This disclosure relates to implantable intraocular drug delivery devices structured to provide targeted and/or controlled release of a drug to a desired intraocular target tissue and methods of using such devices for the treatment of ocular diseases and disorders. In several embodiments, the implant (or implants) are optionally configured to function as drug storage depots, in that they do not necessarily elute drug from the implant upon implantation. Rather in certain embodiments, an activating event (e.g., a specific stimulus or occurrence) induces the elution of drug from the implant. In several embodiments, through the use of combinations of “open” and “conditional release” implants, extended drug delivery times can be achieved. In certain embodiments, this disclosure relates to a treatment of increased intraocular pressure wherein aqueous humor is permitted to flow out of an anterior chamber of the eye through a surgically implanted pathway. In certain embodiments, this disclosure also relates particularly to a treatment of ocular diseases with drug delivery devices affixed to the eye, such as to fibrous tissue within the eye.
The mammalian eye is a specialized sensory organ capable of light reception and is able to receive visual images. The retina of the eye consists of photoreceptors that are sensitive to various levels of light, interneurons that relay signals from the photoreceptors to the retinal ganglion cells, which transmit the light-induced signals to the brain. The iris is an intraocular membrane that is involved in controlling the amount of light reaching the retina. The iris consists of two layers (arranged from anterior to posterior), the pigmented fibrovascular tissue known as a stroma and pigmented epithelial cells. The stroma connects a sphincter muscle (sphincter pupillae), which contracts the pupil, and a set of dilator muscles (dilator pupillae) which open it. The pigmented epithelial cells block light from passing through the iris and thereby restrict light passage to the pupil.
Numerous pathologies can compromise or entirely eliminate an individual's ability to perceive visual images, including trauma to the eye, infection, degeneration, vascular irregularities, and inflammatory problems. The central portion of the retina is known as the macula. The macula, which is responsible for central vision, fine visualization and color differentiation, may be affected by age related macular degeneration (wet or dry), diabetic macular edema, idiopathic choroidal neovascularization, or high myopia macular degeneration, among other pathologies.
Other pathologies, such as abnormalities in intraocular pressure, can affect vision as well. Aqueous humor is a transparent liquid that fills at least the region between the cornea, at the front of the eye, and the lens and is responsible for producing a pressure within the ocular cavity. Normal intraocular pressure is maintained by drainage of aqueous humor from the anterior chamber by way of a trabecular meshwork which is located in an anterior chamber angle, lying between the iris and the cornea or by way of the “uveoscleral outflow pathway.” The “uveoscleral outflow pathway” is the space or passageway whereby aqueous exits the eye by passing through the ciliary muscle bundles located in the angle of the anterior chamber and into the tissue planes between the choroid and the sclera, which extend posteriorly to the optic nerve. About two percent of people in the United States have glaucoma, which is a group of eye diseases encompassing a broad spectrum of clinical presentations and etiologies but unified by increased intraocular pressure. Glaucoma causes pathological changes in the optic nerve, visible on the optic disk, and it causes corresponding visual field loss, which can result in blindness if untreated. Increased intraocular pressure is the only risk factor associated with glaucoma that can be treated, thus lowering intraocular pressure is the major treatment goal in all glaucomas, and can be achieved by drug therapy, surgical therapy, or combinations thereof.
Many pathologies of the eye progress due to the difficulty in administering therapeutic agents to the eye in sufficient quantities and/or duration necessary to ameliorate symptoms of the pathology. Often, uptake and processing of the active drug component of the therapeutic agent occurs prior to the drug reaching an ocular target site. Due to this metabolism, systemic administration may require undesirably high concentrations of the drug to reach therapeutic levels at an ocular target site. This can not only be impractical or expensive, but may also result in a higher incidence of side effects. Topical administration is potentially limited by limited diffusion across the cornea, or dilution of a topically applied drug by tear-action. Even those drugs that cross the cornea may be unacceptably depleted from the eye by the flow of ocular fluids and transfer into the general circulation. Thus, a means for ocular administration of a therapeutic agent in a controlled and targeted fashion would address the limitations of other delivery routes.
Various embodiments disclosed herein can relate to a drug delivery ocular implant. The drug delivery ocular implant can include an outer shell. The outer shell can have a proximal end and a distal end. The outer shell can be shaped to define an interior chamber. The proximal end of the outer shell can be configured to reversibly interact with an implantation device. The ocular implant can include a drug positioned within the interior chamber. The ocular implant can include a drug release element, which can be configured to release the drug from the interior chamber upon exposure to a stimulus. The ocular implant can include an anchor. The anchor can be configured to pass at least partially through a target ocular tissue and stably retain the implant at the target ocular tissue.
In some embodiments, the drug can be selected from the group consisting of bevacizumab, ranibizumab, and a DARPin engineered to target vascular endothelial growth factor (VEGF). In several embodiments, the drug release element can comprise a membrane that seals the interior chamber off from the intraocular environment until the drug release element is exposed to the stimulus. In several embodiments, the membrane comprises one or more of gold foil, silver foil, titanium foil, platinum foil, rhodium foil, tungsten foil, stainless steel foil, steel foil, nitinol foil, parylene, and nylon foil.
In some embodiments, the stimulus comprises exposure of the implant to one or more of heat, ultrasound, and radio frequency, or laser energy. The stimulus can comprise laser energy from a laser selected from the group consisting of gas lasers, chemical lasers, dye lasers, metal-vapor lasers, solid-state lasers, and semiconductor lasers. The laser can be a Nd:YAG laster, a NdCrYAG laser or an Er;YAG laser.
In some embodiments, the drug can begin to elute from the implant within about 2 minutes of the exposure to the stimulus. In some embodiments, the implant can be configured to elute the drug for at least 3 months after exposure to the stimulus. In some embodiments, the implant can be dimensioned to be placed adjacent to another implant in the target ocular tissue with a spacing distance. The spacing distance can be about 0.1 mm to about 1.00 between a central axis of the implants. The spacing distance can be about 0.5 mm.
Various embodiments disclosed herein can relate to a method of treating an ocular disorder. The method can include accessing the interior of an eye of a subject having an ocular disorder. The method can include advancing a delivery instrument to a target ocular tissue within the interior of the eye. In some embodiments, the method can include deploying a first drug delivery ocular implant from the delivery instrument. The first drug delivery ocular implant can include an outer shell having a proximal end and a distal end. The outer shell can be shaped to define an interior chamber. The proximal end of the outer shell can reversibly interact with the delivery instrument. The implant can include a drug positioned within the interior chamber. The implant can include an anchor. The anchor can be configured to pass at least partially through a target ocular tissue and stably retain the implant at the target ocular tissue. The method can include retracting the delivery instrument from the eye. Elution of the drug from the first drug delivery implant can treat the ocular disorder.
In some embodiments, the target ocular tissue is within the pars plana region of the eye. In some embodiments, the drug can be selected from the group consisting of bevacizumab, ranibizumab, and a DARPin engineered to target vascular endothelial growth factor (VEGF). In some embodiments, the implant is configured to elute the drug for at least 3 months after deployment of the implant at the target ocular tissue.
In some embodiments, the method of treating an ocular disorder can include deploying a second implant prior to retracting the delivery instrument. The second drug delivery ocular implant can comprise an outer shell having a proximal end and a distal end. The outer shell can be shaped to define an interior chamber. The proximal end of the outer shell can reversibly interact with the delivery instrument. The drug can be positioned within the interior chamber of the second implant. The drug positioned within the interior chamber of the second implant can be optionally the same drug as that within the interior chamber of the first implant. The implant can include an anchor configured to pass at least partially through a target ocular tissue and stably retain the implant at the target ocular tissue. The implant can include a drug release element configured to release the drug from the interior chamber upon exposure to a stimulus. In some embodiments, the method of treating an ocular disorder can include exposing the second drug delivery ocular implant to the external stimulus, thereby allowing drug positioned within the interior chamber of the second implant to elute from the second implant.
In some embodiments, the drug release element of the second implant comprises a membrane that seals the interior chamber off from the intraocular environment until the drug release element is exposed to the stimulus. In some embodiments, the membrane comprises one or more of gold foil, silver foil, titanium foil, platinum foil, rhodium foil, tungsten foil, stainless steel foil, steel foil, nitinol foil, parylene, and nylon foil.
In some embodiments, the stimulus comprises exposure of the implant to one or more of heat, ultrasound, and radio frequency, or laser energy. In some embodiments, the stimulus comprises laser energy from a laser selected from the group consisting of gas lasers, chemical lasers, dye lasers, metal-vapor lasers, solid-state lasers, and semiconductor lasers. In some embodiments, the laser is a Nd:YAG laster, a NdCrYAG laser or an Er;YAG laser.
In some embodiments, the drug begins to elute from the implant within about 2 minutes of the exposure to the stimulus. In some embodiments, the implant is configured to elute the drug for at least 3 months after exposure to the stimulus.
In some embodiments the implant dimensioned to be placed adjacent to another implant in the target ocular tissue with a spacing distance of about 0.1 mm to about 1.00 between a central axis of the implants. In some embodiments, the spacing distance is about 0.5 mm.
Various embodiments disclosed herein can relate to a system for the treatment of an ocular disorder. The system can include a drug delivery instrument. The system can include at least one drug delivery implant of a first type. The first type of implant can include an outer shell having a proximal end and a distal end. The outer shell can be shaped to define an interior chamber. The proximal end of the outer shell can be configured to reversibly interact with the delivery instrument. The first type of implant can include a drug positioned within the interior chamber. The first type of implant can include an anchor configured to pass at least partially through a target ocular tissue and stably retain the implant at the target ocular tissue. The system can include at least one drug delivery implant of a second type. The implant of the second type of implant can include an outer shell having a proximal end and a distal end. The outer shell can be shaped to define an interior chamber. The proximal end of the outer shell can reversibly interact with the delivery instrument. The system can include a drug positioned within the interior chamber of the implant of the second type. The drug positioned within the interior chamber of the implant of the second type can be optionally the same drug as that within the interior chamber of the implant of the first type. The system can include an anchor configured to pass at least partially through a target ocular tissue and stably retain the implant at the target ocular tissue. The system can include a drug release element configured to release the drug from the interior chamber upon exposure to a stimulus.
In some embodiments of the system, the drug in the implant of the first type is selected from the group consisting of bevacizumab, ranibizumab, and a DARPin engineered to target vascular endothelial growth factor (VEGF). In some embodiments, the concentration of the drug in the implant of the first type is the same as the concentration of the drug in the second type. In some embodiments, the concentration of the drug in the implant of the first type differs from the concentration of the drug in the second type. In some embodiments, the drug in the implant of the second type is selected from the group consisting of bevacizumab, ranibizumab, and a DARPin engineered to target vascular endothelial growth factor (VEGF).
In some embodiments, the system includes instructions for use.
Various embodiments disclosed herein can relate to a drug delivery implant. The implant can include an outer shell having a proximal end and a distal end. The outer shell can be shaped to define at least one interior chamber. The implant can include a stem extending from the distal end of the shell and terminating in an anchor configured to pass through ocular tissue and penetrate into a sclera of an eye without passing through the sclera. The implant can include a drug positioned within the interior chamber. The implant can include a membrane configured to release the drug from the interior chamber. The stem can include an internal lumen wherein the lumen is in fluid communication with the membrane.
In some embodiments, the outer shell defines a proximal interior chamber and a distal interior chamber, wherein the distal interior chamber communicates with the membrane. In some embodiments, the proximal end of the outer shell comprises a drug delivery element in communication with the proximal interior chamber. In some embodiments, the lumen extends into the anchor and the anchor comprises at least one patent opening in fluid communication with the lumen. In some embodiments, the stem further comprises at least one patent opening in fluid communication with the lumen.
In some embodiments, the drug can be formulated as an oil. The drug can include a prostaglandin, a prostaglandin analog, a prostaglandin inhibitor, a beta-adrenergic receptor antagonist, or combinations thereof, although other drugs can be used as discussed herein. In some embodiments, the drug can include travoprost. In several embodiments, other drugs or biologic molecules can be used, including those that treat diseases and disorders of the posterior portion of the eye, including macular degeneration, diabetic retinopathy, Stargart disease, and the like. For example, in one embodiment bevacizumab (AVASTIN) is delivered. In an additional embodiment, ranibizumab (LUCENTIS) is delivered. In still additional embodiments, genetically engineered antibody mimetics, such as designed ankyrin repeat proteins (DARPins) are designed, loaded into one or more implants, and positioned in a target tissue of the eye. In some embodiments, as discussed in more detail below, multiple implants are delivered to the pars planar region of the eye. In some embodiments, each of the plurality of implants contains a distinct therapeutic agent. However, in some embodiments two or more of the implants positioned within the pars planar region may contain the same therapeutic agent. In still additional embodiments wherein two or more implants have the same therapeutic agent, in some instances, concentration or dose of the therapeutic agent is the same, while in other embodiments the concentration or dose of the therapeutic agent differs. In the latter embodiments, a dose escalating or dose decreasing profile may be generated by the sequential release of drugs of different concentrations.
It will be understood that in other related embodiments, one or more implants are placed in other locations in the posterior of the eye, such as the retina. Accordingly, any discussion herein of implantation in the pars plana should be understood as also being applicable to implantation at other locations within the posterior segment or vitreous chamber of the eye.
The ocular implant can be configured to be positioned in the supraciliary space. The ocular implant can be configured to be positioned in the suprachoroidal space. The ocular implant can be configured to be positioned in the supraciliary space and the suprachoroidal space. In some embodiments, the outer shell can be flexible. In several embodiments, the ocular implants are configured to be positioned by a delivery instrument within the pars planar region of the eye, the implantation procedure optionally proceeding across the eye (e.g., wherein access to the intraocular space is roughly 180° from the eventual target site of implantation of the implants, although the target site may be at lower angles from the access to the intraocular space).
The ocular implant can include one or more retention features configured to anchor the ocular implant in ocular tissue. The ocular implant can be configured to be positioned in the supraciliary space. The ocular implant can be configured to be positioned in the suprachoroidal space. The ocular implant can be configured to be positioned in the supraciliary space or the suprachoroidal space. As discussed above, in several embodiments the target site for positioning the implant (or implants) is in the posterior of the eye, including the pars planar region of the eye.
In some embodiments, the implants are assembled and configured to be placed within the target region of the eye and not to elute any drug until such time as they are activated. By way of example, the embodiments described above, wherein a cap comprising an aperture surrounds a membrane through which a drug positioned within the implant can elute, may also include a sealing mechanism (e.g. the implant is hermetically sealed prior to and at the time of positioning within the eye). In such embodiments an external stimulus may later be used to break, penetrate or otherwise rupture the seal such that drug can be eluted from the implant. Examples of external stimuli include, but are not limited to heat, ultrasound, and radio frequency, or laser energy.
Depending on the embodiment, the seal may have a variety of different forms. For example, with respect to the embodiments described above comprising a cap, the sealing mechanism may be placed within the aperture of the cap, and the external stimulus degrades or removes the sealing mechanism, such that the aperture is exposed to intraocular fluid and drug and begins to elute from the implant. In additional embodiments, such as those without a cap/aperture, the entire implant can be sealed (e.g. by a coating of biocompatible sealant material), and the external stimulus can degrade or penetrate the sealant material and create a passageway through which drug can elute from the implant. Additional embodiments involve the seal being placed within the lumen of the implant (e.g., internal to an elution-controlling membrane. For example, the seal can be placed within the lumen, between the drug within the lumen and an exit pathway from the implant, thereby serving to block the elution pathway (e.g., through an elution control membrane) until such time that the seal is exposed to an external stimulus, which compromises the sealing nature of the seal and allows elution of the drug. In several embodiments, the external stimulus is configured to specifically interact with the seal and not with the outer shell of the implant, the elution controlling membrane or any other feature of the implant that could be negatively impacted by the external stimulus, such as by causing elution at an undesired rate, time, or location. Advantageously, the external stimulus, according to several embodiments, is specific for the seal used in a particular implant, and the implant can be activated by the stimulus without concern that the implant is otherwise damaged.
In several embodiments, biodegradation of the barriers or coatings is triggered by an externally originating stimulus, such as, for example, intraocular injection of a fluid that initiates biodegradation of the barrier, application of heat, ultrasound, and radio frequency, laser energy and the like. In some embodiments, the barriers and/or coatings degrade faster than the drug, while in other embodiments, the degradation rate of the drug is faster, or in still other embodiments, in which the rate of degradation is unique for each. In the context of this application, a heat stimulus is heat greater than human body temperature (37° C.).
Any of the embodiments disclosed herein optionally further comprise one or more anchor structures, one or more excipients compounded with the drug, one or more orifices or openings in the proximal portion of the device to allow drainage of ocular fluid from the anterior chamber of the eye, and/or one or more wicks passing through any outer shell of the implant. In several embodiments, the anchor allows an implant (or a plurality of implants) to be securely positioned within a target region of the eye, such as the pars plana region, while also allowing for future removal without significant trauma to the tissue of the target region. In several embodiments, removal of one implant (e.g., on that has eluted its drug payload) and replacement (an implant with a new payload) are performed in the same surgical procedure.
Several embodiments optionally comprise a retention protrusion configured to anchor the implant to an ocular tissue. Such retention protrusions optionally comprise one or more of ridges, claws, threads, flexible ribs, rivet-like shapes, flexible barbs, barbed tips, expanding material (such as a hydrogel), and biocompatible adhesives. In some embodiments, the expanding material is placed on an exterior surface of the outer shell of the implant and expands after contact with a solvent, such as, for example, intraocular fluid.
Implants provided for herein are optionally anchored (e.g., any mechanism or element that allows an implant to become affixed to, secured to or otherwise attached, either permanently or transiently, to a suitable target intraocular tissue) to a intraocular tissue, such as ciliary muscles, the ciliary tendons, the ciliary fibrous band, the trabecular meshwork, the iris, the iris root, the pars plana region, the retina, the lens cortex, the lens epithelium, to or within the lens capsule, the sclera, the scleral spur, the choroid, or to or within Schlemm's canal. In certain embodiments comprising an implant anchored within the lens capsule, such an implant is preferably implanted concurrently, or after, removal of the native lens (e.g., by cataract surgery).
In some embodiments, the anchor and/or the stem extending between the body of the implant and the anchor includes a fluid conduit or lumen that allows for passage of ocular fluid, such as aqueous humor, through and into the anchor and/or stem. The implant is positioned in the eye so as to allow the openings of the conduit or lumen to be placed in a fluid flow path within the eye, such as Schlemm's canal or the suprachoroidal space. As the fluid passes into the stem and/or anchor and up the stem in a proximal direction (possibly aided by the Venturi effect), it contacts a membrane permeable to a drug contained within the body of the implant. The drug is eluted into the fluid and is carried away from the implant as the fluid continues on its path.
In some embodiments, the devices comprise one or more regions that are permeable to a drug or more permeable to a drug than other regions of a device. The increased permeability may be achieved by any means, including, but not limited to: use of thinner or decreased thickness of material that has some degree of permeability to the drug, whereby the decreased thickness increases the rate of diffusion or transport of the drug; orifices or holes wherein the orifices or holes may be of any suitable size or shape to allow egress of drug and/or ingress of ocular fluids; use of a second material that has increased permeability of a drug; use of a coating which enhances transport of a drug from the interior of a device to the exterior; and any combination of the foregoing. In several embodiments the implants may be hermetically sealed
In several embodiments, the methods disclosed herein optionally comprise one or more of making an incision in the cornea or limbus of the eye in an advantageous position (e.g., temporal, nasal, superior, inferior, and the like), advancing the delivery device through the cornea of the eye and to the site of implantation. In several embodiments, the implants are positioned in the posterior of the eye, including the pars plana region of the eye. In several such embodiments, an incision (or piercing) of the sclera is made on the opposite side of the eye from the eventual target area in which the implant is to be positioned. In other embodiments, the incision is made within about 20-150 degrees, including about 30-90 degrees, from the target area for implantation of one or more implants. In several embodiments, an implantation device is then advanced into or across the eye (optionally offset from the optical axis of the eye) and one, two, three or more implants are inserted into the ocular tissue within the pars plana region. In several embodiments, the implants are spaced apart a certain distance apart from one another, typically less than 1 mm apart. In additional embodiments a first implant is spaced apart from the second implant by about 0.1 mm, by about 0.2 mm, by about 0.3 mm, by about 0.4 mm, by about 0.5 mm, by about 0.6 mm, by about 0.7 mm, by about 0.8 mm, by about 0.9 mm, or any amount of spacing within those spaces listed including endpoints. In certain embodiments, it is preferable to place for five or six implants in a single surgical procedure within the pars plana region of the eye of a subject (or another region). In some embodiments, the implants are positioned in a roughly linear pattern with respect to one another, however in other embodiments the implants are positioned randomly or optionally in a nonlinear pattern, depending on the circumstances surrounding a particular subject's ocular anatomy.
These and other features, aspects, and advantages of the present disclosure will now be described with reference to the drawings of embodiments, which embodiments are intended to illustrate and not to limit the disclosure. One of ordinary skill in the art would readily appreciated that the features depicted in the illustrative embodiments are capable of combination in manners that are not explicitly depicted, but are both envisioned and disclosed herein.
Achieving local ocular administration of a drug may require direct injection or application, but could also include the use of a drug eluting implant, a portion of which, could be positioned in close proximity to the target site of action within the eye or within the chamber of the eye where the target site is located (e.g., anterior chamber, posterior chamber, or both simultaneously). Use of a drug eluting implant could also allow the targeted delivery of a drug to a specific ocular tissue, such as, for example, the macula, the retina, the ciliary body, the optic nerve, or the vascular supply to certain regions of the eye. Use of a drug eluting implant could also provide the opportunity to administer a controlled amount of drug for a desired amount of time, depending on the pathology. For instance, some pathologies may require drugs to be released at a constant rate for just a few days, others may require drug release at a constant rate for up to several months, still others may need periodic or varied release rates over time, and even others may require periods of no release (e.g., a “drug holiday”). Further, implants may serve additional functions once the delivery of the drug is complete. Implants may maintain the patency of a fluid flow passageway within an ocular cavity, they may function as a reservoir for future administration of the same or a different therapeutic agent, or may also function to maintain the patency of a fluid flow pathway or passageway from a first location to a second location, e.g. function as a stent. Conversely, should a drug be required only acutely, an implant may also be made completely biodegradable.
Implants according to the embodiments disclosed herein preferably do not require an osmotic or ionic gradient to release the drug(s), are implanted with a device that minimizes trauma to the healthy tissues of the eye which thereby reduces ocular morbidity, and/or may be used to deliver one or more drugs in a targeted and controlled release fashion to treat multiple ocular pathologies or a single pathology and its symptoms. However, in certain embodiments, an osmotic or ionic gradient is used to initiate, control (in whole or in part), or adjust the release of a drug (or drugs) from an implant. In some embodiments, osmotic pressure is balanced between the interior portion(s) of the implant and the ocular fluid, resulting in no appreciable gradient (either osmotic or ionic). In such embodiments, variable amounts of solute are added to the drug within the device in order to balance the pressures.
