Not Applicable
Not Applicable
1. Field of the Invention
In some embodiments this invention relates to implantable medical devices, their manufacture, and methods of use.
2. Description of the Related Art
A stent is a medical device introduced to a body lumen and is well known in the art. Typically, a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called “minimally invasive techniques” in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or “introducer” to the site where it is required. The introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a “cut down” technique in which the entry blood vessel is exposed by minor surgical means.
Stents and similar devices such as stent, stent-grafts, expandable frameworks, and similar implantable medical devices, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).
Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids.
To prevent thrombosis and restenosis, and to treat vasculature tissue, there is a need to provide therapeutic agents directly at the site of stent deployment. One approach is through the use of medicated stents. The embodiments of the present invention provide various stent structures for containing therapeutic agents.
The art referred to and/or described above is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention. In addition, this section should not be construed to mean that a search has been made or that no other pertinent information as defined in 37 C.F.R. §1.56(a) exists.
All U.S. patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
Without limiting the scope of the invention, a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided for the purposes of complying with 37 C.F.R. §1.72.
In at least one embodiment, the invention is directed to a stent for delivering therapeutic agents to a body lumen. The stent comprises a plurality of circumferential serpentine bands with each band comprising a plurality of struts. At least one strut has at least one first well region and at least one second well region. The at least one first well region has a first thickness, and the at least one second well region has a second thickness, the first thickness being greater than the second thickness. Each well region defines a well, each well having a depth. At least some of the wells contain a therapeutic agent.
In some embodiments, at least one second well region is positioned between two first well regions.
In at least one embodiment, the depth of at least one of the wells extends completely through the thickness of the strut.
In some embodiments, the depth of at least one of the wells extends only partially through the thickness of the strut.
In at least one embodiment, the well region comprises a durable coating, the durable coating being immediately adjacent and at least partially defining at least one well.
In some embodiments, the strut further comprises a width, and at least one of the first thickness and the second thickness have a ratio to the strut width of 1:2 strut thickness:strut width, or 2:1 strut thickness:strut width, for example.
In at least one embodiment, the present invention is directed toward a method of making a stent for delivering therapeutic agents to a body lumen. The method comprises providing at least one strut having a length, a thickness, an inner side, an outer side, and a circumference. The method further comprises creating at least one well through both the coating and the strut. The method further comprises applying a durable coating along at least a portion of the length of the at least one strut. The method further comprises depositing a therapeutic agent within the at least one well.
In some embodiments, the durable coating is applied only along at least a portion of the outer side of the at least one strut.
In at least one embodiment, the durable coating is distributed substantially evenly along at least a portion of the entire outer side.
In some embodiments, the durable coating includes applying the durable coating along at least a portion of the outer side and the inner side of the at least one strut.
In at least one embodiment, the durable coating immediately adjacent the at least one well has a first thickness, the durable coating tapering to a second thickness at a distance D from the well, the second thickness being less than the first thickness.
These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for further understanding of the invention, its advantages and objectives obtained by its use, reference should be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there is illustrated and described embodiments of the invention.
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
Turning now to
As mentioned above, the well regions 22, 24 define wells 20. Each well 20 extends at least partially through the strut material of strut 18. As such, each well 20 has a depth which may be less than or equal to the thickness of the strut. In an embodiment in which the depth of the well is equal to the thickness of the strut, such as is shown in
It should be clear that if the wells have substantially the same dimensions with the exception of depth, than the volume V1 of the deeper wells of the first regions 22 is greater than the volume V2 of the wells located in the second regions 24. Thus the deeper wells, when filled substantially full with a therapeutic agent, provide an increased volume of therapeutic agent for delivery in comparison to wells that are less deep. Furthermore, deeper wells allow use of a barrier layer to provide a directional release gradient for the therapeutic agent, while less deep wells without such a barrier elute bidirectionally. Finally, deep wells provide a sustained release of therapeutic agent while less deep wells provide bolus doses.
In some embodiments of the invention, the strut includes two first well regions 22 separated by a second well region 24, as in
In at least one embodiment, provided along the length of the strut is a repeating pattern of a first well region, followed then by a second well region, followed then by a first well region, and followed then by a second well region, repeating as desired. In some embodiments, a strut is provided that has a single first well region followed by one or more second well regions. There are numerous first well region and second well region combinations that one of ordinary skill in the art would recognize. All of these combinations, while not explicitly detailed herein, are considered to form a portion of this disclosure.
