The present invention relates generally to pneumatic actuators for use on equipment and, more specifically, to a double service chamber pneumatic actuator for use on a heavy equipment.
Pneumatic actuators convert air pressure to linear force to achieve actuation. They find use in several industries including, but not limited to, the heavy vehicle industry. One type of pneumatic actuator is a pneumatic brake chamber, such as the one illustrated in U.S. Pat. No. 5,829,339 to Smith. Such pneumatic actuators are commonly used for a variety of applications in the heavy vehicle industry, such as vehicle brake actuation, lift axle actuation, and lift gate actuation.
Generally the actuation force of a pneumatic actuator is dependent on two variables—namely the pressure used and the affective area over which the pressure acts. For a given pressure, the greater the area, the larger the force generated. Because in practice these chambers are roughly cylindrical in shape and the pressure available is fixed, the available force is essentially determined by the diameter of the chamber.
A problem often encountered in vehicle applications is that the actuation force desired is limited by the space available. That is, only a certain sized chamber can fit in the allotted space, but the actuation force desired is greater than can be provided by the chamber that can fit. Use of pneumatic actuators to power axle lifting devices presents an example of an application where limited space is available for the pneumatic actuator. More specifically, it is a common practice to lift an axle of a heavy vehicle, such as a refuse truck, logging truck, cement mixer, dump truck or a semi-trailer, when a heavy load is not being carried by the vehicle. Such a practice improves maneuverability of the unloaded vehicle and saves wear and tear on the axle, wheels and tires and improves fuel economy.
A need therefore exists for a pneumatic actuator and method that addresses the above issues.
An embodiment of the pneumatic actuator of the present invention is indicated in general at 10 in
First service chamber assembly 12 includes a first housing having an outer shell 16 and an inner shell 18, while second service chamber assembly 14 similarly includes a second housing having an outer shell 22 and an inner shell 24. The outer and inner shells of the first service chamber assembly are circumferentially joined so as to define a first chamber 25. A first diaphragm 26 is positioned within the first chamber and features a circumferential lip portion 28 that is received within the annular space defined between the circumferential ledge 32 of the inner shell 18 and the circumferential channel portion 34 of the outer shell 16. The outer and inner shells of the second service chamber assembly 14 similarly define a second chamber 35 within which a second diaphragm 36 is positioned and secured in a similar fashion. First and second diaphragms 26 and 36 are preferably made from high-strength rubber, or any other elastic material known in the art for constructing service chamber or actuator diaphragms.
An actuator rod 42 is positioned within the second chamber 35 and has a distal end portion that exits an opening formed in the end plate 44 of the second service chamber assembly 14. A disc-shaped second diaphragm plate 46 is secured to the proximal end of the actuator rod. The diaphragm plate 46 may be integrally formed with the actuator rod 42, or the two pieces may be formed separately and then joined during assembly of the device. A central portion of the second diaphragm 36 is secured to the second diaphragm plate 46, preferably with adhesive or the like.
A connecting actuator rod 52 is positioned within the first chamber 25 and features a distal end that passes through an opening formed in a central portion of the outer shell 22 of the second service chamber assembly. A disc-shaped stop plate 54 is secured to the distal end of the connecting actuator rod 52 by fastener 56 with the stop plate 54 being positioned in the second chamber 35. A disc-shaped first diaphragm plate 60 is secured to the proximal end of the connecting actuator rod 52 by fastener 62. A central portion of the first diaphragm 26 is secured to the first diaphragm plate 60, preferably with adhesive or the like.
The actuator is preferably provided with mounting bolts 72a and 72b and the distal end of actuator rod 42 is preferably provided with threads 74 so that the actuator may be mounted to a use device or mechanism, an example of which is provided below.
The first diaphragm 26 divides the first chamber 25 in to a first pressurized air side 75 and a first spring side 76. The second diaphragm 36 similarly divides the second chamber 35 into a second pressurized air side 77 and a second spring side 78. As illustrated in
Actuator rod 42 and connecting actuator rod 52 may optionally be constructed as a single component.
As a result of the above construction, the actuator rod 42 is connected to both diaphragms (26, 36) and extends out of one side of the second service chamber assembly. To further extend the actuator rod 42 out of the chamber into the extended position illustrated in
As noted previously, the solution to increasing the actuation force of a pneumatic actuator lies in either raising the available pressure or increasing the effective area (the size) of the chamber. The above embodiment of the invention takes the second approach, obviating the need for the first. That is, the pneumatic actuator of the invention increases the effective area without increasing the diameter is by adding another service chamber in series with the first. The approach allows essentially double the force for a given diameter. The above embodiment does so at the cost of extra length. In many applications, however, length constraints are not significant, whereas diameter constraints are considerable.
An example of an axle lift assembly within which the pneumatic actuator of the invention may be used is provided in FIG. 5 from U.S. Pat. No. 7,854,436 to Hock et al., the contents of which are hereby incorporated by reference. With reference to
While the preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the appended claims.
This application claims priority to provisional patent application No. 61/791,107, filed Mar. 15, 2013, currently pending, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61791107 | Mar 2013 | US |