This disclosure relates generally to dehumidification, and more particularly to a drainage system for a dehumidification system.
In certain situations, it is desirable to increase water removal capacity from a dehumidification system. For example, in fire and flood restoration application, it may be desirable to quickly remove water from areas of a damaged structure. To accomplish this, air flow may be increased through the dehumidification system. However, current dehumidification systems have proven inefficient in increasing water removal capacity.
According to embodiments of the present disclosure, disadvantages and problems associated with previous dehumidification systems may be reduced or eliminated.
In some embodiments, a dehumidification system includes a heat exchanger, an evaporator, a primary drain pan, a secondary drain pan, a condenser, and an impeller. The evaporator is located adjacent to the heat exchanger. The primary drain pan is located partially below the heat exchanger and partially below the evaporator. The primary drain pan includes one or more raised ribs that are disposed on a bottom surface of the primary drain pan and extend upwards toward the evaporator from the bottom surface. The one or more raised ribs are configured to partially block air flowing across the primary drain pan as the air flows from the heat exchanger into the evaporator. The secondary drain pan is located partially between the evaporator and the primary drain pan. The secondary drain pan includes multiple downspouts. Each of multiple downspouts includes an end that is contoured and is positioned proximate to one of the raised ribs. Each downspout is configured to funnel water condensed from the evaporator into an area of the primary drain pan that is partially surrounded by one of the raised ribs. The condenser is located partially below the primary drain pan. The impeller is located adjacent to the condenser and partially below the primary drain pan.
In some embodiments, a dehumidification system includes an evaporator, a primary drain pan, and one or more secondary drain pans. The primary drain pan is located partially below the evaporator. The primary drain pan includes one or more raised ribs that are disposed on a bottom surface of the primary drain pan and extend upwards toward the evaporator from the bottom surface. The one or more raised ribs are configured to partially block air flowing across the primary drain pan as the air flows into the evaporator. The one or more secondary drain pans are located partially between the evaporator and the primary drain pan. Each of the one or more secondary drain pans includes a downspout configured to funnel water condensed from the evaporator into an area of the primary drain pan that is partially surrounded by one of the raised ribs. The downspout of each secondary drain pans includes an end that is contoured and is positioned proximate to one of the one or more raised ribs.
In some embodiments, a dehumidifier drainage system includes a primary drain pan and a secondary drain pan. The primary drain pan is located partially below an evaporator. The primary drain pan includes one or more raised ribs configured to partially block air flowing across the primary drain pan as the air flows into the evaporator. The secondary drain pan is located partially between the evaporator and the primary drain pan. The secondary drain pan includes one or more downspouts. Each downspout is configured to funnel water condensed from the evaporator into an area of the primary drain pan that is partially surrounded by one of the raised ribs. The downspout of each secondary drain pans includes an end that is contoured and is positioned proximate to one of the one or more raised ribs.
Certain embodiments of the present disclosure may provide one or more technical advantages. For example, the raised ribs on the primary drain pan create localized regions of decreased air velocity by blocking the contoured end of the downspout of the secondary drain pan. This allows water droplets to adhere to the contoured end of the downspout through surface tension, drop into the primary drain pan, and ultimately flow into a drainage outlet. Therefore, the raised ribs create localized barriers in the primary drain pan that prevents water droplets from being entrained in the air stream, thereby improving the efficiency of the dehumidification system.
Other technical advantages of the present disclosure will be readily apparent to one skilled in the art from the following figures, descriptions, and claims. Moreover, while specific advantages have been enumerated above, various embodiments may include all, some, or none of the enumerated advantages.
For a more complete understanding of the present disclosure and for further features and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, in which:
In certain situations, it is desirable to increase water removal capacity from a dehumidification system. For example, in fire and flood restoration application, it may be desirable to quickly remove water from areas of a damaged structure. To accomplish this, air flow may be increased through the dehumidification system. However, current dehumidification systems have proven inefficient in increasing water removal capacity. For example, in current dehumidification systems, increasing the air flow through the system may result in localized air velocities that are large enough to pick up water droplets in the air stream. This negatively impacts the dehumidification system performance and durability by allowing water to be reabsorbed into the air and saturating internal components with water.
