The present disclosure relates generally to the field of downhole cables for well operations.
Equipment used in well operations may be deployed into, and retrieved from, a wellbore, also called a borehole, using a cable. As used herein the term cable comprises slickline and wireline cables. Such deployment cables are required to have sufficient pulling capability to support the weight of the tool and the wireline, and to provide sufficient additional pulling force to release itself from the payload at a designed weak point should the equipment become stuck in the hole. In some cases, for example in a deep well, the weight of the cable alone in the wellbore may exceed its safe tension operating limit, providing no margin for releasing from a stuck tool.
A better understanding of the present invention can be obtained when the following detailed description of example embodiments are considered in conjunction with the following drawings, in which like elements are indicated by like reference indicators:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description herein are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the present invention as defined by the appended claims.
Described below are several illustrative embodiments of the present invention. They are meant as examples and not as limitations on the claims that follow.
Combination measuring device weight indicator 108 comprises of at least one, but normally a plurality of measure wheels 130. Measure wheels 130 are precision ground to a precise diameter, and turn proportionally with cable 106 as it goes into and out of the well bore. Measure wheels 130 are mechanically connected to a depth encoder device (not shown) that provides digital signals based on the position of the depth wheel. Thus, as cable 106 moves into and out of the well bore 101, a plurality of depth signals are sent to a data handling system 140 disposed in truck 102 in order to provide the operator with accurate depth data. Additionally, in the example shown, combination measuring device weight indicator 108 contains cable tension wheel 132. Cable tension wheel 132 applies a set amount of pressure against cable 106, in the direction of measure wheels 130. As the amount of cable in the well bore increases, the tension applied by the weight of the cable resists against cable tension wheel 132, causing the load on cable tension wheel 132 to increase toward measure wheels 130. Cable tension wheel 132 is mechanically connected to a load cell, and as the weight of cable 106 increases, causing the load on tension wheel 132 to increase, the load cell sends a signal into the logging compartment of truck 102, indicating an increase in the tension on cable 106.
As used herein the term cable comprises slickline and wireline cables. As used herein, wireline cable comprises braided strength members surrounding a core that contains one or more energy conductors. The energy conductors may comprise electrical conductors, optical fibers, and combinations thereof. The conductors may be configured as single conductors, stranded conductors, coaxial conductors, and combinations thereof. As used herein, slickline cable comprises a single strand strength member having a relatively smooth outer surface. While the slickline strength member may be metallic, it is not used to conduct electrical signals or power. Generally, a slickline cable does not contain an energy conductor.
Slickline may be used to convey memory instruments and mechanical devices into wells. It may also provide mechanical services such as shifting sleeves, removing plugs, bailing, and cleaning. The wire must be able to convey the equipment as well as supply a mechanical force transmission to the downhole tools. A limitation of current slickline design is the strength to weight ratio. This limits the depths that the cable can safely deliver payloads and perform mechanical work at the target depths. Due to the weight of the material used to make the wire, the further the wire goes into the well the heavier it gets and the more load the wire at the top of the well must carry. In addition, in deviated wells, the drag of the wire along the side of the wellbore adds to the problem, and the wire no longer has the ability to convey the tools or instruments that it is intended to be used for. The maximum depth that the line can achieve is lower than the line itself can reach due to the tools or payload. The payload is generally larger in OD than the wire. If the slickline operation becomes stuck in the hole it is generally at the payload since this is the largest OD. And because this is the case the slickline needs to be designed to pull out of the payload with a weak point or other means. But at a certain depth there is no safety factor for this weak point. So, the maximum safely achievable depth is actually lower than the depth that the wire itself can achieve.
In one embodiment of the present disclosure, see
As one skilled in the art will appreciate, common surface pressure control equipment 114 (see
Non-limiting examples of coating materials include polyolefins, polytetrafluoroethylene-perfluoromethylvinylether polymer (MFA), perfluoro-alkoxyalkane polymer (PFA), polytetrafluoroethylene polymers (PTFE), ethylene-tetrafluoroethylene polymers (ETFE), ethylene-propylene copolymers (EPC), poly(4-methyl-1-pentene), other fluoropolymers, polyaryletherether ketone polymers (PEEK), polyphenylene sulfide polymers (PPS), modified polyphenylene sulfide polymers, polyether ketone polymers (PEK), maleic anhydride modified polymers, perfluoroalkoxy polymers, fluorinated ethylene propylene polymers, polyvinylidene fluoride polymers (PVDF), polytetrafluoroethylene-perfluoromethylvinylether polymers, polyamide polymers, polyurethane, thermoplastic polyurethane, ethylene chloro-trifluoroethylene polymers, chlorinated ethylene propylene polymers, self-reinforcing polymers based on a substituted poly(1,4-phenylene) structure where each phenylene ring has a substituent R group derived from a wide variety of organic groups, or the like, and any mixtures thereof.
