The present invention relates to a double glazed window of a polycarbonate layer, and particularly, a double glazed window with a polycarbonate layer, which includes an outer glass layer and an inner polycarbonate layer so as to have improved thermal insulation properties and earthquake resistance.
A window as the means for ventilation and lighting of a room may be made of various materials that can ensure permeability and thermal insulation. In general, the window may be made of glass as a transparent material. However, glass has low thermal insulation properties and may be fabricated into a double-pane structure in order to supplement low thermal insulation properties of glass. For instance, a double-pane window including a silver coating film while forming a dry air layer between the two glass layers may be installed in various structures. On the other hand, a glass window may cause an increase in heat loss during warming or cooling of a building. In order to solve such problems, low-emission (low emissivity) glass may be used. Herein, the low emissivity glass refers to a material coated with a substance such as metal on the glass surface to increase reflectance of infrared light to thus decrease heat transfer. Further, in order to prevent accidents due to breakage of glass, a glass fabricated in a special way, such as reinforced glass, may be used.
Korean Patent Registration No. 10-0996657 discloses a multilayered glass structure, including: a horizontal frame and a vertical frame to form a framework of a window; a support bar which protrudes in a direction perpendicular to an outer wall face of the horizontal frame and the vertical frame and supports a pair of glass panes arranged by interposing a spacer therebetween; and a fixed sill (or window sill) in a support bracket form having a rectangular cross-section, one side of which is open, wherein the horizontal frame and the vertical frame protrude in parallel in a longitudinal direction such that at least one or more additional glass panes are installed at a predetermined interval to the pair glass panes.
Korean Patent Registration No. 10-1660517 discloses a heat insulation glass consisting of: a first glass plate; a synthetic resin plate spaced apart from the first glass plate; a second glass plate spaced apart from the synthetic resin plate; and a spacing bar which is interposed between the first glass plate and the synthetic resin plate and also at an outer border side between the synthetic resin plate and the second glass plate, so as to space the glass plates as well the synthetic resin plate at a predetermined interval.
Korean Patent Laid-Open Publication No. 10-2013-0108501 discloses a multilayer window structure, including: one window pane made of glass; a hollow ring type spacer made of polycarbonate, which is arranged to extend along the respective periphery of the one window pane and the other window pane, and has a hole at an air layer side between the one window pane and the other window pane; primary sealing members made of an elastic material, each of which has a thickness of 0.5 mm or more and a width of 6 mm or more and extends along the respective periphery of the one window pane and the other window pane, in addition, which are disposed between the one window pane and the spacer and between the other window pane and the spacer, respectively.
Such conventional or known multilayer structure window or dual structure window is complex in terms of construction, entails increase in production costs, and has a disadvantage of weak earthquake resistance or impact resistance.
The present invention has been proposed to solve the problems of the conventional art and has the following objects.
An object of the present invention is to provide a double glazed window with a polycarbonate layer fabricated by preparing a vacuum layer between a glass layer and a polycarbonate layer, so as to improve thermal insulation properties, construction efficiency, impact resistance and earthquake resistance.
According to a preferred embodiment of the present invention, the double glazed window with a polycarbonate layer may include: a glass layer to form an outer layer; a polycarbonate layer to form an inner layer; a vacuum layer formed between the glass layer and the polycarbonate layer; and a sealing means for sealing the vacuum layer while binding the glass layer and the polycarbonate layer.
According to another preferred embodiment of the present invention, the vacuum layer may be formed using a porous vacuum material layer.
According to another preferred embodiment of the present invention, an aluminum oxide layer provided on one face of the polycarbonate layer may be further included.
According to a further preferred embodiment of the present invention, the polycarbonate layer may be fabricated using polycarbonate foam having a density of 0.35 to 1.10 g/cm3 and a cell size of 5.0 to 18.0 μm.
The glazed window of the present invention may exhibit a combination of features of the glass material and features of the polycarbonate material. The glazed window of the present invention may enable simple manufacturing and construction work since the inner layer is made of polycarbonate. The glazed window of the present invention may improve thermal insulation since the vacuum layer is formed between the glass layer and the polycarbonate layer. In addition, the glazed window of the present invention may improve earthquake resistance and impact resistance since the window is fabricated using glass and polycarbonate foam materials.
Hereinafter, with reference to the embodiments proposed in the accompanying drawings, the present invention will be described in detail. However, these embodiments are for clearly understanding the present invention only and the present invention is not particularly limited thereto. In the following description, since components denoted by the same numeral in different drawings have substantially similar functions, these components are not repeatedly explained if not required for the understanding of the present invention. Further, known components will be briefly described or a description thereof will be omitted. However, it is not understood that such components are excluded from the embodiments of the present invention.
