Dry powder inhaler and system for drug delivery

Information

  • Patent Grant
  • 10201672
  • Patent Number
    10,201,672
  • Date Filed
    Tuesday, July 2, 2013
    11 years ago
  • Date Issued
    Tuesday, February 12, 2019
    5 years ago
Abstract
A breath-powered, dry powder inhaler, a cartridge, and a pulmonary drug delivery system are provided. The dry powder inhaler can be provided with or without a unit dose cartridge for using with the inhaler. The inhaler and/or cartridge can be provided with a drug delivery formulation comprising, for example, a diketopiperazine and an active ingredient, including, peptides and proteins such as insulin, oxyntomodulin and glucagon-like peptide.
Description
TECHNICAL FIELD

The present disclosure relates to dry powder inhalers, cartridges for dry powder inhalers and a system for rapid drug delivery to the pulmonary tract, including dry powder medicament formulations comprising active agents for the treatment of disease such as diabetes and obesity for use with the inhalers. In particular, the system can include a dry powder inhaler with or without a unit dose cartridge, and a drug delivery formulation comprising, for example, a diketopiperazine and an active ingredient such as peptides and proteins, including insulin and glucagon-like peptide 1.


All references cited in this specification, and their references, are incorporated by reference herein in their entirety where appropriate for teachings of additional or alternative details, features, and/or technical background.


BACKGROUND

Drug delivery systems for the treatment of disease which introduce active ingredients into the circulation are numerous and include oral, transdermal, inhalation, subcutaneous and intravenous administration. Drugs delivered by inhalation are typically delivered using positive pressure relative to atmospheric pressure in air with propellants. Such drug delivery systems deliver drugs as aerosols, nebulized or vaporized. More recently, drug delivery to lung tissue has been achieved with dry powder inhalers. Dry powder inhalers can be breath activated or breath-powered and can deliver drugs by converting drug particles in a carrier into a fine dry powder which is entrained into an air flow and inhaled by the patient. Drugs delivered with the use of a dry powder inhaler can no longer be intended to treat pulmonary disease only, but also specific drugs can be used to treat many conditions, including diabetes and obesity.


Dry powder inhalers, used to deliver medicaments to the lungs, contain a dose system of a powder formulation usually either in bulk supply or quantified into individual doses stored in unit dose compartments, like hard gelatin capsules or blister packs. Bulk containers are equipped with a measuring system operated by the patient in order to isolate a single dose from the powder immediately before inhalation. Dosing reproducibility requires that the drug formulation is uniform and that the dose can be delivered to the patient with consistent and reproducible results. Therefore, the dosing system ideally operates to completely discharge all of the formulation effectively during an inspiratory maneuver when the patient is taking his/her dose. However, complete discharge is not required as long as reproducible dosing can be achieved. Flow properties of the powder formulation, and long term physical and mechanical stability in this respect, are more critical for bulk containers than they are for single unit dose compartments. Good moisture protection can be achieved more easily for unit dose compartments such as blisters, however, the materials used to manufacture the blisters allow air into the drug compartment and subsequently the formulation loses viability with long storage. Additionally, dry powder inhalers which use blisters to deliver a medicament by inhalation can suffer with inconsistency of dose delivery to the lungs due to variations in the air conduit architecture resulting from puncturing films or peeling films of the blisters.


Dry powder inhalers such as those described in U.S. Pat. Nos. 7,305,986 and 7,464,706, which disclosure is incorporated herein by reference in their entirety, can generate primary drug particles or suitable inhalation plumes during an inspiratory maneuver by deagglomerating the powder formulation within a capsule. The amount of fine powder discharged from the inhaler's mouthpiece during inhalation is largely dependent on, for example, the interparticulate forces in the powder formulation and the efficiency of the inhaler to separate those particles so that they are suitable for inhalation. The benefits of delivering drugs via the pulmonary circulation are numerous and include rapid entry into the arterial circulation, avoidance of drug degradation by liver metabolism, ease of use, i.e., lack of discomfort of administration by other routes of administration.


Dry powder inhaler products developed for pulmonary delivery have met with limited success to date, due to lack of practicality and/or cost of manufacture. Some of the persistent problems observed with prior art inhalers, include lack of ruggedness of device, propellants use to deliver the powder, consistency in dosing, inconvenience of the equipment, poor deagglomeration, and/or lack of patient compliance. Therefore, the inventors have identified the need to design and manufacture an inhaler with consistent powder delivery properties, easy to use without discomfort, and discrete inhaler configurations which would allow for better patient compliance.


SUMMARY

The present disclosure is directed to dry powder inhalers, cartridges for dry powder inhalers and a system for rapid drug delivery to the pulmonary tract, including dry powders comprising active agents for the treatment of disease, including diabetes and obesity. The dry powder inhaler can be breath-powered, compact, reusable or disposable, has various shapes and sizes, and comprises a system of airflow conduit pathways for the effective and rapid delivery of powder medicament. In one embodiment, the inhaler can be a unit dose, reusable or disposable inhaler that can be used with or without a cartridge. By use without a cartridge we refer to systems in which cartridge-like structures are integral to the inhaler, as opposed systems in which a cartridge is installed for use by, for example, the user. In another embodiment, the inhaler can be a multidose inhaler, disposable or reusable that can be used with single unit dose cartridges installed in the inhaler or cartridge-like structures built-in or structurally configured as part of the inhaler.


The dry powder inhalation system comprises a dry powder inhalation device or inhaler with or without a cartridge, and a pharmaceutical formulation comprising an active ingredient for pulmonary delivery. In some embodiments delivery is to the deep lung (that is, to the alveolar region) and in some of these embodiments the active agents is absorbed into the pulmonary circulation for systemic delivery. The system can also comprise a dry powder inhaler with or without a unit dose cartridge, and a drug delivery formulation comprising, for example, diketopiperazine and an active ingredient such as peptides and proteins, including insulin and glucagon-like peptide 1.


In one embodiment, the dry powder inhaler comprises a housing, a moveable member, and a mouthpiece, wherein the moveable member is operably configured to move a container from a powder containment position to a dosing position. In this and other embodiments, the moveable member can be a sled, a slide tray or a carriage which is moveable by various mechanisms.


In another embodiment, the dry powder inhaler comprises a housing and a mouthpiece, structurally configured to have an open position, a closed position and a mechanism operably configured to receive, hold, and reconfigure a cartridge from a containment position to a dispensing, dosing or dose delivery position upon movement of said inhaler from the open position to the closed position. In versions of this embodiment, the mechanism can also reconfigure a cartridge installed in the inhaler from the dosing position to a containment position after use when the inhaler is opened to unload a used cartridge. In one embodiment, the mechanism can reconfigure a cartridge to a disposable or discarding configuration after use. In such embodiments, the housing is structurally configured to be moveably attached to the mouthpiece by various mechanisms including, a hinge. The mechanism configured to receive and reconfigure a cartridge installed in the inhaler from a containment position to the dosing position can be designed to operate manually or automatically upon movement of the inhaler components, for example, by closing the device from an open configuration. In one embodiment, the mechanism for reconfiguring a cartridge comprises a slide tray or sled attached to the mouthpiece and movably attached to the housing. In another embodiment, the mechanism is mounted or adapted to the inhaler and comprises a geared mechanism integrally mounted within, for example, a hinge of the inhaler device. In yet another embodiment, the mechanism operably configured to receive and reconfigure the cartridge from a containment position to a dosing position comprises a cam that can reconfigure the cartridge upon rotation of, for example, the housing or the mouthpiece.


