The present invention relates to display technology, and particularly to driving systems for active-matrix displays such as AMOLED displays.
A display device having a plurality of pixels (or sub-pixels) arranged in a matrix has been widely used in various applications. Such a display device includes a panel having the pixels and peripheral circuits for controlling the panels. Typically, the pixels are defined by the intersections of scan lines and data lines, and the peripheral circuits include a gate driver for scanning the scan lines and a source driver for supplying image data to the data lines. The source driver may include a gamma correction circuit for controlling the gray scale of each pixel. In order to display a frame, the source driver and the gate driver respectively provide a data signal and a scan signal to the corresponding data line and the corresponding scan line. As a result, each pixel will display a predetermined brightness and color.
In recent years, the matrix display using organic light emitting devices (OLED) has been widely employed in small electronic devices, such as handheld devices, cellular phones, personal digital assistants (PDAs), and cameras because of the generally lower power consumed by such devices. However, the quality of output in an OLED based pixel is affected by the properties of a drive transistor that is typically fabricated from amorphous or poly silicon as well as the OLED itself. In particular, threshold voltage and mobility of the transistor tend to change as the pixel ages. Moreover, the performance of the drive transistor may be effected by temperature. In order to maintain image quality, these parameters must be compensated for by adjusting the programming voltage to pixels. Compensation via changing the programming voltage is more effective when a higher level of programming voltage and therefore higher luminance is produced by the OLED based pixels. However, luminance levels are largely dictated by the level of brightness for the image data to a pixel, and the desired higher levels of luminance for more effective compensation may not be achievable while within the parameters of the image data.
According to one embodiment, raw grayscale image data, representing images to be displayed in successive frames, is used to drive a display having pixels that include a drive transistor and an organic light emitting device by (1) dividing each frame into at least first and second-frames, and (2) supplying each pixel with a drive current that is (a) higher in the first sub-frame than in the second sub-frame for raw grayscale values in a first preselected range, and (b) higher in the second sub-frame than in the first sub-frame for raw grayscale values in a second preselected range. The display may be an active matrix display, and is preferably an AMOLED display.
In one implementation, the raw grayscale value for each frame is converted to first and second sub-frame grayscale values for the first and second sub-frames, and the drive current supplied to the pixel during the first and second sub-frames is based on the first and second sub-frame grayscale values. The first and second sub-frame grayscale values may be preselected to produce a pixel luminance during that frame that has a predetermined gamma relationship (e.g., a gamma 2.2 curve) to the raw grayscale value for that frame.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In pixel sharing configurations described below, the gate or address driver circuit 108 can also optionally operate on global select lines GSEL[j] and optionally/GSEL[j], which operate on multiple rows of pixels 104 in the pixel array 102, such as every three rows of pixels 104. The source driver circuit 110, under control of the controller 112, operates on voltage data lines Vdata[k], Vdata[k+1], and so forth, one for each column of pixels 104 in the pixel array 102. The voltage data lines carry voltage programming information to each pixel 104 indicative of a brightness (gray level) of each light emitting device in the pixel 104. A storage element, such as a capacitor, in each pixel 104 stores the voltage programming information until an emission or driving cycle turns on the light emitting device. The supply voltage driver 114, under control of the controller 112, controls the level of voltage on a supply voltage (EL_Vdd) line, one for each row of pixels 104 in the pixel array 102. Alternatively, the voltage driver 114 may individually control the level of supply voltage for each row of pixels 104 in the pixel array 102 or each column of pixels 104 in the pixel array 102.
As is known, each pixel 104 in the display system 100 needs to be programmed with information indicating the brightness (gray level) of the organic light emitting device (OLED) in the pixel 104 for a particular frame. A frame defines the time period that includes a programming cycle or phase during which each and every pixel in the display system 100 is programmed with a programming voltage indicative of a brightness and a driving or emission cycle or phase during which each light emitting device in each pixel is turned on to emit light at a brightness commensurate with the programming voltage stored in a storage element. A frame is thus one of many still images that compose a complete moving picture displayed on the display system 100. There are at least two schemes for programming and driving the pixels: row-by-row, or frame-by-frame. In row-by-row programming, a row of pixels is programmed and then driven before the next row of pixels is programmed and driven. In frame-by-frame programming, all rows of pixels in the display system 100 are programmed first, and all of the pixels are driven row-by-row. Either scheme can employ a brief vertical blanking time at the beginning or end of each frame during which the pixels are neither programmed nor driven.
The components located outside of the pixel array 102 can be disposed in a peripheral area 106 around the pixel array 102 on the same physical substrate on which the pixel array 102 is disposed. These components include the gate driver 108, the source driver 110 and the supply voltage controller 114. Alternatively, some of the components in the peripheral area can be disposed on the same substrate as the pixel array 102 while other components are disposed on a different substrate, or all of the components in the peripheral are can be disposed on a substrate different from the substrate on which the pixel array 102 is disposed. Together, the gate driver 108, the source driver 110, and the supply voltage control 114 make up a display driver circuit. The display driver circuit in some configurations can include the gate driver 108 and the source driver 110 but not the supply voltage controller 114.
The controller 112 includes internal memory (not shown) for various look up tabales and other data for functions such as compensation for effects such as temperature, change in threshold voltage, change in mobility, etc. Unlike a convention AMOLED, the display system 100 allows the use of higher luminance of the pixels 104 during one part of the frame period while emitting not light in the other part of the frame period. The higher luminance during a limited time of the frame period results in the required brightness from the pixel for a frame but higher levels of luminance facilitate the compensation for changing parameters of the drive transistor performed by the controller 112. The system 100 also includes a light sensor 130 that is coupled to the controller 112. The light sensor 130 may be a single sensor located in proximity to the array 102 as in this example. Alternatively, the light sensor 130 may be multiple sensors such as one in each corner of the pixel array 102. Also, the light sensor 130 or multiple sensors may be embedded in the same substrate as the array 102, or have its own substrate on the array 102. As will be explained, the light sensor 130 allows adjustment of the overall brightness of the display system 100 according to ambient light conditions.
Referring to
The source driver 110 includes a timing interface (I/F) 342, a data interface (I/F) 324, a gamma correction circuit 340, a processing circuit 330, a memory 320 and a digital-to-analog converter (DAC) 322. The memory 320 is, for example, a graphic random access memory (GRAM) for storing grayscale image data. The DAC 322 includes a decoder for converting grayscale image data read from the GRAM 320 to a voltage corresponding to the luminance at which it is desired to have the pixels emit light. The DAC 322 may be a CMOS digital-to-analog converter.
The source driver 110 receives raw grayscale image data via the data I/F 324, and a selector switch 326 determines whether the data is supplied directly to the GRAM 320, referred to as the normal mode, or to the processing circuit 330, referred to as the hybrid mode. The data supplied to the processing circuit 330 is converted from the typical 8-bit raw data to 9-bit hybrid data, e.g., by use of a hybrid Look-Up-Table (LUT) 332 stored in permanent memory which may be part of the processing circuit 330 or in a separate memory device such as ROM, EPROM, EEPROM, flash memory, etc. The extra bit indicates whether each grayscale number is located in a predetermined low grayscale range LG or a predetermined high grayscale HG.
The GRAM 320 supplies the DAC 322 with the raw 8-bit data in the normal driving mode and with the converted 9-bit data in the hybrid driving mode. The gamma correction circuit 340 supplies the DAC 322 with signals that indicate the desired gamma corrections to be executed by the DAC 322 as it converts the digital signals from the GRAM 320 to analog signals for the data lines DL. DACs that execute gamma corrections are well known in the display industry.
The operation of the source driver 110 is controlled by one or more timing signals supplied to the gamma correction circuit 340 from the controller 112 through the timing I/F 342. For example, the source driver 110 may be controlled to produce the same luminance according to the grayscale image data during an entire frame time T in the normal driving mode, and to produce different luminance levels during sub-frame time periods T1 and T2 in the hybrid driving mode to produce the same net luminance as in the normal driving mode.
