The present invention generally relates to magnetic recording heads and, in particular, relates to double hard-mask mill back methods of fabricating a near field transducer for energy assisted magnetic recording.
To increase the areal storage density of a magnetic recording device, the recording layer thereof may be provided with smaller and smaller individual magnetic grains. This reduction in grain size soon reaches a “superparamagnetic limit,” at which point the magnetic grains become thermally unstable and incapable of maintaining their magnetization. The thermal stability of the magnetic grains can be increased by increasing the magnetic anisotropy thereof (e.g., by utilizing materials with higher anisotropic constants). Increasing the magnetic anisotropy of the magnetic grains, however, increases their coercivity and therefore requires a stronger magnetic field to change the magnetic orientation of the grains (e.g., in a write operation).
Energy-assisted magnetic recording (EAMR) is used to address this challenge. In an EAMR system, a small spot less than ¼λ where data is to be written is locally heated to reduce the coercivity of the magnetic grains therein for the duration of the write operation, thereby allowing materials with increased magnetic anisotropy to be used, and greater areal storage density to be exploited.
In EAMR approach, a semiconductor laser diode is normally used as a light source and coupled to a planar waveguide which serves as light delivery path. A grating structure may be used to couple the laser light into the waveguide. The coupled light is then routed to a near field transducer (NFT) by which the optical energy is provided to a small optical spot on the recording media a few tens of nanometers (nm) in size.
The traditional fabrication approach and a final NFT structure fabricated thereby suffers from a number of limitations. The writer gap 221 cannot be controlled accurately because during pin milling process, partially-exposed material of the writer gap layer 220 is milled away. In addition, during second NFT photolithography, partially-exposed material of the writer gap layer 220 is also etched away by developer. The writer gap 221 variation depending on over-milling time and photo-rework frequency. The NFT thickness 131 cannot be controlled accurately due to shadow effect and lift off milling process. The NFT thickness 131 variation depends on disk size and photo thickness. The disk size 135 has a lower limit because, with current techniques, a hole formed by the photolithography is limited to a diameter larger than 250 nm. The NFT shape is not consistent since fencing- and bow-shaped surface is typical result of a lift off process.
Accordingly, there is a need for NFT fabrication methods that address the aforementioned limitations associated with the traditional NFT fabrication approach.
In certain aspects, a method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. The method comprises providing a structure comprising an NFT metal layer and a first hardmask layer over the NFT metal layer. The method can further comprise forming a first patterned hardmask from the first hardmask layer, the first patterned hardmask disposed over a disk section and a pin section of the NFT to be formed. The method can further comprise performing an etch process on the NFT metal layer via the first patterned hardmask, the etch process forming the NFT having the disk section and the pin section.
In certain aspects, a method of forming a near field transducer (NFT) for energy assisted magnetic recording is disclosed. The method comprises providing a structure comprising an NFT metal layer and a hardmask layer over the NFT metal layer. The method can further comprise forming a patterned hardmask from the hardmask layer, the patterned hardmask disposed over at least a disk section of the NFT to be formed. The method can further comprise removing a portion of an exposed region of the NFT metal layer not covered by the patterned hardmask, thereby forming at least the disk section of the NFT.
The process 300 begins at start state 301 and proceeds to operation 310, in which a structure, whose cross-sectional view 401A and top view 401B are depicted in
The waveguide layer 410 can include any transparent or semi-transparent material including, but not limited to, TiO2, Ta2O5, Si, SiN, and ZnS, and can have a thickness in a range between about 1,200 and 2,000 Å. The NFT writer gap layer 420 can include, but are not limited to, an optical-grade ALD alumina, and can have a thickness in a range between about 100 and 200 Å. The NFT metal layer 430 can include any metal capable of supporting a surface-plasmon resonance (SPR) therein including, but not limited to Au, Ag, Al. and a combination thereof. The NFT metal layer 430 can have a thickness in a range between about 300 and 500 Å. The first HM layer 450 can include a material (e.g., dielectric) selected from the group consisting of SiC, amorphous carbon, and diamond-like carbon (DLC), and can have a thickness in a range between about 300 and 1,000 Å. In the illustrated example, the first HM layer 450 includes SiC and has a thickness of about 500 Å. The second HM layer 470 can include a material selected from the group consisting of Cr or CrN, and can have a thickness in a range between about 30 and 100 Å. In the illustrated example, the second HM layer 470 includes Cr and has a thickness of about 50 Å. The third HM layer 480 can include a material selected from the group consisting of Ta and Ta2O5, and can have a thickness in a range between about 30 and 100 Å. In the illustrated example, the third HM layer 480 includes Cr and has a thickness of about 50 Å.