In an alternate embodiment, the dry powder inhaler can be made as a single use, unit dose disposable inhaler, which can be provided with a powder container configured to hold a powder medicament, wherein the inhaler can have a first and a second configuration in which the first configuration is a containment configuration and the second configuration is a dosing of dispensing configuration. In this embodiment, the inhaler can be provided with or without a mechanism for reconfiguring the powder container. According to aspects of the latter embodiment the container can be reconfigured directly by the user.


In yet another embodiment, an inhaler comprising a container mounting area configured to receive a container, and a mouthpiece having at least two inlet apertures and at least one exit aperture; wherein one inlet aperture of the at least two inlet apertures is in fluid communication with the container area, and one of the at least two inlet apertures is in fluid communication with the at least one exit aperture via a flow path configured to bypass the container area.


In one embodiment, the inhaler has opposing ends such as a proximal end for contacting a user's lips or mouth and a distal end, and comprises a mouthpiece and a medicament container; wherein the mouthpiece comprises a top surface and a bottom or undersurface. The mouthpiece undersurface has a first area configured relatively flat to maintain a container in a sealed or containment configuration, and a second area adjacent to the first area which is raised relative to the first area. In this embodiment, the container is movable from the containment configuration to the dosing configuration and vice versa, and in the dosing configuration, the second raised area of the mouthpiece undersurface and the container form or define an air inlet passageway to allow ambient air to enter the internal volume of the container or expose the interior of the container to ambient air. In one embodiment, the mouthpiece can have a plurality of openings, for example, an inlet port, an outlet port and at least one port for communicating with a medicament container in a dispensing or dosing position, and can be configured to have integrally attached panels extending from the bottom surface sides of the inhaler and having flanges protruding towards the center of the inhaler mouthpiece, which serve as tracks and support for the container on the mouthpiece so that the container can move along the tracks from the containment position to a dispensing or dosing position and back to containment if desired. In one embodiment, the medicament container is configured with wing-like projections or winglets extending from its top border to adapt to the flanges on the mouthpiece panels. In one embodiment, the medicament container can be moved manually by a user from containment position to a dosing position and back to the containment position after dosing, or by way of a sled, a slide tray, or a carriage.


In another embodiment, a single use, unit dose, disposable inhaler can be constructed to have a sled incorporated and operably configured to the mouthpiece. In this embodiment, a bridge on the sled can abut or rest on an area of the medicament container to move the container along the mouthpiece panel tracks from the containment position to the dispensing or dosing position. In this embodiment, the sled can be operated manually to move the container on the mouthpiece tracks.


In one embodiment, the dry powder inhaler comprises one or more air inlets and one or more air outlets. When the inhaler is closed, at least one air inlet can permit flow to enter the inhaler and at least one air inlet allows flow to enter a cartridge compartment or the interior of the cartridge or container adapted for inhalation. In one embodiment, the inhaler has an opening structurally configured to communicate with the cartridge placement area and with a cartridge inlet port when the cartridge container is in a dosing position. Flow entering the cartridge interior can exit the cartridge through an exit or dispensing port or ports; or flow entering the container of an inhaler can exit through at least one of the dispensing apertures. In this embodiment, the cartridge inlet port or ports is/are structurally configured so that all, or a portion of the air flow entering the interior of the cartridge is directed at the exit or dispensing port or ports. The medicament container is structurally configured to have two opposing, relatively curvilinear sides which can direct airflow. In this embodiment, flow entering the air inlet during an inhalation can circulate within the interior of the container about an axis relatively perpendicular to the axis of the dispensing ports, and thereby, the flow can lift, tumble and effectively fluidize a powder medicament contained in the cartridge. In this and other embodiments, fluidized powder in the air conduit can be further deagglomerated into finer powder particles by a change in direction or velocity, i.e., acceleration or deceleration of the particles in the flow pathway. In certain embodiments, the change in acceleration or deceleration can be accomplished by changing the angle and geometries of, for example, the dispensing port or ports, the mouthpiece conduit and/or its interfaces. In the inhalers described herewith, the mechanism of fluidization and acceleration of particles as they travel through the inhaler are methods by which deagglomeration and delivery of a dry powder formulation is effectuated.


In particular embodiments, a method for deagglomerating and dispersing a dry powder formulation comprises one or more steps such as tumbling within a primary container region started and enhanced by flow entering the container; a rapid acceleration of powder in the flow through the dispensing ports leaving the container; further accelerating the powder induced by a change in direction or velocity as the powder exits the dispensing port; shearing of powder particles caught within a flow gradient, wherein the flow on the top of the particle is faster than flow on bottom of the particle; deceleration of flow due to expansion of cross-sectional area within the mouthpiece air conduit; expansion of air trapped within a particle due to the particle moving from a higher pressure region to a lower pressure region, or collisions between particles and flow conduit walls at any point in the flow passageways.


In another embodiment, a dry powder inhaler comprises a mouthpiece; a sled, slide tray, or a carriage, a housing, a hinge, and a gear mechanism configured to effectuate movement of the sled or slide tray; wherein the mouthpiece and the housing are moveably attached by the hinge.


Cartridges for use with the dry powder inhaler can be manufactured to contain any dry powder medicament for inhalation. In one embodiment, the cartridge is structurally configured to be adaptable to a particular dry powder inhaler and can be made of any size and shape, depending on the size and shape of the inhaler to be used with, for example, if the inhaler has a mechanism which allows for translational movement or for rotational movement. In one embodiment, the cartridge can be configured with a securing mechanism, for example, having a beveled edge on the cartridge top corresponding to a matching beveled edge in an inhaler so that the cartridge is secured in use. In one embodiment, the cartridge comprises a container and a lid or cover, wherein the container can be adapted to a surface of the lid and can be movable relative to the lid or the lid can be movable on the container and can attain various configurations depending on its position, for example, a containment configuration, a dosing configuration or after use configuration. Alternatively the lid can be removable. An exemplary embodiment can comprise an enclosure to hold medicament configured having at least one inlet aperture to allow flow into the enclosure; at least one dispensing aperture to allow flow out of the enclosure; the inlet aperture configured to direct at least a portion of the flow at the dispensing aperture or at the particles approaching the dispensing aperture within the enclosure in response to a pressure gradient. The dispensing aperture or apertures and the intake gas aperture each independently can have a shape such as oblong, rectangular, circular, triangular, square and oval-shaped and can be in close proximity to one another. During inhalation, a cartridge adapted to the inhaler in a dosing position allows airflow to enter the enclosure and mix with the powder to fluidize the medicament. The fluidized medicament moves within the enclosure such that medicament gradually exits the enclosure through the dispensing aperture, wherein the fluidized medicament exiting the dispensing aperture is sheared and diluted by a secondary flow not originating from within the enclosure. In one embodiment, the flow of air in the internal volume rotates in a circular manner so as to lift a powder medicament in the container or enclosure and recirculate the entrained powder particles or powder mass in the internal volume of the container promoting the flow to tumble prior to the particles exiting dispensing ports of the container or one or more of the inhaler inlet ports or air outlet or dispensing apertures, and wherein the recirculating flow, can cause tumbling, or non-vortical flow of air in the internal volume acts to deagglomerate the medicament. In one embodiment, the axis of rotation is mostly perpendicular to gravity. In another embodiment the axis of rotation is mostly parallel to gravity. The secondary flow not originating from within the enclosure further acts to de-agglomerate the medicament. In this embodiment, the pressure differential is created by the user's inspiration.