As used herein, “drug” refers generally to one or more drugs that may be administered alone, in combination and/or compounded with one or more pharmaceutically acceptable excipients (e.g. binders, disintegrants, fillers, diluents, lubricants, drug release control polymers or other agents, etc.), auxiliary agents or compounds as may be housed within the implants as described herein. The term “drug” is a broad term that may be used interchangeably with “therapeutic agent” and “pharmaceutical” or “pharmacological agent” and includes not only so-called small molecule drugs, but also macromolecular drugs, and biologics, including but not limited to proteins, nucleic acids, antibodies, DARPins, and the like, regardless of whether such drug is natural, synthetic, or recombinant. Drug may refer to the drug alone or in combination with the excipients described above. “Drug” may also refer to an active drug itself or a prodrug or salt of an active drug.
As used herein, “patient” shall be given its ordinary meaning and shall also refer to mammals generally. The term “mammal”, in turn, includes, but is not limited to, humans, dogs, cats, rabbits, rodents, swine, ovine, and primates, among others. Additionally, throughout the specification ranges of values are given along with lists of values for a particular parameter. In these instances, it should be noted that such disclosure includes not only the values listed, but also ranges of values that include whole and fractional values between any two of the listed values.
In several embodiments, a biocompatible drug delivery ocular implant is provided that comprises an outer shell that is shaped to define at least one interior lumen that houses a drug for release into an ocular space. The outer shell is polymeric in some embodiments, and in certain embodiments is substantially uniform in thickness, with the exception of areas of reduced thickness, through which the drug more readily passes from the interior lumen to the target tissue. In other words, a region of drug release may be created by virtue of the reduced thickness. In several other embodiments the shell of the implant comprises one or more regions of increased drug permeability (e.g., based on the differential characteristics of portions of the shell such as materials, orifices, etc.), thereby creating defined regions from which the drug is preferentially released. In other embodiments, if the material of the outer shell is substantially permeable to a drug, the entire outer shell can be a region of drug release. In yet another embodiment, portions of the outer shell that surround where the drug is placed in the interior lumen or void of the device may be considered a region of drug release. For example, if the drug is loaded toward the distal end or in the distal portion of the device (e.g. the distal half or distal ⅔ of the device), the distal portion of the device will be a region of drug release as the drug will likely elute preferentially through those portions of the outer shell that are proximate to the drug. Therefore, as used herein, the term “region of drug release” shall be given its ordinary meaning and shall include the embodiments disclosed in this paragraph, including a region of drug permeability or increased drug permeability based on the characteristics of a material and/or the thickness of the material, one or more orifices or other passageways through the implant (also as described below), regions of the device proximate to the drug and/or any of these features in conjunction with one or more added layers of material that are used to control release of the drug from the implant. Depending on the context, these terms and phrases may be used interchangeably or explicitly throughout the present disclosure.
In some embodiments, the implant body comprises a fluid flow pathway. In some embodiments, the implant optionally comprises a retention feature. In some embodiments, the drug is encapsulated, coated, or otherwise covered with a biodegradable coating, such that the timing of initial release of the drug is controlled by the rate of biodegradation of the coating. In some embodiments, such implants are advantageous because they allow a variable amount of drug to be introduced (e.g., not constrained by dimensions of an implant shell) depending on the type and duration of therapy to be administered. In some embodiments having a shunt feature the shunt feature works in conjunction with the drug to treat one or more symptoms of the disease or condition affecting the patient. For example, in some embodiments, the shunt removes fluid from the anterior chamber while the drug simultaneously reduces the production of ocular fluid. In other embodiments, as discussed herein, the shunt counteracts one or more side effects of administration of a particular drug (e.g., the shunt drains ocular fluid that was produced by the actions of the drug).
Following implantation at the desired site within the eye, drug is released from the implant in a targeted and controlled fashion, based on the design of the various aspects of the implant, preferably for an extended period of time. The implant and associated methods disclosed herein may be used in the treatment of pathologies requiring drug administration to the posterior chamber of the eye, the anterior chamber of the eye, or to specific tissues within the eye, such as the macula, the ciliary body or other ocular target tissues.
In some embodiments functioning as a drug delivery device alone, the implant is configured to deliver one or more drugs to anterior region of the eye in a controlled fashion while in other embodiments the implant is configured to deliver one or more drugs to the posterior region of the eye in a controlled fashion. In still other embodiments, the implant is configured to simultaneously deliver drugs to both the anterior and posterior region of the eye in a controlled fashion. In yet other embodiments, the configuration of the implant is such that drug is released in a targeted fashion to a particular intraocular tissue, for example, the macula or the ciliary body. In certain embodiments, the implant delivers drug to the ciliary processes and/or the posterior chamber. In certain other embodiments, the implant delivers drug to one or more of the ciliary muscles and/or tendons (or the fibrous band). In some embodiments, implants deliver drug to one or more of Schlemm's canal, the trabecular meshwork, the episcleral veins, the lens cortex, the lens epithelium, the lens capsule, the sclera, the scleral spur, the choroid, the suprachoroidal space, retinal arteries and veins, the optic disc, the central retinal vein, the optic nerve, the macula, the fovea, and/or the retina. In still other embodiments, the delivery of drug from the implant is directed to an ocular chamber generally. It will be appreciated that each of the embodiments described herein may target one or more of these regions, and may also optionally be combined with a shunt feature (described below).
In several embodiments, the implant comprises an outer shell. In some embodiments, the outer shell is tubular and/or elongate, while in other embodiments, other shapes (e.g., round, oval, cylindrical, etc.) are used. In certain embodiments, the outer shell is not biodegradable, while in others, the shell is optionally biodegradable. In several embodiments, the shell is formed to have at least a first interior lumen. In certain embodiments, the first interior lumen is positioned at or near the distal end of the device. In other embodiments, a lumen may run the entire length of the outer shell. In some embodiments, the lumen is subdivided. In certain embodiments, the first interior lumen is positioned at or near the proximal end of the device. In those embodiments additionally functioning as a shunt, the shell may have one or more additional lumens within the portion of the device functioning as a shunt.
In several embodiments, the drug (or drugs) is positioned within the interior lumen (or lumens) of the implant shell. In several embodiments, the drug is preferentially positioned within the more distal portion of the lumen. In some embodiments, the distal-most 15 mm of the implant lumen (or lumens) house the drug (or drugs) to be released. In some embodiments, the distal-most 10 mm, including 1, 2, 3, 4, 5, 6, 7, 8, and 9 mm of the interior lumen(s) house the drug to be released. In several embodiments, the drug is preferentially positioned within the more proximal portion of the lumen.
In some embodiments, the drug diffuses through the shell and into the intraocular environment. In several embodiments, the outer shell material is permeable or semi-permeable to the drug (or drugs) positioned within the interior lumen, and therefore, at least some portion of the total elution of the drug occurs through the shell itself, in addition to that occurring through any regions of increased permeability, reduced thickness, orifices etc. The term “permeable” and related terms (e.g. “impermeable” or “semi permeable”) are used herein to refer to a material being permeable to some degree (or not permeable) to one or more drugs or therapeutic agents and/or ocular fluids. The term “impermeable” does not necessarily mean that there is no elution or transmission of a drug through a material, instead such elution or other transmission is negligible or very slight, e.g. less than about 3% of the total amount, including less than about 2% and less than about 1%.
In some embodiments, the implant is dimensioned such that, following implantation, the distal end of the implant is located sufficiently close to the macula that the drug delivered by the implant reaches the macula. In some embodiments incorporating a shunt feature, the implant is dimensioned such that when the distal end of the implant is positioned sufficiently near the macula, the proximal end of the implant extends into the anterior chamber of the eye. In those embodiments, outflow ports in the implant, described in more detail below, are positioned such that the aqueous humor will be drained into the uveoscleral outflow pathway or other physiological outflow pathway.
In some embodiments, the shunt feature works in conjunction with the drug delivery function to potentiate the therapeutic effects of the delivered agent. In other embodiments, the therapeutic effects of the delivered agent may be associated with unwanted side effects, such as fluid accumulation or swelling. In some embodiments, the shunt feature functions ameliorate the side effects of the delivered agent. It shall be appreciated that the dimensions and features of the implants disclosed herein may be tailored to attain targeted and/or controlled delivery to various regions of the eye while still allowing communication with a physiological outflow pathway.
For example, in some embodiments, the implant is dimensioned such that following implantation the distal end of the implant is located in the suprachoroidal space and the proximal end of the implant is located in the anterior chamber of the eye. In several embodiments, the drug eluted from the implant elutes from the proximal end of the implant into the anterior chamber. In some embodiments incorporating a shunt feature, one or more outflow ports in the implant are positioned such that aqueous humor will drain into the uveoscleral pathway. In several embodiments, aqueous humor will drain from the anterior chamber to the suprachoroidal space.
The delivery instruments, described in more detail below, may be used to facilitate delivery and/or implantation of the drug delivery implant to the desired location of the eye. The delivery instrument may be used to place the implant into a desired position, such as the inferior portion of the iris, the suprachoroidal space near the macula, in a position extending from the anterior chamber to the suprachoroidal space, or other intraocular region, The design of the delivery instruments may take into account, for example, the angle of implantation and the location of the implant relative to an incision. For example, in some embodiments, the delivery instrument may have a fixed geometry, be shape-set, or actuated. In some embodiments, the delivery instrument may have adjunctive or ancillary functions, such as for example, injection of dye and/or viscoelastic fluid, dissection, or use as a guidewire. As used herein, the term “incision” shall be given its ordinary meaning and may also refer to a cut, opening, slit, notch, puncture or the like.
In certain embodiments the drug delivery implant may contain one or more drugs which may or may not be compounded with a bioerodible polymer or a bioerodible polymer and at least one additional agent. In still other embodiments, the drug delivery implant is used to sequentially deliver multiple drugs. Additionally, certain embodiments are constructed using different outer shell materials, and/or materials of varied permeability to generate a tailored drug elution profile. Certain embodiments are constructed using different numbers, dimensions and/or locations of orifices in the implant shell to generate a tailored drug elution profile. Certain embodiments are constructed using different polymer coatings and different coating locations on the implant to generate a tailored drug elution profile. Some embodiments elute drug at a constant rate, others yield a zero-order release profile. Yet other embodiments yield variable elution profiles. Still other embodiments are designed to stop elution completely or nearly completely for a predetermined period of time (e.g., a “drug holiday”) and later resume elution at the same or a different elution rate or elution concentration. Some such embodiments elute the same therapeutic agent before and after the drug holiday while other embodiments elute different therapeutic agents before and after the drug holiday.
The present disclosure relates to ophthalmic drug delivery implants which, following implantation at an implantation site, provide controlled release of one or more drugs to a desired target region within the eye, the controlled release being for an extended, period of time. Depending on the embodiment, the implants may or may not elute a drug from the implant upon insertion. For example, implants according to certain embodiments disclosed herein do not elute a drug until a certain period of time has elapsed since implantation or until an external stimulus is applied to the implant in vivo. Various embodiments of the implants are shown in
In some embodiments, the implant is made of a flexible material. In other embodiments, a portion of the implant is made from flexible material while another portion of the implant is made from rigid material. In some embodiments, the implant comprises one or more flexures (e.g., hinges). In some embodiments, the drug delivery implant is pre-flexed, yet flexible enough to be contained within the straight lumen of a delivery device.
In several embodiments the majority of the surface of the outer shell of the implant is substantially impermeable to ocular fluids. In several embodiments, the majority of the surface of the outer shell of the implant is also substantially impermeable to the drug 62 housed within the interior lumen of the implant (discussed below). In other embodiments, the outer shell is semi-permeable to drug and/or ocular fluid and certain regions of the implant are made less or more permeable by way of coatings or layers or impermeable (or less permeable) material placed within or on the outer shell.
In several embodiments, the outer shell also has one or more regions of drug release 56. In some embodiments the regions of drug release are of reduced thickness compared to the adjacent and surrounding thickness of the outer shell. In some embodiments, the regions of reduced thickness are formed by one or more of ablation, stretching, etching, grinding, molding and other similar techniques that remove material from the outer shell (See
The regions of drug release may be of any shape needed to accomplish sufficient delivery of the drug to a particular target tissue of the eye. For example, in
The implant in some embodiments includes a distal portion located at the distal end of the implant. In some embodiments, the distal portion is sufficiently sharp to pierce eye tissue near the scleral spur of the eye. The distal portion can be sufficiently blunt so as not to substantially penetrate scleral tissue of the eye. In some embodiments, the implant has a generally sharpened forward end and is self-trephinating, i.e., self-penetrating, so as to pass through tissue without pre-forming an incision, hole, or aperture. The sharpened forward end can be, for example, conical or tapered. The taper angle of the sharpened end is, for example, about 30°±15° in some embodiments. In some embodiments, the radius of the tip of the distal end is about 70 microns to about 200 microns. In embodiments comprising a shunt, discussed further herein, an outlet opening is formed at the distal end of the shunt and the distal portion gradually increases in cross-sectional size in the proximal direction, preferably at a generally constant taper or radius, or in a parabolic manner.
In some embodiments, the implant has a cap or tip at one or both ends. A distal end cap can include a tissue-piercing end. In some embodiments the cap has a conically shaped tip. In other embodiments, the cap can have a tapered angle tip. The tip can be sufficiently sharp to pierce eye tissue near the scleral spur of the eye. The tip can also be sufficiently blunt so as not to substantially penetrate scleral tissue of the eye. In some embodiments, the conically shaped tip facilitates delivery of the shunt to the desired location. In embodiments comprising a shunt, the distal end cap has one or more outlet openings to allow fluid flow. Each of the one or more outlet openings can communicate with at least one of the one or more lumens.
In some embodiments, the implant has a proximal end cap. For example, an O-ring cap with a region of drug release (as discussed more fully herein and with reference to
In some embodiments, the implant has a substantially constant cross-sectional shape through most of its length. Alternatively, the implant can have portions of reduced or enlarged cross-sectional size (e.g., diameter) along its length. In some embodiments, the distal end of the implant has a tapered portion, or a portion having a continually decreasing radial dimension with respect to the lumen axis along the length of the axis. The tapered portion preferably in some embodiments terminates with a smaller radial dimension at the distal end. During implantation, the tapered portion can operate to form, dilate, and/or increase the size of an incision or puncture created in the tissue. The tapered portion may have a diameter of about 30-gauge to about 23-gauge, and preferably about 25-gauge.
In several embodiments, lumens are present in both the proximal and distal portions of the implant (see
Regardless of their shape and location(s) on the outer shell of the implant, the regions of drug release are of a defined and known area. The defined area assists in calculating the rate of drug elution from the implant (described below).
In some such embodiments, the communicating particulate matter comprises hydrogel particles, for example, polyacrylamide, cross-linked polymers, poly2-hydroxyethylmethacrylate (HEMA) polyethylene oxide, polyAMPS and polyvinylpyrrolidone, or naturally derived hydrogels such as agarose, methylcellulose, hyaluronan. Other hydrogels known in the art may also be used. In some embodiments, the impermeable material is silicone. In other embodiments, the impermeable material may be Teflon®, flexible graphite, silicone rubber, silicone rubber with fiberglass reinforcement, Neoprene®, fiberglass, cloth inserted rubber, vinyl, nitrile, butyl, natural gum rubber, urethane, carbon fiber, fluoroelastomer, and or other such impermeable or substantially impermeable materials known in the art. In this and other embodiments disclosed herein, terms like “substantially impermeable” or “impermeable” should be interpreted as relating to a material's relative impermeability with regard to the drug of interest. This is because the permeability of a material to a particular drug depends upon characteristics of the material (e.g. crystallinity, hydrophilicity, hydrophobicity, water content, porosity) and also to characteristics of the drug.
In certain embodiments, the communicating particles are extracted with a solvent prior to implantation. The extraction of the communicating particles thus creates a communicating passageway within the impermeable material. Pores (or other passages) in the impermeable material allow ocular fluid to pass into the particles, which communicate the fluid into the lumen of implant. Likewise, the particles communicate the drug out of the lumen of the implant and into the target ocular tissue.
In contrast to a traditional pore or orifice (described in more detail below), embodiments such as those depicted in
In several embodiments, the region of drug release comprises one or more orifices. It shall be appreciated that certain embodiments utilize regions of drug release that are not orifices, either alone or in combination with one or more orifices in order to achieve a controlled and targeted drug release profile that is appropriate for the envisioned therapy.
In several embodiments, the implant further comprises a coating 60 which may be positioned in various locations in or on the implant as described below. In some embodiments, the coating 60 is a polymeric coating.
In other embodiments, the outer shell may contain one or more orifice(s) 56b in the distal tip of the implant, as shown in
In several embodiments, an additional structure or structures within the interior of the lumen partially controls the elution of the drug from the implant. In some embodiments, a proximal barrier 64a is positioned proximally relative to the drug 62 (
In such embodiments where the material is the same, the physical characteristics of the material used to construct 210 are optionally different than that of the shell 54. For example, the size, density, porosity, or permeability of the material of 210 may differ from that of the shell 54. In some embodiments, the internal plug is formed in place (i.e. within the interior lumen of the implant), for example by polymerization, molding, or solidification in situ of a dispensed liquid, powder, or gel. In other embodiments, the internal plug is preformed external to the shell placed within the shell prior to implantation. In such embodiments, tailored implants are constructed in that the selection of a pre-formed internal plug may be optimized based on a particular drug, patient, implant, or disease to be treated. In several embodiments, the internal plug is biodegradable or bioerodible, while in some other embodiments, the internal plug is durable (e.g., not biodegradable or bioerodible).
In several other embodiments, the internal plug 210 may be more loosely fit into the interior lumen of the shell which may allow flow or transport of the drug around the plug. See
In several embodiments, the orifices 56a are covered (wholly or partially) with one or more elution membranes 100 that provide a barrier to the release of drug 62 from the interior lumen 58 of the implant shell 54. See
Similar to the internal plug and regions of drug release described above, the characteristics of the elution membrane at least partially define the release rate of the therapeutic agent from the implant. Thus, the overall release rate of drug from the implant may be controlled by the physical characteristics of the implant, including, but not limited to, the area and volume of the orifices, the surface area of any regions of drug release, the size and position of any internal plug with respect to both the drug and the orifices and/or regions of drug release, and the permeability of any layers overlaying any orifices or regions of drug release to the drug and bodily fluids.
In some embodiments, multiple pellets 62 of single or multiple drug(s) are placed end to end within the interior lumen of the implant (
An additional non-limiting embodiment of a drug pellet-containing implant is shown in
While shown in
As discussed in more detail herein, each tablet comprises a therapeutic agent (also referred to herein as an active pharmaceutical ingredient (API)) optionally combined with one or more excipients. Excipients may include, among others, freely water soluble small molecules (e.g., salts) in order to create an osmotic pressure gradient across the wall of tubing 54′. In some embodiments, such a gradient increases stress on the wall, and decreases the time to release drug.
The in vivo environment into which several embodiments of the implants disclosed herein are positions may be comprised of a water-based solution (such as aqueous humor or blood plasma) or gel (such as vitreous humor). Water from the surrounding in vivo environment may, in some embodiments, diffuse through semipermeable or fenestrated stent walls into the drug reservoir (e.g., one or more of the interior lumens, depending on the embodiment). Water collecting within the drug-containing interior lumen then begins dissolving a small amount of the tablet or drug-excipient powder. The dissolution process continues until a solution is formed within the lumen that is in osmotic equilibrium with the in vivo environment.
In additional embodiments, osmotic agents such as saccharides or salts are added to the drug to facilitate ingress of water and formation of the isosmotic solution. With relatively insoluble drugs, for example corticosteroids, the isosmotic solution may become saturated with respect to the drug in certain embodiments. In certain such embodiments, saturation can be maintained until the drug supply is almost exhausted. In several embodiments, maintaining a saturated condition is particularly advantageous because the elution rate will tend to be essentially constant, according to Fick's Law.
Several embodiments of the implant may also comprise a shunt in addition to functioning as a drug delivery device. The term “shunt” as used herein is a broad term, and is to be given its ordinary and customary meaning to a person of ordinary skill in the art (and it is not to be limited to a special or customized meaning), and refers without limitation to the portion of the implant defining one or more fluid passages for transport of fluid from a first, often undesired location, to one or more other locations. In some embodiments, the shunt can be configured to provide a fluid flow path for draining aqueous humor from the anterior chamber of an eye to an outflow pathway to reduce intraocular pressure, such as is depicted generally in
The shunt portion of the implant can have an inflow portion 68 and one or more outflow portions 66. As described above, the outflow portion may be disposed at or near the proximal end 52 of the implant. While not illustrated, in some embodiments a shunt outflow portion may be disposed at or near the distal end of the implant with the inflow portion residing a different location (or locations) on the implant. In some embodiments, when the implant is deployed, the inflow portion may be sized and configured to reside in the anterior chamber of the eye and the outflow portion may be sized and configured to reside in the supraciliary or suprachoroidal space. In some embodiments, the outflow portion may be sized and configured to reside in the supraciliary region of the uveoscleral outflow pathway, the suprachoroidal space, other part of the eye, or within other physiological spaces amenable to fluid deposition.
In some embodiments, at least one lumen extends through the shunt portion of the implant. In some embodiments, there is at least one lumen that operates to conduct the fluid through the shunt portion of the implant. In certain embodiments, each lumen extends from an inflow end to an outflow end along a lumen axis. In some embodiments the lumen extends substantially through the longitudinal center of the shunt. In other embodiments, the lumen can be offset from the longitudinal center of the shunt.
In implants additionally comprising a shunt in the proximal portion of the device, the first (most proximal) outflow orifice on the implant is positioned between 1 and 10 mm from the anterior chamber of the subject. In some embodiments additionally comprising a shunt in the proximal portion of the device, the first (most proximal) outflow orifice on the implant is positioned preferably between 2 and 5 mm from the anterior chamber of the subject. Additional outflow orifices may be positioned in more distal locations, up to or beyond the point where the interior lumen housing the drug or therapeutic agent begins.
In some embodiments comprising a shunt, a shunt inflow portion preferably is disposed at or near a proximal end of the implant and a shunt outflow portion preferably is disposed at or near a distal end of the shunt. When implanted, in several embodiments, the shunt inflow portion is sized and configured to reside in the anterior chamber of the eye and the shunt outflow portion is sized and configured to reside in the uveoscleral outflow pathway. In some embodiments, the shunt outflow portion is sized and configured to reside in the supraciliary region of the uveoscleral outflow pathway or in the suprachoroidal space. Multiple outflow points may be used in a single device, depending on the embodiment.
In some embodiments, the flow path through the implant is configured to regulate the flow rate to reduce the likelihood of hypotony in the eye. In some embodiments, the intraocular pressure is maintained at about 8 mm Hg. In other embodiments, the intraocular pressure is maintained at pressures less than about 8 mm Hg, for example the intraocular pressure may be maintained between about 6 mm Hg and about 8 mm Hg. In other embodiments, the intraocular pressure is maintained at pressures greater than about 8 mm Hg. For example, the intraocular pressure may be maintained between about 8 mm Hg and about 18 mm Hg, and more preferably between 8 mm Hg and 16 mm Hg, and most preferably not greater than 12 mm Hg. In some embodiments, the flow rate can be limited to about 2.5 μL/min or less. In some embodiments, the flow rate can be limited to between about 1.9 μL/min and about 3.1 μL/min.