In one example, the coating may be selected with a specific gravity less than the borehole fluid to provide a buoyant lift to the lower portions of the cable. This may reduce parasitic weight from the lower portion of the cable. Balancing buoyancy and friction could reduce not only the weight, but also the drag. In one example a coating material is chosen based on its swelling characteristics in the presence of wellbore fluids, which may improve the buoyancy.
In another example, a slickline material may be selected with an enhanced strength to weight ratio. For example, titanium may be used as the material for the strength member to provide a strength member that is almost as strong as steel, but much lighter. In another example, corrosion resistant materials may be used including, but not limited to: MP35-N, 27-7 MO, 25-6 MO, and 31 MO.
In some embodiments, the coating material may not have sufficient mechanical properties to withstand high pull or compressive forces as the cable is pulled, for example, over sheaves, and as such, may further include short fibers. While any suitable fibers may be used to provide properties sufficient to withstand such forces, examples include, but are not necessarily limited to, carbon fibers, fiberglass, ceramic fibers, aramid fibers, liquid crystal aromatic polymer fibers, quartz, nanocarbon, or any other suitable material.
A disadvantage of common slickline systems is the lack of a real time power/telemetry system. A real-time power and telemetry system would allow for the real time collection of data and the assurances that the data is valid. It also would allow for the real time visual interpretation of the data to make quicker decisions. By changing the shape of the slickline it is possible to allow the introduction of energy conductors into the strength member of the slickline which would enable slickline to perform like a wireline. If the slickline conductor(s) is large enough to convey power to a downhole tractor then the slickline service may be able to operate in horizontal wells.
Previous attempts at commercializing a smart slickline have met limited success. The original attempt was to put a conductor inside a tube. This hybrid served to combine the problems of wireline and slickline. The problem was that the conductor was undersized and could deliver only limited power and the tube wall was undersized and could be used only in logging type operations due to the limited pull capabilities, which eliminated its use in slickline operations.
Other attempts have been made to use the slickline itself by coating the slickline. However this severely limits the power and telemetry but does allow some limited slickline functions. The reliability of coated slickline is problematic, especially on deeper and more deviated wells.
In one embodiment, see
In the example shown in
In another example embodiment, see
In yet another example, see
In still another embodiment, see
In another embodiment, see
In another example, see
It is noted that the shaped slickline assemblies described above that comprise energy conductors may be used without energy conductors, as well. In addition, the slickline assemblies with, or without, energy conductors may also be tapered as described previously herein. A tapered, non-circular shaped, slickline assembly, as described, may also comprise an external coating, as described previously, such that the outer shape and outer cross section area of the cable remains substantially constant over the length of the cable. In one embodiment, the coating material and the adhesive material may be the same material. In another embodiment, the coating material and the adhesive material may be different.
Current technology for wireline cables used in downhole applications have limitations that cannot be overcome with the current designs. Wireline is used to convey instruments, explosives and mechanical devices into wells. The wireline must be able to convey the equipment as well as supply a means for data and power transmission. One of the limitations to the current wireline design is the strength to weight ratio. This limits the depths that the wireline cable can safely deliver payloads and perform mechanical work at the target depths. Due to the weight of the material used to make the armor wires the further the wireline goes into the well the heavier it gets and the more load the wireline at the top of the well must carry.
A second limitation to the current wireline cable design is that the cables exterior surface, as with any standard braided cable design, is not smooth due to the fact that all of the armor wires are round. This makes it hard to form a seal around the wireline as it enters the well head in wells with pressure. In gas wells, obtaining a seal is even more difficult. This limits the OD of the cable that can be utilized under pressure because the larger the OD of the wireline the larger the OD of the outer armor wires, which creates larger interior and exterior void spaces. Therefore the strength of the wireline that can be run will be limited by the sealing ability of the pressure equipment utilized to enforce a seal around the wireline and contain the pressure within the well. The braided design also brings about environmental concerns when pressure control is required due to the loss of grease used to form the seal around the wireline.
Another limitation due to the exterior of a standard braided cable design is that it adds friction with contact with the sides of the well bore further reducing the depths achievable. This same friction can cause wear to the inside of the completion equipment, which can be very costly for a customer to repair.
In one embodiment, see
In one embodiment, see
In one embodiment, the tapered wireline may be constructed by splicing different size cables together. In another embodiment, the armor wire strength members 1010 may be drawn in different tapering diameters over the length of each strength member 1010. The length, T1, T2, over which the strength member diameter is changed, may be several inches to several hundred feet.
In another embodiment, the wireline could be constructed with a first number of layers of armor wire strength members at the top, or largest diameter, and a second number of layers of armor wire strength members at a lower location to create a smaller cable OD.
