The present invention relates to dispensers for cream-based medicines, and more particularly, to a dispenser having a rotatable housing which causes a floor member to rise and urge a predetermined amount of cream through an opening in a cap.
Traditionally, topically administered medicine was often formulated as liquids. Applying a liquid to a skin surface often resulted in a portion of the dose spreading beyond the target area. Cream-based formulations were developed as viscous liquids to prevent the unintended application of the medicine to an unaffected area. More recently, pharmacists have been taking traditional medicines and “compounding” them in a cream base.
Administering the cream-based medicines is a challenge because providing an accurate measured dose is not easy. One common form of dispenser is a traditional hypodermic syringe, without the needle. The user can depress the plunger to force an amount of cream out of the barrel as indicated by markings on the side of the barrel. For older patients it is not always easy to measure out 0.1 ml or so of medicine as this may require more dexterity than available. It would be desirable to have a dispenser for cream-based medicines that is easier to use and which provides a positive confirmation that the desired amount of cream has been dispensed.
Generally described, the present invention provides several embodiments of a dispensing apparatus which utilizes a novel rotation mechanism. In one exemplary embodiment a dispenser includes a base having a threaded rod extending therefrom over which can be fitted a riser which advances when the base is turned. The riser and rod reside within a barrel. The barrel has an applicator cap through which the cream is forced and which provides a surface to apply the cream to the skin. The dispenser also preferably includes a cap to retard drying out of the cream and to protect the applicator cap from becoming contaminated. When used the base is turned and a positive audible and tactile click is sensed, indicating that a portion of cream has been dispensed. The base cannot be turned in the reverse direction, thereby effectively eliminating the possibility of cream being drawn back into the barrel.
The present invention also provides a means for filling the dispenser so as to reduce bubbles and pockets in the cream after being inserted into the barrel.
Accordingly, it is a feature of the present invention to provide a dispenser for the metered dosing of cream-based medicine in a manner that provides a positive sensory feedback mechanism to confirm that the desired amount of cream has been dispensed.
It is another feature of the present invention to provide a dosing dispenser that will allow the user to administer the cream evenly to the skin area.
Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:
The body 20 comprises an outer wall 22, an inner wall 24, a first end 26 and a second end 28. The inner wall 24 defines a chamber 29 which can hold the cream 15. The first end 26 has an external rim 30. The second end 28 has a plurality of tabs 32 projecting downward from a plate 34. The tabs 32 are partially flexible. The plate 34 has a hole 36 extending therethrough. The body 20 may have a rim 38. The body 20 snap fits onto the base 40.
The base 40 comprises a bottom portion 42, sidewall 44, bush 46 and ratchet steps 48. The bush extends upward from the bottom portion 42. The ratchet steps 48 are attached to the inner sidewall 44 and have an angled portion 50. In one exemplary embodiment four ratchet steps 48 are used, but, it is to be understood that fewer or more may be used, depending on the design. The ratchet steps 48 are preferably curved and/or angled and also preferably have a gentle angled rise leading to a steep drop. The sidewall 44 may have a lip 52 which can mate with the rim 38 of the second end 28 of the body 20. The base may optionally include one or more feet 54 extending outward from the bottom portion 42 to assist in stabilizing the dispenser 10 when in a standing position and to facilitate gripping of the base 40 by a user.
The drive screw 60 comprises an elongated shaft 62 having a set of external threads 64, a first end 66 and a second end 68. The second end terminates in a cog 70 or a nut. The cog 70 preferably has a geometric cross-sectional shape, such as, but not limited to, square or hexagonal. The cog 70 can be inserted into the bush 46, which also preferably has a complementary geometric shape to accommodate the cog 70. Proximate to the second end 68 is a ring 72. An annular angled flange 74 is proximate to the ring 72. The shaft 62 can pass through the hole 36 in the body 20.
The ring 80 has a hole 82, a raised portion 84 forming a shoulder 86 and at least one, and preferably two pins 88, 90 extending upward from the raised portion 84. The pins 88, 90 may have a narrower diameter portion 92, 94. The hole 82 is preferably slightly smaller in diameter than the diameter of the ring 72.
The riser 100 has a preferably curved or domed top surface 102 having a hole 104 therein and also has a sidewall 106 which forms an inner wall 108 defining an interior space 110. Extending downward from the top surface 102 is a bush 109 having a set of internal threads 111. At least one, and preferably two sleeves 112, 114 are disposed in the interior space 110 and attached to the inner wall 108. The sleeves 112, 114 are sized to slidingly accommodate the pins 88, 90. An annular fluid tight member 116 is associated with the lower portion 118 of the riser 100. The fluid tight member 116 comprises a first annular sealing ring 118 and, preferably, a second annular sealing ring 119. Both first and second sealing rings 118, 119 are at least partially flexible and can form a fluid tight seal with the inner wall 24 of the body when the riser 100 is inserted in the chamber 29.
An applicator pad 120 has a preferably curved or domed top surface 122 having at least one hole 124 therein and a sidewall 126. The sidewall 126 preferably has an inner groove 128 which can be snapped over the external rim 30 on the body 20. Optionally, the applicator pad 120 may have a bush 130 extending downward from the top surface 122.
The cap 140 is sized to snugly fit over the applicator pad 120 to prevent contamination of the pad and to reduce evaporation of the cream 15.
