Driving system for active-matrix displays

Information

  • Patent Grant
  • 10453394
  • Patent Number
    10,453,394
  • Date Filed
    Monday, July 9, 2018
    6 years ago
  • Date Issued
    Tuesday, October 22, 2019
    5 years ago
Abstract
Raw grayscale image data, representing images to be displayed in successive frames, is used to drive a display having pixels that include a drive transistor and an organic light emitting device by dividing each frame into at least first and second-frames, and supplying each pixel with a drive current that is higher in the first sub-frame than in the second sub-frame for raw grayscale values in a first preselected range, and higher in the second sub-frame than in the first sub-frame for raw grayscale values in a second preselected range. The display may be an active matrix display, such as an AMOLED display.
Description
FIELD OF INVENTION

The present invention relates to display technology, and particularly to driving systems for active-matrix displays such as AMOLED displays.


BACKGROUND OF THE INVENTION

A display device having a plurality of pixels (or sub-pixels) arranged in a matrix has been widely used in various applications. Such a display device includes a panel having the pixels and peripheral circuits for controlling the panels. Typically, the pixels are defined by the intersections of scan lines and data lines, and the peripheral circuits include a gate driver for scanning the scan lines and a source driver for supplying image data to the data lines. The source driver may include a gamma correction circuit for controlling the gray scale of each pixel. In order to display a frame, the source driver and the gate driver respectively provide a data signal and a scan signal to the corresponding data line and the corresponding scan line. As a result, each pixel will display a predetermined brightness and color.


In recent years, the matrix display using organic light emitting devices (OLED) has been widely employed in small electronic devices, such as handheld devices, cellular phones, personal digital assistants (PDAs), and cameras because of the generally lower power consumed by such devices. However, the quality of output in an OLED based pixel is affected by the properties of a drive transistor that is typically fabricated from amorphous or poly silicon as well as the OLED itself. In particular, threshold voltage and mobility of the transistor tend to change as the pixel ages. Moreover, the performance of the drive transistor may be effected by temperature. In order to maintain image quality, these parameters must be compensated for by adjusting the programming voltage to pixels. Compensation via changing the programming voltage is more effective when a higher level of programming voltage and therefore higher luminance is produced by the OLED based pixels. However, luminance levels are largely dictated by the level of brightness for the image data to a pixel, and the desired higher levels of luminance for more effective compensation may not be achievable while within the parameters of the image data.


SUMMARY

According to one embodiment, raw grayscale image data, representing images to be displayed in successive frames, is used to drive a display having pixels that include a drive transistor and an organic light emitting device by (1) dividing each frame into at least first and second-frames, and (2) supplying each pixel with a drive current that is (a) higher in the first sub-frame than in the second sub-frame for raw grayscale values in a first preselected range, and (b) higher in the second sub-frame than in the first sub-frame for raw grayscale values in a second preselected range. The display may be an active matrix display, and is preferably an AMOLED display.


In one implementation, the raw grayscale value for each frame is converted to first and second sub-frame grayscale values for the first and second sub-frames, and the drive current supplied to the pixel during the first and second sub-frames is based on the first and second sub-frame grayscale values. The first and second sub-frame grayscale values may be preselected to produce a pixel luminance during that frame that has a predetermined gamma relationship (e.g., a gamma 2.2 curve) to the raw grayscale value for that frame.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.



FIG. 1 is a block diagram of an AMOLED display system.



FIG. 2 is a block diagram of a pixel driver circuit for the AMOLED display in FIG. 1.



FIG. 3 is a block diagram similar to FIG. 1 but showing the source driver in more detail.



FIG. 4A-4B are timing diagrams illustrating the time period of one complete frame and two sub-frame time periods within the complete frame time period.



FIG. 5A-5D is a series of diagrammatic illustrations of the luminance produced by one pixel within the time periods of FIG. 4 in two different driving modes and when driven by two different grayscale values.



FIG. 6 is a graph illustrating two different gamma curves, for use in two different driving modes, for different grayscale values.



FIG. 7 is an illustration of exemplary values used to map grayscale data falling within a preselected low range to higher grayscale values.



FIG. 8 is a diagrammatic illustration of the data used to drive any given pixel in the two sub-frame time periods illustrated in FIG. 4, when the raw grayscale image data is in either of two different ranges.



FIG. 9 is a flow chart of a process executed by the source driver to convert raw grayscale image data that falls within a low range, to higher grayscale values.



FIG. 10 is a flow chart of a process executed by the source driver to supply drive data to the pixels in either of two different operating modes.



FIG. 11 is a flow chart of the same process illustrated in FIG. 10 with the addition of smoothing functions.



FIG. 12 is a diagram illustrating the use of multiple lookup tables in the processing circuit in the source driver.



FIG. 13 is a timing diagram of the programming signals sent to each row during a frame interval in the hybrid driving mode of the AMOLED display in FIG. 1.



FIG. 14A is a timing diagram for row and column drive signals showing programming and non-programming times for the hybrid drive mode using a single pulse.



FIG. 14B is a timing diagram is a timing diagram for row and column drive signals showing programming and non-programming times for the hybrid drive mode using a double pulse.



FIG. 15 is a diagram illustrating the use of multiple lookup tables and multiple gamma curves.



FIG. 16A is a luminance level graph of the AMOLED display in FIG. 1 for automatic brightness control without hysteresis.



FIG. 16B is a luminance level graph of the AMOLED display in FIG. 1 for automatic brightness control with hysteresis.



FIGS. 17A-17E are diagrammatic illustrations of a modified driving scheme.



FIG. 18 is a plot of raw input grayscale values vs. converted grayscale values for two different sub-frames, in a further modified driving scheme.





DETAILED DESCRIPTION

While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.



FIG. 1 is an electronic display system 100 having an active matrix area or pixel array 102 in which an array of pixels 104 are arranged in a row and column configuration. For ease of illustration, only three rows and columns are shown. External to the active matrix area of the pixel array 102 is a peripheral area 106 where peripheral circuitry for driving and controlling the pixel array 102 are disposed. The peripheral circuitry includes a gate or address driver circuit 108, a source or data driver circuit 110, a controller 112, and a supply voltage (e.g., Vdd) driver 114. The controller 112 controls the gate, source, and supply voltage drivers 108, 110, 114. The gate driver 108, under control of the controller 112, operates on address or select lines SEL[i], SEL[i+1], and so forth, one for each row of pixels 104 in the pixel array 102. A video source 120 feeds processed video data into the controller 112 for display on the display system 100. The video source 120 represents any video output from devices using the display system 100 such as a computer, cell phone, PDA and the like. The controller 112 converts the processed video data to the appropriate voltage programming information to the pixels 104 on the display system 100.


In pixel sharing configurations described below, the gate or address driver circuit 108 can also optionally operate on global select lines GSEL[j] and optionally/GSEL[j], which operate on multiple rows of pixels 104 in the pixel array 102, such as every three rows of pixels 104. The source driver circuit 110, under control of the controller 112, operates on voltage data lines Vdata[k], Vdata[k+1], and so forth, one for each column of pixels 104 in the pixel array 102. The voltage data lines carry voltage programming information to each pixel 104 indicative of a brightness (gray level) of each light emitting device in the pixel 104. A storage element, such as a capacitor, in each pixel 104 stores the voltage programming information until an emission or driving cycle turns on the light emitting device. The supply voltage driver 114, under control of the controller 112, controls the level of voltage on a supply voltage (EL_Vdd) line, one for each row of pixels 104 in the pixel array 102. Alternatively, the voltage driver 114 may individually control the level of supply voltage for each row of pixels 104 in the pixel array 102 or each column of pixels 104 in the pixel array 102.


As is known, each pixel 104 in the display system 100 needs to be programmed with information indicating the brightness (gray level) of the organic light emitting device (OLED) in the pixel 104 for a particular frame. A frame defines the time period that includes a programming cycle or phase during which each and every pixel in the display system 100 is programmed with a programming voltage indicative of a brightness and a driving or emission cycle or phase during which each light emitting device in each pixel is turned on to emit light at a brightness commensurate with the programming voltage stored in a storage element. A frame is thus one of many still images that compose a complete moving picture displayed on the display system 100. There are at least two schemes for programming and driving the pixels: row-by-row, or frame-by-frame. In row-by-row programming, a row of pixels is programmed and then driven before the next row of pixels is programmed and driven. In frame-by-frame programming, all rows of pixels in the display system 100 are programmed first, and all of the pixels are driven row-by-row. Either scheme can employ a brief vertical blanking time at the beginning or end of each frame during which the pixels are neither programmed nor driven.


The components located outside of the pixel array 102 can be disposed in a peripheral area 106 around the pixel array 102 on the same physical substrate on which the pixel array 102 is disposed. These components include the gate driver 108, the source driver 110 and the supply voltage controller 114. Alternatively, some of the components in the peripheral area can be disposed on the same substrate as the pixel array 102 while other components are disposed on a different substrate, or all of the components in the peripheral are can be disposed on a substrate different from the substrate on which the pixel array 102 is disposed. Together, the gate driver 108, the source driver 110, and the supply voltage control 114 make up a display driver circuit. The display driver circuit in some configurations can include the gate driver 108 and the source driver 110 but not the supply voltage controller 114.


