1. Field of the Invention
The embodiments of the invention relate to a docking station for an electronic device, and more particularly, to a docking station for laptop computers. Although embodiments of the invention are suitable for a wide scope of applications, it is particularly suitable for facilitating the rapid connection of external devices to a laptop computer.
2. Discussion of the Related Art
A docking station for electronic devices refers to a peripheral which facilitates the connection of external connectors to a portable device. Such docking stations usually contain electronic connectors integrated into the body of the docking station that mate with the ports on the docked device. Output ports on the main body of the docking station essentially replicate the ports on the electronic device. The user can then attach connectors for external devices to the output ports of the docking station. Such docking stations are useful because they facilitate the easy insertion and removal of an electronic device without the need to individually connect and disconnect cables for external devices.
Despite the time-saving efficiencies of prior art docking stations, certain plugs and connectors can be expensive and mechanically complicated thereby increasing the materials costs and manufacturing labor costs. Additionally, certain proprietary connectors, by virtue of manufacturer's patent rights, cannot be manufactured without a license.
Accordingly, embodiments of the invention are directed to a docking station for portable electronics with an improved electrical interface that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An object of embodiments of the invention is to provide a docking station with spring pins to interface with certain expensive or proprietary connectors.
Another object of embodiments of the invention is to provide an improved retention mechanism for certain expensive or proprietary connectors.
Additional features and advantages of embodiments of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of embodiments of the invention. The objectives and other advantages of the embodiments of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of embodiments of the invention, as embodied and broadly described, the docking station for an electronic device with improved electrical interface includes a main body, a plurality of ports on the main body, a plurality of plugs protruding from the main body, the plurality of plugs positioned to interface with the electronic device, a plurality of pins protruding from the main body, a first pin of the plurality of pins positioned to interface with a first contact of a port of the electronic device, a second pin of the plurality of pins positioned to interface with a second contact of the port of the electronic device.
In another aspect, a docking station for electronic device with an improved electrical interface includes a main body, a first port on the main body for attaching a first external connector, a second port on the main body for attaching a second external connector, a first plug on the main body positioned to interface with a first port on the electronic device, a second plug on the main body positioned to interface with a second port on the electronic device, a first pin on the main body positioned to interface with a first electrical contact of a third port of the electronic device, and a second pin on the main body positioned to interface with a second electrical contact of the third port of the electronic device.
In yet another aspect, a docking station for an electronic device having an improved electrical interface includes a main body, a data plug protruding from the main body, the plug positioned to interface with the electronic device, a data port on the main body electrically connected to the data plug, a plurality of pins protruding from the main body, a first pin of the plurality of pins positioned to interface with a first contact of a port of the electronic device, a second pin of the plurality of pins positioned to interface with a second contact of the port of the electronic device, and a power port on the main body electrically connected to the first pin and the second pin.
In another aspect, a docking station for an electronic device having an improved electrical interface includes a main body, a first port on the main body for accepting a first external connector, a second port on the main body for accepting a second external connector, a first plug on the main body positioned to interface with a first port on the electronic device, a second plug on the main body positioned to interface with a second port on the electronic device, an adapter piece for accepting and retaining a third external connector, a slot in the main body for receiving the adapter piece and for positioning the third external connector to interface with a third port of the electronic device, and a retention mechanism in the main body for retaining the adapter piece.
In yet another aspect, a docking station for an electronic device having an improved electrical interface includes a main body, a first port on the main body for accepting a first external connector, a second port on the main body for accepting a second external connector, a first plug on the main body positioned to interface with a first port on the electronic device, a second plug on the main body positioned to interface with a second port on the electronic device, a slot in the main body for slidably receiving a third external connector and for positioning the third external connector to interface with a third port of the electronic device, and a retention mechanism in the main body for retaining the third external connector.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of embodiments of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of embodiments of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of embodiments of the invention.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like reference numerals in the drawings denote like elements.
In comparison to the docking station 100, the chicklet 160 is relatively inexpensive. In a retail environment, the docking station 100 can come with a variety of chicklets (not shown). The chicklets can have different internal dimensions to match a variety of potential external connectors. In this way, product configurations can be simplified by providing a docking station which can be easily adapted to be compatible with a variety of external connectors simply by using an inexpensive chicklet.
The chicklet 160 can have a protrusion (not shown) which engages a cutout 170 on the main body 110 of the docking station 100. When the protrusion (not shown) engages the cutout 145, the chicklet is locked in place. In an alternative embodiment, the cutout 145 can be formed as a depression on the interior of the slot 140.
The chicklet 220 can have a protrusion 225 which engages a matched cutout (not shown) of a docking station. When the protrusion 225 engages the cutout, the chicklet is locked in place.
The chicklet 220 can also include a slot 240. The slot 240 can allow passage for the cable of an external connector 210 so that the external connector 210 can be introduced into the chicklet and be held in place by the interior rear 230 and side walls 250. The slot 240 can also allow the chicklet 220 to expand slightly thereby facilitating the introduction of an external connector 210 into the chicklet 220.
