The present application claims priority of Chinese patent application Serial No. 200810111942.1, filed May 19, 2008, the content of which is hereby incorporated by reference in its entirety.
1. Field of Invention
The present invention relates to an ion source for use with analysis and discrimination of substance with dual ion mobility technology, which belongs to a technical field of safety inspection.
2. Description of Prior Art
The dual ion mobility spectrometer (dual IMS) can simultaneously detect molecules having positive and negative ion affinity, and thus can conduct detection of various types of substances, such as drugs and explosives. This characteristic enables a wide application of the dual IMS.
The conventional ion sources, however, are designed primarily for single IMS. Such ion sources, when applied to the dual IMS, will have noticeable shortcomings, such as a low ionization efficiency of sample molecules, a low effective utilization of ions, and unreasonable ion source structure.
Currently, some ion sources dedicated to the dual IMS have disadvantages, too. In U.S. Pat. No. 7,259,369B2, for example, sample molecules after ionization in an ionization chamber external to the system are carried by carrier gas into a quad-polar ion trap at the center of the dual IMS. Then, ions stored in the ion trap enter positive and negative ion drift tubes at both ends of the dual IMS, respectively, for further measurement.
The ion source in the above patent has the advantage of being not limited by ionization approach and source body shape, and can be any one of the existing ion sources, such as radioactive isotope, corona or laser. On the other hand, the ion source has disadvantage of a significant reduction of effective utilization of ion, since a larger number of ions are lost in the course of sample ions migrating from the ion source to the ion trap. Further, the separate ionization chamber adds to the volume and production cost of the IMS.
In addition, to improve ionization efficiency, ion cloud generated by a general radioactive source for IMS has a broad distribution range. As shown in
In view of the above, the present invention provides an ion source structure used in dual IMS, this structure can fundamentally increase the ionization efficiency and IMS's sensitivity. This invention allow a reduction in the ion source's radioactivity strength, and increase the effective utilization of ions by allowing positive and negative ions to penetrate through the ion source.
In an aspect of the present invention, it provides an ion source comprising a plate-shaped source body which has radioactivity on its both sides, and allows positive and negative ions to penetrate through the source body.
Preferably, the source body is formed of radioactive isotope material.
Preferably, the source body has a thickness between 0.01 mm and 1 mm.
Preferably, the radioactivity strength of the source body is in the range of 0.5-10 mCi.
Preferably, the transmittance of the ion source is 25%-95%.
The present invention gives beneficial effects. First, the ion source structure can improve the ionization efficiency of sample molecules, and the generated sample ions have a centralized distribution within a flat space on both sides of the source body. Such distribution of ion cloud facilitates to improve the IMS sensitivity. Meanwhile, the source body of the present invention has a transmittance in itself. Thus, positive and negative ions generated on both sides of the source body can penetrate through the source body and be separated to the both sides of the source body. In this way, it is possible to improve the utilization efficiency of ions.
The above advantages and features of the present invention will be apparent from the following detailed description on the preferred embodiments taken conjunction with the drawings in which:
Now, preferred embodiments of the present invention will be described with reference to the figures, in which the same reference symbol, though shown in different figures, denotes the same or like component. For the purpose of clarity and simplicity, detailed description of known functions and structures incorporated here will be omitted, otherwise it may obscure the subject matter of the present invention.
The ion source in
As shown in
Among the electrodes on both sides of the ion source 0, the electrode 1 is provided with a potential higher than that of the ion source 0, and the electrode 2 is provided with a potential lower than that of the ion source 0. In this way, a uniform electric field is formed between the electrodes 1 and 2. The sample gas introduced from the top of the ion source 0 is ionized, then a huge number of mixed positive and negative ions are generated on both sides of the ion source 0. These ions are primarily distributed in a flat space with the ion source 0 being the center.
Driven by the electric field between the electrodes 1 and 2, the positive ions between the electrode 1 and the ion source 0 penetrate through the ion source 0 and enter the ion gate 4. The negative ions between the electrode 2 and the ion source 0 penetrate through the ion source 0 and enter the ion gate 3. Then, these positive and negative ions can be released into the ion drift tube 6 and the ion drift tube 5 located at both ends by controlling the potentials of the ion gates.
In the above dual IMS, the sample gas can arrive near the ion source 0 and then be ionized. The generated sample ions are mainly centralized in the flat space at both sides of the ion source 0. Further, with the driving force of the adjacent electric field, the mixed positive and negative ions generated at each side of the ion source 0 can penetrate through the ion source 0 and thus be separated to each side of the source body, instead of being lost at both sides of the source.
The foregoing description is only the preferred embodiments of the present invention and not intended to limit the present invention. Those ordinarily skilled in the art will appreciate that any modification or substitution in the principle of the present invention shall fall into the scope of the present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0111942 | May 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3589374 | Aoki et al. | Jun 1971 | A |
4445038 | Spangler et al. | Apr 1984 | A |
4950893 | Reategui et al. | Aug 1990 | A |
5856784 | Wiemeyer | Jan 1999 | A |
6064070 | Schnurpfeil et al. | May 2000 | A |
6145391 | Pui et al. | Nov 2000 | A |
6589502 | Coniglione et al. | Jul 2003 | B1 |
6749553 | Brauckman et al. | Jun 2004 | B2 |
6787763 | De La Mora et al. | Sep 2004 | B2 |
7259369 | Scott et al. | Aug 2007 | B2 |
20090127449 | Iwatschenko-Borho | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090283694 A1 | Nov 2009 | US |