The controller 112 includes internal memory (not shown) for various look up tabales and other data for functions such as compensation for effects such as temperature, change in threshold voltage, change in mobility, etc. Unlike a convention AMOLED, the display system 100 allows the use of higher luminance of the pixels 104 during one part of the frame period while emitting not light in the other part of the frame period. The higher luminance during a limited time of the frame period results in the required brightness from the pixel for a frame but higher levels of luminance facilitate the compensation for changing parameters of the drive transistor performed by the controller 112. The system 100 also includes a light sensor 130 that is coupled to the controller 112. The light sensor 130 may be a single sensor located in proximity to the array 102 as in this example. Alternatively, the light sensor 130 may be multiple sensors such as one in each corner of the pixel array 102. Also, the light sensor 130 or multiple sensors may be embedded in the same substrate as the array 102, or have its own substrate on the array 102. As will be explained, the light sensor 130 allows adjustment of the overall brightness of the display system 100 according to ambient light conditions.



FIG. 2 is a circuit diagram of a simple individual driver circuit 200 for a pixel such as the pixel 104 in FIG. 1. As explained above, each pixel 104 in the pixel array 102 in FIG. 1 is driven by the driver circuit 200 in FIG. 2. The driver circuit 200 includes a drive transistor 202 coupled to an organic light emitting device (OLED) 204. In this example, the organic light emitting device 204 is fabricated from a luminous organic material which is activated by current flow and whose brightness is a function of the magnitude of the current. A supply voltage input 206 is coupled to the drain of the drive transistor 202. The supply voltage input 206 in conjunction with the drive transistor 202 creates current in the light emitting device 204. The current level may be controlled via a programming voltage input 208 coupled to the gate of the drive transistor 202. The programming voltage input 208 is therefore coupled to the source driver 110 in FIG. 1. In this example, the drive transistor 202 is a thin film transistor fabricated from hydrogenated amorphous silicon. Other circuit components (not shown) such as capacitors and transistors may be added to the simple driver circuit 200 to allow the pixel to operate with various enable, select and control signals such as those input by the gate driver 108 in FIG. 1. Such components are used for faster programming of the pixels, holding the programming of the pixel during different frames, and other functions.


Referring to FIG. 3, there is illustrated the source driver 110 that supplies a data line voltage to a data line DL to program the selected pixels coupled to the data line DL. The controller 112 provides raw grayscale image data, at least one operation timing signal and a mode signal (hybrid or normal driving mode) to the source driver 110. Each of the gate driver 108 and the source driver 110 or a combination may be built from a one-chip semiconductor integrated circuit (IC) chip.


The source driver 110 includes a timing interface (I/F) 342, a data interface (I/F) 324, a gamma correction circuit 340, a processing circuit 330, a memory 320 and a digital-to-analog converter (DAC) 322. The memory 320 is, for example, a graphic random access memory (GRAM) for storing grayscale image data. The DAC 322 includes a decoder for converting grayscale image data read from the GRAM 320 to a voltage corresponding to the luminance at which it is desired to have the pixels emit light. The DAC 322 may be a CMOS digital-to-analog converter.


The source driver 110 receives raw grayscale image data via the data I/F 324, and a selector switch 326 determines whether the data is supplied directly to the GRAM 320, referred to as the normal mode, or to the processing circuit 330, referred to as the hybrid mode. The data supplied to the processing circuit 330 is converted from the typical 8-bit raw data to 9-bit hybrid data, e.g., by use of a hybrid Look-Up-Table (LUT) 332 stored in permanent memory which may be part of the processing circuit 330 or in a separate memory device such as ROM, EPROM, EEPROM, flash memory, etc. The extra bit indicates whether each grayscale number is located in a predetermined low grayscale range LG or a predetermined high grayscale HG.


The GRAM 320 supplies the DAC 322 with the raw 8-bit data in the normal driving mode and with the converted 9-bit data in the hybrid driving mode. The gamma correction circuit 340 supplies the DAC 322 with signals that indicate the desired gamma corrections to be executed by the DAC 322 as it converts the digital signals from the GRAM 320 to analog signals for the data lines DL. DACs that execute gamma corrections are well known in the display industry.


The operation of the source driver 110 is controlled by one or more timing signals supplied to the gamma correction circuit 340 from the controller 112 through the timing I/F 342. For example, the source driver 110 may be controlled to produce the same luminance according to the grayscale image data during an entire frame time T in the normal driving mode, and to produce different luminance levels during sub-frame time periods T1 and T2 in the hybrid driving mode to produce the same net luminance as in the normal driving mode.


In the hybrid driving mode, the processing circuit 330 converts or “maps” the raw grayscale data that is within a predetermined low grayscale range LG to a higher grayscale value so that pixels driven by data originating in either range are appropriately compensated to produce a uniform display during the frame time T. This compensation increases the luminance of pixels driven by data originating from raw grayscale image data in the low range LG, but the drive time of those pixels is reduced so that the average luminance of such pixels over the entire frame time T is at the desired level. Specifically, when the raw grayscale value is in a preselected high grayscale range HG, the pixel is driven to emit light during a major portion of the complete frame time period T, such as the portion ¾T depicted in FIG. 5(c). When the raw grayscale value is in the low range LG, the pixel is driven to emit light during a minor portion of the complete frame time period T, such as the portion ¼T depicted in FIG. 5(d), to reduce the frame time during which the increased voltage is applied.



FIG. 6 illustrates an example in which raw grayscale values in a low range LG of 1-99 are mapped to corresponding values in a higher range of 102-245. In the hybrid driving mode, one frame is divided into two sub-frame time periods T1 and T2. The duration of one full frame is T, the duration of one sub-frame time period is T1=αT, and the duration of the other sub-frame time period is T2=(1−α)T, so T=T1+T2. In the example in FIG. 5, α=¾, and thus T1=(¾)T, and T2=(¼)T. The value of α is not limited to ¾ and may vary. As described below, raw grayscale data located in the low grayscale LG is transformed to high grayscale data for use in period T2. The operation timing of the sub-frame periods may be controlled by timing control signals supplied to the timing I/F 342. It is to be understood that more than two sub-frame time periods could be used by having different numbers of ranges of grayscales with different time periods assigned to each range.


In the example depicted in FIG. 5(a), L1 represents the average luminance produced during a frame period T for raw grayscale data located in the high grayscale range HG, when the normal drive mode is selected. In FIG. 5(b), L3 represents the average luminance produced during a frame period T for raw grayscale data located in the low grayscale range LG, in the normal drive mode. In FIG. 5(c), L2 represents the average luminance for raw grayscale data located in the high grayscale range HG, during the sub-frame period T1 when the hybrid drive mode is selected. In FIG. 5(d), L4 represents the average luminance for raw grayscale data located in the low grayscale range LG, during the sub-frame period T2 when the hybrid drive mode is selected. The average luminances produced over the entire frame period T by the sub-frame luminances depicted in FIGS. 5(c) and 5(d) are the same as those depicted in FIGS. 5 (a) and 5(b), respectively, because L2=4/3L1 and L4=4L3.


If the raw grayscale image data is located in the low grayscale range LG, the source driver 110 supplies the data line DL with a data line voltage corresponding to the black level (“0”) in the sub-frame period T2. If the raw grayscale data is located in the high grayscale range HD, the source driver 110 supplies the data line DL with a data line voltage corresponding to the black level (“0”) in the sub-frame period T1.



FIG. 6 illustrates the gamma corrections executed by the DAC 322 in response to the control signals supplied to the DAC 322 by the gamma correction circuit 340. The source driver 110 uses a first gamma curve 4 for gamma correction in the hybrid driving mode, and a second gamma curve 6 for gamma correction in the normal driving mode. In the hybrid driving mode, values in the low range LG are converted to higher grayscale values, and then both those converted values and the raw grayscale values that fall within the high range HG are gamma-corrected according to the same gamma curve 4. The gamma-corrected values are output from the DAC 322 to the data lines DL and used as the drive signals for the pixels 104, with the gamma-corrected high-range values driving their pixels in the first sub-frame time period T1, and the converted and gamma-corrected low-range values driving their pixels in the second sub-frame time period T2.


In the normal driving mode, all the raw grayscale values are gamma-corrected according to a second gamma curve 6. It can be seen from FIG. 6 that the gamma curve 4 used in the hybrid driving mode yields higher gamma-corrected values than the curve 6 used in the normal driving mode. The higher values produced in the hybrid driving mode compensate for the shorter driving times during the sub-frame periods T1 and T2 used in that mode.


The display system 100 divides the grayscales into a low grayscale range LG and a high grayscale range HG. Specifically, if the raw grayscale value of a pixel is greater than or equal to a reference value D(ref), that data is considered as the high grayscale range HG. If the raw grayscale value is smaller than the reference value D(ref), that data is considered as the low grayscale range LG.


In the example illustrated in FIG. 6, the reference value D(ref) is set to 100. The grayscale transformation is implemented by using the hybrid LUT 132 of FIG. 1, as illustrated in FIGS. 6 and 7. One example of the hybrid LUT 132 is shown in FIG. 7 where the grayscale values 1-99 in the low grayscale range LG are mapped to the grayscale values 102-245 in the high grayscale range HG.


Assuming that raw grayscale data from the controller 112 is 8-bit data, 8-bit grayscale data is provided for each color (e.g., R, G, B etc) and is used to drive the sub-pixels having those colors. The GRAM 320 stores the data in 9-bit words for the 8-bit grayscale data plus the extra bit added to indicate whether the 8-bit value is in the low or high grayscale range.


