGCCTCCCAGCCCGCAGAG
400





10964
GGCCTCCCAGCCCGCAGAGC
401





10965
GCCTCCCAGCCCGCAGAGCG
402





10966
CCTCCCAGCCCGCAGAGCGC
403





10967
CTCCCAGCCCGCAGAGCGCG
404





10968
TCCCAGCCCGCAGAGCGCGG
405





10969
CCCAGCCCGCAGAGCGCGGG
406





10970
CCAGCCCGCAGAGCGCGGGA
407





10971
CAGCCCGCAGAGCGCGGGAT
408





10972
AGCCCGCAGAGCGCGGGATG
409





10973
GCCCGCAGAGCGCGGGATGG
410





10974
CCCGCAGAGCGCGGGATGGC
411





10975
CCGCAGAGCGCGGGATGGCT
412





10976
CGCAGAGCGCGGGATGGCTC
413





10977
GCAGAGCGCGGGATGGCTCT
414





10978
CAGAGCGCGGGATGGCTCTG
415





10979
AGAGCGCGGGATGGCTCTGG
416





10980
GAGCGCGGGATGGCTCTGGG
417





10981
AGCGCGGGATGGCTCTGGGC
418





10982
GCGCGGGATGGCTCTGGGCT
419





10983
CGCGGGATGGCTCTGGGCTC
420





10984
GCGGGATGGCTCTGGGCTCA
421





10985
CGGGATGGCTCTGGGCTCAG
422





10986
GCTGCGCAGGACTCGCGTCC
374





10987
GGCTGCGCAGGACTCGCGTC
373





10988
CGGCTGCGCAGGACTCGCGT
372





10989
TCGGCTGCGCAGGACTCGCG
371





10990
CTCGGCTGCGCAGGACTCGC
370





10991
CCTCGGCTGCGCAGGACTCG
369





10992
ACCTCGGCTGCGCAGGACTC
368





10993
AACCTCGGCTGCGCAGGACT
367





10994
GAACCTCGGCTGCGCAGGAC
366





10995
GGAACCTCGGCTGCGCAGGA
365





10996
GGGAACCTCGGCTGCGCAGG
364





10997
GGGGAACCTCGGCTGCGCAG
363





10998
TGGGGAACCTCGGCTGCGCA
362





10999
CTGGGGAACCTCGGCTGCGC
361





11000
GCTGGGGAACCTCGGCTGCG
360





11001
CGCTGGGGAACCTCGGCTGC
359





11002
GCGCTGGGGAACCTCGGCTG
358





11003
GGCGCTGGGGAACCTCGGCT
357





11004
GGGCGCTGGGGAACCTCGGC
356





11005
GGGGCGCTGGGGAACCTCGG
355





11006
GGGGGCGCTGGGGAACCTCG
354





11007
AGGGGGCGCTGGGGAACCTC
353





11008
CAGGGGGCGCTGGGGAACCT
352





11009
CCCGCAGAGCGCGGGATGGCTC
411





11010
CCGCAGAGCGCGGGATGGCT
412





11011
CGCAGAGCGCGGGATGGCTC
413





11012
GCAGAGCGCGGGATGGCTCT
414





11013
CAGAGCGCGGGATGGCTCTG
415





11014
AGAGCGCGGGATGGCTCTGG
416





11015
GAGCGCGGGATGGCTCTGGG
417





11016
AGCGCGGGATGGCTCTGGGC
418





11017
GCGCGGGATGGCTCTGGGCT
419





11018
CGCGGGATGGCTCTGGGCTC
420





11019
GCGGGATGGCTCTGGGCTCA
421





11020
CGGGATGGCTCTGGGCTCAG
422





11021
GCCCGCAGAGCGCGGGATGG
410





11022
AGCCCGCAGAGCGCGGGATG
409





11023
CAGCCCGCAGAGCGCGGGAT
408





11024
CCAGCCCGCAGAGCGCGGGA
407





11025
CCCAGCCCGCAGAGCGCGGG
406





11026
TCCCAGCCCGCAGAGCGCGG
405





11027
CTCCCAGCCCGCAGAGCGCG
404





11028
CCTCCCAGCCCGCAGAGCGC
403





11029
GCCTCCCAGCCCGCAGAGCG
402





11030
GGCCTCCCAGCCCGCAGAGC
401





11031
GGGCCTCCCAGCCCGCAGAG
400





11032
CGGGCCTCCCAGCCCGCAGA
399





11033
CCGGGCCTCCCAGCCCGCAG
398





11034
CCCGGGCCTCCCAGCCCGCA
397





11035
GCCCGGGCCTCCCAGCCCGC
396





11036
GGCCCGGGCCTCCCAGCCCG
395





11037
TGGCCCGGGCCTCCCAGCCC
394





11038
CTGGCCCGGGCCTCCCAGCC
393





11039
CCTGGCCCGGGCCTCCCAGC
392





11040
TCCTGGCCCGGGCCTCCCAG
391





11041
GTCCTGGCCCGGGCCTCCCA
390





11042
CGTCCTGGCCCGGGCCTCCC
389





11043
GCGTCCTGGCCCGGGCCTCC
388





11044
CGCGTCCTGGCCCGGGCCTC
387





11045
TCGCGTCCTGGCCCGGGCCT
386





11046
CTCGCGTCCTGGCCCGGGCC
385





11047
ACTCGCGTCCTGGCCCGGGC
384





11048
GACTCGCGTCCTGGCCCGGG
383





11049
GGACTCGCGTCCTGGCCCGG
382





11050
AGGACTCGCGTCCTGGCCCG
381





11051
CAGGACTCGCGTCCTGGCCC
380





11052
GCAGGACTCGCGTCCTGGCC
379





11053
CGCAGGACTCGCGTCCTGGC
378





11054
GCGCAGGACTCGCGTCCTGG
377





11055
TGCGCAGGACTCGCGTCCTG
376





11056
CTGCGCAGGACTCGCGTCCT
375





11057
GCTGCGCAGGACTCGCGTCC
374





11058
GGCTGCGCAGGACTCGCGTC
373





11059
CGGCTGCGCAGGACTCGCGT
372





11060
TCGGCTGCGCAGGACTCGCG
371





11061
CTCGGCTGCGCAGGACTCGC
370





11062
CCTCGGCTGCGCAGGACTCG
369





11063
ACCTCGGCTGCGCAGGACTC
368





11064
AACCTCGGCTGCGCAGGACT
367





11065
GAACCTCGGCTGCGCAGGAC
366





11066
GGAACCTCGGCTGCGCAGGA
365





11067
GGGAACCTCGGCTGCGCAGG
364





11068
GGGGAACCTCGGCTGCGCAG
363





11069
TGGGGAACCTCGGCTGCGCA
362





11070
CTGGGGAACCTCGGCTGCGC
361





11071
GCTGGGGAACCTCGGCTGCG
360





11072
CGCTGGGGAACCTCGGCTGC
359





11073
GCGCTGGGGAACCTCGGCTG
358





11074
GGCGCTGGGGAACCTCGGCT
357





11075
GGGCGCTGGGGAACCTCGGC
356





11076
GGGGCGCTGGGGAACCTCGG
355





11077
GGGGGCGCTGGGGAACCTCG
354





11078
AGGGGGCGCTGGGGAACCTC
353





11079
CAGGGGGCGCTGGGGAACCT
352





11080
CGGACCTGATGGGGCACGGGCTTCCCC
448





11081
GGACCTGATGGGGCACGGGC
449





11082
GACCTGATGGGGCACGGGCT
450





11083
ACCTGATGGGGCACGGGCTT
451





11084
CCTGATGGGGCACGGGCTTC
452





11085
CTGATGGGGCACGGGCTTCC
453





11086
TGATGGGGCACGGGCTTCCC
454





11087
GATGGGGCACGGGCTTCCCC
455





11088
ATGGGGCACGGGCTTCCCCT
456





11089
TGGGGCACGGGCTTCCCCTT
457





11090
GGGGCACGGGCTTCCCCTTT
458





11091
GGGCACGGGCTTCCCCTTTT
459





11092
GGCACGGGCTTCCCCTTTTA
460





11093
GCACGGGCTTCCCCTTTTAA
461





11094
CACGGGCTTCCCCTTTTAAC
462





11095
ACGGGCTTCCCCTTTTAACG
463





11096
CGGGCTTCCCCTTTTAACGG
464





11097
GGGCTTCCCCTTTTAACGGT
465





11098
GGCTTCCCCTTTTAACGGTG
466





11099
GCTTCCCCTTTTAACGGTGG
467





11100
CTTCCCCTTTTAACGGTGGT
468





11101
TTCCCCTTTTAACGGTGGTT
469





11102
TCCCCTTTTAACGGTGGTTG
470





11103
CCCCTTTTAACGGTGGTTGG
471





11104
CCCTTTTAACGGTGGTTGGG
472





11105
CCTTTTAACGGTGGTTGGGG
473





11106
CTTTTAACGGTGGTTGGGGC
474





11107
TTTTAACGGTGGTTGGGGCC
475





11108
TTTAACGGTGGTTGGGGCCT
476





11109
TTAACGGTGGTTGGGGCCTA
477





11110
TAACGGTGGTTGGGGCCTAG
478





11111
AACGGTGGTTGGGGCCTAGA
479





11112
ACGGTGGTTGGGGCCTAGAA
480





11113
CGGTGGTTGGGGCCTAGAAG
481





11114
GCGGACCTGATGGGGCACGG
447





11115
AGCGGACCTGATGGGGCACG
446





11116
GAGCGGACCTGATGGGGCAC
445





11117
CGGTGGTTGGGGCCTAGAAGCG
481





11118
ACGGTGGTTGGGGCCTAGAA
480





11119
AACGGTGGTTGGGGCCTAGA
479





11120
TAACGGTGGTTGGGGCCTAG
478





11121
TTAACGGTGGTTGGGGCCTA
477





11122
TTTAACGGTGGTTGGGGCCT
476





11123
TTTTAACGGTGGTTGGGGCC
475





11124
CTTTTAACGGTGGTTGGGGC
474





11125
CCTTTTAACGGTGGTTGGGG
473





11126
CCCTTTTAACGGTGGTTGGG
472





11127
CCCCTTTTAACGGTGGTTGG
471





11128
TCCCCTTTTAACGGTGGTTG
470





11129
TTCCCCTTTTAACGGTGGTT
469





11130
CTTCCCCTTTTAACGGTGGT
468





11131
GCTTCCCCTTTTAACGGTGG
467





11132
GGCTTCCCCTTTTAACGGTG
466





11133
GGGCTTCCCCTTTTAACGGT
465





11134
CGGGCTTCCCCTTTTAACGG
464





11135
ACGGGCTTCCCCTTTTAACG
463





11136
CACGGGCTTCCCCTTTTAAC
462





11137
GCACGGGCTTCCCCTTTTAA
461





11138
GGCACGGGCTTCCCCTTTTA
460





11139
GGGCACGGGCTTCCCCTTTT
459





11140
GGGGCACGGGCTTCCCCTTT
458





11141
TGGGGCACGGGCTTCCCCTT
457





11142
ATGGGGCACGGGCTTCCCCT
456





11143
GATGGGGCACGGGCTTCCCC
455





11144
TGATGGGGCACGGGCTTCCC
454





11145
CTGATGGGGCACGGGCTTCC
453





11146
CCTGATGGGGCACGGGCTTC
452





11147
ACCTGATGGGGCACGGGCTT
451





11148
GACCTGATGGGGCACGGGCT
450





11149
GGACCTGATGGGGCACGGGC
449





11150
CGGACCTGATGGGGCACGGG
448





11151
GCGGACCTGATGGGGCACGG
447





11152
AGCGGACCTGATGGGGCACG
446





11153
GAGCGGACCTGATGGGGCAC
445





11154
CGCGCCCCTCGCTGTGACCGCCCAGCCCG
524





11155
GCGCCCCTCGCTGTGACCGC
525





11156
CGCCCCTCGCTGTGACCGCC
526





11157
GCCCCTCGCTGTGACCGCCC
527





11158
CCCCTCGCTGTGACCGCCCA
528





11159
CCCTCGCTGTGACCGCCCAG
529





11160
CCTCGCTGTGACCGCCCAGC
530





11161
CTCGCTGTGACCGCCCAGCC
531





11162
TCGCTGTGACCGCCCAGCCC
532





11163
CGCTGTGACCGCCCAGCCCG
533





11164
GCTGTGACCGCCCAGCCCGG
534





11165
CTGTGACCGCCCAGCCCGGC
535





11166
TGTGACCGCCCAGCCCGGCG
536





11167
GTGACCGCCCAGCCCGGCGT
537





11168
TGACCGCCCAGCCCGGCGTG
538





11169
GACCGCCCAGCCCGGCGTGG
539





11170
ACCGCCCAGCCCGGCGTGGC
540





11171
CCGCCCAGCCCGGCGTGGCC
541





11172
CGCCCAGCCCGGCGTGGCCC
542





11173
GCCCAGCCCGGCGTGGCCCA
543





11174
CCCAGCCCGGCGTGGCCCAA
544





11175
CCAGCCCGGCGTGGCCCAAA
545





11176
CAGCCCGGCGTGGCCCAAAT
546





11177
AGCCCGGCGTGGCCCAAATG
547





11178
GCCCGGCGTGGCCCAAATGC
548





11179
CCCGGCGTGGCCCAAATGCC
549





11180
CCGGCGTGGCCCAAATGCCA
550





11181
CGGCGTGGCCCAAATGCCAG
551





11182
GGCGTGGCCCAAATGCCAGC
552





11183
GCGTGGCCCAAATGCCAGCC
553





11184
CGTGGCCCAAATGCCAGCCA
554





11185
GCGCGCCCCTCGCTGTGACC
523





11186
TGCGCGCCCCTCGCTGTGAC
522





11187
CTGCGCGCCCCTCGCTGTGA
521





11188
ACTGCGCGCCCCTCGCTGTG
520





11189
AACTGCGCGCCCCTCGCTGT
519





11190
AAACTGCGCGCCCCTCGCTG
518





11191
CAAACTGCGCGCCCCTCGCT
517





11192
CCAAACTGCGCGCCCCTCGC
516





11193
CCCAAACTGCGCGCCCCTCG
515





11194
CCCCAAACTGCGCGCCCCTC
514





11195
ACCCCAAACTGCGCGCCCCT
513





11196
GACCCCAAACTGCGCGCCCC
512





11197
TGACCCCAAACTGCGCGCCC
511





11198
GTGACCCCAAACTGCGCGCC
510





11199
TGTGACCCCAAACTGCGCGC
509





11200
GTGTGACCCCAAACTGCGCG
508





11201
TGTGTGACCCCAAACTGCGC
507





11202
CTGTGTGACCCCAAACTGCG
506





11203
CGGGGAGTGGGACTGCGGCGGGGAGCCG
580





11204
TCGGGGAGTGGGACTGCGGC
579





11205
CTCGGGGAGTGGGACTGCGG
578





11206
ACTCGGGGAGTGGGACTGCG
577





11207
AACTCGGGGAGTGGGACTGC
576





11208
ACTCGCCGAAGGCCCCTGGGGAAC
718





11209
CTCGCCGAAGGCCCCTGGGG
719





11210
TCGCCGAAGGCCCCTGGGGA
720





11211
CGCCGAAGGCCCCTGGGGAA
721





11212
GCCGAAGGCCCCTGGGGAAC
722





11213
CCGAAGGCCCCTGGGGAACA
723





11214
CGAAGGCCCCTGGGGAACAT
724





11215
GACTCGCCGAAGGCCCCTGG
717





11216
AGACTCGCCGAAGGCCCCTG
716





11217
AAGACTCGCCGAAGGCCCCT
715





11218
AAAGACTCGCCGAAGGCCCC
714





11219
AAAAGACTCGCCGAAGGCCC
713





11220
AAAAAGACTCGCCGAAGGCC
712





11221
CAAAAAGACTCGCCGAAGGC
711





11222
CGGGCTGCATGCGTGAGCAGG
840





11223
GGGCTGCATGCGTGAGCAGG
841





11224
GGCTGCATGCGTGAGCAGGC
842





11225
GCTGCATGCGTGAGCAGGCT
843





11226
CTGCATGCGTGAGCAGGCTA
844





11227
TGCATGCGTGAGCAGGCTAG
845





11228
GCATGCGTGAGCAGGCTAGC
846





11229
CATGCGTGAGCAGGCTAGCA
847





11230
ATGCGTGAGCAGGCTAGCAG
848





11231
TGCGTGAGCAGGCTAGCAGC
849





11232
GCGTGAGCAGGCTAGCAGCA
850





11233
CGTGAGCAGGCTAGCAGCAG
851





11234
CCGGGCTGCATGCGTGAGCA
839





11235
CCCGGGCTGCATGCGTGAGC
838





11236
GCCCGGGCTGCATGCGTGAG
837





11237
AGCCCGGGCTGCATGCGTGA
836





11238
CAGCCCGGGCTGCATGCGTG
835





11239
GCAGCCCGGGCTGCATGCGT
834





11240
TGCAGCCCGGGCTGCATGCG
833





11241
CTGCAGCCCGGGCTGCATGC
832





11242
TCTGCAGCCCGGGCTGCATG
831





11243
CTCTGCAGCCCGGGCTGCAT
830





11244
CCTCTGCAGCCCGGGCTGCA
829





11245
TCCTCTGCAGCCCGGGCTGC
828





11246
TTCCTCTGCAGCCCGGGCTG
827





11247
CTTCCTCTGCAGCCCGGGCT
826





11248
ACTTCCTCTGCAGCCCGGGC
825





11249
CACTTCCTCTGCAGCCCGGG
824





11250
ACACTTCCTCTGCAGCCCGG
823





11251
CACACTTCCTCTGCAGCCCG
822





11252
CGGCAGGCGGTTTAGGCTGTGGCTG
885





11253
GGCAGGCGGTTTAGGCTGTG
886





11254
GCAGGCGGTTTAGGCTGTGG
887





11255
CAGGCGGTTTAGGCTGTGGC
888





11256
AGGCGGTTTAGGCTGTGGCT
889





11257
GGCGGTTTAGGCTGTGGCTG
890





11258
GCGGTTTAGGCTGTGGCTGA
891





11259
CGGTTTAGGCTGTGGCTGAC
892





11260
ACGGCAGGCGGTTTAGGCTG
884





11261
AACGGCAGGCGGTTTAGGCT
883





11262
GAACGGCAGGCGGTTTAGGC
882





11263
TGAACGGCAGGCGGTTTAGG
881





11264
CTGAACGGCAGGCGGTTTAG
880





11265
GCTGAACGGCAGGCGGTTTA
879





11266
GGCTGAACGGCAGGCGGTTT
878





11267
AGGCTGAACGGCAGGCGGTT
877





11268
CAGGCTGAACGGCAGGCGGT
876





11269
TCAGGCTGAACGGCAGGCGG
875





11270
CTCAGGCTGAACGGCAGGCG
874





11271
TCTCAGGCTGAACGGCAGGC
873





11272
CTCTCAGGCTGAACGGCAGG
872





11273
CCTCTCAGGCTGAACGGCAG
871





11274
GCCTCTCAGGCTGAACGGCA
870





11275
AGCCTCTCAGGCTGAACGGC
869





11276
CAGCCTCTCAGGCTGAACGG
868





11277
GCAGCCTCTCAGGCTGAACG
867





11278
CCGATTCGGATTGCTCCAGCTGG
962





11279
CGATTCGGATTGCTCCAGCT
963





11280
GATTCGGATTGCTCCAGCTG
964





11281
ATTCGGATTGCTCCAGCTGG
965





11282
TTCGGATTGCTCCAGCTGGT
966





11283
TCGGATTGCTCCAGCTGGTA
967





11284
CGGATTGCTCCAGCTGGTAA
968





11285
ACCGATTCGGATTGCTCCAG
961





11286
AACCGATTCGGATTGCTCCA
960





11287
TAACCGATTCGGATTGCTCC
959





11288
TTAACCGATTCGGATTGCTC
958





11289
CGCACCCACTCAGTTGCCACGGG
1008





11290
GCACCCACTCAGTTGCCACG
1009





11291
CACCCACTCAGTTGCCACGG
1010





11292
ACCCACTCAGTTGCCACGGG
1011





11293
CCCACTCAGTTGCCACGGGA
1012





11294
CCACTCAGTTGCCACGGGAC
1013





11295
CACTCAGTTGCCACGGGACA
1014





11296
ACTCAGTTGCCACGGGACAC
1015





11297
CTCAGTTGCCACGGGACACA
1016





11298
TCAGTTGCCACGGGACACAC
1017





11299
CAGTTGCCACGGGACACACC
1018





11300
AGTTGCCACGGGACACACCT
1019





11301
GTTGCCACGGGACACACCTG
1020





11302
TTGCCACGGGACACACCTGC
1021





11303
TGCCACGGGACACACCTGCT
1022





11304
GCCACGGGACACACCTGCTT
1023





11305
CCACGGGACACACCTGCTTT
1024





11306
CACGGGACACACCTGCTTTT
1025





11307
ACGGGACACACCTGCTTTTA
1026





11308
CGGGACACACCTGCTTTTAG
1027





11309
ACGCACCCACTCAGTTGCCA
1007





11310
CACGCACCCACTCAGTTGCC
1006





11311
TCACGCACCCACTCAGTTGC
1005





11312
TTCACGCACCCACTCAGTTG
1004





11313
TTTCACGCACCCACTCAGTT
1003





11314
TTTTCACGCACCCACTCAGT
1002





11315
CTTTTCACGCACCCACTCAG
1001





11316
CCTTTTCACGCACCCACTCA
1000





11317
CCCTTTTCACGCACCCACTC
999





11318
CCCCTTTTCACGCACCCACT
998





11319
CCCCCTTTTCACGCACCCAC
997





11320
CCCCCCTTTTCACGCACCCA
996





11321
TCCCCCCTTTTCACGCACCC
995





11322
ATCCCCCCTTTTCACGCACC
994





11323
GATCCCCCCTTTTCACGCAC
993





11324
TGATCCCCCCTTTTCACGCA
992





11325
ATGATCCCCCCTTTTCACGC
991





11326
GATGATCCCCCCTTTTCACG
990





11327
CGGAGACCCACAACGCAACACACC
1099





11328
GGAGACCCACAACGCAACAC
1100





11329
GAGACCCACAACGCAACACA
1101





11330
AGACCCACAACGCAACACAC
1102





11331
GACCCACAACGCAACACACC
1103





11332
ACCCACAACGCAACACACCT
1104





11333
CCCACAACGCAACACACCTG
1105





11334
CCACAACGCAACACACCTGA
1106





11335
CACAACGCAACACACCTGAA
1107





11336
ACAACGCAACACACCTGAAC
1108





11337
CAACGCAACACACCTGAACT
1109





11338
AACGCAACACACCTGAACTG
1110





11339
ACGCAACACACCTGAACTGG
1111





11340
CGCAACACACCTGAACTGGG
1112





11341
CCGGAGACCCACAACGCAAC
1098





11342
GCCGGAGACCCACAACGCAA
1097





11343
TGCCGGAGACCCACAACGCA
1096





11344
GTGCCGGAGACCCACAACGC
1095





11345
TGTGCCGGAGACCCACAACG
1094





11346
ATGTGCCGGAGACCCACAAC
1093





11347
AATGTGCCGGAGACCCACAA
1092





11348
AAATGTGCCGGAGACCCACA
1091





11349
GAAATGTGCCGGAGACCCAC
1090





11350
TGAAATGTGCCGGAGACCCA
1089





11351
CTGAAATGTGCCGGAGACCC
1088





11352
TCTGAAATGTGCCGGAGACC
1087





11353
CTCTGAAATGTGCCGGAGAC
1086





11354
CCTCTGAAATGTGCCGGAGA
1085





11355
GCCTCTGAAATGTGCCGGAG
1084





11356
AGCCTCTGAAATGTGCCGGA
1083





11357
GAGCCTCTGAAATGTGCCGG
1082





11358
TGAGCCTCTGAAATGTGCCG
1081



















Hot Zones (Relative upstream location to gene start site)







 1-750


800-1200









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11983)







CTTTCCTCCAAGGACTGAAACAGACAAGGATACCCCCTCTTACCACTGTT





ATTCTACATAGTGCAGAAAGTCCTGGCCAGAGCTATCAGGCAAGAGGAAG





AAAGGAAGGGTATCCAAACTGGAAAGGAAGAAGTGGTGAGAAAGTTTTAA





TTTTATTTTTTTGCATGTAGTTATTAAGTTTTCCTAGCACCATTTATTAA





AGAGACTGTTTTTTTCCATTGTATGTTCTTTACAGCTTTGTCACAGATTA





GTTGGTTGTAAGTGCATGGATTTATATGTGGATTCTCTATTCTGCTCCAT





TGGTCTATGTGTCTGTTTCTATGCCAATACTGTGCTGTTTTGGTTACTAT





AGCTTTGTAGTAAATTTTGAAGTTAGGTAGTGTGATGCCTCCAGCTTTGT





TCTTTTTGCTCAGGATTGCTTTGGCTATTCAGGGTCTTTTGTGGTTTCTT





ATAAATTTTAGGAATTTTTCTGTTTCGTGAAGAATGTCATTTGTATTTTG





ATAGGAATTGCATTGAATCTGTAAATTGCTTTAGGTAGTATTGTAATTTT





AACAATATTAGTTCTTCCAGTCTATCACGGAGTATATTTCTGGGTTTTTG





TGTCCTCTTCGATTTCTTTTATCAGAGTTTTATTTATAGTTTTTCCTTGC





ATAGATATTTTACTTTTTTAGTTAAATTGATTCCTAGGTATTGTACATTT





TTGTAGCTATTGTAAAAGGAACTGCTTTCTTGATTTTTATTCAGATTGTT





CACTGTTGTCATATAAATGCTATTGATTTTTGTATGTTGATTTTGCATCC





TGCAACTTTACTGAATCAGATCTAACAGCTTTTAGGTGGACTCTTTAGAT





TTTTCTAGGTATAAGATCATGTAGTCTGCAAACAAACCTAATTTGACTTC





TTCCTTTCCAATTTGGATACCCTTCCTTTCTTCCTCTTGCCTGATAGCTC





TGGCCAGGACTTTCTGTACTACGTAGAATAACAGTGGTGAGAGGGGGTAT





CCTTGTCTGTTTCAGCCCTTGGAGGAAAGGCCTTCATTTTTTCTGTGTTC





AGTATGATGTTGACTGTAGGTTTGTCATATATGGCCTTCATTATTTTGAA





GTATGTTCCTTCTATATCCATTTTGGTGAGAATTTTTATCATAAAGGAAT





GTTGAATTTTATCAAATGCTATCTCAGCATCTATTGAAATAAGTATACCG





TTTCTGTTTTTGATTCTGTTAATGACTTATATTTAGATGGTATTTAAAGA





CATAGGAAATGGGTTAGATCTCCTAAAGAGGGAAGATGGAAAGAGAATGA





AAGAGTTTCCAGAATATAGCCCTGGGGGTTTCCCGCACTTATGGCGGAGG





GAAGGGAGCCATCAGAGGAAACTCAGAGTGGCCAGATAGAAAGGCAGGAA





AAAGCTTAATAAGGTGGTATCATGAGAAGAGAGTCTTCCTAGAAGGAGAA





ATGCTTACTCTTGATAAAAACTGAAAAATAGGGTGAGTCCACATTAGAAT





TCTCGCTACTGGGGAGGACTTTCTACACAAGGTTAGAGATCACTTGTATT





TTGTCTACTATAATTTTAGTGCATAATGCATTTTTTTGGCATATAGTGGG





CACTTATATACATATTAATCTGATGACATTTAATAATTGAGTGCCCAAAT





ATTTATGTCGAGTTGAGAGCTAGGGATAGGCATGAGTCTTTCTTAAACAT





CCTTCTCTTCTCCTTCCTCCACCCCCTCACTTGCCTTCAGAAGCATTGAT





CAGAGAGATAGCAGTATCTTCAGTTTTTTTTAAAGCAACATGAAACACAC





TTTATTCCTGCTAACATTAGGAAAAGCGAGCTGTTTTCCAAGCCCTGGAG





GAAGGAAATTCAGCTAACTAACGTGAGGTAATGTAGGGTGGCTATTTCTT





GAAAGGTAGTGAATCATAACTATAACCATACTATGGAAAAAAGTCCTGCC





TTACCAACCACTCCACTGACTGCTTGTCACCAAAACTACGCTATGAAACG





AATTGTGTTGAGTGGCTTTCATTGTAAAAGATTTTGGTGAAGGGAGGGAA





AGAAACTGGTAGGGGTTCAGATCAGAAGATCTGGCTTTGCCAGTTTCTGG





AGGGTGTCAGAATGGCTTCAACATACCTACTTCCTTGGCCTCAACTGGAG





GTTTTGTAGCTGTAAACAAGAAGGATTGCATAGTTCAGAATAACGACACT





GTAAGCTCATTGTGGAACTGGGTTAAAATCAGCATGTAGATCTACTAAGA





AAGAAACACACTCAGCACTACTACAGAAAGAAACAGCCATGGGCCCTGAT





TGTTAGCTTTCTGGAAGCCATTTCATTTTTACAATAGATTTATCACACAC





TGTATTGACTTTTTCCAGTATAGAGTAAGAGAAAGTTAATATTCCTCATG





TTTTGTCTGTTGACAGACTGAAAATAATTGCATTGAGTTTGGCTAGAATA





TCCTGTCATTCCATAAACATCTCAAACTCCACATGGCTAAAACTTAACCC





ATCCATGCCCCCATCTGCATGCACACATACATGCATATAACTTCATTTCT





CAGTGTTTTTTTCTCCATGAATGGTAGCACCATTCTCTTTCAAGAAAGAG





AAATACTTCCCCTTGGGATTATCCTATCTCTACTTATTGCTGCAGGGGCT





TCCAAAATTAGGTTTTCTGTGTTCAGTCTTGCATTCACACTTCTGAAACC





CAGAGCTGACCGAGACAAATTCTTCAACTTCCTGTCAGTCCCAACATAGA





TTTAAAATTCCTAACCTGGCTCATGAGGTTCACCATGTATTCCTGCTTCC





CTAAGTCAGCCTCATATCACACCAACCTGTGTGTGGAGTGGCTAAATACT





CTAGCCAGGCAAGCTCTCTCAGTTCTTCTACCTGGCTCCTCTGGAGCCCT





CCTTATTGCTCATCCCATTCTTAGCCTGATTCAAGATTCCTGGTCCTTCA





AATCTCTCTTTAAGTGTCCTTACCTGGATCTTTCTCTAGTTAGTACAAAT





TTTTCTATCTACCATTGGAGCGAACATTTTTTGAAACTTTGTATCAGTCC





TGCCTTACTCTTGGTGGAATCCTGTGGTCCTAGTCAAGTGCCTGCTCCAT





GAATGTGCTGAATAAATGAATAAGCATTTTAATTGTGTATCTGTCATTAG





TGTCAGATGTGTTATTTATTCCAGCATGGTTTTAGCACACAGACACACTC





TTTGATGCAGACTTTTCTTTTCTTTTTACATATAGCAACAATAAAAAACT





AGACTTTCATCTCCTGAAAATATCAGTCTAATAATCACCTATGGCTGTCT





CTCTGGTTGCTGAAGGAAAAAAAAAAAAAAGGCAGGGCACACCTGGATTG





CATTAGAATGAGACTCACTACCCAGTTCAGGTGTGTTGCGTTGTGGGTCT





CCGGCACATTTCAGAGGCTCATTAGGACCCTGACCCCACACTGGGGTTTA





CACCCCTAAAAGCAGGTGTGTCCCGTGGCAACTGAGTGGGTGCGTGAAAA





GGGGGGATCATCAATTACCAGCTGGAGCAATCCGAATCGGTTAAAGTGAA





TCAAGTCACAGTGCTTCCTTAACCCAACCTCTCTGTTGGGGTCAGCCACA





GCCTAAACCGCCTGCCGTTCAGCCTGAGAGGCTGCTGCTAGCCTGCTCAC





GCATGCAGCCCGGGCTGCAGAGGAAGTGTGGGGAGGAAGGAAGTGGGTAT





AGAAGGGTGCTGAGATGTGGGTCTTGAAGAGAATAGCCATAACGTCTTTG





TCACTAAAATGTTCCCCAGGGGCCTTCGGCGAGTCTTTTTGTTTGGTTTT





TTGTTTTTAATCTGTGGCTCTTGATAATTTATCTAGTGGTTGCCTACACC





TGAAAAACAAGACACAGTGTTTAACTATCAACGAAAGAACTGGACGGCTC





CCCGCCGCAGTCCCACTCCCCGAGTTTGTGGCTGGCATTTGGGCCACGCC





GGGCTGGGCGGTCACAGCGAGGGGCGCGCAGTTTGGGGTCACACAGCTCC





GCTTCTAGGCCCCAACCACCGTTAAAAGGGGAAGCCCGTGCCCCATCAGG





TCCGCTCTTGCTGAGCCCAGAGCCATCCCGCGCTCTGCGGGCTGGGAGGC





CCGGGCCAGGACGCGAGTCCTGCGCAGCCGAGGTTCCCCAGCGCCCCCTG





CAGCCGCGCGTAGGCAGAGACGGAGCCCGGCCCTGCGCCTCCGCACCACG





CCCGGGACCCCACCCAGCGGCCCGTACCCGGAGAAGCAGCGCGAGCACCC





GAAGCTCCCGGCTGGCGGCAGAAACCGGGAGTGGGGCCGGGCGAGTGCGC





GGCATCCCAGGCCGGCCCGAACGCTCCGCCCGCGGTGGGCCGACTTCCCC





TCCTCTTCCCTCTCTCCTTCCTTTAGCCCGCTGGCGCCGGACACGCTGCG





CCTCATCTCTTGGGGCGTTCTTCCCCGTTGGCCAACCGTCGCATCCCGTG





CAACTTTGGGGTAGTGGCCGTTTAGTGTTGAATGTTCCCCACCGAGAGCG





CATG






TTR


Transthyretin is a 55 kDa protein that exists as a quaternary structure consisting of four monomers binding as two homodimers to create two thyroxine binding sites per tetramer. The dimer-dimer interface comes apart during the process of tetramer dissociation. TTR misfolding and aggregation is known to be associated with amyloid diseases such as senile systemic amyloidosis, familial amyloid polyneuropathy (FAP) and familial amyloid cardiomyopathy (Foss et al. 2005 Biochemistry 44 (47): 15525-33; Zeldenrust SR and Benson Md. (2010). Protein misfolding diseases: current and emerging principles and therapies. New York: Wiley. Westermark et al., Proc. Natl. Acad. Sci. U.S.A. 87 (7): 2843-5. TTR is predominantly synthesized in the liver and choroid plexus for secretion into blood and CNS, respectively. FAP is characterized by pain, paresthesia, muscular weakness, autonomic dysfunction due to the systemic deposition of variants of the transthyretin protein. A common mutations include the replacement of valine by methionine at position 30 (TTR V30M) or valine by isoleucine (TTR V122L). The misfolding of dissociated monomers is believed to cause aggregation into a variety of structures including amyloid fibrils. Treatment of familial TTR amyloid disease has historically relied on liver transplantation as a crude form of gene therapy. Recent approaches include molecules to kinetically stabilize the TTR tetramer or blocking the synthesis of TTR monomers by siRNA and antisense therapeutics.


Protein: TTR Gene: TTR (Homo sapiens, chromosome 18, 29171730-29178987 [NCBI Reference Sequence NC000018.9]; start site location: 29171866; strand: positive)












Gene Identification


















GeneID
7276



HGNC
12405



HPRD
01447



MIM
176300




















Targeted Sequences













Relative upstream


Sequence
Design

location to gene start


ID No:
ID
Sequence (5′-3′)
site













11359

CAACGCCCTGGCTCGAGTGCAGTGGCACG
775





11432

CTACTATCTCAGATACTCGGCCAACTCG
1749





11450

CACGCGTTTCAGCACTGCACCCTGTTG
2086



















Target Shift Sequences











Relative




upstream


Sequence

location


ID

to gene


No:
Sequence (5′-3′)
start site












11359
CAACGCCCTGGCTCGAGTGCAGTGGCACG
775





11360
AACGCCCTGGCTCGAGTGCA
776





11361
ACGCCCTGGCTCGAGTGCAG
777





11362
CGCCCTGGCTCGAGTGCAGT
778





11363
GCCCTGGCTCGAGTGCAGTG
779





11364
CCCTGGCTCGAGTGCAGTGG
780





11365
CCTGGCTCGAGTGCAGTGGC
781





11366
CTGGCTCGAGTGCAGTGGCA
782





11367
TGGCTCGAGTGCAGTGGCAC
783





11368
GGCTCGAGTGCAGTGGCACG
784





11369
GCTCGAGTGCAGTGGCACGA
785





11370
CTCGAGTGCAGTGGCACGAT
786





11371
TCGAGTGCAGTGGCACGATC
787





11372
CGAGTGCAGTGGCACGATCA
788





11373
GAGTGCAGTGGCACGATCAC
789





11374
AGTGCAGTGGCACGATCACA
790





11375
GTGCAGTGGCACGATCACAG
791





11376
TGCAGTGGCACGATCACAGC
792





11377
GCAGTGGCACGATCACAGCT
793





11378
CAGTGGCACGATCACAGCTC
794





11379
AGTGGCACGATCACAGCTCG
795





11380
GTGGCACGATCACAGCTCGC
796





11381
TGGCACGATCACAGCTCGCT
797





11382
GGCACGATCACAGCTCGCTG
798





11383
GCACGATCACAGCTCGCTGC
799





11384
CACGATCACAGCTCGCTGCA
800





11385
ACGATCACAGCTCGCTGCAG
801





11386
CGATCACAGCTCGCTGCAGC
802





11387
GATCACAGCTCGCTGCAGCC
803





11388
ATCACAGCTCGCTGCAGCCT
804





11389
TCACAGCTCGCTGCAGCCTT
805





11390
CACAGCTCGCTGCAGCCTTG
806





11391
ACAGCTCGCTGCAGCCTTGA
807





11392
CAGCTCGCTGCAGCCTTGAC
808





11393
AGCTCGCTGCAGCCTTGACC
809





11394
GCTCGCTGCAGCCTTGACCT
810





11395
CTCGCTGCAGCCTTGACCTC
811





11396
TCGCTGCAGCCTTGACCTCC
812





11397
CGCTGCAGCCTTGACCTCCC
813





11398
GCTGCAGCCTTGACCTCCCG
814





11399
CTGCAGCCTTGACCTCCCGG
815





11400
TGCAGCCTTGACCTCCCGGG
816





11401
GCAGCCTTGACCTCCCGGGC
817





11402
CAGCCTTGACCTCCCGGGCT
818





11403
AGCCTTGACCTCCCGGGCTC
819





11404
GCCTTGACCTCCCGGGCTCA
820





11405
CCTTGACCTCCCGGGCTCAG
821





11406
CTTGACCTCCCGGGCTCAGG
822





11407
TTGACCTCCCGGGCTCAGGT
823





11408
TGACCTCCCGGGCTCAGGTC
824





11409
GACCTCCCGGGCTCAGGTCA
825





11410
ACCTCCCGGGCTCAGGTCAT
826





11411
CCTCCCGGGCTCAGGTCATC
827





11412
CTCCCGGGCTCAGGTCATCC
828





11413
TCCCGGGCTCAGGTCATCCT
829





11414
CCCGGGCTCAGGTCATCCTC
830





11415
CCGGGCTCAGGTCATCCTCC
831





11416
CGGGCTCAGGTCATCCTCCC
832





11417
CCAACGCCCTGGCTCGAGTG
774





11418
TCCAACGCCCTGGCTCGAGT
773





11419
CTCCAACGCCCTGGCTCGAG
772





11420
ACTCCAACGCCCTGGCTCGA
771





11421
CACTCCAACGCCCTGGCTCG
770





11422
TCACTCCAACGCCCTGGCTC
769





11423
CTCACTCCAACGCCCTGGCT
768





11424
TCTCACTCCAACGCCCTGGC
767





11425
GTCTCACTCCAACGCCCTGG
766





11426
GGTCTCACTCCAACGCCCTG
765





11427
GGGTCTCACTCCAACGCCCT
764





11428
AGGGTCTCACTCCAACGCCC
763





11429
CAGGGTCTCACTCCAACGCC
762





11430
ACAGGGTCTCACTCCAACGC
761





11431
GACAGGGTCTCACTCCAACG
760





11432
CTACTATCTCAGATACTCGGCCAACTCG
1749





11433
TACTATCTCAGATACTCGGC
1750





11434
ACTATCTCAGATACTCGGCC
1751





11435
CTATCTCAGATACTCGGCCA
1752





11436
TATCTCAGATACTCGGCCAA
1753





11437
ATCTCAGATACTCGGCCAAC
1754





11438
TCTCAGATACTCGGCCAACT
1755





11439
CTCAGATACTCGGCCAACTC
1756





11440
TCAGATACTCGGCCAACTCG
1757





11441
CAGATACTCGGCCAACTCGT
1758





11442
AGATACTCGGCCAACTCGTT
1759





11443
GATACTCGGCCAACTCGTTT
1760





11444
ATACTCGGCCAACTCGTTTG
1761





11445
TACTCGGCCAACTCGTTTGT
1762





11446
ACTCGGCCAACTCGTTTGTA
1763





11447
CTCGGCCAACTCGTTTGTAA
1764





11448
TCGGCCAACTCGTTTGTAAA
1765





11449
CGGCCAACTCGTTTGTAAAA
1766





11450
CACGCGTTTCAGCACTGCACCCTGTTG
2086





11451
ACGCGTTTCAGCACTGCACC
2087





11452
CGCGTTTCAGCACTGCACCC
2088





11453
GCGTTTCAGCACTGCACCCT
2089





11454
CGTTTCAGCACTGCACCCTG
2090





11455
GCACGCGTTTCAGCACTGCA
2085





11456
TGCACGCGTTTCAGCACTGC
2084





11457
GTGCACGCGTTTCAGCACTG
2083





11458
TGTGCACGCGTTTCAGCACT
2082





11459
CTGTGCACGCGTTTCAGCAC
2081





11460
ACTGTGCACGCGTTTCAGCA
2080





11461
TACTGTGCACGCGTTTCAGC
2079





11462
CTACTGTGCACGCGTTTCAG
2078





11463
TCTACTGTGCACGCGTTTCA
2077





11464
ATCTACTGTGCACGCGTTTC
2076





11465
AATCTACTGTGCACGCGTTT
2075





11466
AAATCTACTGTGCACGCGTT
2074





11467
AAAATCTACTGTGCACGCGT
2073





11468
CAAAATCTACTGTGCACGCG
2072





11469
GCAAAATCTACTGTGCACGC
2071





11470
AGCAAAATCTACTGTGCACG
2070






















Hot Zones (Relative upstream location to gene start site)







735-915


1185-1275


1725-1815


2085-2175









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11984)







AACTGGGCAGGCCTCAGGAAACTTACAATCATGGTAGAAGGTGAAGGGGA





AGCAAAGCACCTTCCTCACAAGGCGTCAGGAAGAAGTGCCAAGCAAAGGG





GGAAAAGCCCCTTGTAAAACTACCAGAACCTGTGAGAACTCAATCACTAT





CACAAGAACAGCATGAGGGAACCGCCCCTCGTGATTCAATTACCTCCACC





TGGTCTCTCCCTTGACACATGGGGATTATGGGTGTTACAATTCAAGATGA





GATTTGGGTGGGGACACAAAGCCTAACCATATCAAGGATCAAGTGGTGGG





TTGAAACTAACAGGATGAGATATATCAGATACAAACACAGGGTCCCATAT





TTGGGTTAAAATTCATAAATGATCAAAGCACAGGATGACAGATAATATAG





GTCATTTTAGATTATTGTGGCCAACAGATCACAGTGGGTAGTGTTATGAC





GAAGGGAGGGTCACAGTTACTACAGTTACAGATGGATTCTGGGTACAACA





TTTGCACTAAAGTGCCTTTGCCAAGGGAGGCAACAGTCTCGACATCCTGT





GGCCTGATCTACTTCAGGGACTGTGTCTTGTTCAGAGCATCACATTTGAA





GAGAACTTTGACCAAGGGGAATATGCCAGAAAAGGAAGTTCGGGATGCTG





AGGATCTTAGGAACTATGTCTAAACAAGATTCATTCACAGAAGTGGGAAT





GTCTATTTGGCAAAAAGAAAATACTACTTACATGGCTGTTGGAAGACCAG





CAATCACAAACTCAGTTTTTCAAAAGGCTGGGCAGAAACACAGATGAAAG





AAACAGGCCATGTTTAAGAAAAGATAAAAGCTCACGCATGATATGCCACT





AGAGAATCACCTAGCCTCAGTGTTGGCGGGGAGGCCTGGGGAGTCTTGAT





GTCTGAGAGTGACATTCTGATGATCACTGTCATGTGTAAATGTTGGCCTA





AAGCTGCCAATATTTTTGATTTAAGAGAAGCAAGAAATGCAAATTTTTAT





GCAGCATGTCTCAATTTTTAATTTTGGCAACTATTACAAAATGTTTAAAG





AGACTCTGTGCAGCCCAAATATAACATATCTATGGGCTGATGGCAGCCCA





GCGTTGCCAGTTCACAGGGTCTACAAGAGATGATTCTTAGTTTCAACAGG





GTGCAGTGCTGAAACGCGTGCACAGTAGATTTTGCTTCGGTTATGAAAGA





ACTTCCAAATATTTATGATTCATAGCCAGAGAAAAGGCTCTCTATCCAGG





TTCTGAACAATAGGAAATCATCAAGAGGATATTGGATGACAATATATGAA





AGATGTTATTTGAGAAAGGATTCTCTCCTGAGGCATAGATGTTGAACCAA





ATTCTATTAGTTATGCTTTTACAGCAAGATAGTGGTTTACAGCTTACAAA





AGGCTTGTACATCCTCTCATATTAAAAGTTATTAGAACAGTCCTTTGAAG





TAGAAAAGTAGGCATTTCTATTTTACAAACGAGTTGGCCGAGTATCTGAG





ATAGTAGATAACTCATAGAAGGTCATCCGGGAAACGGGGCAGCAGAACTG





GGATCGAATGACTCTGGTCATCCAACTCCAAATGCAAAAGTCTTTCTGCT





GCTGCTTCCTAGTTAAACTCTAAGGGTCTAAGACTCCATTCCTAGTTATG





GTCTCAACTACATTTGCTCATTGCTGTGAGGGGTCAACCCACCTCCCGGA





GTCCTCTCCTGCACATTCTCATGTTCCTGAAAGGCTTTTCTGTCCCTTCC





ACTACTCCCTGTAAGCTCCTGTGCTTCACAATTTCTTGTTGAATTTTTTC





TAATCTGACTCTATCAGTTATGGGAATGTTCCCTCAATTCTTAGTGCTCC





AAACCGGACTTGCTCTTGGCTTGTATTTGTCCAAAATATTTGTCTTCTCT





ATGTTTTCTACATGTTTGTCTTATAAGGACAAAAACCTGCCTTAGTTTAT





CCATGAACAAAGCCACGCATGCTAGTGGACACACACACACATGCGCGTGC





GCGCGCACACACACACACACACACATACACACAGAGACTTTGTATGTGAG





TAATGAATCATCAAATCATCATAATTTCTGGACTTGTATTAATAAGTCGG





CCAGGAGGAAAAGAATCTGCTGTCAATCATGGCTTCTGGTTCTCACAGTC





ATCTCTACTTTCTTCCAGCAAGTTTGGTTCTGTCAAAAACCAGCTGTCAG





CCTTGTTCCTGCATGCCCAATGCAGAAGAGTCAGTAAAGAAGATTTGGTT





CTCTGTATTTCAGGGGCATCAATGCCAGGTTGAAATATGCCATTCTGGCC





CAGCTCAGTGGCTCACACGTGTAATCCCAGCACTTTGGAAGGCCAAAGCG





GGTGGATTGCTTGAGCTCAGGAGTTCGAGACCAGCCTGGGCAAGAGGCTG





AGGTGGGAGGATGACCTGAGCCCGGGAGGTCAAGGCTGCAGCGAGCTGTG





ATCGTGCCACTGCACTCGAGCCAGGGCGTTGGAGTGAGACCCTGTCAAAA





AAAAAAAAAAAAAGGAAGGAAAAAAGGAAGGAAGGAAGGGAGGGAGGGAA





GATGCCATTCTTAGATTGAAGTGGACTTTATCTGGGCAGAACACACACAC





ACATACACACATGCACACACACATTGTGGAGAAATTGCTGACTAAGCAAA





GCTTCCAAATGACTTAGTTTGGCTAAAATGTAGGCTTTTAAAAATGTGAG





CACTGCCAAGGGTTTTTCCTTGTTGACCCATGGATCCATCAAGTGCAAAC





ATTTTCTAATGCACTATATTTAAGCCTGTGCAGCTAGATGTCATTCAACA





TGAAATACATTATTACAACTTGCATCTGTCTAAAATCTTGCATCTAAAAT





GAGAGACAAAAAATCTATAAAAATGGAAAACATGCATAGAAATATGTGAG





GGAGGAAAAAATTACCCCCAAGAATGTTAGTGCACGCAGTCACACAGGGA





GAAGACTATTTTTGTTTTGTTTTGATTGTTTTGTTTTGTTTTGGTTGTTT





TGTTTTGGTGACCTAACTGGTCAAATGACCTATTAAGAATATTTCATAGA





ACGAATGTTCCGATGCTCTAATCTCTCTAGACAAGGTTCATATTTGTATG





GGTTACTTATTCTCTCTTTGTTGACTAAGTCAATAATCAGAATCAGCAGG





TTTGCAGTCAGATTGGCAGGGATAAGCAGCCTAGCTCAGGAGAAGTGAGT





ATAAAAGCCCCAGGCTGGGAGCAGCCATCACAGAAGTCCACTCATTCTTG





GCAGGATG






CD68


CD68 (Cluster of Differentiation 68) is a glycoprotein that is expressed on monocytes/macrophages. It is often used as a marker for monocytes, histiocytes, giant cells, Kupffer cells, and osteoclasts. CD68 has been used to distinguish between diseases of similar appearance, e.g. (1) for monocytes of lymphoid origin and (2) macrophages to diagnose conditions related to proliferation or abnormality of these cells, such as malignant histiocytosis, histiocytic lymphoma, and Gaucher's disease. CD68 primarily localizes to lysosomes and endosomes with a smaller fraction circulating to the cell surface. It is a type I integral membrane protein with a heavily glycosylated extracellular domain and binds to tissue- and organ-specific lectins or selectins. The protein is also a member of the scavenger receptor family and has been reported to bind LDL. Scavenger receptors typically function to clear cellular debris, promote phagocytosis, and mediate the recruitment and -activation of macrophages. Alternative splicing of the gene results in multiple transcripts encoding different isoforms of CD68.