The ES layer 440 can include any material that is resistant to the etch process used for etching the first HM layer 450 including, but not limited to, Cr, Ru, and CrN. In the illustrated example in which the first HM layer 450 comprises 500 Å-thick SiC, the ES layer 440 includes 20 Å-thick Cr. The second HM layer 470 also functions as an etch stop layer with respect to the etching of the third HM layer 480. In the illustrated example in which the third HM layer 480 comprises 50 Å-thick Ta, the second HM layer 470 is a 50 Å-thick Cr layer that is substantially resistant (e.g., etch selectivity of greater than 20:1) to the etch process (e.g., Ta RIE) used to etch the Ta layer 480.
The process 300 proceeds to operation 320, in which a third patterned HM 482 (
The process 300 proceeds to operation 330, in which a second patterned HM 471 having a first HM portion 472 and a second HM portion 474 is formed from the second HM layer 470 as illustrated by
The process 300 proceeds to operation 340, in which a first patterned HM 451 having a first HM portion 452 and a second HM portion 454 is formed from the first HM layer 450 as illustrated by
The process 300 proceeds to operation 350, in which a final NTE structure 431 having the pin section 432 and the disk section 434 is formed from the NFT metal layer 430 as illustrated by
The process 300 proceeds to operation 360, in which the first patterned HM 451 is removed by, e.g., RIE process, leaving behind the structure whose cross-sectional view 407A and top view 407B are shown in
In the process 300 illustrated by FIGS. 3 and 4A-G, fabrication of the first patterned HM 451 involves forming the third patterned HM 482 having a shape of the pin section 432 followed by forming the second patterned HM 471 having a shape of the disk section 444. In certain alternative fabrication embodiments, this order can be reversed. For example, fabrication of the first patterned HM 451 can involve forming a third patterned HM having a shape of a pin section of the NFT to be formed followed by forming a second patterned HM having a shape of a disk section of the NFT to be formed.
The process 500 begins at start state and proceeds to operation 510 in which a structure comprising a waveguide layer 410′, an NFT writer gap layer 420′ over the waveguide layer 410′, an NFT metal layer 430′ over the NFT writer gap layer 420′, an ES layer 440′ over the NFT metal layer 430′, a first hardmask (HM) layer 450′ over the first ES layer 440′, a second HM layer 470′ over the first hardmask (HM) layer 450′, and a third HM layer 480′ over the second HM layer 470′ is provided. The layers 410′, 420′, 430′, 440′, 450′, 470′, and 480′ are substantially similar to the corresponding layers 410, 420, 430, 440, 450, 470, and 480 of
The process 500 proceeds to operation 520, in which a third patterned HM 484′ (
The process 500 proceeds to operation 530, in which a second patterned HM 471′ having a first HM portion 472′ and a second HM portion 474′ is formed from the second HM layer 470′ as illustrated by
The process 500 proceeds to operation 540, in which a first patterned HM 451′ having a first HM portion 452′ and a second HM portion 454′ is formed from the first HM layer 450′ as illustrated by
In the NFT structure 100 shown in
An exemplary two-step mill back method of fabricating an NFT 100″ having different disk and pin thicknesses 131″, 137″ is now described. The two-step mill back method involves first forming a patterned SiC HM 154″ over a region of NFT metal layer 130″ corresponding to disk section 134″ of the NFT 100″ to be formed as illustrated by an intermediate structure 900A depicted in
Subsequently, the disk section 134″ is formed from the NFT metal layer 130″, e.g., by performing a first milling (e.g., ion-milling) process preformed on the NFT metal layer via the patterned SiC HM 154″ to remove portions in a lateral direction (e.g., x-direction) of the NFT metal layer not covered by the patterned SiC HM,154″. As illustrated by an intermediate structure 900B depicted in
After the first ion-milling process, a pin mask 194″ (e.g., a PR or hardmask) having a shape of the pin section 132″ is formed over an exposed region (e.g., the region not covered by the disk section 154′) of the NFT metal layer and stitched with the previously-formed disk section 154′. In some embodiments, the pin mask 194″ overlaps a portion of the disk section 154″ as illustrated by intermediate structure 900C depicted in
Those skilled in the art shall appreciate that various NFT fabrication methodologies of subject disclosure provide a number of advantages including the following:
The description of the invention is provided to enable any person skilled in the art to practice the various embodiments described herein. While the present invention has been particularly described with reference to the various figures and embodiments, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the invention.