In the flow chart of FIG. 9, data in the GRAM 320 is depicted as the nine bit word GRAM[8:0], with the bit GRAM[8] indicating whether the grayscale data is located in the high grayscale range HG or the low grayscale range LG. In the hybrid driving mode, all the input data from the data I/F 124 is divided into two kinds of 8-bit grayscale data, as follows:

    • 1. If the raw input data is in the 8 bits of high grayscale range, local data D[8] is set to be “1” (D[8]=1), and the 8 bits of the local data D[7:0] is the raw grayscale data. The local data D[8:0] is saved as GRAM[8:0] in GRAM 320 where GRAM[8]=1.
    • 2. If the raw input data is in the low grayscale LG, local data D[8] is set to be “0” (D[8]=0), and local data D[7:0] is obtained from the hybrid LUT 332. The local data D[8:0] is saved as GRAM[8:0] in GRAM 320



FIG. 9 is a flow chart of one example of an operation for storing 8-bit grayscale data into the GRAM 320 as a 9-bit GRAM data word. The operation is implemented in the processing circuit 330 in the source driver 110. Raw grayscale data is input from the data I/F 124 at step 520, providing 8-bit data at step 522. The processing circuit 330 determines the system mode, i.e., normal driving mode or hybrid driving mode, at step 524. If the system mode is the hybrid driving mode, the system uses the 256*9 bit LUT 132 at step 528 to provide 9-bit data D_R[8:0] at step 530, including the one-bit range indicator. This data is stored in the GRAM 320 at step 532. If the system mode is the normal driving mode, the system uses the raw 8-bit input data D_N[7:0] at step 534, and stores the data in the GRAM 320 at step 532.



FIG. 10 is a flow chart of one example of an operation for reading 9-bit GRAM data words and providing that data to the DAC 322. The system (e.g., the processing circuit 330) determines whether the current system mode is the normal driving mode or the hybrid driving mode at step 540. If the current mode is the hybrid driving mode, the system determines whether it is currently in a programming time at step 542. If the answer at step 542 is negative, step 544 determines whether GRAM [8]=1, which indicates the raw grayscale value was in the low range LG. If the answer at step at step 544 is negative, indicating that the raw grayscale value is in the high range HG, GRAM [7:0] is provided as local data D[7:0] and the values of the appropriate LUT 132 are used at step 546 to provide the data D [7:0] to the DAC 322 at step 548. If the answer at step 544 is affirmative, Black (VSL) (“#00”) is provided to the DAC 322 at step 552, so that black level voltage is output from the DAC 122 (see FIG. 8).


In the programming period, step 550 determines whether GRAM [8]=1. If the answer at step 550 is affirmative indicating the raw grayscale value is in the high range HG, the system advances to steps 546 and 548. If the answer at step 550 is negative indicating the raw grayscale value is in the low range LG, the system advances to step 552 to output a black-level voltage (see FIG. 8).



FIG. 11 is a flow chart of another example of an operation for reading 9-bit GRAM data and providing that data to the DAC 322. To avoid contorting effects during the transaction, the routine of FIG. 11 uses a smoothing function for a different part of a frame. The smoothing function can be, but is not limited to, offset, shift or partial inversion. In FIG. 11, the step 552 of FIG. 10 is replaced with steps 560 and 562. When the system is not in a programming period, if GRAM[8]=1 (high range HG grayscale value), GRAM [7:0] is processed by the smoothing function ƒ and then provided to the DAC 322 at step 560. In the programming period, if GRAM[8]≠1 (low range LG grayscale value), GRAM [7:0] is processed by the smoothing function ƒ and then provided to the DAC 322 at step 562.


Although only one hybrid LUT 332 is illustrated in FIG. 3, more than one hybrid LUT may be used, as illustrated in FIG. 12. In FIG. 12, a plurality of hybrid LUTs 332 (1) . . . 332 (m) receive data from, and have outputs coupled to, a multiplexer 350. Different ranges of grayscale values can be converted in different hybrid LUTs.



FIG. 13 is a timing diagram of the programming signals sent to each row during a frame interval in the hybrid driving mode of the AMOLED display in FIG. 1 and FIG. 3. Each frame is assigned a time interval such as the time intervals 600, 602, and 604, which is sufficient to program each row in the display. In this example, the display has 480 rows. Each of the 480 rows include pixels for corresponding image data that may be in the low grayscale value range or the high grayscale value range. In this example, each of the time intervals 600, 602, and 604 represents 60 frames per second or a frequency of 60 Hz. Of course other higher and lower frequencies and different numbers of rows may be used with the hybrid driving mode.


The timing diagram in FIG. 13 includes control signals necessary to avoid a tearing effect where programming data for the high and low grayscale values may overlap. The control signals include a tearing signal line 610, a data write signal line 612, a memory out low value (R) signal line 614 and a memory out high value (P) signal line 616. The hybrid driving mode is initiated for each frame by enabling the tearing signal line 610. The data write signal line 612 receives the row programming data 620 for each of the rows in the display system 100. The programming data 620 is processed using the LUTs as described above to convert the data to analog values reflecting higher luminance values for shortened intervals for each of the pixels in each row. During this time, a blanking interval 622 and a blanking interval 630 represent no output through the memory write lines 614 and 616 respectively.


Once the tearing signal line 610 is set low, a row programming data block 624 is output from the memory out low value line 614. The row programming data block 624 includes programming data for all pixels in each row in succession beginning with row 1. The row programming data block 624 includes only data for the pixels in the selected row that are to be driven at values in the low grayscale range. As explained above, all pixels that are to be driven at values in the high grayscale range in a selected row are set to zero voltage or adjusted for distortions. Thus, as each row is strobed, the DAC 322 converts the low gray scale range data (for pixels programmed in the low grayscale range) and sends the programming signals to the pixels (LUT modified data for the low grayscale range pixels and a zero voltage or distortion adjustment for the high grayscale range pixels) in that row.


While the row programming data block 624 is output, the memory output high value signal line 616 remains inactive for a delay period 632. After the delay period 632, a row programming data block 634 is output from the memory out high value line 616. The row programming data block 634 includes programming data for all pixels in each row in succession beginning with row 1. The row programming data block 634 includes only data for the pixels that are to be driven at values in the high grayscale range in the selected row. As explained above, all pixels that are to be driven at values in the low grayscale range in the selected row are set to zero voltage. The DAC 322 converts the high gray scale range data (for pixels programmed in the high grayscale range) and sends the programming signals to the pixels (LUT modified data for the high grayscale range pixels and a zero voltage for the low grayscale range pixels) in that row.


In this example, the delay period 632 is set to 1F+x/3 where F is the time it takes to program all 480 rows and x is the time of the blanking intervals 622 and 630. The x variable may be defined by the manufacturer based on the speed of the components such as the processing circuit 330 necessary to eliminate tearing. Therefore, x may be lower for faster processing components. The delay period 632 between programming pixels emitting a level in the low grayscale range and those pixels emitting a level in the high grayscale range avoids the tearing effect.



FIG. 14A is a timing diagram for row and column drive signals showing programming and non-programming times for the hybrid drive mode using a single pulse for the AMOLED display in FIG. 1. The diagram in FIG. 14A includes a tearing signal 640, a set of programming voltage select signals 642, a gate clock signal 644, and row strobe signals 646a-646h. The tearing signal 640 is strobed low to initiate the hybrid drive mode for a particular video frame. The programming voltage select signals 642 allow the selection of all of the pixels in a particular row for receiving programming voltages from the DAC 322 in FIG. 3. In this example, there are 960 pixels in each row. The programming voltage select signals 642 initially are selected to send a set of low grayscale range programming voltages 650 to the pixels of the first row.


When the gate clock signal 644 is set high, the strobe signal 646a for the first row produces a pulse 652 to select the row. The low gray scale pixels in that row are then driven by the programming voltages from the DAC 322 while the high grayscale pixels are driven to zero voltage. After a sub-frame time period, the programming voltage select signals 642 are selected to send a set of high grayscale range programming voltages 654 to the first row. When the gate clock signal 644 is set high, the strobe signal 646a for the first row produces a second pulse 656 to select the row. The high grayscale pixels in that row are then driven by the programming voltages from the DAC 322 while the low grayscale pixels are driven to zero voltage.


As is shown by FIG. 14A, this process is repeated for each of the rows via the row strobe signals 646b-646g. Each row is therefore strobed twice, once for programming the low grayscale pixels and once for programming the high grayscale values. When the first row is strobed the second time 656 for programming the high grayscale values, the first strobes for subsequent rows such as strobes 646c, 646d are initiated until the last row strobe (row 481) shown as strobe 646e. The subsequent rows then are strobed a second time in sequence as shown by the programming voltages 656 on the strobes 646f, 646g, 646h until the last row strobe (row 481) shown as strobe 646e.



FIG. 14B is a timing diagram for row and column drive signals showing programming and non-programming times for the hybrid drive mode using a double pulse. The double pulse to the drive circuit of the next row leaves the leakage path on for the drive transistor and helps improve compensation for the drive transistors. Similar to FIG. 14A, the diagram in FIG. 14B includes a tearing signal 680, a set of programming voltage select signals 682, a gate clock signal 684, and row strobe signals 686a-686h. The tearing signal 680 is strobed low to initiate the hybrid drive mode for a particular video frame. The programming voltage select signals 682 allow the selection of all of the pixels in a particular row for receiving programming voltages from the DAC 322 in FIG. 3. In this example, there are 960 pixels in each row. The programming voltage select signals 682 initially are selected to send a set of low grayscale range programming voltages 690 to the first row. When the gate clock signal 684 is set high, the strobe signal 686a for the first row produces a pulse 692 to select the row. The low gray scale pixels in that row are then driven by the programming voltages from the DAC 322 while the high grayscale pixels are driven to zero voltage. After a sub-frame time period, the programming voltage select signals 682 are selected to send a set of high grayscale range programming voltages 694 to the first row. When the gate clock signal 684 is set high, the strobe signal 686a for the first row produces a second pulse 696 to select the row. The high grayscale pixels in that row are then driven by the programming voltages from the DAC 322 while the low grayscale pixels are driven to zero voltage.


