This applicationis a reissue of U.S. Pat. No. 8,560,977, issued on Oct. 15, 2013, from U.S. patent application Ser. No. 13/238,615, which is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2010-260293, filed on Nov. 22, 2010; the. The entire contents of whichthe above-identified applications are incorporated herein by reference.
Embodiments described herein relate generally to a drop recipe creating method, a database creating method and a medium.
A nanoimprint lithography technique (which will be simply referred to as nanoimprinting below) is known as a semiconductor integrated circuit manufacturing technique. The nanoimprinting is a technique for pressing a template on which a pattern of a semiconductor integrated circuit is formed onto a resist applied on a semiconductor wafer, and thereby transferring the pattern formed on the template onto the resist. The application amount of a resist material is controlled based on a drop recipe defining an application amount distribution of the resist material onto the wafer.
In general, according to one embodiment, a plurality of test drop recipes are first created based on design data on a semiconductor integrated circuit. Based on a defect inspection result of a pattern of a hardening resin material, which is formed by pressing a template on which patterns of the semiconductor integrated circuit are formed onto the hardening resin material applied to a substrate to be processed by use of the test drop recipes, a drop recipe with least defects is selected per press position on the substrate to be processed from the test drop recipes. The selected drop recipes for respective press positions are collected per functional circuit block configuring the semiconductor integrated circuit, thereby to generate a drop recipe creation assistant database.
Exemplary embodiments of a drop recipe creating method, a database creating method and a medium will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the following embodiments.
A drop recipe creating method, a database creating method and a recording medium according to the embodiments will be described below in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments.
A typical transferring step by nanoimprinting will be first described.
In the transferring step, as illustrated in
Subsequently, the template 102 is pressed onto the wafer 100 on which the resist material 101 is applied. The resist material 101 enters the concave parts of the template pattern formed on the template 102 due to a capillary action. After the resist material 101 fully enters the template pattern, an ultraviolet light is irradiated from above the template 102 as illustrated in
After the resist material 101 is hardened, the template 102 is separated therefrom and the resist pattern is formed by the hardened resist material 101 on the wafer 100 as illustrated in
The resist material 101 formed on the wafer 100 is polished by chemical mechanical polishing in a later step. In the chemical mechanical polishing, a different force is applied between the resist pattern at the outermost of the wafer 100 and the resist pattern at the center of the wafer 100, and thus the resist pattern formed on the wafer 100 cannot be planarized well. Thus, it is ideal that the entire wafer 100 is covered with a uniform pattern.
When the same drop recipe is used to perform imprinting on the outermost and the center of the wafer 100, the resist material spreads out of the outer periphery of the wafer 100 when the imprinting is performed on the outermost of the wafer 100. The excess resist material leads to a contamination (particles) in a later step. Thus, when the imprinting is performed on the imprint position at the outermost of the wafer 100, a different drop recipe from that for the center of the wafer 100 needs to be used.
In the example of
When the IP is divided into smaller circuit blocks, attribute information on the smaller circuit blocks is further defined in the layer in which the attribute information is defined. For example, when a large circuit block comprises a plurality of identical circuit blocks smaller than the large circuit block, attribute information on the smaller circuit blocks is defined. The items of attribute information on the circuit blocks are associated with each other by way of a hierarchy structure. In the example of
Design data defining a pattern shape is defined for the smallest circuit block. The design data is held in a different layer for the same GDS data. In the example of
Since the GDS data is configured as described above, the total patterns for one template are grasped by arranging all the items of design data on the minimum components based on the attribute information defined in the layer 41-1. In other words, since all the layers including the layers describing therein the design data need to be read for creating the drop recipes, it takes much time to create one drop recipe. In order to obtain an optimum drop recipe per imprint position for manufacturing a semiconductor integrated circuit, multiple test drop recipes need to be created thereby to actually perform imprinting, and a best drop recipe needs to be selected per imprint position from the test drop recipes in terms of the number of defects, and thus there is a problem that a time required to decide drop recipes to be used for actual manufacture increases depending on the number of test drop recipes.