For example, the Hagen-Poisseuille equation suggests that a 4 mm-long shunt at a flow rate of 2.5 μL/min should have an inner diameter of 52 micrometers to create a pressure gradient of 5 mm Hg above the pressure in the suprachoroidal space.
The implant 430 preferably has an outer diameter that will permit the implant 430 to fit within a 21-gauge or 23-gauge needle or hollow instrument during implantation; however, larger or smaller gauge instruments may also be used. The implant 430 can also have a diameter that is designed for delivery with larger needles. For example, the implant 430 can also be delivered with 18-, 19- or 20-gauge needles. The implant 430 can have a constant diameter through most of its length. In some embodiments, the implant 430 comprises retention features 446 that operate to mechanically lock or anchor the implant 430 in place when implanted. In some embodiments, the retention features 446 comprise portions of reduced diameter, e.g., annular grooves, between the proximal end 438 and the distal end 440. In some embodiments, the retention features 446 comprise barbs or other projections, which extend from the outer surface of the implant 430, to inhibit migration of the implant 430 from its implanted position, as described above.
As shown in
The outflow portion 434 of the implant 430 preferably is disposed at or near the distal end 440 of the implant 430. In the embodiment illustrated in
The tapered portion 444 can also facilitate proper location of the implant 430 into the supraciliary or suprachoroidal spaces. For example, the implant 430 is preferably advanced through the tissue within the anterior chamber angle during implantation. This tissue typically is fibrous or porous, which is relatively easy to pierce or cut with a surgical device, such as the tip of the implant 430. The implant 430 can be advanced through this tissue and abut against the sclera once the implant 430 extends into the uveoscleral outflow pathway. As the implant 430 abuts against the sclera, the tapered portion 444 preferably provides a generally rounded edge or surface that facilitates sliding of the implant 430 within the suprachoroidal space along the interior wall of the sclera. For example, as the implant 430 is advanced into the uveoscleral outflow pathway and against the sclera, the implant 430 will likely be oriented at an angle with respect to the interior wall of the sclera. As the tip of the implant 430 engages the sclera, the tip preferably has a radius that will permit the implant 430 to slide along the sclera instead of piercing or substantially penetrating the sclera. As the implant 430 slides along the sclera, the tapered portion 444 will provide an edge against which the implant 430 can abut against the sclera and reduce the likelihood that the implant 430 will pierce the sclera.
Once the implant 430 is implanted in position with the inflow portion 432 residing in the anterior chamber and the outflow portion 434 residing in the uveoscleral outflow pathway, the first active drug can elute from the lumen 436 of the implant 430 into the anterior chamber and aqueous humor can flow from the anterior chamber to the uveoscleral outflow pathway through the lumen 436 of the implant 430. The flow of fluid is preferably restricted by the size of the lumen 436, which produces a capillary effect that limits the fluid flow for given pressures. The capillary effect of the lumen allows the shunt to restrict flow and provides a valveless regulation of fluid flow. The flow of fluid through the implant 430 is preferably configured to be restricted to a flow rate that will reduce the likelihood of hypotony in the eye. For example, in some embodiments, the flow rate can be limited to about 2.5 μL/min or less. In some embodiments the flow rate can be limited to between about 1.9 μL/min and about 3.1 μL/min. In other applications, a plurality of implants 430 can be used in a single eye to elute at least a first drug into the anterior chamber and to conduct fluid from the anterior chamber to the uveoscleral outflow pathway. In such applications, the cumulative flow rate through the implants preferably is within the range of about 1.9 μL/min to about 3.1 μL/min, although the flow rate for each of the implants can be significantly less than about 2.5 μL/min. For example, if an application called for implantation of five implants, then each implant 430 can be configured to have a flow rate of about 0.5 μL/min.
While the lumen 436 is depicted in
In some embodiments, the implant comprises one or more lumens or sub-lumens, as described further herein. In some embodiments, at least a first active drug is placed in at least one sub-lumen. The sub-lumen can have a closed distal end or can have an outlet located in or near the distal end to allow fluid to flow from the anterior chamber to the uveoscleral outflow pathway. In some embodiments, at least one sub-lumen does not contain any active drugs and is configured exclusively to allow fluid to drain from the anterior chamber to the uveoscleral outflow pathway.
The implant 430 preferably comprises any of the materials described herein. The implant 430 can be fabricated through conventional micro machining techniques or through procedures commonly used for fabricating optical fibers. For example, in some embodiments, the implant 430 is drawn with a bore, or lumen, extending therethrough. In some embodiments, the tapered portion 444 at the outflow portion 434 can be constructed by shearing off an end tubular body. This can create a tapered portion 444 that can be used to puncture or incise the tissue during implantation and dilate the puncture or incision during advancement of the implant 430. Other materials can be used for the implant 430 of
The implant 430 of
The regions of drug release are further permeable to aqueous humor to allow for drainage of aqueous humor from the anterior chamber and through the lumen of the implant. In some embodiments, the cap comprises one or more orifices or layers in place of, or in addition to, regions of drug release based on thickness and/or permeability of the cap material. The one or more orifices or layers can be permeable to aqueous humor to allow for drainage from the anterior chamber. In some embodiments, a coating is placed within the cap to cover an orifice therein. The coating may comprise a membrane or layer of semi-permeable polymer. In some embodiments, the coating has a defined thickness, and thus a defined and known permeability to various drugs and ocular fluid. In some embodiments, the coating is placed in other locations, including on the exterior of the cap, within the orifice, or combinations thereof.
In some embodiments, the implant is formed with one or more dividers positioned longitudinally within the outer shell, creating multiple additional sub-lumens within the interior lumen of the shell. The divider(s) can be of any shape (e.g. rectangular, cylindrical) or size that fits within the implant so as to form two or more sub-lumens, and may be made of the same material or a different material than the outer shell, including one or more polymers, copolymers, metal, or combinations thereof. In one embodiment, a divider is made from a biodegradable or bioerodible material. The multiple sub-lumens may be in any configuration with respect to one another. In some embodiments, a single divider may be used to form two sub-lumens within the implant shell. See e.g.,
In some embodiments, one or more of the sub-lumens formed by the dividers may traverse the entire length of the implant. In some embodiments, one or more of the sub-lumens may be defined of blocked off by a transversely, or diagonally placed divider or partition. The blocked off sub-lumens may be formed with any dimensions as required to accommodate a particular dose or concentration of drug.
In some embodiments comprising a shunt, one or more lumens extend through the shunt to form at least a portion of the flow path. Preferably, there is at least one lumen that operates to conduct the fluid through the shunt. Each lumen preferably extends from an inflow end to an outflow end along a lumen axis. In some embodiments the lumen extends substantially through the longitudinal center of the shunt. In other embodiments, the lumen can be offset from the longitudinal center of the shunt.
In some embodiments, a wick 82 is included in the implant (
In several embodiments, implants comprise a sheet 400 and a retention protrusion 359. See
For delivery of some embodiments of the sheet or disc implants, the sheets or discs are dimensioned such that they can be rolled, folded, or otherwise packaged within a delivery instrument.
The implant is dimensioned, in some embodiments, to be affixed (e.g., tethered) to the iris and float within the aqueous of the anterior chamber. In this context, the term “float” is not meant to refer to buoyancy of the implant, but rather that the sheet surface of the implant is movable within ocular fluid of the anterior chamber to the extent allowed by the retention protrusion. In certain embodiments, such implants are not tethered to an intraocular tissue and are free floating within the eye. In certain embodiments, the implant can be adhesively fixed to the iris with a biocompatible adhesive. In some embodiments, a biocompatible adhesive may be pre-activated, while in others, contact with ocular fluid may activate the adhesive. Still other embodiments may involve activation of the adhesive by an external stimulus, after placement of the implant, but prior to withdrawal of the delivery apparatus. Examples of external stimuli include, but are not limited to heat, ultrasound, and radio frequency, or laser energy. In certain embodiments, affixation of the implant to the iris is preferable due to the large surface area of the iris. In other embodiments, the implant is flexible with respect to a retention protrusion affixed to the iris, but is not free floating. Embodiments as disclosed herein are affixed to the iris in a manner that allows normal light passage through the pupil.
As discussed above, several embodiments disclosed herein employ multiple materials of varying permeability to control the rate of drug release from an implant.
Additional non-limiting embodiments of caps are shown in
Additionally, as shown in
In each of the embodiments depicted in the Figures, as well as other embodiments, the coatings or outer layers of shell material may be formed by spraying, dipping, or added by some other equivalent means known in the art. Thus, in some embodiments, the permeability of the region of drug release or layer(s) covering an orifice (and hence the elution rate) will be at least partially defined by the materials used in manufacturing the implant, the coatings (if any) on the implant, and the effective thickness of implant outer shell.
Additionally, in several embodiments, one or more portions of the implant are manufactured separately, then combined for a final implant that is ready for insertion to a target site (e.g., an assembled cap and implant shell). As shown, for example, in
In various embodiments, the thickness of the membrane 60 (taken in conjunction with the particular therapeutic agent or agents of choice) ranges from about 30 to about 200 μm in thickness, including about 30 to about 200 μm, about 50 to about 200 μm, about 70 to about 200 μm, about 90 to about 200 μm, about 30 to about 100 μm, about 30 to about 115 μm, about 50 to about 125 μm, about 63 to about 125 μm, about 84 to about 110 μm, about 57 to about 119 μm, and overlapping ranges thereof. In several embodiments, the thickness of the membrane 60 also defines, at least in part, the elution rate of the drug (or drugs) of interest.
As discussed herein, the elution rate of the drug is controlled, depending on the embodiment, to allow drug release over a desired time frame. For example, in several embodiments, the duration of drug release, depending on the embodiment, ranges from several months to several years, e.g., about 6 to about 12 months, about 12 to about 18 months, about 18 to about 24 months, about 24 to about 30 months, about 30 to about 36 months, etc.
During manufacture of the implants of certain embodiments, one or more interior lumen 58 is formed within the outer shell of the implant. In some embodiments, an interior lumen is localized within the proximal portion of the implant, while in other embodiments, an interior lumen runs the entire length or any intermediate length of the implant. Some embodiments consist of a single interior lumen, while others comprise two or more interior lumens. In some embodiments, one or more of the internal lumens may communicate with an ocular chamber or region, e.g., the anterior chamber. In some embodiments, implants are dimensioned to communicate with more than one ocular chamber or region. In some embodiments, both the proximal and the distal end of the implant are positioned within a single ocular chamber or region, while in other embodiments, the ends of the implant are positioned in different ocular chambers or regions.
A drug 62 is housed within the interior lumen 58 of the implant. The drug 62 comprises a therapeutically effective agent against a particular ocular pathology as well as any additional compounds needed to prepare the drug in a form with which the drug is compatible. In some embodiments, one or more of the internal lumens may contain a different drug or concentration of drug, which may be delivered simultaneously (combination therapy) or separately. In some preferred embodiments, an interior lumen is sized in proportion to a desired amount of drug to be positioned within the implant. The ultimate dimensions of an interior lumen of a given embodiment are dictated by the type, amount, and desired release profile of the drug or drugs to be delivered and the composition of the drug(s).
In some embodiments, multiple pellets 62 of single or multiple drug(s) are placed within an interior lumen of the implant. In some embodiments an impermeable partition 64 is used to seal drug(s) within the lumen, such that the sole route of exit from the implant is through the region of drug release. In some embodiments, the impermeable partition 64 may bioerode at a specified rate. In some embodiments, the impermeable partition 64 is incorporated into the drug pellet and creates a seal against the inner dimension of the shell of the implant 54. In other embodiments, more than one impermeable partition is used within a lumen, thereby creating sub-lumens, which may contain different drugs, the same drug at a different concentration, or the same or another drug compounded with different excipients etc. In such embodiments, sequential drug release or release of two agents that are inert within the implant and active when co-mingled outside their respective sub-lumens may be achieved.
In several embodiments, micro-tablets provide an advantage with respect to the amount of an agent that can be packed, tamped, or otherwise placed into an implant disclosed herein. The resultant implant comprising micro-tablets, in some embodiments, thus comprises therapeutic agent at a higher density than can be achieved with non-micro-tablet forms. As described herein, some embodiments of the devices disclosed herein are rechargeable, and as such, the size of micro-tablets is advantageous. In some embodiments, the loading and/or recharging of a device is accomplished with a syringe/needle, through which the therapeutic agent is delivered. In some embodiments, the micro-tablets may be introduced into the eye directly, such as into the vitreous cavity, using a syringe or cannula.
In one embodiment, micro-tablets with the above properties, or any combination thereof, are made using known techniques in the art including tableting, lyophilization, granulation (wet or dry), flaking, direct compression, molding, extrusion, and the like. Moreover, as discussed below, alterations in the above-discussed characteristics can be used to tailor the release profile of the micro-tableted therapeutic agent from an implant.
In several embodiments, the therapeutic agent is a protein, and in certain such embodiments, drying and/or tabletization is completed under conditions (e.g., temperature, acid/base, etc.) that do not adversely affect the biological activity of the therapeutic agent. To assist in maintenance of biological activity of micro-pelleted therapeutic agents, in some embodiments, protein therapeutics are formulated with a stabilizing agent (e.g., mannitol, trehalose, starch, or other poly-hydroxy polymer) to maintain the structure (and therefore activity) of the therapeutic protein.
In additional embodiments, multiple drug eluting implants of an open configuration can be implanted simultaneously to increase the duration of drug elution. This is schematically depicted in
Additionally, in several embodiments, the use of a combination of open and conditional release implants can further be supplemented by the direct administration of a therapeutic agent of interest (an anti-VEGF compound) concurrent with the positioning of the implants at the desired target ocular tissue. In some such embodiments, the combination of an open implant and a direct injection of a therapeutic agent results in a bolus administration of the therapeutic agent (the injection), as well as an immediate elution of the therapeutic agent (e.g., from the open implant). In this manner, the therapeutic agent becomes effective immediately during the surgical process. In some instances, this reduces the lag time that would otherwise be realized in order for an effective therapeutic level of the drug to be reached. However, in still additional embodiments, a direct injection of a therapeutic agent can obviate the need for an open implant. For example, the schematic shown in
Additionally, the use of a plurality of implants enables the delivery of either a single drug (e.g., all of the plurality of implants contain the same drug) or a cocktail of multiple drugs (e.g., one or more of the plurality of implants contains a different drug). In the former scenario, the use of a plurality of implants containing the same drug allows the maximization of the duration of elution of the drug before an additional surgery is required. For example, implanting six implants, each of which has the same therapeutic agent, could result in an extended period of release (e.g., up to one year, up to two years, etc.). In the latter scenario, a cocktail of multiple drugs can be used to treat different symptoms of an ocular disease, or even treat distinct ocular diseases that a single patient suffers from. Additionally, having an implant with a different therapeutic agent may be advantageous in that the second (or third, or fourth, etc.) therapeutic agent counteract a side effect that is elicited from the elution of a first therapeutic agent from an implant. Additionally, in several embodiments, even when all of the plurality of implants contains the same therapeutic agent, the concentration or formulation of the therapeutic agent may vary between the implants. In such a scenario, as well as when different therapeutic agents are within the implants, the desired release profile for each therapeutic agent, or concentration of therapeutic agent, can be obtained by customizing the implants response to the external stimulus. In other words, a first implant may react to the same external stimulus in a different fashion such that a greater amount of drug is released from the implant than from the other implants that also reside in the target tissue.
The stem 850 connects to the wall 810 at the distal end of the main body of the implant, and has an anchor or retention feature 860 at its distal end. Other types of retention features as disclosed herein may be used in place of the pointed anchor illustrated in
It will be understood that the membrane/stem/anchor portion of
In several embodiments, an implant 800 is implanted in the distal portion of the eye, e.g. in the vitreous chamber, so that at least the distalmost end of the anchor 860 extends into or resides within the sclera, without any portion of the anchor passing completely through the sclera. The implant is positioned so that the openings 845 in the lumen 840 are in fluid communication with the suprachoroidal space. Aqueous humor passing through the suprachoroidal space from the anterior chamber toward the posterior of the eye will pass into the lumen 840 of the implant 800 and any therapeutic agent in the chamber 820 that has been eluted through the membrane 830 will be carried with the flow of the aqueous humor as it moves generally posteriorly in the eye. For example, in some embodiments, the device is implanted at the pars plana and delivers a therapeutic agent through the suprachoroidal space towards a target tissue such as the retina, macula, RPE (retinal pigment epithelium), and/or optic nerve. In other embodiments, the implant is implanted in the area of the retina, for example to provide more targeted drug delivery to the RPE of a diseased eye. In an embodiment such as
In several embodiments, the implants are configured specifically for use (e.g., implantation) in the punctum of the eye of a subject (e.g., the upper and/or lower punctum of the upper and/or lower canaliculus, respectively). The puncta function to collect tears that are released onto the surface of the eye by the lacrimal glands. However, in some individuals tear production is reduced, blocked, decreased, or otherwise insufficient to maintain an adequate level of moisture on the eye (or eyes). Damage to the corneal surface of the eye can result if the moisture on the eye remains reduced. When functioning normally (e.g., in a patient with normal tear production), the puncta convey the tear fluid to the lacrimal sac, which then allows it to drain through the nasolacrimal duct to the inner nose. One treatment for dry eye or similar syndromes is implantation of punctual plugs. Once implanted the plugs function to block the drainage of tear fluid, thereby increasing the retention of tear fluid on the eye. However, several of the implant embodiments disclosed herein advantageously allow the supplementation of the physical blockage of tear drainage with the delivery of one or more therapeutic agents to the eye in order to treat one or more aspects of reduced tear production. Thus, in several embodiments, one or more therapeutic agents are positioned in the implant in order to increase tear production and/or treat a symptom of dry eye, including, but not limited to, reduction in swelling, irritation of the eye and surrounding tissues and/or inflammation. Additional symptoms that are reduced, ameliorated, and in some cases eliminated include stinging or burning of the eye, a sandy or gritty feeling as if something is in the eye, episodes of excess tears following very dry eye periods, a stringy discharge from the eye, pain and redness of the eye, temporary or extended episodes of blurred vision, heavy eyelids, reduced ability to cry, discomfort when wearing contact lenses, decreased tolerance of reading, working on the computer, or any activity that requires sustained visual attention, and eye fatigue.
In several embodiments, the implants advantageously obviate the need for additional topical agents (e.g., ointments, artificial tears, etc.). In several embodiments, however, the implants are configured (e.g., have a particular drug release profile) to work synergistically with one or more of such agents. For example, in several embodiments, the implant is configured to deliver a constant dosage of a therapeutic agent over time to treat a damaged or diseased eye, and a subject with them implants in place can also use artificial tears, for example, to further enhance the efficacy of the agent delivered from the implant.
In several embodiments, the agents delivered from the implant are used for treatment of another ocular disorder, such as glaucoma, ocular hypertension, and/or elevated intraocular pressure.
Advantageously, as discussed herein, several embodiments of the implants configured for punctual placement allows metered delivery of one or more therapeutic agents; that is, delivery at a constant rate, thereby reducing the peaks and valleys of therapeutic agent concentration as occurs with topical administration (e.g., via eyedrop).
Any of the relevant features disclosed herein can be applied to the embodiments configured for use in the punctum. For example, the dimensions of the implants, their shape, their drug release characteristics, and the like can be configured for use in the punctum. In several embodiments, the plugs can be tailored to the punctal dimensions of a particular subject. Moreover, the plugs can be configured to be removable or, in several embodiments, permanent (e.g., capable of being recharged). In several embodiments, the punctal implants comprise at least a first active agent that is loaded, at least in part, preferentially in the proximal region of the implant (e.g., such that the agent is released to the tear film of the subject) with the distal region of the implant positioned within the within the lacrimal ducts. In several such embodiments, the implant is specifically adapted to prevent unintended release of the active agent (or agents) from the distal portion of the implant. In some such embodiments, a plug (e.g., an impermeable occlusive member), a membrane (e.g., a membrane with little to no permeability to the active agent/agents), and/or a valve (e.g., a one-way valve) prevent elution in a distal region of the device.
In several embodiments, the use of a valve or plug enables flushing of the implant. For example, if there is a need to replace the therapeutic agent (e.g., with a different agent or a different dose of the same agent) it may be beneficial to substantially remove any remaining agent within the implant. In such instances, the plug can be removed and the implant flushed from a proximal to distal direction, allowing the therapeutic agent remaining in the implant to be flushed down the nasolacrimal duct. Thereafter the implant can be reloaded with another dose, another agent, and the like. Similarly, flushing the implant can be performed when a valve is positioned in the distal region of the implant, the valve being opened by pressure exerted on it from the flushing procedure and preventing backflow of the flushed agent into the implant.
In several embodiments, an implant and method for treating an eye with latanoprost or other therapeutic agent(s) is provided, the method comprising inserting a distal end of an implant into at least one punctum of the eye and positioning the implant such that the proximal portion of the implant delivers latanoprost or other therapeutic agent(s) to the tear fluid adjacent the eye. In several embodiments, delivery of the latanoprost or other therapeutic agent(s) is inhibited distally of the proximal end.
Intraocular targets for anchoring of implants include, but are not limited to the fibrous tissues of the eye. In some embodiments, implants are anchored to the ciliary muscles and/or tendons (or the fibrous band). In some embodiments, implants are anchored into Schlemm's canal, the trabecular meshwork, the episcleral veins, the iris, the iris root, the lens cortex, the lens epithelium, the lens capsule, the sclera, the scleral spur, the choroid, the suprachoroidal space, the anterior chamber wall, or disposed within the anterior chamber angle. As used herein, the term “suprachoroidal space” shall be given its ordinary meaning and it will be appreciated that other potential ocular spaces exist in various regions of the eye that may be encompassed by the term “suprachoroidal space.” For example, the suprachoroidal space located in the anterior region of the eye is also known as the supraciliary space, and thus, in certain contexts herein, use of “suprachoroidal space” shall be meant to encompass the supraciliary space.
The retention protrusions may be formulated of the same biocompatible material as the outer shell. In some embodiments the biodegradable retention protrusions are used. In alternate embodiments, one or more of the retention protrusions may be formed of a different material than the outer shell. Different types of retention protrusions may also be included in a single device.
In some embodiments, see for example
In certain embodiments, an expandable material 100 is used in conjunction with or in place of a physical retention protrusion. For example, in
In some embodiments, an external stimulus is used to induce the expansion of the expandable material 100. As depicted in
In several other embodiments, the expandable material 100, is coated or layered on the outer shell 54, which expands in response to contact with a solvent. See
In some embodiments, the expanding material fills any voids between the implant shell and the surrounding intraocular tissue. In some such embodiments, the expanded material seals one portion of the implant off fills or otherwise seals the volume around the implant outer shell such that fluid is prevented from flowing around the implant, and must flow through the implant.
In other embodiments, such as those schematically depicted in
The expandable material can be positioned on the implant by dipping, molding, coating, spraying, or other suitable process known in the art.