As is shown by FIG. 14B, this process is repeated for each of the rows via the row strobe signals 686b-686h. Each row is therefore strobed once for programming the low grayscale pixels and once for programming the high grayscale values. Each row is also strobed simultaneously with the previous row, such as the high strobe pulses 692 on the row strobe line 686a and 686b, in order to leave the leakage path on for the drive transistor. A dummy line that is strobed for the purpose of leaving the leakage path on for the drive transistor for the last active row (row 481) shown as strobe 646e in the display.



FIG. 15 illustrates a system implementation for accommodating multiple gamma curves for different applications and automatic brightness control, using the hybrid driving scheme. The automatic brightness control is a feature where the controller 112 adjusts the overall luminance level of the display system 100 according to the level of ambient light detected by the light sensor 130 in FIG. 1. In this example, the display system 100 may have four levels of brightness: bright, normal, dim and dimmest. Of course any number of levels of brightness may be used.


In FIG. 15, a different set of voltages from LUTs 700 (#1-#n) is provided to a plurality of DAC decoders 322a in the source driver 110. The set of voltages is used to change the display peak brightness using the different sets of voltages 700. Multiple gamma LUTs 702 (#1-#m) are provided so that the DACs 322a can also change the voltages from the hybrid LUTs 700 to obtain a more solid gamma curve despite changing the peak brightness.


In this example, there are 18 conditions with 18 corresponding gamma curve LUTs stored in a memory of the gamma correction circuit 340 in FIG. 3. There are six gamma conditions (gamma 2.2 bright, gamma 2.2 normal, gamma 2.2 dim, gamma 1.0, gamma 1.8 and gamma 2.5) for each color (red, green and blue). Three gamma conditions, gamma 2.2 bright, gamma 2.2 normal and gamma 2.2 dim, are used according to the brightness level. In this example, the dim and dimmest brightness levels both use the gamma 2.2 dim condition. The other gamma conditions are used for application specific requirements. Each of the six gamma conditions for each color has its own gamma curve LUT 702 in FIG. 13 which is accessed depending on the specific color pixel and the required gamma condition in accordance with the brightness control.



FIGS. 16A and 16B are graphs of two modes of the brightness control that may be implemented by the controller 112. FIG. 16A shows the brightness control without hysteresis. The y-axis of the graph 720 shows the four levels of overall luminance of the display system 100. The luminance levels include a bright level 722, a normal level 724, a dim level 726 and a dimmest level 728. The x-axis of the graph 720 represents the output of the light sensor 130. Thus, as the output of the light sensor 130 in FIG. 1 increases past certain threshold levels, indicating greater levels of ambient light, the luminance of the display system 100 is increased. The x-axis shows a low level 730, a middle level 732 and a high level 734. When the detected output from the light sensor crosses one of the levels 730, 732 or 734, the luminance level is adjusted downward or upward to the next level using the LUTs 700 in FIG. 15. For example, when the ambient light detected exceeds the middle level 732, the luminance of the display is adjusted up to the normal level 724. If ambient light is reduced below the low level 730, the luminance of the display is adjusted down to the dimmest level 728.



FIG. 16B is a graph 750 showing the brightness control of the display system 100 in hysteresis mode. In order to allow smoother transitions to the eye, the brightness levels are sustained for a longer period when transitions are made between luminance levels. Similar to FIG. 16A, the y-axis of the graph 750 shows the four levels of overall luminance of the display system 100. The levels include a bright level 752, a normal level 754, a dim level 756 and a dimmest level 758. The x-axis of the graph 750 represents the output of the light sensor 130. Thus, as the output increases past certain threshold levels, indicating greater levels of ambient light, the luminance of the display system 100 is increased. The x-axis shows a low base level 760, a middle base level 762 and a high level 764. Each level 760, 762 and 764 includes a corresponding increase threshold level 770, 772 and 774 and a corresponding decrease threshold level 780, 782 and 784. Increases in luminance require greater ambient light than the base levels 760, 762 and 764. For example, when the detected ambient light exceeds an increase threshold level such as the threshold level 770, the luminance of the display is adjusted up to the dim level 756. Decreases in luminance require less ambient light than the base levels 760, 762 and 764. For example, if ambient light is reduced below the decrease threshold level 794, the luminance of the display is adjusted down to the normal level 754.


In a modified embodiment illustrated in FIGS. 17A-17E, the raw input grayscale values are converted to two different sub-frame grayscale values for two different sub-frames SF1 and SF2 of each frame F, so that the current levels are controlled to both enhance compensation and add relaxation intervals to extend the lifetime of the display. In the example in FIGS. 17A-17E, the duration of the first sub-frame SF1 is ¼ of the total frame time F, and the duration of the second sub-frame SF2 is the remaining ¾ of the total frame time F.


As depicted in FIG. 17A, as the value of the raw input grayscale values can range from zero to 255. As the input grayscale values increase from zero, those values are converted to increased values sf1_gsv for the first sub-frame SF1, and the grayscale value sf2_gsv for the second sub-frame SF2 is maintained at zero. This conversion may be effected using a look-up-table (LUT) that maps each grayscale input value to an increased sub-frame value sf1_gsv according to a gamma 2.2 curve. As the input grayscale values increase, the second sub-frame value remains at zero (at relaxation) until the first sub-frame value sf1_gsv reaches a preset threshold value sf1_max, e.g., 255, as depicted in FIG. 17B. Thus, up to this point no drive current is supplied to the pixel during the second sub-frame SF2 and so that the pixel remains black (at relaxation) during the second sub-frame SF2. The desired luminance represented by the input grayscale value is still achieved because the first sub-frame value sf1_gsv from the LUT is greater than the input value, which represents the desired luminance for an entire frame F. This improves compensation by providing a higher leakage current.


As depicted in FIG. 17C, after the threshold grayscale value sf1_max is reached, the first sub-frame grayscale value sf1_gsv remains at that maximum value as the input value continues to increase, while the second sub-frame grayscale value sf2_gsv begins to increase from zero. From this stage on, the LUT uses the following equation to govern the relationship between the first and second grayscale values:

sf1_gsv=min[255−sf2_gsv+128,sf1_max]  (1)

Thus, as the second sub-frame value sf2_gsv increases, the first sub-frame value sf1_gsv remains at sf1_max, until the second sub-frame value sf2_gsv reaches a first threshold value sf2_th, e.g., 128. As depicted in FIG. 17D, when the input grayscale value increases to a value that causes the second sub-frame value sf2_gsv to increase above the threshold value sf2_th, the value of sf2_gsv continues to increase while the first sub-frame value sf1_gsv is decreased by the same amount. This relationship causes the total luminance (sum of luminance from both sub-frames) vs. the raw grayscale input values to follow a gamma curve of 2.2.


As shown in FIG. 17E, the concurrent increasing of sf2_gsv and decreasing of sf1_gsv continues until sf2_gsv reaches a maximum value sf2_max, e.g., 255, which corresponds to a sf1_gsv value of 128 according to Equation (1). At this point the input grayscale value is at its maximum, e.g., 255, where the pixel is at full brightness. The reduced first sub-frame value sf1_gsv provides a moderate relaxation to the pixel when running at full brightness, to extend the pixel lifetime.


A second implementation utilizes an LUT containing grayscale data depicted by the curves in FIG. 18, which has the raw grayscale input values on the x axis and the corresponding sub-frame values on the y axis. The values sf1_gsv for the first sub-frame are depicted by the solid-line curve SF1, and the values sf2_gsv for the second sub-frame are depicted by the broken-line curve SF2. These sub-frame values sf1_gsv and sf2_gsv are generated from a look-up table (LUT) which maps the input grayscale value to sub-frame values sf1_gsv and sf2_gsv that increase the luminance according to a gamma 2.2 curve as the input grayscale value increases.


As the input grayscale value increases from zero to 95, the value of sf1_gsv increases from zero to a threshold value sf1_max (e.g., 255), and the value of sf2_gsv remains at zero. Thus, whenever the input grayscale value is in this range, the pixel will be black during the second sub-frame SF2, which provides a relaxation interval that helps reduce the rate of degradation and thereby extend the life of that pixel.