In the hybrid driving mode, the processing circuit 330 converts or “maps” the raw grayscale data that is within a predetermined low grayscale range LG to a higher grayscale value so that pixels driven by data originating in either range are appropriately compensated to produce a uniform display during the frame time T. This compensation increases the luminance of pixels driven by data originating from raw grayscale image data in the low range LG, but the drive time of those pixels is reduced so that the average luminance of such pixels over the entire frame time T is at the desired level. Specifically, when the raw grayscale value is in a preselected high grayscale range HG, the pixel is driven to emit light during a major portion of the complete frame time period T, such as the portion ¾T depicted in
In the example depicted in
If the raw grayscale image data is located in the low grayscale range LG, the source driver 110 supplies the data line DL with a data line voltage corresponding to the black level (“0”) in the sub-frame period T2. If the raw grayscale data is located in the high grayscale range HD, the source driver 110 supplies the data line DL with a data line voltage corresponding to the black level (“0”) in the sub-frame period T1.
In the normal driving mode, all the raw grayscale values are gamma-corrected according to a second gamma curve 6. It can be seen from
The display system 100 divides the grayscales into a low grayscale range LG and a high grayscale range HG. Specifically, if the raw grayscale value of a pixel is greater than or equal to a reference value D(ref), that data is considered as the high grayscale range HG. If the raw grayscale value is smaller than the reference value D(ref), that data is considered as the low grayscale range LG.
In the example illustrated in
Assuming that raw grayscale data from the controller 112 is 8-bit data, 8-bit grayscale data is provided for each color (e.g., R, G, B etc) and is used to drive the sub-pixels having those colors. The GRAM 320 stores the data in 9-bit words for the 8-bit grayscale data plus the extra bit added to indicate whether the 8-bit value is in the low or high grayscale range.
In the flow chart of
In the programming period, step 550 determines whether GRAM [8]=1. If the answer at step 550 is affirmative indicating the raw grayscale value is in the high range HG, the system advances to steps 546 and 548. If the answer at step 550 is negative indicating the raw grayscale value is in the low range LG, the system advances to step 552 to output a black-level voltage (see
Although only one hybrid LUT 332 is illustrated in
The timing diagram in
Once the tearing signal line 610 is set low, a row programming data block 624 is output from the memory out low value line 614. The row programming data block 624 includes programming data for all pixels in each row in succession beginning with row 1. The row programming data block 624 includes only data for the pixels in the selected row that are to be driven at values in the low grayscale range. As explained above, all pixels that are to be driven at values in the high grayscale range in a selected row are set to zero voltage or adjusted for distortions. Thus, as each row is strobed, the DAC 322 converts the low gray scale range data (for pixels programmed in the low grayscale range) and sends the programming signals to the pixels (LUT modified data for the low grayscale range pixels and a zero voltage or distortion adjustment for the high grayscale range pixels) in that row.
While the row programming data block 624 is output, the memory output high value signal line 616 remains inactive for a delay period 632. After the delay period 632, a row programming data block 634 is output from the memory out high value line 616. The row programming data block 634 includes programming data for all pixels in each row in succession beginning with row 1. The row programming data block 634 includes only data for the pixels that are to be driven at values in the high grayscale range in the selected row. As explained above, all pixels that are to be driven at values in the low grayscale range in the selected row are set to zero voltage. The DAC 322 converts the high gray scale range data (for pixels programmed in the high grayscale range) and sends the programming signals to the pixels (LUT modified data for the high grayscale range pixels and a zero voltage for the low grayscale range pixels) in that row.
In this example, the delay period 632 is set to 1F+x/3 where F is the time it takes to program all 480 rows and x is the time of the blanking intervals 622 and 630. The x variable may be defined by the manufacturer based on the speed of the components such as the processing circuit 330 necessary to eliminate tearing. Therefore, x may be lower for faster processing components. The delay period 632 between programming pixels emitting a level in the low grayscale range and those pixels emitting a level in the high grayscale range avoids the tearing effect.
When the gate clock signal 644 is set high, the strobe signal 646a for the first row produces a pulse 652 to select the row. The low gray scale pixels in that row are then driven by the programming voltages from the DAC 322 while the high grayscale pixels are driven to zero voltage. After a sub-frame time period, the programming voltage select signals 642 are selected to send a set of high grayscale range programming voltages 654 to the first row. When the gate clock signal 644 is set high, the strobe signal 646a for the first row produces a second pulse 656 to select the row. The high grayscale pixels in that row are then driven by the programming voltages from the DAC 322 while the low grayscale pixels are driven to zero voltage.
As is shown by
As is shown by
In
In this example, there are 18 conditions with 18 corresponding gamma curve LUTs stored in a memory of the gamma correction circuit 340 in
In a modified embodiment illustrated in
As depicted in
As depicted in
sf1_gsv=min[255−sf2_gsv+128,sf1_max] (1)
Thus, as the second sub-frame value sf2_gsv increases, the first sub-frame value sf1_gsv remains at sf1_max, until the second sub-frame value sf2_gsv reaches a first threshold value sf2_th, e.g., 128. As depicted in
As shown in
A second implementation utilizes an LUT containing grayscale data depicted by the curves in