In some embodiments, a plurality of holes within a well region is included to increase the amount of therapeutic agent which can be delivered to the site of implantation, as shown in
Referring again to
As illustrated in
Referring now to
One of ordinary skill in the art will recognize that there are a number of materials available that may be used as a durable coating. A non-limiting list of suitable materials includes the following: iridium oxide (IrOx), titanium oxide (TiOx), titanium dioxide (TiO2), chromium oxide (CrOx), titanium-nitrious-oxide (TiNOx), and diamond-like carbon (DLC).
Referring again to
In some embodiments the at least a portion of the stent is configured to include one or more additional mechanisms for the delivery of a therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of the stent's implantation or areas adjacent thereto.
In at least one embodiment of the present invention, the recoil of the stent may be reduced by optimizing the aspect ratio of the stent. That is, by increasing the thickness of the struts, and by decreasing the width of the struts, the recoil may be reduced. Desirable ratios of thickness to width are in the range of 1:2 strut thickness:strut width, or 2:1 strut thickness:strut width, for example. In such an embodiment, it may be desirable to reduce the diameter of the well to accommodate the narrower strut. In addition to reducing the recoil, the narrower strut provides the stent with a smaller profile while it is in a crimped state. The crimped profile refers to the amount of metal present in a circumferential section while the stent is crimped. The crimped profile of the stent is directly related to the ability to cross small lumen lesions.
In some embodiments the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.
Within the vasculature it is not uncommon for stenoses to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcation, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels. At least one embodiment of the present invention is directed toward a bifurcated stent having struts with wells.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The various elements shown in the individual figures and described above may be combined or modified for combination as desired. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
Number | Name | Date | Kind |
---|---|---|---|
3948254 | Zaffaroni | Apr 1976 | A |
4784659 | Flecksenstein et al. | Nov 1988 | A |
5338296 | Dalessandro et al. | Aug 1994 | A |
5449382 | Dayton | Sep 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5605696 | Eury et al. | Feb 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5797898 | Santini, Jr. et al. | Aug 1998 | A |
5843172 | Yan | Dec 1998 | A |
5891108 | Leone et al. | Apr 1999 | A |
5922021 | Jang | Jul 1999 | A |
5972027 | Johnson | Oct 1999 | A |
5980564 | Stinson | Nov 1999 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6071305 | Brown et al. | Jun 2000 | A |
6190404 | Palmaz et al. | Feb 2001 | B1 |
6206915 | Fagan et al. | Mar 2001 | B1 |
6214042 | Jacobsen et al. | Apr 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6241762 | Shanley | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6273908 | Ndondo-Lay | Aug 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6325825 | Kula et al. | Dec 2001 | B1 |
6379382 | Yang | Apr 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6471721 | Dang | Oct 2002 | B1 |