In some embodiments, the expandable material is a hydrogel or similar material. Hydrogel is a three-dimensional network of cross-linked, hydrophilic polymer chains. The hydrophilicity of the polymer chains causes the hydrogel to swell in the presence of sufficient quantities of fluid. In other embodiments, the expandable material is foam, collagen, or any other similar biocompatible material that swells, solidifies or gels, or otherwise expands. In some embodiments, the expandable material begins to expand immediately on contact with an appropriate solvent. In other embodiments, expansion occurs after passage of a short period of time, such that the implant can be fully positioned in the desired target site prior to expansion of the material. Preferred solvents that induce expansion include water, saline, ocular fluid, aqueous humor, or another biocompatible solvents that would not affect the structure or permeability characteristics of the outer shell.
Although
In selected embodiments, the implant and/or the retention protrusion additionally includes a shunt feature. The term “stent” may also be used to refer to a shunt. In some embodiments, the shunt can be configured to provide a fluid flow path for draining aqueous humor from the anterior chamber of an eye to an outflow pathway to reduce intraocular pressure, for example, as in
At least one lumen can extend through the shunt portion of the implant. In some embodiments, there is at least one lumen that operates to conduct the fluid through the shunt portion of the implant. In certain embodiments, each lumen extends from an inflow end to an outflow end along a lumen axis. In some embodiments the lumen extends substantially through the longitudinal center of the shunt. In other embodiments, the lumen can be offset from the longitudinal center of the shunt.
As discussed above, in some embodiments, a compressed pellet of drug not coated by an outer shell 62 is attached or otherwise coupled to an implant comprising a shunt and a retention feature. As depicted in
Additional embodiments comprising a shunt may be used to drain ocular fluid from a first location to different location. As depicted in
As shown in
With reference to
The shunt 229F comprises an inlet (proximal) section having a first flange 240F, an outlet (distal) section having a second flange 237F and a middle section 284 connecting the inlet section and the outlet section. A lumen 239F of the device 229F is configured to transport aqueous, liquid, or therapeutic agents between the inlet section and the outlet section.
A further advantage of such embodiments is provided where the outlet section 237F includes at least one opening 287, 288 suitably located for discharging substantially axisymmetrically the aqueous, liquid or therapeutic agents, wherein the opening 287, 288 is in fluid communication with the lumen 285 of the device 281. In the illustrated embodiment, the openings 288 extend radially from the lumen 285 and open at the outwardly facing surface around the periphery of the outlet flange 237F.
It should be understood that all such anchoring elements and retention protrusions may also be made flexible. It should also be understood that other suitable shapes can be used and that this list is not limiting. It should further be understood the devices may be flexible, even though several of the devices as illustrated in the Figures may not appear to be flexible. In those embodiments involving a rechargeable device, the retention protrusions not only serve to anchor the implant, but provide resistance to movement to allow the implant to have greater positional stability within the eye during recharging.
For the sake of clarity, only a small number of the possible embodiments of the implant have been shown with the various retention projections. It should be understood that any implant embodiment may be readily combined with any of the retention projections disclosed herein, and vice versa.
It will further be appreciated that, while several embodiments described above are shown, in some cases as being anchored within or to particular intraocular tissues, that each embodiment may be readily adapted to be anchored or deployed into or onto any of the target intraocular tissues disclosed herein or to other ocular tissues known in the art.
Additionally, while embodiments described both above and below include discussion of retention projections, it will be appreciated that several embodiments of the implants disclosed herein need not include a specific retention projection. Such embodiments are used to deliver drug to ocular targets which do not require a specific anchor point, and implants may simply be deployed to a desired intraocular space. Such targets include the vitreous humor, the ciliary muscle, ciliary tendons, the ciliary fibrous band, Schlemm's canal, the trabecular meshwork, the episcleral veins, the anterior chamber and the anterior chamber angle, the lens cortex, lens epithelium, and lens capsule, the ciliary processes, the posterior chamber, the choroid, and the suprachoroidal space. For example, in some embodiments, an implant according to several embodiments described herein is injected (via needle or other penetrating delivery device) through the sclera at a particular anatomical site (e.g., the pars plana) into the vitreous humor. Such embodiments need not be constructed with a retention protrusion, thus it will be appreciated that in certain embodiments, the use of a retention protrusion is optional for a particular target tissue.
Some embodiments disclosed herein are dimensioned to be wholly contained within the eye of the subject, the dimensions of which can be obtained on a subject to subject basis by standard ophthalmologic techniques. Upon completion of the implantation procedure, in several embodiments, the proximal end of the device may be positioned in or near the anterior chamber of the eye. The distal end of the implant may be positioned anywhere within the suprachoroidal space. In some embodiments, the distal end of the implant is near the limbus. In other embodiments, the distal end of the implant is positioned near the macula in the posterior region of the eye. In other embodiments, the proximal end of the device may be positioned in or near other regions of the eye. In some such embodiments, the distal end of the device may also be positioned in or near other regions of the eye. As used herein, the term “near” is used at times to as synonymous with “at,” while other uses contextually indicate a distance sufficiently adjacent to allow a drug to diffuse from the implant to the target tissue. In still other embodiments, implants are dimensioned to span a distance between a first non-ocular physiologic space and a second non-ocular physiologic space.
In one embodiment, the drug delivery implant is positioned in the suprachoroidal space by advancement through the ciliary attachment tissue, which lies to the posterior of the scleral spur. The ciliary attachment tissue is typically fibrous or porous, and relatively easy to pierce, cut, or separate from the scleral spur with the delivery instruments disclosed herein, or other surgical devices. In such embodiments, the implant is advanced through this tissue and lies adjacent to or abuts the sclera once the implant extends into the uveoscleral outflow pathway. The implant is advanced within the uveoscleral outflow pathway along the interior wall of the sclera until the desired implantation site within the posterior portion of the uveoscleral outflow pathway is reached.
In some embodiments the total length of the implant is between 1 and 30 mm in length. In some embodiments, the implant length is between 2 and 25 mm, between 6 and 25 mm, between 8 and 25 mm, between 10 and 30 mm, between 15 and 25 mm or between 15 and 18 mm. In some embodiments the length of the implant is about 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 mm so that that the delivery device containing an implant can be inserted and advanced through the cornea to the iris and produce only a self-sealing puncture in the cornea, in some embodiments, the outer diameter of the implants are between about 100 and 600 microns. In some embodiments, the implant diameter is between about 150-500 microns, between about 125-550 microns, or about 175-475 microns. In some embodiments the diameter of the implant is about 100, 125, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 460, 470, 475, 480, 490, or 500 microns. In some embodiments, the inner diameter of the implant is from about between 50-500 microns. In some embodiments, the inner diameter is between about 100-450 microns, 150-500 microns, or 75-475 microns. In some embodiments, the inner diameter is about 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 410, 420, 425, 430, 440, or 450 microns. In some embodiments, including but not limited to those in which the device is disc or wafer-shaped, the thickness is from about 25 to 250 microns, including about 50 to 200 microns, about 100 to 150 microns, about 25 to 100 microns, and about 100 to 250 microns. In several embodiments configured for implantation into the punctum, the implant ranges between about 0.5 and about 2.5 mm long (e.g., from the proximal end to the distal end). The length of the implant, in some embodiments, ranges from about 0.5 mm to about 0.7 mm, about 0.7 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.35 mm, about 1.35 mm to about 1.4 mm, about 1.4 mm to about 1.45 mm, about 1.45 mm to about 1.5 mm, about 1.5 mm to about 1.55 mm, about 1.55 mm to about 1.6 mm, about 1.6 mm to about 1.65 mm, about 1.65 mm to about 1.7 mm, about 1.7 mm to about 1.9 mm, about 1.9 mm to about 2.1 mm, about 2.1 mm to about 2.3 mm, about 2.3 mm to about 2.5 mm, or lengths in between these ranges. In several embodiments, implants configured for implantation into the punctum have a diameter between about 0.2 mm and 2.0 mm, including about 0.2 mm to about 0.3 mm, about 0.3 mm to about 0.4 mm, about 0.4 mm to about 0.5 mm, about 0.5 mm to about 0.6 mm, about 0.5 mm to about 0.6 mm, about 0.6 mm to about 0.7 mm, about 0.7 mm to about 0.8 mm, about 0.8 mm to about 0.9 mm, about 0.9 mm to about 1.0 mm, about 1.0 mm to about 1.1 mm, about 1.1 mm to about 1.2 mm, about 1.2 mm to about 1.3 mm, about 1.3 mm to about 1.4 mm, about 1.4 mm to about 1.5 mm, about 1.5 mm to about 1.6 mm, about 1.6 mm to about 1.7 mm, about 1.7 mm to about 1.8 mm, about 1.8 mm to about 1.9 mm, about 1.9 mm to about 2.0 mm and diameters in between these ranges.
In further embodiments, any or all of the interior lumens formed during the manufacture of the implants may be coated with a layer of hydrophilic material, thereby increasing the rate of contact of ocular fluid with the therapeutic agent or agents positioned within the lumen. In one embodiment, the hydrophilic material is permeable to ocular fluid and/or the drug. Conversely, any or all of the interior lumens may be coated with a layer of hydrophobic material, to coordinately reduce the contact of ocular fluid with the therapeutic agent or agents positioned within the lumen. In one embodiment, the hydrophobic material is permeable to ocular fluid and/or the drug.
Selected embodiments of the drug delivery implants described herein allow for recharging of the implant, i.e. refilling the implant with additional (same or different) therapeutic agent. In the embodiments shown in
Such embodiments, are used, in several embodiments, during an initial implantation surgery. In such cases, flushing out the therapeutic agents 58 allows the agent 58 to be to fully exposed to the intraocular environment, which may hasten the therapeutic effects of the agent. Additionally, with the initial therapeutic agent 58 flushed out of the implant, the distal portion of the implant is open (e.g., not blocked with agent) for the delivery of a second therapeutic agent 58a. The flushing of the initial agent 58 from the device helps to ensure that the second agent (which, again, may reduce or prevent a side effect of the first agent) reaches the desired anatomical target tissue. If the device were not flushed and still contained the therapeutic agent 58, the second agent 58a would either have to move around the first agent within the implant or be eluted/flushed from the implant through side ports (which are more proximal, and thus farther from the posterior target tissue). Either approach may result in the second agent 58a failing to reach (at least in therapeutically effective concentrations) the desired target in the posterior region of the eye.
In additional embodiments, devices that are configured to allow flushing of their therapeutic drug contents out the distal end of the device are useful when assessing the efficacy and/or functionality of the device post-implantation. At such a time, it may be advantageous to be able to deliver a second agent (perhaps to ameliorate side effects) or a different concentration of an agent. This can thus be accomplished by flushing the implant with the second agent or a new concentration of a first agent.
In several embodiments, the agents 58a that are delivered secondarily and/or in conjunction with a flush of the first therapeutic agent 58 are in a fluid, semi-fluid, or fluid-like form. In several embodiments, microparticles that behave like a fluid (e.g., they have liquid-like flow properties) are used. In some embodiments, the secondary agent 58a is configured to have its own desired elution profile. In such cases, the secondary agent 58a is optionally housed or contained within a structure that allows for controlled release. In several embodiments, this comprises admixing the therapeutic agent with one or more polymers (e.g., creating a “matrix) that allows release of the therapeutic agent from the admixture with a known rate of elution. In several embodiments, the one or more polymers are selected such that they are readily interconvertible between a liquid or semi-liquid state and a solid or semi-solid state. In several embodiments, the interconversion is due to externally applied stimuli (e.g., radio frequency, light, etc.). In several embodiments, the interconversion is temperature or pressure induced. For example, in several embodiments, the polymers are liquid or semi-liquid at room temperature, but upon exposure to increased temperatures (e.g., physiological temperatures) become solid or semi-solid. In such a manner, the polymer matrix can be used to hold the therapeutic agent at a desired target site, thereby improving the accuracy of delivery and reduction of wash-out due to ocular fluid flow. In several embodiments, optionally, the polymers are biodegradable (such that repeated administration does not result in build-up of polymer at the delivery site). In several embodiments, the polymers are mixtures of polymers that are configured to mimic a membrane bound structure (e.g., a micelle or vesicle). In several such embodiments, the drug is intermixed with those polymers such that it is incorporated into the micelle or vesicle, and (based on the known characteristics of the polymers) elutes at a certain rate. Similarly, such micelles or vesicles are optionally mixed with a polymeric matrix that is readily interconvertible between a liquid or semi-liquid state and a solid or semi-solid state.
The implant 500 can include an anchor mechanism 510 (e.g., a retention protrusion) configured to anchor the implant 500 to ocular tissue as described herein (e.g., at or near the trabecular meshwork 23). The anchor mechanism 510 can include a barbed end portion to facilitate retention of the implant 500 after implantation, although various other retention mechanisms can be used, as described herein. For example, the anchor mechanism 510 can include ribs, expandable material, threading, etc. In some embodiments, the anchor mechanism 510 can include a tissue ingress orifice (see orifice 401 in
In some embodiments, the implant 500 can be configured to facilitate drainage of fluid from the anterior chamber 20 of the eye, as discussed herein. The implant 500 can include one or more inlets (e.g., inflow pathway 512), which can be positioned in the anterior chamber 20 upon implantation, and one or more outlets (e.g., outflow pathway 514), which can be positioned in a physiological outflow space, such as Schlemm's canal 22, upon implantation. In some embodiments, the inflow pathway 512 can extend through the implant 500 (e.g., laterally) and can include two inlets positioned on generally opposing sides of the implant 500. Similarly, in some embodiments, the outflow pathway 514 can extend through the implant 500 (e.g., laterally) and can include two outlets positioned on generally opposing sides of the implant 500. As can be seen in
Many variations are possible. For example, in some embodiments, the implant 500 can include a single inlet and a single outlet. In some embodiments, a single, curved, and/or U-shaped fluid channel can connect an inlet to an outlet to provide a drainage fluid pathway through the implant 500. The one or more inlets and the one or more outlets can be positioned at locations other than those shown in illustrated examples, depending on the desired location of implantation and/or the desired source and destination of the drained fluid.
The implant 500 can include one or more standoffs 518 to prevent the implant from compressing Schlemm's canal 22 (or other physiological outflow space). The standoffs 518 can extend distally and can be spaced laterally away from the retention protrusion 510. Force applied to the implant 500 in the distal direction (e.g., force from pressing on the implant 500 distally during implantation and/or the distal force from the retention protrusion holding the implant 500 in place) can cause the one or more standoff 518 to press against ocular tissue (e.g., at or near the trabecular meshwork 23) at one or more locations that are spaced away from the outflow space (e.g., Schlemm's canal 22). Accordingly, the standoffs 518 can facilitate sufficiently firm placement of the implant 500 while preventing or reducing compression of the outflow space (e.g., Schlemm's canal 22) to facilitate drainage, as described herein. The standoffs 518 can extend distally beyond the surface 519 between the standoffs 518 and the retention protrusion 510 by a distance of at least about 20 microns, at least about 30 microns, at least about 40 microns, at least about 50 microns, less than or equal to about 100 microns, less than or equal to about 70 microns, less than or equal to about 50 microns, less than or equal to about 40 microns, and/or less than or equal to about 30 microns, although values outside of these ranges can be used in some embodiments. The implant 500 can include two standoffs 518 that are spaced laterally apart by a distance 511, which can be configured such that the two standoffs 518 are positioned on opposing sides of Schlemm's canal 22 upon implantation, such that the standoffs 518 prevent or reduce compression of Schlemm's canal 22 when distal force is applied during implantation and/or during use. The distance 511 can be at least about 0.1 mm, at least about 0.2 mm, at least about 0.3 mm, at least about 0.4 mm, at least about 0.5 mm, less than or equal to about 1.0 mm, less than or equal to about 0.75 mm, less than or equal to about 0.5 mm, less than or equal to about 0.4 mm, and/or less than or equal to about 0.3 mm, although values outside these ranges can be used in some embodiments. The lateral distance 511 can be between about 0.2 mm and about 0.5 mm or between about 0.3 mm and about 0.4 mm.
The longitudinal distance 515 between the surface (e.g., distal surfaces of the standoffs 518) that abuts against the ocular tissue (e.g., at or near the trabecular meshwork 23) and the center of the outflow pathway 514 can be configured to position the outflow pathway 514 in Schlemm's canal 22. For example, the distance 515 can be less than or equal to about 150 microns, less than or equal to about 100 microns, less than or equal to about 75 microns, less than or equal to about 50 microns, at least about 25 microns, at least about 50 microns, at least about 75 microns, and/or at least about 100 microns, although values outside these ranges may be used in some embodiments. The longitudinal distance 515 can be between about 40 microns and about 90 microns or between about 60 microns and about 70 microns.
The implant 500 can include a flange 520 to impede tissue from covering the inflow pathway 512. In some instances, pressing the implant into ocular tissue during implantation can cause the tissue under the implant 500 to compress. If the inflow pathway 512 is positioned adjacent to the tissue being compressed, the surrounding tissue that is less compressed could block part or all of the inflow pathway 512 and impede drainage through the implant 500. Also, in some instances, tissue can grow around the implant 500, especially for implants that are intended to remain implanted for several years. In some instances, tissue that grows around the implant 500 could block part or all of the inflow pathway 512 and impeded drainage through the implant 500. The flange 520 can be disposed between the inflow pathway 512 and the abutting surface (e.g., the distally facing surfaces of the standoffs 518 or the distally facing surface adjacent to the retention protrusion 510) that is configured to abut against the ocular tissue (e.g., the trabecular meshwork 23) when the implant 500 is implanted. In some embodiments, the flange 520 can extend laterally outward from the inflow pathway 512 by a distance 522 (as shown in
In some embodiments, the inflow pathway 512 is spaced longitudinally away from the abutting surface (e.g., the distal ends of the standoffs 518) that abuts against the ocular tissue (e.g., at or near the trabecular meshwork 23) by a distance 524 that impedes surrounding tissue from blocking the inflow pathway 512. For example, the distance 524 between the distal ends of the standoffs 518 and the distal end of the inflow pathway can be at least about 50 microns, at least about 75 microns, at least about 90 microns, at least about 100 microns, at least about 110 microns, at least about 125 microns, less than or equal to about 150 microns, less than or equal to about 125 microns, less than or equal to about 110 microns, less than or equal to about 100 microns, less than or equal to about 90 microns, and/or less than or equal to about 80 microns, although values outside these ranges may be sued in some embodiments. The distance 524 can be between about 50 microns and about 150 microns, between about 75 microns and about 125 microns, or between about 90 microns and about 100 microns. Various features of the implant 500 can cooperate to facilitate drainage of the fluid through the inflow pathway 512 and outflow pathway 514. For example, in some instances in which the inflow pathway 512 is positioned further from the standoffs 518, a smaller flange 520 can be used, or the flange 520 can be omitted altogether.
In some embodiments, the inflow pathway 512 and the outflow pathway 514 can extend parallel or substantially parallel through the implant 500. The inlets and outlets can be aligned such that a plane intersecting the central longitudinal axis 525 of the implant 500 (e.g., the plane of the cross-section of
In some embodiments, the implant 500 can include a positioning element 526 (e.g., a protrusion) to facilitate proper orientation about the longitudinal axis 525 of the implant 500. In
In some embodiments, the implant 500 can include inlets that are rotationally offset from each other and/or outlets that are rotationally offset from each other about the longitudinal axis 525 to facilitate drainage through the implant 500. For example, the implant 500 can include four inlets offset by 90 degrees from each other, such that if one or more of the inlets is obstructed (e.g., by the cornea 12 and/or iris 13) one or more additional inlets would be properly oriented to be in fluid communication with the anterior chamber 20. Similarly, the implant 500 can include four outlets offset by 90 degrees from each other, to facilitate drainage into Schlemm's canal 23. Various numbers of inlets can be included (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or more inlets). Various numbers of outlets can be included (e.g., 1, 2, 3, 4, 5, 6, 7, 8, or more outlets).
The shell 506 can be made of various biocompatible materials, as described herein, including metal (e.g., titanium) and ceramic materials. In some embodiments, molding the shell 506 from a ceramic material can be advantageous for reliably forming the small and detailed structure of the implant 500 (e.g., the inflow pathway 512, the outflow pathway 514, the flange 520, and/or the standoffs 518). In some embodiments, the interior chamber 508 of the shell 506, which is a drug reservoir, can be open to the drainage fluid pathway (e.g., open to the inflow pathway 512). For example, when molding the shell 506, a core pin can be used to form the pathway 516, and the core pin can be extracted through the interior chamber 508. Accordingly, in some implementations, to facilitate the manufacturing of the shell 506, the interior chamber 508 of the shell 506 can be open to the inflow pathway 512, pathway 516, and/or outflow pathway 514.
The implant 500 can include a seal 528 configured to seal the interior chamber 508 from the inflow pathway 512, to prevent or impede the drug in the interior chamber 508 from escaping via the inflow pathway 512 and/or outflow pathway 514. The implant 500 can also include a drug release element 530, which can be held in place by a retainer 532, as discussed herein.
The seal 528 can include an O-ring 534. The O-ring 534 can fit into a groove 538 on the seal base 536. The base 536 can be made of various biocompatible materials (e.g., a ceramic material or a metal, such as titanium). The seal base 536 can be rigid. The seal base 536 can have a diameter that is less than the diameter of the internal chamber 508 such that the base 536 can be inserted through the proximal end 504 and pushed longitudinally to the distal end of the interior chamber 508. The O-ring 534 can have an outer diameter that is greater than the diameter of the interior chamber 508, such that the O-ring is compressed and seals against the wall of the interior chamber 508. The O-ring can be made of a compressible material that is impermeable or substantially impermeable to the drug, such as silicone. The groove 538 on the base 536 can be configured to maintain the O-ring 534 on the base 536 as the base 536 slides distally across the interior chamber 508. In some embodiments, a lubricant can be applied to the seal 528 (e.g., to the O-ring) and/or to the interior chamber 508 before insertion of the seal 528.
In some embodiments, the seal 528 can include a distal barrier 540. The distal barrier 540 can be made of a compressible material that is impermeable or substantially impermeable to the drug, such as silicone. The distal barrier 540 can have the shape of a disc. As can be seen in
In some embodiments, the seal base 536 can include a recess 544 on the proximal side thereof.
The drug release element 530 can include a distal seal member 552, a membrane 554, and a proximal seal member 556. The distal seal member 552 can be seated against the shelf 548 on the shell 506. The distal seal member 552 can have an outer diameter that is greater than the distal portion of the shell interior (distal of the shelf 548) and that is less than the proximal portion of the shell interior (proximal of the shelf 548). The distal seal member 552 can have a generally annular shape and/or can have an opening 558 extending therethrough. The proximal seal member 556 can have an outer diameter that is greater than the distal portion of the shell interior (distal of the shelf 548) and that is less than the proximal portion of the shell interior (proximal of the shelf 548). The proximal seal member 556 can be inserted into the proximal end 504 of the shell 506. The proximal seal member 556 can be generally disc shaped. The proximal seal member 556 can include at least one opening 560 extending therethrough. In the illustrated embodiment, the proximal seal member 556 includes two openings 560. The membrane 554 can be positioned between the distal seal member 552 and the proximal seal member 556, and in some embodiments, the membrane 554 can be compressed between the distal seal member 552 and the proximal seal member 556. The retainer 532 can retain the drug release element 530 in the compressed state (e.g., with the membrane 554 compressed), as discussed herein. The distal seal member 552 can include a step 562.