The disclosed embodiments provide a dehumidification system that includes various features to address the inefficiencies and other issues with current dehumidification systems. In some embodiments, the dehumidification system includes a dehumidification drainage system that is configured to efficiently increase the water removal capacity of the dehumidification system. Specifically, the dehumidification drainage system includes a primary drain pan and one or more secondary drain pans. The primary drain pan is located partially below a heat exchanger and partially below an evaporator to collect water condensed from the heat exchanger and the evaporator. The primary drain pan includes one or more raised ribs configured to partially block air flowing across the primary drain pan as the air flows from the heat exchanger into the evaporator. The one or more secondary drain pans are located partially between the evaporator and the primary drain pan. Each of the secondary drain pans includes a downspout configured to funnel water condensed from the evaporator into an area of the primary drain pan that is partially surrounded by one of the raised ribs.
The downspout of the secondary drain pans includes an end that is contoured and is positioned approximate to one of the raised ribs on the primary drain pan. This configuration of the downspout allows water condensed from the evaporator to form water droplets at the contoured end. The water droplets build up and will drop into an area of the primary drain pan that is partially surrounded by one of the raised ribs. The raised ribs on the primary drain pan create localized regions of decreased air velocity by blocking the contoured end of the downspout. In this way, the raised ribs minimize turbulence caused by air flowing across the primary drain pan, thereby allowing the water droplet to adhere to the contoured end of the downspout through surface tension. Therefore, the raised ribs create localized barriers in the primary drain pan that allows water droplets to gain surface tension which prevents the water droplets from being entrained in the air stream. This allows for higher air flow and greater efficiency in the dehumidification system.
These and other advantages and features of certain embodiments are discussed in more detail below in reference to
In general, dehumidification system 100 provides dehumidification to an area (e.g., a room, a floor, etc.) by moving air through dehumidification system 100. To dehumidify air, dehumidification system 100 draws in a moist airflow 118 that enters cabinet 101 via airflow inlet 102, travels through other components of dehumidification system 100, and then exits cabinet 101 via airflow outlet 104. Specifically, as illustrated in
Cabinet 101 may be any appropriate shape and size. In some embodiments, cabinet 101 includes multiple panels (or sides). For example, some embodiments of cabinet 101 includes a top panel that includes airflow inlet 102, multiple side panels that include one or more airflow outlet 104, and a bottom panel.
Airflow inlet 102 is generally any opening in which airflow 118 enters dehumidification system 100. In some embodiments, airflow inlet 102 is square or rectangular in shape. In some embodiments, airflow inlet 102 is oval or circular in shape as illustrated. In other embodiments, airflow inlet 102 may have any other appropriate shape or dimensions. In some embodiments, airflow inlet 102 includes a grate or grill that is formed out of geometric shapes. For example, some embodiments of airflow inlet 102 includes a grill formed from hexagons, octagons, and the like. In some embodiments, a removable air filter may be installed proximate to airflow inlet 102 to filter airflow 118 as it enters dehumidification system 100. In some embodiments, airflow inlet 102 is located on a top panel (or top side) as illustrated, but may be in any other appropriate location on other embodiments of dehumidification system 100.
Airflow outlet 104 is generally any opening in which airflow 118 exits dehumidification system 100. Similar to airflow inlet 102, airflow outlet 104 includes a grate or grill that is formed out of geometric shapes such as hexagons, octagons, and the like. In some embodiments, airflow inlet 102 may be square or rectangular in shape, but may have any other appropriate shape or dimensions. In some embodiments, airflow outlet 104 is located on a side panel as illustrated, but may be in any other appropriate location on other embodiments of dehumidification system 100.