When the input grayscale value reaches 96, the LUT begins to increase the value of sf2_gsv and maintains the value of sf1_gsv at 255. When the input grayscale value reaches 145, the LUT progressively decreases the value of sf1_gsv from 255 while continuing to progressively increase the value of sf2_gsv.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A method of using raw grayscale image data representing images to be displayed in a plurality of successive frames, to drive a display having a plurality of pixels that include a drive transistor and an organic light emitting device, said method comprising: dividing each frame into at least a long sub-frame and a short sub-frame, a time period of the long sub-frame being greater than a time period of the short sub-frame;determining which of a plurality of predetermined grayscale value ranges a raw grayscale value for a pixel during a frame falls within; andsupplying the pixel with drive currents during each of the long sub-frame of the frame and the short sub-frame of the frame based upon said determined grayscale value range,
  • 2. The method of claim 1 wherein the drive current supplied to the pixel during the long sub-frame is less than the drive current supplied to the pixel during the short sub-frame when the determined grayscale value range is a predetermined low range of grayscale values.
  • 3. The method of claim 2 wherein the grayscale values in the predetermined low range of grayscale values include compensation for the pixel.
  • 4. The method of claim 1 wherein the drive current supplied to the pixel during the long sub-frame when the determined grayscale value range is a predetermined low range of grayscale values is a drive current corresponding to a black grayscale value.
  • 5. The method of claim 1 wherein the first predetermined range of grayscale values is a predetermined high range of grayscale values.
  • 6. The method of claim 5 wherein the drive current supplied to the pixel during the short sub-frame when the determined grayscale value range is a predetermined high range of grayscale values is a drive current less than a drive current corresponding to a full brightness grayscale value.
  • 7. The method of claim 6 wherein the grayscale values in the predetermined high range of grayscale values includes compensation for the pixel.
  • 8. The method of claim 1 wherein the drive currents for the long and short sub-frames are preselected to produce a pixel luminance during the frame that has a predetermined gamma relationship to said raw grayscale value for the frame.
  • 9. The method of claim 8 wherein the drive currents for the long and short sub-frames are preselected with use of a look-up table (LUT) and wherein the predetermined gamma relationship is a mapping to produce a pixel luminance according to a gamma 2.2 curve.
  • 10. The method of claim 1 in which said display is an active matrix display and said plurality of pixels in said active matrix display are OLED pixels.
  • 11. An apparatus for using raw grayscale image data representing images to be displayed in a plurality of successive frames, to drive a display having a plurality of pixels that each include a drive transistor and an organic light emitting device, multiple select lines coupled to said array for delivering signals that select when each pixel is to be driven, and multiple data lines for delivering drive signals to the selected pixels, said apparatus comprising: a source driver coupled to said data lines and including a processing circuit for receiving said raw grayscale image data and adapted to: divide each frame into at least a long sub-frame and a short sub-frame, a time period of the long sub-frame being greater than a time period of the short sub-frame;determine which of a plurality of predetermined grayscale value ranges a raw grayscale value for a pixel during a frame falls within; andprogram the pixel for each of the long sub-frame of the frame and the short sub-frame of the frame based upon said determined grayscale value range for supplying the pixel with drive currents based upon said determined grayscale value range,wherein the drive current supplied to the pixel during the long sub-frame is greater than the drive current supplied to the pixel during the short sub-frame when the determined grayscale value range is a first predetermined range of grayscale values.
  • 12. The apparatus of claim 11 wherein the drive current supplied to the pixel during the long sub-frame is less than the drive current supplied to the pixel during the short sub-frame when the determined grayscale value range is a predetermined low range of grayscale values.
  • 13. The apparatus of claim 12 further comprising: a controller coupled to the source driver for controlling the source driver to program the pixel including compensation for the pixel during the short sub-frame when the determined grayscale value range is a predetermined low range of grayscale values.
  • 14. The apparatus of claim 11 wherein the drive current supplied to the pixel during the long sub-frame when the determined grayscale value range is a predetermined low range of grayscale values is a drive current corresponding to a black grayscale value.
  • 15. The apparatus of claim 11 wherein the first predetermined range of grayscale values is a predetermined high range of grayscale values.
  • 16. The apparatus of claim 11 wherein the drive current supplied to the pixel during the short sub-frame when the determined grayscale value range is a predetermined high range of grayscale values is a drive current less than a drive current corresponding to a full brightness grayscale value.
  • 17. The apparatus of claim 16 further comprising: a controller coupled to the source driver for controlling the source driver to program the pixel including compensation for the pixel during the long sub-frame when the determined grayscale value range is a predetermined high range of grayscale values.
  • 18. The apparatus of claim 11 wherein the drive currents for the long and short sub-frames are preselected to produce a pixel luminance during the frame that has a predetermined gamma relationship to said raw grayscale value for the frame.
  • 19. The apparatus of claim 18 wherein the drive currents for the long and short sub-frames are preselected with use of a look-up table (LUT) and wherein the predetermined gamma relationship is a mapping to produce a pixel luminance according to a gamma 2.2 curve.
  • 20. The apparatus of claim 11 in which said display is an active matrix display and said plurality of pixels in said active matrix display are OLED pixels.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/705,508, filed Sep. 15, 2017, now allowed, which is a continuation of U.S. application Ser. No. 15/099,752, filed Apr. 15, 2016, now U.S. Pat. No. 9,792,857, which is a continuation of U.S. application Ser. No. 14/544,110, filed Nov. 26, 2014, now U.S. Pat. No. 9,343,006, which is a continuation of and claims priority to U.S. application Ser. No. 13/365,391, filed Feb. 3, 2012, now U.S. Pat. No. 8,937,632, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (595)
Number Name Date Kind
3506851 Polkinghorn Apr 1970 A
3774055 Bapat Nov 1973 A
4090096 Nagami May 1978 A
4160934 Kirsch Jul 1979 A
4295091 Ponkala Oct 1981 A
4354162 Wright Oct 1982 A
4943956 Noro Jul 1990 A
4996523 Bell Feb 1991 A
5153420 Hack Oct 1992 A
5198803 Shie Mar 1993 A
5204661 Hack Apr 1993 A
5266515 Robb Nov 1993 A
5489918 Mosier Feb 1996 A
5498880 Lee Mar 1996 A
5557342 Eto Sep 1996 A
5561381 Jenkins Oct 1996 A
5572444 Lentz Nov 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara Jul 1997 A
5670973 Bassetti Sep 1997 A
5684365 Tang Nov 1997 A
5691783 Numao Nov 1997 A
5714968 Ikeda Feb 1998 A
5723950 Wei Mar 1998 A
5744824 Kousai Apr 1998 A
5745660 Kolpatzik Apr 1998 A
5748160 Shieh May 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows Jun 1999 A
5923794 McGrath Jul 1999 A
5945972 Okumura Aug 1999 A
5949398 Kim Sep 1999 A
5952789 Stewart Sep 1999 A
5952991 Akiyama Sep 1999 A
5982104 Sasaki Nov 1999 A
5990629 Yamada Nov 1999 A
6023259 Howard Feb 2000 A
6069365 Chow May 2000 A
6091203 Kawashima Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6177915 Beeteson Jan 2001 B1
6229506 Dawson May 2001 B1
6229508 Kane May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6262589 Tamukai Jul 2001 B1
6271825 Greene Aug 2001 B1
6288696 Holloman Sep 2001 B1
6304039 Appelberg Oct 2001 B1
6307322 Dawson Oct 2001 B1
6310962 Chung Oct 2001 B1
6320325 Cok Nov 2001 B1
6323631 Juang Nov 2001 B1
6329971 McKnight Dec 2001 B2
6356029 Hunter Mar 2002 B1
6373454 Knapp Apr 2002 B1
6377237 Sojourner Apr 2002 B1
6392617 Gleason May 2002 B1
6404139 Sasaki et al. Jun 2002 B1
6414661 Shen Jul 2002 B1
6417825 Stewart Jul 2002 B1
6433488 Bu Aug 2002 B1
6437106 Stoner Aug 2002 B1
6445369 Yang Sep 2002 B1
6475845 Kimura Nov 2002 B2
6501098 Yamazaki Dec 2002 B2
6501466 Yamagishi Dec 2002 B1
6518962 Kimura Feb 2003 B2
6522315 Ozawa Feb 2003 B2
6525683 Gu Feb 2003 B1
6531827 Kawashima Mar 2003 B2
6541921 Luciano, Jr. Apr 2003 B1
6542138 Shannon Apr 2003 B1
6555420 Yamazaki Apr 2003 B1
6577302 Hunter Jun 2003 B2
6580408 Bae Jun 2003 B1
6580657 Sanford Jun 2003 B2
6583398 Harkin Jun 2003 B2
6583775 Sekiya Jun 2003 B1
6594606 Everitt Jul 2003 B2
6618030 Kane Sep 2003 B2
6639244 Yamazaki Oct 2003 B1
6668645 Gilmour Dec 2003 B1
6677713 Sung Jan 2004 B1
6680580 Sung Jan 2004 B1
6687266 Ma Feb 2004 B1
