Embodiments of the invention relate to preventing electrical leakage between a semiconductor substrate and an electrode in a MEMS microphone.
In a MEMS microphone, the overlap of an electrode (e.g., moveable membrane, stationary front plate) and a semiconductor substrate creates a susceptibility to electrical leakage from non-insulating particles (or other forms of leakage) that come into contact with the surfaces of both components. Insulating protection coatings are typically applied to MEMS microphones to prevent electrical leakage/shorts. However, conductive paths, caused by non-insulating particles, can be created during the manufacturing process prior to deposition of any coatings.
One embodiment of the invention provides a MEMS microphone. The MEMS microphone includes a semiconductor substrate, an electrode, a first insulation layer, and a doped region. The doped region is implanted in at least a portion of the semiconductor substrate where the semiconductor substrate is in contact with the first insulation layer. The doped region is electrically coupled to the electrode. In some implementations, the semiconductor substrate includes N-type majority carriers and the doped region includes P-type majority carriers. In other implementations, the semiconductor substrate includes P-type majority carriers and the doped region includes N-type majority carriers. In some implementations, the electrode includes at least one type of electrode selected from a group consisting of a moveable electrode and a stationary electrode. In some implementations, the MEMS microphone further includes an application specific integrated circuit. In some implementations, the doped region is electrically coupled to the application specific integrated circuit. In other implementations, the doped region is electrically coupled to an application specific integrated circuit that is external to the MEMS microphone.
In another embodiment, a MEMS microphone with two insulation layers is provided. In one example, the MEMS microphone includes a semiconductor substrate, an electrode, a first insulation layer, a doped region, and a second insulation layer. The doped region is implanted in at least a portion of the semiconductor substrate where the semiconductor substrate is in contact with the first insulation layer. The doped region is electrically coupled to the electrode. The second insulation layer is formed between the semiconductor substrate and the doped region. The doped region includes a first plurality of majority carriers and the semiconductor substrate includes a second plurality of majority carriers. The first plurality of majority carriers and the second plurality of majority carriers include at least one type of majority carriers selected from a group consisting of P-type majority carriers and N-type majority carriers. In some implementations, the first plurality of majority carriers is a same type of majority carriers as the second plurality of majority carriers. In other implementations, the first plurality of majority carriers is a different type of majority carriers than the second plurality of majority carriers.
The invention further provides a method for preventing electrical leakage in a MEMS microphone. In one embodiment, the method includes forming a first insulation layer between a semiconductor substrate and an electrode. The method also includes implanting a doped region into the semiconductor substrate such that the doped region is provided in at least a portion of the semiconductor substrate where the semiconductor substrate is in contact with the first insulation layer. The method further includes electrically coupling the electrode to the doped region. In some implementations, the method also includes implanting P-type majority carriers into the doped region and N-type majority carriers into the semiconductor substrate. In other implementations, the method also includes implanting N-type majority carriers into the doped region and P-type majority carriers into the semiconductor substrate. In some implementations, the electrode includes at least one type of electrode selected from a group consisting of a moveable electrode and a stationary electrode. In some implementations, the method further includes electrically coupling the doped region to an application specific integrated circuit that is internal to the MEMS microphone. In other implementations, the method further includes electrically coupling the doped region to an application specific integrated circuit that is external to the MEMS microphone.
In another embodiment, the invention also provides a method for preventing electrical leakage in a MEMS microphone using, among other things, two insulation layers. In one example, the method includes forming a first insulation layer between a semiconductor substrate and an electrode. The method also includes implanting a doped region into the semiconductor substrate such that the doped region is provided in at least a portion of the semiconductor substrate where the semiconductor substrate is in contact with the first insulation layer. The method further includes electrically coupling the electrode to the doped region. The method also includes forming a second insulation layer between the semiconductor substrate and the doped region. In some implementations, the method further includes implanting a first plurality of majority carriers into the doped region and a second plurality of majority carriers into the semiconductor substrate. The first plurality of majority carriers and the second plurality of majority carriers include at least one type of majority carriers selected from a group consisting of P-type majority carriers and N-type majority carriers. In some implementations, the first plurality of majority carriers is a same type of majority carriers as the second plurality of majority carriers. In other implementations, the first plurality of majority carriers is a different type of majority carriers than the second plurality of majority carriers.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
It should also be noted that a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific configurations illustrated in the drawings are intended to exemplify embodiments of the invention. Alternative configurations are possible.
A MEMS microphone 300 includes, among other components, a moveable electrode 305, a stationary electrode 310, a semiconductor substrate 315, a first insulation layer 320, a doped region 325, an inter-metal dielectric (“IMD”) layer 330, and a passivation layer 335, as illustrated in
Acoustic and ambient pressures acting on the moveable electrode 305 cause movement of the moveable electrode 305 in the directions of arrow 345 and 350. Movement of the moveable electrode 305 relative to the stationary electrode 310 causes changes in a capacitance between the moveable electrode 305 and the stationary electrode 310. This changing capacitance generates an electric signal indicative of the acoustic and ambient pressures acting on the moveable electrode 305.
The concentration of majority carriers and the depth of the doped region 325 influences the maximum voltage and non-insulating particle size that the doped region 325 is capable of preventing electrical leakage from. For example, a 12 micrometer deep doped region 325 containing N-type majority carriers is able to prevent up to 100 volts of electrical leakage. In
In some implementations, a MEMS microphone 600 includes, among other components, a moveable electrode 605, a stationary electrode 610, a semiconductor substrate 615, a first insulation layer 620, a doped region 625, an IMD layer 630, a passivation layer 635, and a second insulation layer 640, as illustrated in
In some implementations, a MEMS microphone 700 includes, among other components, a moveable electrode 705, a stationary electrode 710, a semiconductor substrate 715, a first insulation layer 720, a doped region 725, an IMD layer 730, a passivation layer 735, and a second insulation layer 740, as illustrated in
In some implementations, a MEMS microphone 800 includes, among other components, a moveable electrode 805, a stationary electrode 810, a semiconductor substrate 815, a first insulation layer 820, a doped region 825, an IMD layer 830, a passivation layer 835, and an application specific integrated circuit (“ASIC”) 840, as illustrated in
In some implementations, a MEMS microphone 1000 includes, among other components, a moveable electrode 1005, a stationary electrode 1010, a semiconductor substrate 1015, a first insulation layer 1020, a doped region 1025, an IMD layer 1030, and a passivation layer 1035, as illustrated in
The MEMS microphones discussed above are designed for ASIC processes. Doped regions may also be used in a MEMS microphone 1100 designed for a non-ASIC process. In some implementations, the MEMS microphone 1100 includes, among other components, a moveable electrode 1105, a stationary electrode 1110, a semiconductor substrate 1115, a first insulation layer 1120, a doped region 1125, and an IMD layer 1130, as illustrated in
In some implementations, the MEMS microphone 1200 includes, among other components, a moveable electrode 1205, a stationary electrode 1210, a semiconductor substrate 1215, a doped region 1225, and an IMD layer 1230, as illustrated in
Thus, the invention provides, among other things, systems and methods of preventing electrical leakage in MEMS microphones. Various features and advantages of the invention are set forth in the following claims.
This application claims priority to U.S. Provisional Application No. 61/973,507, filed on Apr. 1, 2014 and titled “DOPED SUBSTRATE REGIONS IN MEMS MICROPHONES,” the entire contents of which is incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/23587 | 3/31/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61973507 | Apr 2014 | US |