The present invention relates generally to a ballast tamper machine for manipulating track ballast under railroad ties and correcting alignment of railroad tracks. Particular embodiments of the invention relate to a railroad right-of-way maintenance system providing a ballast tamping machine that reduces wear during pivoting.
Due to natural factors, such as floods, hurricanes, tornadoes, or seasonal ground shifting, as well as regular rail maintenance schedules, it is often necessary to correct the vertical and/or horizontal alignment of railroad tracks by manipulating the track ballast supporting railroad ties. This is commonly done using a method known as tamping. Conventional tamping machines include vibrating elongate, rigid tamping arms, also referred to as tamping tools. The tamping tools are forced into the ballast, on each side of the railroad tie, and vibrate at a given frequency within the ballast. Such vibration, in addition to movement of the tamper tool workhead causes movement of the ballast to support ties, and the corresponding track have a designated alignment, thereby leveling the railroad tracks.
In conventional tamper drives, a powered rotary shaft, usually a hydraulic motor, causes reciprocating rotary motion of at least one tamper tool. For example, a shaft pivots about an axis within a ring, causing a bearing to rotate within a housing. Such systems employ relatively complicated linkages having multiple components including bearings which add to manufacturing and operational costs when such components require replacement.
A first tamper drive apparatus is provided, referred to herein as a spatial crank oscillation (SCO) tamper drive, which includes a wobble shaft rotatable about a central horizontal axis and disposed within a preferably constrained first bearing. An eccentric portion of the wobble shaft is fixedly coupled to an eccentric hub recess that is within a movable bearing. The axial rotation of the wobble shaft causes the eccentric hub recess to rotate within the movable bearing to induce rotation movement in the movable bearing itself. The movable bearing is coupled to a yoke, preferably such that the horizontal component of the rotation with respect to the yoke is constrained. This causes the yoke to reciprocate horizontally. A drive shaft is fixedly coupled to the yoke, and this drive shaft can be fixedly coupled to one or more tamper arms. The reciprocal horizontal movement of the yoke and the drive shaft results in vibration of the tamper arms.
Another tamper drive apparatus is provided, referred to herein as a sliding pin tamper drive, which includes a wobble shaft rotatable within a first bearing along a vertical central axis. The wobble shaft includes an eccentric portion that is rotatable within a second bearing coupled to or integrated with an offset lobe. Rotation of the eccentric portion of the wobble shaft causes the offset lobe to rotate. The offset lobe includes a slide portion through which a horizontal pin of a crank arm is disposed for reciprocal linear sliding movement. The slide and pin transmit a horizontal movement direction to the crank arm to reciprocally rotate an end of the crank arm about a second vertical axis. A drive shaft is fixedly coupled to the crank arm reciprocally rotating about the second vertical axis. One or more tamper arms preferably are fixedly coupled to the drive shaft for reciprocating movement.
In some example embodiments, the sliding pin tamper drive can further include a counterweight coupled to the wobble shaft. The counterweight preferably dampens or cancels vibration of the second bearing.
Yet another tamper drive is provided, which includes an arm. A vertically extending shaft is fixedly coupled to one end of the arm. The shaft rotates about a vertical axis. One or more tamper arms preferably are fixedly coupled to a lower end of the shaft. First and second laterally opposed cam followers are disposed at the other end of the arm. A rotatable cam provides a cam surface for each of the first and second vertical cam followers. Rotation of the cam causes a reciprocal rotation of the arm, and thus a reciprocal rotation of the shaft about the vertical axis.
In some example embodiments, the cam includes a rotatable driving arm including a barrel cam disposed thereon, and the first and second cam followers are disposed on a upper surface of the arm. In other example embodiments, the rotatable cam includes a globoidal cam driver, and the first and second cam followers are positioned horizontally with respect to the arm.
Referring now to
As will be appreciated by those of ordinary skill in the art, an actuator such as but not limited to a pump (not shown), preferably hydraulic, can be driven by an engine (not shown) to provide power for various tools associated with a tamper apparatus, including drive power for the presently described tamper drives. During railroad track maintenance, a ballast tamping unit, which is equipped with the present tamper drive, performs packing of the ballast under railroad ties (not shown) for correcting cross and longitudinal levels of a pair of rail (not shown) of the railroad track.