A cartridge for a dry powder inhaler, comprising: an enclosure configured to hold a medicament; at least one inlet port to allow flow into the enclosure, and at least one dispensing port to allow flow out of the enclosure; said at least one inlet port is configured to direct at least a portion of the flow entering the at least one inlet port at the at least one dispensing port within the enclosure in response to a pressure differential.


A unit dose cartridge for an inhaler comprising: a substantially flat cartridge top, arrow-like in configuration, having one or more inlet apertures, one or more dispensing apertures, and two side panels extending downwardly and each of the two side panels having a track; and a container moveably engaged to the track of the side panels of the cartridge top, and comprising a chamber configured to have a relatively cup-like shape with two relatively flat and parallel sides and a relatively rounded bottom, and interior surface defining an internal volume; said container configurable to attain a containment position and a dosing position with the cartridge top; wherein in use with a dry powder inhaler during an inhalation a flow entering the internal volume diverges as it enters the internal volume with a portion of the flow exiting through the one or more dispensing apertures and a portion of the flow rotating inside the internal volume and lifting a powder in the internal volume before exiting through the dispensing apertures.


In one embodiment, an inhalation system for pulmonary drug delivery is provided, comprising: a dry powder inhaler comprising a housing and a mouthpiece having an inlet and an outlet port, an air conduit between the inlet and the outlet, and an opening structurally configured to receive a cartridge; a cartridge mounting mechanism such as a sled; a cartridge configured to be adapted to the dry powder inhaler and containing a dry powder medicament for inhalation; wherein the cartridge comprises a container and a lid having one or more inlet ports or one or more dispensing ports; the dry powder inhaler system in use has a predetermined airflow balance distribution through said cartridge relative to total flow delivered to the patient.


In embodiments disclosed herewith, the dry powder inhaler system comprises a predetermined mass flow balance within the inhaler. For example, a flow balance of approximately 10% to 70% of the total flow exiting the inhaler and into the patient is delivered by the dispensing ports or passed through the cartridge, whereas approximately 30% to 90% is generated from other conduits of the inhaler. Moreover, bypass flow or flow not entering and exiting the cartridge can recombine with the flow exiting the dispensing port of the cartridge within the inhaler to dilute, accelerate and ultimately deagglomerate the fluidized powder prior to exiting the mouthpiece.


In the embodiments described herein, the dry powder inhaler is provided with relatively rigid air conduits or plumbing system and high flow resistance levels to maximize deagglomeration of powder medicament and facilitate delivery. Accordingly, effectiveness and consistency of powder medicament discharge is obtained from the inhaler after repeated use since the inhaler are provided with air conduit geometries which remain the same and cannot be altered. In some embodiments, the dry powder medicament is dispensed with consistency from the inhaler in less than about 3 seconds, or generally less than one second. In some embodiments, the inhaler system can have a high resistance value of, for example, approximately 0.065 to about 0.200 (√kPa)/liter per minute. Therefore, in the system, peak inhalation pressure drops of between 2 and 20 kPa produce resultant peak flow rates of about between 7 and 70 liters per minute. These flow rates result in greater than 75% of the cartridge contents dispensed in fill masses between 1 and 30 mg. In some embodiments, these performance characteristics are achieved by end users within a single inhalation maneuver to produce cartridge dispense percentage of greater than 90%. In certain embodiments, the inhaler and cartridge system are configured to provide a single dose by discharging powder from the inhaler as a continuous flow, or as one or more pulses of powder delivered to a patient.


In one embodiment, a method for effectively deagglomerating a dry powder formulation during an inhalation in a dry powder inhaler is provided. The method can comprise the steps of providing a dry powder inhaler comprising a container having an air inlet, dispensing ports communicating with a mouthpiece air conduit and containing and delivering a formulation to a subject in need of the formulation; generating an airflow in the inhaler by the subject's inspiration so that about 10 to about 70% of the airflow entering the inhaler enters and exits the container; allowing the airflow to enter the container inlet, circulate and tumble the formulation in an axis perpendicular to the dispensing ports to fluidize the formulation so as to yield a fluidized formulation; accelerating metered amounts of fluidized formulation through the dispensing ports and in the air conduit, and decelerating the airflow containing fluidized formulation in the mouthpiece air conduit of the inhaler prior to reaching the subject.


In another embodiment, a method for deagglomerating and dispersing a dry powder formulation for inhalation is provided, comprising the steps of: generating an airflow in a dry powder inhaler comprising a mouthpiece and a container having at least one inlet port and at least one dispensing port and containing a dry powder formulation; said container forming an air passage between at least one inlet port and at least one dispensing port and the inlet port directs a portion of the airflow entering the container to at least one dispensing port; allowing airflow to tumble powder within the container in a substantially perpendicular axis to the at least one dispensing port so as to lift and mix the dry powder medicament in the container to form an airflow medicament mixture; and accelerating the airflow exiting the container through at least one dispensing port. In one embodiment, the inhaler mouthpiece is configured to have a gradual expanding cross-section to decelerate flow and minimize powder deposition inside the inhaler and promote maximal delivery of powder to the patient. In one embodiment, for example, the cross-sectional area of the oral placement region of an inhaler can be from about 0.05 cm2 to about 0.25 cm2 over an approximate length of about 3 cm. These dimensions depend on the type of powder used with the inhaler and the dimensions of the inhaler itself.


A cartridge for a dry powder inhaler, comprising: a cartridge top and a container defining an internal volume; wherein the cartridge top has an undersurface that extends over the container; said undersurface configured to engage said container, and comprising an area to contain the internal volume and an area to expose the internal volume to ambient air.