Referring to
The glazed window of the present invention is applicable to various types of buildings and has a multilayer or dual-window structure. The glazed window may have a structure capable of being open and closed or a fixed structure, and may be installed in any of window frames having different structures.
The glass layer 11 may be made of various materials used in glazed windows such as a typical glass, tempered (or reinforced) glass or composite glass, and may have adequate transparency. The glass layer 11 may be used to form an outer layer in contact with the external environment (OUT) and may have a desirable thickness. The polycarbonate layer 12 used for forming an inner layer in contact with internal environment (IN) may be fabricated using polycarbonate or polycarbonate foam. The polycarbonate may comprise a synthetic resin material which has a density of 1.20 to 1.22 g/cm3, a thermal conductivity of 0.19 to 0.22 W/(m·K), a coefficient of linear expansion of 65 to 70×10−6K, a refractive index of 1.584 to 1.586, and a specific heat of 1.2 to 1.3 kJ/(kg·K). The polycarbonate has advantages including high mechanical strength, lighter weight than glass, transparency and high thermal resistance. The polycarbonate also has disadvantages of easily being scratched due to low surface intensity (or surface hardness).
The polycarbonate layer 12 applied to the glazed window of the present invention may have a thickness of 1 to 15 mm, and may be formed with a small thickness depending upon the glass layer 11. For instance, the polycarbonate layer may have a thickness of ⅘ to 1/10 times the thickness of the glass layer 11, without being limited thereto. In order to supplement the surface hardness of the polycarbonate, a metal having light transmission property may be used to coat the surface of the polycarbonate or a metal film may be used to protect the surface of the polycarbonate. For instance, the surface of the polycarbonate may be coated with aluminum oxide (Al2O3) or an aluminum oxide film in a thickness of 1.0 to 100 μm. Such aluminum oxide coating may be performed using aluminum oxide in a powder form having an average diameter of 0.1 to 0.9 μm. The aluminum oxide film may be fabricated by applying aluminum oxide powder having the aforementioned diameter to a transparent synthetic resin material. Formation of a metal coating layer or a metal film layer on the surface of the polycarbonate may be performed according to different methods, without particular limitation to the embodiments proposed in the present invention.
According to the present invention, the polycarbonate layer 12 may be made from polycarbonate foam, wherein the polycarbonate foam may be formed by foaming polycarbonate particles with carbon dioxide. For instance, foaming polycarbonate particles using supercritical carbon dioxide with a pressure of 2 to 6 MPa at a saturation temperature of 20 to 30° C. may produce polycarbonate foam having a density of 0.35 to 1.10 g/cm3 and a cell size of 5.0 to 18.0 μm. When the polycarbonate layer 12 is fabricated using the above polycarbonate foam, the polycarbonate layer 12 may become relatively thin and lightweight. It was found that the polycarbonate foam used to form the polycarbonate layer exhibits increase in thermal insulation properties and decrease in thermal conductivity with increasing cell size. Further, the polycarbonate foam used to form the polycarbonate layer 12 showed an increase in visible light transmittance with increasing pore size (‘porosity’). For instance, if the polycarbonate foam has a thickness of ⅓ to ½ times the thickness of the glass layer 11, a density of 0.70 to 0.80 g/cm3 and a cell size or diameter of 8 to 12 μm, the polycarbonate foam showed relatively excellent thermal insulation and light transmission properties. Further, the surface hardness may be improved by coating an inner surface of the polycarbonate layer 12 with aluminum oxide in a thickness of 30 to 80 μm. Between the glass layer 11 and the polycarbonate layer 12, a vacuum layer (VL) may be further provided. For instance, the vacuum layer (VL) may be formed in a thickness of 0.1 to 1.0 mm. In the present text, the vacuum layer refers to, for example, a condition wherein a gas pressure of not more than 0.1 bar, preferably, 0.01 bar, and most preferably, 0.001 bar is maintained. The vacuum condition may be maintained by sealing means 13a and 13b that seal peripheral sides of both the glass layer 11 and the polycarbonate layer 12 from each other. Alternatively, the vacuum layer (VL) may be formed along with the polycarbonate layer 12. For instance, a material layer such as porous fumed silica is bound to the outside of the polycarbonate layer 12 to form a vacuum layer (VL) while sealing the polycarbonate layer. Moreover, the glass layer 11 may be bound to one face of the vacuum layer (VL), thereby completing the double glazed window of the present invention.
Referring to
The glass layer 11 and the polycarbonate layer 12 may be combined in a variety of structures to form a vacuum layer (VL) for improvement of thermal insulating function.