According to the embodiments of the present invention, in order to simplify the work of creating the drip recipes, an optimum drop recipe per imprint position is obtained per IP and the obtained drop recipe is made to a database. When a new semiconductor integrated circuit is manufactured, a drop recipe is extracted from the created database per IP configuring the new semiconductor integrated circuit and is combined based on the attribute information defined in the layer 41-1 so that the drop recipes for the respective imprint positions can be created for the new semiconductor integrated circuit.
The CPU 1 executes a database creating program 21 as computer program for creating a drop recipe creation assistant database 45. The input unit 5 comprises a mouse and a keyboard, and is input the operations of the database creating apparatus 200 by a user. The operation information input into the input unit 5 is sent to the CPU 1.
The external storing device 4 is configured of a hard disk drive or the like, and is used as a data input/output device of the CPU 1. Specifically, the external storing device 4 previously stores therein the GDS data 41 on a semiconductor integrated circuit to be manufactured. The external storing device 4 stores therein the test drop recipes (test drop recipe group 42) which are created by the CPU 1 changing the discharge amount and the discharge position, respectively.
The test drop recipe group 42 is used by the user for experimentally producing the resist patterns. After the experimental producing, the user inputs defect inspection results (defect inspection result group 43) and CD (Critical Dimension) measurement values (CD measurement value group 44) for the experimentally-produced resist patterns into the external storing device 4. The defect inspection result and the CD measurement value per test drop recipe are input per imprint position.
The CPU 1 refers to the defect inspection result group 43 and the CD measurement value group 44 to select a best drop recipe per imprint position from the test drop recipe group 42 one by one, thereby generating the drop recipe creation assistant database 45 in the external storing device 4.
A variation in line width occurs in individual templates to be delivered due to a variation in process during template manufacture. In a first embodiment, a representative line width of the used template is associated with the drop recipe per IP. A template manufacturer typically inspects the manufactured templates and delivers them with the inspection result as performance report. The representative line width of the template can be obtained from the attached performance report during the delivery of the templates.
The CPU 1 finds a correspondence between a line width of the template pattern and a discharge amount by which a resist pattern with a desired line width can be obtained from the line width from the test drop recipe group 42, the defect inspection result group 43 and the CD measurement value group 44, and outputs the found correspondence as discharge amount correction data 46 to the external storing device 4.
The user creates drop recipes for one template and adjusts (corrects) the discharge amounts of the created drop recipes based on the discharge amount correction data 46, thereby restricting a variation in a finished shape due to the variation in line width of individual templates for the same design data.
The output unit 6 is a display device such as liquid crystal monitor, and displays output information such as operation screen for an operator based on the instructions from the CPU 1.
The database creating program 21 executed by the database creating apparatus 200 may be stored on a computer connected to a network such as the Internet and may be downloaded via the network to be provided or distributed. The database creating program 21 may be provided or distributed via the network such as the Internet. The database creating program 21 may be previously incorporated in the ROM 3 or the external storing device 4 to be provided to the database creating apparatus 200. The database creating program 21 may be recorded in a recording medium such as a CD-ROM to be provided or distributed.
A database creating method for creating the drop recipe creation assistant database 45 by use of the database creating apparatus 200 will be described below.
The user uses all the test drop recipes in the test drop recipe group 42 for all the imprint positions in the test drop recipe group 42 per imprint position to experimentally produce the resist patterns (step S3), and makes a CD measurement and a defect inspection on the experimentally-produced resist patterns (step S4). The user stores the obtained defect inspection result group 43 and CD measurement value group 44 in the external storing device 4.