To assemble the parts and charge the dispenser 10 with cream, the cog 70 is fitted into the bush 46 in the base 20. The ring 80 pins 88, 90 are inserted into the sleeves 112, 114 of the riser 100. The riser 100 and ring 80 are inserted into the first end 26 and down into the chamber 29. The shaft 62 is inserted into the hole 36 of the body and the ring 80 and riser 100 are slid over the shaft 62 until the ring 80 rests on the ring 72. The bush 109 is threaded using the threads 111 onto the threads 64 of the shaft 62. The chamber is filled with the appropriate measured amount of cream 15. The base 20 is turned so that the shaft 62 turns and advances the riser 100 and cream 15 toward the first end 26 of the body 20. The applicator pad 120 is snapped onto the top of body 20. The base 20 is turned and the riser 100 is advanced until there is essentially no air in the chamber 29 between the cream 15 and the applicator pad 120. The cap 140 is placed on the applicator pad 120 and the dispenser 10 is ready for use.
The user removes the cap 140 and turns the base 20 the appropriate amount of clicks (typically as directed on the instructions given to the user by the dispensing physician or pharmacy). As the base 20 is turned, the tabs 32 flex and move over the angled portions 50 of the ratchet steps 48. As the tabs 32 reach the vertical steps 49 the tabs 32 snap back vertical, thereby causing an audible click for each stop of the base. Also, the user may sense a vibration as the tabs 32 move over the ratchet steps 48. The vertical step 49 substantially prevents (or, at a minimum, makes it difficult to) reverse rotation of the base 20. With each click a predetermined amount of cream 15 is forced by the rising riser 100 to be dispensed through the holes 124. The dispensed cream 15 forms a bead or pool over the central area of the top surface 122 of the applicator pad 120. The user applies the cream 15 to the skin by rubbing the applicator pad 120 on the skin. The cream 15 at least partially spreads out over the surface 122 and is rubbed into the skin.
The tactile and audible click heard as the base 20 is turned provides feedback as to how much cream 15 is dispensed. For example, the prescription might be for 1 cc of cream per dose to be applied to the skin. If each click is 0.25 cc, for example, then the prescription might instruct the user to turn the base 20 to hear four clicks so as to dispense 1 cc of cream 15. The design of the present invention substantially prevents reverse rotation of the base 20 with respect to the body 40 so that cream 15 is not inadvertently sucked back into the dispenser, which may reduce the effective dosage dispensed and may contaminate the cream 15 in the chamber 29. The click also provides positive feedback when the right amount of cream 15 has been dispensed per turn.
Optionally, the cap 140 may have downward projecting protrusions 142 which are receivable within the holes 124. The protrusions 142 substantially seal the holes 124 when the cap 140 is in place, thereby reducing the risk of contamination of the cream 15 and preventing clogging of the holes 124. Preferably, the cap 140 has a registering means to align with the applicator pad 120 to make alignment of the protrusions 142 and the holes 124 easier.
The dispenser of the present invention may optionally also include a vibration mechanism whereby the dispenser 10 and, in particular, the applicator pad 120 area vibrates when activated so as to improve transfer of the cream 15 to the skin. In one exemplary embodiment, shown in
The dispenser of the present invention may also include an indicator mechanism either to show the approximate number of remaining doses or to show when the chamber 29 is near empty, both so that the user can have advance awareness that a refill may be needed.
In one exemplary embodiment of an indicator, shown in
In a second exemplary embodiment of an indicator, shown in
The pharmacist must fill the dispenser by charging the chamber 29 with cream 15. The base 40 must be turned to advance the riser 100 toward the applicator pad 120 to eliminate the air gap. To eliminate bubbles and air pockets which may have formed during charging, it may be preferable to agitate the dispenser 10 so that the air rises out of the cream 15. In one exemplary embodiment the present invention also includes a separate loading unit. As shown in
The present invention also contemplates the optional incorporation of a safety cap to prevent children from accessing the cream 15. In one exemplary embodiment of a safety cap, shown in
In a second embodiment of a safety cap, shown in
The following are alternative embodiments of various dispenser designs.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
It should further be noted that any patents, applications and publications referred to herein are incorporated by reference in their entirety.
This application claims benefit of copending U.S. provisional patent application No. 60/695,962, filed Jul. 1, 2005, entitled “SYSTEMS AND METHODS FOR DISPENSING MEDICINE”, the disclosure of which is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3007611 | Coolidge | Nov 1961 | A |
3333740 | Waller | Aug 1967 | A |
3616970 | Baumann et al. | Nov 1971 | A |
3873008 | Jahn | Mar 1975 | A |
4074833 | Otto, Sr. | Feb 1978 | A |
4139127 | Gentile | Feb 1979 | A |
4298036 | Horvath | Nov 1981 | A |
4363560 | Gentile | Dec 1982 | A |
4544083 | Schroeder | Oct 1985 | A |
4641776 | Vlasek et al. | Feb 1987 | A |
4658993 | Vlasich | Apr 1987 | A |
4850516 | Seager | Jul 1989 | A |
4865231 | Wiercinski | Sep 1989 | A |
5000356 | Johnson et al. | Mar 1991 | A |
5007755 | Thompson | Apr 1991 | A |
5016782 | Pfanstiel | May 1991 | A |
5025960 | Seager | Jun 1991 | A |
5540361 | Fattori | Jul 1996 | A |
5573341 | Iaia | Nov 1996 | A |
5725133 | Iaia | Mar 1998 | A |
5839622 | Bicknell et al. | Nov 1998 | A |
5947621 | Szekely | Sep 1999 | A |
6039483 | Szekely | Mar 2000 | A |
6186686 | Neuner et al. | Feb 2001 | B1 |
6811062 | Tani | Nov 2004 | B2 |
6969209 | Apar et al. | Nov 2005 | B2 |
20030197028 | Jaekel | Oct 2003 | A1 |
20030197037 | Manganini | Oct 2003 | A1 |
20040069814 | Hemming et al. | Apr 2004 | A1 |
20040206783 | Danne et al. | Oct 2004 | A1 |
20050025558 | Severa | Feb 2005 | A1 |
20050178796 | Shraiber | Aug 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070000946 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60695962 | Jul 2005 | US |