Protein: CD68 Gene: CD68 (Homo sapiens, chromosome 17, 7482805-7485429 [NCBI Reference Sequence: NC000017.10]; start site location: 7482996; strand: positive)












Gene Identification


















GeneID
968



HGNC
1693



MIM
153634




















Targeted Sequences











Relative




upstream


Sequence

location to


ID
Sequence (5′-3′)
gene start site





11989
CGAGAACATGGCTTTCCAGCGTCTG
520



















Hot Zones (Relative upstream location to gene start site)







1-600
















Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11985)







GCCACATTTGCCATATCGATTCTGCAGCAGATTGAATTAGATCTAAAAGC





CACCCAGGCCTTGGTCCTAGCACCCACTCGAGAATTGGCTCAGCAGGTAA





GAGTGGCTTCTATTCCCTCCTTCAGGGCTGATTTAGGGATGATGAGTATA





ATCCAAGGACCAGAGAAGTCTTCTCTGATCACCACCTTGGGAGGAAGACA





TGGGTGCCCTAACACTCTCGAGACCTGCTGGGTTAATTAAAAGCTATTTC





TTACCCAAACGTAACCATTGCTTCCTCCACCCATTTCCTGAGTCAAATGG





GAAAGCTGTTGGGTGAAGCCTGGCTGGCTGGGCAAGTTTGACTGTGTTCT





GAATAAGCACCTTCACTATGGGCTAAGAGATCCCTTGGTGTGGGGGTGAT





CTTACAGTAGTCAGAGCAGATGGACAGTCCTTTTCACCCTTGCTTAATAG





CCAGAGCTGTTTCATGCCTGGGGCACACACAATTCTAATGCTGGACTTTT





TCCTGGGTCATGCTGCAACACTGATGTCAGAGCATGTTTTTAAATGTTCT





GTGGCAGGGGCAGTGATTATTCTGGGTGTGGATAATGTAAGAAGTTACAG





CAGAGCTCCATTCTAAGGCACTTGGCTCTCAGTTTTCTCAGAGTGAACAT





GCCTCGTAGCTTGGGTCCTATGGCAGGAGTGCAATAGGACATGGATATGC





ATCACCTGTTCTATAAAACTGGTTGCTGGCTGGGTGTGGTGGCTCAACTC





GTATAATCCCAACACTTTGGGAGGCCAAGGCAGGCAGATCTCTTGAGATC





AGGAGTTGGAGACCAGCCTGGCCAACATAGTGAAACCCCGCTTCTACTAA





AAATACAAAAATTAGCCAGGCATGGTGGCGTGTGCCTTTTATCCCAGCTA





CTCGGGAAGCTCAGGCAGGAGAATTTAACCCAGGAGGTGGAGGTTGCAGT





GAGCTGAGATTGTGCCATTGCACTCCAGCCTGGGCAACGAGCAAAGCTCT





GTCTCAAAAAAAGAAAAAAAAAATGGTTGCTGCGTGATGAGGCAGTTGGT





CAAATTAGTTTTCAGAAGGTTAAGGGTTCTAAATATCTAGAGTAAAGAAA





CTGAATTAATTATCTGAGCGGCCTCATTGTGAATCACTGTACACTCAGGA





ACCAGACTGAGTTGAAATCCTGTCTTTGCCACCTATTGACAGCACGATCT





TAAGTGGATTTTAGCCTCTGCCTGTTTCTCAGCTGAATGTGAGTTTAATA





ATAGTGCATGCCCCAAAGTTGTTGGTTAGGAATCAATACATGAAAAACAT





TTAAGAATGGTGCCGGGCACAGTGGTAACTGACATATGAGCACCTGCCTC





TCTCTGCTCAGATACAGAAGGTGGTCATGGCACTAGGAGACTACATGGGC





GCCTCCTGTCACGCCTGTATCGGGGGCACCAACGTGCGTGCTGAGGTGCA





GAAACTGCAGATGGAAGCTCCCCACATCATCGTGGGTACCCCTGGCCGTG





TGTTTGATATGCTTAACCGGAGATACCTGTGTGAGTAATTCGGTTCTCCA





ATCCCCTGGGTCACTTTGCTCTTGTGCACGCTTTCCAGTCTTTCAGCGTA





AGCCAGAGTCATTCCCAAGGATGCTGGTTTCTCTCTGGGGGAAGAGCTGC





TCTGTGATGGAGCCCATGCGTGTCATCTGAGCCTCTGGCTTCCCTGCCAG





TGCAGCCCTGGCAGTGTCCTACTTCCCAGGGCTGTTGTCTGCCTGGCGGG





AAGGTCCTGGGCAAAGGATCAGTCTTTGTACTCTGAGAGCAGACTACTTG





GCTCCTCTCTGTTTTTTATCAGCGAAGTTGGATATATCTCTCCCACATTT





CCCTAATCATATGCTATATATTGGCTTTTTTTTTCTTCTCTAGCCCCCAA





ATACATCAAGATGTTTGTACTGGATGAAGCTGACGAAATGTTAAGCCGTG





GATTCAAGGACCAGATCTATGACATATTCCAAAAGCTCAACAGCAACACC





CAGGTGAGGGCAGTCTTGCTTGAATAGCTAATGATTCTTGAAAAATAGTA





AGTGCCAGGGGAACCATATACTGGATTCTTGAGCCTTTTTATGCATCTGC





TTCAGTTTTAGGTGTGGCTAGGGAAGGGAGCAGGCCTCAGGAAGGAACCA





GCACTCTAAGACTGGCCTTTTTTTCCACTAGGTAGTTTTGCTGTCAGCCA





CAATGCCTTCTGATGTGCTTGAGGTGACCAAGAAGTTCATGAGGGACCCC





ATTCGGATTCTTGTCAAGAAGGAAGAGTTGACCCTGGAGGGTATCCGCCA





GTTCTACATCAACGTGGAACGAGAGGTGGGGCCCAGTGCAGGAGGCGGGC





CTGGTAGTGAGTTGTTGGGTATAGCCCCTGACTGATTTTTGTCCCCCAAC





CTCCAGGAGTGGAAGCTGGACACACTATGTGACTTGTATGAAACCCTGAC





CATCACCCAGGCAGTCATCTTCATCAACACCCGGAGGAAGGTGGACTGGC





TCACCGAGAAGATGCATGCTCGAGATTTCACTGTATCCGCCATGGTGTGT





TTGCCCGCTGCCAGCCTGTTGTGGGTCTGCCCGTCAGAAGTGTCCTACTT





GAAGCCAGGGTTCCTGGAACCCAGGTGCCTACCTGGTCTGCTGCATATTT





GTTTTCTCTTCCAGCATGGAGATATGGACCAAAAGGAACGAGACGTGATT





ATGAGGGAGTTTCGTTCTGGCTCTAGCAGAGTTTTGATTACCACTGACCT





GCTGGTGAGTAGAGGGAACTGATAGCAAAGGCAGAAGGGAGGATCCAAGG





TGATTCCCTCTCCAAGGGGACATCAGTGCCTCTCAGGAAAGTAGCAGCTT





GGAATAGAATCTGGCATGCCTAAGGCCTTTGGGGAACTGGGATGCTTATT





TCCTCTGCCTTCCTTGGCTGCCCACATGGATGCCTAAGTGTCTTCCCTCC





GGGATAGAGTGTCCTCCGTGCACATGCTGAAGAGTTGTCTTTCTTGACGT





AGGCCAGAGGCATTGATGTGCAGCAGGTTTCTTTAGTCATCAACTATGAC





CTTCCCACCAACAGGGAAAACTATATCCACAGGTAAGCGTAGATCTGGAA





CACTCCCCTACCCCTTCACACCTGGCCCTCCCTGGGCTTAAAGCTCCTGA





TATTCCTCATCCCCTTCCTTGTTTTCCAGAATCGGTCGAGGTGGACGGTT





TGGCCGTAAAGGTGTGGCTATTAACATGGTGACAGAAGAAGACAAGAGGA





CTCTTCGAGACATTGAGACCTTCTACAACACCTCCATTGAGGAAATGCCC





CTCAATGTTGCTGACCTCATCTGAGGGGCTGTCCTGCCACCCAGCCCCAG





CCAGGGCTCAATCTCTGGGGGCTGAGGAGCAGCAGGAGGGGGGAGGGAAG





GGAGCCAAGGGATGGACATCTTGTCATTTTTTTTCTTTGAATAAATGTCA





CTTTTTGAGGCAAAAGAAGGAACCGTGAACATTTTAGACACCCTTTTCTT





TGGGGTAGGCTCTTGCCCCAGGCGCCGGCTCTTCTCCCAAAAAAAAAAAA





AAAACACTAATCCATTTCCCTAACCTAGTAACCTCCAGATCCCAGAGGCT





CTCCTCACCTCAGCTGAGCTCCTTTGAAAGTGATTCAAGGGACTATGTCA





CTCAGCCTCATTTGCTGGACCAAATCTGGAGGGAGAACCCCTAAAACCCC





TAAGTGAGGTTGCCCAGGGGGTTGTCCCCAGGTGGGGGGAAGCAGGGGAG





AGAAAATGGTAGCCATTTTTACATTGTTTTGTATAGTATTTATTGATTCA





GGAAACAAACACAAAATTCTGAATAAAATGACTTGGAAACTGCCTGTTTG





GGCTTCTCATTTCTTACCTCCCCTTCCCTCTCCCACCTGCTACTGGGTGC





ATCTCTGCTCCCCCCTTCCCCAGCAGATGGTTACCTTTGGGCTGTTGCTT





TCTTGTCACCATCTGAGTTCTCAGACGCTGGAAAGCCATGTTCTCGGCTC





TGTGAATGACAATGCTGACTGGAGTGCTGCCCCTCTGTAAAGGGCTGGGT





GTGGATGGTCACAAGCCCCTCACATGCCTCAGCCAAGAGGAAGTAGTACA





GGGGTCAGCCCAGAGGTCCAGGGGAAAGGAGTGGAAACCGATTTCCCCAC





CAAGGGAGGGGCCTGTACCTCAGCTGTTCCCATAGCTACTTGCCACAACT





GCCAAGCAAGTTTCGCTGAGTTTGACACATGGATCCCTGTGGATCAACTG





CCCTAGGACTCCGTTTGCACCCATGTGACACTGTTGACTTTGCCCTGATG





AAGCAGGGCCAACAGTCCCCTAACTTAATTACAAAAACTAATGACTAAGA





GAGAGGTGGCTAGAGCTGAGGCCCCTGAGTCAGGCTGTGGGTGGGATCAT





CTCCAGTACAGGAAGTGAGACTTTCATTTCCTCCTTTCCAAGAGAGGGCT





GAGGGAGCAGGGTTGAGCAACTGGTGCAGACAGCCTAGCTGGACTTTGGG





TGAGGCGGTTCAGCCATG






ALK


Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 (cluster of differentiation 246) is an enzyme encoded by the ALK gene. ALK is believed to have a putative transmembrane domain and an extracellular domain. ALK is believed to have oncogenic properties in through several ways: mutations, amplified copies, or fusion products with other genes. The t(2; 5) chromosomal translocation is associated with approximately 60% anaplastic large-cell lymphomas (ALCLs) and creates a fusion gene consisting of the ALK gene and the nucleophosmin (NPM) gene: the 3′ half of ALK, derived from chromosome 2 and coding for the catalytic domain, is fused to the 5′ portion of NPM from chromosome 5. The product of NPM-ALK or EML4-ALK fusion genes are oncogenic in lymphoma and non-small cell lung cancers, respectively. In a smaller fraction of ALCL patients, the 3′ half of ALK is fused to the 5′ sequence of TPM3 gene, encoding for tropomyosin 3. In rare cases, ALK is fused to other 5′ fusion partners, such as TFG, ATIC, CLTC1, TPM4, MSN, ALO17, MYH9.


Protein: ALK Gene: ALK (Homo sapiens, chromosome 2, 29415640-30144477 [NCBI Reference Sequence: NC000002.11]; start site location: 30143525; strand: negative)












Gene Identification


















GeneID
238



HGNC
427



MIM
105590




















Targeted Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












11471
CGCCGGAGGAGGCCGTTTACACTGC
3





11530
CGTGCGCGCAAGTCTCTTGCTTTCC
132





11555
CGCTCTCCGCGCCGAGTGCCGCGCC
269





11621
CGCCTTTTGCGTTCCTTTTGGCTCC
482





11681
CGCAGGCACTGGAGCGGCCCCGGCG
701





11794
CGACCCTCCGAACAGAGGCGGCGGG
851





11825
CGCGCTGCTGCCCGACCCACGCAGT
1022





11901
CGGGTCCGACTTCGGAAAAACAGGT
1313





11923
CGGCCTGTCGGGTAGCACAGGAGTT
2022






















Targeted Shift Sequences











Relative




upstream


Sequence

location to


ID No:
Sequence (5′-3′)
gene start site












11471
CGCCGGAGGAGGCCGTTTACACTGC
3





11472
GCCGGAGGAGGCCGTTTACA
4





11473
CCGGAGGAGGCCGTTTACAC
5





11474
CGGAGGAGGCCGTTTACACT
6





11475
GGAGGAGGCCGTTTACACTG
7





11476
GAGGAGGCCGTTTACACTGC
8





11477
AGGAGGCCGTTTACACTGCT
9





11478
GGAGGCCGTTTACACTGCTC
10





11479
GAGGCCGTTTACACTGCTCT
11





11480
AGGCCGTTTACACTGCTCTC
12





11481
GGCCGTTTACACTGCTCTCC
13





11482
GCCGTTTACACTGCTCTCCG
14





11483
CCGTTTACACTGCTCTCCGG
15





11484
CGTTTACACTGCTCTCCGGG
16





11485
GTTTACACTGCTCTCCGGGC
17





11486
TTTACACTGCTCTCCGGGCC
18





11487
TTACACTGCTCTCCGGGCCC
19





11488
TACACTGCTCTCCGGGCCCA
20





11489
ACACTGCTCTCCGGGCCCAG
21





11490
CACTGCTCTCCGGGCCCAGC
22





11491
ACTGCTCTCCGGGCCCAGCC
23





11492
CTGCTCTCCGGGCCCAGCCT
24





11493
TGCTCTCCGGGCCCAGCCTC
25





11494
GCTCTCCGGGCCCAGCCTCA
26





11495
CTCTCCGGGCCCAGCCTCAC
27





11496
TCTCCGGGCCCAGCCTCACC
28





11497
CTCCGGGCCCAGCCTCACCC
29





11498
TCCGGGCCCAGCCTCACCCT
30





11499
CCGGGCCCAGCCTCACCCTT
31





11500
CGGGCCCAGCCTCACCCTTC
32





11501
GGGCCCAGCCTCACCCTTCG
33





11502
GGCCCAGCCTCACCCTTCGC
34





11503
GCCCAGCCTCACCCTTCGCT
35





11504
CCCAGCCTCACCCTTCGCTC
36





11505
CCAGCCTCACCCTTCGCTCT
37





11506
CAGCCTCACCCTTCGCTCTC
38





11507
AGCCTCACCCTTCGCTCTCC
39





11508
GCCTCACCCTTCGCTCTCCC
40





11509
CCTCACCCTTCGCTCTCCCC
41





11510
CTCACCCTTCGCTCTCCCCG
42





11511
TCACCCTTCGCTCTCCCCGA
43





11512
CACCCTTCGCTCTCCCCGAG
44





11513
ACCCTTCGCTCTCCCCGAGA
45





11514
CCCTTCGCTCTCCCCGAGAT
46





11515
CCTTCGCTCTCCCCGAGATG
47





11516
CTTCGCTCTCCCCGAGATGG
48





11517
TTCGCTCTCCCCGAGATGGG
49





11518
TCGCTCTCCCCGAGATGGGA
50





11519
CGCTCTCCCCGAGATGGGAA
51





11520
GCTCTCCCCGAGATGGGAAG
52





11521
CTCTCCCCGAGATGGGAAGA
53





11522
TCTCCCCGAGATGGGAAGAG
54





11523
CTCCCCGAGATGGGAAGAGG
55





11524
TCCCCGAGATGGGAAGAGGC
56





11525
CCCCGAGATGGGAAGAGGCT
57





11526
CCCGAGATGGGAAGAGGCTC
58





11527
CCGAGATGGGAAGAGGCTCT
59





11528
CCGCCGGAGGAGGCCGTTTA
2





11529
CCCGCCGGAGGAGGCCGTTT
1





11530
CGTGCGCGCAAGTCTCTTGCTTTCC
132





11531
GTGCGCGCAAGTCTCTTGCT
133





11532
TGCGCGCAAGTCTCTTGCTT
134





11533
GCGCGCAAGTCTCTTGCTTT
135





11534
CGCGCAAGTCTCTTGCTTTC
136





11535
GCGCAAGTCTCTTGCTTTCC
137





11536
CGCAAGTCTCTTGCTTTCCC
138





11537
GCGTGCGCGCAAGTCTCTTG
131





11538
TGCGTGCGCGCAAGTCTCTT
130





11539
GTGCGTGCGCGCAAGTCTCT
129





11540
TGTGCGTGCGCGCAAGTCTC
128





11541
CTGTGCGTGCGCGCAAGTCT
127





11542
ACTGTGCGTGCGCGCAAGTC
126





11543
GACTGTGCGTGCGCGCAAGT
125





11544
GGACTGTGCGTGCGCGCAAG
124





11545
AGGACTGTGCGTGCGCGCAA
123





11546
GAGGACTGTGCGTGCGCGCA
122





11547
AGAGGACTGTGCGTGCGCGC
121





11548
CAGAGGACTGTGCGTGCGCG
120





11549
CCAGAGGACTGTGCGTGCGC
119





11550
TCCAGAGGACTGTGCGTGCG
118





11551
CTCCAGAGGACTGTGCGTGC
117





11552
TCTCCAGAGGACTGTGCGTG
116





11553
ATCTCCAGAGGACTGTGCGT
115





11554
GATCTCCAGAGGACTGTGCG
114





11555
CGCTCTCCGCGCCGAGTGCCGCGCC
269





11556
GCTCTCCGCGCCGAGTGCCG
270





11557
CTCTCCGCGCCGAGTGCCGC
271





11558
TCTCCGCGCCGAGTGCCGCG
272





11559
CTCCGCGCCGAGTGCCGCGC
273





11560
TCCGCGCCGAGTGCCGCGCC
274





11561
CCGCGCCGAGTGCCGCGCCC
275





11562
CGCGCCGAGTGCCGCGCCCC
276





11563
GCGCCGAGTGCCGCGCCCCC
277





11564
CGCCGAGTGCCGCGCCCCCG
278





11565
GCCGAGTGCCGCGCCCCCGT
279





11566
CCGAGTGCCGCGCCCCCGTC
280





11567
CGAGTGCCGCGCCCCCGTCT
281





11568
GAGTGCCGCGCCCCCGTCTG
282





11569
AGTGCCGCGCCCCCGTCTGT
283





11570
GTGCCGCGCCCCCGTCTGTA
284





11571
TGCCGCGCCCCCGTCTGTAG
285





11572
GCCGCGCCCCCGTCTGTAGC
286





11573
CCGCGCCCCCGTCTGTAGCT
287





11574
CGCGCCCCCGTCTGTAGCTC
288





11575
GCGCCCCCGTCTGTAGCTCG
289





11576
CGCCCCCGTCTGTAGCTCGC
290





11577
GCCCCCGTCTGTAGCTCGCT
291





11578
CCCCCGTCTGTAGCTCGCTG
292





11579
CCCCGTCTGTAGCTCGCTGC
293





11580
CCCGTCTGTAGCTCGCTGCG
294





11581
CCGTCTGTAGCTCGCTGCGC
295





11582
CGTCTGTAGCTCGCTGCGCT
296





11583
GTCTGTAGCTCGCTGCGCTC
297





11584
TCTGTAGCTCGCTGCGCTCG
298





11585
CTGTAGCTCGCTGCGCTCGG
299





11586
TGTAGCTCGCTGCGCTCGGT
300





11587
GTAGCTCGCTGCGCTCGGTA
301





11588
TAGCTCGCTGCGCTCGGTAC
302





11589
AGCTCGCTGCGCTCGGTACA
303





11590
GCTCGCTGCGCTCGGTACAG
304





11591
CTCGCTGCGCTCGGTACAGA
305





11592
TCGCTGCGCTCGGTACAGAG
306





11593
CGCTGCGCTCGGTACAGAGG
307





11594
GCTGCGCTCGGTACAGAGGA
308





11595
CTGCGCTCGGTACAGAGGAA
309





11596
TGCGCTCGGTACAGAGGAAC
310





11597
GCGCTCGGTACAGAGGAACT
311





11598
CGCTCGGTACAGAGGAACTA
312





11599
GCTCGGTACAGAGGAACTAC
313





11600
CTCGGTACAGAGGAACTACT
314





11601
TCGGTACAGAGGAACTACTA
315





11602
CGGTACAGAGGAACTACTAT
316





11603
CCGCTCTCCGCGCCGAGTGC
268





11604
CCCGCTCTCCGCGCCGAGTG
267





11605
TCCCGCTCTCCGCGCCGAGT
266





11606
CTCCCGCTCTCCGCGCCGAG
265





11607
CCTCCCGCTCTCCGCGCCGA
264





11608
GCCTCCCGCTCTCCGCGCCG
263





11609
AGCCTCCCGCTCTCCGCGCC
262





11610
GAGCCTCCCGCTCTCCGCGC
261





11611
TGAGCCTCCCGCTCTCCGCG
260





11612
TTGAGCCTCCCGCTCTCCGC
259





11613
CTTGAGCCTCCCGCTCTCCG
258





11614
CCTTGAGCCTCCCGCTCTCC
257





11615
ACCTTGAGCCTCCCGCTCTC
256





11616
GACCTTGAGCCTCCCGCTCT
255





11617
GGACCTTGAGCCTCCCGCTC
254





11618
GGGACCTTGAGCCTCCCGCT
253





11619
TGGGACCTTGAGCCTCCCGC
252





11620
CTGGGACCTTGAGCCTCCCG
251





11621
CGCCTTTTGCGTTCCTTTTGGCTCC
482





11622
GCCTTTTGCGTTCCTTTTGG
483





11623
CCTTTTGCGTTCCTTTTGGC
484





11624
CTTTTGCGTTCCTTTTGGCT
485





11625
TTTTGCGTTCCTTTTGGCTC
486





11626
TTTGCGTTCCTTTTGGCTCC
487





11627
TTGCGTTCCTTTTGGCTCCT
488





11628
TGCGTTCCTTTTGGCTCCTC
489





11629
GCGTTCCTTTTGGCTCCTCC
490





11630
CGTTCCTTTTGGCTCCTCCA
491





11631
CCGCCTTTTGCGTTCCTTTT
481





11632
GCCGCCTTTTGCGTTCCTTT
480





11633
GGCCGCCTTTTGCGTTCCTT
479





11634
TGGCCGCCTTTTGCGTTCCT
478





11635
CTGGCCGCCTTTTGCGTTCC
477





11636
CCTGGCCGCCTTTTGCGTTC
476





11637
TCCTGGCCGCCTTTTGCGTT
475





11638
GTCCTGGCCGCCTTTTGCGT
474





11639
TGTCCTGGCCGCCTTTTGCG
473





11640
CTGTCCTGGCCGCCTTTTGC
472





11641
GCTGTCCTGGCCGCCTTTTG
471





11642
CGCTGTCCTGGCCGCCTTTT
470





11643
ACGCTGTCCTGGCCGCCTTT
469





11644
CACGCTGTCCTGGCCGCCTT
468





11645
GCACGCTGTCCTGGCCGCCT
467





11646
TGCACGCTGTCCTGGCCGCC
466





11647
CTGCACGCTGTCCTGGCCGC
465





11648
GCTGCACGCTGTCCTGGCCG
464





11649
TGCTGCACGCTGTCCTGGCC
463





11650
CTGCTGCACGCTGTCCTGGC
462





11651
GCTGCTGCACGCTGTCCTGG
461





11652
AGCTGCTGCACGCTGTCCTG
460





11653
CAGCTGCTGCACGCTGTCCT
459





11654
CCAGCTGCTGCACGCTGTCC
458





11655
CCCAGCTGCTGCACGCTGTC
457





11656
TCCCAGCTGCTGCACGCTGT
456





11657
CTCCCAGCTGCTGCACGCTG
455





11658
GCTCCCAGCTGCTGCACGCT
454





11659
GGCTCCCAGCTGCTGCACGC
453





11660
CGGCTCCCAGCTGCTGCACG
452





11661
GCGGCTCCCAGCTGCTGCAC
451





11662
GGCGGCTCCCAGCTGCTGCA
450





11663
CGGCGGCTCCCAGCTGCTGC
449





11664
ACGGCGGCTCCCAGCTGCTG
448





11665
AACGGCGGCTCCCAGCTGCT
447





11666
GAACGGCGGCTCCCAGCTGC
446





11667
AGAACGGCGGCTCCCAGCTG
445





11668
GAGAACGGCGGCTCCCAGCT
444





11669
TGAGAACGGCGGCTCCCAGC
443





11670
CTGAGAACGGCGGCTCCCAG
442





11671
GCTGAGAACGGCGGCTCCCA
441





11672
GGCTGAGAACGGCGGCTCCC
440





11673
AGGCTGAGAACGGCGGCTCC
439





11674
AAGGCTGAGAACGGCGGCTC
438





11675
TAAGGCTGAGAACGGCGGCT
437





11676
TTAAGGCTGAGAACGGCGGC
436





11677
TTTAAGGCTGAGAACGGCGG
435





11678
TTTTAAGGCTGAGAACGGCG
434





11679
CTTTTAAGGCTGAGAACGGC
433





11680
ACTTTTAAGGCTGAGAACGG
432





11681
CGCAGGCACTGGAGCGGCCCCGGCG
701





11682
GCAGGCACTGGAGCGGCCCC
702





11683
CAGGCACTGGAGCGGCCCCG
703





11684
AGGCACTGGAGCGGCCCCGG
704





11685
GGCACTGGAGCGGCCCCGGC
705





11686
GCACTGGAGCGGCCCCGGCG
706





11687
CACTGGAGCGGCCCCGGCGG
707





11688
ACTGGAGCGGCCCCGGCGGC
708





11689
CTGGAGCGGCCCCGGCGGCA
709





11690
TGGAGCGGCCCCGGCGGCAG
710





11691
GGAGCGGCCCCGGCGGCAGC
711





11692
GAGCGGCCCCGGCGGCAGCA
712





11693
AGCGGCCCCGGCGGCAGCAG
713





11694
GCGGCCCCGGCGGCAGCAGC
714





11695
CGGCCCCGGCGGCAGCAGCT
715





11696
GGCCCCGGCGGCAGCAGCTG
716





11697
GCCCCGGCGGCAGCAGCTGA
717





11698
CCCCGGCGGCAGCAGCTGAG
718





11699
CCCGGCGGCAGCAGCTGAGG
719





11700
CCGGCGGCAGCAGCTGAGGG
720





11701
CGGCGGCAGCAGCTGAGGGC
721





11702
TCGCAGGCACTGGAGCGGCC
700





11703
TTCGCAGGCACTGGAGCGGC
699





11704
GTTCGCAGGCACTGGAGCGG
698





11705
AGTTCGCAGGCACTGGAGCG
697





11706
GAGTTCGCAGGCACTGGAGC
696





11707
AGAGTTCGCAGGCACTGGAG
695





11708
CAGAGTTCGCAGGCACTGGA
694





11709
TCAGAGTTCGCAGGCACTGG
693





11710
CTCAGAGTTCGCAGGCACTG
692





11711
CCTCAGAGTTCGCAGGCACT
691





11712
TCCTCAGAGTTCGCAGGCAC
690





11713
CTCCTCAGAGTTCGCAGGCA
689





11714
GCTCCTCAGAGTTCGCAGGC
688





11715
GGCTCCTCAGAGTTCGCAGG
687





11716
CGGCTCCTCAGAGTTCGCAG
686





11717
TCGGCTCCTCAGAGTTCGCA
685





11718
CTCGGCTCCTCAGAGTTCGC
684





11719
CCTCGGCTCCTCAGAGTTCG
683





11720
GCCTCGGCTCCTCAGAGTTC
682





11721
CGCCTCGGCTCCTCAGAGTT
681





11722
GCGCCTCGGCTCCTCAGAGT
680





11723
GGCGCCTCGGCTCCTCAGAG
679





11724
CGGCGCCTCGGCTCCTCAGA
678





11725
CCGGCGCCTCGGCTCCTCAG
677





11726
ACCGGCGCCTCGGCTCCTCA
676





11727
CACCGGCGCCTCGGCTCCTC
675





11728
TCACCGGCGCCTCGGCTCCT
674





11729
CTCACCGGCGCCTCGGCTCC
673





11730
TCTCACCGGCGCCTCGGCTC
672





11731
CTCTCACCGGCGCCTCGGCT
671





11732
GCTCTCACCGGCGCCTCGGC
670





11733
TGCTCTCACCGGCGCCTCGG
669





11734
TTGCTCTCACCGGCGCCTCG
668





11735
CTTGCTCTCACCGGCGCCTC
667





11736
CCTTGCTCTCACCGGCGCCT
666





11737
TCCTTGCTCTCACCGGCGCC
665





11738
GTCCTTGCTCTCACCGGCGC
664





11739
CGTCCTTGCTCTCACCGGCG
663





11740
GCGTCCTTGCTCTCACCGGC
662





11741
AGCGTCCTTGCTCTCACCGG
661





11742
CAGCGTCCTTGCTCTCACCG
660





11743
GCAGCGTCCTTGCTCTCACC
659





11744
TGCAGCGTCCTTGCTCTCAC
658





11745
TTGCAGCGTCCTTGCTCTCA
657





11746
TTTGCAGCGTCCTTGCTCTC
656





11747
GTTTGCAGCGTCCTTGCTCT
655





11748
AGTTTGCAGCGTCCTTGCTC
654





11749
AAGTTTGCAGCGTCCTTGCT
653





11750
CAAGTTTGCAGCGTCCTTGC
652





11751
GCAAGTTTGCAGCGTCCTTG
651





11752
CGCAAGTTTGCAGCGTCCTT
650





11753
GCGCAAGTTTGCAGCGTCCT
649





11754
TGCGCAAGTTTGCAGCGTCC
648





11755
CTGCGCAAGTTTGCAGCGTC
647





11756
GCTGCGCAAGTTTGCAGCGT
646





11757
CGCTGCGCAAGTTTGCAGCG
645





11758
GCGCTGCGCAAGTTTGCAGC
644





11759
CGCGCTGCGCAAGTTTGCAG
643





11760
CCGCGCTGCGCAAGTTTGCA
642





11761
CCCGCGCTGCGCAAGTTTGC
641





11762
CCCCGCGCTGCGCAAGTTTG
640





11763
CCCCCGCGCTGCGCAAGTTT
639





11764
GCCCCCGCGCTGCGCAAGTT
638





11765
AGCCCCCGCGCTGCGCAAGT
637





11766
CAGCCCCCGCGCTGCGCAAG
636





11767
CCAGCCCCCGCGCTGCGCAA
635





11768
CCCAGCCCCCGCGCTGCGCA
634





11769
TCCCAGCCCCCGCGCTGCGC
633





11770
ATCCCAGCCCCCGCGCTGCG
632





11771
AATCCCAGCCCCCGCGCTGC
631





11772
GAATCCCAGCCCCCGCGCTG
630





11773
TGAATCCCAGCCCCCGCGCT
629





11774
GTGAATCCCAGCCCCCGCGC
628





11775
CGTGAATCCCAGCCCCCGCG
627





11776
GCGTGAATCCCAGCCCCCGC
626





11777
GGCGTGAATCCCAGCCCCCG
625





11778
GGGCGTGAATCCCAGCCCCC
624





11779
TGGGCGTGAATCCCAGCCCC
623





11780
CTGGGCGTGAATCCCAGCCC
622





11781
TCTGGGCGTGAATCCCAGCC
621





11782
TTCTGGGCGTGAATCCCAGC
620





11783
CTTCTGGGCGTGAATCCCAG
619





11784
ACTTCTGGGCGTGAATCCCA
618





11785
AACTTCTGGGCGTGAATCCC
617





11786
GAACTTCTGGGCGTGAATCC
616





11787
TGAACTTCTGGGCGTGAATC
615





11788
CTGAACTTCTGGGCGTGAAT
614





11789
GCTGAACTTCTGGGCGTGAA
613





11790
TGCTGAACTTCTGGGCGTGA
612





11791
CTGCTGAACTTCTGGGCGTG
611





11792
CCTGCTGAACTTCTGGGCGT
610





11793
GCCTGCTGAACTTCTGGGCG
609





11794
CGACCCTCCGAACAGAGGCGGCGGG
851





11795
GACCCTCCGAACAGAGGCGG
852





11796
ACCCTCCGAACAGAGGCGGC
853





11797
CCCTCCGAACAGAGGCGGCG
854





11798
CCTCCGAACAGAGGCGGCGG
855





11799
CTCCGAACAGAGGCGGCGGG
856





11800
GCGACCCTCCGAACAGAGGC
850





11801
CGCGACCCTCCGAACAGAGG
849





11802
CCGCGACCCTCCGAACAGAG
848





11803
CCCGCGACCCTCCGAACAGA
847





11804
CCCCGCGACCCTCCGAACAG
846





11805
GCCCCGCGACCCTCCGAACA
845





11806
TGCCCCGCGACCCTCCGAAC
844





11807
GTGCCCCGCGACCCTCCGAA
843





11808
GGTGCCCCGCGACCCTCCGA
842





11809
CGGTGCCCCGCGACCCTCCG
841





11810
TCGGTGCCCCGCGACCCTCC
840





11811
CTCGGTGCCCCGCGACCCTC
839





11812
CCTCGGTGCCCCGCGACCCT
838





11813
ACCTCGGTGCCCCGCGACCC
837





11814
CACCTCGGTGCCCCGCGACC
836





11815
GCACCTCGGTGCCCCGCGAC
835





11816
AGCACCTCGGTGCCCCGCGA
834





11817
AAGCACCTCGGTGCCCCGCG
833





11818
AAAGCACCTCGGTGCCCCGC
832





11819
GAAAGCACCTCGGTGCCCCG
831





11820
GGAAAGCACCTCGGTGCCCC
830





11821
CGGAAAGCACCTCGGTGCCC
829





11822
CCGGAAAGCACCTCGGTGCC
828





11823
GCCGGAAAGCACCTCGGTGC
827





11824
GGCCGGAAAGCACCTCGGTG
826





11825
CGCGCTGCTGCCCGACCCACGCAGT
1022





11826
GCGCTGCTGCCCGACCCACG
1023





11827
CGCTGCTGCCCGACCCACGC
1024





11828
GCTGCTGCCCGACCCACGCA
1025





11829
CTGCTGCCCGACCCACGCAG
1026





11830
TGCTGCCCGACCCACGCAGT
1027





11831
GCTGCCCGACCCACGCAGTC
1028





11832
CTGCCCGACCCACGCAGTCC
1029





11833
TGCCCGACCCACGCAGTCCG
1030





11834
GCCCGACCCACGCAGTCCGG
1031





11835
CCCGACCCACGCAGTCCGGC
1032





11836
CCGACCCACGCAGTCCGGCC
1033





11837
CGACCCACGCAGTCCGGCCT
1034





11838
GACCCACGCAGTCCGGCCTC
1035





11839
ACCCACGCAGTCCGGCCTCG
1036





11840
CCCACGCAGTCCGGCCTCGC
1037





11841
CCACGCAGTCCGGCCTCGCC
1038





11842
CACGCAGTCCGGCCTCGCCC
1039





11843
ACGCAGTCCGGCCTCGCCCC
1040





11844
CGCAGTCCGGCCTCGCCCCG
1041





11845
GCAGTCCGGCCTCGCCCCGC
1042





11846
CAGTCCGGCCTCGCCCCGCC
1043





11847
AGTCCGGCCTCGCCCCGCCC
1044





11848
GTCCGGCCTCGCCCCGCCCC
1045





11849
TCCGGCCTCGCCCCGCCCCA
1046





11850
CCGGCCTCGCCCCGCCCCAC
1047





11851
CGGCCTCGCCCCGCCCCACC
1048





11852
GGCCTCGCCCCGCCCCACCC
1049





11853
GCCTCGCCCCGCCCCACCCG
1050





11854
CCTCGCCCCGCCCCACCCGC
1051





11855
CTCGCCCCGCCCCACCCGCA
1052





11856
TCGCCCCGCCCCACCCGCAC
1053





11857
CGCCCCGCCCCACCCGCACC
1054





11858
GCCCCGCCCCACCCGCACCC
1055





11859
CCCCGCCCCACCCGCACCCT
1056





11860
CCCGCCCCACCCGCACCCTC
1057





11861
CCGCCCCACCCGCACCCTCC
1058





11862
CGCCCCACCCGCACCCTCCA
1059





11863
GCCCCACCCGCACCCTCCAA
1060





11864
CCCCACCCGCACCCTCCAAC
1061





11865
CCCACCCGCACCCTCCAACC
1062





11866
CCACCCGCACCCTCCAACCA
1063





11867
CACCCGCACCCTCCAACCAA
1064





11868
ACCCGCACCCTCCAACCAAT
1065





11869
CCCGCACCCTCCAACCAATG
1066





11870
CCGCACCCTCCAACCAATGG
1067





11871
CGCACCCTCCAACCAATGGC
1068





11872
GCACCCTCCAACCAATGGCG
1069





11873
CACCCTCCAACCAATGGCGT
1070





11874
ACCCTCCAACCAATGGCGTG
1071





11875
CCCTCCAACCAATGGCGTGG
1072





11876
CCTCCAACCAATGGCGTGGC
1073





11877
CTCCAACCAATGGCGTGGCT
1074





11878
TCCAACCAATGGCGTGGCTC
1075





11879
CCAACCAATGGCGTGGCTCG
1076





11880
CAACCAATGGCGTGGCTCGA
1077





11881
AACCAATGGCGTGGCTCGAT
1078





11882
ACCAATGGCGTGGCTCGATC
1079





11883
CCGCGCTGCTGCCCGACCCA
1021





11884
TCCGCGCTGCTGCCCGACCC
1020





11885
CTCCGCGCTGCTGCCCGACC
1019





11886
ACTCCGCGCTGCTGCCCGAC
1018





11887
AACTCCGCGCTGCTGCCCGA
1017





11888
CAACTCCGCGCTGCTGCCCG
1016





11889
CCAACTCCGCGCTGCTGCCC
1015





11890
GCCAACTCCGCGCTGCTGCC
1014





11891
AGCCAACTCCGCGCTGCTGC
1013





11892
AAGCCAACTCCGCGCTGCTG
1012





11893
CAAGCCAACTCCGCGCTGCT
1011





11894
ACAAGCCAACTCCGCGCTGC
1010





11895
CACAAGCCAACTCCGCGCTG
1009





11896
TCACAAGCCAACTCCGCGCT
1008





11897
CTCACAAGCCAACTCCGCGC
1007





11898
GCTCACAAGCCAACTCCGCG
1006





11899
GGCTCACAAGCCAACTCCGC
1005





11900
GGGCTCACAAGCCAACTCCG
1004





11901
CGGGTCCGACTTCGGAAAAACAGGT
1313





11902
GGGTCCGACTTCGGAAAAAC
1314





11903
GGTCCGACTTCGGAAAAACA
1315





11904
GTCCGACTTCGGAAAAACAG
1316





11905
TCCGACTTCGGAAAAACAGG
1317





11906
CCGACTTCGGAAAAACAGGT
1318





11907
CGACTTCGGAAAAACAGGTT
1319





11908
GACTTCGGAAAAACAGGTTC
1320





11909
ACTTCGGAAAAACAGGTTCC
1321





11910
CTTCGGAAAAACAGGTTCCA
1322





11911
TTCGGAAAAACAGGTTCCAG
1323





11912
TCGGAAAAACAGGTTCCAGA
1324





11913
ACGGGTCCGACTTCGGAAAA
1312





11914
AACGGGTCCGACTTCGGAAA
1311





11915
AAACGGGTCCGACTTCGGAA
1310





11916
TAAACGGGTCCGACTTCGGA
1309





11917
TTAAACGGGTCCGACTTCGG
1308





11918
ATTAAACGGGTCCGACTTCG
1307





11919
GATTAAACGGGTCCGACTTC
1306





11920
AGATTAAACGGGTCCGACTT
1305





11921
GAGATTAAACGGGTCCGACT
1304





11922
AGAGATTAAACGGGTCCGAC
1303





11923
CGGCCTGTCGGGTAGCACAGGAGTT
2022





11924
GGCCTGTCGGGTAGCACAGG
2023





11925
GCCTGTCGGGTAGCACAGGA
2024





11926
CCTGTCGGGTAGCACAGGAG
2025





11927
CTGTCGGGTAGCACAGGAGT
2026





11928
TGTCGGGTAGCACAGGAGTT
2027





11929
GTCGGGTAGCACAGGAGTTT
2028





11930
TCGGGTAGCACAGGAGTTTT
2029





11931
CGGGTAGCACAGGAGTTTTC
2030





11932
ACGGCCTGTCGGGTAGCACA
2021





11933
CACGGCCTGTCGGGTAGCAC
2020





11934
TCACGGCCTGTCGGGTAGCA
2019





11935
CTCACGGCCTGTCGGGTAGC
2018





11936
GCTCACGGCCTGTCGGGTAG
2017





11937
AGCTCACGGCCTGTCGGGTA
2016





11938
GAGCTCACGGCCTGTCGGGT
2015





11939
GGAGCTCACGGCCTGTCGGG
2014





11940
TGGAGCTCACGGCCTGTCGG
2013





11941
CTGGAGCTCACGGCCTGTCG
2012





11942
TCTGGAGCTCACGGCCTGTC
2011





11943
CTCTGGAGCTCACGGCCTGT
2010





11944
TCTCTGGAGCTCACGGCCTG
2009





11945
CTCTCTGGAGCTCACGGCCT
2008





11946
CCTCTCTGGAGCTCACGGCC
2007





11947
TCCTCTCTGGAGCTCACGGC
2006





11948
ATCCTCTCTGGAGCTCACGG
2005





11949
GATCCTCTCTGGAGCTCACG
2004






















Hot Zones (Relative upstream location to gene start site)







 1-550


650-950


1000-1100


1250-1400


1950-2100









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 11986)







TCTCTGCAGCCCCCTAGTGGCCATTGGGTGCAGCAGACGATTCACAGTTA





ACTGACAAATTAACTGGAGTCAGTAATGCCTTTGGTCAAGAATTGTATAG





AGAAATAGGGAAAGGCTGGAGTTTTAGTCTTTTTTCATATTTCAAATAAA





AATTCCTCTTCCAGTAGGTATGTCAGAAAAATCTGATGAAAATCAAACAT





ATATTGTACCAGGAAAGTATTAACTACCATAGCATTTTCCTCCCTCTTTT





CTTTCTTTTCCACCCTTCCTCCACCAAGATAGGAGCATATTTTCTTCTCG





GGTGAGATAATTCTTTGCCCTGAAACTTGTAAAGTCAGTGTATCCAGTGT





GACTTCCAGAGAGAGGGCAGATGCCTGTCAAATTAAGTGAGTTGCCAAAC





ATAGAGCAGGAAGAAAGCCATTCCGAGAATCAATATTCCTTTGTTACTGG





GTCTTCCACTTGCCAAGGCATTGCCACAAAGCTGGAAAGGCCCAGCTCCT





AGGAGAACAGAGGTTCCACCTGGCCACTATCTCCTGTGGGGTGGTAGGCA





AGTTACTGCGGCCCCCAGGAGCTCAGTGAGGGAGGTTCAATGTGACACTG





TGCTCTGATCCTGTGAGAAAACTCCTGTGCTACCCGACAGGCCGTGAGCT





CCAGAGAGGATCTTGCCTTATTCTTAGCTTCAACAGTCAGCCCAAGGCCT





GACAACCAGCCTTTAAGAAGGAATCAAGGGGATTTGTGTGACCCAAAGAT





GGTAGTTTTGTCTGAGGATCTAGTGAACCACTTGTTATAAAAACAGCTAT





TATGAGTTCTGTGTTGGCAGCTCAGGAGAGACGAAAGGAAAGGGAGAGGA





GAGGTACAGCCATTACAGGTGAGTAAAAAAGGCCTAAGGTTCTGAACCCT





CATTCCCAAGATTGTGGGCAAACAATTAAATGCTCTGCAACTCAGTTTCT





GCATCTGTAAATCTGGAATTAAAATGTTTGCCTTACAGAGACTAGGGGAG





GTTACACATGTTCAGACACCATTCTGAGAAAACAGAGCGACTGACAGGGG





TCTGAAAGGTATTTGTTGTAGCTGCAGAACAACTCTGCCAGACCAAGACC





ATCCATCCCTCTCTGCCCCCCTATTCCCAAATTCTCCTGTGTGGACGGCA





GGACTCCTAAGCTCCCAGGAATGCATTCAAATAATAGATGGGTCAGAAAA





TATTCTGTCTCAGGGCCTTAATACAAGCTGTTCTCAGATTTGCCAGTGTC





GCGCTGCCACCCTCTCCCCACTTCCTCCTCCCTTCCCACTCCCCCCTCCC





TTCCCCTCTCCTCCAGTTTTATTCTGGAACCTGTTTTTCCGAAGTCGGAC





CCGTTTAATCTCTTAAATGTATAATTAGGGAGAGTGCTTGATTGCAAAGG





CCTCTTCCAGTTCTCACATTTGCTCCCTTTCACACTGCAGAGAAATAGGG





CAGGGAATCTAGAGGAGGGGAAGAACAAGAGACTGGAGAGGGAACAGAGG





GAGGGTGGGGCGGGCTCACTCCTTTTCTCAATGAATGCCGAGGCCTCTGC





AGATTTGCATAGGAGCCGATCGAGCCACGCCATTGGTTGGAGGGTGCGGG





TGGGGCGGGGCGAGGCCGGACTGCGTGGGTCGGGCAGCAGCGCGGAGTTG





GCTTGTGAGCCCCGCCCCCTCCGGGCCCCGCCCCCTCCCTGCGCGCGCTC





GCGCGGCTCAGCCAGCTGCAAGTGGCGGGCGCCCAGGCAGATGCGATCCA





GCGGCTCTGGGGGCGGCAGCGGTGGTAGCAGCTGGTACCTCCCGCCGCCT





CTGTTCGGAGGGTCGCGGGGCACCGAGGTGCTTTCCGGCCGCCCTCTGGT





CGGCCACCCAAAGCCGCGGGCGCTGATGATGGGTGAGGAGGGGGCGGCAA





GATTTCGGGCGCCCCTGCCCTGAACGCCCTCAGCTGCTGCCGCCGGGGCC





GCTCCAGTGCCTGCGAACTCTGAGGAGCCGAGGCGCCGGTGAGAGCAAGG





ACGCTGCAAACTTGCGCAGCGCGGGGGCTGGGATTCACGCCCAGAAGTTC





AGCAGGCAGACAGTCCGAAGCCTTCCCGCAGCGGAGAGATAGCTTGAGGG





TGCGCAAGACGGCAGCCTCCGCCCTCGGTTCCCGCCCAGACCGGGCAGAA





GAGCTTGGAGGAGCCAAAAGGAACGCAAAAGGCGGCCAGGACAGCGTGCA





GCAGCTGGGAGCCGCCGTTCTCAGCCTTAAAAGTTGCAGAGATTGGAGGC





TGCCCCGAGAGGGGACAGACCCCAGCTCCGACTGCGGGGGGCAGGAGAGG





ACGGTACCCAACTGCCACCTCCCTTCAACCATAGTAGTTCCTCTGTACCG





AGCGCAGCGAGCTACAGACGGGGGCGCGGCACTCGGCGCGGAGAGCGGGA





GGCTCAAGGTCCCAGCCAGTGAGCCCAGTGTGCTTGAGTGTCTCTGGACT





CGCCCCTGAGCTTCCAGGTCTGTTTCATTTAGACTCCTGCTCGCCTCCGT





GCAGTTGGGGGAAAGCAAGAGACTTGCGCGCACGCACAGTCCTCTGGAGA





TCAGGTGGAAGGAGCCGCTGGGTACCAAGGACTGTTCAGAGCCTCTTCCC





ATCTCGGGGAGAGCGAAGGGTGAGGCTGGGCCCGGAGAGCAGTGTAAACG





GCCTCCTCCGGCGGGA







TG








Musashi Homolog 2 (MSI2)


Musashi homolog 2 is located on chromosome 17 and belongs to RNA-binding proteins of the Musashi family expressed in stem cell compartments and in aggressive tumors. MSI2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia-associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease.