6471980 | Sirhan et al. | Oct 2002 | B2 |
6506437 | Harish et al. | Jan 2003 | B1 |
6517858 | Le Moel et al. | Feb 2003 | B1 |
6521284 | Parsons et al. | Feb 2003 | B1 |
6527938 | Bales et al. | Mar 2003 | B2 |
6544582 | Yoe | Apr 2003 | B1 |
6558422 | Baker et al. | May 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6635082 | Hossainy et al. | Oct 2003 | B1 |
6638302 | Curcio et al. | Oct 2003 | B1 |
6641607 | Hossainy et al. | Nov 2003 | B1 |
6652581 | Ding | Nov 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663664 | Pacetti | Dec 2003 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6709451 | Noble et al. | Mar 2004 | B1 |
6716444 | Castro et al. | Apr 2004 | B1 |
6725901 | Kramer et al. | Apr 2004 | B1 |
6730120 | Berg et al. | May 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753071 | Pacetti | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6776022 | Kula et al. | Aug 2004 | B2 |
6780424 | Claude | Aug 2004 | B2 |
6805898 | Wu et al. | Oct 2004 | B1 |
6815609 | Wang et al. | Nov 2004 | B1 |
6846323 | Yip et al. | Jan 2005 | B2 |
6875227 | Yoon | Apr 2005 | B2 |
6884429 | Koziak et al. | Apr 2005 | B2 |
6896697 | Yip et al. | May 2005 | B1 |
6913617 | Reiss | Jul 2005 | B1 |
6918927 | Bates et al. | Jul 2005 | B2 |
6955685 | Escamilla et al. | Oct 2005 | B2 |
6962822 | Hart et al. | Nov 2005 | B2 |
6973718 | Sheppard, Jr. et al. | Dec 2005 | B2 |
6979347 | Wu et al. | Dec 2005 | B1 |
D516723 | Shanley | Mar 2006 | S |
7044965 | Spielberg | May 2006 | B1 |
7070617 | Kula et al. | Jul 2006 | B2 |
7105018 | Yip et al. | Sep 2006 | B1 |
7114312 | Coppeta et al. | Oct 2006 | B2 |
7135038 | Limon | Nov 2006 | B1 |
7135039 | De Scheerder et al. | Nov 2006 | B2 |
7160321 | Shanley | Jan 2007 | B2 |
7163555 | Dinh | Jan 2007 | B2 |
7163715 | Kramer | Jan 2007 | B1 |
7169178 | Santos et al. | Jan 2007 | B1 |
7223282 | Hossainy | May 2007 | B1 |
7229413 | Violante et al. | Jun 2007 | B2 |
7229471 | Gale et al. | Jun 2007 | B2 |
7238199 | Feldman et al. | Jul 2007 | B2 |
7244442 | Williams et al. | Jul 2007 | B2 |
7309353 | Krivoruchko | Dec 2007 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7335314 | Wu et al. | Feb 2008 | B2 |
7393359 | Verin et al. | Jul 2008 | B2 |
7410498 | Penhasi | Aug 2008 | B2 |
7413846 | Maloney et al. | Aug 2008 | B2 |
7416559 | Shalaby | Aug 2008 | B2 |
7425217 | Maier et al. | Sep 2008 | B2 |
7455753 | Roth | Nov 2008 | B2 |
20020038145 | Jang | Mar 2002 | A1 |
20020038146 | Harry | Mar 2002 | A1 |
20020103527 | Kocur et al. | Aug 2002 | A1 |
20020103528 | Schaldach et al. | Aug 2002 | A1 |
20020120326 | Michal | Aug 2002 | A1 |
20020123801 | Pacetti et al. | Sep 2002 | A1 |
20020138136 | Chandresekaran et al. | Sep 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020183721 | Santini et al. | Dec 2002 | A1 |
20020193336 | Elkins et al. | Dec 2002 | A1 |
20030032892 | Erlach et al. | Feb 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030064095 | Martin et al. | Apr 2003 | A1 |
20030069631 | Stoll | Apr 2003 | A1 |
20030088312 | Kopia et al. | May 2003 | A1 |
20030104590 | Santini, Jr. et al. | Jun 2003 | A1 |
20030105511 | Welsh et al. | Jun 2003 | A1 |
20030105512 | Kanesaka | Jun 2003 | A1 |
20030153901 | Herweck et al. | Aug 2003 | A1 |
20030216803 | Ledergerber | Nov 2003 | A1 |
20040000540 | Soboyejo et al. | Jan 2004 | A1 |
20040034337 | Boulais et al. | Feb 2004 | A1 |