Dehumidification system 100 includes various components to provide dehumidification to airflow 118. These and other internal components of dehumidification system 100 are uniquely arranged to minimize the size of dehumidification system 100. In some embodiments, heat exchanger 106 is located proximate to airflow inlet 102. In some embodiments, a removable filter may be provided between heat exchanger 106 and airflow inlet 102 to filter airflow 118 before it enters heat exchanger 106. In some embodiments, evaporator 108 is located adjacent to heat exchanger 106. In some embodiments, primary drain pan 110 is located partially below heat exchanger 106 and partially below evaporator 108. In some embodiments, secondary drain pan 112 is located partially between evaporator 108 and primary drain pan 110. Condenser 114 may be located partially below primary drain pan 110. Impeller 116 may be located adjacent to condenser 114 and partially below primary drain pan 110. Impeller 116 may be also located proximate to airflow outlet 104 to exhaust airflow 118 out of airflow outlet 104.
Heat exchanger 106 is configured to separate airflows between two different directions (e.g., horizontal and vertical) and exchange thermal energy from one air flow to another. For example, in heat exchanger 106, incoming airflow at a vertical direction (e.g., airflow 118 as illustrated in
Evaporator 108 is configured to absorb heat from airflow 118 and condense the moisture in airflow 118. In some embodiments, evaporator 108 includes a finned-tube evaporator comprising tube coils covered with fins. The fins added to the tubes extend into the spaces between the tubes to permit more of airflow 118 to come into contact with cold evaporator 108. This design allows evaporator 108 to be made dimensionally smaller while still providing a reasonable heat transfer capability. During operation, evaporator 108 gets cold enough (below the dewpoint) to pull water out of airflow 118. Water will drip down the coils of evaporator 108 and into secondary drain pan 112. In some embodiments, the tubes and the fins of evaporator 108 are made of copper or aluminum. In yet other embodiments, evaporator 108 may be any type of evaporator such as a bare tube evaporator, a plate evaporator, a microchannel heat exchanger, etc., and may be made of any appropriate material such as aluminum, copper, steel, etc.
Primary drain pan 110 is configured to collect water condensed from heat exchanger 106 and evaporator 108. Primary drain pan 110 is located partially below heat exchanger 106 and partially below evaporator 108. In some embodiments, primary drain pan 110 is any appropriate tank, basin, container, or area within cabinet 101 to collect and hold water removed from airflow 118. In some embodiments, primary drain pan 110 is formed using one or more walls or panels. In some embodiments, primary drain pan 110 includes a bottom which is sloped to allow water condensed from heat exchanger 106 and evaporator 108 to flow down to a drainage port on the bottom. In some embodiments, primary drain pan 110 is made of plastic and is manufactured using an injection molding process. In yet other embodiments, primary drain pan 110 may be made of any appropriate material. A particular embodiment of primary drain pan 110 is described in more detail below in reference to
Secondary drain pan 112 is configured to funnel water condensed from evaporator 108 into primary drain pan 110. Secondary drain pan 112 is located partially between evaporator 108 and primary drain pan 110. In some embodiments, secondary drain pan 112 includes one or more downspouts. In some embodiments, secondary drain pan 112 is made of plastic and is manufactured using an injection molding process. In yet other embodiments, secondary drain pan 112 may be made of any appropriate material. During operation, water condensed from evaporator 108 flows down a downspout of secondary drain pan 112 and forms water droplets at the bottom end of the downspout. The water droplets build up and drop into primary drain pan 110 by gravity. A particular embodiment of secondary drain pan 112 is described in more detail below in reference to
Condenser 114 is configured to heat dry airflow 118. In some embodiments, condenser 114 includes a microchannel condenser comprising condenser coils that are made of aluminum in some embodiments. In general, a microchannel condenser provides numerous features including a high heat transfer coefficient, a low air-side pressure restriction, and a compact design (compared to other solutions such as finned tub exchangers). These and other features make microchannel condensers good options for condensers in air conditioning systems where inlet air temperatures are high and airflow is high with low fan power. In some embodiments, condenser 114 includes one condenser coil. In some embodiments, condenser 114 includes two or more condenser coils to achieve a reasonable temperature. In yet other embodiments, condenser 114 may be any type of condensers, and may be made of any appropriate material.
Evaporator 108 and condenser 114 make it possible to complete the heat exchange process. Cold evaporator 108 condenses the water in airflow 118, which is removed, and then airflow 118 is reheated by the condenser coils of condenser 114. The now dehumidified, re-warmed air is released into the environment.