As the input grayscale value increases from zero to 95, the value of sf1_gsv increases from zero to a threshold value sf1_max (e.g., 255), and the value of sf2_gsv remains at zero. Thus, whenever the input grayscale value is in this range, the pixel will be black during the second sub-frame SF2, which provides a relaxation interval that helps reduce the rate of degradation and thereby extend the life of that pixel.
When the input grayscale value reaches 96, the LUT begins to increase the value of sf2_gsv and maintains the value of sf1_gsv at 255. When the input grayscale value reaches 145, the LUT progressively decreases the value of sf1_gsv from 255 while continuing to progressively increase the value of sf2_gsv.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
This application is a continuation of U.S. application Ser. No. 15/705,508, filed Sep. 15, 2017, now allowed, which is a continuation of U.S. application Ser. No. 15/099,752, filed Apr. 15, 2016, now U.S. Pat. No. 9,792,857, which is a continuation of U.S. application Ser. No. 14/544,110, filed Nov. 26, 2014, now U.S. Pat. No. 9,343,006, which is a continuation of and claims priority to U.S. application Ser. No. 13/365,391, filed Feb. 3, 2012, now U.S. Pat. No. 8,937,632, each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3506851 | Polkinghorn | Apr 1970 | A |
3774055 | Bapat | Nov 1973 | A |
4090096 | Nagami | May 1978 | A |
4160934 | Kirsch | Jul 1979 | A |
4295091 | Ponkala | Oct 1981 | A |
4354162 | Wright | Oct 1982 | A |
4943956 | Noro | Jul 1990 | A |
4996523 | Bell | Feb 1991 | A |
5153420 | Hack | Oct 1992 | A |
5198803 | Shie | Mar 1993 | A |
5204661 | Hack | Apr 1993 | A |
5266515 | Robb | Nov 1993 | A |
5489918 | Mosier | Feb 1996 | A |
5498880 | Lee | Mar 1996 | A |
5557342 | Eto | Sep 1996 | A |
5561381 | Jenkins | Oct 1996 | A |
5572444 | Lentz | Nov 1996 | A |
5589847 | Lewis | Dec 1996 | A |
5619033 | Weisfield | Apr 1997 | A |
5648276 | Hara | Jul 1997 | A |
5670973 | Bassetti | Sep 1997 | A |
5684365 | Tang | Nov 1997 | A |
5691783 | Numao | Nov 1997 | A |
5714968 | Ikeda | Feb 1998 | A |
5723950 | Wei | Mar 1998 | A |
5744824 | Kousai | Apr 1998 | A |
5745660 | Kolpatzik | Apr 1998 | A |
5748160 | Shieh | May 1998 | A |
5815303 | Berlin | Sep 1998 | A |
5870071 | Kawahata | Feb 1999 | A |
5874803 | Garbuzov | Feb 1999 | A |
5880582 | Sawada | Mar 1999 | A |
5903248 | Irwin | May 1999 | A |
5917280 | Burrows | Jun 1999 | A |
5923794 | McGrath | Jul 1999 | A |
5945972 | Okumura | Aug 1999 | A |
5949398 | Kim | Sep 1999 | A |
5952789 | Stewart | Sep 1999 | A |
5952991 | Akiyama | Sep 1999 | A |
5982104 | Sasaki | Nov 1999 | A |
5990629 | Yamada | Nov 1999 | A |
6023259 | Howard | Feb 2000 | A |
6069365 | Chow | May 2000 | A |
6091203 | Kawashima | Jul 2000 | A |
6097360 | Holloman | Aug 2000 | A |
6144222 | Ho | Nov 2000 | A |
6177915 | Beeteson | Jan 2001 | B1 |
6229506 | Dawson | May 2001 | B1 |
6229508 | Kane | May 2001 | B1 |
6246180 | Nishigaki | Jun 2001 | B1 |
6252248 | Sano | Jun 2001 | B1 |
6259424 | Kurogane | Jul 2001 | B1 |
6262589 | Tamukai | Jul 2001 | B1 |
6271825 | Greene | Aug 2001 | B1 |
6288696 | Holloman | Sep 2001 | B1 |
6304039 | Appelberg | Oct 2001 | B1 |
6307322 | Dawson | Oct 2001 | B1 |
6310962 | Chung | Oct 2001 | B1 |
6320325 | Cok | Nov 2001 | B1 |
6323631 | Juang | Nov 2001 | B1 |
6329971 | McKnight | Dec 2001 | B2 |
6356029 | Hunter | Mar 2002 | B1 |
6373454 | Knapp | Apr 2002 | B1 |
6377237 | Sojourner | Apr 2002 | B1 |
6392617 | Gleason | May 2002 | B1 |
6404139 | Sasaki et al. | Jun 2002 | B1 |
6414661 | Shen | Jul 2002 | B1 |
6417825 | Stewart | Jul 2002 | B1 |
6433488 | Bu | Aug 2002 | B1 |
6437106 | Stoner | Aug 2002 | B1 |
6445369 | Yang | Sep 2002 | B1 |
6475845 | Kimura | Nov 2002 | B2 |
6501098 | Yamazaki | Dec 2002 | B2 |
6501466 | Yamagishi | Dec 2002 | B1 |
6518962 | Kimura | Feb 2003 | B2 |
6522315 | Ozawa | Feb 2003 | B2 |
6525683 | Gu | Feb 2003 | B1 |
6531827 | Kawashima | Mar 2003 | B2 |
6541921 | Luciano, Jr. | Apr 2003 | B1 |
6542138 | Shannon | Apr 2003 | B1 |
6555420 | Yamazaki | Apr 2003 | B1 |
6577302 | Hunter | Jun 2003 | B2 |
6580408 | Bae | Jun 2003 | B1 |
6580657 | Sanford | Jun 2003 | B2 |
6583398 | Harkin | Jun 2003 | B2 |
6583775 | Sekiya | Jun 2003 | B1 |
6594606 | Everitt | Jul 2003 | B2 |
6618030 | Kane | Sep 2003 | B2 |
6639244 | Yamazaki | Oct 2003 | B1 |
6668645 | Gilmour | Dec 2003 | B1 |
6677713 | Sung | Jan 2004 | B1 |
6680580 | Sung | Jan 2004 | B1 |
6687266 | Ma | Feb 2004 | B1 |
6690000 | Muramatsu | Feb 2004 | B1 |
6690344 | Takeuchi | Feb 2004 | B1 |
6693388 | Oomura | Feb 2004 | B2 |
6693610 | Shannon | Feb 2004 | B2 |
6697057 | Koyama | Feb 2004 | B2 |
6720942 | Lee | Apr 2004 | B2 |
6724151 | Yoo | Apr 2004 | B2 |
6734636 | Sanford | May 2004 | B2 |
6738034 | Kaneko | May 2004 | B2 |
6738035 | Fan | May 2004 | B1 |
6753655 | Shih | Jun 2004 | B2 |
6753834 | Mikami | Jun 2004 | B2 |
6756741 | Li | Jun 2004 | B2 |
6756952 | Decaux | Jun 2004 | B1 |
6756958 | Furuhashi | Jun 2004 | B2 |
6765549 | Yamazaki | Jul 2004 | B1 |
6771028 | Winters | Aug 2004 | B1 |
6777712 | Sanford | Aug 2004 | B2 |
6777888 | Kondo | Aug 2004 | B2 |
6781306 | Park | Aug 2004 | B2 |
6781567 | Kimura | Aug 2004 | B2 |
6806497 | Jo | Oct 2004 | B2 |
6806638 | Lih et al. | Oct 2004 | B2 |
6806857 | Sempel | Oct 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
6815975 | Nara | Nov 2004 | B2 |
6828950 | Koyama | Dec 2004 | B2 |
6853371 | Miyajima | Feb 2005 | B2 |
6859193 | Yumoto | Feb 2005 | B1 |
6873117 | Ishizuka | Mar 2005 | B2 |
6876346 | Anzai | Apr 2005 | B2 |
6885356 | Hashimoto | Apr 2005 | B2 |
6900485 | Lee | May 2005 | B2 |
6903734 | Eu | Jun 2005 | B2 |
6909243 | Inukai | Jun 2005 | B2 |
6909419 | Zavracky | Jun 2005 | B2 |
6911960 | Yokoyama | Jun 2005 | B1 |
6911964 | Lee | Jun 2005 | B2 |
6914448 | Jinno | Jul 2005 | B2 |
6919871 | Kwon | Jul 2005 | B2 |
6924602 | Komiya | Aug 2005 | B2 |
6937215 | Lo | Aug 2005 | B2 |
6937220 | Kitaura | Aug 2005 | B2 |
6940214 | Komiya | Sep 2005 | B1 |
6943500 | LeChevalier | Sep 2005 | B2 |
6947022 | McCartney | Sep 2005 | B2 |
6954194 | Matsumoto | Oct 2005 | B2 |
6956547 | Bae | Oct 2005 | B2 |
6975142 | Azami | Dec 2005 | B2 |
6975332 | Arnold | Dec 2005 | B2 |
6995510 | Murakami | Feb 2006 | B2 |
6995519 | Arnold | Feb 2006 | B2 |
7023408 | Chen | Apr 2006 | B2 |
7027015 | Booth, Jr. | Apr 2006 | B2 |
7027078 | Reihl | Apr 2006 | B2 |
7034793 | Sekiya | Apr 2006 | B2 |
7038392 | Libsch | May 2006 | B2 |
7053875 | Chou | May 2006 | B2 |
7057359 | Hung | Jun 2006 | B2 |
7061451 | Kimura | Jun 2006 | B2 |
7064733 | Cok | Jun 2006 | B2 |
7071932 | Libsch | Jul 2006 | B2 |
7088051 | Cok | Aug 2006 | B1 |
7088052 | Kimura | Aug 2006 | B2 |