In this embodiment, the SCO tamper drive 20 includes a wobble shaft (input shaft) 22 which is configured to be coupled via a link 23 (
An offset lobe or eccentric portion 26 of the wobble shaft 22 is disposed within an eccentric hub recess 28, which includes an outer locking ring 30 configured to engage with an inner ring 32 of a second, movable bearing 34. The eccentric portion 26 of the wobble shaft 22 is sized to fit within the eccentric hub recess 28 so that the eccentric portion rotates with the eccentric hub recess. As best viewed in
As will be described below, a feature of the drive system 20 is that the eccentric mechanism is mounted on the axially swiveling yoke 40, which causes the reciprocal movement of the tamper tools. As such, the number of linkage components is significantly reduced, compared to conventional tamper drive systems. The first and second pins 38 are rotatably disposed within third and fourth laterally opposed bearings 48 (one is visible in
Rotation of the eccentric portion 26 of the wobble shaft causes the second bearing 34 to itself rotate, preferably such that the housing 36 moves as an entire unit, as shown in the five positions respectively depicted in
A drive shaft 60 is fixedly coupled to a lower portion 62 of the yoke 40 such that the drive shaft reciprocally rotates moves with the yoke about a vertical axis. The reciprocating movement of the yoke 40 causes a reciprocating rotational movement of the drive shaft 60, inducing vibration. Preferably one or more tamper arms or tools are fixedly coupled to the drive shaft, as will be appreciated by those of ordinary skill in the art. An example coupling is shown in
Referring now to
An offset lobe or eccentric portion 110 of the wobble shaft 102 is fixedly disposed in a ring of an eccentric hub recess, which is disposed within a separate threaded lock-nut 112 to secure a third (e.g., middle) bearing 114. The middle bearing 114 is provided as part of an offset lobe 116. An opposed end of the offset lobe 116 includes a slide chamber 120 through which a horizontal pin 122 of (or integrated with, or fixedly coupled to) a crank arm 124 is slidingly disposed for relative linear movement. An opposing end of the crank arm 124 is fixedly coupled such as via mounting, e.g., a tapered hub 125 to a tamper tool drive shaft 126, which generally extends along a second vertical axis and can be fixedly coupled to tamper arms 127, as viewed in
As the first and second bearings 104, 106 through which the wobble shaft 102 rotates about the first vertical axis are preferably constrained, rotation of the eccentric portion 110 of the wobble shaft causes the offset lobe 116 to rotate, as shown by the five positions depicted in
As shown in
To dampen vibration of the second bearing 114 during rotational movement of the wobble shaft 102, the counterweight 302 preferably is disposed relative to the wobble shaft 102 such that a moment of inertia of the counterweight and the eccentric portion 110 preferably are opposed from one another with respect to the vertical central axis. In operation, the counterweight 302 opposes the horizontal sliding motion of the horizontal pin 122, and balances loading of the wobble shaft 102. This dampens or cancels vibration of the second bearing 114. The counterweight can further provide a flywheel that helps drive motion of the sliding pin tamper drive 300 via the momentum of swinging counterweight mass. However, the counterweight 302 is optional, and in other example embodiments the counterweight is omitted.
Another tamper drive, referred to herein as a barrel cam driving tamper drive, is generally disclosed at 200. Referring now to
A rotatable cam provides cam surfaces for engaging the cam followers 212, 214. For example, in the tamper drive 200, a barrel cam 220 is mounted to, or integrally formed with a driving arm 222, which in turn may be coupled by a suitable link (not shown) to a suitable tamper drive actuator such as a hydraulic motor, examples of which are well known in the art. Driven by the actuator, the driving arm 222 is oriented to rotate about a generally horizontal central axis.
The barrel cam 220 includes a pair of laterally opposed cam surfaces 230, 232 (one is viewable in
The rotation of the drive arm 222 about the horizontal central axis and thus rotation of the barrel cam induces a reciprocal horizontal movement of the arm 202 due to the engagement of the cam surfaces 230, 232 with the first and second cam followers 212, 214. This in turn reciprocally rotates the opposing end of the arm, thus rotating the shaft. Preferably, one or more tamper arms 240, a portion of which is shown in
In another example tamper drive according to the third embodiment, the cam followers are positioned horizontally with respect to the arm 202, as opposed to the vertically oriented cam followers 212, 214. To provide the rotatable cam in this example embodiment, the drive arm 222 and cam surface 220 are replaced with a globoidal cam driver (not shown) for inducing reciprocal rotation of the arm 202. This alternate tamper drive preferably is otherwise configured according to the tamper drive 200.
The tamper drives disclosed herein can be positioned and controlled by an operator in a manner similar to other tamper drives as known in the art.
While particular tamper drive embodiments have been shown and described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the present disclosure in its broader aspects and as set forth in the following claims.
This application claims priority from U.S. Provisional Application Ser. No. 61/882,089, filed Sep. 25, 2013, under 35 U.S.C. §119, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61882089 | Sep 2013 | US |