The CPU 1 acquires the defect inspection result group 43 and the CD measurement value group 44 stored in the external storing device 4 (step S5), and selects a best drop recipe per imprint position from among the test drop recipe group based on the acquired defect inspection result group 43 and CD measurement value group 44 (step S6). The CPU 1 decomposes the selected drop recipe per IP (step S7). The CPU 1 either of or both inverts and rotates the drop recipe decomposed and acquired per IP in a predetermined reference direction (step S8). Thus, for the rotation, the drop recipes for the same IPs and mirror-symmetrical IPs can be managed as the drop recipe for one IP, causing the data size to be reduced.
The CPU 1 generates the drop recipe creation assistant database 45 with the IP name of the drop recipe per IP, the name of the imprint position and the representative line width of the template used for the experimental producing (step S9). The CPU 1 generates the discharge amount correction data 46 (step S10). Then, the database creating method ends.
In this way, according to the first embodiment of the present invention, since there is configured such that the test drop recipes (test drop recipe group 42) are created based on the design data (GDS data 41), a drop recipe with least defects is selected per imprint position from the test drop recipes based on the defect inspection results (defect inspection result group 43) of the resist patterns experimentally produced by use of the created test drop recipes, and the selected drop recipe is made to a database per IP to generate the drop recipe creation assistant database 45, when drop recipes for a new semiconductor integrated circuit are created, the resist recipe can be created by combining the drop recipes for the respective IPs configuring the new semiconductor integrated circuit based on the attribute information of the GDS data 41 on the new semiconductor integrated circuit so that the GDS data 41 for all the layers does not need to be read, thereby creating the drop recipes for the new semiconductor integrated circuit with ease and at a high speed. Since the drop recipe creation assistant database 45 holds the drop recipe per IP at each imprint position, the drop recipes for the new semiconductor integrated circuit can be created at the respective imprint positions. Since the drop recipe creation assistant database 45 holds the drop recipe per IP, although the one-shot imprinting is not possible at the imprint position Z, only the attribute information on the imprint-possible parts may be used to arrange the drop recipe per IP, thereby creating the drop recipe used for the imprint position Z with ease and at a high speed.
The CPU 1 uses the drop recipe creation assistant database 45 to execute a drop recipe creating program 22 as computer program for creating a drop recipe (drop recipe group 47) per imprint position. The input unit 5 comprises a mouse and a keyboard, and is input the operations of the drop recipe creating apparatus 300 by the user. The operation information input into the input unit 5 is sent to the CPU 1.
The external storing device 4 is configured of a hard disk drive or the like, and is used as a data input/output device of the CPU 1. Specifically, the external storing device 4 previously stores therein the GDS data 41 on a semiconductor integrated circuit to be newly manufactured, the drop recipe creation assistant database 45 and the discharge amount correction data 46. The external storing device 4 stores therein the drop recipe group 47 created by the CPU 1.
The output unit 6 is a display device such as a liquid crystal monitor, and displays output information such as an operation screen for the operator based on the instructions from the CPU 1.
The drop recipe creating program 22 executed by the drop recipe creating apparatus 300 may be stored on a computer connected to the network such as the Internet and may be downloaded via the network to be provided or distributed. The drop recipe creating program 22 may be provided or distributed via the network such as the Internet. The drop recipe creating program 22 may be previously incorporated in the ROM 3 or the external storing device 4 to be provided to the drop recipe creating apparatus 300. The drop recipe creating program 22 may be recorded in a recording medium such as a CD-ROM to be provided or distributed.
The CPU 1 designates one imprint position on the wafer 100 (step S23). The CPU 1 extracts a drop recipe for an IP configuring the semiconductor integrated circuit to be manufactured at the designated position from among the drop recipe creation assistant database 45 (step S24). Specifically, the CPU 1 searches for the drop recipe creation assistant database 45 with the IP name contained in the extracted attribute information and the designated imprint position as search keys, and then extracts a drop recipe.
The CPU 1 arranges the extracted drop recipe according to the arrangement position and the arrangement direction described in the attribute information, and completes the drop recipe for the one-shot at the designated imprint position (step S25).