The distal seal member 552 and/or the proximal seal member 556 can be made of various biocompatible materials, as discussed herein, such as ceramic or metal (e.g., titanium). In some embodiments, forming the members 552 and/or 556 out of a ceramic material can be advantageous for creating small details on the parts. In some embodiments, one or both of the seal members 552 and 556 can be made from a resilient biocompatible material that is impermeable, or substantially impermeable, to the drug (e.g., silicone). The membrane 554 can be made from various suitable materials that allow the drug to elute from the implant 500. In some embodiments, the membrane can be made from ethylene vinyl acetate (EVA). The rate of elution of the drug can depend, at least in part, on the percentage concentration of vinyl acetate in the EVA material. The vinyl acetate concentration can be less than or equal to about 40%, less than or equal to about 30%, less than or equal to about 25%, at least about 10%, at least about 20%, at least about 25%, and/or at least about 30%, although values outside these ranges may be used in some embodiments. The vinyl acetate concentration can be between about 10% and about 30%, between about 20% and about 30%, or between about 25% and about 30% of the EVA material. In some embodiments, the vinyl acetate concentration can be about 25% or about 28% of the EVA material.
As discussed herein, the membrane 554 can be compressed between the distal seal member 552 and the proximal seal member 556. The proximal seal member 556 can be pressed distally to compress the membrane 554, and the retainer 532 can be inserted through the slot 550 such that the retainer is positioned proximally of the proximal seal member 556. The retainer 532 can have a length that is greater than the inner diameter of the proximal portion of the shell interior and a length that is less than or equal to the outer diameter of the shell 506 at the slots 550. When inserted, the retainer 532 can extend into two opposing slots 550. The force from the compressed membrane 554 can press the retainer 532 in the proximal direction, and the slots 550 can hold the retainer in place to maintain the membrane 554 in the compressed configuration. The retainer 532 can have a generally hourglass shape, although other shapes can also be used, in some embodiments. The retainer can include one or more tabs 564, which can be folded down to secure the retainer 532.
The drug can elute from the proximal end of the implant 500. The drug can pass from the internal chamber 508, through the at least one opening 558 in the distal seal member 552, to the membrane 554. The membrane 554 can be configured to permit the drug to pass through the membrane 554 at a desired elution rate. The drug can pass through the at least one hole 560 in the proximal seal member 556, past the retainer 532, and out of the proximal end 504 of the implant 500. In
The amount of compression applied to the membrane 554 can be applied reliably without dependence on human determinations because the amount of compression applied to the membrane 554 is established by the dimensions of the implant 500 parts, not by a determination made by a human during assembly. By way of example, the longitudinal distance 568 between the shelf 548 and the proximal end of the slot 550 can be about 235 microns. The distal seal member 558 can have a longitudinal thickness 570 of about 65 microns. The proximal seal member 556 can have a longitudinal thickness 572 of about 50 microns. The retainer 532 can have a longitudinal thickness of about 25 microns. A membrane 554 with a longitudinal thickness of about 125 microns can be compressed to a longitudinal thickness 566 of about 95 microns (or less), and a retainer 532 having a longitudinal thickness 574 of about 25 microns can be inserted to maintain the membrane 554 in the compressed form. Accordingly, the dimensions of the respective parts dictate that the membrane 554 will be compressed by 30 microns, from a thickness of 125 microns to a thickness of 95 microns.
Many variations are possible. For example,
Drug delivery ocular implants such as the implant 500 can be configured to hold various volumes of drugs, as discussed herein.
Various other embodiments disclosed herein can include a drug release element, which can be similar to or the same as the drug release elements 530 and/or 730 or the other drug release elements illustrated and discussed herein. For example, in some embodiments an ocular implant can be configured to be positioned at least partially in the supraciliary space and/or suprachoroidal space and can include a drug release element that has features similar to or the same as the drug release elements disclosed herein (e.g., the drug release elements 530 and/or 730).
The ocular implant 900 can include an outer shell 906. The outer shell 906 can define an interior chamber 908, which can be a drug reservoir for holding one or more drugs as discussed herein. The outer shell 906 can be configured to be implanted into the supraciliary space and/or suprachoroidal space of a patient's eye. The outer shell 906 can have a generally straight configuration, or the implant can be pre-curved to a curvature that is configured to conform generally to the supraciliary space and/or suprachoroidal space. The outer shell 906 can be flexible, in some embodiments, such as to enable the ocular implant to have a generally straight configuration when positioned in a delivery apparatus and to have a curved configuration when implanted into the eye (e.g., in the supraciliary space and/or the suprachoroidal space). The outer shell 906 can include a distal end 902, which can be tapered to facilitate insertion into the supraciliary space and/or the suprachoroidal space.
The outer shell 906 can include a proximal end portion 904, which can include a drug release element 930. In some embodiments, the proximal end portion 904 can have an increased outer diameter such that a step or ridge 905 is formed between the proximal end portion 904 and the central portion of the outer shell 906. In some embodiments, the ocular implant 900 can be inserted into the eye (e.g., into the supraciliary space and/or the suprachoroidal space) until the step or ridge 905 abuts against eye tissue adjacent to the insertion site (e.g., ciliary tissue). The step or ridge 905 can help impede over-insertion of the ocular implant 900. The ocular implant 900 can be configured to release (e.g., elute) a drug, as discussed herein, such as from the proximal end of the ocular implant 900, for example, into the anterior chamber 20. The drug release location (e.g., the proximal end) can be spaced apart from the step or ridge 905 by a distance 907 to prevent the eye tissue that is adjacent the insertion site from covering or otherwise blocking the drug release location of the ocular implant 900. By way of example, the distance can be about 25 microns, about 50 microns, about 75 microns, about 100 microns, about 150 microns, about 200 microns, about 300 microns, about 400 microns, about 500 microns, about 750 microns, about 1000 microns, about 1250 microns, about 1500 microns, or any values therebetween including ranges that are bound by any of these distances. In some embodiments, the step or ridge 905 can extend laterally outward further than shown in
The ocular implant 900 can include one or more retention features 910 configured to anchor the implant in place when implanted in the eye. The one or more retention features 910 can include one or more annular ribs on an outer surface of the outer shell 906. The ribs can have angled distal sides and/or can be barbed to facilitate insertion of the ocular implant 900 into the eye while impeding the ocular implant 900 from unintentionally releasing from the eye tissue. In some embodiments, the ribs can have an outer diameter that is substantially the same as the outer diameter of the proximal end portion 904, to facilitate placement in a delivery apparatus. In some embodiments, the one or more retention features 910 can be configured to engage the eye tissue that is adjacent to the insertion site. For example, the one or more retention features 910 can be on or near the proximal end portion 904 or at or near the step or ridge 905. In some embodiments, the retention features 910 can be omitted, and the outer shell 906 can be held in place by friction against the surrounding eye tissue.
The ocular implant 900 can include a drug release element 930. The drug release element can include a distal seal member 952, a membrane 954, and a proximal seal member 956, which can be the same as, or similar to, the other distal seal members, membranes, and proximal seal members discussed and illustrated herein (e.g., in connection with
It will be appreciated that the elements discussed above are not to be read as limiting the implants to the specific combinations or embodiments described. Rather, the features discussed are freely interchangeable to allow flexibility in the construction of a drug delivery implant in accordance with this disclosure.
Another aspect of the systems and methods described herein relates to delivery instruments for implanting an implant for delivering a drug to the eye and optionally for draining fluid from the anterior chamber into a physiologic outflow space. In some embodiments, the implant is inserted into the eye from a site transocularly situated from the implantation site. The delivery instrument is sufficiently long to advance the implant transocularly from the insertion site across the anterior chamber to the implantation site. At least a portion of the instrument may be flexible. The instrument may comprise a plurality of members longitudinally moveable relative to each other. In some embodiments, the plurality of members comprises one or more slideable guide tubes. In some embodiments, at least a portion of the delivery instrument is curved. In some embodiments, a portion of the delivery instrument is rigid and another portion of the instrument is flexible.
In some embodiments, the delivery instrument has a distal curvature. The distal curvature of the delivery instrument may be characterized in some embodiments as a radius of approximately 10 to 30 mm. In some embodiments the distal curvature has a radius of about 20 mm.
In some embodiments, the delivery instrument has a distal angle 88 (with a measure denoted by χ in
In other embodiments, a curved distal end is preferred. In such embodiments, the height of the delivery instrument/shunt assembly (dimension 90 in
In some embodiments, the instruments have a sharpened feature at the forward end and are self-trephinating, i.e., self-penetrating, so as to pass through tissue without pre-forming an incision, hole or aperture. In some embodiments, instruments that are self-trephinating are configured to penetrate the tissues of the cornea and/or limbus only. In other embodiments, instruments that are self-trephinating are configured to penetrate internal eye tissues, such as those in the anterior chamber angle, in order to deliver an implant. Alternatively, a separate trocar, scalpel, spatula, or similar instrument can be used to pre-form an incision in the eye tissue (either the cornea/sclera or more internal tissues) before passing the implant into such tissue. In some embodiments, the implant is blunt at the distal end, to aid in blunt dissection (and hence reduce risk of tissue trauma) of the ocular tissue. In other embodiments, however, the implant is also sharpened, tapered or otherwise configured to penetrate ocular tissues to aid in implantation.
For delivery of some embodiments of the drug eluting ocular implant, the instrument has a sufficiently small cross section such that the insertion site self-seals without suturing upon withdrawal of the instrument from the eye. An outer dimension of the delivery instrument is preferably no greater than about 18 gauge and is not smaller than about 27 or 30 gauge.
For delivery of some embodiments of the drug eluting ocular implant, an incision in the corneal tissue is made with a hollow needle through which the implant is passed. The needle has a small diameter size (e.g., 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 gauge) so that the incision is self-sealing and the implantation occurs in a closed chamber with or without viscoelastic. A self-sealing incision may also be formed using a conventional “tunneling” procedure in which a spatula-shaped scalpel is used to create a generally inverted V-shaped incision through the cornea. In a preferred mode, the instrument used to form the incision through the cornea remains in place (that is, extends through the corneal incision) during the procedure and is not removed until after implantation. Such incision-forming instrument either may be used to place the ocular implant or may cooperate with a delivery instrument to allow implantation through the same incision without withdrawing the incision-forming instrument. Of course, in other modes, various surgical instruments may be passed through one or more corneal incisions multiple times.
Some embodiments include a spring-loaded pusher system. In some embodiments, the spring-loaded pusher includes a button operably connected to a hinged rod device. The rod of the hinged rod device engages a depression in the surface of the pusher, keeping the spring of the pusher in a compressed conformation. When the user pushes the button, the rod is disengaged from the depression, thereby allowing the spring to decompress, thereby advancing the pusher forward.
In some embodiments, an over-the wire system is used to deliver the implant. The implant may be delivered over a wire. In some embodiments, the wire is self-trephinating. The wire may also function as a trocar. The wire may be superelastic, flexible, or relatively inflexible with respect to the implant. The wire may be pre-formed to have a certain shape. The wire may be curved. The wire may have shape memory, or be elastic. In some embodiments, the wire is a pull wire. The wire may also be a steerable catheter.
In some embodiments, the wire is positioned within a lumen in the implant. The wire may be axially movable within the lumen. The lumen may or may not include valves or other flow regulatory devices.
In some embodiments, the delivery instrument is a trocar. The trocar may be angled or curved. In some embodiments, the trocar is flexible. In other embodiments the trocar is relatively rigid. In other embodiments, the trocar is stiff. In embodiments where the trocar is stiff, the implant is relatively flexible. The diameter of the trocar is about 0.001 inches to about 0.01 inches. In some embodiments, the diameter of the trocar is 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, or 0.01 inches.
In some embodiments, delivery of the implant is achieved by applying a driving force at or near the proximal end of the implant. The driving force may be a pulling or a pushing applied to the end of the implant.
The instrument may include a seal or coating to prevent aqueous humor from passing through the delivery instrument and/or between the members of the instrument when the instrument is in the eye. The seal aids in preventing backflow. In some embodiments, the instrument is coated with the coating and a hydrophilic or hydrophobic agent. In some embodiments, one region of the instrument is coated with the coating plus the hydrophilic agent, and another region of the instrument is coated with the coating plus the hydrophobic agent. The delivery instrument may additionally comprise a seal between various members comprising the instrument. The seal may comprise a hydrophobic or hydrophilic coating between slip-fit surfaces of the members of the instrument. The seal may be disposed proximate of the implant when carried by the delivery instrument. In some embodiments, the seal is present on at least a section of each of two devices that are machined to closely fit with one another.
The delivery instrument may include a distal end having a beveled shape. The delivery instrument may include a distal end having a spatula shape. The beveled or spatula shape may or may not include a recess to contain the implant. The recess can include a pusher or other suitable means to push out or eject the implant.
The delivery instrument may be configured to deliver multiple implants. In some such embodiments, the implants may be arranged in tandem (or serially for implant numbers greater than two) within the device.
To remove the implant 600 from the insertion tube 800, the user can rotate the insertion tube 800 until the positioning protrusion 626 is out of the locking portion 808 and is position in the main linear path of the slit 804. Then, the user can withdraw the insertion tube 800 in the proximal direction, and the positioning protrusion 626 can slide along the slit 804 until it exits the insertion tube 800. To engage an implant 600 with the insertion tube 800, a user can align the slit 804 with the positioning protrusion 626 and can move the insertion tube 800 forward, distally so that the positioning protrusion 626 enters the slit 804 and slides back to the location of the turn to the locking portion 808. Then the user can rotate the insertion tube 800 so that the positioning protrusion 626 enters the locking portion 808.
The anterior chamber 32 of the eye 10, which is bound anteriorly by the cornea 36 and posteriorly by the iris 44 and the lens 48, is filled with aqueous humor, aqueous fluid or simply referred herein as aqueous, which is produced primarily by the ciliary body 46. The posterior chamber is bounded posteriorly by the lens 48 and anteriorly by the iris 44. Pars plana 35 is the flat or smooth part of the ciliary body 46 which is located near the point where the iris 44 and sclera 38 touch. The posterior segment 62 of the eye is the back two-thirds of the eye and includes the vitreous chamber 64 which contains the vitreous humor.
In other embodiments, the delivery device 110 is suitable for multiple uses, implantation and/or explantation, and is constructed in a manner and using materials that are capable of withstanding more than one sterilization procedure, such as by radiation (e.g. gamma ray), steam (e.g. autoclave), chemical (e.g. ethylene oxide), and the like. The device 110 can be loaded with an implant 120 prior to implantation using sterile techniques.
The delivery device 110 is generally elongate in structure, and generally comprises an outer housing and handpiece 122, an insertion sleeve, tube device or assembly 126, a clamping arm device or assembly 128, and a clamping arm trigger 130. The outer housing 122 encloses various componentry of the delivery device 110. Various internal structures of the outer housing 122 engage the other components of the delivery device 110, as discussed further below.
The outer housing 122 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the outer housing 122 comprises a thermoplastic material such as medical grade polycarbonate (PC) that is gamma stable.
The outer housing 122 can efficaciously be dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the outer housing 122 has a length of about 5 to 6 inches, though other lengths may also be efficaciously utilized, for example, based on the size of a user's hand (e.g., between about 4 inches and about 8 inches or any length in between).
The insertion sleeve, tube device or assembly 126 generally comprises an insertion sleeve or tube 140 and a support sleeve, member or element 142 fixedly attached thereto and to the outer housing 122. Distal portions of the insertion sleeve or needle 140 and support member or element 142 are exposed and extend beyond the distal tip of the delivery device 110 while proximal portions of the insertion sleeve or needle 140 and support member or element 142 are contained within or attached to the outer housing 122. The insertion sleeve device 126 is discussed in further detail later herein.
The clamping arm device or assembly 128 generally comprises an elongated arm portion 144 and a clip or support member or element 146 attached thereto. The clip 146 is mechanically coupled, connected or attached to the actuatable clamping arm trigger 130. A substantial portion of the arm portion 144 extends through the insertion sleeve 140 with a distal portion extending beyond the insertion sleeve 140 on which the implant 120 is located. A proximal portion of the arm portion 144 and the clip 146 are contained within the outer housing 122. The clamping arm device 128 is discussed in further detail later herein.
The insertion sleeve support 142 is an elongated member through which a portion of the sleeve 140 extends and is fixedly attached thereto. The insertion sleeve 140 receives a portion of the clamping arm device or assembly 128 which passes through the sleeve lumen 162. The sleeve distal curved or non-linear portion 164 advantageously provides proper curvature and alignment of the arm portion 144 and clamp portion 170 of the clamping arm device or assembly 128 and/or the implant 120 for pars plana implantation.
In some embodiments, the insertion sleeve has a distal end that is sharpened, pointed or otherwise shaped so as to make an incision or opening into eye tissue to permit entry of the distal portion of the device into the eye. For example, the distal end of the device may make an incision through the sclera at the level of the pars plana to allow the distal portion of the device to enter the vitreous cavity. In certain such embodiments, the sharpened or pointed distal end is movable relative to other portions of the insertion assembly to allow for it to be retracted or otherwise moved relative to other portions of the insertion assembly and/or the clamping arm assembly. In other embodiments, the opening into the vitreous cavity is made by another instrument such that the distal end may be blunted.
The insertion sleeve device 126 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise a liquid crystal polymer or thermoplastic such as polycarbonate which are molded to form the assembly. In another non-limiting embodiment, the insertion sleeve 140 and sleeve support 142 comprise stainless steel and are welded (spot or continuous) to form the assembly. The insertion sleeve 140 can efficaciously comprise 26±5 gauge hypodermic tubing, as required or desired, including 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 gauge. In certain embodiments, the insertion sleeve 126 and/or one or more of its components comprise a flexible material to allow the insertion sleeve assembly to have a deflection range.
The insertion sleeve device 126 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the length L91 is about 1.8 inches, the length L92 is about 0.45 inches, the diameter D91 is about 0.018 inches, the diameter D92 is about 0.001 inches, the radius of curvature R9 is about 0.11 inches, and the angle θ9 is about 450 (degrees).
The arm portion 144 extends through the clamping arm clip 146, and is retractable on actuation of the trigger 130. The curved distal portion 168 may have a predetermined curvature to allow a proper angle of attack to penetrate ocular tissue to provide access for implantation of the implant 120 in the pars plana 35. The curvature of the curved distal portion 168 may be configured to provide clearance and avoid contact with the lens 48 during operation of the device.
In some embodiments, the clamping arm clip 146 is configured to mechanically engage, couple, connect or fixedly attach to the clamping arm trigger 130. Thus, actuation or retraction of the clamping arm trigger 130 results in movement and retraction of the arm portion 144.
The clamping arm device 128 can efficaciously be fabricated from various suitable materials, as required or desired. In one non-limiting embodiment, the arm portion 144 comprises a metal or metal alloy such as spring tempered 304 stainless steel with a predetermined flexibility and resilience, and the clip 146 comprises a metal or metal alloy such as 301 stainless steel with a predetermined hardness. The arm portion 144 and clip 146 can be welded together, such as, denoted by weld spots 172, or otherwise attached in other suitable manners, for example molding and the like, as needed or desired. The clamping portion 170 can comprise the same material as the arm portion 144. In one non-limiting embodiment, the clamping portion 170 can comprise a different material than the arm portion 144 (e.g. metal or metal alloy having different elasticity). In certain embodiments, one or more portions of the clamping arm are made from a flexible material to permit the arm to have a deflection range.
The clamping arm device 128 can be efficaciously dimensioned in various suitable manners, as required or desired. In one non-limiting embodiment, the radius of curvature R13 of the distal curved portion 168 is about 0.5 inch (which generally conforms to the anterior radius of curvature of the human lens), the diameter D13 is about 0.006 inches (which provides a low tolerance fit within the implant's lumen), the length L13 is about 0.5 inches, the overall unbent length of the arm portion 144 is about 3 inches. In various embodiments, the radius of curvature R13 of the distal curved portion 168 can range from 0.2 inches to about 2 inches.
As will be readily understood to those skilled in the art, the implantation device 110 may also be used as an explantation device to facilitate removal of an implant from the eye. In such an embodiment, the device is not preloaded with an implant.
For delivery of some embodiments of the ocular implant, the implantation occurs in a closed chamber with or without viscoelastic.
The implants may be placed using an applicator, such as a pusher, or they may be placed using a delivery instrument having energy stored in the instrument, such as disclosed in U.S. Patent Publication 2004/0050392, filed Aug. 28, 2002, now U.S. Pat. No. 7,331,984, issued Feb. 19, 2008, the entirety of which is incorporated herein by reference and made a part of this specification and disclosure. In some embodiments, fluid may be infused through an applicator to create an elevated fluid pressure at the forward end of the implant to ease implantation.
In one embodiment of the invention, a delivery apparatus (or “applicator”) similar to that used for placing a trabecular stent through a trabecular meshwork of an eye is used. Certain embodiments of such a delivery apparatus are disclosed in U.S. Patent Publication 2004/0050392, filed Aug. 28, 2002, now U.S. Pat. No. 7,331,984, issued Feb. 19, 2008; U.S. Publication No.: 2002/0133168, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, now abandoned; and U.S. Provisional Application No. 60/276,609, filed Mar. 16, 2001, entitled APPLICATOR AND METHODS FOR PLACING A TRABECULAR SHUNT FOR GLAUCOMA TREATMENT, now expired, each of which is incorporated by reference and made a part of this specification and disclosure.
In one embodiment, the delivery apparatus 2000 includes a handpiece, an elongate tip, a holder and an actuator, which are schematically depicted in
In some embodiments, the holder comprises a clamp. In some embodiments, the apparatus further comprises a spring within the handpiece that is configured to be loaded when the drug delivery implant is being held by the holder, the spring being at least partially unloaded upon actuating the actuator, allowing for release of the drug delivery implant from the holder.
In various embodiments, the clamp comprises a plurality of claws configured to exert a clamping force onto at least the proximal portion of the drug delivery implant. The holder may also comprise a plurality of flanges.
In some embodiments, the distal portion of the elongate tip is made of a flexible material. This can be a flexible wire. The distal portion can have a deflection range, preferably of about 45 degrees from the long axis of the handpiece. The delivery apparatus can further comprise an irrigation port in the elongate tip.
In some embodiments, the method includes using a delivery apparatus that comprises a handpiece having a distal end and a proximal end and an elongate tip connected to the distal end of the handpiece. The elongate tip has a distal portion and being configured to be placed through a corneal incision and into an anterior chamber of the eye. The apparatus further has a holder attached to the distal portion of the elongate tip, the holder being configured to hold and release the drug delivery implant, and an actuator on the handpiece that actuates the holder to release the drug delivery implant from the holder.
The delivery instrument may be advanced through an insertion site in the cornea and advanced either transocularly or posteriorly into the anterior chamber. angle and positioned at base of the anterior chamber angle. Using the anterior chamber angle as a reference point, the delivery instrument can be advanced further in a generally posterior direction to drive the implant into the iris, inward of the anterior chamber angle.
Optionally, based on the implant structure, the implant may be laid within the anterior chamber angle, taking on a curved shape to match the annular shape of the anterior chamber angle.
