The present application is related to a display driving circuit and a method for testing drivers thereof, particularly a display driving circuit applied for a display panel and a method for testing drivers thereof.
With the gradual progress of the times, light-emitting diodes (LEDs) are gradually used in display devices, and the initial application is backlight modules of TFT-LCDs.
TFT-LCD was originally a non-self-illuminating flat-panel display, and its display mode is similar to a light control switch, requiring a backlight module to provide a light source.
Since TFT-LCD began to flourish in the 1990s, some manufacturers used LEDs as the backlight of liquid crystal displays. Using LEDs as the backlight has the characteristics of high color saturation, power saving, and thinness. However, due to high panel manufacturing cost, poor heat dissipation, and low photoelectric efficiency, they have not been widely used in TFT-LCD products.
In the 2000s, white LEDs made by encapsulating blue LED chips in phosphor-containing resins had gradually matured in terms of manufacturing process, performance, and cost. In the 2010s, white LED backlight modules (LED backlight modules) appeared explosive growth has completely replaced the traditional CCFL backlight modules within a few years. Its application fields range from mobile phones, tablet computers, notebook computers, desktop monitors, and even TVs and public signage.
In recent years, the resolution provided by the display panel has been continuously improved. That is to say, the number of pixels per unit area inside the display panel has been increased, and the area occupied by each pixel has been continuously reduced due to the increase in the number of pixels.
Increasing the number of pixels leads to the limited area of each pixel so that the number of circuit elements that may be accommodated in each pixel inside the display panel is limited by the area corresponding to each pixel.
Consequently, the current technology simplifies the circuits located in the pixels, which also simplifies the functions that may be completed by the circuits located in the pixels. For example, it is used in active-matrix organic light-emitting diodes AMOLED), micro LED micron-scale light-emitting diodes and other display panel driver chips.
In order to ensure that the driver is coupled to the circuit in the pixel, the data line of the driver will be tested before leaving the factory. The common part of the test is usually carried out with a test machine, and the driver test and screening are completed according to the test results provided by the test machine.
However, such a driver test may only ensure that the display driver has passed the test and screening at the factory and no real-time test of the display panel may be performed when it is in use, which is the so-called built-in self-test (BIST). Built-in self-test is a mechanism that allows devices to self-test, and it is also a technology for implementing testability design. One of the purposes is to simplify product complexity, thereby reducing costs and reducing dependence on external test equipment.
To allow the display panel to perform a built-in self-test on the internal driver, the solution according to the prior art is to add a test circuit inside the display panel and use the test circuit to perform a built-in self-test on the driver inside the display panel. However, a problem caused by the additive testing circuit with the built-in self-test is the internal space of the display panel occupied by the additive testing circuit. Further, the overall circuit layout should be changed according to different requirements for the self-test method.
Accordingly, how to perform a self-test on the display panel only by using the original circuit without adding new circuits is a problem to be solved by the technical staffs in the art.
An objective of the present application is to provide a display driving circuit and a method for testing drivers. The control circuit transmits voltage levels sequentially to the drivers for performing built-in self-tests according to the returned voltage level from the drivers to accomplish the self-tests without setting any additional test circuit.
To achieve the above objective, the present application provides a display driving circuit, which comprises a control circuit, a first driver, and a second driver. The control circuit includes a first preset parameter and a second preset parameter. The first driver and the second driver are connected in series and coupled to the control circuit. The control circuit generates an enable signal to the first driver for driving the first driver and second driver sequentially to test. The control circuit transmits a first voltage level and/or a second voltage level to the first driver to enable the first driver to return a first returned voltage level and/or a second returned voltage level to the control circuit. The control circuit compares the first returned voltage level and/or the second returned voltage level according to the first preset parameter and/or the second preset parameter. When the first returned voltage level is not equal to the first preset parameter or the second returned voltage level is not equal to the second preset parameter, the control circuit stops testing the second driver. Thereby, the display driver circuit may complete self-tests without any additional testing circuit.
According to another embodiment of the present application, furthermore, when the first returned voltage level is equal to the first preset parameter and the second returned voltage level is equal to the second preset parameter, the first driver transmits the enable signal to the second driver and the control circuit transmits the first voltage level and the second voltage level to the second driver for testing the second driver.