It is not necessary for each of the plurality of spring pins to correspond to a pin on a port of the electronic device. According to embodiments of the invention, there are fewer spring pins on the dock than there are pins of a port on the electronic device. In embodiments of the invention, multiple spring pins connect to pins in separate ports of an electronic device.
In an exemplary embodiment of the invention, there can be four or five spring pins. These pins can correspond in location to the pins of a power port on an electronic device. The power port on the electronic device can be designed to accept a proprietary power plug. The power port can have electrical contacts for sending and receiving electrical signals. In embodiments of the invention the port on the electronic device can be a MagSafe power port. The spring pins on the docking station can be positioned to connect to the electrical contacts of a power port on the electronic device such as the electrical contacts of a MagSafe power port. The spring pins 731-734 can be electrically connected to the AC/DC converter 750. DC power can be provided through pins 731 and 734. A charge monitoring circuit can be connected to spring pins 732 and 733. When an electronic device (not shown) is abutted to the spring pins 731-734, the spring pins 731-734 can electrically interface with the contacts of a port on the electronic device (not shown). The spring pins can compress slightly to create a reliable electrical connection. In use, AC electrical power can be applied to the AC/DC converter 750. DC power from the AC/DC converter 750 can be applied to the plurality of spring pins 730 to provide DC power to a connected electronic device (not shown).
Some electrical connectors or ports on an electronic device such as the electronic device 840 do not exert sufficient friction on a plug to hold the plug in place with friction alone. Some such plugs, such as the Apple MagSafe adapter, rely on magnetic forces rather than friction to hold a plug in contact with a port on the electronic device. It can be costly to produce these proprietary ports and connectors as companies owning rights to such a design may demand prohibitively high licensing fees to allow third parties to manufacture the port or connector. Accordingly, in exemplary embodiments of the invention the necessary electrical contacts of a third-party proprietary connector are provided as spring pins and the proprietary body and magnetic features of the connector are omitted. When an electronic device is interfaced with the docking station, the spring pins compress slightly and press back on predetermined contacts of a port on the electronic device. The assembly can be held in place by the friction force created by adjacent plugs pressed into ports. Alternatively, the assembly can be held in place by mounting the docking station to a base member having a retention mechanism (not shown) for the electronic device. Alternatively, the assembly can be held in place by gravity using the weight of the electronic device to press down against the plurality of plugs and plurality of spring pins. In a gravity-coupling system, the electronic device and corresponding electrical contacts can be positioned above the plurality of spring pins. The weight of the electronic device provides the force to keep the electrical contacts and the spring pins joined.
The plurality of plugs 820 on the main body 810 of the docking station 800 can be electrically connected to a plurality of ports 850 on the also on the main body 810 of the docking station 800. The plugs 820 and ports 850 can be in one-to-one correspondence where each port is electrically connected to one and only one plug in a pass-through configuration. When an electronic device 840 is introduced into the docking station 800, the each of the plurality of ports 850 is connected through the plurality of plugs 820 to individual ports (not shown) on the electronic device 840. The electrical connections between the docking station 800 and the electronic device 840 can be severed in a single motion by separating the electronic device 840 from the docking station 800. Similarly, electrical connections can be formed between the docking station 800 and the electronic device 840 in a single motion. A user may connect a plug (not shown) from a variety of peripheral devices (not shown) to the plugs 850 which will electrically connect through the docking station 800 to the electronic device 840. This saves a user the hassle and time of individually positioning and inserting each of the plugs (not shown) from the peripheral devices (not shown) into the electronic device 840.
In other exemplary embodiments of the invention, there is not a one-to-one correspondence between the plurality of plugs 820 and the plurality of ports 850. In such a configuration, there may be a one-to-many setup where one of the plurality of plugs 820 corresponds to many of the plurality of ports 850. In exemplary embodiments the main body 810 can have an embedded USB hub 860. One of the plurality of plugs 820 can be a USB plug connected to an embedded USB hub 860. The embedded USB hub 860 can provide multiple USB ports such as some of the plurality of ports 850 on the main body 810 of the docking station 800.
The docking station 800 can include an embedded USB audio device 870. The USB audio device 860 can connect to the electronic device through a USB plug which can be one of the plurality of plugs 820. The USB audio device 870 can connect to an embedded USB hub 860 as described in the preceding paragraph. The USB audio device can provide an ⅛″ audio port on the main body 810 of the docking station 800. The ⅛″ audio port can be one of the plurality of ports 850. Such a configuration is desirable as it obviates the need for the docking station 800 to provide a plug to interface with an audio port of the electronic device. The benefits are two-fold in that the act of docking and undocking the electronic device is easier because there is less friction by way of few connectors. Second, on many electronic devices, there is an internal switch which disables audio through speakers embedded in the device when an external audio connector is introduced into the electronic device. By using a USB audio device 870 embedded in the docking station 800, a user can use a software program to select an appropriate audio device (embedded speakers or external audio).