In some embodiments, the implant may be brought into position adjacent the tissue in the anterior chamber angle or the iris tissue, and the pusher tube advanced axially toward the distal end of the delivery instrument. As the pusher tube is advanced, the implant is also advanced. When the implant is advanced through the tissue and such that it is no longer in the lumen of the delivery instrument, the delivery instrument is retracted, leaving the implant in the eye tissue.
In one embodiment, the drug delivery implant is affixed to an additional portion of the iris or other intraocular tissue, to aid in fixating the implant. In one embodiment, this additional affixation may be performed with a biocompatible adhesive. In other embodiments, one or more sutures may be used. In another embodiment, the drug delivery implant is held substantially in place via the interaction of the implant body's outer surface and the surrounding tissue of the anterior chamber angle.
A portion of the upper and lower surfaces of the drug delivery implant can be grasped securely by the surgical tool, for example, a forceps, so that the forward end of the implant is oriented properly. The implant may also be secured by viscoelastic or mechanical interlock with the pusher tube or wall of the implant delivery device. In one embodiment, the implant is oriented with a longitudinal axis of the implant being substantially co-axial to a longitudinal axis of the grasping end of the surgical tool. The drug delivery implant is disposed through the first incision.
The delivery instrument may be advanced from the insertion site transocularly into the anterior chamber angle and positioned at a location near the scleral spur. Using the scleral spur as a reference point, the delivery instrument can be advanced further in a generally posterior direction to drive the implant into eye tissue at a location just inward of the scleral spur toward the iris.
Optionally, based on the implant structure, the shearing edge of the insertion head of the implant can pass between the scleral spur and the ciliary body 16 posterior to the trabecular meshwork.
The drug delivery implant may be continually advanced posteriorly until a portion of its insertion head and the first end of the conduit is disposed within the anterior chamber 20 of the eye. Thus, the first end of the conduit is placed into fluid communication with the anterior chamber 20 of the eye. The distal end of the elongate body of the drug delivery implant can be disposed into the suprachoroidal space of the eye so that the second end of the conduit is placed into fluid communication with the suprachoroidal space. Alternatively, the implant may be brought into position adjacent the tissue in the anterior chamber angle, and the pusher tube advanced axially toward the distal end of the delivery instrument. As the pusher tube is advanced, the implant is also advanced. When the implant is advanced through the tissue and such that it is no longer in the lumen of the delivery instrument, the delivery instrument is retracted, leaving the implant in the eye tissue.
The placement and implantation of the implant may be performed using a gonioscope or other conventional imaging equipment. In some embodiments, the delivery instrument is used to force the implant into a desired position by application of a continual implantation force, by tapping the implant into place using a distal portion of the delivery instrument, or by a combination of these methods. Once the implant is in the desired position, it may be further seated by tapping using a distal portion of the delivery instrument.
In one embodiment, the drug delivery implant is sutured to a portion of the sclera 11 to aid in fixating the implant. In one embodiment, the first incision is subsequently sutured closed. As one will appreciate, the suture used to fixate the drug delivery implant may also be used to close the first incision. In another embodiment, the drug delivery implant is held substantially in place via the interaction of the implant body's outer surface and the tissue of the sclera 11 and ciliary body 16 and/or choroid 12 without suturing the implant to the sclera 11. Additionally, in one embodiment, the first incision is sufficiently small so that the incision self-seals upon withdrawal of the surgical tool following implantation of the drug delivery implant without suturing the incision.
As discussed herein, in some embodiments the drug delivery implant additionally includes a shunt comprising a lumen configured provide a drainage device between the anterior chamber 20 and the suprachoroidal space. Upon implantation, the drainage device may form a cyclodialysis with the implant providing a permanent, patent communication of aqueous humor through the shunt along its length. Aqueous humor is thus delivered to the suprachoroidal space where it can be absorbed, and additional reduction in pressure within the eye can be achieved.
In some embodiments it is desirable to deliver the drug delivery implant ab interno across the eye, through a small incision at or near the limbus (
In some embodiments, the implant and delivery instrument are advanced together through the anterior chamber 20 from an incision at or near the limbus 21, across the iris 13, and through the ciliary muscle attachment until the drug delivery implant outlet portion is located in the uveoscleral outflow pathway (e.g. exposed to the suprachoroidal space defined between the sclera 11 and the choroid 12).
In some embodiments, it is desirable to implant a drug delivery implant with continuous aqueous outflow through the fibrous attachment zone, thus connecting the anterior chamber 20 to the uveoscleral outflow pathway, in order to reduce the intraocular pressure in glaucomatous patients. In some embodiments, it is desirable to deliver the drug delivery implant with a device that traverses the eye internally (ab interno), through a small incision in the limbus 21.
In several embodiments, microinvasive methods of implanting a drug delivery implant are provided. In several such embodiments, an ab externo technique is utilized. In some embodiments, the technique is non-penetrating, thereby limiting the invasiveness of the implantation method. As discussed herein, in some embodiments, the drug delivery device that is implanted comprises a shunt. In some embodiments, such implants facilitate removal of fluid from a first location, while simultaneously providing drug delivery. In some embodiments, the implants communicate fluid from the anterior chamber to the suprachoroidal space, which assists in removing fluid (e.g., aqueous humor) from and reducing pressure increases in the anterior chamber.
In some embodiments (see e.g.,
In some embodiments, a small core of sclera is removed at or near the pars plana, again, without penetration of the choroid. In order to avoid penetration of the choroid, scleral thickness can optionally be measured using optical coherence tomography (OCT), ultrasound, or visual fixtures on the eye during the surgical process. In such embodiments, the scleral core is removed by a trephining instrument (e.g., a rotary or static trephintor) that optionally includes a depth stop gauge to ensure an incision to the proper depth. In other embodiments, a laser, diamond blade, metal blade, or other similar incising device is used.
After a window or slit is made in the sclera and the suprachoroidal space is exposed, an implant 40 can be introduced into the window or slit and advanced in multiple directions through the use of an instrument 38a (see e.g.,
In several embodiments, the implant 40 is tubular or oval tubular in shape. In some embodiments, such a shape facilitates passage of the implant through the small opening. In some embodiments, the implant 40 has a rounded closed distal end, while in other embodiments, the distal end is open. In several embodiments wherein open ended implants are used, the open end is filled (e.g., blocked temporarily) by a portion of the insertion instrument in order to prevent tissue plugging during advancement of the implant (e.g., into the suprachoroidal space). In several embodiments, the implant is an implant as described herein and comprises a lumen that contains a drug which elutes through holes, pores, or regions of drug release in the implant. As discussed herein, drug elution, in some embodiments, is targeted towards the posterior of the eye (e.g., the macula or optic nerve), and delivers therapeutic agents (e.g., steroids or anti VEGFs) to treat retinal or optic nerve disease.
In several embodiments, the implant 40 and implantation instrument 38a is designed with an appropriate tip to allow the implant to be advanced in an anterior direction and penetrate into the anterior chamber without a scleral cutdown. In some embodiments, the tip that penetrates into the anterior chamber is a part of the implant while in some embodiments, it is part of the insertion instrument. In such embodiments, the implant functions as a conduit for aqueous humor to pass from the anterior chamber to the suprachoroidal space to treat glaucoma or ocular hypertension (e.g., a shunt). In several embodiments, the implant is configured to deliver a drug to the anterior chamber to treat glaucoma. In some embodiments, the drug is configured (e.g., produced) to elute over a relatively long period of time (e.g., weeks to months or even years). Non-liming examples of such agents are beta blockers or prostaglandins. In some embodiments, a single implant is inserted, while in other embodiments, two or more implants are implanted in this way, at the same or different locations and in any combination of aqueous humor conduit or drug delivery mechanisms.
In some embodiments, the placement of the implant may result in the drug target being upstream of the natural flow of aqueous humor in the eye. For example, aqueous humor flows from the ciliary processes to the anterior chamber angle, which, based on the site of implantation in certain embodiments, may create a flow of fluid against which a drug released from an implant may have to travel in order to make contact with a target tissue. Thus, in certain embodiments, for example when the target tissue is the ciliary processes, eluted drug must diffuse through iris tissue to get from the anterior chamber to target receptors in the ciliary processes in the posterior chamber. The requirement for diffusion of drug through the iris, and the flow of the aqueous humor, in certain instances, may limit the amount of eluted drug reaching the ciliary body.
To overcome these issues, certain embodiments involve placement of a peripheral iridotomy (PI), or device-stented PI, at a location adjacent to a drug eluting implant to facilitate delivery of a drug directly to the intended site of action (i.e., the target tissue). The creation of a PI opens a relatively large communication passage between the posterior and anterior chambers. While a net flow of aqueous humor from the posterior chamber to the anterior chamber still exists, the relatively large diameter of the PI substantially reduces the linear flow velocity. Thus, eluted drug is able to diffuse through the PI without significant opposition from flow of aqueous humor. In certain such embodiments, a portion of the implant is structured to penetrate the iris and elute the drug directly into the posterior chamber at the ciliary body. In other embodiments, the implant is implanted and/or anchored in the iris and elutes drug directly to the posterior chamber and adjacent ciliary body.
The delivery instrument/implant assembly can be passed between the iris 13 and the cornea 12 to reach the iridocorneal angle. Therefore, the height of the delivery instrument/shunt assembly (dimension 90 in
The suprachoroidal space between the choroid 28 and the sclera 11 generally forms an angle 96 of about 55° with the optical axis 98 of the eye. This angle, in addition to the height requirement described in the preceding paragraph, are features to consider in the geometrical design of the delivery instrument/implant assembly.
The overall geometry of the drug delivery implant system makes it advantageous that the delivery instrument 38 incorporates a distal curvature 86, as shown in
The distal curvature 86 of delivery instrument 38 may be characterized as a radius of between about 10 to 30 mm in some embodiments, and about 20 mm in certain embodiments. The distal angle of the delivery instrument in an embodiment as depicted in
In some embodiments, a viscoelastic, or other fluid is injected into the suprachoroidal space to create a chamber or pocket between the choroid and sclera which can be accessed by a drug delivery implant. Such a pocket exposes more of the choroidal and scleral tissue area, provides lubrication and protection for tissues during implantation, and increases uveoscleral outflow in embodiments where the drug delivery implant includes a shunt, causing a lower intraocular pressure (IOP). In some embodiments, the viscoelastic material is injected with a 25 or 27G cannula, for example, through an incision in the ciliary muscle attachment or through the sclera (e.g. from outside the eye). The viscoelastic material may also be injected through the implant itself either before, during or after implantation is completed.
In some embodiments, a hyperosmotic agent is injected into the suprachoroidal space. Such an injection can delay IOP reduction. Thus, hypotony may be avoided in the acute postoperative period by temporarily reducing choroidal absorption. The hyperosmotic agent may be, for example glucose, albumin, HYPAQUE™ medium, glycerol, or poly(ethylene glycol). The hyperosmotic agent can breakdown or wash out as the patient heals, resulting in a stable, acceptably low IOP, and avoiding transient hypotony.
At block 5406 the drug reservoir (e.g., the interior chamber 508) is filled with the drug. In some embodiments, the interior chamber 508 is filled with a precise volume of the drug that is configured to enable the implant to be sealed with no air or substantially no air in the drug reservoir. In some instances, implants with substantially no air in the drug reservoir can refer to implants that include small amounts of air (e.g., air bubbles with a diameter of not more than 10% or 25% of the diameter of the internal chamber 508). It can be undesirable to have air in the drug reservoir. For example, in some instances, air adjacent to the membrane can interfere with elution of the drug (e.g., by interfering with the osmotic pressure across the membrane). In some embodiments, the drug reservoir is not overfilled, such that the drug is not wasted. In some embodiments, the drug reservoir can be overfilled with the drug, which can result in some wasted amount of the drug, but can facilitate preparation of the implants with no air or substantially no air in the drug reservoir.
At block 5408, the distal seal member 552 is inserted. The distal seal member 552 can be seated against the shelf 548, as discussed herein. The membrane 554 can be inserted over the distal seal member 552, at block 5410. At block 5412, the proximal seal member 556 can be inserted over the membrane 554. In some cases, the distal seal member 552, the membrane 554, and/or the proximal seal member 556 can be inserted together (e.g., as an assembly after being coupled together). At block 5414, the membrane 554 can be compressed. For example, a force in the distal direction can be applied to the proximal seal member 556 (e.g., using a tool), which can compress the membrane 554 between the distal seal member 552 and the proximal seal member 556. In some embodiments, the same tool that inserts the proximal seal member 556 into the shell 506 (e.g., along with the membrane 554 and/or distal seal 552 can be used to apply distal force to compress the membrane 554. For example, the tool can advance to insert the proximal seal member 556 into the shell 506 and the tool can continue to advance distally to compress the membrane 554. In some embodiments, in which the drug reservoir was overfilled, blocks 5408, 5410, 5412, and/or 5414 can cause drug to overflow from the drug reservoir (e.g., out of the proximal end of the shell 506).
At block 5416, the retainer 532 is inserted over the proximal seal member 556 (e.g., via one of the slots 550). The slots 550 can engage the retainer 532 to prevent the compressed membrane 554 from pushing the retainer 532 proximally out of the shell 506. The tabs 564 can be bent down to engage the proximal seal member 556 to secure the retainer 532, as discussed herein.
In some cases, the method 5400 can include additional steps, not shown in
Many alternatives and variations are possible. For example, in some cases, assembly of the embodiment shown in
Initially, the distalmost end of the implantation device is used to make an incision or opening from outside the eye into the vitreous chamber, preferably at the para plana. In other embodiments, another device may be used to make the opening into the eye. The implantation device is then advanced into the vitreous chamber towards an implantation site.
In some embodiments, the implantation site is in the pars plana and may be at an acute angle from the incision or opening. In some embodiments the implantation site in the pars plana is at an obtuse angle from the incision or opening. In certain embodiments, the implantation procedure is performed so that the device and implant do not cross the optical axis of the eye. In other embodiments, the implantation site is in another location within the vitreous chamber or posterior of the eye, including but not limited to the retina or any other part of the eye into which the device may be anchored.
In some embodiments, the implant is moved relative to the insertion sleeve so that at least its distal end is extending distally beyond the elongate portion of the implantation device while or before it is advanced to the implantation site. In other embodiments, the advancing may be done with the implant contained fully inside the device; the implant is then exposed once it reaches the implantation site.
At the implantation site, the distal end of the implant is placed against the ocular tissue, preferably that of the pars plana, and then advanced into the tissue of the implantation site. The advancing may be done by hand, or an actuation mechanism may be used to utilize stored energy to provide a predetermined force and/or move the implant a predetermined distance to insert the implant securely at the implantation site. The clamp, holder, or other mechanism connecting the implant to the implantation device is operated to release the implant. In some embodiments, the implant is automatically released following activation of the actuation mechanism. The implantation device is then removed from the eye. In other embodiments, additional implants may be placed by moving the device to a different implantation site and implanting, with or without removing the implantation device from the eye.
As illustrated in
Next, as illustrated in
The delivery device 110 may then be retracted and the insertion sleeve 140 can be removed from the posterior segment 62 with the implant 120 remaining within the eye 10 and implanted in the pars plana 35.
In some embodiments, a single button, trigger, or lever may perform one or more of moving the implant out of the lumen, inserting the implant securely at the implantation site, releasing the implant, and/or retracting the clamp into the lumen. In some embodiments, an actuation mechanism may be used to utilize stored energy to provide a predetermined force and/or move the implant a predetermined distance to move the implant out of the lumen, insert the implant securely at the implantation site, release the implant, and/or retract the clamp into the lumen. Next, as illustrated in
In some embodiments, the operator confirms that the implant is in a proper position (i.e., the proximal end rests in the anterior chamber with an unobstructed inlet) using the operating microscope and gonioprism. If needed, the operator may use a light source, e.g. a light pipe provided through a separate incision inside the posterior segment during operation.
The insertion sleeve device or assembly 226 generally comprises a sleeve 240 and a support member 242 fixedly attached thereto. The sleeve 240 comprises a lumen 262 configured to receive a clamping arm device or assembly 228. The clamping arm device or assembly 228 generally comprises an arm portion 244 and a clamping portion 270. The clamping portion 270 comprises a plurality of prongs 271. The clamping portion 270 is configured to grip a portion of the implant 220 and move the implant 220 within the lumen 262.
The insertion sleeve support 242 is an elongated member through which a portion of the sleeve 240 extends and is attached thereto. The insertion sleeve support 242 includes a slot portion 266 configured to receive multiple implants 220. The slot portion 266 comprises a recessed portion 263 having a larger transverse dimension than the transverse dimension of the lumen 262. The prongs 271 of the clamping portion 270 can expand once in the recessed portion 263. Once the clamping portion 270 is moved past the recessed portion 263, the prongs 270 contract due to reduced transverse dimension of the lumen and grip a portion of the implant 220 to transport the implant 220 inside the lumen 262.
As noted hereinabove, the device 110 may also be used to remove or explant one or more implants from an eye. Removal of an implant proceeds by first making an incision or opening into the eye using either the device or another instrument. In some embodiments, the opening is less than 2 mm or less than 1 mm in length. The device is advanced through the opening and through the vitreous chamber until the distal end is proximate an implant to be removed. The clamping mechanism is operated to place the prongs of the clamp onto the proximal portion of the implant and then contracted to firmly clamp down upon the implant. The implant may then be explanted from the tissue by retracting the device and/or clamping mechanism relative to the device, and then removing the device from the eye. The implant may be retracted into the elongate member prior to removal of the device from the eye.
The drug delivery implants as described herein, function to house a drug and provide drug elution from the implant in a controlled fashion, based on the design of the various components of the implant, for an extended period of time. Various elements of the implant composition, implant physical characteristics, implant location in the eye, and the composition of the drug work in combination to produce the desired drug release profile.
As described above the drug delivery implant may be made from any biological inert and biocompatible materials having desired characteristics. Desirable characteristics, in some embodiments, include permeability to liquid water or water vapor, allowing for an implant to be manufactured, loaded with drug, and sterilized in a dry state, with subsequent rehydration of the drug upon implantation. Also desirable is an implant constructed of a material comprising microscopic porosities between polymer chains. These porosities may interconnect, which forms channels of water through the implant material. In several embodiments, the resultant channels are convoluted and thereby form a tortuous path which solublized drug travels during the elution process. Implant materials advantageously also possess sufficient permeability to a drug such that the implant may be a practical size for implantation. Thus, in several embodiments, the implant material is sufficiently permeable to the drug to be delivered that the implant is dimensioned to reside wholly contained within the eye of a subject. Implant material also ideally possesses sufficient elasticity, flexibility and potential elongation to not only conform to the target anatomy during and after implantation, but also remain unkinked, untorn, unpunctured, and with a patent lumen during and after implantation. In several embodiments, implant material would advantageously processable in a practical manner, such as, for example, by molding, extrusion, thermoforming, and the like.
Illustrative, examples of suitable materials for the outer shell include polypropylene, polyimide, glass, nitinol, polyvinyl alcohol, polyvinyl pyrolidone, collagen, chemically-treated collagen, polyethersulfone (PES), poly(styrene-isobutyl-styrene), polyurethane, ethyl vinyl acetate (EVA), polyetherether ketone (PEEK), Kynar (Polyvinylidene Fluoride; PVDF), Polytetrafluoroethylene (PTFE), Polymethylmethacrylate (PMMA), Pebax, acrylic, polyolefin, polydimethylsiloxane and other silicone elastomers, polypropylene, hydroxyapetite, titanium, gold, silver, platinum, other metals and alloys, ceramics, plastics and mixtures or combinations thereof. Additional suitable materials used to construct certain embodiments of the implant include, but are not limited to, poly(lactic acid), poly(tyrosine carbonate), polyethylene-vinyl acetate, poly(L-lactic acid), poly(D,L-lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer, copolymers, or block co-polymers, polyester urethanes, polyester amides, polyester ureas, polythioesters, thermoplastic polyurethanes, silicone-modified polyether urethanes, poly(carbonate urethane), or polyimide. Thermoplastic polyurethanes are polymers or copolymers which may comprise aliphatic polyurethanes, aromatic polyurethanes, polyurethane hydrogel-forming materials, hydrophilic polyurethanes (such as those described in U.S. Pat. No. 5,428,123, which is incorporated in its entirety by reference herein), or combinations thereof. Non-limiting examples include elasthane (poly(ether urethane)) such as Elasthane™ 80A, Lubrizol, Tecophilic™, Pellethane™, Carbothane™, Tecothane™ Tecoplast™, and Estane™. In some embodiments, polysiloxane-containing polyurethane elastomers are used, which include Carbosil™ 20 or Pursil™ 20 80A, Elast-Eon™, and the like. Hydrophilic and/or hydrophobic materials may be used. Non-limiting examples of such elastomers are provided in U.S. Pat. No. 6,627,724, which is incorporated in its entirety by reference herein. Poly(carbonate urethane) may include Bionate™ 80A or similar polymers. In several embodiments, such silicone modified polyether urethanes are particularly advantageous based on improved biostability of the polymer imparted by the inclusion of silicone. In addition, in some embodiments, oxidative stability and thrombo-resistance is also improved as compared to non-modified polyurethanes. In some embodiments, there is a reduction in angiogenesis, cellular adhesion, inflammation, and/or protein adsorption with silicone-modified polyether urethanes. In other embodiments, should angiogenesis, cellular adhesion or protein adsorption (e.g., for assistance in anchoring an implant) is preferable, the degree of silicone (or other modifier) may be adjusted accordingly. Moreover, in some embodiments, silicone modification reduces the coefficient of friction of the polymer, which reduces trauma during implantation of devices described herein. In some embodiments, silicone modification, in addition to the other mechanisms described herein, is another variable that can be used to tailor the permeability of the polymer. Further, in some embodiments, silicone modification of a polymer is accomplished through the addition of silicone-containing surface modifying endgroups to the base polymer. In other embodiments, fluorocarbon or polyethylene oxide surface modifying endgroups are added to a based polymer. In several embodiments, one or more biodegradable materials are used to construct all or a portion of the implant, or any other device disclosed herein. Such materials include any suitable material that degrades or erodes over time when placed in the human or animal body, whether due to a particular chemical reaction or enzymatic process or in the absence of such a reaction or process. Accordingly, as the term is used herein, biodegradable material includes bioerodible materials. In such biodegradable embodiments, the degradation rate of the biodegradable outer shell is another variable (of many) that may be used to tailor the drug elution rate from an implant.
In some embodiments, such as where the drug is sensitive to moisture (e.g. liquid water, water vapor, humidity) or where the drug's long term stability may be adversely affected by exposure to moisture, it may be desirable to utilize a material for the implant or at least a portion of the implant, which is water resistant, water impermeable or waterproof such that it presents a significant barrier to the intrusion of liquid water and/or water vapor, especially at or around human body temperature (e.g. about 35-40° C. or 37° C.). This may be accomplished by using a material that is, itself, water resistant, water impermeable or waterproof.
In some circumstances, however, even materials that are generally considered water impermeable may still allow in enough water to adversely affect the drug within an implant. For example, it may be desirable to have 5% by weight of the drug or less water intrusion over the course of a year. In one embodiment of implant, this would equate to a water vapor transmission rate for a material of about 1×10−3 g/m2/day or less. This may be as much as one-tenth of the water transmission rate of some polymers generally considered to be water resistant or water impermeable. Therefore, it may be desirable to increase the water resistance or water impermeability of a material.