During operation, incoming airflow (e.g., airflow 118 as illustrated in
Dehumidification system 100 further includes an impeller 116 that, when activated, draws airflow 118 into dehumidification system 100 via airflow inlet 102, causes airflow 118 to flow through dehumidification system 100, and exhausts airflow 118 out of airflow outlet 104. In some embodiments, impeller 116 is located within cabinet 101 proximate to airflow outlet 104 as illustrated in
Some embodiments of dehumidification system 100 may include two or more wheels. Wheels may be of any size and be made of any appropriate materials. Some embodiments of dehumidification system 100 also includes a control panel located in cabinet 101. In general, the control panel provides various controls for an operator to control certain functions of dehumidification system 100. In some embodiments, the control panel is located on top side of a side panel. In some embodiments, the control panel may be located in any appropriate location on cabinet 101.
In some embodiments, dehumidification system 100 includes a storage compartment (not shown) within cabinet 101. In general, the storage compartment provides a convenient location for operators to store hoses, cords, and other items needed for the operation of dehumidification system 100.
Referring to
Referring back to
In some embodiments, bottom panels 302 are in a triangular shape and are adjoined at two edges to from a bottom of secondary drain pan 112. Bottom panels 302 are sloped to allow water to flow to drainage outlet 310. In some embodiments, center ribs 304 are in a triangular shape. In some embodiments, center ribs 304 have a shape of a right-angled triangle. Referring to
As illustrated in
Referring to
Note that the embodiments of secondary drain pans 112 as illustrated in
In some embodiments, downspout 312 includes an end that is contoured and is positioned proximate to one of the raised ribs 210 of primary drain pan 110. In some embodiments, raised ribs 210 have a height of approximately ½ inch. In some embodiments, a distance 604 from the contoured end of downspout 312 to the bottom of primary drain pan 110 at a direction parallel to downspout 312 is approximately ⅛ inch. In some embodiments, a distance (e.g., 606, 608) from the periphery of downspout 312 to raised rib 210 at a direction parallel to the bottom of primary drain pan 110 is approximately ⅛ inch. In yet other embodiments, distances 604, 606, and 608 may have any appropriate values that enable creating a localized barrier in primary drain pan 110 to prevent water from being entrained in airflow 118.
Raised ribs 210 create localized regions of reduced air velocity by blocking the outlet (e.g., the contoured end) of downspout 312. Therefore, raised ribs 210 create localized low velocity airflow, which allows the water droplet to adhere to the contoured end of downspout 312 through surface tension. In this way, water droplets will drip down to primary drain pan 110 by gravity and will not be reabsorbed into airflow 118. Without raised ribs 210 on primary drain pan 110, airflow 118 flowing across primary drain pan 110 would pick up the water droplets as they fall from downspout 312. The water droplets would be reabsorbed in airflow 118, thereby defeating the purpose of dehumidification system 100 and reducing its efficiency.
The scope of this disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments described or illustrated herein that a person having ordinary skill in the art would comprehend. The scope of this disclosure is not limited to the example embodiments described or illustrated herein. Moreover, although this disclosure describes and illustrates respective embodiments herein as including particular components, elements, feature, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, features, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend. Furthermore, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Additionally, although this disclosure describes or illustrates particular embodiments as providing particular advantages, particular embodiments may provide none, some, or all of these advantages.
Number | Name | Date | Kind |
---|---|---|---|
3750418 | Maudlin | Aug 1973 | A |
4835984 | Vyavaharkar | Jun 1989 | A |
4843835 | Goetz | Jul 1989 | A |
6895770 | Kaminski | May 2005 | B1 |
8869548 | Piccione | Oct 2014 | B2 |
8938981 | Dingle | Jan 2015 | B2 |
9205374 | Black | Dec 2015 | B2 |
20020124582 | Oakner | Sep 2002 | A1 |
20100275630 | DeMonte | Nov 2010 | A1 |
20120158188 | Madala | Jun 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20190226775 A1 | Jul 2019 | US |