There may be many other ways to implement the invention. Various functions and elements described herein may be partitioned differently from those shown without departing from the spirit and scope of the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made to the invention, by one having ordinary skill in the art, without departing from the spirit and scope of the invention.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the invention, and are not referred to in connection with the interpretation of the description of the invention. All structural and functional equivalents to the elements of the various embodiments of the invention described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the invention. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
Number | Name | Date | Kind |
---|---|---|---|
4670732 | Church | Jun 1987 | A |
4675986 | Yen | Jun 1987 | A |
5065483 | Zammit | Nov 1991 | A |
5199090 | Bell | Mar 1993 | A |
5210667 | Zammit | May 1993 | A |
5463805 | Mowry et al. | Nov 1995 | A |
5559429 | Mowry et al. | Sep 1996 | A |
5597340 | Church et al. | Jan 1997 | A |
5722155 | Stover et al. | Mar 1998 | A |
5755612 | Schaenzer et al. | May 1998 | A |
5816890 | Hao et al. | Oct 1998 | A |
5876264 | Church et al. | Mar 1999 | A |
6027397 | Church et al. | Feb 2000 | A |
6034849 | Takizawa | Mar 2000 | A |
6047224 | Stover et al. | Apr 2000 | A |
6193584 | Rudy et al. | Feb 2001 | B1 |
6330488 | Yoshida et al. | Dec 2001 | B1 |
6347983 | Hao et al. | Feb 2002 | B1 |
6399401 | Kye et al. | Jun 2002 | B1 |
6532646 | Watanuki | Mar 2003 | B2 |
6609948 | Fontana, Jr. et al. | Aug 2003 | B1 |
6623330 | Fukuroi | Sep 2003 | B2 |
6684171 | Church et al. | Jan 2004 | B2 |
6699102 | Reiley et al. | Mar 2004 | B2 |
6728067 | Crawforth et al. | Apr 2004 | B2 |
6758722 | Zhu | Jul 2004 | B2 |
6795630 | Challener et al. | Sep 2004 | B2 |
6834027 | Sakaguchi et al. | Dec 2004 | B1 |
6857937 | Bajorek | Feb 2005 | B2 |
6884148 | Dovek et al. | Apr 2005 | B1 |
6950289 | Lam et al. | Sep 2005 | B2 |
6982042 | Church et al. | Jan 2006 | B2 |
7014530 | Kasiraj et al. | Mar 2006 | B2 |
7139152 | Mahnad et al. | Nov 2006 | B2 |
7149061 | Yamakura et al. | Dec 2006 | B2 |
7206172 | Ding et al. | Apr 2007 | B2 |
7215629 | Eppler | May 2007 | B2 |
7244169 | Cyrille et al. | Jul 2007 | B2 |
7245459 | Cyrille et al. | Jul 2007 | B2 |
7268976 | Yamakura et al. | Sep 2007 | B2 |
7271982 | MacDonald et al. | Sep 2007 | B2 |
7272079 | Challener | Sep 2007 | B2 |
7272883 | Le et al. | Sep 2007 | B2 |
7287316 | Kasahara et al. | Oct 2007 | B2 |
7330404 | Peng et al. | Feb 2008 | B2 |
7333300 | Church et al. | Feb 2008 | B2 |
7359152 | Matono et al. | Apr 2008 | B2 |
7360296 | Cyrille et al. | Apr 2008 | B2 |
7393262 | Biskeborn | Jul 2008 | B2 |
7821732 | Komura et al. | Oct 2010 | B2 |
7861400 | Lille | Jan 2011 | B2 |
7936531 | Tomikawa et al. | May 2011 | B2 |
7996986 | Gokemeijer | Aug 2011 | B2 |
8077418 | Hu et al. | Dec 2011 | B1 |
8179628 | Zhou et al. | May 2012 | B2 |
8248891 | Lee et al. | Aug 2012 | B2 |
8248896 | Yuan et al. | Aug 2012 | B1 |
20030112542 | Rettner et al. | Jun 2003 | A1 |
20030128634 | Challener | Jul 2003 | A1 |
20030137772 | Challener | Jul 2003 | A1 |
20030184903 | Challener | Oct 2003 | A1 |
20040001394 | Challener et al. | Jan 2004 | A1 |
20040179310 | Lam et al. | Sep 2004 | A1 |
20050023673 | Nowak | Feb 2005 | A1 |
20050052771 | Rausch et al. | Mar 2005 | A1 |
20050078565 | Peng et al. | Apr 2005 | A1 |
20060028770 | Etoh et al. | Feb 2006 | A1 |
20060044683 | Matono et al. | Mar 2006 | A1 |
20060103990 | Ito et al. | May 2006 | A1 |
20060126222 | Aoki et al. | Jun 2006 | A1 |
20070008660 | Yamakura et al. | Jan 2007 | A1 |
20070159720 | Sohn et al. | Jul 2007 | A1 |
20070165495 | Lee et al. | Jul 2007 | A1 |
20080068748 | Olson et al. | Mar 2008 | A1 |
20080072418 | Kondo et al. | Mar 2008 | A1 |
20080144215 | Hsiao et al. | Jun 2008 | A1 |
20080181560 | Suh et al. | Jul 2008 | A1 |
20080232225 | Cho et al. | Sep 2008 | A1 |
20100118664 | Nishida et al. | May 2010 | A1 |
20100142079 | Tanaka et al. | Jun 2010 | A1 |
20100157745 | Okada et al. | Jun 2010 | A1 |
20100208391 | Gokemeijer | Aug 2010 | A1 |
20100321814 | Zou et al. | Dec 2010 | A1 |
20110235480 | Goulakov et al. | Sep 2011 | A1 |
20110292774 | Osawa et al. | Dec 2011 | A1 |
20120230138 | Endo | Sep 2012 | A1 |