In yet another embodiment the upper section of the wireline cable, may comprise a first number of armor wire strength members. A lower section may comprise a smaller second number of armor wire strength members thereby reducing the OD of the wireline cable. Additional reductions in cable OD may be obtained by again reducing the number of armor wire strength members. In even another embodiment, larger wire strength members may be used at a first upper section of the wireline cable. A like number of smaller diameter strength members may be used at a second lower section to reduce the OD of the cable. In yet even another embodiment, combinations of the above techniques may be employed, for example combining at least two of: different number of strength member layers at different locations along the cable; different number of strength members at different locations along the cable; and different strength member diameters at different locations along the cable. In one embodiment the different strength member diameters at different locations along the cable may comprise different fixed diameters at different locations and/or tapering diameters along the cable.
As one skilled in the art will appreciate, common surface pressure control equipment 114 (see
Non-limiting examples of coating materials include polyolefins, polytetrafluoroethylene-perfluoromethylvinylether polymer (MFA), perfluoro-alkoxyalkane polymer (PFA), polytetrafluoroethylene polymers (PTFE), ethylene-tetrafluoroethylene polymers (ETFE), ethylene-propylene copolymers (EPC), poly(4-methyl-1-pentene), other fluoropolymers, polyaryletherether ketone polymers (PEEK), polyphenylene sulfide polymers (PPS), modified polyphenylene sulfide polymers, polyether ketone polymers (PEK), maleic anhydride modified polymers, perfluoroalkoxy polymers, fluorinated ethylene propylene polymers, polytetrafluoroethylene-perfluoromethylvinylether polymers, polyvinylidene fluoride polymers (PVDF), polyamide polymers, polyurethane, thermoplastic polyurethane, ethylene chloro-trifluoroethylene polymers, chlorinated ethylene propylene polymers, self-reinforcing polymers based on a substituted poly(1,4-phenylene) structure where each phenylene ring has a substituent R group derived from a wide variety of organic groups, or the like, and any mixtures thereof.
In one example, the coating is selected with a material with a specific gravity less than that of the borehole fluid to provide a buoyant lift to the lower portions of the cable. In one example, hollow glass beads may be mixed with the coating to increase the buoyancy. One example is 3M Glass Bubbles supplied by 3M Corporation, St. Paul, Minn. This may reduce parasitic weight from the lower portion of the cable. Balancing buoyancy and friction could reduce not only the weight, but also the drag.
In one example a coating material may be chosen that swells in the presence of downhole fluids, which may improve the buoyancy. In another example, a wireline material may be selected with an enhanced strength to weight ratio. For example, titanium may be used as the material for the strength member to provide a strength member that is almost as strong as steel, but much lighter. In another example, corrosion resistant materials may be used including, but not limited to: MP35-N, 27-7 MO, 25-6 MO, and 31 MO.
In some embodiments, the coating material may not have sufficient mechanical properties to withstand high pull or compressive forces as the cable is pulled, for example, over sheaves, and as such, may further include short fibers. While any suitable fibers may be used to provide properties sufficient to withstand such forces, examples include, but are not necessarily limited to, carbon fibers, fiberglass, ceramic fibers, aramid fibers, liquid crystal aromatic polymer fibers, quartz, nanocarbon, or any other suitable material.
In another embodiment, see
The wireline may be designed with a shaped interior and exterior armor, which when assembled will provide a nearly smooth outer surface. The shape may be such that when the armors are laid together to form the armor, the exterior surface is nearly smooth. The shaping of the armor could take any one of several different forms. These could for example be a serpentine like “flex” design that forms an S shape, see
Due to the double helix design of the wireline, the direction of the shapes of the inner armor wires may be in the opposite direction of the outer wire armor shapes.
Although it is not a requirement for the inner armors to be shaped, doing so may be beneficial in helping reduce the void space during pressure control operations. These embodiments may be used on any conductors (including coaxial conductors) and optical fibers. This includes multi-conductor cables for example seven conductor cables, crush resistant seven conductor packages enclosed in a jacket material, single conductor, single optical fiber, multiple optical fibers, and combinations thereof.
The unit weight of a wireline cable, for example lbs/ft, may be reduced at lower portions by reducing the unit weight of the strength members at the lower portions of the cable. One skilled in the art will appreciate that the unit weight of the strength members is directly proportional to the density of the strength member material and the cross sectional area of the strength members at a location along the cable. By reducing the total cross sectional area of the strength members at a lower location with respect to an upper location, and assuming a substantially constant material density, the unit weight of the cable will be proportionately lighter at the lower location. The technique of tapering the strength members, described above, is one way to accomplish this reduction.
Numerous variations and modifications will become apparent to those skilled in the art. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/43592 | 7/11/2011 | WO | 00 | 1/10/2013 |
Number | Date | Country | |
---|---|---|---|
61363276 | Jul 2010 | US |