The CPU 1 decides whether all the imprint positions have been designated (step S26). When undesignated imprint positions remain (in step S26, No), the CPU 1 proceeds to step S23 to designate one of the undesignated imprint positions. When all the imprint positions have been designated (in step S26, Yes), the CPU 1 is input the representative line width of the template used for manufacture (step S27). The representative line width is input from the input unit 5 by the user, for example. The CPU 1 uses the input representative line width to search for the discharge amount correction data 46, and calculates the discharge amount corresponding to the representative line width (step S28). The CPU 1 corrects the discharge amount of the drop recipe per imprint position by the calculated discharge amount (step S29) so that the drop recipe per imprint position (drop recipe group 47) is completed.
In this way, according to the second embodiment of the present invention, since there is configured such that the arrangement positions of the IPs configuring the semiconductor integrated circuit are extracted from the GDS data 41, the drop recipes of the IPs configuring the semiconductor integrated circuit at desired imprint positions are extracted from the drop recipe creation assistant database 45, and the extracted drop recipes are arranged based on the extracted corresponding arrangement position to generate the drop recipes for the template of the semiconductor integrated circuit, all the layers configuring the GDS data 41 do not need to be read each time the drop recipe is created, thereby creating the drop recipes with ease and at a high speed.
Since the discharge amount of the hardening resin material is corrected in the drop recipes for the template based on the representative line width of the template of the semiconductor integrated circuit, the imprinting can be performed without creating the drop recipe per individual template.
The features of the resist material, which influence the number of defects, include contraction rate, elastic force, base material adhesion force, charging property, solvent resistance, fluorine content rate, and the like. The features have a relationship in which one feature is enhanced while other feature deteriorates, and thus a most desirable composition is not possible for all the features. Thus, the imprinting is typically performed by use of one kind of resist material whose composition is adjusted such that the number of defects in an one-shot is as small as possible.
In recent years, there has been developed an applying apparatus for dropping multiple kinds of resist materials in one template. When the applying apparatus is used, an optimum resist material can be selected and locally applied. When the test drop recipe group 42 is created in the first embodiment (step S2), the resist patterns for which different resist materials are designated, respectively, may be created.
In this way, the drop recipe creation assistant database 45 is configured by the drop recipes optimized by the resist materials so that the drop recipes by which the resist material is locally changed can be created with ease and at a high speed.
For example, it is highly likely that the IPs such as memory cells containing many lines and spaces are charged due to friction during separation and the lines fall down due to the charges, causing defects. The resist material whose composition is not easily charged can be used for the IPs in contrast to other IPs.
As described above, according to the third embodiment of the present invention, when the drop recipe is defined based on the GDS data while multiple anisotropic patterns are remarkably deflected and arranged like the lines and patterns, the resist material flows out in a specific direction when the template is pressed, and thus the resist material does not spread over the entire template as intended, which may consequently cause an increase in defects.
For example, the template pattern illustrated in
In order to prevent the resist material from flowing in the specific direction, the drop recipe per IP configuring the drop recipe creation assistant database may be created such that the highly-viscous resist material is arranged in the direction in which the resist material easily flows.
In this way, according to the fourth embodiment of the present invention, the test drop recipe is such that a resist material with a higher viscosity than the resist material is arranged at the positions where the resist material is prevented from flowing during the imprinting per IP configuring a semiconductor integrated circuit, thereby preventing the resist material from flowing in the specific direction per IP.
