This invention relates generally to phase mirror arrays, and more particularly the invention relates to a microactuator for a phase mirror array.
In optical displays, switches, and maskless lithography systems, patterns can be created by modulating individual mirrors in a micromirror array to produce selected bright and dark spots (“pixels”) in an image. In the conventional approach, as exemplified by the Texas Instrument commercial mirror arrays, the mirror is mounted on a cantilever (
In some applications, the phase-mirror approach produces more useful images. However, no practical approach has been proposed to construct an electrostatically actuated dense array of flat phase micromirrors of micrometer size. For example our colleagues at Stanford University are concentrating on the use of elastomers to support the mirrors (
The invention comprises an actuator for a phase mirror array including a) a first support member extending perpendicularly from a surface of a mirror, b) a plurality of flexures engaging the first support member with the flexures being generally parallel to the surface of the mirror, c) second and third support members engaging opposing ends of the flexures, at least one of the second and third support members functioning as a first electrode, and d) a second electrode positioned in spaced parallel relationship with the flexures, whereby a voltage impressed across the first electrode and the second electrode causes displacement of the supported mirror on the support structure. The second electrode and one of the flexures can have undulating surfaces which mate in a comb relationship.
The invention and objects and features thereof will be more readily apparent from the following detailed description and appended claims when taken with the drawings.
To overcome such problems, we propose a double-hidden-flexure architecture (
This application claims priority under 35 U.S.C. 119(e) from Provisional U.S. Patent Application Ser. No. 60/507,206, filed Sep. 29, 2003 (Atty. Docket No. UCALP041P), entitled “DOUBLE HIDDEN FLEXURE MICROACTUATOR FOR PHASE MIRROR ARRAY”, which is incorporated herein by reference in its entirety.
This invention was made with Government support under Grant (Contract) No. MDA972-01-1-0021 awarded by the Defense Advanced Research Projects Agency/Office of Naval Research. The Government has certain rights to this invention. Attached hereto and incorporated by reference for all purposes are the following papers of the inventors: Chen, Shroff, Oldham “Modeling and Control of Nanomirrors for EUV Maskless Lithography”; and Chen, Shroff, Oldham “Switching Of A Double-Comb Microactuator By Time-Lag Modulation And Electrical-Damping Control.” Also attached are 16 pages of slides illustrating the invention, which are also incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60507206 | Sep 2003 | US |