The present application further provides a method for testing a plurality of drivers connected in series applicable to a control circuit for testing a first driver and a second driver sequentially. The first driver and the second driver are connected in series. The control circuit transmits an enable signal to the first driver and the second driver for driving the plurality of drivers to perform self-tests sequentially. The testing method comprises steps of: the control circuit testing the first driver according to a first voltage level and/or a second voltage level so that the control circuit may compare a first returned voltage level and/or a second returned voltage level according to a first preset parameter and/or a second preset parameter; and when the first returned voltage level is not equal to the first preset parameter or the second returned voltage level is not equal to the second preset parameter, the control circuit stops testing the next driver. Thereby, the display driver circuit may complete self-tests without any additional testing circuit.
According to another embodiment of the present application, furthermore, when the first returned voltage level is equal to the first preset parameter and the second returned voltage level is equal to the second preset parameter, the first driver transmits the enable signal to the second driver and the control circuit transmits the first voltage level and/or the second voltage level to the second driver for testing the second driver.
In order to make the structure and characteristics as well as the effectiveness of the present application to be further understood and recognized, the detailed description of the present application is provided as follows along with embodiments and accompanying figures.
In the specifications and subsequent claims, certain words are used for representing specific devices. A person having ordinary skills in the art should know that hardware manufacturers might use different nouns to call the same device. In the specifications and subsequent claims, the differences in names are not used for distinguishing devices. Instead, the differences in functions are the guidelines for distinguishing. In the whole specifications and subsequent claims, the word “comprising” is an open language and should be explained as “comprising but not limited to”. Besides, the word “couple” includes any direct and indirect electrical connection. Thereby, if the description is that a first device is coupled to a second device, it means that the first device is connected electrically to the second device directly, or the first device is connected electrically to the second device via another device or connecting means indirectly.
When the drivers of the existing display panel perform self-tests, a new test circuit is added inside the display panel, and the test circuit is used to perform built-in self-tests on the drivers inside the display panel. However, the problem caused by the new circuit is that it occupies the internal space of the display panel. Hence, the overall circuit layout should be changed according to the self-test method.
The present application provides a display driving circuit and the method for testing the drivers thereof. By equipping the original circuit with a testing module, self-tests may be performed on the display panel, thereby saving circuit layout area and reducing the use of external testing equipment.
In the following description, various embodiments of the present application are described using figures for describing the present application in detail. Nonetheless, the concepts of the present application may be embodied in various forms. Those embodiments are not used to limit the scope and range of the present application.
Please refer to
Please further refer to
The light-emitting driving unit 306 is coupled to a driving voltage node VDD, a first reference voltage node VREF1, a second reference voltage node VREF2, and a third reference voltage node VREF3 of the control circuit 10 for receiving a driving voltage VDR, a first reference voltage VR1, a second reference voltage VR2, and a third reference voltage VR3 of the control circuit 10. Each enable unit 308 includes an enable input node ENI and an enable output node ENO. The enable input node ENI of the first driver 201 is coupled to the enable output node ENO of the control circuit 10. The enable input node ENI of the second driver 202 is coupled to the enable output node ENO of the first driver 201. The enable output node ENO of the second driver 202 is coupled to the enable input node ENI of the next driver, and so on, to the Nth driver 20N. Each power control unit 310 is coupled to a supply voltage node VCC and a ground GND of the control circuit 10.
Please refer to
As shown in
Please further refer to
Step S10: Control circuit testing drivers according to first voltage level and/or second voltage level so that control circuit comparing first returned voltage level and/or second returned voltage level with first preset parameter and/or second preset parameter.
In the step S10, the control circuit 10 transmits the first voltage level and the second voltage level via the first data line DL0, the second data line DL1, or their combination for testing the first driver 201. By this method, the plurality of drivers 201˜2N may perform self-tests. The first driver 201 may generate the corresponding first returned voltage level and the second returned voltage level according to the first voltage level and the second voltage level and returned voltage level along the original path or switch their paths to the control circuit 10, so that the control circuit 10 compares the first returned voltage level and/or the second returned voltage level returned by the first driver 201 with the first preset parameter and/or the second preset parameter and thus performing self-tests.