Referring to
Referring to
The vacuum layer according to the present invention may have a variety of structures without particular limitation to the proposed embodiments.
Referring to
The vacuum suction device may include: a closed body 31 formed in a cylindrical shape and having a cylinder space 311 therein; an actuating piston 32 movably coupled to the cylinder space 311; a fixture member 34 coupled at the front of the actuating piston 32; a length-modified elastic means 33 coupled at the front of the actuating piston 32; and an inflow control unit 35 or 35a disposed at the end of the length modified elastic means 33 and having limited movement by the fixture means 33.
The closed body 31 may be further provided with a contact blade 312 around an outer peripheral side of the closed body 31, and a gas flow path (AP) may be provided along the center line in a length direction of the actuating piston 32 in a cylinder form. The gas flow path (AP) may be formed to have both open ends and connected to a discharge space 313 formed in the closed body 31 to allow gas flow. The fixture member 34 and the actuating piston 32 may be integrally formed. Further, the fixture member 34 may have a structure wherein one end of the fixture member at a wall face is in close contact with a wall face (W) of a connection module (CM). Further, the fixture member may be made of a flexible material. The gas flow path may be formed inside the fixture member 34 and configured to be opened and closed by a first spherical inflow control means 35 or a second inflow control means 35a.
A vacuum generating block (VB) may be disposed at one end of the glass layer 11, and one wall face (W) of the vacuum generating block (VB) may be in contact with the vacuum layer (VL). One end of the fixture member 34 may enter the inside of the vacuum layer (VL) through the wall face (W). Without application of pressure from the outside, the fixture member 34 is opened by the first and second inflow control means 35 and 35a. In such a condition, the discharge space 313, the cylinder space 311 and a coupling space of the actuating piston 32 and the gas flow path (AP) may be in a vacuum state by a means such as a vacuum pump. Accordingly, air present in the vacuum layer (VL) may apply pressure to the first and second inflow control means 35, and may be discharged to the outside through a gas discharge space 313 via the gas flow path (AP). The second inflow control means 35a may have a structure wherein one side of the control means is formed in a conical shape, and the control means extends in a cylinder form to the end of the conical shape and is received in the fixture member 34 while forming a gap inside the gas flow path in the fixture member 34.
The vacuum suction device may be configured to be entirely or partially fixed to the glazed window. Further, the vacuum suction device may be configured in a variety of structures, and the vacuum layer (VL) may also be formed in different ways.
The glazed window of the present invention may achieve a combination of both the features of a glass material and the features of a polycarbonate material. The glazed window of the present invention may ensure simple manufacturing and construction work since an inner layer of the glazed window is made of a polycarbonate material. The glazed window of the present invention may achieve improvement in thermal insulation by forming a vacuum layer between the glass layer and the polycarbonate layer. Further, the glazed window of the present invention may achieve improvement in earthquake resistance and impact resistance by manufacturing the glazed window using glass and polycarbonate foam materials.
Although the present invention has been described in detail with reference to the proposed embodiments, those skilled in the art will appreciate that a variety of modifications and alterations may be possible within the scope of the present invention with reference to the proposed embodiments without departing from technical spirit of the invention. The present invention is not restricted by such modifications and alterations but may be defined by the appended claims.