6690000 Muramatsu Feb 2004 B1
6690344 Takeuchi Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon Feb 2004 B2
6697057 Koyama Feb 2004 B2
6720942 Lee Apr 2004 B2
6724151 Yoo Apr 2004 B2
6734636 Sanford May 2004 B2
6738034 Kaneko May 2004 B2
6738035 Fan May 2004 B1
6753655 Shih Jun 2004 B2
6753834 Mikami Jun 2004 B2
6756741 Li Jun 2004 B2
6756952 Decaux Jun 2004 B1
6756958 Furuhashi Jun 2004 B2
6765549 Yamazaki Jul 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford Aug 2004 B2
6777888 Kondo Aug 2004 B2
6781306 Park Aug 2004 B2
6781567 Kimura Aug 2004 B2
6806497 Jo Oct 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6815975 Nara Nov 2004 B2
6828950 Koyama Dec 2004 B2
6853371 Miyajima Feb 2005 B2
6859193 Yumoto Feb 2005 B1
6873117 Ishizuka Mar 2005 B2
6876346 Anzai Apr 2005 B2
6885356 Hashimoto Apr 2005 B2
6900485 Lee May 2005 B2
6903734 Eu Jun 2005 B2
6909243 Inukai Jun 2005 B2
6909419 Zavracky Jun 2005 B2
6911960 Yokoyama Jun 2005 B1
6911964 Lee Jun 2005 B2
6914448 Jinno Jul 2005 B2
6919871 Kwon Jul 2005 B2
6924602 Komiya Aug 2005 B2
6937215 Lo Aug 2005 B2
6937220 Kitaura Aug 2005 B2
6940214 Komiya Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6947022 McCartney Sep 2005 B2
6954194 Matsumoto Oct 2005 B2
6956547 Bae Oct 2005 B2
6975142 Azami Dec 2005 B2
6975332 Arnold Dec 2005 B2
6995510 Murakami Feb 2006 B2
6995519 Arnold Feb 2006 B2
7023408 Chen Apr 2006 B2
7027015 Booth, Jr. Apr 2006 B2
7027078 Reihl Apr 2006 B2
7034793 Sekiya Apr 2006 B2
7038392 Libsch May 2006 B2
7053875 Chou May 2006 B2
7057359 Hung Jun 2006 B2
7061451 Kimura Jun 2006 B2
7064733 Cok Jun 2006 B2
7071932 Libsch Jul 2006 B2
7088051 Cok Aug 2006 B1
7088052 Kimura Aug 2006 B2
7102378 Kuo Sep 2006 B2
7106285 Naugler Sep 2006 B2
7112820 Chang Sep 2006 B2
7116058 Lo Oct 2006 B2
7119493 Fryer Oct 2006 B2
7122835 Ikeda Oct 2006 B1
7127380 Iverson Oct 2006 B1
7129914 Knapp Oct 2006 B2
7161566 Cok Jan 2007 B2
7164417 Cok Jan 2007 B2
7193589 Yoshida Mar 2007 B2
7224332 Cok May 2007 B2
7227519 Kawase Jun 2007 B1
7245277 Ishizuka Jul 2007 B2
7246912 Burger Jul 2007 B2
7248236 Nathan Jul 2007 B2
7262753 Tanghe Aug 2007 B2
7274363 Ishizuka Sep 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7321348 Cok Jan 2008 B2
7339560 Sun Mar 2008 B2
7355574 Leon Apr 2008 B1
7358941 Ono Apr 2008 B2
7368868 Sakamoto May 2008 B2
7397485 Miller Jul 2008 B2
7411571 Huh Aug 2008 B2
7414600 Nathan Aug 2008 B2
7423617 Giraldo Sep 2008 B2
7453054 Lee Nov 2008 B2
7474285 Kimura Jan 2009 B2
7502000 Yuki Mar 2009 B2
7528812 Tsuge May 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan Aug 2009 B2
7576718 Miyazawa Aug 2009 B2
7580012 Kim Aug 2009 B2
7589707 Chou Sep 2009 B2
7605792 Son Oct 2009 B2
7609239 Chang Oct 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan Nov 2009 B2
7633470 Kane Dec 2009 B2
7656370 Schneider Feb 2010 B2
7675485 Steer Mar 2010 B2
7800558 Routley Sep 2010 B2
7847764 Cok Dec 2010 B2
7859492 Kohno Dec 2010 B2
7868859 Tomida Jan 2011 B2
7876294 Sasaki Jan 2011 B2
7924249 Nathan Apr 2011 B2
7932883 Klompenhouwer Apr 2011 B2
7969390 Yoshida Jun 2011 B2
7978187 Nathan Jul 2011 B2
7994712 Sung Aug 2011 B2
8026876 Nathan Sep 2011 B2
8031180 Miyamoto Oct 2011 B2
8049420 Tamura Nov 2011 B2
8077123 Naugler, Jr. Dec 2011 B2
8115707 Nathan Feb 2012 B2
8208084 Lin Jun 2012 B2
8223177 Nathan Jul 2012 B2
8232939 Nathan Jul 2012 B2
8259044 Nathan Sep 2012 B2
8264431 Bulovic Sep 2012 B2
8279143 Nathan Oct 2012 B2
8294696 Min Oct 2012 B2
8314783 Sambandan Nov 2012 B2
8339386 Leon Dec 2012 B2
8441206 Myers May 2013 B2
8493296 Ogawa Jul 2013 B2
8581809 Nathan Nov 2013 B2
8654114 Shimizu Feb 2014 B2
9125278 Nathan Sep 2015 B2
9368063 Chaji Jun 2016 B2
9418587 Chaji Aug 2016 B2
9430958 Chaji Aug 2016 B2
9472139 Nathan Oct 2016 B2
9489891 Nathan Nov 2016 B2
9489897 Jaffari Nov 2016 B2
9502653 Chaji Nov 2016 B2
9530349 Chaji Dec 2016 B2
9530352 Nathan Dec 2016 B2
9536460 Chaji Jan 2017 B2
9536465 Chaji Jan 2017 B2
9589490 Chaji Mar 2017 B2
9633597 Nathan Apr 2017 B2
9640112 Jaffari May 2017 B2
9721512 Soni Aug 2017 B2
9741279 Chaji Aug 2017 B2
9741282 Giannikouris Aug 2017 B2
9761170 Chaji Sep 2017 B2
9773439 Chaji Sep 2017 B2
9773441 Chaji Sep 2017 B2
9786209 Chaji Oct 2017 B2
20010002703 Koyama Jun 2001 A1
20010009283 Arao Jul 2001 A1
20010024181 Kubota Sep 2001 A1
20010024186 Kane Sep 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010035863 Kimura Nov 2001 A1
20010038367 Inukai Nov 2001 A1
20010040541 Yoneda Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache Nov 2001 A1
20010052606 Sempel Dec 2001 A1
20010052940 Hagihara Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020012057 Kimura Jan 2002 A1
20020014851 Tai Feb 2002 A1
20020018034 Ohki Feb 2002 A1
20020030190 Ohtani Mar 2002 A1
20020047565 Nara Apr 2002 A1
20020052086 Maeda May 2002 A1
20020067134 Kawashima Jun 2002 A1
20020084463 Sanford Jul 2002 A1
20020101152 Kimura Aug 2002 A1
20020101172 Bu Aug 2002 A1
20020105279 Kimura Aug 2002 A1
20020117722 Osada Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020158587 Komiya Oct 2002 A1
20020158666 Azami Oct 2002 A1
20020158823 Zavracky Oct 2002 A1
20020167471 Everitt Nov 2002 A1
20020167474 Everitt Nov 2002 A1
20020169575 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura Dec 2002 A1
20020181276 Yamazaki Dec 2002 A1
20020183945 Everitt Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190924 Asano Dec 2002 A1
20020190971 Nakamura Dec 2002 A1
20020195967 Kim Dec 2002 A1
20020195968 Sanford Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030043088 Booth Mar 2003 A1
20030057895 Kimura Mar 2003 A1
20030058226 Bertram Mar 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura Apr 2003 A1
20030071821 Sundahl Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030107560 Yumoto Jun 2003 A1
20030111966 Mikami Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030122749 Booth, Jr. Jul 2003 A1
20030122813 Ishizuki Jul 2003 A1
20030142088 LeChevalier Jul 2003 A1
20030146897 Hunter Aug 2003 A1
20030151569 Lee Aug 2003 A1
20030156101 LeChevalier Aug 2003 A1
20030169241 LeChevalier Sep 2003 A1
20030174152 Noguchi Sep 2003 A1
20030179626 Sanford Sep 2003 A1
20030185438 Osawa Oct 2003 A1
20030197663 Lee Oct 2003 A1
20030210256 Mori Nov 2003 A1
20030230141 Gilmour Dec 2003 A1
20030230980 Forrest Dec 2003 A1
20030231148 Lin Dec 2003 A1
20040032382 Cok Feb 2004 A1
20040041750 Abe Mar 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano Apr 2004 A1
20040070565 Nayar Apr 2004 A1
20040090186 Kanauchi May 2004 A1
20040090400 Yoo May 2004 A1
20040095297 Libsch May 2004 A1
20040100427 Miyazawa May 2004 A1
20040108518 Jo Jun 2004 A1
20040135749 Kondakov Jul 2004 A1
20040140982 Pate Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi Aug 2004 A1
20040150594 Koyama Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun Sep 2004 A1
20040174349 Libsch Sep 2004 A1
20040174354 Ono Sep 2004 A1
20040178743 Miller Sep 2004 A1
20040183759 Stevenson Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040227697 Mori Nov 2004 A1
20040233125 Tanghe Nov 2004 A1
20040239596 Ono Dec 2004 A1
20040246246 Tobita Dec 2004 A1
20040252089 Ono Dec 2004 A1
20040257313 Kawashima Dec 2004 A1
20040257353 Imamura Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20040263444 Kimura Dec 2004 A1
20040263445 Inukai Dec 2004 A1
20040263541 Takeuchi Dec 2004 A1
20050007355 Miura Jan 2005 A1
20050007357 Yamashita Jan 2005 A1
20050007392 Kasai Jan 2005 A1
20050017650 Fryer Jan 2005 A1
20050024081 Kuo Feb 2005 A1
20050024393 Kondo Feb 2005 A1
20050030267 Tanghe Feb 2005 A1
20050057484 Diefenbaugh Mar 2005 A1
20050057580 Yamano Mar 2005 A1
20050067970 Libsch Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050068275 Kane Mar 2005 A1
20050073264 Matsumoto Apr 2005 A1
20050083323 Suzuki Apr 2005 A1
20050088103 Kageyama Apr 2005 A1
20050105031 Shih May 2005 A1
20050110420 Arnold May 2005 A1
20050110807 Chang May 2005 A1
20050122294 Ben-David Jun 2005 A1
20050140598 Kim Jun 2005 A1
20050140610 Smith Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki Jul 2005 A1
20050162079 Sakamoto Jul 2005 A1
20050168416 Hashimoto Aug 2005 A1
20050179626 Yuki Aug 2005 A1
20050179628 Kimura Aug 2005 A1
20050185200 Tobol Aug 2005 A1
20050200575 Kim Sep 2005 A1
20050206590 Sasaki Sep 2005 A1
20050212787 Noguchi Sep 2005 A1
20050219184 Zehner Oct 2005 A1
20050225683 Nozawa Oct 2005 A1
20050248515 Naugler Nov 2005 A1
20050269959 Uchino Dec 2005 A1
20050269960 Ono Dec 2005 A1
20050280615 Cok Dec 2005 A1
20050280766 Johnson Dec 2005 A1
20050285822 Reddy Dec 2005 A1
20050285825 Eom Dec 2005 A1
20060001613 Routley Jan 2006 A1
20060007072 Choi Jan 2006 A1
20060007206 Reddy et al. Jan 2006 A1
20060007249 Reddy Jan 2006 A1
20060012310 Chen Jan 2006 A1
20060012311 Ogawa Jan 2006 A1
20060015272 Giraldo et al. Jan 2006 A1
20060022305 Yamashita Feb 2006 A1
20060022907 Uchino Feb 2006 A1
20060027807 Nathan Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038501 Koyama Feb 2006 A1
20060038758 Routley Feb 2006 A1
20060038762 Chou Feb 2006 A1
20060044227 Hadcock Mar 2006 A1
20060061248 Cok Mar 2006 A1
20060066533 Sato Mar 2006 A1
20060077134 Hector et al. Apr 2006 A1
20060077135 Cok Apr 2006 A1
20060077142 Kwon Apr 2006 A1
20060082523 Guo Apr 2006 A1
20060092185 Jo May 2006 A1
20060097628 Suh May 2006 A1
20060097631 Lee May 2006 A1
20060103324 Kim May 2006 A1
20060103611 Choi May 2006 A1
20060125740 Shirasaki et al. Jun 2006 A1
20060149493 Sambandan Jul 2006 A1
20060170623 Naugler, Jr. Aug 2006 A1
20060176250 Nathan Aug 2006 A1