In an alternate embodiment, a method for the delivery of particles through a dry powder delivery device is provided, comprising: inserting into the delivery device a cartridge for the containment and dispensing of particles comprising an enclosure enclosing the particles, a dispensing aperture and an intake gas aperture; wherein the enclosure, the dispensing aperture, and the intake gas aperture are oriented such that when an intake gas enters the intake gas aperture, the particles are deagglomerated, by at least one mode of deagglomeration as described above to separate the particles, and the particles along with a portion of intake gas are dispensed through the dispensing aperture; concurrently forcing a gas through a delivery conduit in communication with the dispensing aperture thereby causing the intake gas to enter the intake gas aperture, de-agglomerate the particles, and dispense the particles along with a portion of intake gas through the dispensing aperture; and, delivering the particles through a delivery conduit of the device, for example, in an inhaler mouthpiece. In embodiment described herein, to effectuate powder deagglomeration, the dry powder inhaler can be structurally configured and provided with one or more zones of powder deagglomeration, wherein the zones of deagglomeration during an inhalation maneuver can facilitate tumbling of a powder by air flow entering the inhaler, acceleration of the air flow containing a powder, deceleration of the flow containing a powder, shearing of a powder particles, expansion of air trapped in the powder particles, and/or combinations thereof.


In another embodiment, the inhalation system comprises a breath-powered dry powder inhaler, a cartridge containing a medicament, wherein the medicament can comprise, for example, a drug formulation for pulmonary delivery such as a composition comprising a diketopiperazine and an active agent. In some embodiments, the active agent comprises peptides and proteins, such as insulin, glucagon-like peptide 1, oxyntomodulin, peptide YY, exendin, analogs thereof, and the like. The inhalation system of the invention can be used, for example, in methods for treating conditions requiring localized or systemic delivery of a medicament, for example, in methods for treating diabetes, pre-diabetes conditions, respiratory track infection, pulmonary disease and obesity. In one embodiment, the inhalation system comprises a kit comprising at least one of each of the components of the inhalation system for treating the disease or disorder.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a perspective view of an embodiment of a dry powder inhaler in a closed position.



FIG. 2 depicts a perspective view of the dry powder inhaler of FIG. 1 showing the dry powder inhaler in a partially opened position.



FIG. 3 depicts a perspective view of the dry powder inhaler of FIG. 1 showing the inhaler in a fully opened, cartridge loading/unloading position and depicting the interior compartment of the inhaler.



FIG. 4A depicts a perspective view of the inhaler in FIG. 1 showing the inhaler in a fully opened, cartridge loading/unloading position, depicting its internal surface including the interior surface of the inhaler mouthpiece. FIG. 4B depicts a perspective view of the dry powder inhaler of FIG. 4A showing the inhaler in the fully opened, cartridge loading/unloading position and the cartridge configured for placement into the inhaler. FIG. 4C is the inhaler shown in FIGS. 4A and 4B showing a cartridge loaded into the cartridge holder.



FIG. 5 depicts the dry powder inhaler of FIG. 1 with a cartridge and in a fully opened position, shown in mid-longitudinal section and containing a cartridge in the holder, wherein the cartridge container is in the containment position.



FIG. 6 depicts the dry powder inhaler of FIG. 1 with a cartridge and in a partially opened position shown in mid-longitudinal section and containing a cartridge in the holder, wherein the cartridge is in a containment position.



FIG. 7 depicts the dry powder inhaler of FIG. 1 with a cartridge and in a closed position, shown in mid-longitudinal section and containing a cartridge in the holder, wherein the cartridge is in a dosing position.



FIG. 8 depicts a top view of the dry powder inhaler of FIG. 1 in a fully opened configuration and showing the inner compartment components of the inhaler.



FIG. 9 depicts a perspective view of an alternate embodiment of the dry powder inhaler in the closed or inhalation position.



FIG. 10 depicts the dry powder inhaler of FIG. 9 in an opened position, showing a cartridge installed in the cartridge holder, wherein the cartridge is in a containment position.



FIG. 11A and FIG. 11B depict the dry powder inhaler embodiment of FIG. 9 in an opened (FIG. 11A) and closed (FIG. 11B) position, shown in a mid-longitudinal section with the cartridge in the cartridge holder in the containment position and dosing position, respectively.



FIG. 12 depicts a perspective view of an alternate embodiment of the dry powder inhaler in the closed position.



FIG. 13 depicts a perspective view of the dry powder inhaler embodiment of FIG. 12 in an open position showing the interior compartment of the inhaler.



FIG. 14 depicts the embodiment of FIG. 12 in an opened, loading/unloading position having a cartridge installed in the holder in the containment position.



FIG. 15A depicts the embodiment of FIG. 12 showing the dry powder inhaler in the closed position as a cross-section through the longitudinal axis. The geared mechanism for opening and closing a cartridge and opening and closing the inhaler can be seen. FIG. 15B depicts the embodiment of FIG. 12 showing the dry powder inhaler in the closed position as a cross-section through the mid-longitudinal axis.



FIG. 15C depicts an alternate embodiment of the inhaler of FIG. 12 showing an isometric view of the inhaler in a closed position. FIGS. 15D, 15E, 15F, 15G, and 15H depict side, top, bottom, proximal and distal views, respectively, of the inhaler of FIG. 15C. FIG. 15I depicts a perspective view of the inhaler in FIG. 15C in an open configuration showing a corresponding cartridge and a mouthpiece covering. FIG. 15J depicts an isometric view of the inhaler of FIG. 15I in an open configuration with a cartridge installed in the holder. FIG. 15K depict the inhaler of FIG. 15C in cross-section through the mid-longitudinal axis with a cartridge installed in the cartridge holder and in a dosing configuration, and the closed configuration FIG. 15J.



FIG. 16 illustrates a perspective view of an alternate embodiment of the dry powder inhaler in the closed position.



FIG. 17 illustrates the embodiment FIG. 16 in an opened, loading/unloading position having a cartridge installed in the cartridge holder.



FIG. 18 illustrates the embodiment FIG. 16 in a closed, inhalation position having a cartridge installed in the cartridge holder in a dosing configuration.



FIG. 19 illustrates a perspective view of an alternate embodiment of a dry powder inhaler for single use, showing the container in a containment configuration.



FIG. 20 illustrates a perspective view of the inhaler shown in FIG. 19 wherein the inhaler is in the dosing configuration, which allows air to flow through the interior of the powder containment cup.



FIG. 21 illustrates a perspective view of the inhaler shown in FIG. 19 in mid-longitudinal section wherein the inhaler is in a containment configuration.



FIG. 22 illustrates a perspective view of the inhaler shown in FIG. 20 in longitudinal section wherein the inhaler is the dosing configuration.



FIG. 23 depicts a bottom view of the embodiment of FIG. 19, showing the undersurface of the dry powder inhaler components.



FIG. 24 illustrates a perspective view of yet another embodiment of a dry powder inhaler for single use, showing the containment configuration.



FIG. 25 illustrates a perspective view of the inhaler of FIG. 23 wherein the dosing configuration, which allows air to flow through the interior of the medicament container is shown.



FIG. 26 illustrates a perspective view of the inhaler shown in FIG. 24 in mid-longitudinal section wherein the medicament container in a containment or closed position is displayed.



FIG. 27 illustrates a perspective view of the inhaler shown in FIG. 24 in mid-longitudinal section wherein the medicament container in a dosing position is displayed.