Protein: MSI2 Gene: MSI2 (Homo sapiens, chromosome 17, 57256570-57684689 [NCBI Reference Sequence: NC000017.11]; start site location: 57256743; strand: positive)












Gene Identification


















GeneID
124540



HGNC
18585



HPRD
07438



MIM
607897




















Targeted Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












11989
CGGTGACGTCACGCACCCCCGTGCG
360





12058
CGGATACAATTACCCATATTGT
1535





12059
GACTCAGTTGCTAACAACCATGAGCG
10624





12060
CAGTTGCTAACAACCATGAGCG
10628





12061
CATGAAAATTTCACCAAGTATAAATTAC
10909





12062
CACCAAGTATAAATTACAGGTCT
10920



















Targeted Shift Sequences











Relative




upstream




location


Sequence

to gene


ID No:
Sequence (5′-3′)
start site












11989
CGGTGACGTCACGCACCCCCGTGCG
354





11990
GGTGACGTCACGCACCCCCG
355





11991
GTGACGTCACGCACCCCCGT
356





11992
TGACGTCACGCACCCCCGTG
357





11993
GACGTCACGCACCCCCGTGC
358





11994
ACGTCACGCACCCCCGTGCG
359





11995
CGTCACGCACCCCCGTGCGG
360





11996
GTCACGCACCCCCGTGCGGC
361





11997
TCACGCACCCCCGTGCGGCC
362





11998
CACGCACCCCCGTGCGGCCC
363





11999
ACGCACCCCCGTGCGGCCCC
364





12000
CGCACCCCCGTGCGGCCCCC
365





12001
GCACCCCCGTGCGGCCCCCG
366





12002
CACCCCCGTGCGGCCCCCGC
367





12003
ACCCCCGTGCGGCCCCCGCC
368





12004
CCCCCGTGCGGCCCCCGCCT
369





12005
CCCCGTGCGGCCCCCGCCTG
370





12006
CCCGTGCGGCCCCCGCCTGC
371





12007
CCGTGCGGCCCCCGCCTGCC
372





12008
CGTGCGGCCCCCGCCTGCCC
373





12009
GTGCGGCCCCCGCCTGCCCG
374





12010
TGCGGCCCCCGCCTGCCCGC
375





12011
GCGGCCCCCGCCTGCCCGCG
376





12012
CGGCCCCCGCCTGCCCGCGC
377





12013
GGCCCCCGCCTGCCCGCGCG
378





12014
GCCCCCGCCTGCCCGCGCGC
379





12015
CCCCCGCCTGCCCGCGCGCG
380





12016
CCCCGCCTGCCCGCGCGCGC
381





12017
CCCGCCTGCCCGCGCGCGCA
382





12018
CCGCCTGCCCGCGCGCGCAC
383





12019
CGCCTGCCCGCGCGCGCACA
384





12020
GCCTGCCCGCGCGCGCACAC
385





12021
CCTGCCCGCGCGCGCACACT
386





12022
CTGCCCGCGCGCGCACACTC
387





12023
TGCCCGCGCGCGCACACTCG
388





12024
GCCCGCGCGCGCACACTCGG
389





12025
CCCGCGCGCGCACACTCGGC
390





12026
CCGCGCGCGCACACTCGGCC
391





12027
CGCGCGCGCACACTCGGCCC
392





12028
GCGCGCGCACACTCGGCCCC
393





12029
CGCGCGCACACTCGGCCCCC
394





12030
GCGCGCACACTCGGCCCCCC
395





12031
CGCGCACACTCGGCCCCCCA
396





12032
GCGCACACTCGGCCCCCCAC
397





12033
CGCACACTCGGCCCCCCACG
398





12034
GCACACTCGGCCCCCCACGG
399





12035
CACACTCGGCCCCCCACGGC
400





12036
ACACTCGGCCCCCCACGGCC
401





12037
CCGGTGACGTCACGCACCCC
353





12038
GCCGGTGACGTCACGCACCC
352





12039
TGCCGGTGACGTCACGCACC
351





12040
ATGCCGGTGACGTCACGCAC
350





12041
AATGCCGGTGACGTCACGCA
349





12042
CAATGCCGGTGACGTCACGC
348





12043
CCAATGCCGGTGACGTCACG
347





12044
ACCAATGCCGGTGACGTCAC
346





12045
AACCAATGCCGGTGACGTCA
345





12046
TAACCAATGCCGGTGACGTC
344





12047
GTAACCAATGCCGGTGACGT
343





12048
TGTAACCAATGCCGGTGACG
342





12049
GTGTAACCAATGCCGGTGAC
341





12050
CGTGTAACCAATGCCGGTGA
340





12051
TCGTGTAACCAATGCCGGTG
339





12052
GTCGTGTAACCAATGCCGGT
338





12053
CGTCGTGTAACCAATGCCGG
337





12054
ACGTCGTGTAACCAATGCCG
336





12055
AACGTCGTGTAACCAATGCC
335





12056
GAACGTCGTGTAACCAATGC
334





12057
AGAACGTCGTGTAACCAATG
333





12058
CGGATACAATTACCCATATTGT
1535





12059
GACTCAGTTGCTAACAACCATGAGCG
10624





12060
CAGTTGCTAACAACCATGAGCG
10628





12061
CATGAAAATTTCACCAAGTATAAATTAC
10909





12062
CACCAAGTATAAATTACAGGTCT
10920



















Hot Zones (Relative upstream location to gene start site)







 1-450


1450-1600


10000-11500









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 1364)







ATTTCTCAAAGAACTAAAAATAGAACTGCCATTTGATCCAGCAATCCCAC





TACTGGTAACCTTTAACAGTATATACCCAAAGGAAAAGAAATCAGTATAT





CAAAAAGATACCCATACTCGTATGTTTATCGTAGCACTATTCACAATAGC





AAAGATATGGAATCAACCTAAGTGTCCATCAACAGAGGATTGGATAAAGA





AAATGTGATACATGTACACAATAAAGTACTACTCAGTCATTAAAAAAATC





AAACAGCAGCAATATGGATGGAATTGCTGGAAGACATTATCCCCAGGTGA





AACAAGCCGGAGACAGAAAGACAAACACTGCGTGTTTTCACTTATAAGTG





GGAGCTAAATCATGTGTACACATGGATGTAGGGTGTGGAATAACAGATAA





TGGAGACTTGAAAGAGTGAGGGGGCCAGGCATGGTGGCTCATGCCTGTAA





TCCCAGCACTTTGGGAGGCCGAGGTGGGTGGATCATCTGAGGTCAGGAGT





TTGAGACCAGCCTGGCCAACATGGTGAAACCTTGTCTCTACTAAAAATAC





AAAAAGTAGCCGGGCATGGTGGTGTGTGCCTGTAATCCTAGCTACTCAGG





AGGCTGAAGCAGGAGAATAGCTTGAACCCGGGAGGGTGGGAGGTTGCAGT





GAGCCGAGATCACGCCACTGCACTCCAGCCTGGGCAACAAGAGCGAAACT





CGGTCTCGAAAAAAGAAAAAAAAAAAAAAAAGAAAGGGTGAGGGGATGGG





GGAAGTGAATGATGAGAGACTACTTAATGGGTACAATGTATTTGAGTGAT





GAATACCCTAAAAACCCTGATTTTACCACTATGTGATCTATGCATGTAAC





AAAATTATACACGTAACTCATAAATTTACATAAATAAACTAAAAAATAAT





TTTTAAGTTAGCAAACAACTTTTTTAAAAGAAGAATAAGCAGATACCCCA





CATAGTGAGTAGACAAAGAACATCCCAGGCAAAAGGAACAAACAGCATCT





GCAAAGGGCTTGAAGAAGGAAACAGCTTGTTTTGTTTAAGAAATGATAGA





AGGCTGGGCGTGGTGGCTCACGCCTGTAATCCTAGCACTTTGAGAGGCCA





AGGAAGGTAGATTGCTTGAGCCTAAGAGTTTGGGACCAGCCTGGGCAACG





TGGCAAAACCGCCAAAATTAACCGGGCTTGGTGGCATGCAGCTGTAGTCC





CAGCTACTCAGGAGGCTGAGGTGGGAGGATCACCTGAGCCCAGGTGGTCA





AGGCTGTGGTGTGCTGTGATCATGCTACTGCACTCCAGCCTGGATGACAG





AGTGAGAACCTGTCTAAAAAATTAATTAATTAATTAAAAAAAATGAAAGA





GATGATAGAAGATGGTGGTGTAATGTGAGGTTGGAAAAGCAGACCTAGAA





CATACCACGGAAGGTCTTTTAGGTGACAGCAAGGGGGTTCGATGCAGTGG





GAAACCGCTGGAGGGATCCGACCTGCATCCCATAAAGACCTCTTTGGCTA





CTGTGAGGGAAACAGACATTTTGGGAAGGTTCCAGAAGTCAAGGTAGAGG





AAGACTAGTCTATAAAGCGGACCGCCTTTGTGAAAAATCAACCTATGAAA





GAAGCCAACATACAAAAGATACACTGGAAGTGATCAAAGACTTCCAAGAG





CAGCCGGGAGGTGGAATCTCAAGTCCAGATGTTGAATGAGTTGGGTGATT





GTATGGGACAGAACCAGAAGCTGATGAGGGGCCCAGGATGCAGATCAAAG





AGATGGGATGAGCAGGCAAATGCCATTTCTTTTCATTCCGCCTATTTTGC





TTGAGTCACCAGTTTGGTAAGGGGAGAGTTTCAACCATCTGCAAGTAATC





CAAATGCTTTTACTAACCTGCCTACCCATCCACACCCCCACCAAAAAAAA





AAAAAAAGAAAGAAAGAAAGAAAAATAAGAAGCCAACCCCAGAGCTTGTA





CGCCTGCATTCTCCACAATCATTTCTCTGTGTTACAGCTCTTGTCATCTT





ACATTATACATGAATAACTAATCAACCAAACACAAACCCACTGATGAAAA





AAAACGCATGTTGGATCTAGAATGTGAGCAGGGTAAAGAGTAATATTAAT





TTCACTGGCAAATAACAAAATGGGAGCAAACATGAGGGATGTTAAGACAA





GACTTGTGTTTTTGAATGCTTCTGGGAATGGAAACTCTCCAAGAATCAAG





GGAAAGGGGAAGAAGGTTGGACATATTTGGAGTGCACTAATACCAATTCT





TTTTTCTTCTGGTATGCATATGTGACTATATGCAACATCATCCTGGGTCA





GGCCAACTGGTCATTTAAACCACCATGCTGTCTGCCTCACCTAGTCGAAC





AGTTCATATAATGATCTTCCACTATTCCTTAATGGACATACAGGTGTTAG





TCTTAATGCACCAACCAATATTGCGATAGGCTGGAACAAAACCTTTTGCT





CTTTGAATGTCCACAGTGAGTAACACTATGCTAGGTATGTAGTAGGTGCT





CAATAAATGTATCTTTCACACACTTCCTAAATGAAGTCTATTTCTTCCTT





CATCGTTTTCCTGAAAGATCTTTCTTGACCACTAAGGATGAACTCCTCAT





CTCCATGTCCAGTGAGTGGTTTAGAAATGTTTTAGTCTTCCTCCTCCTTG





ACTTCATAATGGCATCTGACACTGCTGTGACACTTCAGTTGTCTTCTGTG





ACTCTGAACTTTTCTGGTTCTAATCTTTTCTCCCTGATGGCCTCTCTACC





CTGACCTCCAATGATTTCTTTTCCTGTTTCTGCACTCGAAAGTCCATATT





CCACAAGGACTCTGCTTTTCTGTCTTGTCACTCTTTATGAGAAATTAATT





GTATCTCATTTCAAATCAATGCATGTATCTATCATCCTCTGTCACATTAC





ATGCAAAGTATCTGCTTATGGATCTGTCTGTCCAACTAGACCTCAAGCTC





CTCAAAAACAGATCCCTCACTGTGTTCGTCTCTGTGCCTCCAGTACCTGG





CACAGAGCTGGACACTCAGTGAATGCTCCATACACACGGGCCCAACTGAT





CCATTCTCAAATTATGCTCGGAGTTGGTAGATTGGGCAGAAATTATTACC





CCCATTATATAGAGAGGGGACCCCAAAGCTCAAGGAGGTAAAGCAAACAT





TAGAAACATGATTCCTGTGACTGGCTGTGGAGACTCCGTGTAATAATCAT





TCTGGTATTGCCAATTGCAAAAGGACTGTAAAACTAATAGAGATGCTGTC





TAAATACCGACATCCAATCCTTTCATGCTCTTCTGAGCAGGCTTGAATTT





TCCAGTGCCTCTCTTAAAATACAGCCCGCAGGACTGAGCATAAAACTGCA





TGTGGCCTGACCTGCCAGCACGCGCTGGGAGTATTGCTTCCCTCCTTCCA





CACTCTGCTGTGCTATTAATAGAGCCTCAGATTGCACTAGGGTTCTCAAC





AGCCTCCTCGCGCTGTAGGTTCACATCAAGCTGGTGATCAGCTAACCCCC





CGGGTCTTTCTCATGCAATGCCTTCTGTCAGGCCAGGCCTCCCCAGCAGC





CACTTGGGCAATGAATGTTTTTGAATGCTCATGATTATTTGTGACTTAGA





CTAGAAGGTACAACACCAGATCATGCCCTTCTTTCTCATGTGGCATTTTG





CTGAGTGGGTGATGGGGTCTTAGGGGTCCTGTTCAGGACCCAGAGCTGTG





GCCAGCCACTGGGGGCCACCAGCATCATCGGCCCCACAAAAGTAAGAGGA





TGATGGCGAAATTAATTTTCTGGCTCACTTCAAATTATTCTTATGTTCAT





CCCTACTCCTCTTGGATTAGGTCCTTTCTTGGTCTTGTTCTAATGCTGGG





TGTTTGTATGCACAGCCTCTTTTCCCTCCCACCCATGGACACAGCCACAT





TTTGATTTCTCATGCCCTTTCCAAATAGTAGTAGTATTTTTAGCATGAAT





ATCTTGCTCAGAAATTGGCTGTACAGTCTATCCCCTATTGTCTTCACATC





TAATACTTTTCTTTTTTCCCTCTGCCTCTCCTATGCATCAATACCACGTT





TGGCTAAAGAGATTTGATTTTGACCTATTTGAATTCTCCCTTCACAGATG





ACAGCCCTTTCTCCCTCTCCTTCCTTCCCTTCAATTAGTTTTTTCAGCCA





CTTGGAATTAGCTGATGGGTGATTGTAGAAATTGCAACGTGGGCTACTGT





GGTGGGTCTCAATGTCAACTCCAGGAAACCTCTGAATCTGGGGGGCTCTG





GTTTCAGAATCTGATAGCCAGGCCCTGAACTCTGGAATGTGGGGCTGTGA





CATGAGATACAGCTTCTCTTTGCTCGGCCACTAGAGGGAACTGAAATGTG





GGGCGCAAGAAGGCGTTTCCTCTGTTCGCCAGACGAGGGCGCTCATACCC





ATGGTCCTCCAAAGTTGGAATTTCTCGCCCCAAAACAGATATTGTCGGGT





TGGCCTCCTTGTAACCCAAACATACGATGGGATGACATTACAGCTGTGCT





ACTGATTGCTGCTTTGACCGCCTCCTATGCTGTGTAAATGGCCAAAAGCA





AAGAATTATTAAAAAGCAGGCCCAATGTTGTCCAAGCTCACGTGTGGTTT





GTGGGTCTATGTGTTTGCTGCTGGCAAATTTGCAAGCAGATGGGACTCCA





AGGCAAGGCGTGGAAGTGATGATGGGAACGTTGGAAGTTCACAGACATAA





CTTGTAGAGTGTGTGAGGCCGGGTGCGCGGACCCTGTGTATCTGCAGCTG





CGATACTTAGATTTCAGTTTGGCAAGGCAGGTCACGGTGGAGATGGGGCA





AGCTGCAAGGGTGGTGGAGAGGAGGAAGGGAAGGTGACAGTGGCCCTCTG





TCAACTGTTTCCAGGTGGAGTTGAAAGGTGTAATCATTTTCTTCTGGGGG





CCTTGGCACCTTTCATCAAGACGAAGTTGGTGACTGGTTTAAAAAGATTT





AAAAAATTAAGCTCGAGAGGCCAAAGGAGAAAATGGTTTCCAGGTGGAAA





GGGCTTGACAGAATGGTGCTCTTGTGCCGTGACTCCGAACTCCGTGGAGC





ATTCCAGTGGCCCACTGTACTCCCACCCCTCCAGGCAGCACTGGGAGGCA





GCCAAGTCTAGGAGGCAAAGGGCTCCCTAACTGCCAAGCAGTGAAGATGT





TGAATAAAATATTTACTTACACGTTTAAGAATAATGATGACAGCATGACA





AACAGTGGTGAAACAGCTTTAGGGGACATGGAAGGGCAGCCCTGGGATAT





TTTTAATGAGAACAGTGACTTCCTGTTTAATTCCCGAGGCTTGTCTCTTT





TGCCTACCATACCCACACTGGTATCACAAGATACCGCCCATGATTGGGGA





GGGGGTTCACCAGACTGGCCTAGGGAGTCCCCTGCAGGAAGCTGCCACAT





GGAGAGGCTACAGCCAGCCTCACTCCCAACCCTAAGCTATTGCCCACCTT





TTGCAACTCCTGAAGATTACAGCTTTCTGATCCCTTCCCCCCCCCTACAC





CAGAAGGGTCCTCTGTTGTGGTCATTCAATAAATGATATTTCTTAATTAG





GAATCTAGCTCTTTCTTATTCAGCTGGACTAATAAGCACCCTATGCCCTG





CTTGGGTGTGATAATTTTGAGTTGGAGACAAGGAAAAAGGAGTGAATGAA





AGGGAGTAAAAGTCTTCACCCACAGCACTAGATTTCAGCTATGCCCAACG





TGAAAATGGAAAGGGAAAATGGAAAAAAAAAAAATTGGCCAAACACGCTT





TAGGTTTGTTTTTCCCTCCTTTTGGGAGCTTTTTGCATTTTCCTCCCCAA





TTTGGAAAAAAAATGAAAGAAAACAAATTTCTCTATCATTTAAATAAAAC





AGACCTTTATGTCTCTAAATATAATACATCAAACAATGTTAGGAGTAACT





AAATTATACATAAAGATACTTGTTTGTTAGATTGTTAAAGGCTGTTTGAA





AAATAGAATTTCGCTGGTGAGGTGCCTCACACCTGTAACTCCAGCACTTT





GGGAGGCTGAGGCAGGTGGGTCACCTGAGGTCAGGAGTTTGAGACCAGCC





TGACCAATATGGTGAAACCCCATCTTTACTAAAAATACAAACATTAGGTG





GGCTGTGATGGCACATGCCTATAATCTCAGCTACTCAGGAGGCTGAGACA





GGAGAATTGCTTGAACCGGGGATGTGGAGGTTGCAGTGAGCTGAGATTGA





GCCACTGCACTGCAGCCTGGGCGACAGAGGGAGACCCTGTCTCAAAAACA





ACAACAAAAAATAAGAATATAATTTCACTTTTTGTCAGCCTCACATCCTC





CATGGTTTTGTGTGTTTATTTTTCCAGATATTTTATACCTCCAGTTATGA





CTCTGTAGAAAGATACCATCTGGGGGCCAGGCATGATGGCTCACCCCTGT





AGTCTCAGCACTTTGGGAGGCTGAGGCAGGTGGATTGCCTGAGGTCAGCA





GTTCAAAACCAGCCTGGCCAACATGGCGAAACCCTGTGTCTACTAAAAAT





ACAAAAATTAACTGGGCATGGTGGCAGGCGCCTGTAATCTCAGTCACTCG





AGAGGCTGAGGCAGGAAAATTGCTTGAACCCAGGAGGCAGAGGTTACAGT





GAGCCGAGATCGCGCCATTGCACTCCAGCTGGGAGACAGAGTGAGACTCT





GTCTCAAAAAAATAAATAAAGATACCATCTTGGCTTTCCCATATTATACA





GATCCAGAAGAAAGACCAACTTAGGATCTCTATGCACATGATTATTTCAT





ATTTTTTGGAAGAAAATAAACTAGTGTTGAATTTAAGAACATGCTCAGAA





GTCATGATTTTTGAGGAAGGAGGCTATTTATTTAAATCGATATAAAGGAC





CATTAGTTTTAGACCTGTAATTTATACTTGGTGAAATTTTCATGGAAAAA





AAACAACAACAAAAAAACTCATTTCCCTAAATATTTTCTAGTAAAAACAT





GGCTTGCTTTTTTGGTGCAAAGTCTGCCACGCTGTTTTTAAAAGCGAGGC





TTACGAGACCGTGGGAGAGAGATAAGTGAACAGCCTCTTTAATAAGAGAG





GCGTCCAGCGTGGCGGCGGAATGCAATACCAAAAAGTAAACAAAGAGCAT





CGTGTGAAAAAGAGCAAGTTGAAATGAATCTTGCTTTTCCTATTTGAAAA





ACACGCTCATGGTTGTTAGCAACTGAGTCAAGACATTTAAATCATATATA





TACTTTTAGATCTTGACAGTGACCTTTTATAAGTGTACAGTGGGGATAAG





AAGATGAGCAAAGCCTTGCTGCAGAAAAAGCATTTCAGTTAATTGAACAT





GAAATGTGTTACCATCTGATAACATTAATAATATGTGATCGCTACTTTGT





ATCTAATATGCAGTTCATTTGGTTGGAATCTAAAGCATTCTATAAATGTT





AGAGTATGAATCCTGTTGCAAACCTATAAACTAAGCAGCTCTATTTTGGT





GCATTTTGAAGTATCTCTGTGTTAGTTATCTATGCTGTGTAACAAATTAT





CCCAAAACTTAGCAGCTTCGAACAACAAATATTTATTATCTCAGCATCAA





TCAGGAATGGCTAAGCTGGGAGGTTCTAGTTCAAAGGCTCTCATTAAGTT





GTAGTCAAGGCATTGGCCAGATTAACAATCATTTGAAGACCTGATGAGGG





CCGGCAGATCCACTCATAAGGTGTCTAACTCACAATCCCAGCAAGTTAGT





TTGAGATGTTGACAGTAAACCTCAATTCTTTTCTACACTGGTCTCTCCGT





AGGGCATGGAGAGATGCCTGAGCATCCTCATGACATGGCAGCTGGCTTCC





CCCAGAGCCAATGATCCATGAGACAAAGCAAAACGGAAGCTACAATATCT





TTGGATGATCTAGCCTTAGAATTCACCCATCATCACTTCCTTCAGGTCCT





GCTCCTTAGAAGCCGGTTACTAAGCACAGTCCACACTCGAGGAGAGGGCA





ATTCGACTCCATCTTTTGAAGGAGTCTTAAAGAATTTGTGAGCATATTTT





AAAGGCACCGCAATCCCCTATTTACATAAGGACAGTTGAAAATGATGGTG





GCTTACCTGCTCAAGGTCAACGAACTACTGGTAAGACCCCACCTGGAAGG





CGGCAGGCTTTTTTATTTATTGTAAAGCAAAACAGAAAACCCACATTCTT





GAAATAACTGCACATGAATCCCAAATCTGTCTCTTTCAAATGTCCAAGAC





CTTCTAAAAGTGGCAGGATGCTTTCTGTTTAGAAATGGATGAGATGGACA





CTAGACTGGAAGGGTCAGCCTTTGATTAAGAGTCAGCTTTCCTCTTAATC





AGCTCTGGGACCATGAGAACAAAAACACTTTTCTAAGGGATGTTTTCCTC





CTTTGCAAAATATGATGGGCTAGCCGAATGGTTTCCAAAGTTGGTGGCCT





TTAAGTCCTCTGGGGACTTAAAAACTCACTGATCTTGTGTTAAATCCACA





ATGTCCAGGAATCTGTACCACTTAAAAGCACTTGGGGACTCTGGCGGCCT





GTTTTGCAGACAGTAGGAACTGCTCGGCTACATGATTTCTCACTCTTCCA





CTTTTAACATTATTTTATTTATTTTTGAGACAGAGTCTCTCTTTGTCACC





CAGGCTGGAGTGCAGTGGCATGATTTTGGCAACCTCCGCCTCCTGAGTTC





AAGCGATTCTCCTGCCTCAGCCTCCAAAGTAGCTGGGATTACAGGCTCCC





GCCACCATGACTGGCTTTTTTTTTTGTATTTTAGTGGAGATGGGGGTTTT





ACCATGTTGGCCAGGTTGGTCTGGAACTCCTGACCTCATGTGATCTGCTC





ACCTCTGCCTCCCAAAGTGCTGGGATTACAGGCGTGAACCACCATGCCTG





GCCAACATTATTTTAACTCTCCCCATCAGACTGGGTATGCCCATGTAAAT





TGTTGGTTCTCCATCTTCACTACAATCATGAGCAGAATTTTTAAAAAATA





TGATACCTAGGGCCCTCCCTAGGCAAAATATAAGTCATTCTGGGGTGGAA





CTCTGGTACCATCACGGGTTGTTGGCTTGTTTTCATCAGTACATTTAAAA





CTAATCATGTTTAGCCTTGTTGGCACATTAGAATCACTTGGGGAGCTTTA





AAAAAGCCCACTGCCCAGCCTGTCCCCCAGGCCAATTAAATCACAATCTC





GTGGGAAAACCAAGAATCAGCATTTTTTAAAGTTCCCCAAGTGATTACAA





CATACAGCCAAACTGACCTATGTTTGCCACATTTGAGATAATTCTAATGC





TAATTCACCTATAAGGGATTATTCAGAAAAAAATCCCAACATTTAGATGC





CACAGTACTCTAAGAAAAAAAATGCATTTAAAGTGGAAGATATTACAATT





TTGAAATGAAAGATATTAAAAATTAAATGGAACTAAGTTCCATTTCTGGC





AATATGGTAGACTAAGTAACTTGAAAATCCTCCCATCATAAACCACCTAT





AAATACTGGTCAGAATGTAATAAACACCCATTTAAATGAGCTCTCAGGAC





AGTAAGCAAAGGCTCTCAGAGTCAGGAAGAAGAGGGAGATTCTAGCATGG





TATGCAAGTAAGCTGAGGTTGAGCTGGTCTTAGGCAGGTTTGCTGGTGTT





GGGAACCTGAGGTTTGAGCATCAAAATAGGAAGGAGACTATGCTTAAGGT





CCATTAAAAGTGGGAAAATGGAATTCAGAATTCCCATAAAGCTGGAATCC





CATCAAGCTAGAACCTCCTGAATCACTAGAGAAATAATCACTGGAAAAAT





AATCTCCCCAATGTCACAAGGAAACAAGAAAATGTGCCTGTCTTTGCAGG





GGTTGAGGGTGGGGAATAAAGGGCTTTACTGAGAATTTGAGATTATAATG





TGGTATGGTCCAGGAACCCCAAAGCTGAGAATGAATACAGAAATACAGAC





CCAATGCCAAACTATACAATGTATGTGGATATAATCCTCCACAAGCAAGA





TGTAGCAGACACAAAGGTCCCAAGAACCTCAGGTAACAGAACTATCAGGC





AGACTATAAAATAAGCAAATTGAAAATTATTAAAGACACAAAGAGGCCGG





GCGCGGTGGCTCACGCTTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG





CGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACACGGTGAAAC





CCCATCTCTACTAAAAATACAAAAAAATTAGCCGGGCGTGATGGCGGGCG





CCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAACC





CGGGAGGCGGAGCTTGCAGTGAGCCGAGATTGCGCCGCTGCACTCCCGCC





TGGGCCACAGAGCGAGACTCCGTCTCAATTAAAAAAAAAAAAAAAAGACA





CAAAGGAACCTTTGACACCATGAGAAAATAACATAACACTCTAAAAAAGG





TAGATTTTAAATAGAACTAAATAGAATTTCTAGAAATGACAAATATAGTC





ACCAAAATGAAAAGCTCAGTGATGAGTTAAACAGCAGATTAGACAGAGTC





GAAGAAAGAACCACAGATGGATCTGAGAAAATTGCCCAGGAAGCAGCAAA





GACAAAGTGAAGGAAAGTCTGACAGATTCAGAGTGTGCTGGATAGAAGGA





GAAGATGCATTATACATTTCATATAAGTACCAAAAGACAATGAGAGGGAT





ACTTCATTTAGAGAATCCCAAGATTATGCATATACAATGAGTATTGAATC





AGATAAAGAAGAAGAAATTCATACTTGAATATAGCAGAGTAAAAATGTAG





GAAGCCAAAGACAAGGAAAAAGTCTTAAAACCAGAGAGAAAAGACAGATT





ACCTACAAAGGAATGACAATTAGACTCATAGCAAATGTTTCAGAAATAAA





GAATAGGAAGACATGGTATATTCAAAAAAGTGCTGGGGTAAAATAACTGC





CAATCTTGAGTATTACACCCAGAGAAATCATCATTCAGGAATGAGAGTGA





AATATGACATGTTTGTCTTAGCGGAGAGAGCGTACCACTCAACAATCCCC





TGAAAAAAACTAAAGGTATGTTTCAGGGGAAAGGGTCTATATCTAGAAGG





AAATTGGTAAATAAGGGCAAATCTAAACGATGAATTGACTGTATATAAAA





TTACAATAGAGATTAAAATTAGGGGTATAAAAAGTAGGTGGATCTAAAAA





TAAGCAACAGTAAAACATAATGAGAGGATGTAACTGAAGTTGAATCATTC





TTAGCTTATTGGATAGTTCTAGGGCATTTGATTTACTTTAGATCACATGT





ACAGGTTAAAATTGTAATCACCGAAAGAGTAGAAATAGAATTTACAACTT





CCGGCCAGACACAGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCC





AAGGCAGGCAGATCAATTGAGGTCAGGAGTTCAAGACCAGCTGGCCAACA





TGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGTGTGGTG





GTGGGTGCCTGTAATACCAGCTACTCGGAGGCCGAGTCAGGAGAATCGCT





TGAACCCAAGAGGCAGAGGTTGTAGTGAGCTGATTGTACCACTGCACTCC





AGCATGGCTGACAGAGTGAGACTCTGTCTCAAAAAAAAAAAAAAGGCCTC





GGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCATGCCCGGCCAA





TAGCATCTCTTATACATTGCTAGTAGGAGTACAAATTGGAACACCACTTT





GGAAAACAGCTTAGTATTACCTTGTAAAATTTTACATTCACGTATGTTAC





GACCCAGCAATTACTCCAAAGAGAAATTCTGATCTATGTGCATCAGAAGG





TAAAAATGTTCATAATAACACTGTTTATAATAGCCAAAAAAAAAAAAAAA





TTCCTGAAAGCAACCCAAAGGCTTGTTTGTGAGAATAGAGAAACTAAACT





GTGGCACAGTCACATAATGGAATATTATACAACTGGGAGAAAGAATGAAC





TACAACCTGATACAAAAATCTAATTTTGTTCCCCCCACCCCCCCAGGGCC





CTGGCTAGAGGATCTAATTGATTCTTAATAATTTCATATTGAGTAAATTA





TCAAGCCTCAGAAATTTTTCATAAAGTTTCAAAACAAAAAGTAAAACAAA





ACAAATATTAGTCATTGATATGCATGATAAAACTTTTTAAAAAGCGAAAA





ATCATAACAAATACAAGATTCAGACTGGTGGTTACTTTAGAGGAACAAAA





TAGGGAGGAACACATAAGCAGATGTTACATAAGTCAAGTCATTGTTTCTG





TTTTAGTTCTCTGGTTGAATAGCAGGTTTACAGGTATTCATGATATCAGC





AAATAAAATAAAATAGGGCCATGAGTATACACAATGATGATAGTGTGTTA





TACTAGAGATTGTGACTAATATATTTTTGTGCCCCTAAATTGTGATATTT





TGTGATCTTTAAAAATATCAGCAATCACAATAAATGTAAATGGACTAAAC





TTACTAGTTAGCACAATAATGAACCAGAGCTAACTATATGCTATTTACAG





GAGACTGAACAAAAAATTTGGGACATGGAAAGGTTCAAAGTAAAAGGAAA





GAGGGAAAGAGAAAGATCTATAAGTGAAGGGCTAATTAAAAGAGTAGTTA





CATTTATTACAGACAAAGTAGACTTTAAAGCAAAAGGCATTAGGGATAAG





TATCTTCTGTGCCAATATTAAAGGAATAATTCCTAGGAAAATAGCAAATC





TAAGCTCGTATGCACTGAATAACAAGGCCTTAAAATACACAAAGCAAAAA





GTATGAGAAGCAGAAAATGTATAGTTACAGTGGGAAATTTTAACAGTTCT





TTTTGATGCACCTGACAACATACTTTTAAAATACAGCAAAATTTGAGAGA





ATTACAGGAGAAACTGGCAAATCTAGTCATATAGAAATTTTAATGTACTT





CTATAAAAACCAACAGGTCAAGCTGACAAAATATTAGTAAGGCTACAGGA





AATCTAGACAATATAATTAATAAGTCTGATCTAATAGACCCATATAAAAT





GCTGTACTTAAAAATTAAGGCATATACATTCTTTTCAAATCTACATGAAA





TATTTATAAAAATTGACTGCACCAAAGCAAGTTTCAATAAATAACAAAGA





ATCTGCTTCATATAGATCACATTCTTTGACCTTAATTCAGTTAAGTTAGA





CGTTAGTAACTAAAGAATAACCTCAAATACCCCTCAAATACACCTGTATT





AATTCACTAGTCAAACAAGAAATCGTATCTGAAATCTAATTTTTTTTTTT





TTTTAAACAGGATCTCGCTCTGTCACCCAGGCTGGAGTAGTGACATGATC





ATGGCTCGCTACAGTCTCAACTTCCCAGGCTCAAGTGATCCTCCCACCTC





AGTCTCCTGAGTAGCTGGGCCTATAGGTGCATGTTAGCACACCTGGCTAG





TTTCTAGAAAAGTTTTCTTTTGCAGAGATGGGGCCTCACTATGTTGCCCA





GGCTGGTCTCAAACTCCTGGGCTCAAGTGATCCTCCCACCTTGGCCTCCC





AAAGTGCTGGGATTACAGGCATAAGCCATTGTGTCCAGCCTAAAATCTAA





ACTTTTTTTACCTCATTGGTGATAAAAAGTCTATATATCTTGTGGAATAT





AGCTTGAGTGGTACTTAAAGTGAAATCTGTAGTCTTAAATGTTAAAATCA





GAAAACAGATGGCTAAAAATTAATTACCTAAGGCAACAATTCAAAAAAAA





AAAAAAAGAGCAACAGAATAAATCCAAAAAGAGCAGAAGCAGAAGGGAAT





ACTATATGATATATATTAATATTACATTACATATTATATTCTCACAAACT





ATATAATAGTATATATTTTCTATTGTGCCATATATAACAATATAATATAT





AATAATATATAAGAACAAAACTTACTGGAACAGAAAAAGAAACAATATTG





AAACTAAAGTCTGGTTCTTTGGAAACACTAATAGAAAGTAGAAAGAAAAC





ATTAGTAAAAAAAAAAGATCTCTGGCACAGCTGATCCAGATAAGAAAAAA





TACATATAAAATGATATTTAGAATGAAAAAAAAACATTATGGATAGATAG





AGCAGAGATTAAAATACATTAAGAGATAACTATGAACAGCATTTTGTCAA





CACATTTGAAAACCTAGATGGTATGGATAATTTCCTTGAAAAACATAGTG





TATAAAAATAGATTCAAGAAGAAAACAGAAAACCTGAAGAGATCTACGAG





CATTAAAGAAATGGAATCAGTAGTTAAAAATCAACCCACGAAATGTCTAT





CCCAGACCCAGACAATTTACCTGCAAAACTACCAAACATTCAAGGAACAC





ATAATTCCAATCTTACACACACTGTTCCAGAAAATGAAAAAAGAAGGAAC





ATTTACCGGTTCATTTTATGAGACCAGTATAACCAGACAAAGGCAGTAAG





AAAAGGAAAAACTGCAGCCAATTTGACTTATGAACATGAATACAAAAAGA





ATCCTAGAATGAAATTAAATGTTGGCCATCATTCATTCATTCATCCACTC





ACTCATTCAGTCAATCATTATTTATTGAGCGTCAACCGTGCGCCAGCAGG





CACTGTGCTAGTACATGGAGAGCAGAAAGGCACGGGAGCTTCTGGCTTAG





AGGAGATGGGCAATAAAGCAAATGATCATACAGGGTAAGGTACACAGAGG





ACGTTCTGGTAAGGTAACTGCATATCAAAGGGCATTCGACCCTGTCAGAG





AGGTCTGGGAAAGATTTCCAGGCATGTAAGTGGAGTAAGGGTGTATGTGG





GAAGACTGTTTTGTAAGCTGTTGCAGGGCCTCAGGTGGGAGATCTGGGAT





GCAGCAGCAAGAAAGATGGATTTGAACTTGGGCTTCCTTTAGAAAGGCTA





AGTGGAGATGTTGAATAGGAAATTGACCAGAGCCTGGAGCTCTTCAGGAA





GGGTGGGGCTGGAGATTTCAATTTGAGTGGCATCACCATGTGTTTAAACC





CATCCTGGAAGATTGAGTTTGAAGAAGGAAGTGTCCAACATTGTCTTGGG





CTGTTGAGACTTTCAGAGGGTTGAGGACTGATATTGTGCTGCTTGAATTC





TCCTGATGCAGGGGCTACATTGAGTGAGCTGGAGAAAAAAAATGCATAAA





ATAATAATAATAATAATAATAATAATAATAATAAGCTATTACAAATAATG





TAGAGCAAAGGGGCAGCAAGAGGGAATTTTTTTGGACAATGAAACTGTTC





TGCATCTTGATTATGGTGGTGGTTACATGACTCTATACATATGTCAAAAC





TCATAGGATTACAGACCAAAAAGAGTAAATATTACCGTATATAAATTAAA





AATAAATGAGTAAAAACAATGTAGTAATGGAGACTTAAAATCCAGTTCTT





TCTAAGCCCTGACTTTGTAACCGCAGCTCTAGCCCCTCTCTGGATTTTAA





ATCAGTTCTATAAGTGTCAGCTTGTGGAGGTCTATACCAGACAGGAAGGG





CCCCCAACTCTCGCCTTGTGAGGGACAGAATAAACACGCAGGCAGCAGAG





GCCACACGGCATTGGACTGATGGTCAGAGGGTGGGGGTGGGGTGTAGCCT





GGTGAGTTTGGCACCTCTGAGACGCTGATGTATAATGAGGGGATTAGATT





AGGAAAGGCCTTTCTACCTAGGATGGCCTGTGGTTCTACTGTAAAAATCC





CAAACACAATACAATTAGCTCTGTTGTCTGCATTTTGTTTAGAATAATCA





ATCATAATAAACAATCATTGTAACAACTGGCTGTTCAACACATGAGACCC





CAGATGATTTGGGAAGGAGCTTGGAGTGACAGGAAATGTTTGGGTTTGTG





GTTTAAAGCCTTAGAGCACCTTCTCAATATGATTATATTGAGTAGTGATT





GATAATAAACACGACTCAGGTTTACAGTGAAAAAGGAACTTTTACAACAT





TGGTTCACTTCAGCCTCTCACCTTCACCACATCAATCCTGTCAAGGAGGA





ATTACTGCAATTTAGGGAACAGGGAGACTGAGGGTCTGGTCACTCAAGGC





TATGGCTGGTGTTGAGATTTTCCCAATATTCCATTTTTCCAAAGCCCACA





GTGGATTTGGTTCAGTTTTGGTGTTGAGTGTATTCCTTTGTCTCCTAATC





CTATGAAAATTAATGGAAAAGTGTTAATTGGGCATCAATTCATGCTTAAC





ATTAATCTCAGTATTTGATGAACCACAACTTTATGTTGCCCCTCATGCCA





TATTAACTCAGTTTATTGCAACAATTTAAAACGATACAGATTTAAAACAA





TATGGGTAATTGTATCCGTATTGTTTCAAATGCCCCATAAATTGAAACCA





GCCCGAATTTGGGCAGTCTGGAATCTGCCGGAGAAACTTTCATGCGATGC





CTTTGGAAGGCTACAGACATTGTCTTTTTGGAGTTTTCAGTGCATGAAGG





TATGAAACCGCATTTATTAAGCACCTACTGTATGCCAGAACCCGTGCTGC





ACAATACTACTGCTGCTAAGGTGGGAGTGATTCTGAAGCCTTCTGCCACC





CTAGCTACCTCTGCAGGTCGTGAGGGGTCTTGGGCTATTTCAGTATCATG





CACTTTACTATCCTGGCATACAAAGGCTGGGTGAGAAATAAAATATATAA





CGAACGGATTACACAGGGGTTTCCTGAAATAACCACCCTTCCCATCCATC





CCAGAGACACCCCAAAAGTACTTCTCGTTATATACAAACATTTGCTTTGA





ACCTCAATCATGTGACCTTGACTCCTATAACCTATCTTATTACATTTTTA





AAACACTGTATGATTAACGCGGAAACCCTTTCTTCGGCACTTTCTCGCCA





CTGGAATCGCGTCAGTTTCTCAAAGTTCCAAAATAACCTTTCCCGGGCAC





GGATTGGTACCTCTACTGGGGAAGGGCGGGGAACCGCGCAAGACGTGCCG





GTGTGGAGCCAGAGCCAGAGAGAACTTCCAGCGCAAAAGGAAAATAAAAC





TTGTGGCTGGTGTTTGTGCAGGAGGGTCTCCGCCATCCTGAAGCCCCCCG





ATCCTGGGGCGTCTCGGGGGCCGCCAAAGGAGCGCCAGGGTGTGGGTTTG





CTCCCGACGTCCTTGACCTAAATTTCTGAGCGGTGGCTGGAAACAGGGCA





CAGCGGAGGGCGGGCGGCTGGTGCCATTCCCGGATCTCGGCGGCAGGGGC





CGGCAAACTTGAATGGAGAGGGCGAACTAGAGAGGGTGGGGGGCGTCTTC





TCCCAGGTCCGGGTGAGGAGCCGCAGCAAGCTCCCCGCGCCTCCCCTCCC





CCGATCCACCCGCCCCCCGCAGCCCATGTGATCCAGGGAAGTCGGGGTGC





GCTCCCCCTCGCCCTGCGCCCTGCCGGCCCGGAGGCGGGGTCCCCTCCGC





CCGCGGGGTTCGCGCGCCACCCTTGTGGGTCCGGCCGTGGGGGGCCGAGT





GTGCGCGCGCGGGCAGGCGGGGGCCGCACGGGGGTGCGTGACGTCACCGG





CATTGGTTACACGACGTTCTAGAACTCCGCCCCACGTGCGCCGGGGAGGA





GGGGGAGGAGGAGGAGGAGATGGGGGTGGGGAGGAGGAGGGGGAGAGGTG





GGGATGGGCCGGGGGGGCGGGGACGGGGGGGTGTGCGAGGCAGCGGGGCT





GAGCTAAGCCGAGCCCACGTGTGACGGCTCTCGCCGCTGCCCCGGCTCCG





CCGCTCGCAGAGAGATTCGGAGGAGCCCGGGCGGGGGGGAGGAGGAGGGG





GAGGAGGGAGCGGAGATCTCGGGGCTCGGAGCCGGCCGCCGCTCCGCTCC





GATCGCTGTGGGGCTTGGTTTTTTGGGGGTGGGGGGGCGGGGGGGCTCAG





ATATG






JAK2


The JAK2 gene is located on Chromosome 9. JAK2 protein promotes the growth and division (proliferation) of cells and is part of the JAK/STAT signaling pathway important in transmitting signals from the cell surface to the nuclei. JAK2 is especially important for controlling the production of blood cells from hematopoietic stem cells. These stem cells are located within the bone marrow and have the potential to develop into red blood cells, white blood cells, and platelets. Essential thrombocythemia is characterized by an increased number of platelets, with the most common mutation being V617F found in approximately half of the affected people, with a small proportion having a mutation in exon 12. The V617F JAK2 gene mutation results constitutively activated JAK2 leading to the overproduction of megakaryocytes, and hence excess platelets. As a result, there is increased risk of blood clots and decreased availability of oxygen. Overproduction is also associated with primary myelofibrosis, as megakaryocytes stimulate other cells to secrete collagen thereby replacing bone marrow by scar tissue. The V617F mutation is found in approximately half of individuals with primary myelofibrosis. A small number of people with this condition have mutations in the exon 12 region of the gene. These JAK2 gene mutations result in a constitutively active JAK2 protein, which leads to the overproduction of abnormal megakaryocytes. These megakaryocytes stimulate other cells to release collagen, a protein that normally provides structural support for the cells in the bone marrow but causes scar tissue formation in primary myelofibrosis. The V617F mutation is occasionally associated with leukemia, other bone marrow disorders and Budd-Chiari syndrome.