7102378 | Kuo | Sep 2006 | B2 |
7106285 | Naugler | Sep 2006 | B2 |
7112820 | Chang | Sep 2006 | B2 |
7116058 | Lo | Oct 2006 | B2 |
7119493 | Fryer | Oct 2006 | B2 |
7122835 | Ikeda | Oct 2006 | B1 |
7127380 | Iverson | Oct 2006 | B1 |
7129914 | Knapp | Oct 2006 | B2 |
7161566 | Cok | Jan 2007 | B2 |
7164417 | Cok | Jan 2007 | B2 |
7193589 | Yoshida | Mar 2007 | B2 |
7224332 | Cok | May 2007 | B2 |
7227519 | Kawase | Jun 2007 | B1 |
7245277 | Ishizuka | Jul 2007 | B2 |
7246912 | Burger | Jul 2007 | B2 |
7248236 | Nathan | Jul 2007 | B2 |
7262753 | Tanghe | Aug 2007 | B2 |
7274363 | Ishizuka | Sep 2007 | B2 |
7310092 | Imamura | Dec 2007 | B2 |
7315295 | Kimura | Jan 2008 | B2 |
7321348 | Cok | Jan 2008 | B2 |
7339560 | Sun | Mar 2008 | B2 |
7355574 | Leon | Apr 2008 | B1 |
7358941 | Ono | Apr 2008 | B2 |
7368868 | Sakamoto | May 2008 | B2 |
7397485 | Miller | Jul 2008 | B2 |
7411571 | Huh | Aug 2008 | B2 |
7414600 | Nathan | Aug 2008 | B2 |
7423617 | Giraldo | Sep 2008 | B2 |
7453054 | Lee | Nov 2008 | B2 |
7474285 | Kimura | Jan 2009 | B2 |
7502000 | Yuki | Mar 2009 | B2 |
7528812 | Tsuge | May 2009 | B2 |
7535449 | Miyazawa | May 2009 | B2 |
7554512 | Steer | Jun 2009 | B2 |
7569849 | Nathan | Aug 2009 | B2 |
7576718 | Miyazawa | Aug 2009 | B2 |
7580012 | Kim | Aug 2009 | B2 |
7589707 | Chou | Sep 2009 | B2 |
7605792 | Son | Oct 2009 | B2 |
7609239 | Chang | Oct 2009 | B2 |
7619594 | Hu | Nov 2009 | B2 |
7619597 | Nathan | Nov 2009 | B2 |
7633470 | Kane | Dec 2009 | B2 |
7656370 | Schneider | Feb 2010 | B2 |
7675485 | Steer | Mar 2010 | B2 |
7800558 | Routley | Sep 2010 | B2 |
7847764 | Cok | Dec 2010 | B2 |
7859492 | Kohno | Dec 2010 | B2 |
7868859 | Tomida | Jan 2011 | B2 |
7876294 | Sasaki | Jan 2011 | B2 |
7924249 | Nathan | Apr 2011 | B2 |
7932883 | Klompenhouwer | Apr 2011 | B2 |
7969390 | Yoshida | Jun 2011 | B2 |
7978187 | Nathan | Jul 2011 | B2 |
7994712 | Sung | Aug 2011 | B2 |
8026876 | Nathan | Sep 2011 | B2 |
8031180 | Miyamoto | Oct 2011 | B2 |
8049420 | Tamura | Nov 2011 | B2 |
8077123 | Naugler, Jr. | Dec 2011 | B2 |
8115707 | Nathan | Feb 2012 | B2 |
8208084 | Lin | Jun 2012 | B2 |
8223177 | Nathan | Jul 2012 | B2 |
8232939 | Nathan | Jul 2012 | B2 |
8259044 | Nathan | Sep 2012 | B2 |
8264431 | Bulovic | Sep 2012 | B2 |
8279143 | Nathan | Oct 2012 | B2 |
8294696 | Min | Oct 2012 | B2 |
8314783 | Sambandan | Nov 2012 | B2 |
8339386 | Leon | Dec 2012 | B2 |
8441206 | Myers | May 2013 | B2 |
8493296 | Ogawa | Jul 2013 | B2 |
8581809 | Nathan | Nov 2013 | B2 |
8654114 | Shimizu | Feb 2014 | B2 |
9125278 | Nathan | Sep 2015 | B2 |
9368063 | Chaji | Jun 2016 | B2 |
9418587 | Chaji | Aug 2016 | B2 |
9430958 | Chaji | Aug 2016 | B2 |
9472139 | Nathan | Oct 2016 | B2 |
9489891 | Nathan | Nov 2016 | B2 |
9489897 | Jaffari | Nov 2016 | B2 |
9502653 | Chaji | Nov 2016 | B2 |
9530349 | Chaji | Dec 2016 | B2 |
9530352 | Nathan | Dec 2016 | B2 |
9536460 | Chaji | Jan 2017 | B2 |
9536465 | Chaji | Jan 2017 | B2 |
9589490 | Chaji | Mar 2017 | B2 |
9633597 | Nathan | Apr 2017 | B2 |
9640112 | Jaffari | May 2017 | B2 |
9721512 | Soni | Aug 2017 | B2 |
9741279 | Chaji | Aug 2017 | B2 |
9741282 | Giannikouris | Aug 2017 | B2 |
9761170 | Chaji | Sep 2017 | B2 |
9773439 | Chaji | Sep 2017 | B2 |
9773441 | Chaji | Sep 2017 | B2 |
9786209 | Chaji | Oct 2017 | B2 |
20010002703 | Koyama | Jun 2001 | A1 |
20010009283 | Arao | Jul 2001 | A1 |
20010024181 | Kubota | Sep 2001 | A1 |
20010024186 | Kane | Sep 2001 | A1 |
20010026257 | Kimura | Oct 2001 | A1 |
20010030323 | Ikeda | Oct 2001 | A1 |
20010035863 | Kimura | Nov 2001 | A1 |
20010038367 | Inukai | Nov 2001 | A1 |
20010040541 | Yoneda | Nov 2001 | A1 |
20010043173 | Troutman | Nov 2001 | A1 |
20010045929 | Prache | Nov 2001 | A1 |
20010052606 | Sempel | Dec 2001 | A1 |
20010052940 | Hagihara | Dec 2001 | A1 |
20020000576 | Inukai | Jan 2002 | A1 |
20020011796 | Koyama | Jan 2002 | A1 |
20020011799 | Kimura | Jan 2002 | A1 |
20020012057 | Kimura | Jan 2002 | A1 |
20020014851 | Tai | Feb 2002 | A1 |
20020018034 | Ohki | Feb 2002 | A1 |
20020030190 | Ohtani | Mar 2002 | A1 |
20020047565 | Nara | Apr 2002 | A1 |
20020052086 | Maeda | May 2002 | A1 |
20020067134 | Kawashima | Jun 2002 | A1 |
20020084463 | Sanford | Jul 2002 | A1 |
20020101152 | Kimura | Aug 2002 | A1 |
20020101172 | Bu | Aug 2002 | A1 |
20020105279 | Kimura | Aug 2002 | A1 |
20020117722 | Osada | Aug 2002 | A1 |
20020122308 | Ikeda | Sep 2002 | A1 |
20020158587 | Komiya | Oct 2002 | A1 |
20020158666 | Azami | Oct 2002 | A1 |
20020158823 | Zavracky | Oct 2002 | A1 |
20020167471 | Everitt | Nov 2002 | A1 |
20020167474 | Everitt | Nov 2002 | A1 |
20020169575 | Everitt | Nov 2002 | A1 |
20020180369 | Koyama | Dec 2002 | A1 |
20020180721 | Kimura | Dec 2002 | A1 |
20020181276 | Yamazaki | Dec 2002 | A1 |
20020183945 | Everitt | Dec 2002 | A1 |
20020186214 | Siwinski | Dec 2002 | A1 |
20020190924 | Asano | Dec 2002 | A1 |
20020190971 | Nakamura | Dec 2002 | A1 |
20020195967 | Kim | Dec 2002 | A1 |
20020195968 | Sanford | Dec 2002 | A1 |
20030020413 | Oomura | Jan 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030043088 | Booth | Mar 2003 | A1 |
20030057895 | Kimura | Mar 2003 | A1 |
20030058226 | Bertram | Mar 2003 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030063081 | Kimura | Apr 2003 | A1 |
20030071821 | Sundahl | Apr 2003 | A1 |
20030076048 | Rutherford | Apr 2003 | A1 |
20030090447 | Kimura | May 2003 | A1 |
20030090481 | Kimura | May 2003 | A1 |
20030107560 | Yumoto | Jun 2003 | A1 |
20030111966 | Mikami | Jun 2003 | A1 |
20030122745 | Miyazawa | Jul 2003 | A1 |
20030122749 | Booth, Jr. | Jul 2003 | A1 |
20030122813 | Ishizuki | Jul 2003 | A1 |
20030142088 | LeChevalier | Jul 2003 | A1 |
20030146897 | Hunter | Aug 2003 | A1 |
20030151569 | Lee | Aug 2003 | A1 |
20030156101 | LeChevalier | Aug 2003 | A1 |
20030169241 | LeChevalier | Sep 2003 | A1 |
20030174152 | Noguchi | Sep 2003 | A1 |
20030179626 | Sanford | Sep 2003 | A1 |
20030185438 | Osawa | Oct 2003 | A1 |
20030197663 | Lee | Oct 2003 | A1 |
20030210256 | Mori | Nov 2003 | A1 |
20030230141 | Gilmour | Dec 2003 | A1 |
20030230980 | Forrest | Dec 2003 | A1 |
20030231148 | Lin | Dec 2003 | A1 |
20040032382 | Cok | Feb 2004 | A1 |
20040041750 | Abe | Mar 2004 | A1 |
20040066357 | Kawasaki | Apr 2004 | A1 |
20040070557 | Asano | Apr 2004 | A1 |
20040070565 | Nayar | Apr 2004 | A1 |
20040090186 | Kanauchi | May 2004 | A1 |
20040090400 | Yoo | May 2004 | A1 |
20040095297 | Libsch | May 2004 | A1 |
20040100427 | Miyazawa | May 2004 | A1 |
20040108518 | Jo | Jun 2004 | A1 |
20040135749 | Kondakov | Jul 2004 | A1 |