20060208961 Nathan Sep 2006 A1
20060208971 Deane Sep 2006 A1
20060214888 Schneider Sep 2006 A1
20060231740 Kasai Oct 2006 A1
20060232522 Roy Oct 2006 A1
20060244697 Lee Nov 2006 A1
20060256048 Fish et al. Nov 2006 A1
20060261841 Fish Nov 2006 A1
20060273997 Nathan Dec 2006 A1
20060279481 Haruna Dec 2006 A1
20060284801 Yoon Dec 2006 A1
20060284802 Kohno Dec 2006 A1
20060284895 Marcu Dec 2006 A1
20060290614 Nathan Dec 2006 A1
20060290618 Goto Dec 2006 A1
20070001937 Park Jan 2007 A1
20070001939 Hashimoto Jan 2007 A1
20070008251 Kohno Jan 2007 A1
20070008268 Park Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070057873 Uchino Mar 2007 A1
20070057874 Le Roy Mar 2007 A1
20070069998 Naugler Mar 2007 A1
20070075727 Nakano Apr 2007 A1
20070076226 Klompenhouwer Apr 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan Apr 2007 A1
20070097038 Yamazaki May 2007 A1
20070097041 Park May 2007 A1
20070103411 Cok et al. May 2007 A1
20070103419 Uchino May 2007 A1
20070115221 Buchhauser May 2007 A1
20070126672 Tada et al. Jun 2007 A1
20070164664 Ludwicki Jul 2007 A1
20070164937 Jung Jul 2007 A1
20070164938 Shin Jul 2007 A1
20070182671 Nathan Aug 2007 A1
20070236134 Ho Oct 2007 A1
20070236440 Wacyk Oct 2007 A1
20070236517 Kimpe Oct 2007 A1
20070241999 Lin Oct 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070290957 Cok Dec 2007 A1
20070290958 Cok Dec 2007 A1
20070296672 Kim Dec 2007 A1
20080001525 Chao Jan 2008 A1
20080001544 Murakami Jan 2008 A1
20080030518 Higgins Feb 2008 A1
20080036706 Kitazawa Feb 2008 A1
20080036708 Shirasaki Feb 2008 A1
20080042942 Takahashi Feb 2008 A1
20080042948 Yamashita Feb 2008 A1
20080048951 Naugler, Jr. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080055211 Ogawa Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan Apr 2008 A1
20080088648 Nathan Apr 2008 A1
20080111766 Uchino May 2008 A1
20080116787 Hsu May 2008 A1
20080117144 Nakano et al. May 2008 A1
20080136770 Peker et al. Jun 2008 A1
20080150845 Ishii Jun 2008 A1
20080150847 Kim Jun 2008 A1
20080158115 Cordes Jul 2008 A1
20080158648 Cummings Jul 2008 A1
20080191976 Nathan Aug 2008 A1
20080198103 Toyomura Aug 2008 A1
20080211749 Weitbruch Sep 2008 A1
20080218451 Miyamoto Sep 2008 A1
20080225183 Tomizawa et al. Sep 2008 A1
20080231558 Naugler Sep 2008 A1
20080231562 Kwon Sep 2008 A1
20080231625 Minami Sep 2008 A1
20080246713 Lee Oct 2008 A1
20080252223 Toyoda Oct 2008 A1
20080252571 Hente Oct 2008 A1
20080259020 Fisekovic Oct 2008 A1
20080284768 Yoshida Nov 2008 A1
20080290805 Yamada Nov 2008 A1
20080297055 Miyake Dec 2008 A1
20090002281 Okamoto Jan 2009 A1
20090033598 Suh Feb 2009 A1
20090058772 Lee Mar 2009 A1
20090109142 Takahara Apr 2009 A1
20090121994 Miyata May 2009 A1
20090146926 Sung Jun 2009 A1
20090160743 Tomida Jun 2009 A1
20090174628 Wang Jul 2009 A1
20090184901 Kwon Jul 2009 A1
20090195483 Naugler, Jr. Aug 2009 A1
20090201281 Routley Aug 2009 A1
20090206764 Schemmann Aug 2009 A1
20090207160 Shirasaki et al. Aug 2009 A1
20090213046 Nam Aug 2009 A1
20090244046 Seto Oct 2009 A1
20090262047 Yamashita Oct 2009 A1
20090267881 Takaki Oct 2009 A1
20090309818 Kim Dec 2009 A1
20100004891 Ahlers Jan 2010 A1
20100026725 Smith Feb 2010 A1
20100039422 Seto Feb 2010 A1
20100039458 Nathan Feb 2010 A1
20100045646 Kishi Feb 2010 A1
20100045650 Fish et al. Feb 2010 A1
20100060911 Marcu Mar 2010 A1
20100079419 Shibusawa Apr 2010 A1
20100085282 Yu Apr 2010 A1
20100103160 Jeon Apr 2010 A1
20100134469 Ogura et al. Jun 2010 A1
20100134475 Ogura et al. Jun 2010 A1
20100165002 Ahn Jul 2010 A1
20100194670 Cok Aug 2010 A1
20100207960 Kimpe Aug 2010 A1
20100225630 Levey Sep 2010 A1
20100251295 Amento Sep 2010 A1
20100277400 Jeong Nov 2010 A1
20100315319 Cok Dec 2010 A1
20110050870 Hanari Mar 2011 A1
20110063197 Chung Mar 2011 A1
20110069051 Nakamura Mar 2011 A1
20110069089 Kopf Mar 2011 A1
20110069096 Li Mar 2011 A1
20110074750 Leon Mar 2011 A1
20110074762 Shirasaki et al. Mar 2011 A1
20110109610 Yamamoto May 2011 A1
20110149166 Botzas Jun 2011 A1
20110169798 Lee Jul 2011 A1
20110175895 Hayakawa Jul 2011 A1
20110181630 Smith Jul 2011 A1
20110199395 Nathan Aug 2011 A1
20110205250 Yoo Aug 2011 A1
20110227964 Chaji Sep 2011 A1
20110242074 Bert et al. Oct 2011 A1
20110273399 Lee Nov 2011 A1
20110279488 Nathan Nov 2011 A1
20110292006 Kim Dec 2011 A1
20110293480 Mueller Dec 2011 A1
20120056558 Toshiya Mar 2012 A1
20120062565 Fuchs Mar 2012 A1
20120262184 Shen Oct 2012 A1
20120299970 Bae Nov 2012 A1
20120299973 Jaffari Nov 2012 A1
20120299978 Chaji Nov 2012 A1
20130002527 Kim Jan 2013 A1
20130027381 Nathan Jan 2013 A1
20130057595 Nathan Mar 2013 A1
20130112960 Chaji May 2013 A1
20130135272 Park May 2013 A1
20130162617 Yoon Jul 2013 A1
20130201223 Li et al. Aug 2013 A1
20130241813 Tanaka Sep 2013 A1
20130309821 Yoo Nov 2013 A1
20130321671 Cote Dec 2013 A1
20140015824 Chaji et al. Jan 2014 A1
20140022289 Lee Jan 2014 A1
20140043316 Chaji et al. Feb 2014 A1
20140055500 Lai Feb 2014 A1
20140111567 Nathan et al. Apr 2014 A1
20160275860 Wu Sep 2016 A1
Foreign Referenced Citations (142)
Number Date Country
1 294 034 Jan 1992 CA
2 109 951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 432 530 Jul 2002 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 463 653 Jan 2004 CA
2 498 136 Mar 2004 CA
2 522 396 Nov 2004 CA
2 443 206 Mar 2005 CA
2 472 671 Dec 2005 CA
2 567 076 Jan 2006 CA
2526436 Feb 2006 CA
2 526 782 Apr 2006 CA
2 541 531 Jul 2006 CA
2 550 102 Apr 2008 CA
2 773 699 Oct 2013 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1623180 Jun 2005 CN
1682267 Oct 2005 CN
1758309 Apr 2006 CN
1760945 Apr 2006 CN
1886774 Dec 2006 CN
1897093 Jul 2007 CN
101194300 Jun 2008 CN
101449311 Jun 2009 CN
101615376 Dec 2009 CN
102656621 Sep 2012 CN
102725786 Oct 2012 CN
0 158 366 Oct 1985 EP
1 028 471 Aug 2000 EP
1 111 577 Jun 2001 EP
1 130 565 Sep 2001 EP
1 194 013 Apr 2002 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
145 0341 Aug 2004 EP
1 465 143 Oct 2004 EP
1 469 448 Oct 2004 EP
1 521 203 Apr 2005 EP
1 594 347 Nov 2005 EP
1 784 055 May 2007 EP
1854338 Nov 2007 EP
1 879 169 Jan 2008 EP
1 879 172 Jan 2008 EP
2299427 Mar 2011 EP
2395499 Dec 2011 EP
2 389 951 Dec 2003 GB
1272298 Oct 1989 JP
4-042619 Feb 1992 JP
6-314977 Nov 1994 JP
8-340243 Dec 1996 JP
09-090405 Apr 1997 JP
10-254410 Sep 1998 JP
11-202295 Jul 1999 JP
11-219146 Aug 1999 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000-056847 Feb 2000 JP
2000-81607 Mar 2000 JP
2001-134217 May 2001 JP
2001-195014 Jul 2001 JP
2002-055654 Feb 2002 JP
2002-91376 Mar 2002 JP
2002-514320 May 2002 JP
2002-229513 Aug 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-076331 Mar 2003 JP
2003-124519 Apr 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2003-317944 Nov 2003 JP
2004-004675 Jan 2004 JP
2004-045648 Feb 2004 JP
2004-145197 May 2004 JP
2004-287345 Oct 2004 JP
2005-057217 Mar 2005 JP
2007-065015 Mar 2007 JP
2007-155754 Jun 2007 JP
2008-102335 May 2008 JP
4-158570 Oct 2008 JP
2003-195813 Jul 2013 JP
2004-0100887 Dec 2004 KR
342486 Oct 1998 TW
473622 Jan 2002 TW
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
1221268 Sep 2004 TW
1223092 Nov 2004 TW
200727247 Jul 2007 TW
WO 199848403 Oct 1998 WO
WO 199948079 Sep 1999 WO
WO 200106484 Jan 2001 WO
WO 200127910 Apr 2001 WO
WO 200163587 Aug 2001 WO
WO 2002067327 Aug 2002 WO
WO 2003001496 Jan 2003 WO
WO 2003034389 Apr 2003 WO
WO 2003058594 Jul 2003 WO
WO 2003063124 Jul 2003 WO
WO 2003077231 Sep 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004025615 Mar 2004 WO
WO 2004034364 Apr 2004 WO
WO 2004047058 Jun 2004 WO
WO 2004066249 Aug 2004 WO
WO 2004104975 Dec 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005022500 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005029456 Mar 2005 WO
WO2005034072 Apr 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006000101 Jan 2006 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006084360 Aug 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2007090287 Aug 2007 WO
WO 2007120849 Oct 2007 WO
WO 2009048618 Apr 2009 WO
WO 2009055920 May 2009 WO
WO 2010023270 Mar 2010 WO
WO 2010146707 Dec 2010 WO
WO 2011041224 Apr 2011 WO
WO 2011064761 Jun 2011 WO
WO 2011067729 Jun 2011 WO
WO 2012160424 Nov 2012 WO
WO 2012160471 Nov 2012 WO
WO 2012164474 Dec 2012 WO
WO 2012164475 Dec 2012 WO
Non-Patent Literature Citations (132)
Entry
Ahnood : “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009.
Alexander : “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander : “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Ashtiani : “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji : “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji : “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji : “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜0˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji : “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji : “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji : “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji : “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji : “A Novel Driving Scheme for High Resolution Large-area a-SI:H AMOLED displays”; dated Aug. 2005 (3 pages).