The water resistance or water impermeability of a material may be increased by any suitable method. Such methods of treatment include providing a coating for a material (including by lamination) or by compounding a material with a component that adds water resistance or increases impermeability. For example, such treatment may be performed on the implant (or portion of the implant) itself, it may be done on the material prior to fabrication (e.g. coating a polymeric tube), or it may be done in the formation of the material itself (e.g. by compounding a resin with a material prior to forming the resin into a tube or sheet). Such treatment may include, without limitation, one or more of the following: coating or laminating the material with a hydrophobic polymer or other material to increase water resistance or impermeability; compounding the material with hydrophobic or other material to increase water resistance or impermeability; compounding or treating the material with a substance that fills microscopic gaps or pores within the material that allow for ingress of water or water vapor; coating and/or compounding the material with a water scavenger or hygroscopic material that can absorb, adsorb or react with water so as to increase the water resistance or impermeability of the material.
One type of material that may be employed as a coating to increase water resistance and/or water impermeability is an inorganic material. Inorganic materials include, but are not limited to, metals, metal oxides and other metal compounds (e.g. metal sulfides, metal hydrides), ceramics, and main group materials and their compounds (e.g. carbon (e.g. carbon nanotubes), silicon, silicon oxides). Examples of suitable materials include aluminum oxides (e.g. Al2O3) and silicon oxides (e.g. SiO2). Inorganic materials may be advantageously coated onto a material (at any stage of manufacture of the material or implant) using techniques such as are known in the art to create extremely thin coatings on a substrate, including by vapor deposition, atomic layer deposition, plasma deposition, and the like. Such techniques can provide for the deposition of very thin coatings (e.g. about 20 nm-40 nm thick, including about 25 nm thick, about 30 nm thick, and about 35 nm thick) on substrates, including polymeric substrates, and can provide a coating on the exterior and/or interior luminal surfaces of small tubing, including that of the size suitable for use in implants disclosed herein. Such coatings can provide excellent resistance to the permeation of water or water vapor while still being at least moderately flexible so as not to undesirably compromise the performance of an implant in which flexibility is desired.
The drugs carried by the drug delivery implant may be in any form that can be reasonably retained within the device and results in controlled elution of the resident drug or drugs over a period of time lasting at least several days and in some embodiments up to several weeks, and in certain preferred embodiments, up to several years. Certain embodiments utilize drugs that are readily soluble in ocular fluid, while other embodiments utilize drugs that are partially soluble in ocular fluid.
For example, the therapeutic agent may be in any form, including but not limited to a compressed pellet, a solid, a capsule, multiple particles, a liquid, a gel, a suspension. In certain embodiments, drug particles are in the form of micro-pellets (e.g., micro-tablets), fine powders, or slurries, each of which has fluid-like properties, allowing for recharging by injection into the inner lumen(s). As discussed above, in some embodiments, the loading and/or recharging of a device is accomplished with a syringe/needle, through which the therapeutic agent is delivered. In some embodiments, micro-tablets are delivered through a needle of about 23 gauge to about 32 gauge, including 23-25 gauge, 25 to 27 gauge, 27-29 gauge, 29-30 gauge, 30-32 gauge, and overlapping ranges thereof. In some embodiments, the needle is 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 gauge.
When more than one drug is desired for treatment of a particular pathology or when a second drug is administered such as to counteract a side effect of the first drug, some embodiments may utilize two agents of the same form. In other embodiments, agents in different form may be used. Likewise, should one or more drugs utilize an adjuvant, excipient, or auxiliary compound, for example to enhance stability or tailor the elution profile, that compound or compounds may also be in any form that is compatible with the drug and can be reasonably retained with the implant.
In some embodiments, treatment of particular pathology with a drug released from the implant may not only treat the pathology, but also induce certain undesirable side effects. In some cases, delivery of certain drugs may treat a pathological condition, but indirectly increase intraocular pressure. Steroids, for example, may have such an effect. In certain embodiments, a drug delivery shunt delivers a steroid to an ocular target tissue, such as the retina or other target tissue as described herein, thereby treating a retinal pathology but also possibly inducing increased intraocular pressure which may be due to local inflammation or fluid accumulation. In such embodiments, the shunt feature reduces undesirable increased intraocular pressure by transporting away the accumulated fluid. Thus, in some embodiments, implants functioning both as drug delivery devices and shunts can not only serve to deliver a therapeutic agent, but simultaneously drain away accumulated fluid, thereby alleviating the side effect of the drug. Such embodiments can be deployed in an ocular setting, or in any other physiological setting where delivery of a drug coordinately causes fluid accumulation which needs to be reduced by the shunt feature of the implant. In some such embodiments, drainage of the accumulated fluid is necessary to avoid tissue damage or loss of function, in particular when the target tissue is pressure sensitive or has a limited space or capacity to expand in response to the accumulated fluid. The eye and the brain are two non-limiting examples of such tissues.
It will be understood that embodiments as described herein may include a drug mixed or compounded with a biodegradable material, excipient, or other agent modifying the release characteristics of the drug. Preferred biodegradable materials include copolymers of lactic acid and glycolic acid, also known as poly (lactic-co-glycolic acid) or PLGA. It will be understood by one skilled in the art that although some disclosure herein specifically describes use of PLGA, other suitable biodegradable materials may be substituted for PLGA or used in combination with PLGA in such embodiments. It will also be understood that in certain embodiments as described herein, the drug positioned within the lumen of the implant is not compounded or mixed with any other compound or material, thereby maximizing the volume of drug that is positioned within the lumen.
It may be desirable, in some embodiments, to provide for a particular rate of release of drug from a PLGA copolymer or other polymeric material. As the release rate of a drug from a polymer correlates with the degradation rate of that polymer, control of the degradation rate provides a means for control of the delivery rate of the drug contained within the therapeutic agent. Variation of the average molecular weight of the polymer or copolymer chains which make up the PLGA copolymer or other polymer may be used to control the degradation rate of the copolymer, thereby achieving a desired duration or other release profile of therapeutic agent delivery to the eye.
In certain other embodiments employing PLGA copolymers, rate of biodegradation of the PLGA copolymer may be controlled by varying the ratio of lactic acid to glycolic acid units in a copolymer.
Still other embodiments may utilize combinations of varying the average molecular weights of the constituents of the copolymer and varying the ratio of lactic acid to glycolic acid in the copolymer to achieve a desired biodegradation rate.
As described above, the outer shell of the implant comprises a polymer in some embodiments. Additionally, the shell may further comprise one or more polymeric coatings in various locations on or within the implant. The outer shell and any polymeric coatings are optionally biodegradable. The biodegradable outer shell and biodegradable polymer coating may be any suitable material including, but not limited to, poly(lactic acid), polyethylene-vinyl acetate, poly(lactic-co-glycolic acid), poly(D,L-lactide), poly(D,L-lactide-co-trimethylene carbonate), collagen, heparinized collagen, poly(caprolactone), poly(glycolic acid), and/or other polymer or copolymer.
As described above, some embodiments of the implants comprise a polymeric outer shell that is permeable to ocular fluids in a controlled fashion depending on the constituents used in forming the shell. For example, the concentration of the polymeric subunits dictates the permeability of the resulting shell. Therefore, the composition of the polymers making up the polymeric shell determines the rate of ocular fluid passage through the polymer and if biodegradable, the rate of biodegradation in ocular fluid. The permeability of the shell will also impact the release of the drug from the shell. Also as described above, the regions of drug release created on the shell will alter the release profile of a drug from the implant. Control of the release of the drug can further be controlled by coatings in or on the shell that either form the regions of drug release, or alter the characteristics of the regions of drug release (e.g., a coating over the region of drug release makes the region thicker, and therefore slows the rate of release of a drug).
In several embodiments as described herein, there are no direct through holes or penetrating apertures needed or utilized to specifically facilitate or control drug elution. As such, in those embodiments, there is no direct contact between the drug core (which may be of very high concentration) and the ocular tissue where adjacent to the site where the implant is positioned. In some cases, direct contact of ocular tissue with high concentrations of drug residing within the implant could lead to local cell toxicity and possible local cell death.
It shall however, be appreciated that, in several other embodiments, disclosed herein, that the number, size, and placement of one or more orifices through the outer shell of the implant may be altered in order to produce a desired drug elution profile. As the number, size, or both, of the orifices increases relative to surface area of the implant, increasing amounts of ocular fluid pass across the outer shell and contact the therapeutic agent on the interior of the implant. Likewise, decreasing the ratio of orifice:outer shell area, less ocular fluid will enter the implant, thereby providing a decreased rate of release of drug from the implant. Additionally, multiple orifices provides a redundant communication means between the ocular environment that the implant is implanted in and the interior of the implant, should one or more orifices become blocked during implantation or after residing in the eye. In other embodiments, the outer shell may contain one (or more) orifice(s) in the distal tip of the implant. As described above, the shape and size of this orifice is selected based on the desired elution profile. In some embodiments, a biodegradable polymer plug is positioned within the distal orifice, thereby acting as a synthetic cork. Tissue trauma or coring of the ocular tissue during the process of implantation is also reduced, which may prevent plugging or partial occlusion of the distal orifice. Additionally, because the polymer plug may be tailored to biodegrade in a known time period, the plug ensures that the implant can be fully positioned before any elution of the drug takes place. Still other embodiments comprise a combination of a distal orifice and multiple orifices placed more proximally on the outer shell, as described above.
Further benefitting the embodiments described herein is the expanded possible range of uses for some ocular therapy drugs. For example, a drug that is highly soluble in ocular fluid may have narrow applicability in treatment regimes, as its efficacy is limited to those pathologies treatable with acute drug administration. However, when coupled with the implants as disclosed herein, such a drug could be utilized in a long term therapeutic regime. A highly soluble drug positioned within the distal portion of the implant containing one or more regions of drug release may be made to yield a particular, long-term controlled release profile.
Alternatively, or in addition to one or more regions of drug release, one or more polymeric coatings may be located outside the implant shell, or within the interior lumen, enveloping or partially enveloping the drug. In some embodiments comprising one or more orifices, the polymeric coating is the first portion of the implant in contact with ocular fluid, and thus, is a primary controller of the rate of entry of ocular fluid into the drug containing interior lumen of the implant. By altering the composition of the polymer coating, the biodegradation rate (if biodegradable), and porosity of the polymer coating the rate at which the drug is exposed to and solublized in the ocular fluid may be controlled. Thus, there is a high degree of control over the rate at which the drug is released from such an embodiment of an implant to the target tissue of the eye. Similarly, a drug with a low ocular fluid solubility may be positioned within an implant coated with a rapidly biodegradable or highly porous polymer coating, allowing increased flow of ocular fluid over the drug within the implant.
In certain embodiments described herein, the polymer coating envelopes the therapeutic agent within the lumen of the implant. In some such embodiments, the ocular fluid passes through the outer shell of the implant and contacts the polymer layer. Such embodiments may be particularly useful when the implant comprises one or more orifices and/or the drug to be delivered is a liquid, slurry, emulsion, or particles, as the polymer layer would not only provide control of the elution of the drug, but would assist in providing a structural barrier to prevent uncontrolled leakage or loss of the drug outwardly through the orifices. The interior positioning of the polymer layer could, however, also be used in implants where the drug is in any form.
In some ocular disorders, therapy may require a defined kinetic profile of administration of drug to the eye. It will be appreciated from the above discussion of various embodiments that the ability to tailor the release rate of a drug from the implant can similarly be used to accomplish achieve a desired kinetic profile. For example the composition of the outer shell and any polymer coatings can be manipulated to provide a particular kinetic profile of release of the drug. Additionally, the design of the implant itself, including the thickness of the shell material, the thickness of the shell in the regions of drug release, the area of the regions of drug release, and the area and/or number of any orifices in the shell provide a means to create a particular drug release profile. Likewise, the use of PLGA copolymers and/or other controlled release materials and excipients, may provide particular kinetic profiles of release of the compounded drug. By tailoring the ratio of lactic to glycolic acid in a copolymer and/or average molecular weight of polymers or copolymers having the drug therein (optionally with one or more other excipients), sustained release of a drug, or other desirable release profile, may be achieved.
In certain embodiments, zero-order release of a drug may be achieved by manipulating any of the features and/or variables discussed above alone or in combination so that the characteristics of the implant are the principal factor controlling drug release from the implant. Similarly, in those embodiments employing PLGA compounded with the drug, tailoring the ratio of lactic to glycolic acid and/or average molecular weights in the copolymer-drug composition can adjust the release kinetics based on the combination of the implant structure and the biodegradation of the PLGA copolymer.
In other embodiments, pseudo zero-order release (or other desired release profile) may be achieved through the adjustment of the composition of the implant shell, the structure and dimension of the regions of drug release, the composition any polymer coatings, and use of certain excipients or compounded formulations (PLGA copolymers), the additive effect over time replicating true zero-order kinetics.
For example, in one embodiment, an implant with a polymer coating allowing entry of ocular fluid into the implant at a known rate may contain a series of pellets that compound PLGA with one or more drugs, wherein the pellets incorporate at least two different PLGA copolymer formulations. Based on the formulation of the first therapeutic agent, each subsequent agent may be compounded with PLGA in a manner as to allow a known quantity of drug to be released in a given unit of time. As each copolymer biodegrades or erodes at its individual and desired rate, the sum total of drug released to the eye over time is in effect released with zero-order kinetics. It will be appreciated that embodiments additionally employing the drug partitions as described herein, operating in conjunction with pellets having multiple PLGA formulations would add an additional level of control over the resulting rate of release and kinetic profile of the drug.
Non-continuous or pulsatile release may also be desirable. This may be achieved, for example, by manufacturing an implant with multiple sub-lumens, each associated with one or more regions of drug release. In some embodiments, additional polymer coatings are used to prevent drug release from certain regions of drug release at a given time, while drug is eluted from other regions of drug release at that time. Other embodiments additionally employ one or more biodegradable partitions as described above to provide permanent or temporary physical barriers within an implant to further tune the amplitude or duration of period of lowered or non-release of drug from the implant. Additionally, by controlling the biodegradation rate of the partition, the length of a drug holiday may be controlled. In some embodiments the biodegradation of the partition may be initiated or enhanced by an external stimulus. In some embodiments, the intraocular injection of a fluid stimulates or enhances biodegradation of the barrier. In some embodiments, the externally originating stimulus is one or more of application of heat, ultrasound, and radio frequency, or laser energy.
Certain embodiments are particularly advantageous as the regions of drug release minimize tissue trauma or coring of the ocular tissue during the process of implantation, as they are not open orifices. Additionally, because the regions are of a known thickness and area (and therefore of a known drug release profile) they can optionally be manufactured to ensure that the implant can be fully positioned before any elution of the drug takes place.
Placement of the drug within the interior of the outer shell may also be used as a mechanism to control drug release. In some embodiments, the lumen may be in a distal position, while in others it may be in a more proximal position, depending on the pathology to be treated. In those embodiments employing a nested or concentric tube device, the agent or agents may be placed within any of the lumens formed between the nested or concentric polymeric shells
Further control over drug release is obtained by the placement location of drug in particular embodiments with multiple lumens. For example, when release of the drug is desired soon after implantation, the drug is placed within the implant in a first releasing lumen having a short time period between implantation and exposure of the therapeutic agent to ocular fluid. This is accomplished, for example by juxtaposing the first releasing lumen with a region of drug release having a thin outer shell thickness (or a large area, or both). A second agent, placed in a second releasing lumen with a longer time to ocular fluid exposure elutes drug into the eye after initiation of release of the first drug. This can be accomplished by juxtaposing the second releasing lumen with a region of drug release having a thicker shell or a smaller area (or both). Optionally, this second drug treats side effects caused by the release and activity of the first drug.
It will also be appreciated that the multiple lumens as described above are also useful in achieving a particular concentration profile of released drug. Further, placement location of the drug may be used to achieve periods of drug release followed by periods of no drug release. By way of example, a drug may be placed in a first releasing lumen such that the drug is released into the eye soon after implantation. A second releasing lumen may remain free of drug, or contain an inert bioerodible substance, yielding a period of time wherein no drug is released. A third releasing lumen containing drug could then be exposed to ocular fluids, thus starting a second period of drug release.
It will be appreciated that the ability to alter any one of or combination of the shell characteristics, the characteristics of any polymer coatings, any polymer-drug admixtures, the dimension and number of regions of drug release, the dimension and number of orifices, and the position of drugs within the implant provides a vast degree of flexibility in controlling the rate of drug delivery by the implant.
The drug elution profile may also be controlled by the utilization of multiple drugs contained within the same interior lumen of the implant that are separated by one or more plugs. By way of example, in an implant comprising a single region of drug release in the distal tip of the implant, ocular fluid entering the implant primarily contacts the distal-most drug until a point in time when the distal-most drug is substantially eroded and eluted. During that time, ocular fluid passes through a first semi-permeable partition and begins to erode a second drug, located proximal to the plug. As discussed below, the composition of these first two drugs, and the first plug, as well as the characteristics of the region of drug release may each be controlled to yield an overall desired elution profile, such as an increasing concentration over time or time-dependent delivery of two different doses of drug. Different drugs may also be deployed sequentially with a similar implant embodiment.
Partitions may be used if separation of two drugs is desirable. A partition is optionally biodegradable at a rate equal to or slower than that of the drugs to be delivered by the implant. The partitions are designed for the interior dimensions of a given implant embodiment such that the partition, when in place within the interior lumen of the implant, will seal off the more proximal portion of the lumen from the distal portion of the lumen. The partitions thus create individual compartments within the interior lumen. A first drug may be placed in the more proximal compartment, while a second drug, or a second concentration of the first drug, or an adjuvant agent may be placed in the more distal compartment. As described above, the entry of ocular fluid and rate of drug release is thus controllable and drugs can be released in tandem, in sequence or in a staggered fashion over time.
Partitions may also be used to create separate compartments for therapeutic agents or compounds that may react with one another, but whose reaction is desired at or near ocular tissue, not simply within the implant lumen. As a practical example, if each of two compounds was inactive until in the presence of the other (e.g. a prodrug and a modifier), these two compounds may still be delivered in a single implant having at least one region of drug release associated only with one drug-containing lumen. After the elution of the compounds from the implant to the ocular space the compounds would comingle, becoming active in close proximity to the target tissue. As can be determined from the above description, if more than two drugs are to be delivered in this manner, utilizing an appropriately increased number of partitions to segregate the drugs would be desirable.
In certain embodiments, a proximal barrier serves to seal the therapeutic agent within a distally located interior lumen of the implant. The purpose of such a barrier is to ensure that the ocular fluid from any more distally located points of ocular fluid entry is the primary source of ocular fluid contacting the therapeutic agent. Likewise, a drug impermeable seal is formed that prevents the elution of drug in an anterior direction. Prevention of anterior elution not only prevents dilution of the drug by ocular fluid originating from an anterior portion of the eye, but also reduces potential side of effects of drugs delivered by the device. Limiting the elution of the drug to sites originating in the distal region of the implant will enhance the delivery of the drug to the target sites in more posterior regions of the eye. In embodiments that are fully biodegradable, the proximal cap or barrier may comprise a biocompatible biodegradable polymer, characterized by a biodegradation rate slower than all the drugs to be delivered by that implant. It will be appreciated that the proximal cap is useful in those embodiments having a single central lumen running the length of the implant to allow recharging the implant after the first dose of drug has fully eluted. In those embodiments, the single central lumen is present to allow a new drug to be placed within the distal portion of the device, but is preferably sealed off at or near the proximal end to avoid anteriorly directed drug dilution or elution.
Similar to the multiple longitudinally located compartments that may be formed in an implant, drugs may also be positioned within one or more lumens nested within one another. By ordering particularly desirable drugs or concentrations of drugs in nested lumens, one may achieve similarly controlled release or kinetic profiles as described above.
In some embodiments, drugs are variably dimensioned to further tailor the release profile by increasing or limiting ocular fluid flow into the space in between the drug and walls of the interior lumen. For example, if it was optimal to have a first solid or semi solid drug elute more quickly than another solid or semi-solid drug, formation of the first drug to a dimension allowing substantial clearance between the drug and the walls of the interior lumen may be desirable, as ocular fluid entering the implant contacts the drug over a greater surface area. Such drug dimensions are easily variable based on the elution and solubility characteristics of a given drug. Conversely, initial drug elution may be slowed in embodiments with drugs dimensioned so that a minimal amount of residual space remains between the therapeutic agent and the walls of the interior lumen. In still other embodiments, the entirety of the implant lumen is filled with a drug, to maximize either the duration of drug release or limit the need to recharge an implant.
Certain embodiments may comprise a shunt in addition to the drug delivery portion of the implant. For example, once the implant is positioned in the desired intraocular space (in an anterior-posterior direction), a shunt portion of the implant comprising at least one outflow channel can be inserted into a physiological outflow space (for example anchored to the trabecular meshwork and releasing fluid to Schlemm's canal). In some embodiments, a plurality of apertures thus assists in maintaining patency and operability of the drainage shunt portion of the implant. Moreover, as described above, a plurality of apertures can assist in ameliorating any unwanted side effects involving excess fluid production or accumulation that may result from the actions of the therapeutic agent delivered by the implant.
As described above, duration of drug release is desired over an extended period of time. In some embodiments, an implant in accordance with embodiments described herein is capable of delivering a drug at a controlled rate to a target tissue for a period of several (i.e. at least three) months. In certain embodiments, implants can deliver drugs at a controlled rate to target tissues for about 6 months or longer, including 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, and 24 months, without requiring recharging. In still other embodiments, the duration of controlled drug release (without recharging of the implant) exceeds 2 years (e.g., 3, 4, 5, or more years). It shall be appreciated that additional time frames including ranges bordering, overlapping or inclusive of two or more of the values listed above are also used in certain embodiments.