In addition, the testing method according to the present application further comprises:
In the step S20, the system control processing unit SC judges if the counter CC has increased its counting value to N, meaning that the system control processing unit SC may judge if the Nth driver 20N has completed self-tests. When the judgment is false (NO), the system control processing unit SC executes the step S30 for stopping self-tests and generating an abnormal signal. When the judgment is true (YES), the system control processing unit SC executes the step S40 for generating an end signal represented that the first driver 201 to the Nth driver 20N has completed self-tests already.
The detailed steps of the step S10 is described in the following.
Please further refer to
When the first returned voltage level is not equal to the first preset parameter or the second returned voltage level is not equal to the second preset parameter, the control circuit 10 stops proceeding to test the next driver.
Please refer to
In the step S100, the first testing module 12 of the control circuit 10 transmits a first voltage level V1 to the data control unit 304 of the first driver 201 via the first data node D0 of the data detector DE.
In the step S110, the data control unit 304 of the first driver 201 generates a first returned voltage level B0 according to the first voltage level V1 and transmits the first returned voltage level B0 to the control circuit 10 via the first data node D0 of the data control unit 304.
In the step S120, the data detector DE of the control circuit 10 compares the first returned voltage level B0 and the first preset parameter DE0. When the first returned voltage level B0 is equal to the first preset parameter DE0, the control circuit 10 executes the step S130. When the first returned voltage level B0 is not equal to the first preset parameter DE0, the control circuit 10 executes the step S160.
In the step S130, the first data node D0 of the data detector DE of the control circuit 10 transmits a second voltage level V2 to the data control unit 304 of the first driver 201.
In the step S140, the data control unit 304 of the first driver 201 generates a second returned voltage level B1 according to the second voltage level V2 and transmits the second returned voltage level B1 to the control circuit 10 via the first data node D0 of the data control unit 304.
In the step S150, the data detector DE of the control circuit 10 compares the second returned voltage level B1 and the second preset parameter DEL. When the second returned voltage level B1 is equal to the second preset parameter DE1, the control circuit 10 executes the step S170. When the second returned voltage level B1 is not equal to the second preset parameter DEL, the control circuit 10 executes the step S160.
In the step S160, the control circuit 10 will stops testing via the system control processing unit SC. In particular, the system control processing unit SC drives the panel testing model control element M1 to stop the corresponding driver 22 for stopping self-tests.
In the step S170, the system control processing unit SC of the control circuit 10 outputs the enable signal EN to the enable unit 308 for enabling the driving counter UC to drive the output control unit P outputting the enable signal EN to the next driver via the enable line ENL, namely, inputting the enable signal EN to the enable unit 308 of the second driver 202.
To further illustrate that the control circuit 10 and the first driver 201 perform self-tests according to the present application, please further refer to
The first driver 201 executes the step S330. The second testing module 222 of the first driver 201 receives the start signal ST, which enables the driving counter UC to start counting and hence executing self-tests is started. In the step S310, the first driver 201 zeros the driving counter UC. In other words, the driving counter UC zeros the second counting value CN2. In the step S320, the driving counter UC is zeroed and second counting value CN2 is not increased to 1, 2, or 3. Thereby, the judgment is maintained as false (NO) for executing the step S340 to the step S380. In the step S380, the first driver 201 receives the start signal ST and the first driver 201 is driven to set in the input mode. Namely, the first data node D0 of the first driver 201 is set to the input mode. Next, in the step S390, the first driver 201 judges if the received enable signal EN is enabled. If the judgment is true(YES), the step S400 will be executed. The driving counter UC of the first driver 201 counts the second counting value CN2 as the second counting value CN2 is increased by one. At this moment, the first counting value CN1 is 0 and the second counting value is 1. Then, the control circuit 10 executes the step S220 for transmitting the first voltage level V1 to the first driver 201, which continues to execute the steps S320 to S360. In the step S360, since the second counting value CN2 is 1, the step S370 is executed for transmitting the first returned voltage level B0 to the control circuit 10 according to the first voltage level V1. In addition, the step S390 is executed until the received enable signal EN is judged to be enabled. When the first driver 201 receives the enable signal EN in enabled, the step S400 is executed, in which the driving counter UC counts the second counting value CN2 as the second counting value CN2 is increased by one. At this moment, the second counting value CN2 is 2.