Protein: JAK2 Gene: JAK2 (Homo sapiens, chromosome 9, 4985245-5129948 [NCBI Reference Sequence: NC000009.12]; start site location: 57256743; strand: positive)












Gene Identification


















GeneID
3717



HGNC
6192



HPRD
00993



MIM
147796




















Targeted Sequences













Relative





upstream





location to


Sequence
Design

gene start


ID
ID
Sequence (5′-3′)
site





12063

CGCACCAGTTTGTCCACGTCCAG
1663




TG





12098

GCCGTCACTGCCGACATAAGCACA
1811




GAC



















Target Shift Sequences











Relative




upstream




location




to gene


Sequence ID
Sequence (5′-3′)
start site





12063
CGCACCAGTTTGTCCACGTCCAGTG
1663





12064
GCACCAGTTTGTCCACGTCC
1664





12065
CACCAGTTTGTCCACGTCCA
1665





12066
ACCAGTTTGTCCACGTCCAG
1666





12067
CCAGTTTGTCCACGTCCAGT
1667





12068
CAGTTTGTCCACGTCCAGTG
1668





12069
AGTTTGTCCACGTCCAGTGT
1669





12070
GTTTGTCCACGTCCAGTGTC
1670





12071
TTTGTCCACGTCCAGTGTCA
1671





12072
TTGTCCACGTCCAGTGTCAA
1672





12073
TGTCCACGTCCAGTGTCAAC
1673





12074
GTCCACGTCCAGTGTCAACT
1674





12075
TCCACGTCCAGTGTCAACTG
1675





12076
CCACGTCCAGTGTCAACTGA
1676





12077
CACGTCCAGTGTCAACTGAG
1677





12078
ACGTCCAGTGTCAACTGAGC
1678





12079
CGTCCAGTGTCAACTGAGCA
1679





12080
TCGCACCAGTTTGTCCACGT
1662





12081
ATCGCACCAGTTTGTCCACG
1661





12082
GATCGCACCAGTTTGTCCAC
1660





12083
GGATCGCACCAGTTTGTCCA
1659





12084
GGGATCGCACCAGTTTGTCC
1658





12085
TGGGATCGCACCAGTTTGTC
1657





12086
TTGGGATCGCACCAGTTTGT
1656





12087
CTTGGGATCGCACCAGTTTG
1655





12088
CCTTGGGATCGCACCAGTTT
1654





12089
GCCTTGGGATCGCACCAGTT
1653





12090
GGCCTTGGGATCGCACCAGT
1652





12091
GGGCCTTGGGATCGCACCAG
1651





12092
GGGGCCTTGGGATCGCACCA
1650





12093
GGGGGCCTTGGGATCGCACC
1649





12094
TGGGGGCCTTGGGATCGCAC
1648





12095
CTGGGGGCCTTGGGATCGCA
1647





12096
TCTGGGGGCCTTGGGATCGC
1646





12097
ATCTGGGGGCCTTGGGATCG
1645





12098
GCCGTCACTGCCGACATAAGCACAGAC
1811





12099
CCGTCACTGCCGACATAAGC
1812





12100
CGTCACTGCCGACATAAGCA
1813





12101
GTCACTGCCGACATAAGCAC
1814





12102
TCACTGCCGACATAAGCACA
1815





12103
CACTGCCGACATAAGCACAG
1816





12104
ACTGCCGACATAAGCACAGA
1817





12105
CTGCCGACATAAGCACAGAC
1818





12106
TGCCGACATAAGCACAGACA
1819





12107
GCCGACATAAGCACAGACAA
1820





12108
CCGACATAAGCACAGACAAC
1821





12109
CGACATAAGCACAGACAACT
1822





12110
CGCCGTCACTGCCGACATAA
1810





12111
TCGCCGTCACTGCCGACATA
1809





12112
ATCGCCGTCACTGCCGACAT
1808





12113
AATCGCCGTCACTGCCGACA
1807





12114
CAATCGCCGTCACTGCCGAC
1806





12115
CCAATCGCCGTCACTGCCGA
1805





12116
GCCAATCGCCGTCACTGCCG
1804





12117
AGCCAATCGCCGTCACTGCC
1803





12118
CAGCCAATCGCCGTCACTGC
1802





12119
CCAGCCAATCGCCGTCACTG
1801





12120
CCCAGCCAATCGCCGTCACT
1800





12121
ACCCAGCCAATCGCCGTCAC
1799





12122
TACCCAGCCAATCGCCGTCA
1798





12123
CTACCCAGCCAATCGCCGTC
1797





12124
CCTACCCAGCCAATCGCCGT
1796





12125
GCCTACCCAGCCAATCGCCG
1795





12126
TGCCTACCCAGCCAATCGCC
1794





12127
TTGCCTACCCAGCCAATCGC
1793





12128
CTTGCCTACCCAGCCAATCG
1792



















Hot Zones (Relative upstream location to gene start site)







1550-1900









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13675)







GTCATTTATTTCTGCTGTGAACTTCATTTTTTCCTTCCTTCTGTTAGCTT





TGGGCTTTGTTCTTCTTTTTCTAGTTCCTTGAGGTGTAATGTAATGTTGT





TTGACATCTTTCTTCCTTTTTGATGTAGGTATTTATTGCTATAAACTTCC





CTCTTATAACTGCTTTTGCTGCATTTAATACTGACTATAATAAGATACGA





TGTAATAGATTTCAAGGAATTATGTATTTTTGAATAAATTAATTCTTTAA





AGTTGCATATCCAGTTGCAGATGAACTTCAAAAATCTTGCAGTTTTATAT





CTGTTACAGTAATTGCCAGGTTTTGTTGTTGTTGTTTTGATACATTAGAA





GTTCTAGAATTGTTATATCCTCTTGATGAATTAATCCCTTTATCATTCTA





GAATTACCTTGTCTCTTTACTGTTTGTGACTTAAAGTCTGTTGTATCTGA





TATACCTTTGCATGGAATATCTTTTTCTATCCCTTTACTTTCAGTCTATG





TGTATCTTTAAAGGTGAGATGAGGTTTTGTAAGTGGCATGTAGTTGGGTC





ATGTTTTTTAGTCCATTTAGCCATTCTCTATCTTTTAAGTGGAAAGTTTA





ATCTATTTACATTCAAGTTTATTCTTGATATGTGAAGGCTTATTCCTGTC





ATTTTATTAATTGATTTCTGGTTGTTCTGTAGGTCCTTTGTTCTTTTCTT





TCTCTCATATTGTTTAGCATTGTGGTTTGTTGGTTTTCTATAGTGATAAC





ATTTGAATCCTTTCTTGTCTGTGTGTGTTTGCTTTACCAGTGGGTTTGAT





ACTTTCGTCATCTGTTTTTCATAATGGTAGTAATTGTCCTTTTTGTTTGT





TTGTTTGTTTCTTTTTTGAGACAGGGTTTTGCTCTTGTTCTGTCCTCCAG





GCTGGAGTGCAGTGGTGTGATCATGGCTCACTGCAGCCTCGACCTCCATG





GTCTCAGGTGATCCTTCTGCCTCAGCCTCTCAGGTAGCTGGGACTACAGA





AACCTGCCACCATGCCTGGCTAATTCTTTTGTATTTTTCGTAGACATGGG





GTTTTGCCATGTTGTCCAGGCTGCTCTTGAACTCCTGGGCTCAAGCAGTC





TGCCTGCCTCAGCCACCCAAAGTGCTAGGATTACAGGCTTGAGCCACTGT





GCCTGGCCTGACATTGTTCTTTGACTTCCATATGTAGAACTCCCTCAAGC





ATTTCTTGTAGGTCTGGTCTAGTAGTGTTGAATTCCTCAGCTTTTGCTTG





CCTCAGAAAAACTATTTTTCCTTTGCTTAATGAAGGATAATTTTGCTGGG





TATAGTATCCTTGACTTGCAGGTTTTTTTCTTTCAGCACTTTTCATATAT





CGTTCCATTCTCTTCCTGGCCTGTAATGATTCTGCTGAGAAATCTGCTGT





TAGTCTGATGGAGCTTCCCTTAGAAGTGACTAGACTCTTTTTTCTTGCTG





TTTTTAGAATTCTCTCTTTGTCTTTGACAAGCTGTTGTCTCTGACAACAG





TTCTCTCTTTGTCTTTGACAAACTGTTGACAGTTTGACTCTAATGTGTTG





TGGAGAACCTGTTGGAATTTTGTCTTTTTGGGGATCTCTGAGCTTCTGTA





TCTGAATGTCTAAATCTCTTGATATACTTGGGTAGTTTTCAGCTATTATT





TCATTAACCAGGTTTTCTATTCCTTTTGTATTTTCATTGTCTTCTAGAAT





ACTGAAAATTCTAATATTAGTTTGCTTTATGGTATCCCATATGTCATGCA





GGCTTTGTTCATTCTTTTTTCTTTATTTTTGTCTAATGGGGTTATTTCAG





AAGACCTGTCTTCAAGTTCAGAAATTCTTTCTTCGTAGATGCTCTAGAAT





GTATTTTTTATTTCATTAAATGAATTCTTCAGTTTCAGGGTTTCTTGTTT





TCTTTTTAAATGATATCTCTCTCTTTGGTAAATTTCTCATTGATATCCTG





AGTTGTTTTTCTGGTTTCTTTGTATTGTTTATCTGTATGCGTTTGTATCT





CCCTGAGCTTCTTTAATATCATTATTTTTAATTCTTTTTCTGGCATTTCA





TGAATTTCTTTTGCATTGGAATCTTTTGGTAGAAAATTATTTTGATCCTT





TGGAGATGTCATATTTCCCTATGTTCCCATGTTTCTTGTGACCTTACTTC





TTTGATATCCACACATCTGGTGTAATCATCACTTCCATTTTTTTGAATTT





GCTTTCATAGGGTAGGACTTTTTCCTGAAGATTTGACTGGGGTGTTTGTT





GGCCAGGGCACTTTGGGTTTGAATCTGGGTGCATGCAGTAGTGTAGTCTC





TGTAAGATTTTTTTTCCTTTGTAAACAGCATCAGTGGTGTCTGTGATTTC





CTCAGTGGCATAGTGTGTGGTTGTGGAGGCTGTGGTGAACTTTTGCTGGG





GATGGTGACACCAGCTGGACTGATCCTCAGTCCTCAGTTGTGGCAGCAGT





TGGACAACCATGCCTGTACATTAGCCCCAGGGTGGCTTACATTAGTAATG





GTGTTAGTGGGTCCAGGCAGTCCAATTTTTGGGTCTCCAGGTGACTTGTT





TGGGTACCAGGAGTGGCAGTGATGGGCTGGGCAGCTGAGTGGGTCCACAG





GCCCCTGGGCAGTGAGCATGGCATGGGTTATGTCAGTAGCAGTGGTAGGA





GAACCTCTGGCTGTCCAGTTGTCTGTGCTTATGTCGGCAGTGACGGCGAT





TGGCTGGGTAGGCAAGTCCTAAAACCTGCAGGTGGCAAGTGTGAGTGGGA





ACCAGCTGTGGTGGTAGTGGCAGGTTGGGTGGGCCACATCCTCAGACCCC





CAGGTGGAATGCTCAGTTGACACTGGACGTGGACAAACTGGTGCGATCCC





AAGGCCCCCAGATAACATGCTTGGATACGTGGGAGTGGGGTGCTGAGCTG





GGCAGGGTGAGAGTATCCTCAGGCCCTCCAGTGGTGTTAGCAGGTGCTGT





TTGTGGTGGGCAGGAGCAGGATGATTTCCAATTTCCTGGTGGAATGTTCA





GGTGGGGGCAGCAGTGGCTGTGCTGTGCCCTGATGCTGGGGAGGGTGCAG





TTGCTGTCAGTGGGAGCAGTTGTAGGGAGTTGGCTAAGGAGTGTGCACTG





CAGCTGCAGGTGGAGGCTGTAGATGTGATGAAGCTGTACTCAGGGTGCAT





GCAAATTTGCATTTTGACACCTAGCGGCAGCAGCCTGCAATGGTGGCAGC





TGTAGGTGGTAGAGCTTGTCCTCAGGGCACATACCAATATATGGCAGCCC





TTCTGCTGGGAGCAGTGGGGTTATTGCCAATGGCTTGTGCTTTGGTCCCA





GAGGCGGCAGCCAGCAATGGAGGTGACTGTCGGTGGAGGATGTCAGTGGG





GCTCTAGGGGTGTGGATATGCAGGGGCTGTTGGGCTCCAGGGTAGGAGGC





ATTCTGGTGTGGGTTGGGCTTTAAAAATGGCACCGTGCTGTAGCTGCTTA





GGACTCAGGGGTGTGTTGGACCAGCATAAGCTCCCTCTCTAAAGCAATGT





CATTGTGCAGTCTCCAGGCAGCTCCCTATGTTACTCCCAGGGCCCATGAA





AGTTGACGGGCTCTCTTGTGTCTGGGATTGCAGGAGTTTGCAGTGAAAAT





GTGGGCCACTGGGAGTCTCTCACTTACTCTTTCCCCACATTGTGCAGGCT





CTCTAGGCTTCTGGCTGATCCTGGCTGAGCAGGCTGCCCCACTTCCCTCT





CCTTCCTTGCATTAGGTGTTTTCTATCACTTCTCTGTTGAATTTCCGTGT





TCTCTCTTAGATGACCTATTCAAAGTGTGATTATCTACTCGCTATTTTGG





TTCTTCTTTGTGGAGCAGGTGAGTACCAGATAACTCTAGTCAACCTTCTG





GACCCCTCTTCCCCCAATTTGAGATCTCTTCTTCTGTTGTCTGTAACTGA





GTTTAATGCTTGTTTGTTCATGTTAGGATTTTATATCATCGTCCTCAATT





AGGTTGTTAACTGGAATTTTATAATCTTTGTCCACAGGAAGTTTAAAATG





TATGATTTCTTGCATTGTGCTTTGTATGTAGTAATACACGATATTTATCC





AGTTAATGGATTTGACAGCCATTGCTGTCAAGGAGCAGTCCTTCTTTGTG





TATGAAGGGTGCCTTATCAATATTATTTCCATTTGTAACTTTATTTATTT





ATGTATTCATTTTTGAGACAGGGTCTTGCTGTGTCACCCAGACTGGAGTG





CGGTGGAGTGCGGAGGTTTGCTGCAGCCTCATCCTCCCAGGTTCAAGCAA





TTCTTCCGCTCCACTCCCAGAGTAGCTAGGACTACAAGTGCGTGCTGCCA





CGCCCAGCTAATTTTTTTCTTTTGTATGTTTTTGTAGAGATGAGGTTTCA





CCATGTTGCTGAGGCTTGTCTCCAACTTCTGGGCTCAAGCTATCTGCCCG





CCTCGGCCCCGCAAAGTGCTAGGATTACAGGTGTGAGACACTGCGCCCAG





CCCATTTGTAACTTTATTGTTTTCTCTTACAGGCAAATGTTCTGAAAAAG





ACTCTGCATG






CCND1 (Cyclin D1)


Cyclin D1 belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance throughout the cell cycle. Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, which are required for cell cycle G1/S transition. Regulatory component of the cyclin D1-CDK4 complex is believed to phosphorylates/interact and inhibit tumor suppressor retinoblastoma protein, RB1 to regulate cell-cycle during G1/S transition as phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G1 phase. Further, CCND1 expression is believed to be regulated positively by Rb. Mutations, amplification and overexpression of CCND1 alters cell cycle progression and are observed frequently in a variety of tumors including mantle cell lymphoma (characterized by the t(11; 14) rearrangement) and other B-cell lymphomas.


Protein: Cyclin D1 Gene: CCND1 (Homo sapiens, chromosome 11, 69455873-69469242 [NCBI Reference Sequence: NC000009.12]; start site location: 69456082; strand: positive)












Gene Identification


















GeneID
595



HGNC
1582



HPRD
01346



MIM
168461




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design 

start


ID No:
ID
Sequence (5′-3′)
site













12129

CGCTGCTACTGCGCCGACAGCCCTC
133





12242

CGGCAGAATGGGCGCATTTCCAAGA
612





12287

ACGCCACGAGGGCACCCACGGGCGGA
637





12332

CGGTGACCGCGGCCTGGGCGGATGG
2755





12388

CGGGACTCAGCGCGGCTGCGCGCCG
2907



















Targeted Shift Sequences











Relative


Sequence

upstream


ID

location to gene


No:
Sequence (5′-3′)
start site












12129
CGCTGCTACTGCGCCGACAGCCCTC
133





12130
GCTGCTACTGCGCCGACAGC
134





12131
CTGCTACTGCGCCGACAGCC
135





12132
TGCTACTGCGCCGACAGCCC
136





12133
GCTACTGCGCCGACAGCCCT
137





12134
CTACTGCGCCGACAGCCCTC
138





12135
TACTGCGCCGACAGCCCTCT
139





12136
ACTGCGCCGACAGCCCTCTG
140





12137
CTGCGCCGACAGCCCTCTGG
141





12138
TGCGCCGACAGCCCTCTGGA
142





12139
GCGCCGACAGCCCTCTGGAG
143





12140
CGCCGACAGCCCTCTGGAGG
144





12141
GCCGACAGCCCTCTGGAGGC
145





12142
CCGACAGCCCTCTGGAGGCT
146





12143
CGACAGCCCTCTGGAGGCTC
147





12144
TCGCTGCTACTGCGCCGACA
132





12145
CTCGCTGCTACTGCGCCGAC
131





12146
GCTCGCTGCTACTGCGCCGA
130





12147
TGCTCGCTGCTACTGCGCCG
129





12148
CTGCTCGCTGCTACTGCGCC
128





12149
GCTGCTCGCTGCTACTGCGC
127





12150
TGCTGCTCGCTGCTACTGCG
126





12151
CTGCTGCTCGCTGCTACTGC
125





12152
TCTGCTGCTCGCTGCTACTG
124





12153
CTCTGCTGCTCGCTGCTACT
123





12154
ACTCTGCTGCTCGCTGCTAC
122





12155
GACTCTGCTGCTCGCTGCTA
121





12156
GGACTCTGCTGCTCGCTGCT
120





12157
CGGACTCTGCTGCTCGCTGC
119





12158
GCGGACTCTGCTGCTCGCTG
118





12159
TGCGGACTCTGCTGCTCGCT
117





12160
GTGCGGACTCTGCTGCTCGC
116





12161
CGTGCGGACTCTGCTGCTCG
115





12162
GCGTGCGGACTCTGCTGCTC
114





12163
AGCGTGCGGACTCTGCTGCT
113





12164
GAGCGTGCGGACTCTGCTGC
112





12165
GGAGCGTGCGGACTCTGCTG
111





12166
CGGAGCGTGCGGACTCTGCT
110





12167
CCGGAGCGTGCGGACTCTGC
109





12168
GCCGGAGCGTGCGGACTCTG
108





12169
CGCCGGAGCGTGCGGACTCT
107





12170
TCGCCGGAGCGTGCGGACTC
106





12171
CTCGCCGGAGCGTGCGGACT
105





12172
CCTCGCCGGAGCGTGCGGAC
104





12173
CCCTCGCCGGAGCGTGCGGA
103





12174
CCCCTCGCCGGAGCGTGCGG
102





12175
GCCCCTCGCCGGAGCGTGCG
101





12176
TGCCCCTCGCCGGAGCGTGC
100





12177
CTGCCCCTCGCCGGAGCGTG
99





12178
TCTGCCCCTCGCCGGAGCGT
98





12179
TTCTGCCCCTCGCCGGAGCG
97





12180
CTTCTGCCCCTCGCCGGAGC
96





12181
TCTTCTGCCCCTCGCCGGAG
95





12182
CTCTTCTGCCCCTCGCCGGA
94





12183
GCTCTTCTGCCCCTCGCCGG
93





12184
CGCTCTTCTGCCCCTCGCCG
92





12185
GCGCTCTTCTGCCCCTCGCC
91





12186
CGCGCTCTTCTGCCCCTCGC
90





12187
TCGCGCTCTTCTGCCCCTCG
89





12188
CTCGCGCTCTTCTGCCCCTC
88





12189
CCTCGCGCTCTTCTGCCCCT
87





12190
CCCTCGCGCTCTTCTGCCCC
86





12191
TCCCTCGCGCTCTTCTGCCC
85





12192
CTCCCTCGCGCTCTTCTGCC
84





12193
GCTCCCTCGCGCTCTTCTGC
83





12194
CGCTCCCTCGCGCTCTTCTG
82





12195
GCGCTCCCTCGCGCTCTTCT
81





12196
CGCGCTCCCTCGCGCTCTTC
80





12197
CCGCGCTCCCTCGCGCTCTT
79





12198
CCCGCGCTCCCTCGCGCTCT
78





12199
CCCCGCGCTCCCTCGCGCTC
77





12200
GCCCCGCGCTCCCTCGCGCT
76





12201
TGCCCCGCGCTCCCTCGCGC
75





12202
CTGCCCCGCGCTCCCTCGCG
74





12203
GCTGCCCCGCGCTCCCTCGC
73





12204
TGCTGCCCCGCGCTCCCTCG
72





12205
CTGCTGCCCCGCGCTCCCTC
71





12206
TCTGCTGCCCCGCGCTCCCT
70





12207
TTCTGCTGCCCCGCGCTCCC
69





12208
CTTCTGCTGCCCCGCGCTCC
68





12209
GCTTCTGCTGCCCCGCGCTC
67





12210
CGCTTCTGCTGCCCCGCGCT
66





12211
TCGCTTCTGCTGCCCCGCGC
65





12212
CTCGCTTCTGCTGCCCCGCG
64





12213
TCTCGCTTCTGCTGCCCCGC
63





12214
CTCTCGCTTCTGCTGCCCCG
62





12215
GCTCTCGCTTCTGCTGCCCC
61





12216
GGCTCTCGCTTCTGCTGCCC
60





12217
CGGCTCTCGCTTCTGCTGCC
59





12218
TCGGCTCTCGCTTCTGCTGC
58





12219
CTCGGCTCTCGCTTCTGCTG
57





12220
GCTCGGCTCTCGCTTCTGCT
56





12221
CGCTCGGCTCTCGCTTCTGC
55





12222
GCGCTCGGCTCTCGCTTCTG
54





12223
CGCGCTCGGCTCTCGCTTCT
53





12224
CCGCGCTCGGCTCTCGCTTC
52





12225
TCCGCGCTCGGCTCTCGCTT
51





12226
GTCCGCGCTCGGCTCTCGCT
50





12227
GGTCCGCGCTCGGCTCTCGC
49





12228
GGGTCCGCGCTCGGCTCTCG
48





12229
TGGGTCCGCGCTCGGCTCTC
47





12230
CTGGGTCCGCGCTCGGCTCT
46





12231
GCTGGGTCCGCGCTCGGCTC
45





12232
GGCTGGGTCCGCGCTCGGCT
44





12233
TGGCTGGGTCCGCGCTCGGC
43





12234
CTGGCTGGGTCCGCGCTCGG
42





12235
CCTGGCTGGGTCCGCGCTCG
41





12236
TCCTGGCTGGGTCCGCGCTC
40





12237
GTCCTGGCTGGGTCCGCGCT
39





12238
GGTCCTGGCTGGGTCCGCGC
38





12239
GGGTCCTGGCTGGGTCCGCG
37





12240
TGGGTCCTGGCTGGGTCCGC
36





12241
GTGGGTCCTGGCTGGGTCCG
35





12242
CGGCAGAATGGGCGCATTTCCAAGA
612





12243
GGCAGAATGGGCGCATTTCC
613





12244
GCAGAATGGGCGCATTTCCA
614





12245
CAGAATGGGCGCATTTCCAA
615





12246
AGAATGGGCGCATTTCCAAG
616





12247
GAATGGGCGCATTTCCAAGA
617





12248
AATGGGCGCATTTCCAAGAA
618





12249
ATGGGCGCATTTCCAAGAAC
619





12250
TGGGCGCATTTCCAAGAACG
620





12251
GGGCGCATTTCCAAGAACGC
621





12252
GGCGCATTTCCAAGAACGCC
622





12253
GCGCATTTCCAAGAACGCCA
623





12254
CGCATTTCCAAGAACGCCAC
624





12255
GCATTTCCAAGAACGCCACG
625





12256
CATTTCCAAGAACGCCACGA
626





12257
ATTTCCAAGAACGCCACGAG
627





12258
TTTCCAAGAACGCCACGAGG
628





12259
TTCCAAGAACGCCACGAGGG
629





12260
TCCAAGAACGCCACGAGGGC
630





12261
CCAAGAACGCCACGAGGGCA
631





12262
CAAGAACGCCACGAGGGCAC
632





12263
AAGAACGCCACGAGGGCACC
633





12264
AGAACGCCACGAGGGCACCC
634





12265
GAACGCCACGAGGGCACCCA
635





12266
AACGCCACGAGGGCACCCAC
636





12267
ACGCCACGAGGGCACCCACG
637





12268
CGCCACGAGGGCACCCACGG
638





12269
GCCACGAGGGCACCCACGGG
639





12270
CCACGAGGGCACCCACGGGC
640





12271
CACGAGGGCACCCACGGGCG
641





12272
ACGAGGGCACCCACGGGCGG
642





12273
CGAGGGCACCCACGGGCGGA
643





12274
GAGGGCACCCACGGGCGGAC
644





12275
AGGGCACCCACGGGCGGACA
645





12276
GGGCACCCACGGGCGGACAG
646





12277
GGCACCCACGGGCGGACAGA
647





12278
GCACCCACGGGCGGACAGAC
648





12279
CACCCACGGGCGGACAGACG
649





12280
ACCCACGGGCGGACAGACGG
650





12281
CCCACGGGCGGACAGACGGC
651





12282
CCACGGGCGGACAGACGGCC
652





12283
CACGGGCGGACAGACGGCCA
653





12284
CCGGCAGAATGGGCGCATTT
611





12285
GCCGGCAGAATGGGCGCATT
610





12286
AGCCGGCAGAATGGGCGCAT
609





12287
ACGCCACGAGGGCACCCACGGGCGGA
637





12288
CGCCACGAGGGCACCCACGG
638





12289
GCCACGAGGGCACCCACGGG
639





12290
CCACGAGGGCACCCACGGGC
640





12291
CACGAGGGCACCCACGGGCG
641





12292
ACGAGGGCACCCACGGGCGG
642





12293
CGAGGGCACCCACGGGCGGA
643





12294
GAGGGCACCCACGGGCGGAC
644





12295
AGGGCACCCACGGGCGGACA
645





12296
GGGCACCCACGGGCGGACAG
646





12297
GGCACCCACGGGCGGACAGA
647





12298
GCACCCACGGGCGGACAGAC
648





12299
CACCCACGGGCGGACAGACG
649





12300
ACCCACGGGCGGACAGACGG
650





12301
CCCACGGGCGGACAGACGGC
651





12302
CCACGGGCGGACAGACGGCC
652





12303
CACGGGCGGACAGACGGCCA
653





12304
AACGCCACGAGGGCACCCAC
636





12305
GAACGCCACGAGGGCACCCA
635





12306
AGAACGCCACGAGGGCACCC
634





12307
AAGAACGCCACGAGGGCACC
633





12308
CAAGAACGCCACGAGGGCAC
632





12309
CCAAGAACGCCACGAGGGCA
631





12310
TCCAAGAACGCCACGAGGGC
630





12311
TTCCAAGAACGCCACGAGGG
629





12312
TTTCCAAGAACGCCACGAGG
628





12313
ATTTCCAAGAACGCCACGAG
627





12314
CATTTCCAAGAACGCCACGA
626





12315
GCATTTCCAAGAACGCCACG
625





12316
CGCATTTCCAAGAACGCCAC
624





12317
GCGCATTTCCAAGAACGCCA
623





12318
GGCGCATTTCCAAGAACGCC
622





12319
GGGCGCATTTCCAAGAACGC
621





12320
TGGGCGCATTTCCAAGAACG
620





12321
ATGGGCGCATTTCCAAGAAC
619





12322
AATGGGCGCATTTCCAAGAA
618





12323
GAATGGGCGCATTTCCAAGA
617





12324
AGAATGGGCGCATTTCCAAG
616





12325
CAGAATGGGCGCATTTCCAA
615





12326
GCAGAATGGGCGCATTTCCA
614





12327
GGCAGAATGGGCGCATTTCC
613





12328
CGGCAGAATGGGCGCATTTC
612





12329
CCGGCAGAATGGGCGCATTT
611





12330
GCCGGCAGAATGGGCGCATT
610





12331
AGCCGGCAGAATGGGCGCAT
609





12332
CGGTGACCGCGGCCTGGGCGGATGG
2755





12333
GGTGACCGCGGCCTGGGCGG
2756





12334
GTGACCGCGGCCTGGGCGGA
2757





12335
TGACCGCGGCCTGGGCGGAT
2758





12336
GACCGCGGCCTGGGCGGATG
2759





12337
ACCGCGGCCTGGGCGGATGG
2760





12338
CCGCGGCCTGGGCGGATGGT
2761





12339
CGCGGCCTGGGCGGATGGTC
2762





12340
GCGGCCTGGGCGGATGGTCG
2763





12341
CGGCCTGGGCGGATGGTCGG
2764





12342
GGCCTGGGCGGATGGTCGGT
2765





12343
GCCTGGGCGGATGGTCGGTC
2766





12344
CCTGGGCGGATGGTCGGTCA
2767





12345
CTGGGCGGATGGTCGGTCAG
2768





12346
TGGGCGGATGGTCGGTCAGG
2769





12347
CCGGTGACCGCGGCCTGGGC
2754





12348
CCCGGTGACCGCGGCCTGGG
2753





12349
CCCCGGTGACCGCGGCCTGG
2752





12350
GCCCCGGTGACCGCGGCCTG
2751





12351
CGCCCCGGTGACCGCGGCCT
2750





12352
CCGCCCCGGTGACCGCGGCC
2749





12353
CCCGCCCCGGTGACCGCGGC
2748





12354
CCCCGCCCCGGTGACCGCGG
2747





12355
CCCCCGCCCCGGTGACCGCG
2746





12356
GCCCCCGCCCCGGTGACCGC
2745





12357
GGCCCCCGCCCCGGTGACCG
2744





12358
TGGCCCCCGCCCCGGTGACC
2743





12359
CTGGCCCCCGCCCCGGTGAC
2742





12360
CCTGGCCCCCGCCCCGGTGA
2741





12361
CCCTGGCCCCCGCCCCGGTG
2740





12362
CCCCTGGCCCCCGCCCCGGT
2739





12363
CCCCCTGGCCCCCGCCCCGG
2738





12364
GCCCCCTGGCCCCCGCCCCG
2737





12365
CGCCCCCTGGCCCCCGCCCC
2736





12366
TCGCCCCCTGGCCCCCGCCC
2735





12367
CTCGCCCCCTGGCCCCCGCC
2734





12368
CCTCGCCCCCTGGCCCCCGC
2733





12369
TCCTCGCCCCCTGGCCCCCG
2732





12370
TTCCTCGCCCCCTGGCCCCC
2731





12371
TTTCCTCGCCCCCTGGCCCC
2730





12372
CTTTCCTCGCCCCCTGGCCC
2729





12373
GCTTTCCTCGCCCCCTGGCC
2728





12374
CGCTTTCCTCGCCCCCTGGC
2727





12375
ACGCTTTCCTCGCCCCCTGG
2726





12376
CACGCTTTCCTCGCCCCCTG
2725





12377
TCACGCTTTCCTCGCCCCCT
2724





12378
TTCACGCTTTCCTCGCCCCC
2723





12379
CTTCACGCTTTCCTCGCCCC
2722





12380
CCTTCACGCTTTCCTCGCCC
2721





12381
ACCTTCACGCTTTCCTCGCC
2720





12382
CACCTTCACGCTTTCCTCGC
2719





12383
TCACCTTCACGCTTTCCTCG
2718





12384
ATCACCTTCACGCTTTCCTC
2717





12385
AATCACCTTCACGCTTTCCT
2716





12386
AAATCACCTTCACGCTTTCC
2715





12387
GAAATCACCTTCACGCTTTC
2714





12388
CGGGACTCAGCGCGGCTGCGCGCCG
2907





12389
GGGACTCAGCGCGGCTGCGC
2908





12390
GGACTCAGCGCGGCTGCGCG
2909





12391
GACTCAGCGCGGCTGCGCGC
2910





12392
ACTCAGCGCGGCTGCGCGCC
2911





12393
CTCAGCGCGGCTGCGCGCCG
2912





12394
TCAGCGCGGCTGCGCGCCGC
2913





12395
CAGCGCGGCTGCGCGCCGCG
2914





12396
AGCGCGGCTGCGCGCCGCGG
2915





12397
GCGCGGCTGCGCGCCGCGGG
2916





12398
CGCGGCTGCGCGCCGCGGGG
2917





12399
GCGGCTGCGCGCCGCGGGGC
2918





12400
CGGCTGCGCGCCGCGGGGCT
2919





12401
GGCTGCGCGCCGCGGGGCTC
2920





12402
GCTGCGCGCCGCGGGGCTCG
2921





12403
CTGCGCGCCGCGGGGCTCGG
2922





12404
TGCGCGCCGCGGGGCTCGGG
2923





12405
GCGCGCCGCGGGGCTCGGGG
2924





12406
CGCGCCGCGGGGCTCGGGGC
2925





12407
GCGCCGCGGGGCTCGGGGCT
2926





12408
CGCCGCGGGGCTCGGGGCTT
2927





12409
GCCGCGGGGCTCGGGGCTTG
2928





12410
CCGCGGGGCTCGGGGCTTGG
2929





12411
CGCGGGGCTCGGGGCTTGGG
2930





12412
GCGGGGCTCGGGGCTTGGGT
2931





12413
CGGGGCTCGGGGCTTGGGTT
2932





12414
GGGGCTCGGGGCTTGGGTTG
2933





12415
GGGCTCGGGGCTTGGGTTGG
2934





12416
GGCTCGGGGCTTGGGTTGGG
2935





12417
GCTCGGGGCTTGGGTTGGGG
2936





12418
CTCGGGGCTTGGGTTGGGGG
2937





12419
TCGGGGCTTGGGTTGGGGGC
2938





12420
CGGGGCTTGGGTTGGGGGCG
2939





12421
CCGGGACTCAGCGCGGCTGC
2906





12422
CCCGGGACTCAGCGCGGCTG
2905





12423
CCCCGGGACTCAGCGCGGCT
2904





12424
ACCCCGGGACTCAGCGCGGC
2903





12425
GACCCCGGGACTCAGCGCGG
2902





12426
AGACCCCGGGACTCAGCGCG
2901





12427
CAGACCCCGGGACTCAGCGC
2900





12428
GCAGACCCCGGGACTCAGCG
2899





12429
CGCAGACCCCGGGACTCAGC
2898





12430
ACGCAGACCCCGGGACTCAG
2897





12431
GACGCAGACCCCGGGACTCA
2896





12432
CGACGCAGACCCCGGGACTC
2895





12433
GCGACGCAGACCCCGGGACT
2894





12434
CGCGACGCAGACCCCGGGAC
2893





12435
CCGCGACGCAGACCCCGGGA
2892





12436
GCCGCGACGCAGACCCCGGG
2891





12437
CGCCGCGACGCAGACCCCGG
2890





12438
GCGCCGCGACGCAGACCCCG
2889





12439
CGCGCCGCGACGCAGACCCC
2888





12440
GCGCGCCGCGACGCAGACCC
2887





12441
GGCGCGCCGCGACGCAGACC
2886





12442
CGGCGCGCCGCGACGCAGAC
2885





12443
CCGGCGCGCCGCGACGCAGA
2884





12444
ACCGGCGCGCCGCGACGCAG
2883





12445
AACCGGCGCGCCGCGACGCA
2882





12446
GAACCGGCGCGCCGCGACGC
2881





12447
GGAACCGGCGCGCCGCGACG
2880





12448
AGGAACCGGCGCGCCGCGAC
2879





12449
CAGGAACCGGCGCGCCGCGA
2878





12450
TCAGGAACCGGCGCGCCGCG
2877





12451
TTCAGGAACCGGCGCGCCGC
2876





12452
ATTCAGGAACCGGCGCGCCG
2875





12453
CATTCAGGAACCGGCGCGCC
2874





12454
TCATTCAGGAACCGGCGCGC
2873





12455
TTCATTCAGGAACCGGCGCG
2872





12456
GTTCATTCAGGAACCGGCGC
2871





12457
CGTTCATTCAGGAACCGGCG
2870





12458
GCGTTCATTCAGGAACCGGC
2869





12459
CGCGTTCATTCAGGAACCGG
2868





12460
GCGCGTTCATTCAGGAACCG
2867





12461
AGCGCGTTCATTCAGGAACC
2866





12462
GAGCGCGTTCATTCAGGAAC
2865





12463
GGAGCGCGTTCATTCAGGAA
2864





12464
GGGAGCGCGTTCATTCAGGA
2863





12465
AGGGAGCGCGTTCATTCAGG
2862





12466
AAGGGAGCGCGTTCATTCAG
2861





12467
GAAGGGAGCGCGTTCATTCA
2860





12468
GGAAGGGAGCGCGTTCATTC
2859





12469
GGGAAGGGAGCGCGTTCATT
2858



















Hot Zones (Relative upstream location to gene start site)







 1-250


550-700


2700-2300









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13676)







GGCCCTGCCGCCCAGAACTCGCTGGGCAAGTCGTGCCCCGCGTGAACACA





CAGAAGGGGCTTGGGGACCGAGCGCGGCCCATCAGTCCCTCAGACCCTGA





GGACCCAGAATTCCCTAAGGGGTCCGAATCCGAGTCCTGCCCCCAGCCCT





TAAGGCACGGGCTCCAGGGACCCCAGGGGAAGGGCGCGGGGCATTAGGTA





CGCAACCCGTTTCCCCGCACCTGGAAAAAAACTCCCTTTCCCTCCCCTCC





CCTGCTTGTTGAGTGTCCGGATAACCAGAACTCTAAGGCGCCCCGTAATA





ACGACCCCGCTGTCCCTCCACCCACCCCCAAGTGCCAAAGCGAGGGATGG





AAGCGCTTTCAAGCGTTCCAAGGGCATTGAGGAGCGAGCTGGAGAGGCGC





GGGGATGCGGGGTCCTCCCCGCAGTCTTCCGGAAAGGGCGGGGGAGGGCG





CGGCAAGTTCCGGAGTGGGGCATGCCGTGGGAGCCCACGAGGGCCTCAGC





GCGGATCCTCCGCCGGAAAACCGGCTCCCGCGAGCCGCCGCCGCAGGTTT





CCTAGGCCCCGCGAGTCCCGCAGCGAAGCCCTGCGTCTCCGTCCGACGCG





GGGGTCTGCTCAGCCTCGGGTGGGCCGCGGCCAGGCCTGACTGCGGGGGA





GAGGGCCGAACGTGACCTCCGAGGTCACCCCCAGCCAGCTTTCTCTCCTG





TGGTCGGAAGTGGTTTTCTTCTCGATCTGGGCGCCTACTCCCCACCACTT





GGTCTGAGAGGGGCTGGGGCCGGAAGGCCAGGGAATCTCTGGTGGATTTG





GGGGTTCATATTGCTCAGGGTACCAGCCGATGCGTTTTGAGGGGCGGGAG





TCGAGGAATTAGAATCGCCTTTAACCCTCAAGAGTTGCGCCTTCAGCCTC





GGGATCCCAGATGCGTCGTTGGAGCCAGGGCCGCCCCCCTACCTGTTGGG





TTTGCGTTTTAACTCCAGCGCACACCTTGCCGGCAGCCCTCGGAGCTAGG





GGAGGGGTCTCGTTTCCCCGCAGCCCGCCGGACAGACGACTGGGGCACGG





GAGGGGCGGTGGCAGGGTGGTCTGTGTGTGGCTGAAACTAATTGATCTGG





AGCGGAAACGCACGTCTGCGGTTGGGGCGATGGGGGGGGCGGTGCGGCTG





TCCATGTGCCGAGCGTGTGGCTGTCTCGGGTGGGCACTGGGGCCGGAGTT





CGCCCCGGCCCACCTCGCAGTTTTGGGGCGCCTGGGATCGGCGCTACGTA





AGCGAAGCAGAGCTGCCATAGCACGTGGGCCGCCACGCGCACCCCAAAAG





CAAGCAGTGTGGGGGGAAGGGGAGCTCGAGCGCCTTCGGAGCCCAGGGGC





CGGCTTTCGGAAGCGTTTTCCCGGGCGACTTAAGGGCTTAACAATGGAAA





ACTCGCGGAGCCTGAGCCAAGTCCTTTCAAGTCGCCGCCAGGTATGCGGC





TGCAGGTGACCCCACCTGGGTGCGCCCGCCCGCCAGCCGCCCTGGTGGAA





AAGCGGGTGCGGGAGGTCGCTGGCGAAAGGTCGGGACTGGTCCCTGCACC





ACCCGCCCCCAACCCAAGCCCCGAGCCCCGCGGCGCGCAGCCGCGCTGAG





TCCCGGGGTCTGCGTCGCGGCGCGCCGGTTCCTGAATGAACGCGCTCCCT





TCCCCCGCCTGAATGAAGGTTCCCACAGCCAGGGACGGTGGCGAACACGC





GCCTGCAGCGGAATTCGCTTTCTCCTGACCGACCATCCGCCCAGGCCGCG





GTCACCGGGGCGGGGGCCAGGGGGCGAGGAAAGCGTGAAGGTGATTTCAG





TTAATTTTGGATTTTCTTTCAAACAACGTGGTTACCCTCCCGACTGGGCC





ACTTGCCCTTTGTCTCCAAATGGTCACCAAGAAATAAGAACAGAGCACTT





TAAATGAGCCCAGAATCCGCAGTTCCTGCTTCGTGGTGGGTTTTAAGAAG





ACAGTGTAAAGTAAAACTGCAACCGAAAAGTTTTTTAAAGTTGCTTTTCT





CTTTGGAAAAAATAAAATCAAAATGCTTTCTCTGCGCTTCTTGAAGCAAT





GACCCTCAAAAGCCCAGAGGTATTGGCCCCCTCGGGGGACCCGGGGGCCG





CCAAGCAGGGTTCCCCCAGGTGGGGGCTGGGCAGCTGGCGCTCCCCGCCG





GGCCCCAAATTCCAGCGCCGGGCCCCAAATTCCAGCGCCTCCCCCGCGGG





TTCCTGGACGGCTCTTTACGCTCGCTAACCGGGCTTGCAATTTTGCGCTC





GTCCCTGAGCCGGGAAATCAACGAAGTTCCTAGTCGAGATCTGCCCGGTC





CGCCTAGTAACAGCGCCGCGCCCCCATTGGCTCATGCTAATTCCAGTTTC





CTCTGTCTTGCGCCCGGGATGGGGGGGTGAAGCTCCCTCCTGGACCCAGA





GCCGGTTGTGCCGGAGTGGGCGAGCCTCTTTATGCCCTGCTGCCCCTAGC





CGACTTCGGCCCGCTTCGCGCCTCGGGCTGGGCCAGGGCGCACGCGGGGC





TCGGGGCCCCTCGCCCCACGGGATGGGAGAGGCCGGGTGATAGCTCCGGG





CCCCATAAATCATCCAGGCGGCCGCCGGGTCGGGATTTTATGAATGAAAA





AGCAGCTGGGCCGCCCTTGTGCGCGGGCTGATGCTCTGAGGCTTGGCTAT





GCGGGGGCCAACGCGATTGTGGGTGCTCGGGGAGTGGGGGGGGGCACGAC





CGTAGGTGCTCCCTGCTGGGGCAACCCATCGCTCCCCATGCGGAATCCGG





GGGTAATTACCCCCCCAGGACCCGGAATATTAGTAATCCTAATTCCCGGC





GGGGGAGGGGGCGCGGGAGGAATTCACCCTGAAAGGTGGGGGTGGGGGGG





GTCGCATCTTGCTGTGAGCACCCTGGCGAAGGGGAGAGGGCTTTTTCTAT





CAGTTTTCTTTGAGCTTTTACTGTTAAGAGGGTACGGTGGTTTGATGACA





CTGAACTATATTCAAAAGGAAGTAAATGAACAGTTTTCTTAATTTGGGGC





AGGTACTGTAAAAATAAAAACAAAAGTTAAGACAGTAAAATGTCCTTTTA





TTTTTTAATGCACCAAAGAGACAGAACCTGTAATTTTAAAAACTGTGTAT





TTTAATTTACATCTGCTTAAGTTTGCGATAATATTGGGGACCCTCTCATG





TAACCACGAACACCTATCGATTTTGCTAAAAATCAGATCAGTACACTCGT





TTGTTTAATTGATAATTGTTCTGAATTATGCCGGCTCCTGCCAGCCCCCT





CACGCTCACGAATTCAGTCCCAGGGCAAATTCTAAAGGTGAAGGGACGTC





TACACCCCCAACAAAACCAATTAGGAACCTTCGGTGGTCTTGTCCCAGGC





AGAGGGGACTAATATTTCCAGCAATTTAATTTCTTTTTTAATTAAAAAAA





ATGAGTCAGAATGGAGATCACTGTTTCTCAGCTTTCCATTCAGAGGTGTG





TTTCTCCCGGTTAAATTGCCGGCACGGGAAGGGAGGGGGTGCAGTTGGGG





ACCCCCGCAAGGACCGACTGGTCAAGGTAGGAAGGCAGCCCGAAGAGTCT





CCAGGCTAGAAGGACAAGATGAAGGAAATGCTGGCCACCATCTTGGGCTG





CTGCTGGAATTTTCGGGCATTTATTTTATTTTATTTTTTGAGCGAGCGCA





TGCTAAGCTGAAATCCCTTTAACTTTTAGGGTTACCCCCTTGGGCATTTG





CAACGACGCCCCTGTGCGCCGGAATGAAACTTGCACAGGGGTTGTGTGCC





CGGTCCTCCCCGTCCTTGCATGCTAAATTAGTTCTTGCAATTTACACGTG





TTAATGAAAATGAAAGAAGATGCAGTCGCTGAGATTCTTTGGCCGTCTGT





CCGCCCGTGGGTGCCCTCGTGGCGTTCTTGGAAATGCGCCCATTCTGCCG





GCTTGGATATGGGGTGTCGCCGCGCCCCAGTCACCCCTTCTCGTGGTCTC





CCCAGGCTGCGTGTGGCCTGCCGGCCTTCCTAGTTGTCCCCTACTGCAGA





GCCACCTCCACCTCACCCCCTAAATCCCGGGGGACCCACTCGAGGCGGAC





GGGGCCCCCTGCACCCCTCTTCCCTGGCGGGGAGAAAGGCTGCAGCGGGG





CGATTTGCATTTCTATGAAAACCGGACTACAGGGGCAACTCCGCCGCAGG





GCAGGCGCGGCGCCTCAGGGATGGCTTTTGGGCTCTGCCCCTCGCTGCTC





CCGGCGTTTGGCGCCCGCGCCCCCTCCCCCTGCGCCCGCCCCCGCCCCCC





TCCCGCTCCCATTCTCTGCCGGGCTTTGATCTTTGCTTAACAACAGTAAC





GTCACACGGACTACAGGGGAGTTTTGTTGAAGTTGCAAAGTCCTGGAGCC





TCCAGAGGGCTGTCGGCGCAGTAGCAGCGAGCAGCAGAGTCCGCACGCTC





CGGCGAGGGGCAGAAGAGCGCGAGGGAGCGCGGGGCAGCAGAAGCGAGAG





CCGAGCGCGGACCCAGCCAGGACCCACAGCCCTCCCCAGCTGCCCAGGAA





GAGCCCCAGCCATG






MIF1


MIF1 (macrophage migration inhibitory factor 1) is a lymphokine involved in cell-mediated immunity, immunoregulation, and inflammation. MIF forms a homotrimer with three catalytic sites. The MIF homotrimer can enter a cell via endocytosis where it interacts with intracellular proteins. This interaction results in downregulating MAPK signals leading to activation of Cyclin D1 and subsequent cellular proliferation. Depending on the cellular environment, MIF may also have antioxidant activity which would inhibit apoptosis. Apoptosis can also be inhibited via a MIF-CD74 complex. MIF has been associated with inflammation, including rheumatoid arthritis, sepsis, and cancer.


Protein: MIF1 Gene: MIF1 (Homo sapiens, chromosome 22, 24236565-24237409[NCBI Reference Sequence: NC000022.10]; start site location: 24236662; strand: positive)