20040043042 | Johnson et al. | Mar 2004 | A1 |
20040088038 | Dehnad et al. | May 2004 | A1 |
20040093076 | White et al. | May 2004 | A1 |
20040098089 | Weber | May 2004 | A1 |
20040117008 | Wnendt et al. | Jun 2004 | A1 |
20040133270 | Grandt | Jul 2004 | A1 |
20040142014 | Litvack et al. | Jul 2004 | A1 |
20040143321 | Litvack et al. | Jul 2004 | A1 |
20040148010 | Rush | Jul 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040202692 | Shanley et al. | Oct 2004 | A1 |
20040204750 | Dinh | Oct 2004 | A1 |
20040211362 | Castro et al. | Oct 2004 | A1 |
20040236416 | Falotico | Nov 2004 | A1 |
20040237282 | Hines | Dec 2004 | A1 |
20040247671 | Prescott et al. | Dec 2004 | A1 |
20040249449 | Shanley et al. | Dec 2004 | A1 |
20050015142 | Austin et al. | Jan 2005 | A1 |
20050021127 | Kawula | Jan 2005 | A1 |
20050027350 | Momma et al. | Feb 2005 | A1 |
20050033417 | Borges et al. | Feb 2005 | A1 |
20050055080 | Istephanous et al. | Mar 2005 | A1 |
20050060020 | Jensen | Mar 2005 | A1 |
20050060021 | O'Brien et al. | Mar 2005 | A1 |
20050074545 | Thomas | Apr 2005 | A1 |
20050079199 | Heruth et al. | Apr 2005 | A1 |
20050095267 | Campbell et al. | May 2005 | A1 |
20050106212 | Gertner et al. | May 2005 | A1 |
20050119723 | Peacock | Jun 2005 | A1 |
20050136090 | Falotico et al. | Jun 2005 | A1 |
20050137677 | Rush | Jun 2005 | A1 |
20050137679 | Changelian et al. | Jun 2005 | A1 |
20050137684 | Changelian et al. | Jun 2005 | A1 |
20050159805 | Weber et al. | Jul 2005 | A1 |
20050171595 | Feldman et al. | Aug 2005 | A1 |
20050192657 | Colen et al. | Sep 2005 | A1 |
20050196424 | Chappa | Sep 2005 | A1 |
20050208100 | Weber et al. | Sep 2005 | A1 |
20050209681 | Curcio et al. | Sep 2005 | A1 |
20050228477 | Grainger et al. | Oct 2005 | A1 |
20050228491 | Snyder et al. | Oct 2005 | A1 |
20050232968 | Palmaz et al. | Oct 2005 | A1 |
20050234538 | Litvack et al. | Oct 2005 | A1 |
20050251245 | Sieradzki et al. | Nov 2005 | A1 |
20050256564 | Yang et al. | Nov 2005 | A1 |
20050261757 | Shanley | Nov 2005 | A1 |
20050266039 | Weber | Dec 2005 | A1 |
20050266040 | Gerberding | Dec 2005 | A1 |
20050271696 | Dinn et al. | Dec 2005 | A1 |
20050278929 | Lee | Dec 2005 | A1 |
20050283225 | Klisch | Dec 2005 | A1 |
20050287287 | Parker et al. | Dec 2005 | A1 |
20060025848 | Weber et al. | Feb 2006 | A1 |
20060034884 | Stenzel | Feb 2006 | A1 |
20060052744 | Weber | Mar 2006 | A1 |
20060053618 | Verin et al. | Mar 2006 | A1 |
20060069427 | Savaget et al. | Mar 2006 | A1 |
20060085065 | Krause et al. | Apr 2006 | A1 |
20060100608 | Uhland et al. | May 2006 | A1 |
20060129215 | Helmus et al. | Jun 2006 | A1 |
20060129225 | Kopia | Jun 2006 | A1 |
20060136051 | Furst et al. | Jun 2006 | A1 |
20060161264 | Ferreyrol | Jul 2006 | A1 |
20060171989 | Prescott et al. | Aug 2006 | A1 |
20060198750 | Furst et al. | Sep 2006 | A1 |
20060200229 | Bugermeister et al. | Sep 2006 | A1 |
20060217801 | Rosenthal | Sep 2006 | A1 |
20060224234 | Jayaraman | Oct 2006 | A1 |
20060224237 | Furst et al. | Oct 2006 | A1 |
20060229713 | Shanley | Oct 2006 | A1 |
20060235504 | Gonzales | Oct 2006 | A1 |
20060259005 | Konstantino et al. | Nov 2006 | A1 |
20060269475 | Ryu et al. | Nov 2006 | A1 |
20060275341 | Liv et al. | Dec 2006 | A1 |
20070027530 | Saint et al. | Feb 2007 | A1 |
20070032430 | Fogelman et al. | Feb 2007 | A1 |
20070038176 | Weber et al. | Feb 2007 | A1 |
20070043423 | Grewe | Feb 2007 | A1 |