20040140982 | Pate | Jul 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040150592 | Mizukoshi | Aug 2004 | A1 |
20040150594 | Koyama | Aug 2004 | A1 |
20040150595 | Kasai | Aug 2004 | A1 |
20040155841 | Kasai | Aug 2004 | A1 |
20040174347 | Sun | Sep 2004 | A1 |
20040174349 | Libsch | Sep 2004 | A1 |
20040174354 | Ono | Sep 2004 | A1 |
20040178743 | Miller | Sep 2004 | A1 |
20040183759 | Stevenson | Sep 2004 | A1 |
20040196275 | Hattori | Oct 2004 | A1 |
20040207615 | Yumoto | Oct 2004 | A1 |
20040227697 | Mori | Nov 2004 | A1 |
20040233125 | Tanghe | Nov 2004 | A1 |
20040239596 | Ono | Dec 2004 | A1 |
20040246246 | Tobita | Dec 2004 | A1 |
20040252089 | Ono | Dec 2004 | A1 |
20040257313 | Kawashima | Dec 2004 | A1 |
20040257353 | Imamura | Dec 2004 | A1 |
20040257355 | Naugler | Dec 2004 | A1 |
20040263437 | Hattori | Dec 2004 | A1 |
20040263444 | Kimura | Dec 2004 | A1 |
20040263445 | Inukai | Dec 2004 | A1 |
20040263541 | Takeuchi | Dec 2004 | A1 |
20050007355 | Miura | Jan 2005 | A1 |
20050007357 | Yamashita | Jan 2005 | A1 |
20050007392 | Kasai | Jan 2005 | A1 |
20050017650 | Fryer | Jan 2005 | A1 |
20050024081 | Kuo | Feb 2005 | A1 |
20050024393 | Kondo | Feb 2005 | A1 |
20050030267 | Tanghe | Feb 2005 | A1 |
20050057484 | Diefenbaugh | Mar 2005 | A1 |
20050057580 | Yamano | Mar 2005 | A1 |
20050067970 | Libsch | Mar 2005 | A1 |
20050067971 | Kane | Mar 2005 | A1 |
20050068270 | Awakura | Mar 2005 | A1 |
20050068275 | Kane | Mar 2005 | A1 |
20050073264 | Matsumoto | Apr 2005 | A1 |
20050083323 | Suzuki | Apr 2005 | A1 |
20050088103 | Kageyama | Apr 2005 | A1 |
20050105031 | Shih | May 2005 | A1 |
20050110420 | Arnold | May 2005 | A1 |
20050110807 | Chang | May 2005 | A1 |
20050122294 | Ben-David | Jun 2005 | A1 |
20050140598 | Kim | Jun 2005 | A1 |
20050140610 | Smith | Jun 2005 | A1 |
20050145891 | Abe | Jul 2005 | A1 |
20050156831 | Yamazaki | Jul 2005 | A1 |
20050162079 | Sakamoto | Jul 2005 | A1 |
20050168416 | Hashimoto | Aug 2005 | A1 |
20050179626 | Yuki | Aug 2005 | A1 |
20050179628 | Kimura | Aug 2005 | A1 |
20050185200 | Tobol | Aug 2005 | A1 |
20050200575 | Kim | Sep 2005 | A1 |
20050206590 | Sasaki | Sep 2005 | A1 |
20050212787 | Noguchi | Sep 2005 | A1 |
20050219184 | Zehner | Oct 2005 | A1 |
20050225683 | Nozawa | Oct 2005 | A1 |
20050248515 | Naugler | Nov 2005 | A1 |
20050269959 | Uchino | Dec 2005 | A1 |
20050269960 | Ono | Dec 2005 | A1 |
20050280615 | Cok | Dec 2005 | A1 |
20050280766 | Johnson | Dec 2005 | A1 |
20050285822 | Reddy | Dec 2005 | A1 |
20050285825 | Eom | Dec 2005 | A1 |
20060001613 | Routley | Jan 2006 | A1 |
20060007072 | Choi | Jan 2006 | A1 |
20060007206 | Reddy et al. | Jan 2006 | A1 |
20060007249 | Reddy | Jan 2006 | A1 |
20060012310 | Chen | Jan 2006 | A1 |
20060012311 | Ogawa | Jan 2006 | A1 |
20060015272 | Giraldo et al. | Jan 2006 | A1 |
20060022305 | Yamashita | Feb 2006 | A1 |
20060022907 | Uchino | Feb 2006 | A1 |
20060027807 | Nathan | Feb 2006 | A1 |
20060030084 | Young | Feb 2006 | A1 |
20060038501 | Koyama | Feb 2006 | A1 |
20060038758 | Routley | Feb 2006 | A1 |
20060038762 | Chou | Feb 2006 | A1 |
20060044227 | Hadcock | Mar 2006 | A1 |
20060061248 | Cok | Mar 2006 | A1 |
20060066533 | Sato | Mar 2006 | A1 |
20060077134 | Hector et al. | Apr 2006 | A1 |
20060077135 | Cok | Apr 2006 | A1 |
20060077142 | Kwon | Apr 2006 | A1 |
20060082523 | Guo | Apr 2006 | A1 |
20060092185 | Jo | May 2006 | A1 |
20060097628 | Suh | May 2006 | A1 |
20060097631 | Lee | May 2006 | A1 |
20060103324 | Kim | May 2006 | A1 |
20060103611 | Choi | May 2006 | A1 |
20060125740 | Shirasaki et al. | Jun 2006 | A1 |
20060149493 | Sambandan | Jul 2006 | A1 |
20060170623 | Naugler, Jr. | Aug 2006 | A1 |
20060176250 | Nathan | Aug 2006 | A1 |
20060208961 | Nathan | Sep 2006 | A1 |
20060208971 | Deane | Sep 2006 | A1 |
20060214888 | Schneider | Sep 2006 | A1 |
20060231740 | Kasai | Oct 2006 | A1 |
20060232522 | Roy | Oct 2006 | A1 |
20060244697 | Lee | Nov 2006 | A1 |
20060256048 | Fish et al. | Nov 2006 | A1 |
20060261841 | Fish | Nov 2006 | A1 |
20060273997 | Nathan | Dec 2006 | A1 |
20060279481 | Haruna | Dec 2006 | A1 |
20060284801 | Yoon | Dec 2006 | A1 |
20060284802 | Kohno | Dec 2006 | A1 |
20060284895 | Marcu | Dec 2006 | A1 |
20060290614 | Nathan | Dec 2006 | A1 |
20060290618 | Goto | Dec 2006 | A1 |
20070001937 | Park | Jan 2007 | A1 |
20070001939 | Hashimoto | Jan 2007 | A1 |
20070008251 | Kohno | Jan 2007 | A1 |
20070008268 | Park | Jan 2007 | A1 |
20070008297 | Bassetti | Jan 2007 | A1 |
20070057873 | Uchino | Mar 2007 | A1 |
20070057874 | Le Roy | Mar 2007 | A1 |
20070069998 | Naugler | Mar 2007 | A1 |
20070075727 | Nakano | Apr 2007 | A1 |
20070076226 | Klompenhouwer | Apr 2007 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20070080906 | Tanabe | Apr 2007 | A1 |
20070080908 | Nathan | Apr 2007 | A1 |
20070097038 | Yamazaki | May 2007 | A1 |
20070097041 | Park | May 2007 | A1 |
20070103411 | Cok et al. | May 2007 | A1 |
20070103419 | Uchino | May 2007 | A1 |
20070115221 | Buchhauser | May 2007 | A1 |
20070126672 | Tada et al. | Jun 2007 | A1 |
20070164664 | Ludwicki | Jul 2007 | A1 |
20070164937 | Jung | Jul 2007 | A1 |
20070164938 | Shin | Jul 2007 | A1 |
20070182671 | Nathan | Aug 2007 | A1 |
20070236134 | Ho | Oct 2007 | A1 |
20070236440 | Wacyk | Oct 2007 | A1 |
20070236517 | Kimpe | Oct 2007 | A1 |
20070241999 | Lin | Oct 2007 | A1 |
20070273294 | Nagayama | Nov 2007 | A1 |
20070285359 | Ono | Dec 2007 | A1 |
20070290957 | Cok | Dec 2007 | A1 |
20070290958 | Cok | Dec 2007 | A1 |
20070296672 | Kim | Dec 2007 | A1 |
20080001525 | Chao | Jan 2008 | A1 |
20080001544 | Murakami | Jan 2008 | A1 |
20080030518 | Higgins | Feb 2008 | A1 |
20080036706 | Kitazawa | Feb 2008 | A1 |
20080036708 | Shirasaki | Feb 2008 | A1 |
20080042942 | Takahashi | Feb 2008 | A1 |
20080042948 | Yamashita | Feb 2008 | A1 |
20080048951 | Naugler, Jr. | Feb 2008 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080055211 | Ogawa | Mar 2008 | A1 |
20080074413 | Ogura | Mar 2008 | A1 |
20080088549 | Nathan | Apr 2008 | A1 |
20080088648 | Nathan | Apr 2008 | A1 |
20080111766 | Uchino | May 2008 | A1 |
20080116787 | Hsu | May 2008 | A1 |
20080117144 | Nakano et al. | May 2008 | A1 |
20080136770 | Peker et al. | Jun 2008 | A1 |
20080150845 | Ishii | Jun 2008 | A1 |
20080150847 | Kim | Jun 2008 | A1 |
20080158115 | Cordes | Jul 2008 | A1 |
20080158648 | Cummings | Jul 2008 | A1 |
20080191976 | Nathan | Aug 2008 | A1 |
20080198103 | Toyomura | Aug 2008 | A1 |
20080211749 | Weitbruch | Sep 2008 | A1 |
20080218451 | Miyamoto | Sep 2008 | A1 |