Please refer to
Please together refer to
Please refer to
According to the present embodiment, the second voltage level V2 is low level. The control circuit 10 transmits the second voltage level V2 to the first driver 201. The data control unit 304 of the first driver judges if the voltage level variation occurs in the first driver 201 according to the pull-down second voltage level V2. Thereby, the second voltage level V2 must be different from the first voltage level V1. According to the present embodiment, although the second voltage level V2 is proposed to be low level, it is not limited to a low level. Once the second voltage level V2 may be used to make sure that the voltage level variation occurs in the first driver 201, the tests may go on.
At this time, the first driver 201 executes the step S320 and judges false (NO). Then the first driver 201 transmits the second returned voltage level B1 to the control circuit 10 via the first data line DL0. The control circuit 10 may use the second returned voltage level B1 to judge if the voltage variation occurs in the first driver 201. The first driver 201 returns the second returned voltage level B1 to the control circuit 10 via the first data line DL0, which means that the first driver 201 returns the second voltage level V2 to the control circuit 10 directly. The first driver 201 executes the steps S350 and S390 until the received enable signal EN is judged to be enabled. If the first driver 201 receives the enable signal EN, the step S400 is executed, in which the driving counter UC counts and the second counting value CN2 is increased by one. At this time, the second counting value CN2 is 3.
Please refer to
After finishing the step S250 and the second returned voltage level B1 equal to the second preset parameter DE1, the control circuit 10 executes the step S260. The control counter CC of the control circuit 10 is increased by one. Namely, the first counting value CN1 is increased by one. At this time, CN1 is equal to 1. Meanwhile, the control circuit 10 transmits the enable signal EN to the first driver 201. At this time, the second counting value CN2 is 3. The first driver 201 continues to execute the step S320. Since the judgment is true, the step S330 is executed next. The first driver 201 is set to the input mode. Namely, the first data node D0 of the first driver 201 is set to the input mode. Besides, the driving counter UC of the first driver 201 drives the output control unit P to output the enable signal EN to the enable input node ENI of the next driver 202 connected in series via the enable output node ENO. For example, as shown in
Please refer to
Please refer to
According to the previous embodiment of the method for testing display driving circuit of the present application, the panel circuit is adopted for testing. A data line DL0 between the control circuit 10 and the drivers is used to transmit the voltage levels V1, V2 and the returned voltage levels B0, B1 for performing built-in self-tests. Thereby, the problem of requiring external testing circuits or testers may be solved.
Next, please refer to
Please refer to
The steps S160 and S170 are identical to the previous embodiment; the details will not be repeated. Next, in the step S102, the control circuit 10 transmits the first voltage level V1 to the first driver 201 via the first data line DL0 and the second voltage level V2 to the first driver 201 via the second data line DL0. The first data node D0 of the first driver 201 is used for receiving the first voltage level V1; the second data node D1 of the first driver 201 is used for receiving the second voltage level V2. According to the present embodiment, the first voltage level V1 is high level; the second voltage level V2 is low level. The judgment if the first driver 201 is short-circuited is performed by pulling up the first voltage level V1 and pulling down the second voltage level V2. According to the present embodiment, although the first voltage level V1 is high level and the second voltage level V2 is low level. Nonetheless, the present application is not limited to the embodiment. Once the first voltage level V1 and the second voltage level V2 may be used to make sure that the first driver 201 is not short-circuited, the tests may go on.
In the step S112, after judging if the first driver 201 is short-circuited, the first driver 201 returns the first returned voltage level B0 to the control circuit 10 via the first data line DL0 and returns the second returned voltage level B1 to the control circuit 10 via the second data line DL1. According to the present embodiment, the first driver 201 may return the first voltage level V1 and the second voltage level V2 to the control circuit 10 directly. Next, in the step S122, the first returned voltage level B0 and the second returned voltage level B1 are compared with the first preset parameter DE0 and the second preset parameter DEL. When they are equal, the step S132 is executed.