FIG. 28 is a perspective and bottom view of the inhaler of FIG. 24, showing the undersurface components of the inhaler.



FIG. 29 illustrates a perspective view of yet an alternate embodiment of a dry powder inhaler showing the containment configuration.



FIG. 30A and FIG. 30B illustrate perspective views of the inhaler of FIG. 29 in an opened position and showing a cartridge installed in a containment or closed position.



FIG. 31 illustrates a perspective view of the inhaler shown in FIG. 30 in mid-longitudinal section in the open configuration wherein the medicament container in a containment position is displayed.



FIG. 32 illustrates a perspective view of the inhaler shown in FIG. 31 in mid-longitudinal section wherein the medicament container in a containment position is displayed and the mouthpiece section has been secured with the housing.



FIG. 33 illustrates a perspective view of the inhaler shown in FIG. 29 showing the inhaler in a dosing position.



FIG. 34 illustrates a perspective view of the inhaler shown in FIG. 33 in mid-longitudinal section wherein the medicament container in a dosing position is displayed.



FIG. 35 illustrates a perspective view of a cartridge embodiment for use with the inhaler of FIG. 1 as also shown in FIG. 4B depicting the cartridge in a containment configuration.



FIG. 36 illustrates a top view of the cartridge embodiment of FIG. 35, showing the component structures of the cartridge top surface.



FIG. 37 illustrates a bottom view of the cartridge embodiment of FIG. 35, showing the component structures of the cartridge undersurface.



FIG. 38A illustrates a perspective view of a cartridge embodiment of FIG. 35 in mid-longitudinal cross-section and in a containment configuration. FIG. 38B illustrates a perspective view of a cartridge embodiment of FIG. 35 in a mid-longitudinal cross-section and in a dosing configuration.



FIG. 39A depicts a perspective view of an alternate embodiment of a cartridge in a containment configuration. FIG. 39B through 39F depict the cartridge embodiment shown in FIG. 39A in a top, bottom, proximal, distal and side views, respectively. FIG. 39G depicts a perspective view of the cartridge embodiment shown in FIG. 39A in a dosing configuration. FIGS. 39H and 39I are cross-sections through the longitudinal axis of the cartridge embodiment of FIGS. 39A and 39G, respectively.



FIG. 40 illustrates a perspective view of a cartridge embodiment for use with the inhaler of FIG. 29 showing the cartridge in a containment configuration.



FIG. 41 illustrates an exploded view of the cartridge embodiment of FIG. 40, showing the component parts of the cartridge.



FIG. 42 illustrates a perspective view of a cartridge embodiment of FIG. 40 in mid-longitudinal cross-section in a containment configuration.



FIG. 43 illustrates a perspective view of a cartridge embodiment of FIG. 40 in a dosing configuration.



FIG. 44 illustrates a perspective view of a cartridge embodiment of FIG. 38 in a mid-longitudinal cross-section and in a dosing configuration.



FIG. 45 illustrates a perspective view of an alternate cartridge embodiment for use with a dry powder inhaler showing the cartridge in a containment configuration.



FIG. 46A illustrates a perspective view of the cartridge embodiment of FIG. 45 for use with a dry powder inhaler showing the cartridge in a dosing configuration.



FIG. 46B illustrates a perspective view of a cartridge embodiment of FIG. 45 in a mid-longitudinal cross-section and in a dosing configuration.



FIG. 47A illustrates a perspective view of an alternate cartridge embodiment for use with a dry powder inhaler showing the cartridge in a containment configuration.



FIG. 47B illustrates a perspective view of the cartridge embodiment of FIG. 47A for use with a dry powder inhaler showing the cartridge in a dosing configuration.



FIG. 48 illustrates a perspective view of an alternate embodiment of a dry powder inhaler shown in an opened configuration.



FIG. 49 illustrates an exploded view of the inhaler embodiment of FIG. 48 showing the inhaler component parts.



FIG. 50 illustrates a perspective view of the inhaler in FIG. 48 in the open configuration and showing the type and orientation of a cartridge to be installed in the inhaler holder.



FIG. 51 illustrates a perspective view of the inhaler in FIG. 50 in the open configuration and showing a cartridge installed in the inhaler.



FIG. 52 illustrates a mid-longitudinal section of the inhaler depicted in FIG. 51 showing the cartridge container in the containment configuration and in contact with the sled and the gear mechanism in contact with the sled.



FIG. 53 illustrates a perspective view of the inhaler in FIG. 50 in the closed configuration and with a cartridge in the holder.



FIG. 54 illustrates a mid-longitudinal section of the inhaler depicted in FIG. 53 showing the cartridge container in the dosing configuration and the air flow pathway established through the container.



FIG. 55 is a schematic representation of the movement of flow within the powder containment area of a dry powder inhaler as indicated by the arrows.



FIG. 56 is a schematic representation of an embodiment of a dry powder inhaler showing the flow pathways and direction of flow through the inhaler as indicated by the arrows.



FIG. 57 illustrates a perspective view of a multidose embodiment of a dry powder inhaler.



FIG. 58 illustrates an exploded view of the inhaler embodiment of FIG. 57 showing the inhaler component parts.



FIG. 59 illustrates a perspective bottom view of component part 958 of the inhaler depicted in FIG. 58.



FIG. 60 illustrates a perspective top view of component parts assembled of the inhaler depicted in FIG. 58.



FIG. 61 illustrates a perspective top view of component part 958 of the inhaler depicted in FIG. 58.



FIG. 62 illustrates a perspective top view of component parts of the housing assembly of the inhaler depicted in FIG. 58.



FIG. 63 illustrates a perspective view of the cartridge disk system of the inhaler depicted in FIG. 58.



FIG. 64 illustrates a perspective view of the cartridge disk system illustrated in FIG. 63 in cross-section.



FIG. 65 illustrates a perspective top view of the housing subassembly of the inhaler depicted in FIGS. 57 and 58.



FIG. 66 illustrates a perspective cross-sectional view of component parts of the inhaler depicted in FIG. 58.



FIG. 67 illustrates a perspective view of the inhaler depicted in FIG. 57 in cross-section.



FIG. 68 illustrates a perspective view of an alternate embodiment of a multidose dry powder inhaler.



FIG. 69 illustrates a perspective bottom view of the inhaler depicted in FIG. 68.



FIG. 70 illustrates a top view of the inhaler embodiment of FIG. 68 showing the inhaler body and the mouthpiece.



FIG. 71 illustrates a front view of the inhaler depicted in FIG. 68.



FIG. 72 illustrates a side view of the inhaler depicted in FIG. 68.



FIG. 73 illustrates a perspective explode view showing the bottom cartridge tray removed with not all component parts depicted.



FIG. 74 illustrates an exploded view of the inhaler depicted in FIG. 68 showing the gear drive system.



FIG. 75 illustrates a perspective view of cartridge disk system of the inhaler depicted in FIG. 68.



FIG. 76 illustrates a back view of cartridge disk system of the inhaler depicted in FIG. 68.



FIG. 77 illustrates a front view of cartridge disk system of the inhaler depicted in FIG. 68.