20080225183 | Tomizawa et al. | Sep 2008 | A1 |
20080231558 | Naugler | Sep 2008 | A1 |
20080231562 | Kwon | Sep 2008 | A1 |
20080231625 | Minami | Sep 2008 | A1 |
20080246713 | Lee | Oct 2008 | A1 |
20080252223 | Toyoda | Oct 2008 | A1 |
20080252571 | Hente | Oct 2008 | A1 |
20080259020 | Fisekovic | Oct 2008 | A1 |
20080284768 | Yoshida | Nov 2008 | A1 |
20080290805 | Yamada | Nov 2008 | A1 |
20080297055 | Miyake | Dec 2008 | A1 |
20090002281 | Okamoto | Jan 2009 | A1 |
20090033598 | Suh | Feb 2009 | A1 |
20090058772 | Lee | Mar 2009 | A1 |
20090109142 | Takahara | Apr 2009 | A1 |
20090121994 | Miyata | May 2009 | A1 |
20090146926 | Sung | Jun 2009 | A1 |
20090160743 | Tomida | Jun 2009 | A1 |
20090174628 | Wang | Jul 2009 | A1 |
20090184901 | Kwon | Jul 2009 | A1 |
20090195483 | Naugler, Jr. | Aug 2009 | A1 |
20090201281 | Routley | Aug 2009 | A1 |
20090206764 | Schemmann | Aug 2009 | A1 |
20090207160 | Shirasaki et al. | Aug 2009 | A1 |
20090213046 | Nam | Aug 2009 | A1 |
20090244046 | Seto | Oct 2009 | A1 |
20090262047 | Yamashita | Oct 2009 | A1 |
20090267881 | Takaki | Oct 2009 | A1 |
20090309818 | Kim | Dec 2009 | A1 |
20100004891 | Ahlers | Jan 2010 | A1 |
20100026725 | Smith | Feb 2010 | A1 |
20100039422 | Seto | Feb 2010 | A1 |
20100039458 | Nathan | Feb 2010 | A1 |
20100045646 | Kishi | Feb 2010 | A1 |
20100045650 | Fish et al. | Feb 2010 | A1 |
20100060911 | Marcu | Mar 2010 | A1 |
20100079419 | Shibusawa | Apr 2010 | A1 |
20100085282 | Yu | Apr 2010 | A1 |
20100103160 | Jeon | Apr 2010 | A1 |
20100134469 | Ogura et al. | Jun 2010 | A1 |
20100134475 | Ogura et al. | Jun 2010 | A1 |
20100165002 | Ahn | Jul 2010 | A1 |
20100194670 | Cok | Aug 2010 | A1 |
20100207960 | Kimpe | Aug 2010 | A1 |
20100225630 | Levey | Sep 2010 | A1 |
20100251295 | Amento | Sep 2010 | A1 |
20100277400 | Jeong | Nov 2010 | A1 |
20100315319 | Cok | Dec 2010 | A1 |
20110050870 | Hanari | Mar 2011 | A1 |
20110063197 | Chung | Mar 2011 | A1 |
20110069051 | Nakamura | Mar 2011 | A1 |
20110069089 | Kopf | Mar 2011 | A1 |
20110069096 | Li | Mar 2011 | A1 |
20110074750 | Leon | Mar 2011 | A1 |
20110074762 | Shirasaki et al. | Mar 2011 | A1 |
20110109610 | Yamamoto | May 2011 | A1 |
20110149166 | Botzas | Jun 2011 | A1 |
20110169798 | Lee | Jul 2011 | A1 |
20110175895 | Hayakawa | Jul 2011 | A1 |
20110181630 | Smith | Jul 2011 | A1 |
20110199395 | Nathan | Aug 2011 | A1 |
20110205250 | Yoo | Aug 2011 | A1 |
20110227964 | Chaji | Sep 2011 | A1 |
20110242074 | Bert et al. | Oct 2011 | A1 |
20110273399 | Lee | Nov 2011 | A1 |
20110279488 | Nathan | Nov 2011 | A1 |
20110292006 | Kim | Dec 2011 | A1 |
20110293480 | Mueller | Dec 2011 | A1 |
20120056558 | Toshiya | Mar 2012 | A1 |
20120062565 | Fuchs | Mar 2012 | A1 |
20120262184 | Shen | Oct 2012 | A1 |
20120299970 | Bae | Nov 2012 | A1 |
20120299973 | Jaffari | Nov 2012 | A1 |
20120299978 | Chaji | Nov 2012 | A1 |
20130002527 | Kim | Jan 2013 | A1 |
20130027381 | Nathan | Jan 2013 | A1 |
20130057595 | Nathan | Mar 2013 | A1 |
20130112960 | Chaji | May 2013 | A1 |
20130135272 | Park | May 2013 | A1 |
20130162617 | Yoon | Jul 2013 | A1 |
20130201223 | Li et al. | Aug 2013 | A1 |
20130241813 | Tanaka | Sep 2013 | A1 |
20130309821 | Yoo | Nov 2013 | A1 |
20130321671 | Cote | Dec 2013 | A1 |
20140015824 | Chaji et al. | Jan 2014 | A1 |
20140022289 | Lee | Jan 2014 | A1 |
20140043316 | Chaji et al. | Feb 2014 | A1 |
20140055500 | Lai | Feb 2014 | A1 |
20140111567 | Nathan et al. | Apr 2014 | A1 |
20160275860 | Wu | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
1 294 034 | Jan 1992 | CA |
2 109 951 | Nov 1992 | CA |
2 249 592 | Jul 1998 | CA |
2 368 386 | Sep 1999 | CA |
2 242 720 | Jan 2000 | CA |
2 354 018 | Jun 2000 | CA |
2 432 530 | Jul 2002 | CA |
2 436 451 | Aug 2002 | CA |
2 438 577 | Aug 2002 | CA |
2 463 653 | Jan 2004 | CA |
2 498 136 | Mar 2004 | CA |
2 522 396 | Nov 2004 | CA |
2 443 206 | Mar 2005 | CA |
2 472 671 | Dec 2005 | CA |
2 567 076 | Jan 2006 | CA |
2526436 | Feb 2006 | CA |
2 526 782 | Apr 2006 | CA |
2 541 531 | Jul 2006 | CA |
2 550 102 | Apr 2008 | CA |
2 773 699 | Oct 2013 | CA |
1381032 | Nov 2002 | CN |
1448908 | Oct 2003 | CN |
1623180 | Jun 2005 | CN |
1682267 | Oct 2005 | CN |
1758309 | Apr 2006 | CN |
1760945 | Apr 2006 | CN |
1886774 | Dec 2006 | CN |
1897093 | Jul 2007 | CN |
101194300 | Jun 2008 | CN |
101449311 | Jun 2009 | CN |
101615376 | Dec 2009 | CN |
102656621 | Sep 2012 | CN |
102725786 | Oct 2012 | CN |
0 158 366 | Oct 1985 | EP |
1 028 471 | Aug 2000 | EP |
1 111 577 | Jun 2001 | EP |
1 130 565 | Sep 2001 | EP |
1 194 013 | Apr 2002 | EP |
1 335 430 | Aug 2003 | EP |
1 372 136 | Dec 2003 | EP |
1 381 019 | Jan 2004 | EP |
1 418 566 | May 2004 | EP |
1 429 312 | Jun 2004 | EP |
145 0341 | Aug 2004 | EP |
1 465 143 | Oct 2004 | EP |
1 469 448 | Oct 2004 | EP |
1 521 203 | Apr 2005 | EP |
1 594 347 | Nov 2005 | EP |
1 784 055 | May 2007 | EP |
1854338 | Nov 2007 | EP |
1 879 169 | Jan 2008 | EP |
1 879 172 | Jan 2008 | EP |
2299427 | Mar 2011 | EP |
2395499 | Dec 2011 | EP |
2 389 951 | Dec 2003 | GB |
1272298 | Oct 1989 | JP |
4-042619 | Feb 1992 | JP |
6-314977 | Nov 1994 | JP |
8-340243 | Dec 1996 | JP |
09-090405 | Apr 1997 | JP |
10-254410 | Sep 1998 | JP |
11-202295 | Jul 1999 | JP |
11-219146 | Aug 1999 | JP |
11 231805 | Aug 1999 | JP |
11-282419 | Oct 1999 | JP |
2000-056847 | Feb 2000 | JP |
2000-81607 | Mar 2000 | JP |
2001-134217 | May 2001 | JP |
2001-195014 | Jul 2001 | JP |
2002-055654 | Feb 2002 | JP |
2002-91376 | Mar 2002 | JP |
2002-514320 | May 2002 | JP |
2002-229513 | Aug 2002 | JP |
2002-278513 | Sep 2002 | JP |
2002-333862 | Nov 2002 | JP |
2003-076331 | Mar 2003 | JP |
2003-124519 | Apr 2003 | JP |
2003-177709 | Jun 2003 | JP |
2003-271095 | Sep 2003 | JP |
2003-308046 | Oct 2003 | JP |
2003-317944 | Nov 2003 | JP |
2004-004675 | Jan 2004 | JP |
2004-045648 | Feb 2004 | JP |
2004-145197 | May 2004 | JP |
2004-287345 | Oct 2004 | JP |
2005-057217 | Mar 2005 | JP |
2007-065015 | Mar 2007 | JP |
2007-155754 | Jun 2007 | JP |
2008-102335 | May 2008 | JP |
4-158570 | Oct 2008 | JP |
2003-195813 | Jul 2013 | JP |
2004-0100887 | Dec 2004 | KR |
342486 | Oct 1998 | TW |
473622 | Jan 2002 | TW |
485337 | May 2002 | TW |
502233 | Sep 2002 | TW |
538650 | Jun 2003 | TW |
1221268 | Sep 2004 | TW |
1223092 | Nov 2004 | TW |
200727247 | Jul 2007 | TW |
WO 199848403 | Oct 1998 | WO |
WO 199948079 | Sep 1999 | WO |
WO 200106484 | Jan 2001 | WO |
WO 200127910 | Apr 2001 | WO |
WO 200163587 | Aug 2001 | WO |
WO 2002067327 | Aug 2002 | WO |
WO 2003001496 | Jan 2003 | WO |