Gene Identification


















GeneID
4282



HGNC
7097



HPRD
01091



MIM
153620




















Targeted Sequences













Relative upstream


Sequence
Design

location to gene start


ID No:
ID
Sequence (5′-3′)
site













12470

GACCCGCGCAGAGGCACAGACGC
22





12490

CGCCACCGCCGGCGCCAGGCCCCGCCCCCGCG
123





12701

CGTTCCTCCAGCAACCGCCGCTAAGCCCGGCG
238





12902

CGCCTGCCTCGGCTCGACCCCCGCAG
182





13123

CGGCTAGAAATCGGCCTGTTCCGGCCTCGCCT
297





13174

CGGGGGTGGGGATGCGGCGGTGAACCCG
384





13175

CGCGGCAGGTGAGAGGGGAGCTGCCCCTGCG
568





13176

CGCGTGCACGTGTGTCCACATGAGTGC
3656





13203
MIF1_1
CGCCACCGCCGGCGCCAGGCCCCGCC
117





13414
MIF1_2
CGCGGCAGGTGAGAGGGGAGCTGCCC
563



















Target Shift Sequences











Relative




upstream




location




to gene


Sequence

start


ID No:
Sequence (5′-3′)
site












12470
GACCCGCGCAGAGGCACAGACGC
20





12471
ACCCGCGCAGAGGCACAGAC
21





12472
CCCGCGCAGAGGCACAGACG
22





12473
CCGCGCAGAGGCACAGACGC
23





12474
CGCGCAGAGGCACAGACGCA
24





12475
GCGCAGAGGCACAGACGCAC
25





12476
CGCAGAGGCACAGACGCACG
26





12477
GCAGAGGCACAGACGCACGC
27





12478
CAGAGGCACAGACGCACGCG
28





12479
AGAGGCACAGACGCACGCGC
29





12480
GAGGCACAGACGCACGCGCC
30





12481
AGGCACAGACGCACGCGCCG
31





12482
GGCACAGACGCACGCGCCGC
32





12483
GCACAGACGCACGCGCCGCG
33





12484
CACAGACGCACGCGCCGCGG
34





12485
ACAGACGCACGCGCCGCGGC
35





12486
CAGACGCACGCGCCGCGGCC
36





12487
AGACCCGCGCAGAGGCACAG
19





12488
GAGACCCGCGCAGAGGCACA
18





12489
GGAGACCCGCGCAGAGGCAC
17





12490
CGCCACCGCCGGCGCCAGGC
112



CCCGCCCCCGCG





12491
GCCACCGCCGGCGCCAGGCC
113





12492
CCACCGCCGGCGCCAGGCCC
114





12493
CACCGCCGGCGCCAGGCCCC
115





12494
ACCGCCGGCGCCAGGCCCCG
116





12495
CCGCCGGCGCCAGGCCCCGC
117





12496
CGCCGGCGCCAGGCCCCGCC
118





12497
GCCGGCGCCAGGCCCCGCCC
119





12498
CCGGCGCCAGGCCCCGCCCC
120





12499
CGGCGCCAGGCCCCGCCCCC
121





12500
GGCGCCAGGCCCCGCCCCCG
122





12501
GCGCCAGGCCCCGCCCCCGC
123





12502
CGCCAGGCCCCGCCCCCGCG
124





12503
GCCAGGCCCCGCCCCCGCGA
125





12504
CCAGGCCCCGCCCCCGCGAG
126





12505
CAGGCCCCGCCCCCGCGAGG
127





12506
AGGCCCCGCCCCCGCGAGGC
128





12507
GGCCCCGCCCCCGCGAGGCT
129





12508
GCCCCGCCCCCGCGAGGCTG
130





12509
CCCCGCCCCCGCGAGGCTGC
131





12510
CCCGCCCCCGCGAGGCTGCG
132





12511
CCGCCCCCGCGAGGCTGCGG
133





12512
CGCCCCCGCGAGGCTGCGGC
134





12513
GCCCCCGCGAGGCTGCGGCT
135





12514
CCCCCGCGAGGCTGCGGCTC
136





12515
CCCCGCGAGGCTGCGGCTCC
137





12516
CCCGCGAGGCTGCGGCTCCG
138





12517
CCGCGAGGCTGCGGCTCCGC
139





12518
CGCGAGGCTGCGGCTCCGCC
140





12519
GCGAGGCTGCGGCTCCGCCC
141





12520
CGAGGCTGCGGCTCCGCCCC
142





12521
GAGGCTGCGGCTCCGCCCCG
143





12522
AGGCTGCGGCTCCGCCCCGA
144





12523
GGCTGCGGCTCCGCCCCGAG
145





12524
GCTGCGGCTCCGCCCCGAGT
146





12525
CTGCGGCTCCGCCCCGAGTG
147





12526
TGCGGCTCCGCCCCGAGTGG
148





12527
GCGGCTCCGCCCCGAGTGGG
149





12528
CGGCTCCGCCCCGAGTGGGG
150





12529
GGCTCCGCCCCGAGTGGGGA
151





12530
GCTCCGCCCCGAGTGGGGAA
152





12531
CTCCGCCCCGAGTGGGGAAG
153





12532
TCCGCCCCGAGTGGGGAAGT
154





12533
CCGCCCCGAGTGGGGAAGTC
155





12534
CGCCCCGAGTGGGGAAGTCA
156





12535
GCCCCGAGTGGGGAAGTCAC
157





12536
CCCCGAGTGGGGAAGTCACC
158





12537
CCCGAGTGGGGAAGTCACCG
159





12538
CCGAGTGGGGAAGTCACCGC
160





12539
CGAGTGGGGAAGTCACCGCC
161





12540
GAGTGGGGAAGTCACCGCCT
162





12541
AGTGGGGAAGTCACCGCCTG
163





12542
GTGGGGAAGTCACCGCCTGC
164





12543
TGGGGAAGTCACCGCCTGCC
165





12544
GGGGAAGTCACCGCCTGCCT
166





12545
GGGAAGTCACCGCCTGCCTC
167





12546
GGAAGTCACCGCCTGCCTCG
168





12547
GAAGTCACCGCCTGCCTCGG
169





12548
AAGTCACCGCCTGCCTCGGC
170





12549
AGTCACCGCCTGCCTCGGCT
171





12550
GTCACCGCCTGCCTCGGCTC
172





12551
TCACCGCCTGCCTCGGCTCG
173





12552
CACCGCCTGCCTCGGCTCGA
174





12553
ACCGCCTGCCTCGGCTCGAC
175





12554
CCGCCTGCCTCGGCTCGACC
176





12555
CGCCTGCCTCGGCTCGACCC
177





12556
GCCTGCCTCGGCTCGACCCC
178





12557
CCTGCCTCGGCTCGACCCCC
179





12558
CTGCCTCGGCTCGACCCCCG
180





12559
TGCCTCGGCTCGACCCCCGC
181





12560
GCCTCGGCTCGACCCCCGCA
182





12561
CCTCGGCTCGACCCCCGCAG
183





12562
CTCGGCTCGACCCCCGCAGG
184





12563
TCGGCTCGACCCCCGCAGGG
185





12564
CGGCTCGACCCCCGCAGGGC
186





12565
GGCTCGACCCCCGCAGGGCA
187





12566
GCTCGACCCCCGCAGGGCAG
188





12567
CTCGACCCCCGCAGGGCAGG
189





12568
TCGACCCCCGCAGGGCAGGA
190





12569
CGACCCCCGCAGGGCAGGAC
191





12570
GACCCCCGCAGGGCAGGACC
192





12571
ACCCCCGCAGGGCAGGACCC
193





12572
CCCCCGCAGGGCAGGACCCT
194





12573
CCCCGCAGGGCAGGACCCTG
195





12574
CCCGCAGGGCAGGACCCTGG
196





12575
CCGCAGGGCAGGACCCTGGG
197





12576
CGCAGGGCAGGACCCTGGGC
198





12577
GCAGGGCAGGACCCTGGGCG
199





12578
CAGGGCAGGACCCTGGGCGA
200





12579
AGGGCAGGACCCTGGGCGAC
201





12580
GGGCAGGACCCTGGGCGACT
202





12581
GGCAGGACCCTGGGCGACTC
203





12582
GCAGGACCCTGGGCGACTCC
204





12583
CAGGACCCTGGGCGACTCCG
205





12584
AGGACCCTGGGCGACTCCGC
206





12585
GGACCCTGGGCGACTCCGCC
207





12586
GACCCTGGGCGACTCCGCCC
208





12587
ACCCTGGGCGACTCCGCCCG
209





12588
CCCTGGGCGACTCCGCCCGT
210





12589
CCTGGGCGACTCCGCCCGTT
211





12590
CTGGGCGACTCCGCCCGTTC
212





12591
TGGGCGACTCCGCCCGTTCC
213





12592
GGGCGACTCCGCCCGTTCCT
214





12593
GGCGACTCCGCCCGTTCCTC
215





12594
GCGACTCCGCCCGTTCCTCC
216





12595
CGACTCCGCCCGTTCCTCCA
217





12596
GACTCCGCCCGTTCCTCCAG
218





12597
ACTCCGCCCGTTCCTCCAGC
219





12598
CTCCGCCCGTTCCTCCAGCA
220





12599
TCCGCCCGTTCCTCCAGCAA
221





12600
CCGCCCGTTCCTCCAGCAAC
222





12601
CGCCCGTTCCTCCAGCAACC
223





12602
GCCCGTTCCTCCAGCAACCG
224





12603
CCCGTTCCTCCAGCAACCGC
225





12604
CCGTTCCTCCAGCAACCGCC
226





12605
CGTTCCTCCAGCAACCGCCG
227





12606
GTTCCTCCAGCAACCGCCGC
228





12607
TTCCTCCAGCAACCGCCGCT
229





12608
TCCTCCAGCAACCGCCGCTA
230





12609
CCTCCAGCAACCGCCGCTAA
231





12610
CTCCAGCAACCGCCGCTAAG
232





12611
TCCAGCAACCGCCGCTAAGC
233





12612
CCAGCAACCGCCGCTAAGCC
234





12613
CAGCAACCGCCGCTAAGCCC
235





12614
AGCAACCGCCGCTAAGCCCG
236





12615
GCAACCGCCGCTAAGCCCGG
237





12616
CAACCGCCGCTAAGCCCGGC
238





12617
AACCGCCGCTAAGCCCGGCG
239





12618
ACCGCCGCTAAGCCCGGCGC
240





12619
CCGCCGCTAAGCCCGGCGCA
241





12620
CGCCGCTAAGCCCGGCGCAC
242





12621
GCCGCTAAGCCCGGCGCACC
243





12622
CCGCTAAGCCCGGCGCACCG
244





12623
CGCTAAGCCCGGCGCACCGC
245





12624
GCTAAGCCCGGCGCACCGCT
246





12625
CTAAGCCCGGCGCACCGCTC
247





12626
TAAGCCCGGCGCACCGCTCC
248





12627
AAGCCCGGCGCACCGCTCCA
249





12628
AGCCCGGCGCACCGCTCCAA
250





12629
GCCCGGCGCACCGCTCCAAC
251





12630
CCCGGCGCACCGCTCCAACC
252





12631
CCGGCGCACCGCTCCAACCT
253





12632
CGGCGCACCGCTCCAACCTG
254





12633
GGCGCACCGCTCCAACCTGT
255





12634
GCGCACCGCTCCAACCTGTT
256





12635
CGCACCGCTCCAACCTGTTC
257





12636
GCACCGCTCCAACCTGTTCT
258





12637
CACCGCTCCAACCTGTTCTC
259





12638
ACCGCTCCAACCTGTTCTCC
260





12639
CCGCTCCAACCTGTTCTCCA
261





12640
CGCTCCAACCTGTTCTCCAC
262





12641
ACGCCACCGCCGGCGCCAGG
111





12642
GACGCCACCGCCGGCGCCAG
110





12643
TGACGCCACCGCCGGCGCCA
109





12644
GTGACGCCACCGCCGGCGCC
108





12645
TGTGACGCCACCGCCGGCGC
107





12646
TTGTGACGCCACCGCCGGCG
106





12647
TTTGTGACGCCACCGCCGGC
105





12648
TTTTGTGACGCCACCGCCGG
104





12649
CTTTTGTGACGCCACCGCCG
103





12650
CCTTTTGTGACGCCACCGCC
102





12651
GCCTTTTGTGACGCCACCGC
101





12652
CGCCTTTTGTGACGCCACCG
100





12653
CCGCCTTTTGTGACGCCACC
99





12654
CCCGCCTTTTGTGACGCCAC
98





12655
TCCCGCCTTTTGTGACGCCA
97





12656
GTCCCGCCTTTTGTGACGCC
96





12657
GGTCCCGCCTTTTGTGACGC
95





12658
TGGTCCCGCCTTTTGTGACG
94





12659
GTGGTCCCGCCTTTTGTGAC
93





12660
TGTGGTCCCGCCTTTTGTGA
92





12661
CTGTGGTCCCGCCTTTTGTG
91





12662
ACTGTGGTCCCGCCTTTTGT
90





12663
CACTGTGGTCCCGCCTTTTG
89





12664
CCACTGTGGTCCCGCCTTTT
88





12665
ACCACTGTGGTCCCGCCTTT
87





12666
CACCACTGTGGTCCCGCCTT
86





12667
ACACCACTGTGGTCCCGCCT
85





12668
GACACCACTGTGGTCCCGCC
84





12669
GGACACCACTGTGGTCCCGC
83





12670
CGGACACCACTGTGGTCCCG
82





12671
TCGGACACCACTGTGGTCCC
81





12672
CTCGGACACCACTGTGGTCC
80





12673
TCTCGGACACCACTGTGGTC
79





12674
TTCTCGGACACCACTGTGGT
78





12675
CTTCTCGGACACCACTGTGG
77





12676
ACTTCTCGGACACCACTGTG
76





12677
GACTTCTCGGACACCACTGT
75





12678
TGACTTCTCGGACACCACTG
74





12679
CTGACTTCTCGGACACCACT
73





12680
CCTGACTTCTCGGACACCAC
72





12681
GCCTGACTTCTCGGACACCA
71





12682
TGCCTGACTTCTCGGACACC
70





12683
GTGCCTGACTTCTCGGACAC
69





12684
CGTGCCTGACTTCTCGGACA
68





12685
ACGTGCCTGACTTCTCGGAC
67





12686
TACGTGCCTGACTTCTCGGA
66





12687
CTACGTGCCTGACTTCTCGG
65





12688
GCTACGTGCCTGACTTCTCG
64





12689
AGCTACGTGCCTGACTTCTC
63





12690
GAGCTACGTGCCTGACTTCT
62





12691
TGAGCTACGTGCCTGACTTC
61





12692
CTGAGCTACGTGCCTGACTT
60





12693
GCTGAGCTACGTGCCTGACT
59





12694
CGCTGAGCTACGTGCCTGAC
58





12695
CCGCTGAGCTACGTGCCTGA
57





12696
GCCGCTGAGCTACGTGCCTG
56





12697
CGCCGCTGAGCTACGTGCCT
55





12698
CCGCCGCTGAGCTACGTGCC
54





12699
GCCGCCGCTGAGCTACGTGC
53





12700
GGCCGCCGCTGAGCTACGTG
52





12701
CGTTCCTCCAGCAACCGCCGCTAAGCCCGGCG
227





12702
GTTCCTCCAGCAACCGCCGC
228





12703
TTCCTCCAGCAACCGCCGCT
229





12704
TCCTCCAGCAACCGCCGCTA
230





12705
CCTCCAGCAACCGCCGCTAA
231





12706
CTCCAGCAACCGCCGCTAAG
232





12707
TCCAGCAACCGCCGCTAAGC
233





12708
CCAGCAACCGCCGCTAAGCC
234





12709
CAGCAACCGCCGCTAAGCCC
235





12710
AGCAACCGCCGCTAAGCCCG
236





12711
GCAACCGCCGCTAAGCCCGG
237





12712
CAACCGCCGCTAAGCCCGGC
238





12713
AACCGCCGCTAAGCCCGGCG
239





12714
ACCGCCGCTAAGCCCGGCGC
240





12715
CCGCCGCTAAGCCCGGCGCA
241





12716
CGCCGCTAAGCCCGGCGCAC
242





12717
GCCGCTAAGCCCGGCGCACC
243





12718
CCGCTAAGCCCGGCGCACCG
244





12719
CGCTAAGCCCGGCGCACCGC
245





12720
GCTAAGCCCGGCGCACCGCT
246





12721
CTAAGCCCGGCGCACCGCTC
247





12722
TAAGCCCGGCGCACCGCTCC
248





12723
AAGCCCGGCGCACCGCTCCA
249





12724
AGCCCGGCGCACCGCTCCAA
250





12725
GCCCGGCGCACCGCTCCAAC
251





12726
CCCGGCGCACCGCTCCAACC
252





12727
CCGGCGCACCGCTCCAACCT
253





12728
CGGCGCACCGCTCCAACCTG
254





12729
GGCGCACCGCTCCAACCTGT
255





12730
GCGCACCGCTCCAACCTGTT
256





12731
CGCACCGCTCCAACCTGTTC
257





12732
GCACCGCTCCAACCTGTTCT
258





12733
CACCGCTCCAACCTGTTCTC
259





12734
ACCGCTCCAACCTGTTCTCC
260





12735
CCGCTCCAACCTGTTCTCCA
261





12736
CGCTCCAACCTGTTCTCCAC
262





12737
CCGTTCCTCCAGCAACCGCC
226





12738
CCCGTTCCTCCAGCAACCGC
225





12739
GCCCGTTCCTCCAGCAACCG
224





12740
CGCCCGTTCCTCCAGCAACC
223





12741
CCGCCCGTTCCTCCAGCAAC
222





12742
TCCGCCCGTTCCTCCAGCAA
221





12743
CTCCGCCCGTTCCTCCAGCA
220





12744
ACTCCGCCCGTTCCTCCAGC
219





12745
GACTCCGCCCGTTCCTCCAG
218





12746
CGACTCCGCCCGTTCCTCCA
217





12747
GCGACTCCGCCCGTTCCTCC
216





12748
GGCGACTCCGCCCGTTCCTC
215





12749
GGGCGACTCCGCCCGTTCCT
214





12750
TGGGCGACTCCGCCCGTTCC
213





12751
CTGGGCGACTCCGCCCGTTC
212





12752
CCTGGGCGACTCCGCCCGTT
211





12753
CCCTGGGCGACTCCGCCCGT
210





12754
ACCCTGGGCGACTCCGCCCG
209





12755
GACCCTGGGCGACTCCGCCC
208





12756
GGACCCTGGGCGACTCCGCC
207





12757
AGGACCCTGGGCGACTCCGC
206





12758
CAGGACCCTGGGCGACTCCG
205





12759
GCAGGACCCTGGGCGACTCC
204





12760
GGCAGGACCCTGGGCGACTC
203





12761
GGGCAGGACCCTGGGCGACT
202





12762
AGGGCAGGACCCTGGGCGAC
201





12763
CAGGGCAGGACCCTGGGCGA
200





12764
GCAGGGCAGGACCCTGGGCG
199





12765
CGCAGGGCAGGACCCTGGGC
198





12766
CCGCAGGGCAGGACCCTGGG
197





12767
CCCGCAGGGCAGGACCCTGG
196





12768
CCCCGCAGGGCAGGACCCTG
195





12769
CCCCCGCAGGGCAGGACCCT
194





12770
ACCCCCGCAGGGCAGGACCC
193





12771
GACCCCCGCAGGGCAGGACC
192





12772
CGACCCCCGCAGGGCAGGAC
191





12773
TCGACCCCCGCAGGGCAGGA
190





12774
CTCGACCCCCGCAGGGCAGG
189





12775
GCTCGACCCCCGCAGGGCAG
188





12776
GGCTCGACCCCCGCAGGGCA
187





12777
CGGCTCGACCCCCGCAGGGC
186





12778
TCGGCTCGACCCCCGCAGGG
185





12779
CTCGGCTCGACCCCCGCAGG
184





12780
CCTCGGCTCGACCCCCGCAG
183





12781
GCCTCGGCTCGACCCCCGCA
182





12782
TGCCTCGGCTCGACCCCCGC
181





12783
CTGCCTCGGCTCGACCCCCG
180





12784
CCTGCCTCGGCTCGACCCCC
179





12785
GCCTGCCTCGGCTCGACCCC
178





12786
CGCCTGCCTCGGCTCGACCC
177





12787
CCGCCTGCCTCGGCTCGACC
176





12788
ACCGCCTGCCTCGGCTCGAC
175





12789
CACCGCCTGCCTCGGCTCGA
174





12790
TCACCGCCTGCCTCGGCTCG
173





12791
GTCACCGCCTGCCTCGGCTC
172





12792
AGTCACCGCCTGCCTCGGCT
171





12793
AAGTCACCGCCTGCCTCGGC
170





12794
GAAGTCACCGCCTGCCTCGG
169





12795
GGAAGTCACCGCCTGCCTCG
168





12796
GGGAAGTCACCGCCTGCCTC
167





12797
GGGGAAGTCACCGCCTGCCT
166





12798
TGGGGAAGTCACCGCCTGCC
165





12799
GTGGGGAAGTCACCGCCTGC
164





12800
AGTGGGGAAGTCACCGCCTG
163





12801
GAGTGGGGAAGTCACCGCCT
162





12802
CGAGTGGGGAAGTCACCGCC
161





12803
CCGAGTGGGGAAGTCACCGC
160





12804
CCCGAGTGGGGAAGTCACCG
159





12805
CCCCGAGTGGGGAAGTCACC
158





12806
GCCCCGAGTGGGGAAGTCAC
157





12807
CGCCCCGAGTGGGGAAGTCA
156





12808
CCGCCCCGAGTGGGGAAGTC
155





12809
TCCGCCCCGAGTGGGGAAGT
154





12810
CTCCGCCCCGAGTGGGGAAG
153





12811
GCTCCGCCCCGAGTGGGGAA
152





12812
GGCTCCGCCCCGAGTGGGGA
151





12813
CGGCTCCGCCCCGAGTGGGG
150





12814
GCGGCTCCGCCCCGAGTGGG
149





12815
TGCGGCTCCGCCCCGAGTGG
148





12816
CTGCGGCTCCGCCCCGAGTG
147





12817
GCTGCGGCTCCGCCCCGAGT
146





12818
GGCTGCGGCTCCGCCCCGAG
145





12819
AGGCTGCGGCTCCGCCCCGA
144





12820
GAGGCTGCGGCTCCGCCCCG
143





12821
CGAGGCTGCGGCTCCGCCCC
142





12822
GCGAGGCTGCGGCTCCGCCC
141





12823
CGCGAGGCTGCGGCTCCGCC
140





12824
CCGCGAGGCTGCGGCTCCGC
139





12825
CCCGCGAGGCTGCGGCTCCG
138





12826
CCCCGCGAGGCTGCGGCTCC
137





12827
CCCCCGCGAGGCTGCGGCTC
136





12828
GCCCCCGCGAGGCTGCGGCT
135





12829
CGCCCCCGCGAGGCTGCGGC
134





12830
CCGCCCCCGCGAGGCTGCGG
133





12831
CCCGCCCCCGCGAGGCTGCG
132





12832
CCCCGCCCCCGCGAGGCTGC
131





12833
GCCCCGCCCCCGCGAGGCTG
130





12834
GGCCCCGCCCCCGCGAGGCT
129





12835
AGGCCCCGCCCCCGCGAGGC
128





12836
CAGGCCCCGCCCCCGCGAGG
127





12837
CCAGGCCCCGCCCCCGCGAG
126





12838
GCCAGGCCCCGCCCCCGCGA
125





12839
CGCCAGGCCCCGCCCCCGCG
124





12840
GCGCCAGGCCCCGCCCCCGC
123





12841
GGCGCCAGGCCCCGCCCCCG
122





12842
CGGCGCCAGGCCCCGCCCCC
121





12843
CCGGCGCCAGGCCCCGCCCC
120





12844
GCCGGCGCCAGGCCCCGCCC
119





12845
CGCCGGCGCCAGGCCCCGCC
118





12846
CCGCCGGCGCCAGGCCCCGC
117





12847
ACCGCCGGCGCCAGGCCCCG
116





12848
CACCGCCGGCGCCAGGCCCC
115





12849
CCACCGCCGGCGCCAGGCCC
114





12850
GCCACCGCCGGCGCCAGGCC
113





12851
CGCCACCGCCGGCGCCAGGC
112





12852
ACGCCACCGCCGGCGCCAGG
111





12853
GACGCCACCGCCGGCGCCAG
110





12854
TGACGCCACCGCCGGCGCCA
109





12855
GTGACGCCACCGCCGGCGCC
108





12856
TGTGACGCCACCGCCGGCGC
107





12857
TTGTGACGCCACCGCCGGCG
106





12858
TTTGTGACGCCACCGCCGGC
105





12859
TTTTGTGACGCCACCGCCGG
104





12860
CTTTTGTGACGCCACCGCCG
103





12861
CCTTTTGTGACGCCACCGCC
102





12862
GCCTTTTGTGACGCCACCGC
101





12863
CGCCTTTTGTGACGCCACCG
100





12864
CCGCCTTTTGTGACGCCACC
99





12865
CCCGCCTTTTGTGACGCCAC
98





12866
TCCCGCCTTTTGTGACGCCA
97





12867
GTCCCGCCTTTTGTGACGCC
96





12868
GGTCCCGCCTTTTGTGACGC
95





12869
TGGTCCCGCCTTTTGTGACG
94





12870
GTGGTCCCGCCTTTTGTGAC
93





12871
TGTGGTCCCGCCTTTTGTGA
92





12872
CTGTGGTCCCGCCTTTTGTG
91





12873
ACTGTGGTCCCGCCTTTTGT
90





12874
CACTGTGGTCCCGCCTTTTG
89





12875
CCACTGTGGTCCCGCCTTTT
88





12876
ACCACTGTGGTCCCGCCTTT
87





12877
CACCACTGTGGTCCCGCCTT
86





12878
ACACCACTGTGGTCCCGCCT
85





12879
GACACCACTGTGGTCCCGCC
84





12880
GGACACCACTGTGGTCCCGC
83





12881
CGGACACCACTGTGGTCCCG
82





12882
TCGGACACCACTGTGGTCCC
81





12883
CTCGGACACCACTGTGGTCC
80





12884
TCTCGGACACCACTGTGGTC
79





12885
TTCTCGGACACCACTGTGGT
78





12886
CTTCTCGGACACCACTGTGG
77





12887
ACTTCTCGGACACCACTGTG
76





12888
GACTTCTCGGACACCACTGT
75





12889
TGACTTCTCGGACACCACTG
74





12890
CTGACTTCTCGGACACCACT
73





12891
CCTGACTTCTCGGACACCAC
72





12892
GCCTGACTTCTCGGACACCA
71





12893
TGCCTGACTTCTCGGACACC
70





12894
GTGCCTGACTTCTCGGACAC
69





12895
CGTGCCTGACTTCTCGGACA
68





12896
ACGTGCCTGACTTCTCGGAC
67





12897
TACGTGCCTGACTTCTCGGA
66





12898
CTACGTGCCTGACTTCTCGG
65





12899
GCTACGTGCCTGACTTCTCG
64





12900
AGCTACGTGCCTGACTTCTC
63





12901
GAGCTACGTGCCTGACTTCT
62





12902
TGAGCTACGTGCCTGACTTC
61





12903
CTGAGCTACGTGCCTGACTT
60





12904
GCTGAGCTACGTGCCTGACT
59





12905
CGCTGAGCTACGTGCCTGAC
58





12906
CCGCTGAGCTACGTGCCTGA
57





12907
GCCGCTGAGCTACGTGCCTG
56





12908
CGCCGCTGAGCTACGTGCCT
55





12909
CCGCCGCTGAGCTACGTGCC
54





12910
GCCGCCGCTGAGCTACGTGC
53





12911
GGCCGCCGCTGAGCTACGTG
52





12912
CGCCTGCCTCGGCTCGACCCCCGCAG
177





12913
GCCTGCCTCGGCTCGACCCC
178





12914
CCTGCCTCGGCTCGACCCCC
179





12915
CTGCCTCGGCTCGACCCCCG
180





12916
TGCCTCGGCTCGACCCCCGC
181





12917
GCCTCGGCTCGACCCCCGCA
182





12918
CCTCGGCTCGACCCCCGCAG
183





12919
CTCGGCTCGACCCCCGCAGG
184





12920
TCGGCTCGACCCCCGCAGGG
185





12921
CGGCTCGACCCCCGCAGGGC
186





12922
GGCTCGACCCCCGCAGGGCA
187





12923
GCTCGACCCCCGCAGGGCAG
188





12924
CTCGACCCCCGCAGGGCAGG
189





12925
TCGACCCCCGCAGGGCAGGA
190





12926
CGACCCCCGCAGGGCAGGAC
191





12927
GACCCCCGCAGGGCAGGACC
192





12928
ACCCCCGCAGGGCAGGACCC
193





12929
CCCCCGCAGGGCAGGACCCT
194





12930
CCCCGCAGGGCAGGACCCTG
195





12931
CCCGCAGGGCAGGACCCTGG
196





12932
CCGCAGGGCAGGACCCTGGG
197





12933
CGCAGGGCAGGACCCTGGGC
198





12934
GCAGGGCAGGACCCTGGGCG
199





12935
CAGGGCAGGACCCTGGGCGA
200





12936
AGGGCAGGACCCTGGGCGAC
201





12937
GGGCAGGACCCTGGGCGACT
202





12938
GGCAGGACCCTGGGCGACTC
203





12939
GCAGGACCCTGGGCGACTCC
204





12940
CAGGACCCTGGGCGACTCCG
205





12941
AGGACCCTGGGCGACTCCGC
206





12942
GGACCCTGGGCGACTCCGCC
207





12943
GACCCTGGGCGACTCCGCCC
208





12944
ACCCTGGGCGACTCCGCCCG
209





12945
CCCTGGGCGACTCCGCCCGT
210





12946
CCTGGGCGACTCCGCCCGTT
211





12947
CTGGGCGACTCCGCCCGTTC
212





12948
TGGGCGACTCCGCCCGTTCC
213





12949
GGGCGACTCCGCCCGTTCCT
214





12950
GGCGACTCCGCCCGTTCCTC
215





12951
GCGACTCCGCCCGTTCCTCC
216





12952
CGACTCCGCCCGTTCCTCCA
217





12953
GACTCCGCCCGTTCCTCCAG
218





12954
ACTCCGCCCGTTCCTCCAGC
219





12955
CTCCGCCCGTTCCTCCAGCA
220





12956
TCCGCCCGTTCCTCCAGCAA
221





12957
CCGCCCGTTCCTCCAGCAAC
222





12958
CGCCCGTTCCTCCAGCAACC
223





12959
GCCCGTTCCTCCAGCAACCG
224





12960
CCCGTTCCTCCAGCAACCGC
225





12961
CCGTTCCTCCAGCAACCGCC
226





12962
CGTTCCTCCAGCAACCGCCG
227





12963
GTTCCTCCAGCAACCGCCGC
228





12964
TTCCTCCAGCAACCGCCGCT
229





12965
TCCTCCAGCAACCGCCGCTA
230





12966
CCTCCAGCAACCGCCGCTAA
231





12967
CTCCAGCAACCGCCGCTAAG
232





12968
TCCAGCAACCGCCGCTAAGC
233





12969
CCAGCAACCGCCGCTAAGCC
234





12970
CAGCAACCGCCGCTAAGCCC
235





12971
AGCAACCGCCGCTAAGCCCG
236





12972
GCAACCGCCGCTAAGCCCGG
237





12973
CAACCGCCGCTAAGCCCGGC
238





12974
AACCGCCGCTAAGCCCGGCG
239





12975
ACCGCCGCTAAGCCCGGCGC
240





12976
CCGCCGCTAAGCCCGGCGCA
241





12977
CGCCGCTAAGCCCGGCGCAC
242





12978
GCCGCTAAGCCCGGCGCACC
243





12979
CCGCTAAGCCCGGCGCACCG
244





12980
CGCTAAGCCCGGCGCACCGC
245





12981
GCTAAGCCCGGCGCACCGCT
246





12982
CTAAGCCCGGCGCACCGCTC
247





12983
TAAGCCCGGCGCACCGCTCC
248





12984
AAGCCCGGCGCACCGCTCCA
249





12985
AGCCCGGCGCACCGCTCCAA
250





12986
GCCCGGCGCACCGCTCCAAC
251





12987
CCCGGCGCACCGCTCCAACC
252





12988
CCGGCGCACCGCTCCAACCT
253





12989
CGGCGCACCGCTCCAACCTG
254





12990
GGCGCACCGCTCCAACCTGT
255





12991
GCGCACCGCTCCAACCTGTT
256





12992
CGCACCGCTCCAACCTGTTC
257





12993
GCACCGCTCCAACCTGTTCT
258





12994
CACCGCTCCAACCTGTTCTC
259





12995
ACCGCTCCAACCTGTTCTCC
260





12996
CCGCTCCAACCTGTTCTCCA
261





12997
CGCTCCAACCTGTTCTCCAC
262





12998
CCGCCTGCCTCGGCTCGACC
176





12999
ACCGCCTGCCTCGGCTCGAC
175





13000
CACCGCCTGCCTCGGCTCGA
174





13001
TCACCGCCTGCCTCGGCTCG
173





13002
GTCACCGCCTGCCTCGGCTC
172





13003
AGTCACCGCCTGCCTCGGCT
171





13004
AAGTCACCGCCTGCCTCGGC
170





13005
GAAGTCACCGCCTGCCTCGG
169





13006
GGAAGTCACCGCCTGCCTCG
168





13007
GGGAAGTCACCGCCTGCCTC
167





13008
GGGGAAGTCACCGCCTGCCT
166





13009
TGGGGAAGTCACCGCCTGCC
165





13010
GTGGGGAAGTCACCGCCTGC
164





13011
AGTGGGGAAGTCACCGCCTG
163





13012
GAGTGGGGAAGTCACCGCCT
162





13013
CGAGTGGGGAAGTCACCGCC
161





13014
CCGAGTGGGGAAGTCACCGC
160





13015
CCCGAGTGGGGAAGTCACCG
159





13016
CCCCGAGTGGGGAAGTCACC
158





13017
GCCCCGAGTGGGGAAGTCAC
157





13018
CGCCCCGAGTGGGGAAGTCA
156





13019
CCGCCCCGAGTGGGGAAGTC
155





13020
TCCGCCCCGAGTGGGGAAGT
154





13021
CTCCGCCCCGAGTGGGGAAG
153





13022
GCTCCGCCCCGAGTGGGGAA
152





13023
GGCTCCGCCCCGAGTGGGGA
151





13024
CGGCTCCGCCCCGAGTGGGG
150





13025
GCGGCTCCGCCCCGAGTGGG
149





13026
TGCGGCTCCGCCCCGAGTGG
148





13027
CTGCGGCTCCGCCCCGAGTG
147





13028
GCTGCGGCTCCGCCCCGAGT
146





13029
GGCTGCGGCTCCGCCCCGAG
145





13030
AGGCTGCGGCTCCGCCCCGA
144





13031
GAGGCTGCGGCTCCGCCCCG
143





13032
CGAGGCTGCGGCTCCGCCCC
142





13033
GCGAGGCTGCGGCTCCGCCC
141





13034
CGCGAGGCTGCGGCTCCGCC
140





13035
CCGCGAGGCTGCGGCTCCGC
139





13036
CCCGCGAGGCTGCGGCTCCG
138





13037
CCCCGCGAGGCTGCGGCTCC
137





13038
CCCCCGCGAGGCTGCGGCTC
136





13039
GCCCCCGCGAGGCTGCGGCT
135





13040
CGCCCCCGCGAGGCTGCGGC
134





13041
CCGCCCCCGCGAGGCTGCGG
133





13042
CCCGCCCCCGCGAGGCTGCG
132





13043
CCCCGCCCCCGCGAGGCTGC
131





13044
GCCCCGCCCCCGCGAGGCTG
130





13045
GGCCCCGCCCCCGCGAGGCT
129





13046
AGGCCCCGCCCCCGCGAGGC
128





13047
CAGGCCCCGCCCCCGCGAGG
127





13048
CCAGGCCCCGCCCCCGCGAG
126





13049
GCCAGGCCCCGCCCCCGCGA
125





13050
CGCCAGGCCCCGCCCCCGCG
124





13051
GCGCCAGGCCCCGCCCCCGC
123





13052
GGCGCCAGGCCCCGCCCCCG
122





13053
CGGCGCCAGGCCCCGCCCCC
121





13054
CCGGCGCCAGGCCCCGCCCC
120





13055
GCCGGCGCCAGGCCCCGCCC
119





13056
CGCCGGCGCCAGGCCCCGCC
118





13057
CCGCCGGCGCCAGGCCCCGC
117





13058
ACCGCCGGCGCCAGGCCCCG
116





13059
CACCGCCGGCGCCAGGCCCC
115





13060
CCACCGCCGGCGCCAGGCCC
114





13061
GCCACCGCCGGCGCCAGGCC
113





13062
CGCCACCGCCGGCGCCAGGC
112





13063
ACGCCACCGCCGGCGCCAGG
111





13064
GACGCCACCGCCGGCGCCAG
110





13065
TGACGCCACCGCCGGCGCCA
109





13066
GTGACGCCACCGCCGGCGCC
108





13067
TGTGACGCCACCGCCGGCGC
107





13068
TTGTGACGCCACCGCCGGCG
106





13069
TTTGTGACGCCACCGCCGGC
105





13070
TTTTGTGACGCCACCGCCGG
104





13071
CTTTTGTGACGCCACCGCCG
103





13072
CCTTTTGTGACGCCACCGCC
102





13073
GCCTTTTGTGACGCCACCGC
101





13074
CGCCTTTTGTGACGCCACCG
100





13075
CCGCCTTTTGTGACGCCACC
99





13076
CCCGCCTTTTGTGACGCCAC
98





13077
TCCCGCCTTTTGTGACGCCA
97





13078
GTCCCGCCTTTTGTGACGCC
96





13079
GGTCCCGCCTTTTGTGACGC
95





13080
TGGTCCCGCCTTTTGTGACG
94





13081
GTGGTCCCGCCTTTTGTGAC
93





13082
TGTGGTCCCGCCTTTTGTGA
92





13083
CTGTGGTCCCGCCTTTTGTG
91





13084
ACTGTGGTCCCGCCTTTTGT
90





13085
CACTGTGGTCCCGCCTTTTG
89





13086
CCACTGTGGTCCCGCCTTTT
88





13087
ACCACTGTGGTCCCGCCTTT
87





13088
CACCACTGTGGTCCCGCCTT
86





13089
ACACCACTGTGGTCCCGCCT
85





13090
GACACCACTGTGGTCCCGCC
84





13091
GGACACCACTGTGGTCCCGC
83





13092
CGGACACCACTGTGGTCCCG
82





13093
TCGGACACCACTGTGGTCCC
81





13094
CTCGGACACCACTGTGGTCC
80





13095
TCTCGGACACCACTGTGGTC
79





13096
TTCTCGGACACCACTGTGGT
78





13097
CTTCTCGGACACCACTGTGG
77





13098
ACTTCTCGGACACCACTGTG
76





13099
GACTTCTCGGACACCACTGT
75





13100
TGACTTCTCGGACACCACTG
74





13101
CTGACTTCTCGGACACCACT
73





13102
CCTGACTTCTCGGACACCAC
72





13103
GCCTGACTTCTCGGACACCA
71





13104
TGCCTGACTTCTCGGACACC
70





13105
GTGCCTGACTTCTCGGACAC
69





13106
CGTGCCTGACTTCTCGGACA
68





13107
ACGTGCCTGACTTCTCGGAC
67





13108
TACGTGCCTGACTTCTCGGA
66





13109
CTACGTGCCTGACTTCTCGG
65





13110
GCTACGTGCCTGACTTCTCG
64





13111
AGCTACGTGCCTGACTTCTC
63





13112
GAGCTACGTGCCTGACTTCT
62





13113
TGAGCTACGTGCCTGACTTC
61





13114
CTGAGCTACGTGCCTGACTT
60





13115
GCTGAGCTACGTGCCTGACT
59





13116
CGCTGAGCTACGTGCCTGAC
58





13117
CCGCTGAGCTACGTGCCTGA
57





13118
GCCGCTGAGCTACGTGCCTG
56





13119
CGCCGCTGAGCTACGTGCCT
55





13120
CCGCCGCTGAGCTACGTGCC
54





13121
GCCGCCGCTGAGCTACGTGC
53





13122
GGCCGCCGCTGAGCTACGTG
52





13123
CGGCTAGAAATCGGCCTGTTCCGGCCTCGCCT
286





13124
GGCTAGAAATCGGCCTGTTC
287





13125
GCTAGAAATCGGCCTGTTCC
288





13126
CTAGAAATCGGCCTGTTCCG
289





13127
TAGAAATCGGCCTGTTCCGG
290





13128
AGAAATCGGCCTGTTCCGGC
291





13129
GAAATCGGCCTGTTCCGGCC
292





13130
AAATCGGCCTGTTCCGGCCT
293





13131
AATCGGCCTGTTCCGGCCTC
294





13132
ATCGGCCTGTTCCGGCCTCG
295





13133
TCGGCCTGTTCCGGCCTCGC
296





13134
CGGCCTGTTCCGGCCTCGCC
297





13135
GGCCTGTTCCGGCCTCGCCT
298





13136
GCCTGTTCCGGCCTCGCCTC
299





13137
CCTGTTCCGGCCTCGCCTCG
300





13138
CTGTTCCGGCCTCGCCTCGG
301





13139
TGTTCCGGCCTCGCCTCGGG
302





13140
GTTCCGGCCTCGCCTCGGGT
303





13141
TTCCGGCCTCGCCTCGGGTC
304





13142
TCCGGCCTCGCCTCGGGTCT
305





13143
CCGGCCTCGCCTCGGGTCTT
306





13144
CGGCCTCGCCTCGGGTCTTT
307





13145
GGCCTCGCCTCGGGTCTTTC
308





13146
GCCTCGCCTCGGGTCTTTCT
309





13147
CCTCGCCTCGGGTCTTTCTT
310





13148
CTCGCCTCGGGTCTTTCTTA
311





13149
TCGCCTCGGGTCTTTCTTAG
312





13150
CGCCTCGGGTCTTTCTTAGT
313





13151
GCCTCGGGTCTTTCTTAGTC
314





13152
CCTCGGGTCTTTCTTAGTCC
315





13153
CTCGGGTCTTTCTTAGTCCT
316





13154
TCGGGTCTTTCTTAGTCCTT
317





13155
CGGGTCTTTCTTAGTCCTTT
318





13156
GCGGCTAGAAATCGGCCTGT
285





13157
GGCGGCTAGAAATCGGCCTG
284





13158
TGGCGGCTAGAAATCGGCCT
283





13159
TTGGCGGCTAGAAATCGGCC
282





13160
CTTGGCGGCTAGAAATCGGC
281





13161
ACTTGGCGGCTAGAAATCGG
280





13162
CACTTGGCGGCTAGAAATCG
279





13163
CCACTTGGCGGCTAGAAATC
278





13164
TCCACTTGGCGGCTAGAAAT
277





13165
CTCCACTTGGCGGCTAGAAA
276





13166
TCTCCACTTGGCGGCTAGAA
275





13167
TTCTCCACTTGGCGGCTAGA
274





13168
GTTCTCCACTTGGCGGCTAG
273





13169
TGTTCTCCACTTGGCGGCTA
272





13170
CTGTTCTCCACTTGGCGGCT
271





13171
CCTGTTCTCCACTTGGCGGC
270





13172
ACCTGTTCTCCACTTGGCGG
269





13173
AACCTGTTCTCCACTTGGCG
268





13174
CGGGGGTGGGGATGCGGCGGTGAACCCG
377





13175
CGCGGCAGGTGAGAGGGGAGCTGCCCCTGCG
558





13176
CGCGTGCACGTGTGTCCACATGAGTGC
3650





13177
GCGTGCACGTGTGTCCACAT
3651





13178
CGTGCACGTGTGTCCACATG
3652





13179
GTGCACGTGTGTCCACATGA
3653





13180
TGCACGTGTGTCCACATGAG
3654





13181
GCACGTGTGTCCACATGAGT
3655





13182
CACGTGTGTCCACATGAGTG
3656





13183
ACGTGTGTCCACATGAGTGC
3657





13184
CGTGTGTCCACATGAGTGCT
3658





13185
GCGCGTGCACGTGTGTCCAC
3649





13186
TGCGCGTGCACGTGTGTCCA
3648





13187
GTGCGCGTGCACGTGTGTCC
3647





13188
TGTGCGCGTGCACGTGTGTC
3646





13189
GTGTGCGCGTGCACGTGTGT
3645





13190
TGTGTGCGCGTGCACGTGTG
3644





13191
GTGTGTGCGCGTGCACGTGT
3643





13192
TGTGTGTGCGCGTGCACGTG
3642





13193
ATGTGTGTGCGCGTGCACGT
3641





13194
CATGTGTGTGCGCGTGCACG
3640





13195
CCATGTGTGTGCGCGTGCAC
3639





13196
TCCATGTGTGTGCGCGTGCA
3638





13197
GTCCATGTGTGTGCGCGTGC
3637





13198
TGTCCATGTGTGTGCGCGTG
3636





13199
GTGTCCATGTGTGTGCGCGT
3635





13200
TGTGTCCATGTGTGTGCGCG
3634





13201
GTGTGTCCATGTGTGTGCGC
3633





13202
TGTGTGTCCATGTGTGTGCG
3632





13203
CGCCACCGCCGGCGCCAGGCCCCGCC
112





13204
GCCACCGCCGGCGCCAGGCC
113





13205
CCACCGCCGGCGCCAGGCCC
114





13206
CACCGCCGGCGCCAGGCCCC
115





13207
ACCGCCGGCGCCAGGCCCCG
116





13208
CCGCCGGCGCCAGGCCCCGC
117





13209
CGCCGGCGCCAGGCCCCGCC
118





13210
GCCGGCGCCAGGCCCCGCCC
119





13211
CCGGCGCCAGGCCCCGCCCC
120





13212
CGGCGCCAGGCCCCGCCCCC
121





13213
GGCGCCAGGCCCCGCCCCCG
122





13214
GCGCCAGGCCCCGCCCCCGC
123





13215
CGCCAGGCCCCGCCCCCGCG
124





13216
GCCAGGCCCCGCCCCCGCGA
125





13217
CCAGGCCCCGCCCCCGCGAG
126





13218
CAGGCCCCGCCCCCGCGAGG
127





13219
AGGCCCCGCCCCCGCGAGGC
128





13220
GGCCCCGCCCCCGCGAGGCT
129





13221
GCCCCGCCCCCGCGAGGCTG
130





13222
CCCCGCCCCCGCGAGGCTGC
131





13223
CCCGCCCCCGCGAGGCTGCG
132





13224
CCGCCCCCGCGAGGCTGCGG
133





13225
CGCCCCCGCGAGGCTGCGGC
134





13226
GCCCCCGCGAGGCTGCGGCT
135





13227
CCCCCGCGAGGCTGCGGCTC
136





13228
CCCCGCGAGGCTGCGGCTCC
137





13229
CCCGCGAGGCTGCGGCTCCG
138





13230
CCGCGAGGCTGCGGCTCCGC
139





13231
CGCGAGGCTGCGGCTCCGCC
140





13232
GCGAGGCTGCGGCTCCGCCC
141





13233
CGAGGCTGCGGCTCCGCCCC
142





13234
GAGGCTGCGGCTCCGCCCCG
143





13235
AGGCTGCGGCTCCGCCCCGA
144





13236
GGCTGCGGCTCCGCCCCGAG
145





13237
GCTGCGGCTCCGCCCCGAGT
146





13238
CTGCGGCTCCGCCCCGAGTG
147





13239
TGCGGCTCCGCCCCGAGTGG
148





13240
GCGGCTCCGCCCCGAGTGGG
149





13241
CGGCTCCGCCCCGAGTGGGG
150





13242
GGCTCCGCCCCGAGTGGGGA
151





13243
GCTCCGCCCCGAGTGGGGAA
152





13244
CTCCGCCCCGAGTGGGGAAG
153





13245
TCCGCCCCGAGTGGGGAAGT
154





13246
CCGCCCCGAGTGGGGAAGTC
155





13247
CGCCCCGAGTGGGGAAGTCA
156





13248
GCCCCGAGTGGGGAAGTCAC
157





13249
CCCCGAGTGGGGAAGTCACC
158





13250
CCCGAGTGGGGAAGTCACCG
159





13251
CCGAGTGGGGAAGTCACCGC
160





13252
CGAGTGGGGAAGTCACCGCC
161





13253
GAGTGGGGAAGTCACCGCCT
162





13254
AGTGGGGAAGTCACCGCCTG
163





13255
GTGGGGAAGTCACCGCCTGC
164





13256
TGGGGAAGTCACCGCCTGCC
165





13257
GGGGAAGTCACCGCCTGCCT
166





13258
GGGAAGTCACCGCCTGCCTC
167





13259
GGAAGTCACCGCCTGCCTCG
168





13260
GAAGTCACCGCCTGCCTCGG
169





13261
AAGTCACCGCCTGCCTCGGC
170





13262
AGTCACCGCCTGCCTCGGCT
171





13263
GTCACCGCCTGCCTCGGCTC
172





13264
TCACCGCCTGCCTCGGCTCG
173





13265
CACCGCCTGCCTCGGCTCGA
174





13266
ACCGCCTGCCTCGGCTCGAC
175





13267
CCGCCTGCCTCGGCTCGACC
176





13268
CGCCTGCCTCGGCTCGACCC
177





13269
GCCTGCCTCGGCTCGACCCC
178





13270
CCTGCCTCGGCTCGACCCCC
179





13271
CTGCCTCGGCTCGACCCCCG
180





13272
TGCCTCGGCTCGACCCCCGC
181





13273
GCCTCGGCTCGACCCCCGCA
182





13274
CCTCGGCTCGACCCCCGCAG
183





13275
CTCGGCTCGACCCCCGCAGG
184





13276
TCGGCTCGACCCCCGCAGGG
185





13277
CGGCTCGACCCCCGCAGGGC
186





13278
GGCTCGACCCCCGCAGGGCA
187





13279
GCTCGACCCCCGCAGGGCAG
188





13280
CTCGACCCCCGCAGGGCAGG
189





13281
TCGACCCCCGCAGGGCAGGA
190





13282
CGACCCCCGCAGGGCAGGAC
191





13283
GACCCCCGCAGGGCAGGACC
192





13284
ACCCCCGCAGGGCAGGACCC
193





13285
CCCCCGCAGGGCAGGACCCT
194





13286
CCCCGCAGGGCAGGACCCTG
195





13287
CCCGCAGGGCAGGACCCTGG
196





13288
CCGCAGGGCAGGACCCTGGG
197





13289
CGCAGGGCAGGACCCTGGGC
198





13290
GCAGGGCAGGACCCTGGGCG
199





13291
CAGGGCAGGACCCTGGGCGA
200





13292
AGGGCAGGACCCTGGGCGAC
201





13293
GGGCAGGACCCTGGGCGACT
202





13294
GGCAGGACCCTGGGCGACTC
203





13295
GCAGGACCCTGGGCGACTCC
204





13296
CAGGACCCTGGGCGACTCCG
205





13297
AGGACCCTGGGCGACTCCGC
206





13298
GGACCCTGGGCGACTCCGCC
207





13299
GACCCTGGGCGACTCCGCCC
208





13300
ACCCTGGGCGACTCCGCCCG
209





13301
CCCTGGGCGACTCCGCCCGT
210





13302
CCTGGGCGACTCCGCCCGTT
211





13303
CTGGGCGACTCCGCCCGTTC
212





13304
TGGGCGACTCCGCCCGTTCC
213





13305
GGGCGACTCCGCCCGTTCCT
214





13306
GGCGACTCCGCCCGTTCCTC
215





13307
GCGACTCCGCCCGTTCCTCC
216





13308
CGACTCCGCCCGTTCCTCCA
217





13309
GACTCCGCCCGTTCCTCCAG
218





13310
ACTCCGCCCGTTCCTCCAGC
219





13311
CTCCGCCCGTTCCTCCAGCA
220





13312
TCCGCCCGTTCCTCCAGCAA
221





13313
CCGCCCGTTCCTCCAGCAAC
222





13314
CGCCCGTTCCTCCAGCAACC
223





13315
GCCCGTTCCTCCAGCAACCG
224





13316
CCCGTTCCTCCAGCAACCGC
225





13317
CCGTTCCTCCAGCAACCGCC
226





13318
CGTTCCTCCAGCAACCGCCG
227





13319
GTTCCTCCAGCAACCGCCGC
228





13320
TTCCTCCAGCAACCGCCGCT
229





13321
TCCTCCAGCAACCGCCGCTA
230





13322
CCTCCAGCAACCGCCGCTAA
231





13323
CTCCAGCAACCGCCGCTAAG
232





13324
TCCAGCAACCGCCGCTAAGC
233





13325
CCAGCAACCGCCGCTAAGCC
234





13326
CAGCAACCGCCGCTAAGCCC
235





13327
AGCAACCGCCGCTAAGCCCG
236





13328
GCAACCGCCGCTAAGCCCGG
237





13329
CAACCGCCGCTAAGCCCGGC
238





13330
AACCGCCGCTAAGCCCGGCG
239





13331
ACCGCCGCTAAGCCCGGCGC
240





13332
CCGCCGCTAAGCCCGGCGCA
241





13333
CGCCGCTAAGCCCGGCGCAC
242





13334
GCCGCTAAGCCCGGCGCACC
243





13335
CCGCTAAGCCCGGCGCACCG
244





13336
CGCTAAGCCCGGCGCACCGC
245





13337
GCTAAGCCCGGCGCACCGCT
246





13338
CTAAGCCCGGCGCACCGCTC
247





13339
TAAGCCCGGCGCACCGCTCC
248





13340
AAGCCCGGCGCACCGCTCCA
249





13341
AGCCCGGCGCACCGCTCCAA
250





13342
GCCCGGCGCACCGCTCCAAC
251





13343
CCCGGCGCACCGCTCCAACC
252





13344
CCGGCGCACCGCTCCAACCT
253





13345
CGGCGCACCGCTCCAACCTG
254





13346
GGCGCACCGCTCCAACCTGT
255





13347
GCGCACCGCTCCAACCTGTT
256





13348
CGCACCGCTCCAACCTGTTC
257





13349
GCACCGCTCCAACCTGTTCT
258





13350
CACCGCTCCAACCTGTTCTC
259





13351
ACCGCTCCAACCTGTTCTCC
260





13352
CCGCTCCAACCTGTTCTCCA
261





13353
CGCTCCAACCTGTTCTCCAC
262





13354
ACGCCACCGCCGGCGCCAGG
111





13355
GACGCCACCGCCGGCGCCAG
110





13356
TGACGCCACCGCCGGCGCCA
109





13357
GTGACGCCACCGCCGGCGCC
108





13358
TGTGACGCCACCGCCGGCGC
107





13359
TTGTGACGCCACCGCCGGCG
106





13360
TTTGTGACGCCACCGCCGGC
105





13361
TTTTGTGACGCCACCGCCGG
104





13362
CTTTTGTGACGCCACCGCCG
103





13363
CCTTTTGTGACGCCACCGCC
102





13364
GCCTTTTGTGACGCCACCGC
101





13365
CGCCTTTTGTGACGCCACCG
100





13366
CCGCCTTTTGTGACGCCACC
99





13367
CCCGCCTTTTGTGACGCCAC
98





13368
TCCCGCCTTTTGTGACGCCA
97





13369
GTCCCGCCTTTTGTGACGCC
96





13370
GGTCCCGCCTTTTGTGACGC
95





13371
TGGTCCCGCCTTTTGTGACG
94





13372
GTGGTCCCGCCTTTTGTGAC
93





13373
TGTGGTCCCGCCTTTTGTGA
92





13374
CTGTGGTCCCGCCTTTTGTG
91





13375
ACTGTGGTCCCGCCTTTTGT
90





13376
CACTGTGGTCCCGCCTTTTG
89





13377
CCACTGTGGTCCCGCCTTTT
88





13378
ACCACTGTGGTCCCGCCTTT
87





13379
CACCACTGTGGTCCCGCCTT
86





13380
ACACCACTGTGGTCCCGCCT
85





13381
GACACCACTGTGGTCCCGCC
84





13382
GGACACCACTGTGGTCCCGC
83





13383
CGGACACCACTGTGGTCCCG
82





13384
TCGGACACCACTGTGGTCCC
81





13385
CTCGGACACCACTGTGGTCC
80





13386
TCTCGGACACCACTGTGGTC
79





13387
TTCTCGGACACCACTGTGGT
78





13388
CTTCTCGGACACCACTGTGG
77





13389
ACTTCTCGGACACCACTGTG
76





13390
GACTTCTCGGACACCACTGT
75





13391
TGACTTCTCGGACACCACTG
74





13392
CTGACTTCTCGGACACCACT
73





13393
CCTGACTTCTCGGACACCAC
72





13394
GCCTGACTTCTCGGACACCA
71





13395
TGCCTGACTTCTCGGACACC
70





13396
GTGCCTGACTTCTCGGACAC
69





13397
CGTGCCTGACTTCTCGGACA
68





13398
ACGTGCCTGACTTCTCGGAC
67





13399
TACGTGCCTGACTTCTCGGA
66





13400
CTACGTGCCTGACTTCTCGG
65





13401
GCTACGTGCCTGACTTCTCG
64





13402
AGCTACGTGCCTGACTTCTC
63





13403
GAGCTACGTGCCTGACTTCT
62





13404
TGAGCTACGTGCCTGACTTC
61





13405
CTGAGCTACGTGCCTGACTT
60





13406
GCTGAGCTACGTGCCTGACT
59





13407
CGCTGAGCTACGTGCCTGAC
58





13408
CCGCTGAGCTACGTGCCTGA
57





13409
GCCGCTGAGCTACGTGCCTG
56





13410
CGCCGCTGAGCTACGTGCCT
55





13411
CCGCCGCTGAGCTACGTGCC
54





13412
GCCGCCGCTGAGCTACGTGC
53





13413
GGCCGCCGCTGAGCTACGTG
52





13414
CGCGGCAGGTGAGAGGGGAGCTGCCC
558



















Hot Zones (Relative upstream location to gene start site)







  1-1880


2150-2240


2420-3050


3230-4130


4310-4400









Examples

In FIG. 64, In MCF7 (human mammary breast cell line), MIF11 (329) and MIF12 (330) produced statistically significant (P<0.05) inhibition at 10 μM compared to the untreated and negative control values. The MIF1 sequences MIF11 (329) and MIF12 (330) fit the independent and dependent DNAi motif claims.