FIG. 78 illustrates a bottom view of cartridge disk system of the inhaler depicted in FIG. 68.



FIG. 79 illustrates a top view of seal disk of the inhaler depicted in FIG. 68.



FIG. 80 illustrates a graph of measurements of flow and pressure relationship based on the Bernoulli principle for an exemplary embodiment of the resistance to flow of an inhaler.



FIG. 81 depicts the particle size distribution obtained with a laser diffraction apparatus using an inhaler and cartridge containing a dry powder formulation for inhalation comprising insulin and fumaryl diketopiperizine particles.





DETAILED DESCRIPTION

In embodiments disclosed herein, there is disclosed a dry powder inhaler, a cartridge for a dry powder inhaler and an inhalation system for delivering pharmaceutical medicaments to a patient via inhalation. In one embodiment, the inhalation system comprises a breath-powered dry powder inhaler, and a cartridge containing a pharmaceutical formulation comprising a pharmaceutically active substance or active ingredient and a pharmaceutically acceptable carrier. The dry powder inhaler is provided in various shapes and sizes, and can be reusable or for single use, easy to use, is inexpensive to manufacture and can be produced in high volumes in simple steps using plastics or other acceptable materials. In addition to complete systems, inhalers, filled cartridges and empty cartridges constitute further embodiments disclosed herein. The present inhalation system can be designed to be used with any type of dry powder. In one embodiment, the dry powder is a relatively cohesive powder which requires optimal deagglomeration condition. In one embodiment, the inhalation system provides a re-useable, miniature breath-powered inhaler in combination with single-use cartridges containing pre-metered doses of a dry powder formulation.


As used herein the term “a unit dose inhaler” refers to an inhaler that is adapted to receive a single container a dry powder formulation and delivers a single dose of a dry powder formulation by inhalation from container to a user. It should be understood that in some instance multiple unit doses will be required to provide a user with a specified dosage.


As used herein the term “a multiple dose inhaler” refers to an inhaler having a plurality of containers, each container comprising a pre-metered dose of a dry powder medicament and the inhaler delivers a single dose of a medicament powder by inhalation at any one time.


As used herein a “container” is an enclosure configured to hold or contain a dry powder formulation, a powder containing enclosure, and can be a structure with or without a lid.


As used herein a “powder mass” is referred to an agglomeration of powder particles or agglomerate having irregular geometries such as width, diameter, and length.


As used herein, the term “microparticle” refers to a particle with a diameter of about 0.5 to about 1000 μm, irrespective of the precise exterior or interior structure. However four pulmonary delivery microparticles that are less than 10 μm are generally desired, especially those with mean particles sizes of less than about 5.8 μm in diameter.


As used herein a “unit dose” refers to a pre-metered dry powder formulation for inhalation. Alternatively, a unit dose can be a single container having multiple doses of formulation that can be delivered by inhalation as metered single amounts. A unit dose cartridge/container contains a single dose. Alternatively it can comprise multiple individually accessible compartments, each containing a unit dose.


As used herein, the term “about” is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.


The present devices can be manufactured by several methods, however, in one embodiment, the inhalers and cartridges are made, for example, by injection molding techniques, thermoforming, using various types of plastic materials, including, polypropylene, cyclicolephin co-polymer, nylon, and other compatible polymers and the like. In certain embodiments, the dry powder inhaler can be assembled using top-down assembly of individual component parts. In some embodiments, the inhalers are provided in compact sizes, such as from about 1 inch to about 5 inches in dimension, and generally, the width and height are less than the length of the device. In certain embodiments the inhaler is provided in various shapes including, relatively rectangular bodies, cylindrical, oval, tubular, squares, oblongs, and circular forms.


In embodiments described and exemplified herewith, the inhalers effectively fluidize, deagglomerate or aerosolize a dry powder formulation by using at least one relatively rigid flow conduit pathway for allowing a gas such as air to enter the inhaler. For example, the inhaler is provided with a first air/gas pathway for entering and exiting a cartridge containing the dry powder, and a second air pathway which can merge with the first air flow pathway exiting the cartridge. The flow conduits, for example, can have various shapes and sizes depending on the inhaler configuration.


An embodiment of the dry powder inhaler is exemplified in FIGS. 1-8. In this embodiment, the dry powder inhaler has three configurations, i.e., a closed configuration is illustrated in FIGS. 1 and 7, a partially opened configuration is illustrated in FIGS. 2 and 6 and an open configuration is illustrated in FIGS. 3-5 and 8. The dry powder inhaler 100 as depicted in FIGS. 1-8 has a relatively rectangular body having a proximal end for contacting the user's lips or oral cavity and a distal end, with top and bottom sides, a housing 120, mouthpiece 130 and carriage, slide tray or sled 117. FIG. 1 illustrates the dry powder inhaler in a closed position, wherein the mouthpiece 130 comprises a body 112 and has one or more air inlets 110 (see also FIGS. 5 and 7) and an oral placement section having an outlet 135. An air conduit runs the length of the inhaler mouthpiece 130 from air inlet 110 to outlet 135. Mouthpiece 130 can be configured having a narrowing in the shape of an hourglass at approximately its mid to distal section to accelerate airflow, and then it is configured of a wider diameter at its proximal end, or oral placement section to decelerate airflow towards outlet or opening 135 (see FIG. 7). Air conduit 140 (FIG. 4A) has an opening 155 for adapting an area or boss 126 of cartridge top 156 (FIG. 4B) and is in communication with a mounted cartridge 150 in the inhaler in the closed position (FIGS. 6 and 7). When the inhaler is in a closed or inhalation position as shown in FIG. 1, body 112 encloses a portion of the housing 120 of the inhaler 100. FIG. 1 also depicts a cartridge holder 115 extending downwardly from the inhaler body. In the embodiment of FIG. 1, the housing 120 is structurally configured to be relatively rectangular in shape and has a bottom wall 123, side walls 124 with riblet projections 125 which facilitate a stable grip for opening and closing the inhaler 100.



FIG. 2 is the dry powder inhaler embodiment depicted in FIG. 1, showing the inhaler in a partially opened containment position, wherein mouthpiece 130 shows a portion of the housing 120 protruding slightly outwardly. In this position, mouthpiece 130 can pivot by angular rotation to an opened configuration for loading a cartridge, or can be closed to a dosing configuration if a cartridge is contained in the holder, or for storage. In FIG. 2, a cartridge mounted in the cartridge holder 115 is in a closed, powder containment configuration. FIG. 3 illustrates a perspective view of the dry powder inhaler of FIG. 1, showing the inhaler in a fully opened, cartridge loading/unloading position and depicting the interior compartment areas of the inhaler. As seen in FIG. 3, mouthpiece 130, in the fully opened position of the inhaler, can be relatively moved about 90° from vertical plane Y-Z to a horizontal plane X-Z. As mouthpiece 130 rotates from the opened to the closed position, aperture 155 (FIG. 4A) can engage cartridge boss 126 (FIG. 4B) allowing exit or dispensing ports 127 to be in communication and within the floor of the flow conduit 140 with a cartridge adapted in the inhaler.