There has been described in the first to fourth embodiments that the drop recipe creation assistant database 45 is configured by the drop recipes for the respective IPs, but any circuit block in any tier whose attribute information is defined in the GDS data 41 may be used as unit of the drop recipe held by the drop recipe creation assistant database 45.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2010-260293 | Nov 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3689747 | Di Milia et al. | Sep 1972 | A |
5580500 | Muramatsu et al. | Dec 1996 | A |
6122564 | Koch et al. | Sep 2000 | A |
6415193 | Betawar | Jul 2002 | B1 |
6560751 | Rose | May 2003 | B1 |
6580959 | Mazumder | Jun 2003 | B1 |
6775818 | Taravade et al. | Aug 2004 | B2 |
6909993 | Nakao et al. | Jun 2005 | B2 |
6937963 | Ishii et al. | Aug 2005 | B2 |
7024655 | Cobb | Apr 2006 | B2 |
7159205 | Amblard | Jan 2007 | B1 |
7334202 | Singh et al. | Feb 2008 | B1 |
7409327 | Deliwala | Aug 2008 | B2 |
7648767 | Fu | Jan 2010 | B2 |
7856288 | Yoneda et al. | Dec 2010 | B2 |
7939003 | Bonassar et al. | May 2011 | B2 |
8132130 | Chen et al. | Mar 2012 | B2 |
8191021 | Rezgui | May 2012 | B2 |
8245161 | Tortonese et al. | Aug 2012 | B1 |
8293354 | Fu | Oct 2012 | B2 |
8343371 | Funk et al. | Jan 2013 | B2 |
8392855 | Morinaga | Mar 2013 | B2 |
8691389 | Fu | Apr 2014 | B2 |
8888920 | Terada | Nov 2014 | B2 |
9046763 | Koshiba | Jun 2015 | B2 |
20030196186 | Scholl | Oct 2003 | A1 |
20040040000 | Taravade et al. | Feb 2004 | A1 |
20050026455 | Hamada et al. | Feb 2005 | A1 |
20070252205 | Hoentschel | Nov 2007 | A1 |
20080021587 | Wu et al. | Jan 2008 | A1 |
20080050659 | Ohtake et al. | Feb 2008 | A1 |
20080090170 | Yoneda | Apr 2008 | A1 |
20080160649 | Fujii et al. | Jul 2008 | A1 |
20080201126 | Won et al. | Aug 2008 | A1 |
20080214010 | Yoneda et al. | Sep 2008 | A1 |
20080276128 | Lin | Nov 2008 | A1 |
20090104783 | Jin et al. | Apr 2009 | A1 |
20090125126 | Moore, Jr. | May 2009 | A1 |
20090125906 | Moore, Jr. | May 2009 | A1 |
20090164933 | Pederson | Jun 2009 | A1 |
20100025814 | Kemerer et al. | Feb 2010 | A1 |
20100029084 | Koshiba et al. | Feb 2010 | A1 |
20100154826 | Printz | Jun 2010 | A1 |
20100187714 | Kobiki et al. | Jul 2010 | A1 |
20110182805 | DeSimone et al. | Jul 2011 | A1 |
20110209106 | Cheng et al. | Aug 2011 | A1 |
20110229988 | Asano et al. | Sep 2011 | A1 |
20110247934 | Wang et al. | Oct 2011 | A1 |
20120032377 | Montelius et al. | Feb 2012 | A1 |
20120072003 | Matsuoka et al. | Mar 2012 | A1 |
20120117520 | Kitamura et al. | May 2012 | A1 |
20120129279 | Matsuoka et al. | May 2012 | A1 |
20120208327 | Matsuoka | Aug 2012 | A1 |
20130069162 | Lin | Mar 2013 | A1 |
20130111419 | Lin | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2007-296783 | Nov 2007 | JP |
2007-296783 | Nov 2007 | JP |
2007-320098 | Dec 2007 | JP |
2007-320098 | Dec 2007 | JP |
Entry |
---|
Morinaga, H. et al., “Method for Forming Pattern and a Semiconductor Device,” U.S. Appl. No. 13/040,294, filed Mar. 4, 2011. |
Number | Date | Country | |
---|---|---|---|
Parent | 13238615 | Sep 2011 | US |
Child | 14883569 | US |