The secondary structure for MIF11 (329) and MIF12 (330) are shown in FIG. 65 and FIG. 66.









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13677)







CCATTCTGAGTATCTTCCAAGTGTTAGCTCCTTTAATCCTGGAAAGGACC





CCATGAAATTAGTACTTTTATTACCCCTGTTGTACATATGAGAGACTGAG





TAAAAGCCGGTGGCTTGTCCAGGGTCACACAGCTAACTGGAATGGCCAGG





AGTAGACCTGGTGACCATGGACCCCAGACCTTGATCACTGCACACGCTGC





GTCTGGGACCTCGCCTGGTACCTGAGGTCCGTGGCGCGCTGGTGCTGATC





ATTCAGAGTGCTCATGGGAAGTGTAGTCTAGAGTCTGTGTGCTTCCTGAT





CTCCTTGATCTCCATTTTATTGAGGAGGCCTTTAGGCCACCCGAGGGGTC





CAGAGTGACCCTGTGGATTAGCAGTGGAGCTCAGCTTGAGCCAGCGCTCT





TCAGGGGTCGTGTTCTGCCCCCATTCTCTGGTTCATTCTGCAGGTAGCAG





GGAATCATTGAAGATTAGAGAGAATCAAACACCTGGAGAGAGATGACTCT





GCCCGGGGAGCCCAGGCTCCTGTCTGGGTGCACACTCCAGGGCTAGATGG





TGACTTCTCAGCTACTCTAGCTTCATAGGCTCATAGTGCATGTGAGCACT





CATGTGGACACACGTGCACGCGCACACACATGGACACACACACACACACA





CACACCGCTGTCTTTGGAATCAGACCATGAAAATGCTTCCTCAGAGGCCT





AGGGGTGAGGAAGCTGAGGTGAGTTGTGCCTCCAGCTGGATGTGCTGGGA





TGGGGTGGGAGATGAGGTGGCCACACCTGGGTGGCAGGAACTCTGGGGCA





GTGAACCTTCTAACGAACAGATCTGGGATGCTGCCATGAGGAGGAAGAGG





GAGTCAGCAGCCATGCCTGCCAATGCCTCCTAGCGCATTTGTCCATGGTT





AGCGGATAATTATTGTGTCCCTATGGGTCCCAAGGTGTATTATTTTTTTT





TTGCTCTTATAATAAATCAACACAAATTTTTAGCAGCTTCAAACAACACG





CATTTATTATCTCACAGTTTCTGTGGGTCAGTAGTCCGGCGTGACATGAC





TAGGTCTTCTGTGTAAGGACTCGCATGGCCAAAGTCAAGGTATCTGAAGG





GACAAGGGAAAAATCCACTTCCAAGTTCAATCTGGTTGTGAGCAGAATTC





AGTTCCTTGTGGTTGTACCATGAGGTCTCTGGTCCCCTTCATCTTCAAAG





CCGGTAATGGACATCGAGTGTTTCTCTTGCTTGGAATCTGGCACTCTAGC





TGGAGAAAATTATCTGCTTTTAAGAGTTCATGTGATTAGATTGGGTGTAC





CCAGATGCTCCATGCTAATCTCCCTATTATGCACAGATGCATAATCCTAA





TTGCATCTGTGAAGTGCTTTTTGCCAGGTAACATGGCATACTTGTAGGTT





CCAGGGATTAGTGCTTGTCCTCCCCCTGCTATTCTTTAGTGGGCAGGGGG





TCATCTGCCTACCACGGAGGTAAGGGGTCAGGAGGTATGCATACAGCAAT





GCCCAAAAAGAGACTGTCCCCACTGGGATGGAGTTTACCGCCTAGACATG





CAGTCTTAACTCAGAAATATGGAGATAGCCTCGAAGGACAGGACAGGTAC





TGGGCACGTGTGGGAATGGACCAAGCCAGGTGCTCCGGGGGCTTTCCCAA





GGAACTAAGGCTGAGCCAAGAACTGAAGGATGAGTTGGAGTCAGATGAGG





GAAAATGTGGGCAAACTGGATTTCAGAACCAACCCCCAACCCTGGAGCCA





GGAGCCATGGTACTGAAGGACAGTGCGCCATAACTCAGAGAACCAGGGAG





GGTTGGCGGAGGCTCACAGGGACCGGGTTACCCCAGGGCCTTGTGACAGT





ACTACCCCTAGTATCAGAGGAGACTGTCATTGGCATTTAGGCCACTTGGT





GCTCATAACACCTCTATGTCAGGTGAACACTATTGTCATCCCCAAATTAC





AGATGGGGAAAGTGAGCCAAATGTCCATGCTAGTAAGAGGCAAATCATAT





CACTTCTTTGGGTACCCTTCTAGAAGGATGAGGCTGACTGCCACTGGAAA





CAGCTGGGGAGGGTACAAGGAGATGACAAGTGGCTCAGAGGCTGTCCTGG





CTATAAGAATTAAAGAGGAAAGAAACACCAAGGGTGGCTCGACAGTCAAC





AAGGACAGGTTTATTTTGGAAAACAAACTTGAGAGGGGCTTCTGGCCAAG





TTAGGTCAGAGCCACACTCTCTTACAAACTAAGGATATTTAAGGGTTTTG





GAGGGGGTTCTTATCATAGGTTCTGAATGTTTCTGTGTGAGGGAAAGTTT





ATTGCGGGGATGGAATGTCTCTGGTCAGAAGGGAGGCTGTCTCCGGGTTG





GCATGTTTCTGGTCAGAGAAGGGTTTATCTTAGGGTTGGAATGTTTCTGG





TTATGCTGACATTAGCTATTAGGCTGATATTTTCGGGCTGGATTTAGGCG





GCTTTTAATTAAGGGGGAACTTAGAATGGTGGTGTTTGTTCAAGATGGCA





ATGCTCCTGCTCCGTCACTGGCCAGGTAAGGCAACCCTTTGTTATGGTAA





CAACCTGAGATTGGCAGGGGCTCACCTCCAGGGGCAGCTCATGTGCTTGC





TGGCGAGGCTGCACCTTGTCATTCAGGTTCACAGGGCACAGGTCAACCAG





GCCCTGGCTCTTCAGTCTTCTGCCTGGAGTGACTTATGTAATTCTGCTCA





GCTTTCATAGGGCACAGGGAGTCGGGGCTAACTCTGCTGCCTGGGGCTGG





AAACAGACTCCTCCCTTGAGGAGCAGCAGTCCACCATAGGGAAGTCACAG





TGGTCCAGGCCAAAGGGGATGCAGGTAGTGTAGACTAGGCGGTAGTTCAG





GGAATGGAGAGAAGTGGGAATAAAGGGATAGTGAAAGGAAGCATATTTTA





CTGGCAGGTGATGAGGTGTAGGAGGACAAGTCATACATTTGGACTTTACA





GAGCAGTGGACACTCAGTCAGCTGCTGTCAGCGCCTGGGACTTAGGGGAG





TGCCCCTGGCTGGAGACATGGTATGGAGTGCCATCAGTTAGGGAGCCCTG





GGCACAGGTAAGAGAAGGTGTGACACCAGGAGGGAAAGAGTCTGGGGCCC





AGCTGCAGGAACCAATACCCATAGGCTATTTGTATAAATGGGCCATGGGG





CCTCCCAGCTGGAGGCTGGCTGGTGCCACGAGGGTCCCACAGGCATGGGT





GTCCTTCCTATATCACATGGCCTTCACTGAGACTGGTATATGGATTGCAC





CTATCAGAGACCAAGGACAGGACCTCCCTGGAAATCTCTGAGGACCTGGC





CTGTGATCCAGTTGCTGCCTTGTCCTCTTCCTGCTATGTCATGGCTTATC





TTCTTTCACCCATTCATTCATTCATTCATTCAGCAGTATTAGTCAATGTC





TCTTGTATGCCTGGCACCTGCTAGATGGTCCCCGAGTTTACCATTAGTGG





AAAAGACATTTAAGAAATTCACCAAGGGCTCTATGAGAGGCCATACACGG





TGGACCTGACTAGGGTGTGGCTTCCCTGAGGAGCTGAAGTTGCCCAGAGG





CCCAGAGAAGGGGAGCTGAGCACGTTTGAACCACTGAACCTGCTCTGGAC





CTCGCCTCCTTCCCTTCGGTGCCTCCCAGCATCCTATCCTCTTTAAAGAG





CAGGGGTTCAGGGAAGTTCCCTGGATGGTGATTCGCAGGGGCAGCTCCCC





TCTCACCTGCCGCGATGACTACCCCGCCCCATCTCAAACACACAAGCTCA





CGCATGCGGGACTGGAGCCCTTGAGGACATGTGGCCCAAAGACAGGAGGT





ACAGGGGCTCAGTGCGTGCAGTGGAATGAACTGGGCTTCATCTCTGGAAG





GGTAAGGGGCCATCTTCCGGGTTCACCGCCGCATCCCCACCCCCGGCACA





GCGCCTCCTGGCGACTAACATCGGTGACTTAGTGAAAGGACTAAGAAAGA





CCCGAGGCGAGGCCGGAACAGGCCGATTTCTAGCCGCCAAGTGGAGAACA





GGTTGGAGCGGTGCGCCGGGCTTAGCGGCGGTTGCTGGAGGAACGGGCGG





AGTCGCCCAGGGTCCTGCCCTGCGGGGGTCGAGCCGAGGCAGGCGGTGAC





TTCCCCACTCGGGGCGGAGCCGCAGCCTCGCGGGGGCGGGGCCTGGCGCC





GGCGGTGGCGTCACAAAAGGCGGGACCACAGTGGTGTCCGAGAAGTCAGG





CACGTAGCTCAGCGGCGGCCGCGGCGCGTGCGTCTGTGCCTCTGCGCGGG





TCTCCTGGTCCTTCTGCCATCATG






ERBB2


ERBB2 (also known as HER2/meu and CD340) is a receptor tyrosine kinase protein and member of the epidermal growth factor receptor family. ERBB2 contains extracellular, transmembrane, and intracellular domains. Ligand binding causes dimerization which activates downstream signaling pathways leading to proliferation, cell cycle progression, and cell survival promotion. ERBB2 is commonly associated with breast cancer where the gene is amplified or the protein is overexpressed leading to dysregulation of cell proliferation and survival. ERBB2 has also been associated with other cancers including lung and colorectal cancer.


Protein: ERBB2 (HER2) Gene: ERBB2 (Homo sapiens, chromosome 17, 37844167-37884915 [NCBI Reference Sequence: NC000017.10]; start site location: 37855813; strand: positive)












Gene Identification


















GeneID
2064



HGNC
3430



MIM
164870




















Targeted Sequences













Relative





upstream





location





to gene


Sequence
Design

start


ID No:
ID
Sequence (5′-3′)
site





13415

CGGGAAGAGGATGCGCTGACCTGGC
2571





13416

CACGCCCTGGGGAGGAGGCTCGAGAGG
3267





13437

CGAGAGGGGCCGAGCCTCTGAAAAA
3287





13452

CGTCTGGTCCACAGTCCGATGTCCA
3944



















Target Shift Sequences











Relative




upstream




location to


Sequence

gene


ID No:
Sequence (5′-3′)
start site





13415
CGGGAAGAGGATGCGCTGACCTGGC
2571





13416
CACGCCCTGGGGAGGAGGCTCGAGAGG
3267





13417
ACGCCCTGGGGAGGAGGCTC
3268





13418
CGCCCTGGGGAGGAGGCTCG
3269





13419
GCCCTGGGGAGGAGGCTCGA
3270





13420
CCCTGGGGAGGAGGCTCGAG
3271





13421
TCACGCCCTGGGGAGGAGGC
3266





13422
CTCACGCCCTGGGGAGGAGG
3265





13423
ACTCACGCCCTGGGGAGGAG
3264





13424
AACTCACGCCCTGGGGAGGA
3263





13425
GAACTCACGCCCTGGGGAGG
3262





13426
AGAACTCACGCCCTGGGGAG
3261





13427
CAGAACTCACGCCCTGGGGA
3260





13428
TCAGAACTCACGCCCTGGGG
3259





13429
GTCAGAACTCACGCCCTGGG
3258





13430
GGTCAGAACTCACGCCCTGG
3257





13431
GGGTCAGAACTCACGCCCTG
3256





13432
GGGGTCAGAACTCACGCCCT
3255





13433
TGGGGTCAGAACTCACGCCC
3254





13434
CTGGGGTCAGAACTCACGCC
3253





13435
GCTGGGGTCAGAACTCACGC
3252





13436
AGCTGGGGTCAGAACTCACG
3251





13437
CGAGAGGGGCCGAGCCTCTGAAAAA
3287





13438
GAGAGGGGCCGAGCCTCTGA
3288





13439
AGAGGGGCCGAGCCTCTGAA
3289





13440
GAGGGGCCGAGCCTCTGAAA
3290





13441
AGGGGCCGAGCCTCTGAAAA
3291





13442
GGGGCCGAGCCTCTGAAAAA
3292





13443
GGGCCGAGCCTCTGAAAAAG
3293





13444
GGCCGAGCCTCTGAAAAAGA
3294





13445
GCCGAGCCTCTGAAAAAGAA
3295





13446
CCGAGCCTCTGAAAAAGAAT
3296





13447
CGAGCCTCTGAAAAAGAATG
3297





13448
TCGAGAGGGGCCGAGCCTCT
3286





13449
CTCGAGAGGGGCCGAGCCTC
3285





13450
GCTCGAGAGGGGCCGAGCCT
3284





13451
GGCTCGAGAGGGGCCGAGCC
3283





13452
CGTCTGGTCCACAGTCCGATGTCCA
3944





13453
GTCTGGTCCACAGTCCGATG
3945





13454
TCTGGTCCACAGTCCGATGT
3946





13455
CTGGTCCACAGTCCGATGTC
3947





13456
TGGTCCACAGTCCGATGTCC
3948





13457
GGTCCACAGTCCGATGTCCA
3949





13458
GTCCACAGTCCGATGTCCAG
3950





13459
TCCACAGTCCGATGTCCAGG
3951





13460
CCACAGTCCGATGTCCAGGC
3952





13461
CACAGTCCGATGTCCAGGCC
3953





13462
ACAGTCCGATGTCCAGGCCA
3954





13463
CAGTCCGATGTCCAGGCCAC
3955





13464
AGTCCGATGTCCAGGCCACA
3956





13465
GTCCGATGTCCAGGCCACAA
3957





13466
TCCGATGTCCAGGCCACAAA
3958





13467
CCGATGTCCAGGCCACAAAC
3959





13468
CGATGTCCAGGCCACAAACT
3960





13469
TCGTCTGGTCCACAGTCCGA
3943





13470
GTCGTCTGGTCCACAGTCCG
3942





13471
AGTCGTCTGGTCCACAGTCC
3941





13472
GAGTCGTCTGGTCCACAGTC
3940





13473
GGAGTCGTCTGGTCCACAGT
3939





13474
AGGAGTCGTCTGGTCCACAG
3938





13475
GAGGAGTCGTCTGGTCCACA
3937





13476
GGAGGAGTCGTCTGGTCCAC
3936





13477
GGGAGGAGTCGTCTGGTCCA
3935





13478
CGGGAGGAGTCGTCTGGTCC
3934





13479
TCGGGAGGAGTCGTCTGGTC
3933





13480
ATCGGGAGGAGTCGTCTGGT
3932





13481
AATCGGGAGGAGTCGTCTGG
3931





13482
AAATCGGGAGGAGTCGTCTG
3930





13483
GAAATCGGGAGGAGTCGTCT
3929



















Hot Zones (Relative upstream location to gene start site)







100-4510









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13678)







GGGGGCACCAGTAGAATGGCCAGGACAAACGCAGTGCAGCACAGAGACTC





AGACCCTGGCAGCCATGCCTGCGCAGGCAGTGATGAGAGTGACATGTACT





GTTGTGGACATGCACAAAAGTGAGGTGAGTCGCAGGACAGAAGAGTGCTT





TTTGTTTCAGCAGAGCAGCCTGGGGAGAGATAAAAGCTACTCCTGGGGCC





TGGGCCTGCATTCCTGAGATGTGGGTAAGAGGGGCCCAGGGTCAGAGTGT





CTGGCAAGCTTGGCTCTGCCCCTTTGCTGTCCTGGAGACTAGGGCTAATC





CTGGGCTCAGGGAGTGGCCTCCCCATGGTTAGGATACAAGTGCTCATCAA





GGGCCACCCCTAGGAAGGACCAATTTTCCTATCAGAAGCTTCTAAGTTAT





CCTCCTTTGGCCCAAAGGGACACCTCAAGCCTACTCTGAGGAACTCTTTC





CAATGAACTAATTCCTACAGTCACTTCCCCAGCAACCTGTGCCTCAGCCT





CAAGGCACTGTGGGGTAGGCCTCAGTTTGTGGCCTGGACATCGGACTGTG





GACCAGACGACTCCTCCCGATTTCTGTTTGTTTTCAGTCCTCTGACCCCA





AGCTGGCTGGTGAAGTAGGTAGAGGGAGGAGACTTTGGTGCATGCATACA





CACACACACACACACACACACACACACACACACACACACACACACACACA





CGTCTCCTGTGCCCCCCAGTCTCCATGGCTGGTCAATGATTGACTGGCAT





TTCACAGGCCGCTGGTTGCAGCCCCAGCCTGTTGACTTAGAGGTCACCCT





CGGAAGCTAGAGCCCTGTCCTGCCTCTTCAGTGTCAGTGGTCACTCCACT





GCCCACAGGCTGGGGTCTTGGGCAAAACACACGCATCTGCCCTGATCTGA





GTTTGCTGCCCTCTGTCCCGCAGTCAGCCCCACTCTGTTCCCACTCCCTC





TCCCCAGCCCCCTAGCTAGACCCCTCTCACCAGCACCCCTTTCCCTTCCC





TGAGGGTCCCCCTCGCTGTCTTTGTCCCTCAGACATCCTCTTTCCTGGGC





TCTCCTGCCAGGCCCTGCTGGAGGGACAGTTAAGGAGGAAATCGAATCAG





CAGCGCCCACCCCTGCCCCCCTTCCTCTCCTCTTGTCAGACACCAGACGA





GGTTTTTTCCTCTGGCTTCCCAGCTCTGAATGGGCTCATTCTTTTTCAGA





GGCTCGGCCCCTCTCGAGCCTCCTCCCCAGGGCGTGAGTTCTGACCCCAG





CTCCTCCCCCCATCCCCACTCCAGCCCCCTCTCCAGCTTGCTCCACCCTC





TCTACCGCCCACCGGGACTGGGCATTGTCTGCCAGTCCGGGTTTCTTCCT





GGGATTTGGGATGCAGAGAGGATGGGTTTGCTTGGGCGGGGGGGTGGAGA





GTGAAGGGGGGAAGCAGGATCTTTGTAGAGGGAGGGACCTACAGTTACCT





GGACTTCTTTCCTCTGTCTCCCCTCTTGGTACCCTTGACTGGGGCTCTTG





AGGGTAATGGGTGAAGCCAAATCTGCCATGGCTCAGTTCCCAGCTCAGCT





CTGTGACCTTGGGAAAGTTCCTTTAGCTCGTGGAATCTCAAGGCTCAAGG





TTCCTCTTCTGCAAAATGGGGAATGATAACACCTGCCTCCTCTGGAGTCT





TGGGGACTCAGTGTTCTGAGGAACGTGGCTGTAGGTCAGAGTGGCACAGA





GTAGGGTCCAATGAAGCATGGCGTCCACAGTAGCTTTCCTGACTGGACTA





ACCTTTCCGGACACAACAGCAGGGCAGGGGTGGGGCCTGGGGAGAAAGGA





CACCTCTAACCCTGATCCTAACATCCCGATGGCCTCTAAGGCTGCCTGCA





CACTCATCCAGGTGCAAGCCCTCCAAGGTGTGGTGTGATGAACCAGTGAC





TCCTGGAGCCAGGTCAGCGCATCCTCTTCCCGCAGGGCTGTAAGCTGCAG





GACTGAGAGGCAGGTTGACCAGGTCCTGGGCTGGATGATGGGGTGAGAGT





AAGGGGTCAGTTTTGATACATGCCCAACTTTTCTCTCTAGCCCTAAGACA





TCCTGGGCAAATTGCTTACCTCAGTTCCCCTGATCCTCACCCTAACCCTA





ACACCAGCTCAAGAGAAAATAGGGATATTGATGGCCATCCAGAAGGGCTG





CTGTGTTCCATACACAGCAATATTTCTCGAATGTTTGTGACAGCGGTCCA





AGGAATAAGTTAATTTTACATTATCACTCTGGATACCTGTACAAAACTCC





ACCTTATCCTTACTATATGAATGTGCTAGGGTTGTTTTTTTGTTTTGTTT





TTTTTTTTTTTTTTTGAGACAGAGTTTCGCTCTTGTTGCCCAGGCTGGAG





TACAATGGCGCGATCTTGGCTCACCGCAACCTCCGCTTCCCAGGTTCAAG





CGATTCACCTGCCTCAGCCTTCCCGAGTAGCTGGGATTACAGGCATGCGC





CACCATGCCCGGCTAATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCAT





GTTGGTCAGGCTGGTACCAAACTCCCGACCTCAGGTGATCCACCTGCCTT





GGCCTCCCAAAGTGCTGCAATTACAGGCATGAGCCACCGCACCCAGCCGT





GCTAGGGTCTTTTTCTGTTCAATTCCTTTCTCTCTCTTGCTCTCTTTCTT





TCTTTCAATGGAGTCTTACTCTGTCACCCAGGCTGGAGTGCAGTGGCAAG





ATCTCAGCTCACTGCAACCTCTGCCCTCTGAGTTCAAGCAATTCTCCTGC





CTCAGCCTCCCGAGTAGCTGGGATTACAGGTGCCTGCCACCACACCTAGT





TAATTTTTGTACTTTTAGTAGAGATGGGGTTTTGTCATGTTGGCCAGGCT





GGTCTCGAACTCCTGACCTCGTGATCTGCCTGTCTTGGCCTCCCAAAGTG





CTGGGATTACAGGCATGAGCCGCCATACTCGGCCAACTTTGTATTACTTT





CTTAAAGAGAGTTTCCCAAATTATATAAGCTTCAGGCCCCACAAAACCTA





GATCTGCCCCAGTATAACTAAATCTGGGACCATTTATTGAGCAATTATTA





TGTGCCAAGTATTGCGCTGAGTGCTTCCAGAGCATTATCTCCTTTAACCC





CAGCATAGTATGTCAGATGCTGTTTTACAGATGAGCCAACTGAGACCAGA





GATGCTCAGTCACTTGCCCAAGGTGACATGACTGATATGGAATAGAGTCA





AGATTTTTTTTTTTTTTTTTGACACGGAGTCTCACTCTGTCTCCCAGGCT





GGAGTGCAGAGGCGCAATCTCAGCTCACTGCAAGCTCTGCCTCCCAGGTT





CACGCCATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGCACC





CGCCACCACACCTGGCTAATTTTTTGTATTTTTAGCAGAGACAGGGTTTC





ACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCTGCCTGC





CTCGGCCTCCCAAAGTGCTGGAATTACAGGTGTGAGCCACCGCGACTGGC





CAGATTCAAGATTTGAACCCAGGTCCTCTTGGTCCCAGAGGCCCCTGTTT





CTCAACTCCCTAGGATGGCATAGCAACCTGTCCCACAAGAGGTGCCTGCT





TTAAGTGTGCTCAGCACATGGAAGCAAGTTTAGAAATGCAAGTGTATACC





TGTAAAGAGGTGTGGGAGATGGGGGGGAGGGAAGAGAGAAAGAGATGCTG





GTGTCCTTCATTCTCCAGTCCCTGATAGGTGCCTTTGATCCCTTCTTGAC





CAGTATAGCTGCATTCTTGGCTGGGGCATTCCAACTAGAACTGCCAAATT





TAGCACATAAAAATAAGGAGGCCCAGTTAAATTTGAATTTCAGATAAACA





ATGAATAATTTGTTAGTATAAATATGTCCCATGCAATATCTTGTTGAAAT





TAAAAAAAAAAAAAAAAGTCTTCCTTCCATCCCCACCCCTACCACTAGGC





CTAAGGAATAGGGTCAGGGGCTCCAAATAGAATGTGGTTGAGAAGTGGAA





TTAAGCAGGCTAATAGAAGGCAAGGGGCAAAGAAGAAACCTTGAATGCAT





TGGGTGCTGGGTGCCTCCTTAAATAAGCAAGAAGGGTGCATTTTGAAGAA





TTGAGATAGAAGTCTTTTTGGGCTGGGTGCAGTTGCTCGTGGTTGTAATT





CCAGCACTTTGGGAGGCTGAGGCGGGAGGATCACCTGAGGTTGGGAGTTC





AAGACCAGCCTCACCAACGTGGAGAAACCCTGTCTTTACTAAAAATACAA





AAAATTAGCTGGTCATGGTGGCACATGCCTGTAATCCCAGCTGCTCGGGA





GGCTGAGGCAGGAGAATCACTTGAACCAGGGAGGCAGAGGTTGTGGTGAG





CAGAGATCGCGCCATTGCTCTCCAGCCTGGGCAACAAGAGCAAAAGTTCG





TTTAAAAAAAAAAAAAAGTCCTTTCGATGTGACTGTCTCCTCCCAAATTT





GTAGACCCTCTTAAGATCATGCTTTTCAGATACTTCAAAGATTCCAGAAG





ATATG






FGFR1


FGFR1 (fibroblast growth factor receptor 1) is a 100-135 kDa glycoprotein receptor tyrosine kinase specific for the fibroblast growth factor family. The FGFR1 receptor has an extracellular, transmembrane, and intracellular domain. The extracellular domain includes a single peptide and two or three Ig-like domains. The intracellular domain includes two tyrosine kinase subdomains. Stimulation of the FGFR1 receptor eventually has an effect on mitogenesis and differentiation. Specifically, FGFR1 has been associated with various diseases including Pfeiffer syndrome, various cancers, Kallmann syndrome, and osteoglyphic dysplasia.


Protein: FGFR1 Gene: FGFR1 (Homo sapiens, chromosome 8, 38411138-38468834 [NCBI Reference Sequence: NC000008.11]; start site location: 38314964; strand: negative)












Gene Identification


















GeneID
2260



HGNC
3688



HPRD
00634



MIM
136350




















Targeted Sequences













Relative





upstream





location


Se-


to gene


quence
Design

start


ID No:
ID
Sequence (5′-3′)
site













13484

CGAGCCAGGCAGGGCCCCTCGCAAGTG
1850





13522

GACGGATATGAGTCCAGAAGTTGCG
1472





13535

TAGCTGCGTGCAGTGGCGCGCGCCTGT
4910





13561

CCGCCTCGCCAGCTCCCGAGCGCGAGTT
10239





13655

CGCCTCCTCCCAGGTGTGGGCTGGCTGCA
3067




GACCG



















Target Shift Sequences











Relative




upstream




location


Sequence

to gene


ID

start


No:
Sequence (5′-3′)
site












13484
CGAGCCAGGCAGGGCCCCTCGCAAGTG
1850





13485
GAGCCAGGCAGGGCCCCTCG
1851





13486
AGCCAGGCAGGGCCCCTCGC
1852





13487
GCCAGGCAGGGCCCCTCGCA
1853





13488
CCAGGCAGGGCCCCTCGCAA
1854





13489
CAGGCAGGGCCCCTCGCAAG
1855





13490
AGGCAGGGCCCCTCGCAAGT
1856





13491
GGCAGGGCCCCTCGCAAGTG
1857





13492
GCAGGGCCCCTCGCAAGTGA
1858





13493
CAGGGCCCCTCGCAAGTGAG
1859





13494
AGGGCCCCTCGCAAGTGAGT
1860





13495
GGGCCCCTCGCAAGTGAGTC
1861





13496
GGCCCCTCGCAAGTGAGTCA
1862





13497
GCCCCTCGCAAGTGAGTCAG
1863





13498
CCCCTCGCAAGTGAGTCAGT
1864





13499
CCCTCGCAAGTGAGTCAGTG
1865





13500
CCTCGCAAGTGAGTCAGTGC
1866





13501
CTCGCAAGTGAGTCAGTGCT
1867





13502
TCGCAAGTGAGTCAGTGCTG
1868





13503
CGCAAGTGAGTCAGTGCTGG
1869





13504
CCGAGCCAGGCAGGGCCCCT
1849





13505
CCCGAGCCAGGCAGGGCCCC
1848





13506
CCCCGAGCCAGGCAGGGCCC
1847





13507
CCCCCGAGCCAGGCAGGGCC
1846





13508
TCCCCCGAGCCAGGCAGGGC
1845





13509
CTCCCCCGAGCCAGGCAGGG
1844





13510
CCTCCCCCGAGCCAGGCAGG
1843





13511
GCCTCCCCCGAGCCAGGCAG
1842





13512
TGCCTCCCCCGAGCCAGGCA
1841





13513
CTGCCTCCCCCGAGCCAGGC
1840





13514
CCTGCCTCCCCCGAGCCAGG
1839





13515
CCCTGCCTCCCCCGAGCCAG
1838





13516
GCCCTGCCTCCCCCGAGCCA
1837





13517
AGCCCTGCCTCCCCCGAGCC
1836





13518
CAGCCCTGCCTCCCCCGAGC
1835





13519
TCAGCCCTGCCTCCCCCGAG
1834





13520
TTCAGCCCTGCCTCCCCCGA
1833





13521
CTTCAGCCCTGCCTCCCCCG
1832





13522
GACGGATATGAGTCCAGAAGTTGCG
1472





13523
ACGGATATGAGTCCAGAAGT
1473





13524
CGGATATGAGTCCAGAAGTT
1474





13525
TGACGGATATGAGTCCAGAA
1471





13526
CTGACGGATATGAGTCCAGA
1470





13527
TCTGACGGATATGAGTCCAG
1469





13528
GTCTGACGGATATGAGTCCA
1468





13529
TGTCTGACGGATATGAGTCC
1467





13530
ATGTCTGACGGATATGAGTC
1466





13531
GATGTCTGACGGATATGAGT
1465





13532
TGATGTCTGACGGATATGAG
1464





13533
GTGATGTCTGACGGATATGA
1463





13534
AGTGATGTCTGACGGATATG
1462





13535
TAGCTGCGTGCAGTGGCGCGCGCCTGT
4910





13536
AGCTGCGTGCAGTGGCGCGC
4911





13537
GCTGCGTGCAGTGGCGCGCG
4912





13538
CTGCGTGCAGTGGCGCGCGC
4913





13539
TGCGTGCAGTGGCGCGCGCC
4914





13540
GCGTGCAGTGGCGCGCGCCT
4915





13541
CGTGCAGTGGCGCGCGCCTG
4916





13542
GTGCAGTGGCGCGCGCCTGT
4917





13543
TGCAGTGGCGCGCGCCTGTA
4918





13544
GCAGTGGCGCGCGCCTGTAG
4919





13545
CAGTGGCGCGCGCCTGTAGT
4920





13546
AGTGGCGCGCGCCTGTAGTC
4921





13547
GTGGCGCGCGCCTGTAGTCC
4922





13548
TGGCGCGCGCCTGTAGTCCC
4923





13549
GGCGCGCGCCTGTAGTCCCA
4924





13550
GCGCGCGCCTGTAGTCCCAG
4925





13551
CGCGCGCCTGTAGTCCCAGC
4926





13552
GCGCGCCTGTAGTCCCAGCT
4927





13553
CGCGCCTGTAGTCCCAGCTA
4928





13554
GCGCCTGTAGTCCCAGCTAC
4929





13555
CGCCTGTAGTCCCAGCTACT
4930





13556
TTAGCTGCGTGCAGTGGCGC
4909





13557
ATTAGCTGCGTGCAGTGGCG
4908





13558
AATTAGCTGCGTGCAGTGGC
4907





13559
AAATTAGCTGCGTGCAGTGG
4906





13560
AAAATTAGCTGCGTGCAGTG
4905





13561
CCGCCTCGCCAGCTCCCGAGCGCGAGTT
10239





13562
CGCCTCGCCAGCTCCCGAGC
10240





13563
GCCTCGCCAGCTCCCGAGCG
10241





13564
CCTCGCCAGCTCCCGAGCGC
10242





13565
CTCGCCAGCTCCCGAGCGCG
10243





13566
TCGCCAGCTCCCGAGCGCGA
10244





13567
CGCCAGCTCCCGAGCGCGAG
10245





13568
GCCAGCTCCCGAGCGCGAGT
10246





13569
CCAGCTCCCGAGCGCGAGTT
10247





13570
CAGCTCCCGAGCGCGAGTTG
10248





13571
AGCTCCCGAGCGCGAGTTGG
10249





13572
GCTCCCGAGCGCGAGTTGGA
10250





13573
CTCCCGAGCGCGAGTTGGAG
10251





13574
TCCCGAGCGCGAGTTGGAGG
10252





13575
CCCGAGCGCGAGTTGGAGGA
10253





13576
GCCGCCTCGCCAGCTCCCGA
10238





13577
CGCCGCCTCGCCAGCTCCCG
10237





13578
CCGCCGCCTCGCCAGCTCCC
10236





13579
GCCGCCGCCTCGCCAGCTCC
10235





13580
CGCCGCCGCCTCGCCAGCTC
10234





13581
CCGCCGCCGCCTCGCCAGCT
10233





13582
GCCGCCGCCGCCTCGCCAGC
10232





13583
AGCCGCCGCCGCCTCGCCAG
10231





13584
GAGCCGCCGCCGCCTCGCCA
10230





13585
GGAGCCGCCGCCGCCTCGCC
10229





13586
AGGAGCCGCCGCCGCCTCGC
10228





13587
GAGGAGCCGCCGCCGCCTCG
10227





13588
TGAGGAGCCGCCGCCGCCTC
10226





13589
CTGAGGAGCCGCCGCCGCCT
10225





13590
ACTGAGGAGCCGCCGCCGCC
10224





13591
CACTGAGGAGCCGCCGCCGC
10223





13592
TCACTGAGGAGCCGCCGCCG
10222





13593
CTCACTGAGGAGCCGCCGCC
10221





13594
ACTCACTGAGGAGCCGCCGC
10220





13595
GACTCACTGAGGAGCCGCCG
10219





13596
GGACTCACTGAGGAGCCGCC
10218





13597
GGGACTCACTGAGGAGCCGC
10217





13598
CGGGACTCACTGAGGAGCCG
10216





13599
CCGGGACTCACTGAGGAGCC
10215





13600
CCCGGGACTCACTGAGGAGC
10214





13601
TCCCGGGACTCACTGAGGAG
10213





13602
CTCCCGGGACTCACTGAGGA
10212





13603
CCTCCCGGGACTCACTGAGG
10211





13604
CCCTCCCGGGACTCACTGAG
10210





13605
TCCCTCCCGGGACTCACTGA
10209





13606
GTCCCTCCCGGGACTCACTG
10208





13607
TGTCCCTCCCGGGACTCACT
10207





13608
CTGTCCCTCCCGGGACTCAC
10206





13609
CCTGTCCCTCCCGGGACTCA
10205





13610
GCCTGTCCCTCCCGGGACTC
10204





13611
GGCCTGTCCCTCCCGGGACT
10203





13612
GGGCCTGTCCCTCCCGGGAC
10202





13613
CGGGCCTGTCCCTCCCGGGA
10201





13614
CCGGGCCTGTCCCTCCCGGG
10200





13615
CCCGGGCCTGTCCCTCCCGG
10199





13616
CCCCGGGCCTGTCCCTCCCG
10198





13617
GCCCCGGGCCTGTCCCTCCC
10197





13618
CGCCCCGGGCCTGTCCCTCC
10196





13619
TCGCCCCGGGCCTGTCCCTC
10195





13620
TTCGCCCCGGGCCTGTCCCT
10194





13621
CTTCGCCCCGGGCCTGTCCC
10193





13622
CCTTCGCCCCGGGCCTGTCC
10192





13623
GCCTTCGCCCCGGGCCTGTC
10191





13624
CGCCTTCGCCCCGGGCCTGT
10190





13625
CCGCCTTCGCCCCGGGCCTG
10189





13626
GCCGCCTTCGCCCCGGGCCT
10188





13627
CGCCGCCTTCGCCCCGGGCC
10187





13628
TCGCCGCCTTCGCCCCGGGC
10186





13629
CTCGCCGCCTTCGCCCCGGG
10185





13630
CCTCGCCGCCTTCGCCCCGG
10184





13631
GCCTCGCCGCCTTCGCCCCG
10183





13632
GGCCTCGCCGCCTTCGCCCC
10182





13633
GGGCCTCGCCGCCTTCGCCC
10181





13634
CGGGCCTCGCCGCCTTCGCC
10180





13635
GCGGGCCTCGCCGCCTTCGC
10179





13636
CGCGGGCCTCGCCGCCTTCG
10178





13637
CCGCGGGCCTCGCCGCCTTC
10177





13638
ACCGCGGGCCTCGCCGCCTT
10176





13639
AACCGCGGGCCTCGCCGCCT
10175





13640
AAACCGCGGGCCTCGCCGCC
10174





13641
GAAACCGCGGGCCTCGCCGC
10173





13642
GGAAACCGCGGGCCTCGCCG
10172





13643
AGGAAACCGCGGGCCTCGCC
10171





13644
CAGGAAACCGCGGGCCTCGC
10170





13645
CCAGGAAACCGCGGGCCTCG
10169





13646
TCCAGGAAACCGCGGGCCTC
10168





13647
GTCCAGGAAACCGCGGGCCT
10167





13648
AGTCCAGGAAACCGCGGGCC
10166





13649
CAGTCCAGGAAACCGCGGGC
10165





13650
CCAGTCCAGGAAACCGCGGG
10164





13651
CCCAGTCCAGGAAACCGCGG
10163





13652
CCCCAGTCCAGGAAACCGCG
10162





13653
TCCCCAGTCCAGGAAACCGC
10161





13654
CTCCCCAGTCCAGGAAACCG
10160





13655
CGCCTCCTCCCAGGTGTGGGCTGGCTGCAGACCG
3067





13656
CCGCCTCCTCCCAGGTGTGG
3066





13657
GCCGCCTCCTCCCAGGTGTG
3065





13658
TGCCGCCTCCTCCCAGGTGT
3064





13659
CTGCCGCCTCCTCCCAGGTG
3063





13660
CCTGCCGCCTCCTCCCAGGT
3062





13661
GCCTGCCGCCTCCTCCCAGG
3061





13662
AGCCTGCCGCCTCCTCCCAG
3060





13663
AAGCCTGCCGCCTCCTCCCA
3059





13664
AAAGCCTGCCGCCTCCTCCC
3058





13665
AAAAGCCTGCCGCCTCCTCC
3057





13666
GAAAAGCCTGCCGCCTCCTC
3056





13667
AGAAAAGCCTGCCGCCTCCT
3055





13668
CAGAAAAGCCTGCCGCCTCC
3054





13669
CCAGAAAAGCCTGCCGCCTC
3053





13670
CCCAGAAAAGCCTGCCGCCT
3052





13671
CCCCAGAAAAGCCTGCCGCC
3051





13672
TCCCCAGAAAAGCCTGCCGC
3050





13673
GTCCCCAGAAAAGCCTGCCG
3049



















Hot Zones (Relative upstream location to gene start site)







1350-1500


1750-1900


2500-5500


10150-10300









Examples









Genetic Code (5′ Upstream Region)







(SEQ ID NO: 13679)