Embodiments of the invention have been described as having a plurality of ports and a plurality of plugs positioned to match the location and orientation of a plurality of ports on an electronic device. The selection of the individual plugs which form the plurality of plugs can be dependent on the electronic device for which the docking station is designed. Similarly, the position and orientation of the plurality of plugs in the docking station can be dependent on the electronic device with which a docking station is designed to work. It is not essential to provide a plug for each port on the electronic device. In embodiments of the invention, fewer plugs are provided than ports on an electronic device. Similarly, the plurality of ports 850 on the docking station 800 is not dependent on the plurality of plugs 820 or the ports on the electronic device 840. There can be more ports 850 on the docking station 800 than there are plugs 820 on the docking station 800. The docking station 800 can include embedded devices such as a USB hub 860, an audio device 870, video devices, network devices, storage and other devices which operate on USB, Firewire, Thunderbolt, Ethernet, or other general purpose I/O technology.
Inside the docking station 900, the plurality of spring pins 920 can be electrically connected to an external port 925. The port 925 can accept AC or DC power. The docking station can include an internal AC/DC adapter 950 to accept AC power from port 925 and provide DC power to the spring pins 920. The AC/DC adapter 950 can also include a charge monitoring circuit. The plug 930 can be electrically connected to the port 935. The electrical connection can be a pure pass-through where the docking station 900 does not have internal electronics which manipulate the electrical signal.
While embodiments of the invention have been shown and described as having a single block comprising a plurality of plugs, it is contemplated that the invention may also be embodied as two or more blocks comprising one or more plugs. These blocks can be mounted on a chassis including a lever system or electromechanical actuators which can engage and disengage the blocks. Accordingly, this invention is not limited to the illustrated embodiments but also covers embodiments having multiple blocks of one or more plugs. Such a configuration can be useful for interfacing with an electronic device which has connectors on one or more sides.
It will be apparent to those skilled in the art that various modifications and variations can be made in the docking station for an electronic device having an improved electrical interface without departing from the spirit or scope of the invention. Thus, it is intended that embodiments of the invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 13/306,956 filed Nov. 29, 2011 which is a continuation-in-part of U.S. application Ser. No. 12/562,121 filed Sep. 17, 2009 both of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4659166 | Morningstar et al. | Apr 1987 | A |
5030128 | Herron et al. | Jul 1991 | A |
5186646 | Pederson | Feb 1993 | A |
5411416 | Balon et al. | May 1995 | A |
5460547 | Belt et al. | Oct 1995 | A |
5569052 | Belt et al. | Oct 1996 | A |
5729478 | Ma et al. | Mar 1998 | A |
5738537 | Setoguchi et al. | Apr 1998 | A |
5805412 | Yanagisawa et al. | Sep 1998 | A |
6046571 | Bovio et al. | Apr 2000 | A |
6061233 | Jung | May 2000 | A |
6151218 | Pirdy et al. | Nov 2000 | A |
6206578 | Shin et al. | Mar 2001 | B1 |
6321340 | Shin et al. | Nov 2001 | B1 |
6352447 | Ruth | Mar 2002 | B1 |
6411503 | Kambayashi et al. | Jun 2002 | B1 |
6424524 | Bovio et al. | Jul 2002 | B2 |
6558201 | Begley et al. | May 2003 | B1 |
6666715 | Fujita et al. | Dec 2003 | B2 |
6697892 | Laity et al. | Feb 2004 | B1 |
6724615 | Kambayashi et al. | Apr 2004 | B2 |
6767253 | Werner et al. | Jul 2004 | B1 |
6796844 | Edwards, III | Sep 2004 | B1 |
6934788 | Laity et al. | Aug 2005 | B2 |
6943527 | Liu et al. | Sep 2005 | B2 |
7247032 | Merz | Jul 2007 | B2 |
7417855 | Carnevali | Aug 2008 | B2 |
7503808 | O'Shea | Mar 2009 | B1 |
7508661 | Carnevali | Mar 2009 | B2 |
7554819 | Chen et al. | Jun 2009 | B2 |
7690944 | Matsumura et al. | Apr 2010 | B2 |
7857664 | Waryck et al. | Dec 2010 | B2 |
8105108 | Vroom et al. | Jan 2012 | B2 |
20020037669 | D'Addario | Mar 2002 | A1 |
20050168937 | Yin et al. | Aug 2005 | A1 |
20050286219 | Kim | Dec 2005 | A1 |
20060061964 | Cheng | Mar 2006 | A1 |
20060085584 | Chen et al. | Apr 2006 | A1 |
20060139875 | Cheng et al. | Jun 2006 | A1 |
20060171112 | Lev et al. | Aug 2006 | A1 |
20060250767 | Brophy et al. | Nov 2006 | A1 |
20070070598 | Chuang | Mar 2007 | A1 |
20100073862 | Carnevali | Mar 2010 | A1 |
20100265652 | Agata et al. | Oct 2010 | A1 |
20110134601 | Sa | Jun 2011 | A1 |
20110242754 | Morton | Oct 2011 | A1 |
20110279966 | Sayavong | Nov 2011 | A1 |
20120094527 | Vroom et al. | Apr 2012 | A1 |
20120094528 | Vroom et al. | Apr 2012 | A1 |
20120162902 | Zhou et al. | Jun 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120094528 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13306956 | Nov 2011 | US |
Child | 13306960 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12562121 | Sep 2009 | US |
Child | 13306956 | US |