In conjunction with the controlled release of a drug to a target tissue, certain doses of a drug (or drugs) are desirable over time, in certain embodiments. As such, in some embodiments, the total drug load, for example the total load of a steroid, delivered to a target tissue over the lifetime of an implant ranges from about 10 to about 1000 μg. In certain embodiments the total drug load ranges from about 100 to about 900 μg, from about 200 to about 800 μg, from about 300 to about 700 μg, or from about 400 to about 600 μg. In some embodiments, the total drug load ranges from about 10 to about 300 μg, from about 10 to about 500 μg, or about 10 to about 700 μg. In other embodiments, total drug load ranges from about 200 to about 500 μg, from 400 to about 700 μg or from about 600 to about 1000 μg. In still other embodiments, total drug load ranges from about 200 to about 1000 μg, from about 400 to about 1000 μg, or from about 700 to about 1000 μg. In some embodiments total drug load ranges from about 500 to about 700 μg, about 550 to about 700 μg, or about 550 to about 650 μg, including 575, 590, 600, 610, and 625 μg. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
Similarly, in other embodiments, controlled drug delivery is calculated based on the elution rate of the drug from the implant. In certain such embodiments, an elution rate of a drug, for example, a steroid, is about 0.05 μg/day to about 10 μg/day is achieved. In other embodiments an elution rate of about 0.05 μg/day to about 5 μg/day, about 0.05 μg/day to about 3 μg/day, or about 0.05 μg/day to about 2 μg/day is achieved. In other embodiment, an elution rate of about 2 μg/day to about 5 μg/day, about 4 μg/day to about 7 μg/day, or about 6 μg/day to about 10 μg/day is achieved. In other embodiments, an elution rate of about 1 μg/day to about 4 μg/day, about 3 μg/day to about 6 μg/day, or about 7 μg/day to about 10 μg/day is achieved. In still other embodiments, an elution rate of about 0.05 μg/day to about 1 μg/day, including 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 μg/day is achieved. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
Alternatively, or in addition to one or more of the parameters above, the release of drug from an implant may be controlled based on the desired concentration of the drug at target tissues. In some embodiments, the desired concentration of a drug, for example, a steroid, at the target tissue, ranges from about 1 nM to about 100 nM. In other embodiments the desired concentration of a drug at the site of action ranges from about 10 nM to about 90 nM, from about 20 nM to about 80 nM, from about 30 nM to about 70 nM, or from about 40 nM to about 60 nM. In still other embodiments the desired concentration of a drug at the site of action ranges from about 1 nM to about 40 nM, from about 20 nM to about 60 nM, from about 50 nM to about 70 nM, or from about 60 nM to about 90 nM. In yet other embodiments the desired concentration of a drug at the site of action ranges from about 1 nM to about 30 nM, from about 10 nM to about 50 nM, from about 30 nM to about 70 nM, or from about 60 nM to about 100 nM. In some embodiments, the desired concentration of a drug at the site of action ranges from about 45 nM to about 55 nM, including 46, 47, 48, 49, 50, 51, 52, 53, and 54 nM. It shall be appreciated that additional ranges of drugs bordering, overlapping or inclusive of the ranges listed above are also used in certain embodiments.
Certain embodiments described above are rechargeable.
Optionally, seals for preventing leakage during recharging may be included in the recharging device. Such seals may desirable if, for example, the form of the drug to be refilled is a liquid. Suitable seals for preventing leakage include, for example, an o-ring, a coating, a hydrophilic agent, a hydrophobic agent, and combinations thereof. The coating can be, for example, a silicone coat such as MDX™ silicone fluid.
In other embodiments, recharging entails the advancement of a recharging device through the anterior chamber by way of a one-way valve. See
In yet other embodiments a plug made of a “self-healing” material that is penetrable by the recharging device is used. In such embodiments, pressure from the recharging device allows the device to penetrate the plug and deposit a new drug into the interior lumen. Upon withdrawal of the recharging device, the plug re-seals, and retains the drug within the lumen.
The one-way valve may be created of any material sufficiently flexible to allow the insertion and retention of a new drug into the lumen. Such materials include, but are not limited to, silicone, Teflon®, flexible graphite, sponge, silicone rubber, silicone rubber with fiberglass reinforcement, Neoprene®, red rubber, wire inserted red rubber, cork & Neoprene®, vegetable fiber, cork & rubber, cork & nitrile, fiberglass, cloth inserted rubber, vinyl, nitrile, butyl, natural gum rubber, urethane, carbon fiber, fluoroelastomer, and the like.
The therapeutic agents utilized with the drug delivery implant, may include one or more drugs provided below, either alone or in combination. The drugs utilized may also be the equivalent of, derivatives of, or analogs of one or more of the drugs provided below. The drugs may include but are not limited to pharmaceutical agents including anti-glaucoma medications, ocular agents, antimicrobial agents (e.g., antibiotic, antiviral, antiparasitic, antifungal agents), anti-inflammatory agents (including steroids or non-steroidal anti-inflammatory), biological agents including hormones, enzymes or enzyme-related components, antibodies or antibody-related components, oligonucleotides (including DNA, RNA, short-interfering RNA, antisense oligonucleotides, and the like), DNA/RNA vectors, viruses (either wild type or genetically modified) or viral vectors, peptides, proteins, enzymes, extracellular matrix components, and live cells configured to produce one or more biological components. The use of any particular drug is not limited to its primary effect or regulatory body-approved treatment indication or manner of use. Drugs also include compounds or other materials that reduce or treat one or more side effects of another drug or therapeutic agent. As many drugs have more than a single mode of action, the listing of any particular drug within any one therapeutic class below is only representative of one possible use of the drug and is not intended to limit the scope of its use with the ophthalmic implant system.
As discussed above, the therapeutic agents may be combined with any number of excipients as is known in the art. In addition to the biodegradable polymeric excipients discussed above, other excipients may be used, including, but not limited to, benzyl alcohol, ethylcellulose, methylcellulose, hydroxymethylcellulose, cetyl alcohol, croscarmellose sodium, dextrans, dextrose, fructose, gelatin, glycerin, monoglycerides, diglycerides, kaolin, calcium chloride, lactose, lactose monohydrate, maltodextrins, polysorbates, pregelatinized starch, calcium stearate, magnesium stearate, silicon dioxide, cornstarch, talc, and the like. The one or more excipients may be included in total amounts as low as about 1%, 5%, or 10% and in other embodiments may be included in total amounts as high as 50%, 70% or 90%.
Examples of drugs may include various anti-secretory agents; antimitotics and other anti-proliferative agents, including among others, anti-angiogenesis agents such as angiostatin, anecortave acetate, thrombospondin, VEGF receptor tyrosine kinase inhibitors and anti-vascular endothelial growth factor (anti-VEGF) drugs such as ranibizumab (LUCENTIS®) and bevacizumab (AVASTIN®), pegaptanib (MACUGEN®), sunitinib and sorafenib and any of a variety of known small-molecule and transcription inhibitors having anti-angiogenesis effect; classes of known ophthalmic drugs, including: glaucoma agents, such as adrenergic antagonists, including for example, beta-blocker agents such as atenolol propranolol, metipranolol, betaxolol, carteolol, levobetaxolol, levobunolol and timolol; adrenergic agonists or sympathomimetic agents such as epinephrine, dipivefrin, clonidine, aparclonidine, and brimonidine; parasympathomimetics or cholingeric agonists such as pilocarpine, carbachol, phospholine iodine, and physostigmine, salicylate, acetylcholine chloride, eserine, diisopropyl fluorophosphate, demecarium bromide); muscarinics; carbonic anhydrase inhibitor agents, including topical and/or systemic agents, for example acetozolamide, brinzolamide, dorzolamide and methazolamide, ethoxzolamide, diamox, and dichlorphenamide; mydriatic-cycloplegic agents such as atropine, cyclopentolate, succinylcholine, homatropine, phenylephrine, scopolamine and tropicamide; prostaglandins such as prostaglandin F2 alpha, antiprostaglandins, prostaglandin precursors, or prostaglandin analog agents such as bimatoprost, latanoprost, travoprost and unoprostone.
Other examples of drugs may also include anti-inflammatory agents including for example glucocorticoids and corticosteroids such as betamethasone, cortisone, dexamethasone, dexamethasone 21-phosphate, methylprednisolone, prednisolone 21-phosphate, prednisolone acetate, prednisolone, fluroometholone, loteprednol, medrysone, fluocinolone acetonide, triamcinolone acetonide, triamcinolone, triamcinolone acetonide, beclomethasone, budesonide, flunisolide, fluorometholone, fluticasone, hydrocortisone, hydrocortisone acetate, loteprednol, rimexolone and non-steroidal anti-inflammatory agents including, for example, diclofenac, flurbiprofen, ibuprofen, bromfenac, nepafenac, and ketorolac, salicylate, indomethacin, ibuprofen, naxopren, piroxicam and nabumetone; anti-infective or antimicrobial agents such as antibiotics including, for example, tetracycline, chlortetracycline, bacitracin, neomycin, polymyxin, gramicidin, cephalexin, oxytetracycline, chloramphenicol, rifampicin, ciprofloxacin, tobramycin, gentamycin, erythromycin, penicillin, sulfonamides, sulfadiazine, sulfacetamide, sulfamethizole, sulfisoxazole, nitrofurazone, sodium propionate, aminoglycosides such as gentamicin and tobramycin; fluoroquinolones such as ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin; bacitracin, erythromycin, fusidic acid, neomycin, polymyxin B, gramicidin, trimethoprim and sulfacetamide; antifungals such as amphotericin B and miconazole; antivirals such as idoxuridine trifluorothymidine, acyclovir, gancyclovir, interferon; antimicotics; immune-modulating agents such as antiallergenics, including, for example, sodium chromoglycate, antazoline, methapyriline, chlorpheniramine, cetrizine, pyrilamine, prophenpyridamine; anti-histamine agents such as azelastine, emedastine and levocabastine; immunological drugs (such as vaccines, immune stimulants, and/or immunosuppressants); MAST cell stabilizer agents such as cromolyn sodium, ketotifen, lodoxamide, nedocrimil, olopatadine and pemirolastciliary body ablative agents, such as gentimicin and cidofovir; and other ophthalmic agents such as verteporfin, proparacaine, tetracaine, cyclosporine and pilocarpine; inhibitors of cell-surface glycoprotein receptors; decongestants such as phenylephrine, naphazoline, tetrahydrazoline; lipids or hypotensive lipids; dopaminergic agonists and/or antagonists such as quinpirole, fenoldopam, and ibopamine; vasospasm inhibitors; vasodilators; antihypertensive agents; angiotensin converting enzyme (ACE) inhibitors; angiotensin-1 receptor antagonists such as olmesartan; microtubule inhibitors; molecular motor (dynein and/or kinesin) inhibitors; actin cytoskeleton regulatory agents such as cyctchalasin, latrunculin, swinholide A, ethacrynic acid, H-7, and Rho-kinase (ROCK) inhibitors; remodeling inhibitors; modulators of the extracellular matrix such as tert-butylhydro-quinolone and AL-3037A; adenosine receptor agonists and/or antagonists such as N-6-cylclophexyladenosine and (R)-phenylisopropyladenosine; serotonin agonists; hormonal agents such as estrogens, estradiol, progestational hormones, progesterone, insulin, calcitonin, parathyroid hormone, peptide and vasopressin hypothalamus releasing factor; growth factor antagonists or growth factors, including, for example, epidermal growth factor, fibroblast growth factor, platelet derived growth factor or antagonists thereof (such as those disclosed in U.S. Pat. No. 7,759,472 or U.S. patent application Ser. No. 12/465,051, 12/564,863, or 12/641,270, each of which is incorporated in its entirety by reference herein), transforming growth factor beta, somatotrapin, fibronectin, connective tissue growth factor, bone morphogenic proteins (BMPs); cytokines such as interleukins, CD44, cochlin, and serum amyloids, such as serum amyloid A.
Other therapeutic agents may include neuroprotective agents such as lubezole, nimodipine and related compounds, and including blood flow enhancers such as dorzolamide or betaxolol; compounds that promote blood oxygenation such as erythropoeitin; sodium channels blockers; calcium channel blockers such as nilvadipine or lomerizine; glutamate inhibitors such as memantine nitromemantine, riluzole, dextromethorphan or agmatine; acetylcholinsterase inhibitors such as galantamine; hydroxylamines or derivatives thereof, such as the water soluble hydroxylamine derivative OT-440; synaptic modulators such as hydrogen sulfide compounds containing flavonoid glycosides and/or terpenoids, such as Ginkgo biloba; neurotrophic factors such as glial cell-line derived neutrophic factor, brain derived neurotrophic factor; cytokines of the IL-6 family of proteins such as ciliary neurotrophic factor or leukemia inhibitory factor; compounds or factors that affect nitric oxide levels, such as nitric oxide, nitroglycerin, or nitric oxide synthase inhibitors; cannabinoid receptor agonsists such as WIN55-212-2; free radical scavengers such as methoxypolyethylene glycol thioester (MPDTE) or methoxypolyethlene glycol thiol coupled with EDTA methyl triester (MPSEDE); anti-oxidants such as astaxathin, dithiolethione, vitamin E, or metallocorroles (e.g., iron, manganese or gallium corroles); compounds or factors involved in oxygen homeostasis such as neuroglobin or cytoglobin; inhibitors or factors that impact mitochondrial division or fission, such as Mdivi-1 (a selective inhibitor of dynamin related protein 1 (Drp 1)); kinase inhibitors or modulators such as the Rho-kinase inhibitor H-1152 or the tyrosine kinase inhibitor AG1478; compounds or factors that affect integrin function, such as the Beta 1-integrin activating antibody HUTS-21; N-acyl-ethanaolamines and their precursors, N-acyl-ethanolamine phospholipids; stimulators of glucagon-like peptide 1 receptors (e.g., glucagon-like peptide 1); polyphenol containing compounds such as resveratrol; chelating compounds; apoptosis-related protease inhibitors; compounds that reduce new protein synthesis; radiotherapeutic agents; photodynamic therapy agents; gene therapy agents; genetic modulators; auto-immune modulators that prevent damage to nerves or portions of nerves (e.g., demyelination) such as glatimir; myelin inhibitors such as anti-NgR Blocking Protein, NgR(310)ecto-Fc; other immune modulators such as FK506 binding proteins (e.g., FKBP51); and dry eye medications such as cyclosporine, cyclosporine A, delmulcents, and sodium hyaluronate.
Other therapeutic agents that may be used include: other beta-blocker agents such as acebutolol, atenolol, bisoprolol, carvedilol, asmolol, labetalol, nadolol, penbutolol, and pindolol; other corticosteroidal and non-steroidal anti-inflammatory agents such aspirin, betamethasone, cortisone, diflunisal, etodolac, fenoprofen, fludrocortisone, flurbiprofen, hydrocortisone, ibuprofen, indomethacine, ketoprofen, meclofenamate, mefenamic acid, meloxicam, methylprednisolone, nabumetone, naproxen, oxaprozin, prednisolone, prioxicam, salsalate, sulindac and tolmetin; COX-2 inhibitors like celecoxib, rofecoxib and. Valdecoxib; other immune-modulating agents such as aldesleukin, adalimumab (HUMIRA®), azathioprine, basiliximab, daclizumab, etanercept (ENBREL®), hydroxychloroquine, infliximab (REMICADE®), leflunomide, methotrexate, mycophenolate mofetil, and sulfasalazine; other anti-histamine agents such as loratadine, desloratadine, cetirizine, diphenhydramine, chlorpheniramine, dexchlorpheniramine, clemastine, cyproheptadine, fexofenadine, hydroxyzine and promethazine; other anti-infective agents such as aminoglycosides such as amikacin and streptomycin; anti-fungal agents such as amphotericin B, caspofungin, clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole, terbinafine and nystatin; anti-malarial agents such as chloroquine, atovaquone, mefloquine, primaquine, quinidine and quinine; anti-mycobacterium agents such as ethambutol, isoniazid, pyrazinamide, rifampin and rifabutin; anti-parasitic agents such as albendazole, mebendazole, thiobendazole, metronidazole, pyrantel, atovaquone, iodoquinaol, ivermectin, paromycin, praziquantel, and trimatrexate; other anti-viral agents, including anti-CMV or anti-herpetic agents such as acyclovir, cidofovir, famciclovir, gangciclovir, valacyclovir, valganciclovir, vidarabine, trifluridine and foscarnet; protease inhibitors such as ritonavir, saquinavir, lopinavir, indinavir, atazanavir, amprenavir and nelfinavir; nucleotide/nucleoside/non-nucleoside reverse transcriptase inhibitors such as abacavir, ddI, 3TC, d4T, ddC, tenofovir and emtricitabine, delavirdine, efavirenz and nevirapine; other anti-viral agents such as interferons, ribavirin and trifluridiene; other anti-bacterial agents, including cabapenems like ertapenem, imipenem and meropenem; cephalosporins such as cefadroxil, cefazolin, cefdinir, cefditoren, cephalexin, cefaclor, cefepime, cefoperazone, cefotaxime, cefotetan, cefoxitin, cefpodoxime, cefprozil, ceftaxidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime and loracarbef; other macrolides and ketolides such as azithromycin, clarithromycin, dirithromycin and telithromycin; penicillins (with and without clavulanate) including amoxicillin, ampicillin, pivampicillin, dicloxacillin, nafcillin, oxacillin, piperacillin, and ticarcillin; tetracyclines such as doxycycline, minocycline and tetracycline; other anti-bacterials such as aztreonam, chloramphenicol, clindamycin, linezolid, nitrofurantoin and vancomycin; alpha blocker agents such as doxazosin, prazosin and terazosin; calcium-channel blockers such as amlodipine, bepridil, diltiazem, felodipine, isradipine, nicardipine, nifedipine, nisoldipine and verapamil; other anti-hypertensive agents such as clonidine, diazoxide, fenoldopan, hydralazine, minoxidil, nitroprusside, phenoxybenzamine, epoprostenol, tolazoline, treprostinil and nitrate-based agents; anti-coagulant agents, including heparins and heparinoids such as heparin, dalteparin, enoxaparin, tinzaparin and fondaparinux; other anti-coagulant agents such as hirudin, aprotinin, argatroban, bivalirudin, desirudin, lepirudin, warfarin and ximelagatran; anti-platelet agents such as abciximab, clopidogrel, dipyridamole, optifibatide, ticlopidine and tirofiban; prostaglandin PDE-5 inhibitors and other prostaglandin agents such as alprostadil, carboprost, sildenafil, tadalafil and vardenafil; thrombin inhibitors; antithrombogenic agents; anti-platelet aggregating agents; thrombolytic agents and/or fibrinolytic agents such as alteplase, anistreplase, reteplase, streptokinase, tenecteplase and urokinase; anti-proliferative agents such as sirolimus, tacrolimus, everolimus, zotarolimus, paclitaxel and mycophenolic acid; hormonal-related agents including levothyroxine, fluoxymestrone, methyltestosterone, nandrolone, oxandrolone, testosterone, estradiol, estrone, estropipate, clomiphene, gonadotropins, hydroxyprogesterone, levonorgestrel, medroxyprogesterone, megestrol, mifepristone, norethindrone, oxytocin, progesterone, raloxifene and tamoxifen; anti-neoplastic agents, including alkylating agents such as carmustine lomustine, melphalan, cisplatin, fluorouracil3, and procarbazine antibiotic-like agents such as bleomycin, daunorubicin, doxorubicin, idarubicin, mitomycin and plicamycin; anti proliferative agents (such as 1,3-cis retinoic acid, 5-fluorouracil, taxol, rapamycin, mitomycin C and cisplatin); antimetabolite agents such as cytarabine, fludarabine, hydroxyurea, mercaptopurine and 5-fluorouracil (5-FU); immune modulating agents such as aldesleukin, imatinib, rituximab and tositumomab; mitotic inhibitors docetaxel, etoposide, vinblastine and vincristine; radioactive agents such as strontium-89; other anti-neoplastic agents such as irinotecan, topotecan and mitotane, and retinoids such as 9-cis-retinal, 11-cis-retinal, 9-cis-3-hydroxyretinal, 11-cis-3-hydroxyretinal, retinyl acetates including 9-cis-retinyl acetate, 11-cis-retinyl acetate, retinylamine, and derivatives thereof, and other retinoids and retinoid derivatives. Other therapeutic agents that can be used to treat diseases or disorders of the posterior segment, including the retina, may also be used, as well as therapeutic agents that support the health and functioning of the tissues and structures of the posterior portion of the eye, including the RPE, may also be used.
Other drugs that may be useful in increasing blood flow in the eye in areas that may have decreased flow or that are in need of increased flow, including, but not limited to the trabecular meshwork and RPE, are vasodilators. Suitable vasodilators include, but are not limited to, endothelium derived hyperpolarizing factor (EDHF), cyclic GMP-dependent protein kinase, nitric oxide, epinephrine, histamine, prostacyclin, prostaglandin D2, prostaglandin E2, vasoactive intestinal peptide (VIP), adenosine, L-arginine, bradykinin, substance P, niacin, platelet activating factor, or precursors or derivatives of any of the agent listed above. In some embodiments, a multicomponent composition suitable for generating nitric oxide in vivo may be used in an implant. For example, one or more of the enzymes that functions to convert L-arginine to nitric oxide as well as L-arginine may be used. Thus, nitric oxide can be generated in vivo, close to its site of action, which in some embodiments addresses the relatively short half-life of nitric oxide. In several embodiments endothelial nitric oxide synthase, neuronal nitric oxide synthase, and/or inducible nitric oxide synthase are positioned within the implant, along with L-arginine. In alternative embodiments the implant can house L-arginine as the second therapeutic agent and the native enzymes responsible for converting L-arginine to nitric oxide within the eye are leveraged to generate nitric oxide as the L-arginine is eluted from the implant. In several embodiments, S-nitroso-N-acetylpenicillamine (SNAP), hydroxylamine, and/or sodium nitroprusside can be positioned within the implant to generate nitric oxide. Additionally, in several embodiments, supplemental compounds can be included in the implant that facilitate the production of additional nitric oxide, for example, by regeneration of L-arginine (thereby allowing further production of nitric oxide by conversion of the regenerated L-arginine).
Other useful therapeutic agents include compounds that inhibit the breakdown of nitric oxide, or otherwise prolong its half-life. Useful compounds include phosphodiesterase inhibitors such as inhibitors of phosphodiesterase type 5 (or other PDE types), sildenafil, tadalafil, and vardenafil. Other agents include molecules that are downstream of nitric oxide in a nitric oxide signaling pathway. For example, cyclic GMP may be used. Additional nitric oxide-releasing agents include, but are not limited to, sydnonimines, organic nitrites, sodium nitroprusside, nucleophyle-NO adducts and S-nitrosothiols. Additional therapeutic agents that facilitate nitric oxide production may be used, for example, inducers of iNOS. Suitable compounds include, but are not limited to interferons or interferon-like molecules (e.g., IFN-gamma), interleukins, tumor necrosis factor and the like. Other molecules with vasodilator function, such as endothelin-1, may also be used.
While certain embodiments of the disclosure have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods, systems, and devices described herein may be embodied in a variety of other forms. For example, embodiments of one illustrated or described implant may be combined with embodiments of another illustrated or described shunt. Moreover, the implants described above may be utilized for other purposes. For example, the implants may be used to drain fluid from the anterior chamber to other locations of the eye or outside the eye. Furthermore, various omissions, substitutions and changes in the form of the methods, systems, and devices described herein may be made without departing from the spirit of the disclosure.
One or more of the features illustrated in the drawings and/or described herein may be rearranged and/or combined into a single component or embodied in several components. Additional components may also be added. While certain example embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive. Thus, the inventions are not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art based on the present disclosure.
Various operations of methods described above may be performed by any suitable means capable of performing the operations, such as various hardware and/or software component(s), circuits, and/or module(s). Generally, any operations illustrated in the Figures may be performed by corresponding functional means capable of performing the operations.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims. Method step and/or actions disclosed herein can be performed in conjunction with each other, and steps and/or actions can be further divided into additional steps and/or actions.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above.
This application is a continuation of U.S. application Ser. No. 15/756,906, filed Mar. 1, 2018, which is a U.S. National Phase application under 35 U.S.C. § 371 of International Application PCT/US2016/049998, filed Sep. 1, 2016, which claims the benefit of U.S. Provisional Application No. 62/213,584, filed Sep. 2, 2015, each of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62213584 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15756906 | Mar 2018 | US |
Child | 18452370 | US |