AGCTGGCAGGGCGAAGGGCCGACAAATCCTCCCTGACCCTCCCAGCTCTT





TGTTATCTCAGAGGGAAGGTTACATTTCTGTATGGGAGGCAAGGTGCCAG





GAGGCCTCGGGCAGAACAGAGACAGGCAGAGCTGCTGTCTGACCCCTGTT





GCCTGGAGCAGCTCAGGGCTGCCCTAGGGACACTCTCCCTCCACTGGCCT





GGGGCCCTTCCAGAAATGGGAGGGCTACATTTCAGAAAGAGGGCGAGTAG





AGGAGTGGGACAGAAAAGGAGCGAGGTGGGCTGGAAGGATAAAAGCAGCC





AACTCTCAATTATTCAGAAACCTGTCTGCAGTGTGTGGACAGCCCATGCC





TTTGCTGAGTTTCTCACCTTCTCTGTTCAGCTGCCATCAGCTCTTTCCCT





GAGAAGTGGAGGAGGGACCCTGGCAAGTTGGCCACTTGCTTTCATTTTGG





CTTCTTGATAAATCTATAGAGGATTTTTCAGCAGCAGGCCCATGTCCCTC





AACCCCAAACAAGCATTTAGATCATTATCTTTCTGTTTAAATCAAGAACG





CATTATTTAGCCTTTTATTTGGGGTTCAAGATACTCCTACAATGGTTCTA





AATCATAAGAAAAAGGGGCTTGATTTAAAACCCCTTGTTTTGGGCCAGGA





ATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGCA





GATTACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAAC





CCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCATGGTGGCAGGTGTC





TGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAGCCCA





GAAGGCAGAGGTGAGCTGAGTGAGCTGAGATCGTGCCATTGCACTCCAGC





CTGGGCAAAAAGAGCAAGACTCCATCTCAGGAAAAAAAAAAAAAAAGAAA





ACAAAAAAAACCCTTTTTTGAGAAGAATTACGGAGCAAAGTAGAAAAATA





GTAGCTGGGTGTTAACATTAAATGCTGGATTTTTTTCATGGCTTGTCTTC





CCAATCATATTCCCTCAAATTGTGTTTCCTCCTCTGGTAACCCAGGTTGG





TTATGCTTAGCAAGTCCATGAACAATAAATATACATGGAAAACCTCCTGT





GTAGAATTGGTCAGACACCTAGATAAGATCCTTGCCCTAAAGCAGTTTAG





AAACCAGTTAGAAAGAAAGCAGAGTAAGGAAAACCACTAACAAAGCACGG





TATCAACTCAGTGGATAGTCAGCAAGTGAGCAGGGGGTCCAGGGACTGAC





AAAGCTGGGATGGGCAGGGAAGGCCTCTTGGGGGTAGGGTGTGAGTATGG





CCTTCTTACAAGCGTGTGATGTGTAGTAATTAAAATGCAGGAGGCCTAAT





GGGTGGGCAGCTTACATAGGAGTATAAACCAAGCTTGACCAGGAGCTGAA





AGGTTAAATGGTGGCTCTTAGGGGAAAACCCTATAAACAGTGGCTGAAGT





TCATTTATTCAACAAAGATATGAGTTCTTGTTTCTCATTTTTTGTTTTGT





ATTATTTTGTTTTGAGACAGGGTCTTACTCTGTCGCCCAGGCTGGAGTGT





AGTGGCTGGATCATAGCTCACTGCAGCCTCAAACTCCTGGGCTCAAGCCA





TCCTCCTTCTTCAGCCTCCACCTCCAGCTAATTTTTAAAAATATTTTGTA





GAGACAAGGGCTCACTTTGTTTCCCAGGCTGGTCTTGAACTTCTGGCTTC





AAGTGATCCTCCCGCTTCGGCCACCCAAAGTGCTGGGATTACAGGCGTGA





GCTGTAATTTAGTTGTTTATTTACTCATTTGTTCAACAAATACTTATTGA





ATATTTGCTCTTTGGCCAGTCAAGGGATTTCATGAGTGTCTACTATGTGA





ATAACACTGTGTTGGCCACTAGTCTGTCACCTACTGGTGGATTAGAAAAA





TAGCGCGAGGACCATTTTTTCTTTTCTTTTCTTTTTTTTTTTGAGACGGA





GTCTTGCTCTGTTGCCAGGCTGGAGTGCAGTGGCACAATCTCGGCTCACT





GCAACCTCCGCCTCCCGGGTTCAAGCGATTCCTCTGCCGCAGCCTCCCCA





GTAGCTGGGATTACAGGCAAGCGCCACCATGCCTGGCTAATTTTTTTGTA





TTTTAGTAGAGACGGGGTTTCACCTTGTTGGCAAGGATAGTCTCGATCTC





CCGACCTCGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAG





GCATAAGCCACCGCACCCGGCCAACTCTTTTCTTAAATTAGCCAGGGAGG





CGTGGGTGGGTTGGGTGAGGAGTTGGGTGGGGGGATCTCATTCAGTATTC





AAACTTCTACAAGTTTCGGGGTTGAGGTGGGTGATGGTAAGGGAACAGGC





CCTGCCACTACCTTTCATAGTGACTTCCATTTGTGTAATATTTTTGGTCC





ACTGAGAGCTATTATTTTATTTGATTCTTATGACCATCTTGTGAAGGAGT





ATCAACAGATACCCCGTTTTGATTTTATCAGATGCATGATTTGTCCTACA





TCAAACTTCATAAATGATGGACAGAATGGAGGAATCCTTCAGACCAAGTG





CTGCCTACTTCCCACCCCAATGGTGGCCTCAGCCTGGGCTCACATCACAC





GCCCCAAGGAGCCTTGGAAAAAATAAAGGCTCTTGGCTCCTTCCTGGGAC





AGCGTGATTCCTCATGTCTGAGCAGGCCCATGAACTTGTATTTTTCAGAC





GTTCCCTAGGACCCGTGTCCATCTGGATTAGGGAACCACTACATTATACC





ACTTCGCGGGAAGACTCAGGGGGAAGCATTTTAGCCACTTTCCTGTGTTC





CACAGTACTGGAGGGTGTTCTGAGTGGGCTGTGATTAATTTCCAAACCAA





CCACACGTCTCCCCTCAACTCCCACTGCTTACTCTTTGCTTCCTAGACAT





TCACTGCAGGCTGGAGACTTCTGGAAGCCAACAGCATCGCTGTAGAATTT





ACAGGGTCCAGTTCCCGGTGGACCACAAAACCTAAATTATGTGGCTGGGG





AAAGCTGAAATCCAAGGGAAGGGTTTGAGGAGGGGCTGACCTTATAATAA





AACCGGCTTGTATTTACTAAGTGTTAACTATGCGCTAGGCCCTCGTTGAC





GCCTCAACTCTATGTGAAAAGCACTATTATCCCCCATTTACAGATGGGAA





AACAGAGATTTAGAGCGCGAAAATCATTTCCCCAAGGCGCACAGACTCCA





AAGCCCACGCTACCAGGTACAACCTCAAGGCTGCGGCGTCTCTTCACCTG





CCCCCTAGCCCCCAAACCGCTGCTATGTCTAGGGCCTGACATTCCGGCGC





CCTCTGGGACGTGCTCAGATGCAGGGGCGCAAACGCCAAAGGAGACCAGG





CTGTAGGAAGAGAAGGGCAGAGCGCCGGACAGCTCGGCCCGCTCCCCGTC





CTTTGGGGCCGCGGCTGGGGAACTACAAGGCCCAGCAGGCAGCTGCAGGG





GGCGGAGGCGGAGGAGGGACCAGCGCGGGTGGGAGTGAGAGAGCGAGCCC





TCGCGCCCCGCCGGCGCATAGCGCTCGGAGCGCTCTTGCGGCCACAGGCG





CGGCGTCCTCGGCGGCGGGCGGCAGCTAGCGGGAGCCGGGACGCCGGTGC





AGCCGCAGCGCGCGGAGGAACCCGGGTGTGCCGGGAGCTGGGCGGCCACG





TCCGGACGGGACCGAGACCCCTCGTAGCGCATTGCGGCGACCTCGCCTTC





CCCGGCCGCGAGCGCGCCGCTGCTTGAAAAGCCGCGGAACCCAAGGACTT





TTCTCCGGTCCGAGCTCGGGGCGCCCCGCAGGGCGCACGGTACCCGTGCT





GCAGTCGGGCACGCCGCGGCGCCGGGGCCTCCGCAGGGCGATGGAGCCCG





GTCTGCAAGGAAAGTGAGGCGCCGCCGCTGCGTTCTGGAGGAGGGGGGCA





CAAGGTCTGGAGACCCCGGGTGGCGGACGGGAGCCCTCCCCCCGCCCCGC





CTCCGGGGCACCAGCTCCGGCTCCATTGTTCCCGCCCGGGCTGGAGGCGC





CGAGCACCGAGCGCCGCCGGGAGTCGAGCGCCGGCCGCGGAGCTCTTGCG





ACCCCGCCAGGACCCGAACAGAGCCCGGGGGCGGCGGGCCGGAGCCGGGG





ACGCGGGCACACGCCCGCTCGCACAAGCCACGGCGGACTCTCCCGAGGCG





GAACCTCCACGCCGAGCGAGGTAAGAGCCGCGGCGCCCCCGGATCTGGGG





CGGGCTTGGCGTCCCGAGCGGCCCCCGGCGCCGGAGCCTCCCGGCTGCGC





GCTTTGCCCGCCGCAGCCCAGCCGGGGCCGGCGCCTCCCTCCGCTCGCCG





CCCGCCCCTTTCACCTCCTGGCTCCCTCCCGGGCGATCCGCGCCCCTTGG





GTCTCCCCTCCCTTCCCTCCGTCCGCGTCTCCTGCGCCCCCTCCCTGCGC





TCGTCCCGCCGCTCTTCCCGCCGCCCAACTTTTCCTCCAACTCGCGCTCG





GGAGCTGGCGAGGCGGCGGCGGCTCCTCAGTGAGTCCCGGGAGGGACAGG





CCCGGGGCGAAGGCGGCGAGGCCCGCGGTTTCCTGGACTGGGGAGGAGGG





CGGGAGTGGGCGGCGAGGTGGGATGCGTTGTGTGTGTTATGTGTGTGTGT





TGCATTCCACTCCATGTCTTTTTGGTCCCCTTTTGGGGATTCACCCCCAA





TTCAGCAGGTAGCTTTGGGCTCAACGCTAAAAATCCGGGGCATTCCTAAG





TCCTTTTCCACCCCCGGGAAAGCCTGGGGTGCGGGTTGGGGTCGGATGGG





GTGGGAGATGAACTGCGGAGGACGTGGAGGGCTAGGTTAGCTTCTCTTGG





AATAGGTTTTAAGGAGGTGTCGTCACCAAATGGCTGAATCTGCTTGAGCT





GAGAGCGAAAAACGACTCCCCTTTCCAGAAGGGGTGATCTTATGACTTGG





ACGGTCTCTGAAAGGGTCGGAAGTTTGGGGAACGGGAGGACAACCCACGG





TCGTTAAGCCGAGGTGTGGGATGGGGGCGGAAGGACCGTTCGGTCCCAAT





CTGGTTCCTAGAGGTGGGGGAAGGGATGAGGGTTTTTGTCCGGTGTGGTT





CACTCGGCAGCGATGCGTATGCTTCTCTGGCCCAGACCCCTCTGCACCTC





GCTTCCCCTACCGTTATGTTTGGGGTTGGGAGAAAAGTGAGGCTACGACC





CATGTTTGCGGAGGAATTTTATGGACCTTGTAGATGGGGGTTCATATAGA





ACACACACCCCCTATGAGGCAGCCAGACACTTTTTTGGTGGTGGTGGGGG





GGGGGTGGGGTGTGAAGCCTGTTTCTTGTTCTGAGCCCAGAAGCTATCAA





CCCTTTTGAAAAACATTACCACGGTGCCTTTCTCCCCCAGCACTCCCCCA





CCCCCAATTTCCAGATGTAGCAGCCGCATCTGGTTCCGTTTCACCCCACA





CGGGTACACCGCAGCCGCATTATTAACTTCCCTCTTCCTCCCCTCCCCCT





CCCCCAAATTAAAACTCAGATTCTTCAGCCTGTCTTGACCACCTCCCTCC





TTAACATTTCTGGAGACTTGGAGATGCGGCGTTGAGATTCGGGGGAGAAA





AGAAAGTTCCCTTGGATCCCGAGTTATTTAAGATCTCACCAAGTTATTCG





CCGCCGCTGGTGGGTGGCGGCGGTCCGGGTGCTTTCTGGATTGCGCAGTA





AAGAGGCATCTTGGGAGATGGGGCCAAGGTTTTAGGGGGTGCCACTCGCG





AACGGTTCATCCGCTAGACTAGGGGGGCTCTTTGGCTGTGCGTCTGGCCA





GAACTGGCCTTGACGATGGAAGTTTCTGGAACCAAAGCGTTGCTTTCTCT





CCCTTGTGTTATAGCTGGAGCTGCGGGAGCGCCTGCCCTGCCCGGAGCCC





GCGGTCCCCTCTCGGCTGCCCCGCGGTGGCGTCACGCGCCCCTCCCGGAG





CAAGCCCGGTGCGCAGGGCCGGGGGCGTGGGCGGCTGCTGCCAGAGGCGC





TCTCTGTGTGTTTTTAAGGACTGATTTGGGCCGCATCCCCCGGAAACTAA





AGTGGGGTGTTTTACCGTTTAAATAACGGCTACAGGTTTGAAAGCGGGGT





TGGATTTTCGAGTTGTGTTTGGTAATAGTCTTTGAGGCAGGAAAGCGCCT





TGTGGTCCAAAGTTGCCGGGAGGGTGGGGAGAGTCGGTGTCTTACCCGCT





TCTTTCCAGCCTCTTTCAAATTGAAAACACTTCTCTGGTTTCCTTCTTTG





GGCGGTAGTTTTGGAGGCTGTAATGAAATCGCACTTTCTCTAGACGTGGT





AATTAAGGTGACTGTTTCCTCCGCAGATGTGCCCTACCCTTTGCACCTCC





GGACCAGCGCTTTTTTTGGAATACTATCTAGCCTTGAGACTGTTTAGCAG





AAAGTGGCCATTTTCCTCCCTTGGCCCGGGCTCCCGGTTTCCTCCCTGAG





GCTTGTTTAAAAGCGAAGTAGCAGGGCCCCGTGGGACGCGCCTTGGTCTG





GGTAATCACCCCCACGCCCGGGTCATCCACCTTCCTCTCGGTGACCGAGG





TTCAGCAGCCTCTGCTATTGCCGGCCGTCTTTGCCGATGGCCTGCCTCCC





TAATGACTTGTTTACATATCCTACCCCCAGTGGGTTAGGAGAAGCTCCGG





GGCTGCCCCGACCCTCCGAGTGCAGGGTGTTTGGGGACCGGGAGGCTGCT





GGGGCCTGACTCCAGCTGGGAGGGTTATGAACTGCATCAGTGACGAGCTG





CTTGAAATATCTGTTGCATTTACTCTTAGTCATAGCTGAGTGTCAGCTTT





TTAATGAGGTTCATCCAGATTGAGAGCCACTTGGACTGCGTACTTCACTG





CCTGCTTTTCCAAACATGCCTGCAGAAATGCTCATTTTCGAGGTATTTTT





CCCAATGGGAATTCAGGCCAGAGTGGGCACCACTTGAACAATCTTAGGGT





GCTTCTTTTCCTTGGCCTCTGGCCATGGAGGGTGTTAGACAGTTCCATTA





GGTGGCCCTTTGATAGCAAGGGAAGCAAAGGCTCAGGAAGAAATGGAGAA





GCGTCCCCCACTCCCTAGGGGCAGAGGATTAGATACATCGGTGCATCCCT





CAGGCTGGGCTAGCTTTATTCCTGGTGGACTCCAGAGGGCAAGAAAATTG





AATTGAACACTGGGTAGGCAGATTCAAGCCTTAGAGACCAAGGAAAATCC





ATGGGTTTTGCTTTTAGTGGTGTGCTCTTTGTTTTCAGTATTGACCTGAA





ACAAGACTCCTAAAATGAGAGATTTGCTGGTATGAACTTGGGGGTTTAGC





AGCCGGCTTCTACAAAGGCTTTTTTCTTGCCTTCGTTTCTAAAGTGTCTT





TCGTCAAAATGGCTGTTAGTTATAGAACATCCTAGCAAAGTTTGAGCCTG





TTGCTGCTGGAGGAAAAGGAGTTAGAATTGATTCAAATGTCTTATTCTGA





AAGGGCCTCACATCACTTGATAGTTTAATTTCCTCCTGGGAAATTTGTGT





CTTACATTTGTCTTCCCCAGAGCTTTGTAAAAGGCCTGAACGCACCAGGG





ACTAGTGGGAGCCCAGATGCAGAGCTTTAGAGAAGATTCTGGTGTTTCCA





GAGAGGATGAAATGTCAGACTTGGGCTAGGATATTTGTTTTTCCTCCTAA





GGTTGCATCTACTTTAAACAGAAATTCTCTCCTCGCCACCATTTATCTCT





CCCCTGCAATGAAAGAAACCATGTTTAGGGCCCTCTCCCCCATTTAATAG





CCCTCACATGGATGAACTATCCCAAGAATTTGGTGGGGTTCCACTCATAG





TACATCCTGTCTTCAAGAGCAAGGTTTTCTAGATTATGTGCAGCAGTTCG





TGTTTCACTTGTTGCTTTTTTTTTTTTTTTTTTTTTTTGAGATAGTCTCG





CTCTGTCGCCCAGGCTGGAGTGCTGTGGCGCTATCTCAGGTCACTGCAAC





CTCCGCCTTCCGGTTGAAGCGATTCTCCTGCCCCAGCCTCCCTAGTAGCT





GGGATTGCAAGCATGCGCCACCATGTCCGGCTAATTTTTTGTGTTTTTAA





TAGAGATGGTGTTTCACCATGTTGGCCAGGCTGGGCTTGAACTCCTGACC





TCAAGCAATCCGCTGGCCTCGGCCTCCCAAAATGCTGGGATTACAGGTGT





GAGCCATTGTGCCTGACCACTTATTGCTAATTTTTTATATGTCTCTTACT





TCCAAGGACATTTAGACACTTTTTTTTTTTAAAGAGACTCAAAAAATTAG





CATTTCCATTGGACCAACTAAAATTTAGCAAGCTGAGCTGAGTAACTTTC





TCCATATGTTTATTAAGTACTTGCCCCCTGCCCTCTCAACATGTGAGTAG





AGAATGGTCACTTTGGGGAAGAAATAAGTCTTATTCTCATCTGAAGGGAT





TAATGTTTTGGTGTTACTTCCTCAATTCTGAAGAACCAAGTTGTCCAGAA





ATTTTCTCAGGGTTCTTTGGACTAGAGTTTGGCTGGTTAACAAGGGGTAC





TACCTAATTGCTTTTCTCTGATATTCTCAGCCTCTTTTTCTGGAGGAGTA





TCTCTGTCAGTTTCTTTTCATCAGCCCTTTTTTTTCCTTCATTCACTTAC





TCATTCATCCAGTTAACAAACATGTTGGCATCTCCTGTGTACATGCTAGG





TGCCGAGGGTGTTAGCAAAGGTTAGGGAGGCACAGACCCTGTTCTGAAGG





AGCCTGCAGTTTCGTGGGGAGAGAAGAGAATGAAGAACATAAATAACAAT





CATATAATATGACCTAAGTGCTATGTGAGAGGGGCTAGTAATGTGGTTTG





CAAATTTGGAGGAATGAAATTCTCCAGCTAGAAGGCCCAAGAAAGTCTTA





TGGAAGAAACAGCTTCTTAAGGTGGGGTTCAGAGAAAAGGGAAGGGCTGG





CCTGTTGCAGAACAAGGAATGGCATGAAGAAAGTCTTGCACAGAGGCATG





GATGTTGCTTCGAGCTGTGGCGCCCTATAGAAATAGAACATGAGCAGCTG





GTCACAGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAG





GCGGATTGCTTGAGCCCATGAGATGGAGATGAGCCTGGACAACATGGTGA





GACCCTGTGTCTACCAAAAAATACACAAATTAGATGAGTATGCTCGTGCT





TACTGGTAGTCCCGGCTATTCAGGAGGCTGAGGTGGGAGGATCACTTGAG





CCTAGGAGGCAGAGGCTGCAATAAGCTGTGATTGCACCACTGCATTCCAG





CCTGGGGGACAGAGGAAGACCCTGTTTAAAAAAAAAAAAAAAAAAAAAGC





CAGGCACAGTGGCTCATGCCTGTAATCCCAGCCCTTTGGGAGGCCAAGGC





AGGTGGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGT





GAAACCCTATTTCTACTAAAAATAAAAAAATTAGCCGGGCTTGGTGGCTC





ATGTCTGTAATCCCAGCTACTTGGGAGGCAGGAGAATCGTTTGAACCCGG





GAGGCGGTGGTTGAGCCAAGATTGCGCCACTGCAACTCCAGCCTGAGTGA





CAGAGCAAGACTCCATCTCAAAGAAAAAAAGAAAGGAAGAAAGAAATATA





ACATTATAACATGAGTTATGTATATGTTCAGATTTTCTAGAAGCCACATT





GGAAATTAAGTTAAAAGAAAGAAATAGGTAAAAAAAATTTTTTTTTTTGA





GACGGAGTCTCACTTTGTTGCCAGGCTGGAGTGCAGTGGCGCAATCTCGG





CTCACTGCAACCTCTGCCTCCCGGGTTCAAGCAATTCTCCTGCCTCAGCC





TCCTGAGTAGCTGGGACTACAGGCGCGCGCCACTGCACGCAGCTAATTTT





TGTACTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGATGGTGTCG





ACCTCTTGACCTCGTGATTTGCCCACCTCAGCCTCCCAAAGTGCTGGGAT





TACAGGCGTGAGCCACCGCGCCTGGCCAATATTTGTTTTTTAATTAACTT





GTTTGTTTAGATTTTATTTAATGTAACTATATTTCCAAAATATTATCATT





TGAACATGTAATCAATATAGAAATTATTGATGAGATACTTTACATTTTTT





TCATAACAAGTTTTTAAGATGCGGTGTATACTTTTTACTTATAGCATATC





CGTTAGCACCAGCCACATTTCAAGTGTGCAGTGGCCACTGTGTGGGCCAC





AGGTCTAGAATATAAGACATGAAGATGGAGAGTGAGAAATGCCTTTGGAA





AGGTTGGAAGTTCCTGTCCTTCTGCTGCCAATTACCAAATCTCCTGAGAG





TGCTATTAAGGAGTGACTCAAAGCACTACACAAAGAGAATTATAAATATC





TTAATATTATATCTGAAATCCAAATGCATAATTCTTTACATTTGGTTGGT





ACTTTAGAGAGGAGAGAATGGGCACAGTCACCCACACCACCCATTTGAGC





CTCATAATCACCTGTGATGTGGCTTCCTCTAGGTGGGAAACCGAGGCTTA





GAACGGTTAAGTGACTATCCCAGGGTGGCAAGATCATAAGTGGAAGGGTG





TGAATTCATACTGTCTCCAGCGGACAAGAATAAAAAGACCCAGGCTGGGT





GTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCACTGTAGGTG





GATCTCCTGAGCCCAGGAGTTCATTACCAGCATGGGCAACATGGTGAGAC





CCCATTTTTATTAAATATACAGAAAATTAGCCCAGCTTCTCGGGAGGCTG





AGGTGGGAGGATCACTTGAGTCTGGGGGATGGAGGTTGTAGTGAGTTGAG





ATCGTGCCACTGCACTCTAGCTTGGGTGACAGAGCAACACTCTGTCTCAG





AAAGAATAAAAAGATTTGGCCATGAATTCGTCAGCTAGTTTTCCTTACAT





AATTTTTGGACAAGGAGATCTGACATTCATAGGTTTTTCTCTTAGAAGTG





GGAGAGCTTCAAGGTCACGTGGTCCGTCCAGCCCCTGCTATCTCACCAGA





CACTGTCCACCCTGTATGTTGGATCAGTACTCCAGTGAGAAGACAGCAGG





CACTTTCACCCATGCAGCCCATTCAGTCTTCATAACCACCTGTGATGGAG





GCAAGGCAAGTATTTCAGCCCCCTCTGATGAGTGGGAAACTGAGATGTGC





CCCCTCTCTGCTCCCCACCGAGGACCTCTGCATGCAGGCATGAATCCCAG





GAGCCTAGCTGATATTGGAGAGACGGGGCGGGGGGAACCAGCTGCAGGGT





CTTGGAGGAAGCTGCTGTGTACACCTGCAAGGCTGCAGGTTACATCTATC





TGTCAAGCAGTGAAGGAAGGAAGTTGTTTCTAAGGGATTGGAAAAATTCA





TTAATTAGTAGAATGAGAAACTGAGGTGAAGCAGGAGGTGGCAGGGTCCC





AGACAGCATGTTGGACTAGTGGCCTGTGTCACTGTGTTTTTTGCAGGCGG





GTGGCATGGGGTGTATGCTGACTTCTTATTCCAGGAGTTGGTGCCAGGAG





GCCAGGTTTTCTTAACATCCTTGTTTTACAGATGTCAAACTTGAGGGCCA





GAGGGGTAGGAGAGGAAGAGACTTTTTGTACCTTTTTTGGGAAAGAACAA





GAGGGAAGCTGGCAGATGAATTTGAAGTGCATTGACCAGGGAGCTGAGAG





AGGGCGGTCTGCAGCCAGCCCACACCTGGGAGGAGGCGGCAGGCTTTTCT





GGGGACAGAGTGGCCAAGTCGAAGCAAGCTTAACCATCTCAACATGACAC





CACTCTTTCCCATTGGAACCTGAGAACTTGTTCAGTATTCTGACACTTAG





CAAGGGACCTGGGTTTTCTTGGTCAGGTGTGCGTTTCTGGGTGACAGGCC





TGCATCAGGTGTATTTTCGGGATGTAGTAAGTTGTGGAATATGGGTTTAG





GGGCATCCTCTGGCAAGCACTGCTTCTATCCCAGCTCTGGGAATGTGCCC





CATGCAGTGTCCTAGATGGCCCATCTGTGGTCTGCTTCCAAGGGTCTTTC





TTTTAGTTAGTTAGTTTTGAGACAGAGTCTCACTCCGTCACCCAGGCTGG





AGTGCAGTGATGCAATCTCGGCTCACTGCAACCTCCACCTCCCAAATTCA





AGCAATTCTCATGCGTTAGCCTCCTGAGTAGCTGGGATTACAGGCGTGCA





CCACCACACCCAGCTAATTTTTGTATTTTTAGTAGACGAGGAATTTCACC





ATGTTGGCCAGTCTGGTCTCAACTCCCCACCTCAGGTGATACTCCCGCCT





CAGCCTCCCAAAGTCCCGGGATTGTAGGTATGAGCCAACATGCCCTGGCA





CAAGGGTCTATCTTTGACCAATGGAACTGCAAATCAAGCCTCTTTTGTTA





CCAGAGTTACCTTGGATTTACCCTTATCTACTTGGTTTGGATAAATTGAG





TTTGCATCAGATGGAGTCAGGCTTGATCAATCCCTTATTTACTTCCTCCC





ACCCTGTTCTCTAATATCCAAAAACCTTGAGGCACTATTACATGCTAGCT





ACATTTCCTTGAGTAAAGTACTTAACCTCTTTGAGCCTCAGTTTCTCCAT





TGCATAAAAGGAATAATAAAACTTATCCCCCATAAGTTTATAGTGAGGAA





TGAATTAATTCCTCACTATAGTTCTAAATTAATTCTACTTAGGGCATCCT





TGGTACATAGTGGGTGTTCAGTATTCATTTCATTTTCTCTTTTCTGATTC





CTTTCGTAAAAGTAGAAAAATGAAAGAGAAATGTTGACTTCTCTTTTGAT





TTGAAATCATTAAAACATTTTAGTAAGCCTTGGGAGGGAGCTAGTGGTGT





GGCATGTGTATCCCGCTGGCCAAGCACATGTGAACGAAGCCAAGAATCCA





GGGGCTTTTCTGCCAGCCAGCACTGACTCACTTGCGAGGGGCCCTGCCTG





GCTCGGGGGAGGCAGGGCTGAAGTACCACATTAGGGCATGTTCCGGGGAA





GTAGATTCTCTGAATAACTTGGATGGCTCCCTGGAGCATTTAGGACAGAA





GCCACCTGGAAAATAGAGATGGTCACCCCCACGTAGCCTTGACAGTGCCC





AGAAAGTCTTGTCACTTGGTAAATGTTAACAGCTATGATCCGTTCTTTAA





GACCCTGGGGAGTTTTAAGTTTTACCCCACCAGACCTGAGAAGGGTAAAG





GGCTGCAGATTCTGTTCTTTTAACTGGGGCCAGTGTGAGCCATCTTTGAC





TCAGTGCTTGCAATAGACCTTGATTCTGCAGTGGGACCTCCCAGGCCCCC





TTGCCCCCCGCAACTTCTGGACTCATATCCGTCAGACATCACTTGTCACC





TTCCAGCATCAGGGAGAACTGGATCCCTCCTGGCTCCACACTCTTAGGCT





CTTTGTAAGTAGCTGGTGAGGGTTTTCTTCTCTCTGCAAGGGAGGCTGGT





AGAACTATGGATGTGATTCGTACAATTTTAGAGACAAAAAGAAAGTACCC





AGGAGGTCATTTATTTCAGCTGCTTCATTGCATAGGTCGGGGAGTTGAGC





ATGGAGTCCAGCAGCTACTAACTAGTTATCTCTGTACCTGGCTTCCATTT





ACTGGTCCTTAGCTTGTTCCGTGATTCTTCATTGCCCCTTATTTCTCACC





AGAGGGACTGGTTGGCCCTAGATGGAGTGGTCTTTTTAAAATTTTTTTTT





TAAATTTTTTGAGACAGAGTCTCACTCTGTCACCTAGGCTGTAGTGCAGT





GCTGCGATCTCGGCTCACTGCAACCTCCGCCTCCTGAGTTCAAGCAATTC





TCCTGTCTCAGCCTCCTGAGTAGCTGGGATTACAGGTGTGTACCACTATG





CCCAGCTAATTTTTGTATTTTTAGTAGAGATGGGATTTCACCATATTGGC





CAGGTTGGTCTTGAACTCCTGACCTCAAATGATCTGCCCACCTTAGCCTC





CCGAAGTGCTGGGATTGCAGGTGTGAGCCACCGCACCTGGCCTGGGCAGA





GTGAAGTCTTATGCTGGGGAGCCATCAGCATGCTCAAACCTCCTGCAATT





GTAGCACACTTTGTAAAACTGTTTCCCACAAAAGGGCAGAACTATTTGGG





ACTTTCATGAGACCATTCACTTTGTAGCACATACTACTTTGAAGTTTATA





CCTTGGAAAACCTCATGATGGTATTCCCAGGCTTGCACGTAATCTGCACT





CAAAACATAGCTGTAGAATTGAACTAAAGCATCCCTCTGTCCAATTAAGA





CCTATAACCTCTCTTTTTGAGACAGAATCTCGCTCTGTCACCCAGGTTGG





AGTGCAGTGGTGCAATCTCAGCTCACTGCATCCTTCGCCTCCTGGATTCA





AGCGATTCTCTTGCCTTAGCCTCCGAAGTAACTGGGACTACAGGTGCGCG





CCACCACGCCTGGGTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCGCC





ATGGCCAGGCTGGTCTCAAACTCCTGGCCTCAAGTGATCCTCCCGCCTCA





GCCTCCCAAAGTGCTGGGATTACAGGGTGCACCACCACACCCAGCCAGGA





CCTATGATCTAATTCATTGTTGGGGTAGCTTCACAATTTTCTTCTGGACG





CCTTAGTAAGTCCACACTTTAAGCAGCCACCACATGGCATACTTTACCTT





CTGTTTTTCCTTTCCCCTCCCCTACCTAGACCCTCCTAACTTTTGGGGTT





TTTTTCCTTTCCTCAGGGTCAGTTTGAAAAGGAGGATCGAGCTCACTGTG





GAGTATCCATGGAGATGTGGAGCCTTGTCACCAACCTCTAACTGCAGAAC





TGGGATG






III. DNA Methylation


In some embodiments, the present invention provides using oligonucleotide that are methylated at specific sites for screening purposes. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that one mechanism for the regulation of gene activity is methylation of cytosine residues in DNA. 5-methylcytosine (5-MeC) is the only naturally occurring modified base detected in DNA (Ehrlick et al., Science 212:1350-1357 (1981)). Although not all genes are regulated by methylation, hypomethylation at specific sites or in specific regions in a number of genes is correlated with active transcription (Doerfler, Annu Rev. Biochem. 52:93-124 [1984]; Christman, Curr. Top. Microbiol. Immunol. 108:49-78 [1988]; Cedar, Cell 34:5503-5513 [1988]). DNA methylation in vitro can prevent efficient transcription of genes in a cell-free system or transient expression of transfected genes. Methylation of C residues in some specific cis-regulatory regions can also block or enhance binding of transcriptional factors or repressors (Doerfler, supra; Christman, supra; Cedar, Cell 34:5503-5513 (1988); Tate et al., Curr. Opin. Genet. Dev. 3:225-231 [1993]; Christman et al., Virus Strategies, eds. Doerfler, W. & Bohm, P. (VCH, Weinheim, N.Y.) pp. 319-333 [1993]).


Disruption of normal patterns of DNA methylation has been linked to the development of cancer (Christman et al., Proc. Natl. Acad. Sci. USA 92:7347-7351 [1995]). The 5-MeC content of DNA from tumors and tumor derived cell lines is generally lower than normal tissues (Jones et al., Adv. Cancer Res 40:1-30 [1983]). Hypomethylation of specific oncogenes such as c-myc, c-Ki-ras and c-Ha-ras has been detected in a variety of human and animal tumors (Nambu et al., Jpn. J. Cancer (Gann) 78:696-704 [1987]; Feinberg et al., Biochem. Biophys. Res. Commun. 111:47-54 [1983]; Cheah et al., JNCI73:1057-1063 [1984]; Bhave et al., Carcinogenesis (Lond) 9:343-348 [1988]. In one of the best studied examples of human tumor progression, it has been shown that hypomethylation of DNA is an early event in development of colon cancer (Goetz et al., Science 228:187-290 [1985]). Interference with methylation in vivo can lead to tumor formation. Feeding of methylation inhibitors such as L-methionine or 5-azacytodine or severe deficiency of 5-adenosine methionine through feeding of a diet depleted of lipotropes has been reported to induce formation of liver tumors in rats (Wainfan et al., Cancer Res. 52:2071s-2077s [1992]). Studies show that extreme lipotrope deficient diets can cause loss of methyl groups at specific sites in genes such as c-myc, ras and c-fos (Dizik et al., Carcinogenesis 12:1307-1312 [1991]). Hypomethylation occurs despite the presence of elevated levels of DNA MTase activity (Wainfan et al., Cancer Res. 49:4094-4097 [1989]). Genes required for sustained active proliferation become inactive as methylated during differentiation and tissue specific genes become hypomethylated and are active. Hypomethylation can then shift the balance between the two states. In some embodiment, the present invention thus takes advantage of this naturally occurring phenomena, to provide compositions and methods for site specific methylation of specific gene promoters, thereby preventing transcription and hence translation of certain genes. In other embodiments, the present invention provides methods and compositions for upregulating the expression of a gene of interest (e.g., a tumor suppressor gene) by altering the gene's methylation patterns.


The present invention describes the use of unmodified completely complementary DNA oligonucleotide sequences to inhibit gene expression. The present invention is not limited to the use of methylated oligonucleotides or modified oligonucleotides to identify therapeutic sequences. We describe the use of non-methylated oligonucleotides for the inhibition of gene expression and we prove this system works by providing the results of experiments conducted during the course of development of the present invention. For example we demonstrate that an unmethylated oligonucleotide targeted toward Bcl-2 inhibited the growth of lymphoma cells to a level that was comparable to that of a methylated oligonucleotide.


IV. Oligonucleotides


The term “oligonucleotide,” refers to a short length of single-stranded polynucleotide chain. Oligonucleotides are typically less than 200 residues long (e.g., between 8 and 100), however, as used herein, the term is also intended to encompass longer polynucleotide chains (e.g., as large as 5000 residues). Oligonucleotides are often referred to by their length. For example a 24 residue or base oligonucleotide is referred to as a “24-mer”. Oligonucleotides can form secondary and tertiary structures by self-hybridizing or by hybridizing to other polynucleotides. Such structures can include, but are not limited to, duplexes, hairpins, cruciforms, bends, and triplexes.


In some embodiments, the present invention provides DNAi oligonucleotides for inhibiting the expression of oncogenes. Exemplary design and production strategies for DNA is are described below. The below description is not intended to limit the scope of DNAi compounds suitable for use in the present invention. One skilled in the relevant recognizes that additional DNA is are within the scope of the present invention.


A. Oligonucleotide Design


In some embodiments, oligonucleotides are designed based on preferred design criteria. Such oligonucleotides can then be tested for efficacy using the methods disclosed herein. For example, in some embodiments, the oligonucleotides are methylated at least one, preferably at least two, and even more preferably, all of the CpG islands. In other embodiments, the oligonucleotides contain no methylation. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that preferred oligonucleotides are those that have at least a 40% CG content and at least 1 CG dinucleotides. In some embodiments, oligonucleotides are designed with at least 1 A or T to minimize self hybridization. In some embodiments, commercially available computer programs are used to survey oligonucleotides for the ability to self hybridize. Preferred oligonucleotides are at least 10, and preferably at least 15 nucleotides and no more than 100 nucleotides in length. Particularly preferred oligonucleotides are 20-34 nucleotides in length. In some embodiments, oligonucleotides comprise the universal protein binding sequences CCGCCC and CGCG or the complements thereof. In some embodiments, oligonucleotides comprise the universal protein binding sequences (G/T)CCCGCCC(G) and the complements thereof. It is also preferred that the oligonucleotide hybridize to a promoter region of a gene upstream from the TATA box of the promoter. It is also preferred that oligonucleotide compounds are not completely homologous to other regions of the human genome. The homology of the oligonucleotide compounds of the present invention to other regions of the genome can be determined using available search tools (e.g., BLAST, available at the Internet site of NCBI).


In some embodiments, oligonucleotides are designed to hybridize to regions of the promoter region of an oncogene known to be bound by proteins (e.g., transcription factors). Exemplary oligonucleotide compounds of the present invention are shown in Table 3. The present invention is not limited to the oligonucleotides described herein. Other suitable oligonucleotides may be identified (e.g., using the criteria described above). Exemplary oligonucleotide variants of the disclosed oligonucleotides can include smaller oligonucleotide sequences of 20-mer or can be right or left shifted 20 base pairs. Candidate oligonucleotides may be tested for efficacy using any suitable method, including, but not limited to, those described in the illustrative examples below. Using the in vitro assay described below in the material and methods and Figures, candidate oligonucleotides can be evaluated for their ability to prevent cell proliferation or target inhibition at a variety of concentrations. Particularly preferred oligonucleotides are those that inhibit gene expression of target proteins as a low concentration (e.g., less that 20 μM, and preferably, less than or equal to 10 μM in the in vitro assays disclosed herein).


B. Materials and Methods


Oligonucleotide Preparation (FIGS. 1-25, 27-30, 31-49, 54-67)

All oligonucleotides were synthesized utilizing cyanoethyl phosphoramidite chemistry, purified by reverse phase high-performance liquid chromatography (RP-HPLC), and lyophilized by The Midland Certified Reagent Company (Midland, Tex.). Methylated oligonucleotides were methylated at all CpG sites.


Cell Culture (FIGS. 1-25, 27-30, 31-49, 54-67)

Human lung carcinoma cells (A549; ATCC) were cultivated in DMEM medium (ATCC) containing 10% fetal bovine serum (FBS; Invitrogen) and maintained under a humidified atmosphere of 5% CO2 at 37° C. Cells were split 1:8 at 90% confluence and used for experiments between passages 12 and 20 (2,500 cells per well were plated 12-24 hours prior to adding oligonucleotides).


Human breast carcinoma cells (MDA-MB-231; ATCC) were cultivated in Leibovitz's L-15 medium (ATCC) containing 10% fetal bovine serum (FBS; Invitrogen) and maintained under a humidified atmosphere at 37° C. Cells were split 1:6 at 90% confluence and used for experiments between passages 15 and 22 (2,500 cells per well were plated 12-24 hours prior to adding oligonucleotides).


Human prostate carcinoma cells (DU145; ATCC) were cultivated in EMEM medium (ATCC) containing 10% fetal bovine serum (FBS; Invitrogen) and maintained under a humidified atmosphere of 5% CO2 at 37° C. Cells are split 1:8 at 90% confluence and used for experiments between passages 10 and 16 (2,500 cells per well were plated 12-24 hours prior to adding oligonucleotides).


Human breast carcinoma cells (MCF-7; ATCC) were cultivated in 50:50 RPMI/DMEM medium (ATCC) containing 10% fetal bovine serum (FBS; Corning), 0.01 mg/mL insulin (Sigma-Aldrich) and maintained under a humidified atmosphere at 37° C. at 5% CO2. Cells were split 1:6 at 90% confluence and used for experiments between passages 15 and 18 (2,500 cells per well were plated 12-24 hours prior to adding oligonucleotides).


Human colorectal carcinoma cells (HCT-116; ATCC) were cultivated in McCoy's 5A medium (Corning) containing 10% fetal bovine serum (FBS; Corning) and maintained under a humidified atmosphere at 37° C. at 5% CO2. Cells were split 1:6 at 90% confluence and used for experiments between passages 4 and 7 (2,500 cells per well were plated 12-24 hours prior to adding oligonucleotides).


HepG2 cells were plated using 5,000 cells per well in 96 well plate (for both qPCR experiment and cell count experiments). Cells were incubated for 24 hours prior to treatment with DNAi oligonucleotides. Twenty-four hours after plating DNAi oligonucleotides were added to the cells at final concentration of 15 uM. At each timepoint (24, 72, and 144 hours) cells from 96 well plate were washed with 1×PBS once and total RNA isolated using MagMax-96 Total RNA isolation kit (Lifetech, cat#AM1830). At 72 hour timepoint cells were over 90% confluent, therefore cells were washed with 1×PBS twice, trypsinized with 0.05% Trypsin-EDTA and transferred from each individual well (96-well plate) into 24-well plate. STAT3 DNAi oligonucleotides were added to the cells in 24-well plate at final concentration of 15 uM.


HepG2 cells were trypsinized (as described above) and cells from each well (96-well plate) were diluted in 1 mL of complete growth medium prior to cell counting performed using Guava PCA-96 flow cytometry system. HepG2 cell culture work was performed at Altogen Labs (Austin, Tex.).


mRNA Expression Analysis and RNA Isolation (FIG. 67)


All RNA was isolated using the MAGMAX96 Total RNA Isolation kit (cat#AM1830; Lifetech). The manufacturer's protocol was followed, including a final elution of 50 μL elution solution. RNA was stored at −20° C. for later use.


Reverse Transcription (RT) (FIG. 67)

Isolated RNA was reverse transcribed into cDNA in a single reaction containing RNase Inhibitor Protein (15518; Lifetech) and MMLV-Reverse Transcriptase (18057; Lifetech). RNA input into the RT reaction was based on a 7.5 μL input per 20 μL reaction size for all samples.


qPCR (FIG. 67)


Fluorescence based, real-time reverse transcription-PCR (qRT-PCR) is a standard tool used for quantification of mRNA levels. This technique has high throughput capabilities with both high sensitivity and specificity for the target of interest. The amplification reaction consisted of dNTPs (PCR grade; Roche) and Platinum Taq Polymerase (10966; Lifetech). Cycling conditions were as follows: 95° C. for 1 minute; then 50 cycles of 95° C. for 5 seconds and 60° C. for 20 seconds. Results were determined by real-time PCR on the ABI Prism 7900 SDS real-time PCR machine (Applied Biosystems, Foster City, Calif.). All qPCR work was performed at Altogen Labs (Austin, Tex.).


As shown in FIG. 67, PC2 (206; exposed at 15 μM), a PCSK9 targeted oligonucleotide, demonstrated an approximate 40% decrease of PCSK9 mRNA at 72 hours post-exposure compared to control PCSK9 mRNA levels in HepG2 cells. While PC2 (206) decreased PCSK9 mRNA expression, it was not cytotoxic to cells at either 24 or 72 hours post-exposure in the same experiment. This demonstrates that an oligonucleotide is capable of modulating target gene expression with expected phenotypic changes.


Altogen Labs (Austin, Tex.) performed the cell culture work for A549, MDA-MB-231, DU145 and START Preclinical (San Antonio, Tex.) performed the cell culture work for MCF-7 and HCT-116.


Cell Growth Inhibition Assay (FIGS. 1-25, 27-30, 31-49, 54-66)

Cells were harvested from T-75 flask by a single wash with 1×PBS and incubation with 2 ml of 0.05% Trypsin-EDTA (Invitrogen) for 7 minutes at 37□C. Trypsin was inactivated by addition of 8 ml of complete medium (total volume of 10 ml). Cells were counted using hemocytometer and cell count confirmed by Guava PCA flow cytometry. Cells were then plated and assayed. Cell growth inhibition was assessed using a Vybrant MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) Cell Proliferation Assay (cat#V13154) purchased from Life Technologies (Carlsbad, Calif.). For each cell line 2,500 cells per well were plated 12 hours prior to adding oligonucleotides. Absorbance measurements at 570 nm were made using a Molecular Devices Spectramax Plus (Sunnyvale, Calif.) microplate reader. Each treatment was run in quadruplicate. Altogen Labs (Austin, Tex.) and START Preclinical (San Antonio, Tex.) performed the cell growth inhibition assay. Included in Tables 4 and 5 are the sequences for the control and negative control oligonucleotides used in the experiments.


Oligonucleotide Preparation (FIGS. 26, 50-53; Descriptions Referenced in U.S. Pat. No. 7,524,827)


All oligonucleotides were synthesized, gel purified anal lyophilized by BIOSYNTHESIS (Lewisville, Tex.) or Qiagen (Valencia, Calif.). Methylated oligonucleotides were methylated at all CpG sites. Methylated Oligonucleotides were dissolved in pure sterile water (Gibco, Invitrogen Corporation) and used to treat cells in culture.


Cell Culture (FIGS. 26, 50-53; Descriptions Referenced in U.S. Pat. No. 7,524,827)


Human breast cancer cells, MCF7 and MDA-MB-231, were obtained from Karmanos Cancer Institute. All cells were cultured in DMEM/F12 media (Gibco, Md.) supplemented with 10 mM HEPES, 29 mM sodium bicarbonate, penicillin (100 units/ml) and streptomycin (100 μg/ml). In addition, 10% calf serum, 10 μg/ml insulin (Sigma Chemical, St Louis, Mo.), and 0.5 nM estradiol was used in MCF7 media and 10% fetal calf serum was used for MDA-MB 231. All flasks and plates were incubated in a humidified atmosphere of 95% air and 5% CO2 at 37° C.


BxPC-3 pancreatic carcinoma cell line was cultured in RPMI 1640 with 10% FBS.


NMuMG (normal mouse mammary gland cells) cell line was grown in DMEM media with 4.5 g/l glucose, 10 μg/ml insulin and 10% FBS.


All the above cells were seeded at 2,500 to 5,000 cells/well in 96 well plates. The cells were treated with oligonucleotide compounds in fresh media (100 μl total volume) 24 hours after seeding. The media was replaced with fresh media without oligonucleotides 24 hours after treatment and every 48 hours for 6 to 7 days or until the control cells were 80 to 100% confluent. The inhibitory effect of oligonucleotide was evaluated using an MTT staining technique.


Cell Growth Inhibition Assay (FIGS. 26, 50-53; Descriptions Referenced in U.S. Pat. No. 7,524,827)


Cell growth inhibition was assessed using 3-[4,5-Dimethyl-thiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) purchased from Sigma Chemical (St. Louis, Mo.). Cells were resuspended in culture media at 50,000 cells/ml and 100 μl was distributed into each well of a 96-well, flat bottomed plate (Costar Corning, N.Y., USA) and incubated for 24 hours. Media was changed to 100 μl fresh media containing the desired concentration of oligonucleotides and incubated for 24 hours. Controls had media with pure sterile water equal to the volume of oligonucleotide solution. The media was changed without further addition of oligonucleotides every 24 hours until the control cultures were confluent (6 to 7 days). Thereafter the media was removed and plates were washed two times with phosphate-buffered saline (PBS) and 100 μl of serum free media containing 0.5 mg/ml MTT dye was added into each well and incubated for 1 hour at 37° C. The media with dye was removed, washed with PBS and 100 μl of dimethyl sulfoxide (DMSO) was added to solubilize the reactive dye. The absorbance values were read using an automatic multiwell spectrophotometer (Bio-Tek Microplate Autoreader, Winooski, Vt., USA). Each treatment was repeated at least 3 times with 8 independent wells each time. Included in Tables 4 and 5 are the sequences for the control and negative control oligonucleotides used in the experiments.


C. Preparation and Formulation of Oligonucleotides


Any of the known methods of oligonucleotide synthesis can be used to prepare the modified oligonucleotides of the present invention. In some embodiments utilizing methylated oligonucleotides the nucleotide, dC is replaced by 5-methyl-dC where appropriate, as taught by the present invention. The modified or unmodified oligonucleotides of the present invention are most conveniently prepared by using any of the commercially available automated nucleic acid synthesizers. They can also be obtained from commercial sources that synthesize custom oligonucleotides pursuant to customer specifications.


While oligonucleotides are a preferred form of compound, the present invention comprehends other oligomeric oligonucleotide compounds, including but not limited to oligonucleotide mimetics such as are described below. The oligonucleotide compounds in accordance with this invention preferably comprise from about 20 to about 34 nucleobases (i.e., from about 20 to about 34 linked bases), although both longer and shorter sequences may find use with the present invention.


Specific examples of preferred compounds useful with the present invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.


Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included.


Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.


In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage (i.e., the backbone) of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science 254:1497 (1991).


In some embodiments, oligonucleotides of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2, —NH—O—CH2-, —CH2-N(CH3)-O—CH2- [known as a methylene (methylimino) or MMI backbone], —CH2-O—N(CH3)-CH2-, —CH2-N(CH3)-N(CH3)-CH2-, and —O—N(CH3)-CH2-CH2- [wherein the native phosphodiester backbone is represented as —O—P—O—CH2-] of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.


Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2′ position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2′ position: C1 to C10 lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2′-methoxyethoxy (2′-O—CH2CH2OCH3, also known as 2′-O-(2-methoxyethyl) or 2′-MOE) (Martin et al., Helv. Chim. Acta 78:486 [1995]) i.e., an alkoxyalkoxy group. A further preferred modification includes 2′-dimethylaminooxyethoxy (i.e., a O(CH2)2ON(CH3)2 group), also known as 2′-DMAOE, and 2′-dimethylaminoethoxyethoxy (also known in the art as 2′-O-dimethylaminoethoxyethyl or 2′-DMAEOE), i.e., 2′-O—CH2-O—CH2-N(CH2)2.


Other preferred modifications include 2′-methoxy(2′-O—CH3), 2′-aminopropoxy(2′-OCH2CH2CH2NH2) and 2′-fluoro (2′-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3′ position of the sugar on the 3′ terminal nucleotide or in 2′-5′ linked oligonucleotides and the 5′ position of 5′ terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar.


Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. and are presently preferred base substitutions, even more particularly when combined with 2′-O-methoxyethyl sugar modifications.


Another modification of the oligonucleotides of the present invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, (e.g., hexyl-S-tritylthiol), a thiocholesterol, an aliphatic chain, (e.g., dodecandiol or undecyl residues), a phospholipid, (e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate), a polyamine or a polyethylene glycol chain or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety.


One skilled in the relevant art knows well how to generate oligonucleotides containing the above-described modifications. The present invention is not limited to the antisense oligonucleotides described above. Any suitable modification or substitution may be utilized.


It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the present invention as described below.


D. Cocktails


In some embodiments, the present invention provides cocktails comprising two or more oligonucleotides directed towards promoter regions of genes (e.g., oncogenes). In some embodiments, the two oligonucleotides hybridize to different regions of the promoter of the same gene. In other embodiments, the two or more oligonucleotides hybridize to promoters of two different genes. The present invention is not limited to a particular mechanism. Indeed, an understanding of the mechanism is not necessary to practice the present invention. Nonetheless, it is contemplated that the combination of two or more compounds of the present invention provides an inhibition of cancer cell growth that is greater than the additive inhibition of each of the compounds administered separately.


V. Research Uses

The present invention is not limited to therapeutic applications. For example, in some embodiments, the present invention provides compositions and methods for the use of oligonucleotides as a research tool.


A. Kits


For example, in some embodiments, the present invention provides kits comprising oligonucleotides specific for inhibition of a gene of interest, and optionally cell lines (e.g., cancer cells lines) known to express the gene. Such kits find use, for example, in the identification of metabolic pathways or the involvement of genes in disease (e.g., cancer), as well as in diagnostic applications. In some embodiments, the kits further comprise buffer and other necessary reagents, as well as instructions for using the kits.


B. Target Validation


In some embodiments, the present invention provides methods and compositions for use in the validation of gene targets (e.g., genes suspected of being involved in disease). For example, in some embodiments, the expression of genes identified in broad screening applications (e.g., gene expression arrays) as being involved in disease is downregulated using the methods and compositions of the present invention. The methods and compositions of the present invention are suitable for use in vitro and in vivo (e.g., in a non-human animal) for the purpose of target validation. In other embodiments, the compounds of the present invention find use in transplantation research (e.g., HLA inhibition).


C. Drug Screening


In other embodiments, the methods and compositions of the present invention are used in drug screening applications. For example, in some embodiments, oligonucleotides of the present invention are administered to a cell (e.g., in culture or in a non-human animal) in order to inhibit the expression of a gene of interest. In some embodiments, the inhibition of the gene of interest mimics a physiological or disease condition. In other embodiments, an oncogene or disease causing gene is inhibited. Test compounds (e.g., small molecule drugs or oligonucleotide mimetics) are then administered to the test cell and the effect of the test compounds is assayed.


The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone, which are resistant to enzymatic degradation but which nevertheless remain bioactive; see, e.g., Zuckennann et al., J. Med. Chem. 37: 2678-85 [1994]); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are preferred for use with peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des. 12:145).


Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90:6909 [1993]; Erb et al., Proc. Nad. Acad. Sci. USA 91:11422 [1994]; Zuckermann et al., J. Med. Chem. 37:2678 [1994]; Cho et al., Science 261:1303 [1993]; Carrell et al., Angew. Chem. Int. Ed. Engl. 33.2059 [1994]; Carell et al., Angew. Chem. Int. Ed. Engl. 33:2061 [1994]; and Gallop et al., J. Med. Chem. 37:1233 [1994].


Libraries of compounds may be presented in solution (e.g., Houghten, Biotechniques 13:412-421 [1992]), or on beads (Lam, Nature 354:82-84 [1991]), chips (Fodor, Nature 364:555-556 [1993]), bacteria or spores (U.S. Pat. No. 5,223,409; herein incorporated by reference), plasmids (Cull et al., Proc. Nad. Acad. Sci. USA 89:18651869 [1992]) or on phage (Scott and Smith, Science 249:386-390 [1990]; Devlin Science 249:404-406 [1990]; Cwirla et al., Proc. NatI. Acad. Sci. 87:6378-6382 [1990]; Felici, J. Mol. Biol. 222:301 [1991]).


VI. Compositions and Delivery

In some embodiments, the oligonucleotide compounds of the present invention are formulated as pharmaceutical compositions for delivery to a subject as a pharmaceutical. The novel antigen compounds of the present invention find use in the treatment of a variety of disease states and conditions in which it is desirable to inhibit the expression of a gene or the growth of a cell. In some preferred embodiments, the compounds are used to treat disease states resulting from uncontrolled cell growth, for example including, but not limited to, cancer. The present invention is not limited to the treatment of a particular cancer. The oligonucleotide compounds of the present invention are suitable for the treatment of a variety of cancers including, but not limited to, breast, colon, lung, stomach, pancreatic, bladder, leukemia, and lymphoma. In other preferred embodiments, the compounds are used to treat disease states resulting from gene expression, for example including, but not limited to, non cancer diseases. The below discussion provides exemplary, non-limiting examples of formulations and dosages.


A. Pharmaceutical Compositions


The present invention further provides pharmaceutical compositions (e.g., comprising the oligonucleotide compounds described above). The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer); intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.


Pharmaceutical compositions and formulations for topical administration may include transdermal patches, needless injectors, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.


Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.


Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.


Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, nanoparticle, nanocrystal, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.


The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.


The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.


In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.


Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (WO 97/30731), cochleates (Patent application numbers 20080242625 and 20120294901) also enhance the cellular uptake of oligonucleotides.


The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.


Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate. Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles or nanocrystals. Oligonucleotide complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, protamine, polyvinylpyridine, polythiodiethylamino-methylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, phosphatidylserine, calcium, and polyethyleneglycol (PEG).


Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more oligonucleotide compounds and (b) one or more other chemotherapeutic agents that function by a non-oligonucleotide mechanism. Examples of such chemotherapeutic agents include, but are not limited to, cytotoxic agents, small molecule protein inhibitors, antibodies, and anti-sense anticancer drugs such as daunorubicin, dactinomycin, doxorubicin, bleomycin, mitomycin, nitrogen mustard, chlorambucil, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate (MTX), colchicine, vincristine, vinblastine, etoposide, teniposide, cisplatin, lenalomide, and diethylstilbestrol (DES). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Other non-oligonucleotide chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.


B. Delivery


The oligonucleotide compounds of the present invention may be delivered using any suitable method. In some embodiments, naked DNA is administered. In other embodiments, lipofection is utilized for the delivery of nucleic acids to a subject. In still further embodiments, oligonucleotides are modified with phosphothioates for delivery (See e.g., U.S. Pat. No. 6,169,177, herein incorporated by reference).


In some embodiments, nucleic acids for delivery are compacted to aid in their uptake (See e.g., U.S. Pat. Nos. 6,008,366, 6,383,811 herein incorporated by reference). In some embodiment, compacted nucleic acids are targeted to a particular cell type (e.g., cancer cell) via a target cell binding moiety (See e.g., U.S. Pat. Nos. 5,844,107, 6,077,835, each of which is herein incorporated by reference).


In some embodiments, oligonucleotides are conjugated to other compounds to aid in their delivery. For example, in some embodiments, nucleic acids are conjugated to polyethylene glycol to aid in delivery (See e.g., U.S. Pat. Nos. 6,177,274, 6,287,591, 6,447,752, 6,447,753, and 6,440,743, each of which is herein incorporated by reference). In yet other embodiments, oligonucleotides are conjugated to protected graft copolymers, which are chargeable” drug nano-carriers (PharmaIn). In still further embodiments, the transport of oligonucleotides into cells is facilitated by conjugation to vitamins (Endocyte, Inc, West Lafayette, Ind.; See e.g., U.S. Pat. Nos. 5,108,921, 5,416,016, 5,635,382, 6,291,673 and WO 02/085908; each of which is herein incorporated by reference). In other embodiments, oligonucleotides are conjugated to nanoparticles (e.g., NanoMed Pharmaceuticals; Kalamazoo, Mich.).


In preferred embodiments, oligonucleotides are enclosed in lipids (e.g., liposomes or micelles) to aid in delivery (See e.g., U.S. Pat. Nos. 6,458,382, 6,429,200; each of which is herein incorporated by reference). Preferred liposomes include, but are not limited to amphoteric liposomes (e.g., SMARTICLES,). In still further embodiments, oligonucleotides are complexed with additional polymers to aid in delivery (See e.g., U.S. Pat. Nos. 6,379,966, 6,339,067, 5,744,335; each of which is herein incorporated by reference and Intradigm Corp., Rockville, Md.). Cochleates see e.g. Patent application number: 20080242625 and 20120294901.