WO 2003034389 | Apr 2003 | WO |
WO 2003058594 | Jul 2003 | WO |
WO 2003063124 | Jul 2003 | WO |
WO 2003077231 | Sep 2003 | WO |
WO 2004003877 | Jan 2004 | WO |
WO 2004025615 | Mar 2004 | WO |
WO 2004034364 | Apr 2004 | WO |
WO 2004047058 | Jun 2004 | WO |
WO 2004066249 | Aug 2004 | WO |
WO 2004104975 | Dec 2004 | WO |
WO 2005022498 | Mar 2005 | WO |
WO 2005022500 | Mar 2005 | WO |
WO 2005029455 | Mar 2005 | WO |
WO 2005029456 | Mar 2005 | WO |
WO2005034072 | Apr 2005 | WO |
WO 2005055185 | Jun 2005 | WO |
WO 2006000101 | Jan 2006 | WO |
WO 2006053424 | May 2006 | WO |
WO 2006063448 | Jun 2006 | WO |
WO 2006084360 | Aug 2006 | WO |
WO 2007003877 | Jan 2007 | WO |
WO 2007079572 | Jul 2007 | WO |
WO 2007090287 | Aug 2007 | WO |
WO 2007120849 | Oct 2007 | WO |
WO 2009048618 | Apr 2009 | WO |
WO 2009055920 | May 2009 | WO |
WO 2010023270 | Mar 2010 | WO |
WO 2010146707 | Dec 2010 | WO |
WO 2011041224 | Apr 2011 | WO |
WO 2011064761 | Jun 2011 | WO |
WO 2011067729 | Jun 2011 | WO |
WO 2012160424 | Nov 2012 | WO |
WO 2012160471 | Nov 2012 | WO |
WO 2012164474 | Dec 2012 | WO |
WO 2012164475 | Dec 2012 | WO |
Entry |
---|
Ahnood : “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009. |
Alexander : “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages). |
Alexander : “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages). |
Ashtiani : “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages). |
Chaji : “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages). |
Chaji : “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages). |
Chaji : “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜0˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages). |
Chaji : “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages). |
Chaji : “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages). |
Chaji : “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages). |
Chaji : “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages). |
Chaji : “A Novel Driving Scheme for High Resolution Large-area a-SI:H AMOLED displays”; dated Aug. 2005 (3 pages). |
Chaji : “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages). |
Chaji : “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007. |
Chaji : “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006. |
Chaji : “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008. |
Chaji : “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages). |
Chaji : “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji : “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages). |
Chaji : “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages). |
Chaji : “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages). |
Chaji : “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages). |
Chaji : “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages). |
Chaji : “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages). |
Chaji : “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages). |
Chaji : “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages). |
Chaji : “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages). |
Chaji : “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages). |
Chaji : “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages). |
Chaji : “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages). |
Chaji : “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages). |
Chaji : “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages). |
Chaji : “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages). |
European Search Report for Application No. EP 04 78 6661 dated Mar. 9, 2009. |
European Search Report for Application No. EP 05 75 9141 dated Oct. 30, 2009 (2 pages). |
European Search Report for Application No. EP 05 81 9617 dated Jan. 30, 2009. |
European Search Report for Application No. EP 06 70 5133 dated Jul. 18, 2008. |
European Search Report for Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages). |
European Search Report for Application No. EP 07 71 0608.6 dated Mar. 19, 2010 (7 pages). |
European Search Report for Application No. EP 07 71 9579 dated May 20, 2009. |
European Search Report for Application No. EP 07 81 5784 dated Jul. 20, 2010 (2 pages). |
European Search Report for Application No. EP 10 16 6143, dated Sep. 3, 2010 (2 pages). |
European Search Report for Application No. EP 10 83 4294.0-1903, dated Apr. 8, 2013, (9 pages). |
European Supplementary Search Report for Application No. EP 04 78 6662 dated Jan. 19, 2007 (2 pages). |
Extended European Search Report for Application No. 11 73 9485.8 dated Aug. 6, 2013(14 pages). |
Extended European Search Report for Application No. EP 09 73 3076.5, dated Apr. 27, (13 pages). |
Extended European Search Report for Application No. EP 11 16 8677.0, dated Nov. 29, 2012, (13 page). |
Extended European Search Report for Application No. EP 11 19 1641.7 dated Jul. 11, 2012 (14 pages). |
Extended European Search Report for Application No. EP 13153887.8 dated Apr. 12, 2013 (6 pages). |
Extended European Search Report for Application No. EP 10834297 dated Oct. 27, 2014 (6 pages). |
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages). |
Goh , “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585. |
International Preliminary Report on Patentability for Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages. |
International Search Report for Application No. PCT/CA2004/001741 dated Feb. 21, 2005. |
International Search Report for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages). |
International Search Report for Application No. PCT/CA2005/001007 dated Oct. 18, 2005. |
International Search Report for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (2 pages). |
International Search Report for Application No. PCT/CA2007/000652 dated Jul. 25, 2007. |
International Search Report for Application No. PCT/CA2009/000501, dated Jul. 30, 2009 (4 pages). |
International Search Report for Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages). |
International Search Report for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages). |
International Search Report for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 5 pages. |
International Search Report for Application No. PCT/IB2014/060959, dated Aug. 28, 2014, 5 pages. |
International Search Report for Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages. |
International Search Report for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages). |
International Search Report for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages. |