As illustrated in FIG. 3, housing 120 comprises the bottom portion of the inhaler body, which comprises a cartridge holder 115 in the shape of a cup, a securing mechanism to secure the inhaler in the closed position, such as snap 121, and an air inlet aperture 118 which communicates with the mouthpiece air conduit 140 at opening 155 in the mouthpiece floor without a cartridge in the holder 115 in the closed position of the inhaler. With a cartridge installed in the inhaler and in the closed position, inlet aperture 118 communicates with the cartridge inlet port 119 when the cartridge 150 is in the dosing configuration (see FIG. 7). In the closed position of the inhaler, the sled 117 is configured at its proximal end to correspond in shape to air inlet aperture 118 of housing 120 so that the air inlet is not obstructed in the closed position of the inhaler. In this embodiment, movement of mouthpiece 130 from a partially opened to a closed position is accomplished through a sliding motion in the X-Z plane, and movement of mouthpiece 130 from a partially open to a fully open configuration is angular rotating about the Z axis. To achieve full closure of the inhaler, mouthpiece 130 is moveable in the horizontal axis X and moves or slides distally relative to housing 120. In this manner, the translational movement of slide tray or sled 117 against the cartridge top 156 of cartridge 150 being held in the cartridge container 115 (see FIG. 4) moves and places the boss 126 over the cartridge container, so that cartridge container 151 is under dispensing ports 127 and in alignment over mouthpiece opening 155. This translational movement also configures the cartridge 150 to form an opening or an air inlet 119 into the container 151. A flow pathway is then established with air conduit 140 and inlet 118 through dispensing ports 127. Cartridge boss 126 is structurally configured to correspond and fit the opening 155 (FIG. 4A) in the waist section of the air conduit 140 of mouthpiece 130 so that it is within the internal wall of the air conduit 140.



FIGS. 4A-4C depict the perspective views of the dry powder inhaler of FIG. 1 showing the inhaler in the fully opened, cartridge loading/unloading position. FIG. 4A is a front view of the inhaler showing mouthpiece 130 comprising the top portion of the body of the inhaler; an aperture 155 relatively centrally located in the mouthpiece inner surface communicates with air conduit 140; an air inlet 110 and an air outlet 135 are in communication with the air conduit 140 of the inhaler 100. Housing 120 forms the bottom portion of the inhaler body and comprises a cartridge holder 115 and holds a slide tray or sled 117 which moves relative to the housing 120. A hinge 160 (FIG. 4A) formed by a snap and a rod engages the slide tray or sled 117 onto mouthpiece 130. FIG. 4B illustrates the inhaler of FIG. 4A and a cartridge 150 configured to be adaptable into inhaler 100. The inhaler is shown in the fully open position with a cartridge above the cartridge holder container 115 yet to be installed in the inhaler; housing 120 comprising an air aperture or inlet 118, slide tray or sled 117, which is engaged to mouthpiece 130 having aperture 155 and air inlet 110. Cartridge 150 comprises a medicament container 151 and a top 156 comprising a boss 126 with dispensing ports 127. The cartridge top 156 comprises a first area 154 which is recessed such that its bottom wall is in contact with container 151 top border and seals the container 151 in a containment position. While in this embodiment, first area 154 is recessed for ease of manufacturing, the first area 154 can have alternate designs as long as it forms an acceptable seal for containing a dry powder. A second area of cartridge top 156 contains boss 126 and this portion of the cartridge top is slightly raised and hollow in its undersurface so that when the cartridge container 151 is moved to a dispensing position, the top border of container 151 forms an opening or air inlet with cartridge top 156 to create a passageway through the cartridge inlet and the dispensing ports. FIG. 4B shows cartridge 150 in a containment position, which is the position in which the cartridge is closed and does not allow a flow path to be established through its interior compartment. As seen in the FIG. 4C, cartridge 150 is installed in inhaler 100 and the inhaler is in the opened configuration.



FIG. 5 also depicts the dry powder inhaler of FIG. 4C in a fully opened position, shown in mid-longitudinal section and containing cartridge 150 in the holder, wherein cartridge container 151 is in the containment position and fits into container holder 115. Cartridge top 156 and recessed area 154 are clearly depicted as forming a tight seal with the container 151. The area of the cartridge top 156 under the boss can be seen as concave-like in shape and raised when compared to the area 154.



FIG. 6 depicts the dry powder inhaler of FIG. 4A in a partially opened position in mid-longitudinal section and containing cartridge 150 with cartridge container 151 installed in cartridge holder 115. In this embodiment, cartridge container 151 is in a containment position; boss 126 snuggly fitting in aperture 155 of airflow conduit 140, which allows dispensing port 127 to be in fluid communication with air conduit 140. As seen in FIG. 6, sled or slide tray 117 abuts cartridge top 156, and the mouthpiece and slide tray 117 can move as a unit so that the cartridge top can move over container 151 upon closure of the device to attain the dispensing position. In the closed or dispensing position, the securing mechanism illustrated by snaps 121 (FIG. 3) maintain housing 120 and mouthpiece 130 securely engaged. In this embodiment, housing 120 can be disengaged from mouthpiece 130 by releasing the snaps and moving mouthpiece 130 over housing 120 in the opposite direction to attain a partially opened configuration which causes cartridge 150 to be reconfigured from the dosing position to the containment configuration.


Cartridge 150 can be movably configured from a containment position to a dosing position within the inhaler upon reconfiguration of the inhaler unit to a closed position as shown in FIG. 7. In the dosing position, cartridge container 151 is in alignment with boss 126, and air inlet port 119 is formed by cartridge container 151 and cartridge top 156, which is in communication with dispensing ports 127 establishing an air conduit through cartridge 150.



FIG. 7 further depicts a mid-longitudinal section of the dry powder inhaler of FIG. 1 in a closed position and ready for inhalation and containing cartridge 150 in holder 115, wherein the cartridge container 151 is in a dosing position. As seen in FIG. 7, cartridge boss 126 is structurally configured to fit in inhaler aperture 155 so that air flow exiting the cartridge through dispensing or exit ports 127 enters the flow path of air entering air conduit at 110. FIG. 7 also illustrates cartridge air inlet 119 formed by cartridge top 156 and cartridge container 151 in the dosing configuration and proximity of air inlet 119 to dispensing ports 127. In one embodiment, boss 126 with dispensing ports 127 are positioned at the narrowest section of air conduit 140 of mouthpiece 130.



FIG. 8 depicts a top view of the dry powder inhaler of FIG. 1 in a fully opened configuration and showing the inner compartment components of the inhaler. As seen in FIG. 8, mouthpiece 130 is moveably attached or articulated to housing 120 by hinge assembly 160, via slide tray or sled 117 which is engageably connected to mouthpiece 130 by hinge 160, 161 and to housing 120 interior. Sled 117 is movable in the horizontal plane of housing 120 and can be prevented from moving further in the direction of the mouthpiece by flanges 134, which protrude outwardly and can be stopped by recess 137 of the housing. Cartridge container holder 115 is integrally formed within the bottom wall of housing 120 which has aperture 118 which allows ambient air into the inhaler to supply airflow into the cartridge in a dosing position. Sled 117 is held within the housing by, for example, protrusions or flanges 133 extending from the side walls of the housing into its interior space.