The glazed window according to the present invention may exhibit advantages of a glass material in combination with advantages of a polycarbonate material.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0139923 | Oct 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/003830 | 4/7/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/079956 | 5/3/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2205534 | Lytle | Jun 1940 | A |
3471356 | Schreiber | Oct 1969 | A |
4305982 | Hirsch | Dec 1981 | A |
4364786 | Smith, Jr. | Dec 1982 | A |
4419459 | Melchior | Dec 1983 | A |
4473665 | Martini-Vvedensky | Sep 1984 | A |
4569872 | Miller | Feb 1986 | A |
4610863 | Tewari | Sep 1986 | A |
4684571 | Kunert | Aug 1987 | A |
4928448 | Phillip | May 1990 | A |
5092101 | Kunert | Mar 1992 | A |
5124185 | Kerr | Jun 1992 | A |
5158986 | Cha | Oct 1992 | A |
6199933 | Gielda | Mar 2001 | B1 |
6555590 | Tan | Apr 2003 | B1 |
6830791 | Misonou | Dec 2004 | B1 |
9440662 | Kamaka et al. | Sep 2016 | B2 |
20050000623 | Lindberg | Jan 2005 | A1 |
20050003148 | Myles | Jan 2005 | A1 |
20050074566 | Rouanet | Apr 2005 | A1 |
20070054110 | Kawato | Mar 2007 | A1 |
20070122588 | Milburn | May 2007 | A1 |
20070148379 | Theios | Jun 2007 | A1 |
20080020232 | Winckler | Jan 2008 | A1 |
20080063819 | Monroe | Mar 2008 | A1 |
20080118678 | Huang | May 2008 | A1 |
20080302059 | Du Plessis | Dec 2008 | A1 |
20090029144 | Borgsten | Jan 2009 | A1 |
20090292034 | Tomomatsu | Nov 2009 | A1 |
20090324858 | Jaeger | Dec 2009 | A1 |
20100101649 | Huignard | Apr 2010 | A1 |
20100146880 | Valentz | Jun 2010 | A1 |
20100163157 | Milburn | Jul 2010 | A1 |
20100280171 | Williams | Nov 2010 | A1 |
20110120031 | Scherba | May 2011 | A1 |
20110195206 | Colson | Aug 2011 | A1 |
20110296771 | Miller | Dec 2011 | A1 |
20140065329 | Showers | Mar 2014 | A1 |
20140087100 | Yaoita | Mar 2014 | A1 |
20140186556 | Dear | Jul 2014 | A1 |
20150075902 | Schreiber | Mar 2015 | A1 |
20150322708 | Kotowski | Nov 2015 | A1 |
20150345208 | Boulanger | Dec 2015 | A1 |
20160229155 | Sienerth | Aug 2016 | A1 |
20160316641 | Metin | Nov 2016 | A1 |
20170253524 | Weidner | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
201024620 | Feb 2008 | CN |
101481985 | Jul 2009 | CN |
105041142 | Nov 2015 | CN |
10034764 | Dec 2001 | DE |
2592209 | May 2013 | EP |
06127981 | May 1994 | JP |
07150870 | Jun 1995 | JP |
07232640 | Sep 1995 | JP |
2005-145725 | Jun 2005 | JP |
2005-146825 | Jun 2005 | JP |
2005146825 | Jun 2005 | JP |
2006083675 | Mar 2006 | JP |
2008045013 | Feb 2008 | JP |
2012-237147 | Dec 2012 | JP |
2012237147 | Dec 2012 | JP |
5436489 | Mar 2014 | JP |
2015-007359 | Jan 2015 | JP |
2015007359 | Jan 2015 | JP |
10-2004-0025751 | Mar 2004 | KR |
10-0996657 | Nov 2010 | KR |
20110092039 | Aug 2011 | KR |
10-2013-0012666 | Feb 2013 | KR |
10-2013-0108501 | Oct 2013 | KR |
10-2014-0024416 | Feb 2014 | KR |
10-1660517 | Sep 2016 | KR |
Entry |
---|
Machine Translation of JP-2005146825-A, Jun. 2005 (Year: 2006). |
Machine Translation of JP-2015007359-A, Jan. 2015 (Year: 2015). |
Seo et al., Diffused Reflection of Microcellular Foamed Polycarbonate, Mar. 2009, Polymer-Plastics Technology and Engineering, vol. 48, Issue 4, pp. 351-358 (Year: 2009). |
Barlow et al., Impact Strength of High Density Solid-State Microcellular Polycarbonate Foams, Sep. 2000, Journal of Engineering Materials and Technology, vol. 123, Issue 2, pp. 229-233 (Year: 2000). |
Krause et al., Microcellular Foaming of Amorphous High-Tg Polymers Using Carbon Dioxide, Jan. 2001, Macromolecules, vol. 34, Issue 4, pp. 874-884 (Year: 2001). |
Bledzki et al., Polycarbonate Microfoams with a Smooth Surface and Higher Notched Impact Strength, Nov. 2004, Journal of Cellular Plastics, vol. 40, issue 6, pp. 489-496 (Year: 2004). |
Schultz et al., Evacuated aerogel glazings, Mar. 2008, Vacuum, vol. 82, Issue 7, pp. 723-729 (Year: 2008). |
Reglero Ruiz et al., Two-step micro cellular foaming of amorphous polymers in supercritical CO2, May 2011, The Journal of Supercritical Fluids, vol. 57, Issue 1, pp. 87-94 (Year: 2011). |
Ma, et al., Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. Dec. 2013, Journal of Cellular Plastics, vol. 50, pp. 55-79 (Year: 2013). |
KR Grant of Patent dated Apr. 25, 2017 as received in Application No. 10-2016-0139923 (English Translation). |
KR Office Action dated Dec. 26, 2016 as received in Application No. 10-2016-0139923 (English Translation). |
Number | Date | Country | |
---|---|---|---|
20200024893 A1 | Jan 2020 | US |