In still further embodiments, the controlled high pressure delivery system developed by Mirus (Madison, Wis.) is utilized for delivery of oligonucleotides.


C. Dosages


Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. In some embodiments, the oligonucleotide is introduced to the host animal at a dosage of between 0.1 mg to 10 g, and preferably at a dosage of between 00.1 mg to 100 mg per kg of body weight or 1 to 300 mg per meter squared body surface area. The administering physician can determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and the delivery means, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models or based on the examples described herein. In general, dosage is from 10 mg to 10 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly. In some embodiments, dosage is continuous (e.g., intravenously) for a period of from several minutes to several days or weeks. In some embodiments, treatment is given for a defined period followed by a treatment free period. In some embodiments, the pattern of continuous dosing followed by a treatment free period is repeated several times (e.g., until the disease state is diminished).


The treating physician can estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the subject undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 10 mg to 10 g, preferably from 1 mg to 5 mg, and even more preferably from 0.1 mg to 30 mg per kg of body weight or 0.1 mg/m2 to 200 mg/m2, once or more daily, to once every 20 years.


VII. Customized Patient Care

In some embodiments, the present invention provides customized patient care.


The compositions of the present invention are targeted to specific genes unique to a patient's disease (e.g., cancer). For example, in some embodiments, a sample of the patient's cancer or other affected tissue (e.g., a biopsy) is first obtained. The biopsy is analyzed for the presence of expression of a particular gene (e.g., oncogene). In some preferred embodiments, the level of expression of an gene in a patient is analyzed. Expression may be detected by monitoring for the presence of RNA or DNA corresponding to a particular oncogene. Any suitable detection method may be utilized, including, but not limited to, those disclosed below. 5 10 15 20


Following the characterization of the gene expression pattern of a patient's gene of interest, a customized therapy is generated for each patient. In preferred embodiments, oligonucleotide compounds specific for genes that are aberrantly expressed in the patient (e.g., in a tumor) are combined in a treatment cocktail. In some embodiments, the treatment cocktail further includes additional chemotherapeutic agents (e.g., those described above). The cocktail is then administered to the patient as described above.


In some embodiments, the analysis of cancer samples and the selection of oligonucleotides for a treatment compound is automated. For example, in some embodiments, a software program that analyses the expression levels of a series of oncogenes to arrive at the optimum selection and concentration of oligonucleotides is utilized. In some embodiments, the analysis is performed by the clinical laboratory analyzing the patient sample and is transmitted to a second provider for formulation of the treatment cocktail. In some embodiments, the information is transmitted over the Internet, thus allowing for the shortest possible time in between diagnosis and the beginning of treatment.


A. Detection of RNA


In some embodiments, detection of oncogenes (e.g., including but not limited to, those disclosed herein) is detected by measuring the expression of corresponding mRNA in a tissue sample (e.g., cancer tissue or other biopsy). In other embodiments, expression of mRNA is measured in bodily fluids, including, but not limited to, blood, plasma, lymph, serum, mucus, and urine. In some preferred embodiments, the level of mRNA expression in measured quantitatively. RNA expression may be measured by any suitable method, including but not limited to, those disclosed below.


In some embodiments, RNA is detected by Northern blot analysis. Northern blot analysis involves the separation of RNA and hybridization of a complementary labeled probe. In other embodiments, RNA expression is detected by enzymatic cleavage of specific structures (INVADER assay, Third Wave Technologies; See e.g., U.S. Pat. Nos. 5,846,717, 6,090,543; 6,001,567; 5,985,557; and 5,994,069; each of which is herein incorporated by reference). The INVADER assay detects specific nucleic acid (e.g., RNA) sequences by using structure-specific enzymes to cleave a complex formed by the hybridization of overlapping oligonucleotide probes.


In still further embodiments, RNA (or corresponding cDNA) is detected by hybridization to a oligonucleotide probe). A variety of hybridization assays using a variety of technologies for hybridization and detection are available. For example, in some embodiments, TaqMan assay (PE Biosystems, Foster City, Calif.; See e.g., U.S. Pat. Nos. 5,962,233 and 5,538,848, each of which is herein incorporated by reference) is utilized. The assay is performed during a PCR reaction. The TaqMan assay exploits the 5′-3′ exonuclease activity of the AMPLITAQ GOLD DNA polymerase. A probe consisting of an oligonucleotide with a 5′-reporter dye (e.g., a fluorescent dye) and a 3′-quencher dye is included in the PCR reaction. During PCR, if the probe is bound to its target, the 5′-3′ nucleolytic activity of the AMPLITAQ GOLD polymerase cleaves the probe between the reporter and the quencher dye. The separation of the reporter dye from the quencher dye results in an increase of fluorescence. The signal accumulates with each cycle of PCR and can be monitored with a fluorimeter.


In yet other embodiments, reverse-transcriptase PCR (RT-PCR) is used to detect the expression of RNA. In RT-PCR, RNA is enzymatically converted to complementary DNA or “cDNA” using a reverse transcriptase enzyme. The cDNA is then used as a template for a PCR reaction. PCR products can be detected by any suitable method, including but not limited to, gel electrophoresis and staining with a DNA specific stain or hybridization to a labeled probe. In some embodiments, the quantitative reverse transcriptase PCR with standardized mixtures of competitive templates method described in U.S. Pat. Nos. 5,639,606, 5,643,765, and 5,876,978 (each of which is herein incorporated by reference) is utilized.


In yet other embodiments, mRNA or transcript numbers are measured using branched DNA technology (e.g. QuantiGene). Branched DNA (bDNA) quantitatively measures gene expression by a sandwich nucleic acid hybridization method that uses bDNA probes specific to the target RNA. The signal from captured target RNA is amplified and enhances assay sensitivity thereby eliminating the need to amplify target RNA by traditional PCR-based gene expression techniques. Furthermore, bDNA assays measure RNA directly from the sample source, without RNA purification or enzymatic manipulation, potentially avoiding inefficiencies and variability introduced by errors inherent to these processes.


B. Detection of Protein


In other embodiments, gene expression of oncogenes is detected by measuring the expression of the corresponding protein or polypeptide. In some embodiments, protein expression is detected in a tissue sample. In other embodiments, protein expression is detected in bodily fluids. In some embodiments, the level of protein expression is quantitated. Protein expression may be detected by any suitable method. In some embodiments, proteins are detected by their binding to an antibody raised against the protein. The generation of antibodies is well known to those skilled in the art.


Antibody binding is detected by techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels, for example), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.


In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many methods are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.


In some embodiments, an automated detection assay is utilized. Methods for the automation of immunoassays include those described in U.S. Pat. Nos. 5,885,530, 4,981,785, 6,159,750, and 5,358,691, each of which is herein incorporated by reference. In some embodiments, the analysis and presentation of results is also automated. For example, in some embodiments, software that generates an expression profile based on the presence or absence of a series of proteins corresponding to oncogenes is utilized.


In other embodiments, the immunoassay described in U.S. Pat. Nos. 5,599,677 and 5,672,480; each of which is herein incorporated by reference.


VIII Listing of DNAi Sequences

The following sequences in Table 3 are provided as additional non-limiting examples of preferred embodiments of the invention.









TABLE 3







New DNAi Sequences















Location






relative to 5′






upstream






region from



Design
Sequence

gene start


Target
ID
ID No:
Sequence (5′-3′)
site














Survivin
SU1
1
GAGCGCACGCCCTCTTAGGCGG
73





Survivin
SU2
75
CACCCCGAGGTACGATCAGTGCGTACC
2990





Survivin
SU1_02
155
GAGCGCACGCCCTCTTAGGCG
73





Survivin
SU1_03
229
GAGCGCACGCCCTCTTAGGCGGTCCA
73





Survivin

303
GTCGCCCCTGGGTCCTGCTGATTGGC
1918





Survivin

322
CAGCGAGCCTGGGCCCCATCGGCACATCT
2905





Survivin

357
CCCGCGGCCTTCTGGGAGTAGAGGC
102





Survivin

431
TCCCGGCGAGTACATCGTTGACTGCACG
675





Survivin

481
AACCTCCTCCCCGCCACGGGTT
1229





Beclin-1
BE1
515
CGACGCCCTTGACCTCCGGCCCGGGGT
39





Beclin-1
BE2
550
CTGCGCCGTTCCCTCTAGGAATGG
111





Beclin-1

572
GAAGCGACGCCCTTGACCTCCGGCCCGG
35





Beclin-1

607
CCCCCGATGCTCTTCACCTCGGG
261





Beclin-1

712
CGGGTCGGCCCCGGAGCGAGGCC
335





Beclin-1

817
GCCCGGCAGCGGCCCCCAGAGGCCG
475





Beclin-1

847
CGGTCTACCGCGGAGGCACTGTGGCCTCGG
308





Beclin-1

952
ACAAAAACTAGCCGGGCGTGGTGGGGCACGCC
735





STAT3
ST1
984
GGCCGAGGCACGCCGTCATGCA
−18





STAT3
ST2
985
CCGGCCCTTGGCACCACGTGGTGGCGA
345





STAT3

986
TTGTTCCCTCGGCTGCGACGTCG
−135





STAT3

987
CAGTCTGCGCCGCCGCAGCTCCGG
−92





STAT3

988
CAGTGCGTGTGCGGTACAGCCG
45





STAT3

989
TGTGCTGGCTGTTCCGACAGTTCGGT
140





STAT3

990
TAACTACGCTATCCCGTGCGGCC
1998449





STAT3

991
TCGCCCAGCCCCAGCCTGGCCGAGGC
−35





HIF1A
HI1
992
CAGGCCGGCGCGCGCTCCCGCAA
390





HIF1A
HI2
1048
GGACGGGCTGCGACGCTCACGTGC
539





HIF1A

1090
GAGGTGGGGGTGCGAGGCGGGAAACCCCTCG
108





HIF1A

1129
CAATCGCCGGGGTCCGGGCCCGGC
162





HIF1A

1130
TGGCCGAAGCGACGAAGAGGG
232





HIF1A

1142
GGGCGGAGGCGCGCTCGGGCGCG
325





HIF1A

1214
CACGGCGGGCGGCCCCCAGGCTCGC
26





HIF1A

1270
CAGGCCGGCGCGCGCTCCCGCAAGCCCG
390





HIF1A

13680
CGATTGCCGCCCAACTCTGCTGGG
789





IL-8
IL8-1
1314
ACGTCCCATTCGGCTCCTGAGCCA
2868





IL-8
IL8-3
1331
GACGTTGACGAAGTCTATCACCCAA
2939





IL-8

1341
ACGGAGTATGACGAAAGTTTTC
257





IL-8

1342
GAGCGAGACTCCCGTCTAAA
3259





KRAS

1535
GCCGGGCCGGCTGGAGAGCGGGTC
5803





KRAS

1538
TCGCCCCTCCTCCGAGACTTTC
6626





KRAS

1584
GCACCCCGCCACCCTCAGGGTCGGC
6029





KRAS

1633
GAGCCGCCGCCACCTTCGCCGCCGC
5475





KRAS

1697
CGGCATAGTTCCCCGCCTTAC
2002





KRAS
KR16
1730
CGGCCCGAGCCTCCGTGACGAGTGC
146348





KRAS
KR17
1767
CTGGGAGGGGATCCCTCACCGAGAG
3328





MTTP

1784
AACCGCCGTAGCCTCCACTGCG
28





MTTP

1870
TGGCCGCAGTTCGATGACGTAAGACG
1





ApoC-III

1956
GAGTCGGTGGTCCAGGAGGGGCCGC
939





ApoC-III

1957
CTGCGGCTGAGGTGTCATTCGTGACTCAG
3539





ApoC-III

1992
GCGGGCGGGTGAGACAGAAGCGCC
3455





ApoC-III

1993
CCTCGCGAGCGTGGGTGCACGC
3310





ApoC-III

2028
CGATGTCTCCCTCGAGATCACA
3042





ApoC-III

2054
GGACGGACGGATATCTGAGGCCAG
1520





ApoC-III

2062
CGTCCCCGCCACGTTGAAAGGC
3279





ApoC-III

2089
TCTCGGACATGCTCAAATGGTGCAGGCG
3405





ApoC-III

2108
CACCGACAGGAGCCAATAGTGCAACG
4201





ApoC-III

2127
GTCCGGCAGAGGGACCCATGCTGACG
4265





ApoC-III

2136
CGTGAGGCACATGTCCGTGTG
2836





ApoC-III

2170
CAGATGCAGCAAGCGGGCGGGAGAG
123





ApoC-III

2176
CCACGCTGCTGTCCCGCCAGCCCTGCAG
173





ApoC-III

2206
ACCCGCCCCCACCCTGTGTGCCCCC
601





ApoC-III

2225
CGCTCAGAGCCCGAGGCCTTTG
677





ApoB

2252
CGGTGGGGCGGCTCCTGGGCTGC
10





ApoB

2329
CCTCGCGGCCCTGGCTGGCTGGGCG
46





ApoB

2406
AACCGAGAAGGGCACTCAGCCCCG
88





ApoB

2440
CGGCGCCCGCACCCCATTTATAGG
136





ApoB

2451
GTCCAAAGGGCGCCTCCCGGGCC
195





ApoB

2475
CGTCTTCAGTGCTCTGGCGCGGCC
341





ApoB

2513
CACCGGAAGCTTCAGCCAGCGCTCGCTG
988





ApoB

2552
CGAGTGGGAGGCGGCCAGGAGCAAGCCG
1281





ApoB

2553
CGTACACTCACGGAAATGCTGTAAAG
2533





ApoB

2576
CGTCACAGCCAATAATGAGCGTACGC
4862





IL17

2601
CTTGTTTGTATCCGCATGGCTGTGCTC
4451





IL17

2616
CGAGACCGTTGAGGTGGAGTG
3148





IL17

2635
GGTCACTTACGTGGCGTGTCGC
107





IL17

2664
GACAAAATGTAGCGCTATCG
55





MMP2

2666
GCTCCCTGGCCCCGCGCGTCGC
9





MMP2

2732
CCGCGGCGCAGGGCTGCGCTCCGAG
85





MMP2

2865
GCCGCCTGCTACTCCTGGCCTC
453





MMP2

2869
GCGCACTCGGGCCCGCCCCTCTCTGCCC
361





MMP2

2891
CGCTCCGAGGGTCCGCTGGCTCGG
101





MMP2

3024
GTCCACCCTCAGTGCACGACCTCGT
478





MMP2

3066
CACCGCCTGAGGAAGTCTGGATGC
239





MMP2

3101
TGCCTCTCTCGCGATCTGGGCG
512





MMP2

3131
GAGGGACGCCGGCTTGGCTAGGAC
618





FAP

3154
CAGAGCGTGGGTCACTGGATCT
39





FAP

3171
CACCAACATCTGCTTACGTTGAC
272





FAP

3177
TCCACGGACTTTTGAATACCGTGC
133





P-selectin

3184
TAGCTACGAATAAAGAAATTTGTAG
2694





IL6

3185
CACCGCGTGGCTTCTGCCACTTTC
723





IL6

3206
TACGGACGCAGGCACGGCTCTAG
1117





IL6

3226
CAGCTCCGCAGCCGTGCACTGTG
1722





IL6

3255
CTTCACCGATTGTCTAAACAGAGAC
1525





IL6
IL6_1
3256
TTCGTTCCCGGTGGGCTCGAGGGC
35





IL6

3276
TGCTTCCGCGTCGGCACCCAAG
1150





IL23

3300
TCCCTGCATTGTAAGGCCCGCC
195





IL23

3319
CACAGCGGGGATGGGGTGGGAGGG
414





IL23

3320
GACGTCAGAATGAGGCCATCG
1296





IL23

3341
GAGCCAGCACGGTGGTGGGCGCC
1651





IL23

3365
GCGTTTGTCCCACCGGCGCCCCG
4861





IL23

3479
TAACGCCACCCAACAAGTCCGGCG
4830





AKT1

3593
GAGGCTCCCGCGACGCTCACGCG
8





AKT1

3646
TACCGGGCGTCTCAGGTTTTGCC
843





AKT1

3669
TCCGAGCCGCGCACGCCTCAGGC
1562





AKT1

3703
CACCAACGGACTCCGTCCGCCC
2010





AKT1

3770
CCGCCGGCTGCCTCGCTGGCCCAGCG
2464





AKT1

3927
TCTCGGGTCCCGGCCTCGCCCGGCGGAGC
2556





AKT1

4084
CATTCTGGCGGCGCCGCGGCTCGCG
2730





AKT1

4228
CACCGGGCCGCCGCGTCCGGGCGCG
2838





AKT1
AKT4
4338
CACATCCGCCTCCGCCGCCCGG
3160





CRAF

4339
GCGCGAGCCCTACTGGCAGTCG
390





CRAF

4462
CGGGGCGTGGCCTAGCGATCTGGTGGCCG
467





CRAF

4517
TTTCGAAGCTGAAGAGGTTAGGCGACG
499





CRAF

4519
CGACGCTGACTTGCTTTCAGGAG
521





CRAF

4533
AATCGAGAAGAACCGGCTTTCGG
555





CRAF

4556
CTTTGACGCGTCCTCTCCGGGC
689





CRAF

4585
CGGCTCCGCCACTTGACAGCTATGTGG
728





CRAF

4605
AGGCGGAGATTGCGGTGAGCCGAAATCGCG
1582





CRAF

4609
AGGCCGCCCCAACGTCCTGTCGTTCGGCGG
12





CRAF

4677
TCTCGCCCGCTCCTCCTCCCCGCGGCGGGTG
47





CRAF

4745
CGGGAGGCGGTCACATTCGGCGCG
84





CRAF

4782
CGGAGCCCCGAGCAGCCCCCGCATCG
124





CRAF

4871
CGCGCTCCGCGCCTCAGGGCACGCGCC
157





CRAF

4960
AGCCGTTCCCGCCTCACAATCG
234





CRAF

4984
CCGCCATCTAAGATGGCGGCC
270





CRAF

5047
CGGGCGGCCCAGACGAGCGAGCCCTCG
314





CRAF

5110
CGTCCTCCCGACCTGCGACGCCACCGGC
351





Beta-

5233
CGCATATTACTGGGTAAACTCTGTG
1411


catenin





Beta-

5234
CACGCTGGATTTTCAAAACAGTTG
5


catenin





PCSK9

5235
CAGGGCGCGTGAAGGGGCGCGCGG
120





PCSK9

5236
GACGCGTCCCGGCCCGCCCGAGC
179





PCSK9

5285
GACGCCTGGGGCGCGCAGATCAC
341





PCSK9

5341
CAGGCCGGCGCCCTAGGGGCTCC
494





PCSK9

5359
CACGCCGGCGGCGCCTTGAGCC
56





PCSK9

5402
CAGGTTTCGGCCTCGCCCTCCC
408





PCSK9

5445
CATCGAGCCCGCCATCGCAGCAC
1307





PCSK9

5473
GAGCGCCTCGACGTCGCTGCGGAAACC
273





MEK1

5534
CAAGTCCGGGCCGCGGGCCCCGGGGC
93





MEK1
MEK1_2
5716
GCGCCCCGCGCGGTCCCGTCAGCGC
133





MEK1

5898
GCGGAGCGGGCTGAACGTGCG
249





MEK1

5900
GACTGGAGGCCGGGGGAGGGGCGGGG
433





MEK1

5901
GACCCGGGTAACGCGCTTCCAAC
5





MEK1
MEK1_1
5924
CACTCGGCTCCGCCCCTATTGC
507





MEK1

6000
TACGTCACGGGAGCGCGGCGCAC
578





MEK1

6077
GTCGCGGACGCCGTGGCGCCCTCTGTC
619





MEK1

6154
CACTCGCCGTCATGCCCGGATCC
1183





MEK2

6182
CGCCGCAGCCCGAGTCCGAGAGG
226





MEK2

6202
GAGGGGCGCTGGGGCTGAGGCGAGCG
165





MEK2

6203
CTCGCGATAACGGGATCGGGAGCCGCG
290





MEK2
MEK2_1
6235
CCGACGCGAGGCGGTGCCGGGACCGG
391





MEK2

6240
CACGGCGCGTGTGCCCAAGCGC
436





MEK2

6299
CGTGGACACACGCCCCTAGCCC
643





MEK2

6341
TAGACACTTCGGTGAATCGTGCCGC
1622





CD4

6373
GAGCCACTGCGCCCGGCCTCATTAAGGGCAT
1818





CD4

6406
CGAACAACTTCATTACAATTCGACAAGCGC
2632





CD4

6407
CGTAGTTAAGCGTGTACCAGCCCAAGGC
2522





CD4

6421
GAGCGGTGACCGTGTCTGTCTTAG
3084





CD4

6447
CGGTTTGCAGATTCCAGACCCGATGGACG
4433





WNT1

6466
CGCGCGCCCGCCTCACTCAGCTGAGCG
442





WNT1

6537
CGTCATTCTGTTGCCCTTTGTACCTCG
1226





WNT1

6545
CGCCACGGGCGCATCCATCCCTCCTGGG
4454





WNT1

6579
CACCGCCCTCTAGCCGCCTGCGGG
4960





WNT1

6580
TTGCGGCGACTTTGGTTGTTGCCCGCGACGGT
34





Clusterin

6636
CGTCCCGCCCACCTGCTGCCTGCAGCAG
78





Clusterin

6660
CGACAATCAGCGAGGCACACAGGCT
330





Clusterin

6689
CGGAGAGTAGAGAGGGTTCGCAGTGGCCC
718





Clusterin

6690
CCACGGGGCACAGGCCATAGCCCCG
890





Clusterin

6709
CTCGTGCTCTCAGGCGGCGGTTGCGCCG
3865





Clusterin

6752
CCGGGAGGTGGGGGCCGGTGCAGCACCGG
4260





Clusterin

6753
TCGCGTGCCCATCTGGGAGCCCCTCTCACG
4395





NRAS

6774
CCCCGCCCTCAGCCTAAGCAATGGA
234





NRAS

6793
GACCCCGGAACCGCCATGAACAGCCC
559





NRAS

6818
CCCGCTACGTAATCAGTCGGCGCCCCA
613





NRAS

6961
AACGCAAAAACACCGGATTAATATCGGCCT
142





NRAS

6963
ATAAACGGCCTCTTTACCCAGAGATCA
850





NRAS

6971
CGCCACCTTAAGTTTTTCCAGGCTGC
1779





EZH2
EZH2_2
6986
TCCCGACAAGGGGTGACAGAGGC
1002





EZH2

7002
CGTGAATTCAAGAGTTGCTTAGGCC
1059





EZH2

7003
GACTACCGGTGCCCGCCACCACGCCAGGC
2856





EZH2

7035
GACCGCCCCCCGCCAACCCCACAGCGG
3459





HDAC1

7075
CGCCTCCCGTCCCTACCGTCAGTCGGT
7





HDAC1

7141
CGGTCCGTCCGCCCTCCCGCCCGCGG
30





HDAC1

7207
CGCCAACTTGTGGTCCTACAGTCAACAAG
1740





HDAC1

7226
CGCAGACACGGGCCCGGAACTCGG
173





HDAC1

7258
CGCCCGGCCTAGGAGGGCAGGTTTCTC
1252





PD-1

7297
TGCCGCCTTCTCCACTGCTCAGGCG
23





PD-1

7316
ACCGCCTGACAGCTGGCGCGGCTGCCTGGC
1061





PD-1
PD1
7379
CTGCGAGGCGCGGCCACGGCG
1171





PD-1

7396
CGAGGAGGAAAGGCAGGCGGAGTCCG
3395





PD-1

7397
CAGCGAAGCTGCAGAACGTCCCCATCACCACG
4268





PD-1

7439
CGACAGCCGTGGGAAGGTGCAGTACG
4388





PD-1

7440
CGGGATTCCCTGGAGATGCCTCCAGCGCG
4422





PD-1

7466
AGGCGGTCCCAGGGCTCAGGTGTGGG
2229





PD-1

7498
GCGTGCACCCCGTGGCCAGCTC
3813





PD-1

7526
CAACGTACACGCAATCCACAAC
2832





TNFa

10095
CGGGGAAAGAATCATTCAACCAGCGG
254





TNFa
TNF1
10096
CGGTTTCTTCTCCATCGCGGGGGCG
350





TNFa

10129
CTGCTCCGATTCCGAGGGGGGTCTTCT
438





TNFa

10154
CTCCGTGTGGGGCTCTGGTCGGCAGCT
1490





TNFa

10207
CGCAGCCCCGTGGTACATCGAGTGCAGC
2178





MIF1

12470
GACCCGCGCAGAGGCACAGACGC
42





MIF1

12490
CGCCACCGCCGGCGCCAGGCCCCGCCCCCGCG
143





MIF1

12701
CGTTCCTCCAGCAACCGCCGCTAAGCCCGGCG
258





MIF1

12912
CGCCTGCCTCGGCTCGACCCCCGCAG
202





MIF1

13123
CGGCTAGAAATCGGCCTGTTCCGGCCTCGCCT
317





MIF1

13174
CGGGGGTGGGGATGCGGCGGTGAACCCG
404





MIF1

13175
CGCGGCAGGTGAGAGGGGAGCTGCCCCTGCG
588





MIF1

13176
CGCGTGCACGTGTGTCCACATGAGTGC
3676





MIF1
MIF1_1
13203
CGCCACCGCCGGCGCCAGGCCCCGCC
137





MIF1
MIF1_2
13414
CGCGGCAGGTGAGAGGGGAGCTGCCC
583





TTR

11359
CAACGCCCTGGCTCGAGTGCAGTGGCACG
803





TTR

11432
CTACTATCTCAGATACTCGGCCAACTCG
1776





TTR

11450
CACGCGTTTCAGCACTGCACCCTGTTG
2112





HBV

9179
CCGATTGGTGGAGGCAGGAGGAGG
72





HBV

9180
CGAGATTGAGATCTTCTGCGACGCGG
780





HBV

9235
CGCGGCGATTGAGACCTTCGTC
801





HBV

9290
CGTCTGCGAGGCGAGGGAGTTCTTCT
819





HBV

9345
CGATACAGAGCAGAGGCGGTGT
1200





HBV

9346
CGCGTAAAGAGAGGTGCGCCCCGTGG
1674





HBV

9360
ACGGGTCGTCCGCGGGATTCAGCGCCG
1754





HBV

9409
CGTCCCGCGCAGGATCCAGTTGG
1800





HBV

9432
CGGCTGCGAGCAAAACAAGCTGCTAG
1909





HBV

9468
CGCATGCGCCGATGGCCTATGGCCAA
1978





HBV

9496
CGCCGCAGACACATCCAGCGATA
2826





HBV

9525
GCTCCAGACCGGCTGCGA
1900





HBV

9561
CGTCCATCGCAGGATCCAGTTGG
1800





HBV

9562
CGCCGCAGACACATCCAGCGATA
2826





HBV

9591
CAAATGGCACTAGTAAACTGAG
2524





HBV

9592
GAGATTGAGATCTGCGGCGACGCGG
780





HBV

9593
CGACGCGGCGATTGAGATCTTCGTCTG
801





HBV

9594
AGGGGTCGTCCGCGGGATTCAGCGCCG
1754





HAMP

8999
CGTGCCGTCTGTCTGGCTGTCCCAC
1





HAMP

9005
CGAGTGACAGTCGCTTTTATGGGGC
60





HAMP

9035
CGGGGCATGGCCAGCAGCCGCCAGG
424





HAMP

9086
CGTGTGCCCGATCCGCACGTGGTGT
563





HAMP

9121
CGACAGGCTGACGGGCCAAGCTTGG
2344





HAMP

9150
CGGATGGGCAGGGAGGATACCGTTT
3109





HAMP

9151
CGTGGGCGGCGGCGGCTGCGTGGTG
3287





ERBB2

13415
CGGGAAGAGGATGCGCTGACCTGGC
2571





ERBB2

13416
CACGCCCTGGGGAGGAGGCTCGAGAGG
3267





ERBB2

13437
CGAGAGGGGCCGAGCCTCTGAAAAA
3287





ERBB2

13452
CGTCTGGTCCACAGTCCGATGTCCA
3944





PARP1

9595
CCGCCAAAGCTCCGGAAGCCCGACGCC
14





PARP1

9741
CCGCCTCGCCGCCTCGCGTGCGCTC
60





PARP1

9887
CGGGAACGCCCACGGAACCCGCGTC
177





PARP1

9933
CGGGTGGAGCTCTGCGGGCCGCTGC
269





PARP1

9992
CGCCGGCCCCAAACTCTTAAGTGTG
696





PARP1

10014
CGGGAAGCGCAGGCCCCCGCCTCGG
749





PARP1

10045
CGTTCTAACCTGCCGTCCACAGACC
839





ITGA4

10244
GCGCTCTCGGTGGGGAACATTCAACAC
1





ITGA4

10252
CGGGATGCGACGGTTGGCCAACGG
54





ITGA4

10278
CGCAGCGTGTCCGGCGCCAGCGGGC
102





ITGA4

10299
CGGCCCACCGCGGGCGGAGCGTTCG
160





ITGA4

10449
CGCGCACTCGCCCGGCCCCACTCCCG
201





ITGA4

10599
CGCCAGCCGGGAGCTTCGGGTGCTCGCG
235





ITGA4

10749
CGGGTACGGGCCGCTGGGTGGGGTCCCG
272





ITGA4

10899
GTGCGGAGGCGCAGGGCCGGGCTCCG
306





ITGA4

10900
CTACGCGCGGCTGCAGGGGGCGC
339





ITGA4

10938
CTGCGCAGGACTCGCGTCCTGGCCCG
375





ITGA4

11009
CCCGCAGAGCGCGGGATGGCTC
411





ITGA4

11080
CGGACCTGATGGGGCACGGGCTTCCCC
448





ITGA4

11117
CGGTGGTTGGGGCCTAGAAGCG
481





ITGA4

11154
CGCGCCCCTCGCTGTGACCGCCCAGCCCG
524





ITGA4

11203
CGGGGAGTGGGACTGCGGCGGGGAGCCG
580





ITGA4

11208
ACTCGCCGAAGGCCCCTGGGGAAC
718





ITGA4

11222
CGGGCTGCATGCGTGAGCAGG
840





ITGA4

11252
CGGCAGGCGGTTTAGGCTGTGGCTG
885





ITGA4

11278
CCGATTCGGATTGCTCCAGCTGG
962





ITGA4

11289
CGCACCCACTCAGTTGCCACGGG
1008





ITGA4

11327
CGGAGACCCACAACGCAACACACC
1099





APP

7607
CGCGACCCTGCGCGGGGCACCG
1





APP

7741
GTGCGAGTGGGATCCGCCGCG
34





APP

7875
CGCGCCGCCACCGCCGCCGTCTCCCGG
68





APP

8009
CGCGCACGCTCCTCCGCGTGCTCTCG
101





APP

8143
CCGAGGAAACTGACGGAGCCCGAGCGCGG
137





APP

8145
CGAGTCAGCTGATCCGGCCCACCCCG
186





APP

8310
CGAGAGAGACCCCTAGCGGCGCCG
221





APP

8475
CGCCCGCTCGCGCCGGGAGGGGCCCTCG
256





APP

8640
CGCGCCCACAGGTGCACGCGCCCTTGGCG
289





APP

8805
GGCCGACGGCCCACCTGGGCTTCG
351





APP

8825
CGCTGAGGCTCTAGAAAAGTCGAGAG
446





APP

8843
CTCGTCCCCGTGAGCTTGAATCATCCGACCC
480





APP

8912
AGGCGTTTCTGGAAGAGAATGAGAACG
604





APP

8927
CGTCAAAAGCAGGCACGAGCAACCTG
701





APP

8928
GAACGAACCAAAGGAGCAAGGCG
742





APP

8929
CGCTGACAAGGGTGCCTAGGCCCGG
1318





APP

8948
CGCAATTCCGTATTTGTTCCGG
1738





APP

8969
GTACGTTGGCAGACGCAGTGACG
4923





CMYC

7551
CGATGAGGGTATTAACTCTGGC
335580





CMYC
CM12
7552
CGGGGGTCCTCAGCCGTCCAGACC
518





CMYC
CM13
7602
CGCTTATGGGGAGGGTGGGGAGGG
634





CMYC
CM14
7603
CGGTGGGCGGAGATTAGCGAGAGA
559





CMYC

7606
GGCGCTTATGGGGAGGGTGGGGAGGG
632





CMYC

13684
CCTGGCACGTGTCCCTGGTCAAG
3482





CMYC

13703
CACGTGCGGCCTGTCAAGAGATGA
5926





FGFR1

13484
CGAGCCAGGCAGGGCCCCTCGCAAGTG
1850





FGFR1

13522
GACGGATATGAGTCCAGAAGTTGCG
1472





FGFR1

13535
TAGCTGCGTGCAGTGGCGCGCGCCTGT
4910





FGFR1

13561
CCGCCTCGCCAGCTCCCGAGCGCGAGTT
10239





FGFR1

13655
CGCCTCCTCCCAGGTGTGGGCTGGCTGCAGACCG
3067





CD68

13681
CGAGAACATGGCTTTCCAGCGTCTG
520





ALK

11471
CGCCGGAGGAGGCCGTTTACACTGC
3





ALK

11530
CGTGCGCGCAAGTCTCTTGCTTTCC
132





ALK

11555
CGCTCTCCGCGCCGAGTGCCGCGCC
269





ALK

11621
CGCCTTTTGCGTTCCTTTTGGCTCC
482





ALK

11681
CGCAGGCACTGGAGCGGCCCCGGCG
701





ALK

11794
CGACCCTCCGAACAGAGGCGGCGGG
851





ALK

11825
CGCGCTGCTGCCCGACCCACGCAGT
1022





ALK

11901
CGGGTCCGACTTCGGAAAAACAGGT
1313





ALK

11923
CGGCCTGTCGGGTAGCACAGGAGTT
2022





MSI2

11989
CGGTGACGTCACGCACCCCCGTGCG
360





MSI2

12058
CGGATACAATTACCCATATTGT
1535





MSI2

12059
GACTCAGTTGCTAACAACCATGAGCG
10624





MSI2

12060
CAGTTGCTAACAACCATGAGCG
10628





MSI2

12061
CATGAAAATTTCACCAAGTATAAATTAC
10909





MSI2

12062
CACCAAGTATAAATTACAGGTCT
10920





JAK2

12063
CGCACCAGTTTGTCCACGTCCAGTG
1663





JAK2

12098
GCCGTCACTGCCGACATAAGCACAGAC
1811





CCND1

12098
CGCTGCTACTGCGCCGACAGCCCTC
133





CCND1

12242
CGGCAGAATGGGCGCATTTCCAAGA
612





CCND1

12287
ACGCCACGAGGGCACCCACGGGCGGA
637





CCND1

12332
CGGTGACCGCGGCCTGGGCGGATGG
2755





CCND1

12388
CGGGACTCAGCGCGGCTGCGCGCCG
2907





BL9

13682
TGTCCACCTGAACACCTAGTCC
2388
















TABLE 4







Additional DNAi Sequences Used in Supporting Data (disclosed in


Pat. No.: 7,807,647)















Location relative to






5′ upstream region


Target
Design ID
Sequence ID
Sequence
from gene start site














KRAS
KR1
51
CCCGGAGCGGGACCGGACCGCGG
5923





KRAS
KR2
52
GCCGGACCCACGCGGCGGCCCGCC
5856





BCL2
BL2
13724
CACGCACGCGCATCCCCGCCCGTG
2388





BCL2
BL3
13725
ACCGGCGCTCGGCGCGCGGA
Mismatched





BCL2
BL4
13726
GACGCGCCGGGCCGGGCGGA
Mismatched





BCL2
BL7
13727
GGCGCGCGGGGCCGGGCCGGG






CMYC
CM7
13728
GGGCGCCTCGCTAAGGCTGGGGAAAGGGCCGCGC
 969
















TABLE 5







DNAi Sequences Used in Supporting Data as Negative Controls















Location relative to 5′ upstream


Target
Design ID
SEQ ID NO:
Sequence
region from gene start site














Survivin
SU3
105
GACATCGCTGTCCCGGCGAGTACATCGTT
665





KRAS
KR0525
1516
AGTCTCCCCTTCCCGGAGACT
10265








Claims
  • 1. An oligonucleotide that hybridizes to a non-coding region in or upstream of a promoter for a target gene, wherein the oligonucleotide comprises: a length of 20-34 bases;at least one CG pair;at least 40% C and G content;no more than five consecutive bases of the same nucleotide; andat least one secondary structure for said oligonucleotide.
  • 2. The oligonucleotide of claim 1, wherein said oligonucleotide comprises a C and G content of at least 50%.
  • 3. The oligonucleotide of claim 1, wherein said oligonucleotide comprises a C and G content from about 50 to 80%.
  • 4. The oligonucleotide of claim 1, wherein said oligonucleotide comprises at least two CG pairs.
  • 5. The oligonucleotide of claim 1, wherein said oligonucleotide hybridizes within a CG region, CpG island region, nuclease hypersensitive site, or CIS regulatory region.
  • 6. The oligonucleotide of claim 1, wherein said non-coding region is located within a CG region, CpG island, nuclease hypersensitive site, or CIS regulatory region.
  • 7. The oligonucleotide of claim 1, wherein said oligonucleotide is a reverse and full complement of a sense strand of said non-coding region of the target gene.
  • 8. The oligonucleotide of claim 1, wherein said oligonucleotide is unique to the nucleotide sequence of the non-coding region.
  • 9. The oligonucleotide of claim 1, wherein the nucleotide sequence of the non-coding region is not duplicated in a genome comprising the target gene.
  • 10. The oligonucleotide of claim 1, wherein the nucleotide sequence of the non-coding region comprises less than 80% homology to other nucleotide sequences in a genome with a target gene.
  • 11. The oligonucleotide of claim 1, wherein the nucleotide sequence of the non-coding region comprises less than 50% homology to other nucleotide sequences in a genome with a target gene.
  • 12. The oligonucleotide of claim 1, wherein said oligonucleotide comprises at least four bases in a linear section of the secondary structure.
  • 13. The oligonucleotide of claim 1, wherein said oligonucleotide comprises at least five bases in a linear section of the secondary structure.
  • 14. The oligonucleotide of claim 1, wherein said oligonucleotide comprises at least one CG pair within the first 40% of the bases of said oligonucleotide.
  • 15. The oligonucleotide of claim 1, wherein said oligonucleotide comprises at least one CG pair within the first 50% of the bases of said oligonucleotide.
  • 16. The oligonucleotide of claim 1, wherein said oligonucleotide further comprises at least one CG pair that is prior to or in the nonlinear section of the secondary structure.
  • 17. The oligonucleotide of claim 1, wherein said oligonucleotide comprises a linear section before a secondary structure, no oligonucleotides that extend beyond the secondary structure, and at least one CG pair within the linear section or the secondary structure.
  • 18. The oligonucleotide of claim 1, wherein said oligonucleotide has a linear section before a secondary structure and no oligonucleotides that extend beyond the secondary structure
  • 19. The oligonucleotide of claim 1, wherein said oligonucleotide does not comprise a single G or T base after the nonlinear section of the secondary structure.
  • 20. The oligonucleotide of claim 1, wherein said secondary structure comprises at least one hairpin loop.
  • 21. The oligonucleotide of claim 1, wherein said secondary structure comprises at least two hairpin loops.
  • 22. The oligonucleotide of claim 19 or 20, wherein said secondary structure comprises at least three nucleotide bridges in the nonlinear section of the secondary structure.
  • 23. The oligonucleotide of claim 1, wherein said oligonucleotide comprises a theoretical ΔG between −0.1 to −7.
  • 24. The oligonucleotide of claim 23, wherein said theoretical ΔG is between −1 to −5.
  • 25. The oligonucleotide of claim 1, wherein said oligonucleotide comprises a theoretical ΔTm between 30-70 degrees Celsius.
  • 26. The oligonucleotide of claim 1, wherein said oligonucleotide begins at the 5′ end with the bases selected from CG, CGG, CGC, CGT, CGA, GCG, CCC, CCG, GTC, TCC, TCG, ACG, CAC, CAG, GAG, AGA, GAC, GAA, AGC, or GCC.
  • 27. The oligonucleotide of claim 1, wherein said oligonucleotide ends at the 3′ end with the bases selected from CG, GCG, GGC, CGG, GCC, CGC, CCG, ACG, TCG, GGG, TGC, CCC, GTG, or CTC.
  • 28. The oligonucleotide of claim 1, wherein said non-coding region is located less than 7000 bases upstream of the coding region of the target gene.
  • 29. The oligonucleotide of claim 1, wherein said non-coding region is located less than 5000 bases upstream of the coding region of the target gene.
  • 30. The oligonucleotide of claim 1, wherein said non-coding region is located less than 3000 bases upstream of the coding region of the target gene.
  • 31. The oligonucleotide of claim 1, wherein said non-coding region is located less than 1000 bases upstream of the coding region of the target gene.
  • 32. The oligonucleotide of claim 1, wherein said non-coding region is located less than 500 bases up- or downstream of a transcription factor binding site or translocation site of target gene.
  • 33. The oligonucleotide of claim 1, wherein said non-coding region is located less than 100 bases up- or downstream of a transcription factor binding site or translocation site of target gene.
  • 34. The oligonucleotide of claim 1, wherein said oligonucleotide does not comprise a CpG Coley motif.
  • 35. The oligonucleotide of claim 1, wherein said oligonucleotide does not form a triplex structure.
  • 36. The oligonucleotide of claim 1, wherein said oligonucleotide does not form a G-quadruplex structure.
  • 37. The oligonucleotide of claim 1, wherein said oligonucleotide is a single stranded DNA.
  • 38. The oligonucleotide of claim 1, wherein said oligonucleotide hybridizes to an Sp1 motif or transcription factor binding site.
  • 39. The oligonucleotide of claim 1, wherein said target gene is selected from Survivin, Beclin-1, STAT3, HIF1A, IL-8, KRAS, MTTP, ApoC III, ApoB, IL-17, MMP2, FAP, P-selectin, IL-6, IL-23, AKT, CRAF, Beta-catenin, PCSK9, MEK1, MEK2, CD4, WNT1, Clusterin, NRAS, EZH2, HDAC1, PD-1, TNFα, MIF1, TTR, HBV, HAMP, ERBB2, PARP1, ITGA4, APP, FGFR1, CD68, ALK, MSI2, JAK2, CCND1, or selected from Table 2.
  • 40. The oligonucleotide of claim 1, wherein said oligonucleotide is selected from the group consisting of any of the sequences disclosed in Table 3.
  • 41. The oligonucleotides of claim 1, wherein said oligonucleotide hybridizes to a hot zone of a target gene.
  • 42. The oligonucleotide of claim 1, wherein at least one of the cytosine bases in said oligonucleotide is 5-methylcytosine.
  • 43. The oligonucleotide of claim 1, wherein at least one of the cytosine bases in said CG pair is 5-methylcytosine.
  • 44. The oligonucleotide of claim 1, wherein all of said cytosine bases in said oligonucleotide are 5-methylcytosine.
  • 45. The oligonucleotide of claim 1, wherein said hybridization of said oligonucleotide to the non-coding region modulates the target gene.
  • 46. The oligonucleotide of claim 1, wherein said hybridization of said oligonucleotide to the non-coding region of the target gene modulates expression or transcription of said target gene.
  • 47. The oligonucleotide of claim 1, wherein said hybridization of said oligonucleotide to the non-coding region of the target gene modulates a cell signaling pathway.
  • 48. The oligonucleotide of claim 1, wherein said hybridization of said oligonucleotide to the non-coding region of said target gene produces phenotypic changes in a mammal.
  • 49. The oligonucleotide of claim 1, wherein said hybridization of said oligonucleotide to the non-coding region of said target gene influences a non-gene target due to a chromosomal rearrangement.
  • 50. The oligonucleotide of claim 1, wherein said target gene is on a chromosome of a cell, and wherein said hybridization of said oligonucleotide to said non-coding region reduces proliferation of said cell.
  • 51. The oligonucleotide of claim 1, wherein said target gene is an oncogene.
  • 52. A composition comprising an oligonucleotide according to any one of claims 1-51 and a pharmaceutically acceptable carrier.
  • 53. The composition of claim 52, wherein the pharmaceutically acceptable carrier is a liposome.
  • 54. The composition of claim 53, wherein the liposome is an amphoteric liposome.
  • 55. The composition of claim 53, wherein the liposome comprises a neutral lipid.
  • 56. The composition of claim 53, wherein the liposome comprises a mixture of neutral lipids and lipids with amphoteric properties, wherein the mixture of lipid components comprises anionic and cationic properties and at least one such component is pH responsive.
  • 57. The composition according to any one of claims 52-56, wherein the composition further comprises an additional therapeutic agent.
  • 58. The composition of claim 57, wherein the additional therapeutic agent is a second oligonucleotide, chemotherapeutic agent, immunotherapeutic agent, or radiotherapy.
  • 59. The composition of claim 52, wherein said composition has two (2) therapeutic agents.
  • 60. The composition of claim 59, wherein one therapeutic agent treats a cancer disease and the other therapeutic agent treats a non-cancer disease.
  • 61. A method of inhibiting protein expressing in a cell with a target gene comprising introducing into said cell an oligonucleotide according to any one of claims 1-51 or composition according to any one of claims 52-60.
  • 62. A method of mediating target-specific RNA in a mammalian cell in vitro, comprising contacting said mammalian cell in vitro with an oligonucleotide according to any one of claims 1-51 or composition according to any one of claims 52-60.
  • 63. A method of mediating protein down regulation in a mammalian cell in vitro, comprising contacting said mammalian cell in vitro with an oligonucleotide according to any one of claims 1-51 or composition according to any one of claims 52-60.
  • 64. A method of treating a patient having a disease characterized by the presence or undesired production of a protein implicated in said disease, comprising administering to said patient a pharmaceutically effective amount of an oligonucleotide according to any one of claims 1-51 or composition according to any one of claims 52-60.
  • 65. A method of treating a patient having a disease characterized by the presence or undesired production of a protein implicated in said disease, comprising administering to said patient a pharmaceutically effective amount between 1 mg/m2 and 500 mg/m2 of an oligonucleotide according to any one of claims 1-51 or composition according to any one of claims 52-60.
  • 66. A method of treating a mammal having a disease characterized by the presence or undesired production of a protein implicated in disease, comprising administering to said mammal a pharmaceutically effective amount of an oligonucleotide according to any one of claims 1-51 or composition according to the description and the compositions in any of claims 52-60.
  • 67. A method of treating a plant having a disease characterized by the presence or undesired production of a protein implicated in disease, comprising introducing to said plant an effective amount of an oligonucleotide according to any one of claims 1-51 or composition according to the description and the compositions in any of claims 52-60.
  • 68. A method of administration of a therapeutic disclosed herein and a oligonucleotide according to any one of claims 1-51 or a composition according to any one of claim 52-60, wherein said administration is through a route selected from oral, vapor, inhalation, dermal, subdermal, subcutaneous, parental, parenterally, ear, nose, nasally, bucally, eye, otic, ophthalmically, rectal, vaginal, suppository or implant, implanted reservoir, dermal, dermal skin patch, injection, or sub-lingual.
  • 69. A method or kit for a diagnosis and treatment of a disease comprising the steps of administering to a patient a pharmaceutically effective amount of an oligonucleotides accordingly to any one of claims 1-51 or a composition according to any one of claims 52-60, wherein the patient is characterized by the presence of, or undesired production of, a protein implicated in said disease, and the method further comprising evaluating said patient for the presence of, or undesired production of said protein.
  • 70. An single stranded DNA oligonucleotide that hybridizes to coding or non-coding region of a target gene, wherein the oligonucleotide comprises: a length of 12-50 bases;at least 30% C and G content; andno more than seven consecutive bases of the same nucleotide.
  • 71. The oligonucleotide of claim 70, wherein the nucleotide sequence of the non-coding region comprises less than 80% homology to other nucleotide sequences in a genome with a target gene.
  • 72. The oligonucleotide of claim 70, wherein said oligonucleotide comprises at least one CG pair within the first 40% of the bases of said oligonucleotide.
  • 73. The oligonucleotide of claim 70 further comprising a secondary structure.
  • 74. The oligonucleotide of claim 70, wherein said oligonucleotide comprises a theoretical ΔG between −0.1 to −7.
  • 75. The oligonucleotide of claim 70, wherein said oligonucleotide comprises a theoretical ΔTm between 30-70 degrees Celsius.
  • 76. The oligonucleotide of claim 70, wherein said non-coding region is located less than 7000 bases upstream of the coding region of the target gene.
  • 77. The oligonucleotide of claim 70, wherein said non-coding region is located less than 500 bases up- or downstream of a transcription factor binding site or translocation site of target gene.
  • 78. The oligonucleotide of claim 70, wherein said non-coding region is located with a CG region, nuclease hypersensitive site, or CpG island of the genome comprising the target gene.
  • 79. The oligonucleotide of claim 70, further comprises at least one CG pair and optionally at least one of the cytosine bases in said CG pair is 5-methylcytosine.
  • 80. The oligonucleotide of claim 70, wherein said target gene is on a chromosome of a cell, and wherein said hybridization of said oligonucleotide reduces proliferation of said cell.
  • 81. A composition comprising an oligonucleotide according to any one of claims 70-80 and a pharmaceutically acceptable carrier.
  • 82. The composition of claim 81, wherein the pharmaceutically acceptable carrier is a liposome.
  • 83. The composition according to any one of claim 81 or 82 wherein the composition further comprises an additional therapeutic agent.
  • 84. A method of inhibiting or silencing gene transcription in a cell with a target gene comprising introducing into said cell an oligonucleotide according to any one of claims 70-80 or composition according to any one of claims 81-83.
  • 85. A method of mediating target-specific RNA in a mammalian cell in vitro, comprising contacting said mammalian cell in vitro with an oligonucleotide according to any one of claims 70-80 or composition according to any one of claims 81-83.
PRIORITY CLAIM

This application claims priority to U.S. Provisional Patent Application No. 61/794,778 filed on Mar. 15, 2013. The entire contents of the aforementioned application are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/029555 3/14/2014 WO 00
Provisional Applications (1)
Number Date Country
61794778 Mar 2013 US