Chaji : “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji : “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji : “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji : “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji : “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji : “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji : “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji : “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji : “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji : “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji : “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji : “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji : “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji : “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji : “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji : “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji : “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji : “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji : “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji : “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji : “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report for Application No. EP 04 78 6661 dated Mar. 9, 2009.
European Search Report for Application No. EP 05 75 9141 dated Oct. 30, 2009 (2 pages).
European Search Report for Application No. EP 05 81 9617 dated Jan. 30, 2009.
European Search Report for Application No. EP 06 70 5133 dated Jul. 18, 2008.
European Search Report for Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages).
European Search Report for Application No. EP 07 71 0608.6 dated Mar. 19, 2010 (7 pages).
European Search Report for Application No. EP 07 71 9579 dated May 20, 2009.
European Search Report for Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages).
European Search Report for Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages).
European Search Report for Application No. EP 10 83 4294.0-1903, dated Apr. 8, 2013, (9 pages).
European Supplementary Search Report for Application No. EP 04 78 6662 dated Jan. 19, 2007 (2 pages).
Extended European Search Report for Application No. 11 73 9485.8 dated Aug. 6, 2013(14 pages).
Extended European Search Report for Application No. EP 09 73 3076.5, dated Apr. 27, (13 pages).
Extended European Search Report for Application No. EP 11 16 8677.0, dated Nov. 29, 2012, (13 page).
Extended European Search Report for Application No. EP 11 19 1641.7 dated Jul. 11, 2012 (14 pages).
Extended European Search Report for Application No. EP 13153887.8 dated Apr. 12, 2013 (6 pages).
Extended European Search Report for Application No. EP 10834297 dated Oct. 27, 2014 (6 pages).
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages).
Goh , “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585.
International Preliminary Report on Patentability for Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages.
International Search Report for Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).
International Search Report for Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (2 pages).
International Search Report for Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
International Search Report for Application No. PCT/CA2009/000501, dated Jul. 30, 2009 (4 pages).
International Search Report for Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).
International Search Report for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages).
International Search Report for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 5 pages.
International Search Report for Application No. PCT/IB2014/060959, dated Aug. 28, 2014, 5 pages.
International Search Report for Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.
International Search Report for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages).
International Search Report for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.
International Search Report for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (3 pages).
International Search Report for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).
International Search Report for Application No. PCT/JP02/09668, dated Dec. 3, 2002, (4 pages).
International Written Opinion for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages).
International Written Opinion for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (4 pages).
International Written Opinion for Application No. PCT/CA2009/000501 dated Jul. 30, 2009 (6 pages).
International Written Opinion for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages).
International Written Opinion for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 8 pages.
International Written Opinion for Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.
International Written Opinion for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).
International Written Opinion for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages.
International Written Opinion for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Written Opinion for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (6 pages).
International Written Opinion for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages).
Jafarabadiashtiani : “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Kanicki, J., “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).
Karim, K. S., “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).
Lee : “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006.
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages).
Liu, P. et al., Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistor for AMOLEDs, Journal of Display Technology, vol. 5, Issue 6, Jun. 2009 (pp. 224-227).
Ma E Y: “organic light emitting diode/thin film transistor integration for foldable displays” dated Sep. 15, 1997(4 pages).
Matsueda y : “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Mendes E., “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721).
Nathan A. , “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages).
Nathan , “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Nathan : “Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,”; dated 2006 (16 pages).
Nathan : “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan : “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan : “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Office Action in Japanese patent application No. JP2012-541612 dated Jul. 15, 2014. (3 pages).
Partial European Search Report for Application No. EP 11 168 677.0, dated Sep. 22, 2011 (5 pages).
Partial European Search Report for Application No. EP 11 19 1641.7, dated Mar. 20, 2012 (8 pages).
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages.
Rafati : “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavian : “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian : “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian : “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian : “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian : “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Safavian : “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Singh, “Current Conveyor: Novel Universal Active Block”, Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48 (12EPPT).
Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages).
Spindler , System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.
Snorre Aunet: “switched capacitors circuits”, University of Oslo, Mar. 7, 2011 (Mar. 7, 2011), XP002729694, Retrieved from the Internet: URL:http://www.uio.no/studier/emner/matnat/ifi/INF4420/v11/undervisningsmateriale/INF.4420_V11_0308_1.pdf [retrieved on Sep. 9, 2014].
Stewart M. , “polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).
Vygranenko : “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang : “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Yi He , “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages).
International Search Report for Application No. PCT/IB2014/058244, Canadian Intellectual Property Office, dated Apr. 11, 2014; (6 pages).
International Search Report for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 23, 2014; (6 pages).
Written Opinion for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 12, 2014 (6 pages).
International Search Report for Application No. PCT/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014 (3 pages).
Extended European Search Report for Application No. EP 14158051.4, dated Jul. 29, 2014, (4 pages).
Office Action in Chinese Patent Invention No. 201180008188.9, dated Jun. 4, 2014 (17 pages) (w/English translation).
International Search Report for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.
Written Opinion for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015.
Extended European Search Report for Application No. EP 11866291.5, dated Mar. 9, 2015, (9 pages).
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (8 pages).
Office Action in Chinese Patent Invention No. 201280022957.5, dated Jun. 26, 2015 (7 pages).
Extended European Search Report for Application No. EP 13794695.0, dated Dec. 18, 2015, (9 pages).
Extended European Search Report for Application No. EP 16157746.5, dated Apr. 8, 2016, (11 pages).
Extended European Search Report for Application No. EP 16192749.6, dated Dec. 15, 2016, (17 pages).
International Search Report for Application No. PCT/IB/2016/054763 dated Nov. 25, 2016 (4 pages).
Written Opinion for Application No. PCT/IB/2016/054763 dated Nov. 25, 2016 (9 pages).
Related Publications (1)
Number Date Country
20180315372 A1 Nov 2018 US
Continuations (4)
Number Date Country
Parent 15705508 Sep 2017 US
Child 16030268 US
Parent 15099752 Apr 2016 US
Child 15705508 US
Parent 14554110 Nov 2014 US
Child 15099752 US
Parent 13365391 Feb 2012 US
Child 14554110 US