In the step S132, the control circuit 10 transmits the third voltage level V3 and the fourth voltage level V4. According to the present embodiment, the third voltage level V3 is low level and the fourth voltage level V4 is high level. The judgment if the voltage level variation occurs in the first driver 201 is performed by pulling down the third voltage level V3 and pulling up the fourth voltage level V4. Thereby, the third voltage level V3 must be different from the first voltage level V1, and the fourth voltage level V4 must be different from the third voltage level V3. According to the second embodiment, although the third voltage level V3 is low level and the fourth voltage level V4 is high level, their voltage levels are not limited. Once the third voltage level V3 and the fourth voltage level V4 may be used to make sure that the voltage variation occurs in the first driver 201, the tests may go on. In the step S142, the first driver 201 transmits the third returned voltage level B2 and the fourth returned voltage level B3 via the first data line DL0 and the second data line DL1 to the control circuit 10. According to the present embodiment, the first driver 201 may return the third voltage level V3 and the fourth voltage level V4 to the control circuit 10 directly. Next, in the step S152, compare the third returned voltage level B2 and the fourth returned voltage level B3 according to the third preset parameter DE2 and the fourth preset parameter DE3. When they are equal, the step S132 is executed. When one of them is not equal, the step S160 is executed.
After finishing a cycle of tests on the first driver 201, likewise, the enable signal EN of the first driver 201 is transmitted to the next driver 202 for testing. The driving counter UC of the first driver 201 drives the output control unit P to output the enable signal EN to the enable input node ENI of the next driver via the enable output node ENO. For example, as shown in
Furthermore, please refer to
The steps S200˜S210, S260, S20˜S40, S300˜S310, and S390˜S400 are identical to the previous embodiment. Hence, the details will not be repeated. In the step S222, instead, the control circuit 10 transmits the first voltage level V1 and the second voltage level V2 to the first driver 201. Since the second counting value CN2 is 0, the step S382 is executed. The driver 201 is set to the input mode. In other words, the first data node D0 and the second data node D1 of the first driver 201 are set to the input mode. Then the step S400 is executed to make the second counting value CN2 to be 1. Then, in the step S362, since the second counting value CN2 is 1, the step S372 is executed, in which the driving counter UC of the first driver 201 drives the data control unit 304 to return the first returned voltage level B0 and the second returned voltage level B1 to the control circuit 10. Next, the step S400 is executed to make the second counting value CN2 to be 2. Afterward, the control circuit 10 executes the step S232 for comparing according to the first preset parameter DE0 and the second preset parameter DE1 of the data detector DE. When the first returned voltage level B0 is not equal to the first preset parameter DE0 or the second returned voltage level B1 is not equal to the second preset parameter DE1, the control circuit 10 executes the step S20 for driving the first driver 201 to output the enable signal EN to the second driver 202 and judging if the first counting value CN1 is N. When the judgment is false (NO), the control circuit 10 executes the step S30. When the judgment is true (YES), the control circuit 10 executes the step S40.
When the first returned voltage level B0 is equal to the first preset parameter DE0 and the second returned voltage level B1 is equal to the second preset parameter DE1, the control circuit 10 executes the step S242. As shown in
When the third returned voltage level B2 is equal to the third preset parameter DE2 and the fourth returned voltage level B3 is equal to the fourth preset parameter DE3, the step S260 is executed. Meanwhile, the first driver 201 continues to execute the step S320. Since the judgment is true, the step S332 is executed. The first driver 201 is set to the input mode. Namely, the first data node D0 and the second data node D1 of the first driver 201 are set to the input mode. In addition, the driving counter UC of the first driver 201 drives the output control unit P to output the enable signal EN to the enable input node ENI of the next driver via the enable output node ENO. For example, as shown in
Please refer again to
Please refer to
The method for testing the display driving circuit according to the second embodiment of the present application is based on the first embodiment of the present application. The second embodiment provides a testing method using multiple data lines. Thereby, the problem of requiring external testing circuits or testers may be solved. In addition, by using multiple data lines to test concurrently, the testing process may be further simplified.
To sum up, the various embodiments of the present application provide several improved methods for testing display driving circuit. By using the data transmitted between the control circuit and the drivers, built-in self-tests may be performed and the problem of requiring external testing circuits or testers may be solved. Furthermore, the present application provides a testing method using multiple data lines. In addition to solving the problem of requiring external testing circuits or testers, by using multiple data lines to test concurrently, the testing process may be further simplified.
Accordingly, the present application conforms to the legal requirements owing to its novelty, nonobviousness, and utility. However, the foregoing description is only embodiments of the present application, not used to limit the scope and range of the present application. Those equivalent changes or modifications made according to the shape, structure, feature, or spirit described in the claims of the present application are included in the appended claims of the present application.
Number | Date | Country | |
---|---|---|---|
63358315 | Jul 2022 | US |