International Search Report for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Search Report for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (3 pages). |
International Search Report for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages). |
International Search Report for Application No. PCT/JP02/09668, dated Dec. 3, 2002, (4 pages). |
International Written Opinion for Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages). |
International Written Opinion for Application No. PCT/CA2005/001897, dated Mar. 21, 2006 (4 pages). |
International Written Opinion for Application No. PCT/CA2009/000501 dated Jul. 30, 2009 (6 pages). |
International Written Opinion for Application No. PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages). |
International Written Opinion for Application No. PCT/IB2010/055486, dated Apr. 19, 2011, 8 pages. |
International Written Opinion for Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages. |
International Written Opinion for Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages). |
International Written Opinion for Application No. PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages. |
International Written Opinion for Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Written Opinion for Application No. PCT/IB2012/052372, dated Sep. 12, 2012 (6 pages). |
International Written Opinion for Application No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages). |
Jafarabadiashtiani : “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages). |
Kanicki, J., “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318). |
Karim, K. S., “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208). |
Lee : “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006. |
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages). |
Liu, P. et al., Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistor for AMOLEDs, Journal of Display Technology, vol. 5, Issue 6, Jun. 2009 (pp. 224-227). |
Ma E Y: “organic light emitting diode/thin film transistor integration for foldable displays” dated Sep. 15, 1997(4 pages). |
Matsueda y : “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004. |
Mendes E., “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721). |
Nathan A. , “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages). |
Nathan , “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. |
Nathan : “Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,”; dated 2006 (16 pages). |
Nathan : “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page). |
Nathan : “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages). |
Nathan : “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages). |
Office Action in Japanese patent application No. JP2012-541612 dated Jul. 15, 2014. (3 pages). |
Partial European Search Report for Application No. EP 11 168 677.0, dated Sep. 22, 2011 (5 pages). |
Partial European Search Report for Application No. EP 11 19 1641.7, dated Mar. 20, 2012 (8 pages). |
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999 (Dec. 31, 1999), 10 pages. |
Rafati : “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages). |
Safavian : “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages). |
Safavian : “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages). |
Safavian : “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages). |
Safavian : “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages). |
Safavian : “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages). |
Safavian : “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages). |
Singh, “Current Conveyor: Novel Universal Active Block”, Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48 (12EPPT). |
Smith, Lindsay I., “A tutorial on Principal Components Analysis,” dated Feb. 26, 2001 (27 pages). |
Spindler , System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48. |
Snorre Aunet: “switched capacitors circuits”, University of Oslo, Mar. 7, 2011 (Mar. 7, 2011), XP002729694, Retrieved from the Internet: URL:http://www.uio.no/studier/emner/matnat/ifi/INF4420/v11/undervisningsmateriale/INF.4420_V11_0308_1.pdf [retrieved on Sep. 9, 2014]. |
Stewart M. , “polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages). |
Vygranenko : “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009. |
Wang : “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages). |
Yi He , “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592. |
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages). |
International Search Report for Application No. PCT/IB2014/058244, Canadian Intellectual Property Office, dated Apr. 11, 2014; (6 pages). |
International Search Report for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 23, 2014; (6 pages). |
Written Opinion for Application No. PCT/IB2014/059753, Canadian Intellectual Property Office, dated Jun. 12, 2014 (6 pages). |
International Search Report for Application No. PCT/IB2014/060879, Canadian Intellectual Property Office, dated Jul. 17, 2014 (3 pages). |
Extended European Search Report for Application No. EP 14158051.4, dated Jul. 29, 2014, (4 pages). |
Office Action in Chinese Patent Invention No. 201180008188.9, dated Jun. 4, 2014 (17 pages) (w/English translation). |
International Search Report for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015. |
Written Opinion for Application No. PCT/IB/2014/066932 dated Mar. 24, 2015. |
Extended European Search Report for Application No. EP 11866291.5, dated Mar. 9, 2015, (9 pages). |
Extended European Search Report for Application No. EP 14181848.4, dated Mar. 5, 2015, (8 pages). |
Office Action in Chinese Patent Invention No. 201280022957.5, dated Jun. 26, 2015 (7 pages). |
Extended European Search Report for Application No. EP 13794695.0, dated Dec. 18, 2015, (9 pages). |
Extended European Search Report for Application No. EP 16157746.5, dated Apr. 8, 2016, (11 pages). |
Extended European Search Report for Application No. EP 16192749.6, dated Dec. 15, 2016, (17 pages). |
International Search Report for Application No. PCT/IB/2016/054763 dated Nov. 25, 2016 (4 pages). |
Written Opinion for Application No. PCT/IB/2016/054763 dated Nov. 25, 2016 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20180315372 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15705508 | Sep 2017 | US |
Child | 16030268 | US | |
Parent | 15099752 | Apr 2016 | US |
Child | 15705508 | US | |
Parent | 14554110 | Nov 2014 | US |
Child | 15099752 | US | |
Parent | 13365391 | Feb 2012 | US |
Child | 14554110 | US |