20070055352 | Naimark et al. | Mar 2007 | A1 |
20070065418 | Vallana | Mar 2007 | A1 |
20070065477 | Parker et al. | Mar 2007 | A1 |
20070073385 | Schaeffer et al. | Mar 2007 | A1 |
20070100438 | Civelli | May 2007 | A1 |
20070110786 | Tenney | May 2007 | A1 |
20070110888 | Radhakrishnan et al. | May 2007 | A1 |
20070112414 | Parker et al. | May 2007 | A1 |
20070112416 | Shanley et al. | May 2007 | A1 |
20070112417 | Shanley et al. | May 2007 | A1 |
20070112421 | O'Brien | May 2007 | A1 |
20070151638 | Burgermeister et al. | Jul 2007 | A1 |
20070173923 | Savage et al. | Jul 2007 | A1 |
20070191816 | Behan et al. | Aug 2007 | A1 |
20070202147 | Kleiner et al. | Aug 2007 | A1 |
20070219628 | Shanley et al. | Sep 2007 | A1 |
20070224116 | Chandrasekaran et al. | Sep 2007 | A1 |
20070224235 | Tenney et al. | Sep 2007 | A1 |
20070255393 | Flanagan | Nov 2007 | A1 |
20070259116 | Nolan et al. | Nov 2007 | A1 |
20080051881 | Feng et al. | Feb 2008 | A1 |
20080057101 | Roorda | Mar 2008 | A1 |
20080071344 | Silberg et al. | Mar 2008 | A1 |
20080071349 | Atanasoska et al. | Mar 2008 | A1 |
20080071351 | Flanagan et al. | Mar 2008 | A1 |
20080071355 | Weber et al. | Mar 2008 | A1 |
20080082162 | Boismier et al. | Apr 2008 | A1 |
20080086113 | Tenney et al. | Apr 2008 | A1 |
20080097349 | Dillinger | Apr 2008 | A1 |
20080097569 | O'Connor et al. | Apr 2008 | A1 |
20080147177 | Scheuermann et al. | Jun 2008 | A1 |
20080188836 | Weber et al. | Aug 2008 | A1 |
20080208325 | Helmus et al. | Aug 2008 | A1 |
20080275543 | Lenz et al. | Nov 2008 | A1 |
20080294236 | Anand et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
3516411 | Nov 1986 | DE |
3608158 | Sep 1987 | DE |
19855421 | May 2000 | DE |
10064596 | Jun 2002 | DE |
10150995 | Apr 2003 | DE |
10200387 | Aug 2003 | DE |
102005010100 | Sep 2006 | DE |
10107339 | Feb 2009 | DE |
1132058 | Sep 2001 | EP |
1159934 | Dec 2001 | EP |
1235560 | Sep 2002 | EP |
1236447 | Sep 2002 | EP |
1254673 | Nov 2002 | EP |
1277449 | Jan 2003 | EP |
1308179 | May 2003 | EP |
1310242 | May 2003 | EP |
1348402 | Oct 2003 | EP |
1362603 | Nov 2003 | EP |
1402849 | Mar 2004 | EP |
1449546 | Aug 2004 | EP |
1319416 | Nov 2004 | EP |
1011529 | Jan 2005 | EP |
1570808 | Sep 2005 | EP |
1604697 | Dec 2005 | EP |
1685861 | Aug 2006 | EP |
1359865 | Nov 2006 | EP |
1779816 | May 2007 | EP |
1886703 | Feb 2008 | EP |
1891988 | Feb 2008 | EP |
1891995 | Feb 2008 | EP |
1935508 | Jun 2008 | EP |
1952789 | Aug 2008 | EP |
012198.7 | Sep 2001 | GB |
2397233 | Jul 2004 | GB |
2005160600 | Jun 2005 | JP |
2006175017 | Jul 2006 | JP |
9306792 | Apr 1993 | WO |
9838946 | Sep 1998 | WO |
0037138 | Jun 2000 | WO |
0072907 | Dec 2000 | WO |
0135928 | May 2001 | WO |
0247581 | Jun 2002 | WO |
02060506 | Aug 2002 | WO |
03055414 | Jul 2003 | WO |
2004006983 | Jan 2004 | WO |
2004026281 | Apr 2004 | WO |
2004043298 | May 2004 | WO |
2004043292 | Jul 2004 | WO |
2004058100 | Jul 2004 | WO |
2004064911 | Aug 2004 | WO |
2005051450 | Jun 2005 | WO |
2005077305 | Aug 2005 | WO |
2005082277 | Sep 2005 | WO |
2005089673 | Sep 2005 | WO |
2005110285 | Nov 2005 | WO |
2006029708 | Mar 2006 | WO |
2006099450 | Sep 2006 | WO |
2007031968 | Mar 2007 | WO |
2007031972 | Mar 2007 | WO |
2007059253 | May 2007 | WO |
2007118139 | Oct 2007 | WO |
2008016528 | Feb 2008 | WO |
2008073208 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100023115 A1 | Jan 2010 | US |