In another embodiment, a dry powder inhaler is provided with a relatively cylindrical shape. FIG. 9 through FIG. 11B illustrate this embodiment, wherein the inhaler comprises a housing 220 integrally attached to mouthpiece 230, and a sled or slide tray 217. In FIGS. 9 and 10, sled 217 is depicted comprising outer shell 257 which is in telescopic arrangement and concentrically positioned and partially covering housing 220. Sled 217 further comprises a gripping mechanism such as ribs 225 on the outer surface of shell 257 for securely gripping inhaler sled 217 while sliding over housing 220 to open and close the device. Sled 217 further comprises groove 221 in its inner surface at its end facing the mouthpiece for engageably attaching with snap ring 224 segments of mouthpiece 230 for securing the inhaler in a closed configuration.


As seen in FIG. 11A, sled 217 also comprises cartridge holder 215 configured to receive cartridge 250. Cartridge holder 215 is integrally structured with outer shell 257 so that movement of outer shell 257 moves the cartridge holder while closing the inhaler. FIG. 11A also illustrates the positioning of cartridge 250 within the inhaler and wherein the cartridge can be seen as having top 256, boss 226, dispensing ports 227 and a container 251 in a containment position. In this embodiment, movement of sled 217 effectuates translation of cartridge container 251 to the dosing position in alignment with dispensing ports 227 and configuration of inlet port 219 as seen in FIG. 11B.


In this embodiment, housing 220 is tubular in shape and it is structurally configured to have air inlet 210 with one or more air conduits, for example, air conduits such as, air conduits 245, 246. Surface projections or ribs 225 from the outer surface of sled shell 257 allow for ease of gripping the inhaler device 200 in use. As seen in FIG. 9, the inhaler comprises mouthpiece portion 230 and housing 220, air inlet 210 and air outlet 235. As shown in FIG. 10, inhaler 200 can be configured to an open configuration wherein a user can load and/or unload a cartridge. By gripping ribs 222 and 225, sled outer shell 257 can be moved away from mouthpiece 230, and the cartridge holder can then be accessed. FIG. 10 shows inhaler 200 in an opened, cartridge loading/unloading position and depicting sled 217 fully retracted from mouthpiece 230 to allow access to the internal compartment to load or unload a cartridge. FIG. 10 also illustrates cartridge 250 installed in cartridge holder 215 of sled 217 and the mechanism such as outer shell 257 for actuating and opening the cartridge to the airflow path upon engagement of the sled outer shell 257 in snap ring 224 of the mouthpiece so that the device is in the closed, or inhalation position. Closing of the device is effectuated by translational movement of sled 217 over the housing 220 and engagement of sled 217 with mouthpiece 230 along horizontal axis X. As can be seen in FIG. 11B, the closing action of the sled 217 moves the cartridge 250 until the cartridge top 256 abuts mouthpiece recess surface 223, after which time continuous movement of sled 217 to a closed position causes the container 251 portion of cartridge 250 to be moved from a containment position to the opposite side of cartridge cover 256 so that dispensing ports 227 are aligned relatively over container or cup 251. An air inlet passage is then created between container 251 and the cartridge top 256 which air inlet is in communication with the interior of container 251 and exit or dispensing ports 227 of boss 226.



FIG. 11A is a perspective view of a mid-longitudinal section of the embodiment of FIG. 10 in an open configuration. FIG. 11B is a perspective view of a mid-longitudinal section of the embodiment of FIG. 10 in a closed, dosing configuration. As seen in FIGS. 11A and 11B, the inhaler comprises mouthpiece 230 having a frustoconical shape, air conduit 240 which is tapered to aperture 255 for engaging with cartridge boss 226 on cartridge top 256 of cartridge 250 in a closed position. Mouthpiece 230 also comprises air outlet 235. FIGS. 10 and 11 also show that housing 220 can be integrally attached to mouthpiece 230 and comprises a snap ring segments 224 for engaging sled 217 in the closed position. FIG. 11B shows inhaler 200 in the dosing configuration having airway conduit 240 in communication with cartridge 250 through dispensing port 227 and cartridge inlet 219. In the closed configuration, inhaler housing 220 protrudes beyond sled 217 and the cartridge container is translocated to a dosing position under boss 226.


In an alternate embodiment, there is provided a dry powder inhaler 300, comprising a mouthpiece, a sled or slide tray mechanism and a housing. In this embodiment illustrated in FIGS. 12 through 15, the inhaler is relatively rectangular in shape with the mouthpiece 330 comprising the top portion of inhaler body 305; an oral placement section 312; air inlet 310; air conduit 340 which extends from air inlet 310 to air outlet 335. FIG. 12 illustrates the inhaler in the closed position showing the various features of the outside of inhaler 300 including, air channel 311 which can direct air into inlet port 375. An area 325 for holding the inhaler is configured into inhaler body 305 for ease of use, and also serves as a surface to push or squeeze to release latches 380.



FIG. 13 illustrates a perspective view of the embodiment of FIG. 12 in an open configuration, or cartridge loading and unloading position. As illustrated in FIG. 13, mouthpiece 330 is engageably attached to housing 320 by a hinge attached to gear mechanism 360, 363. Mouthpiece 330 has an aperture 355 which is in fluid communication with air conduit 340; an air outlet 335 and flange 358 define a rectangular structure surrounding aperture 355. FIG. 13 also depicts housing 320 as comprising a cartridge holder 315; with a section of sled 317 showing through the cartridge container placement area, projections 353 for holding cartridge top 356 in place and snaps 380 for closing the body portion of the inhaler mouthpiece.



FIG. 14 illustrates a perspective view of the embodiment of FIG. 13 in an open configuration wherein a cartridge can be loaded or unloaded into the cartridge holder. FIG. 14 illustrates an inhaler comprising a mouthpiece 330 comprising the top portion of body 305 of the inhaler and having an aperture 355 relatively centrally located in the body and surrounded by flange 358; mouthpiece oral placement section 312 is configured to extend from the inhaler body and has an air outlet for placing in the oral cavity of a patient at dosing. The inhaler further comprises housing 320 which is engageably attached to mouthpiece 330 by a geared mechanism. In this embodiment, the geared mechanism is, for example, a rack and pinion 363 (see also FIG. 15A) which allows for an angular movement of the mouthpiece relative to the housing. Rack mechanism 363 is engaged to sled 317 to effectuate movement of container 351 of cartridge 350 to move slideably under the cartridge top and under the cartridge boss 326 when the inhaler is in the closed position. FIG. 14 also illustrates the position of cartridge 350 installed in holder 315 and showing the internal compartment parts, including boss 326 with dispensing ports 327; gear mechanism 360, 363 and snaps 380 which assist in maintaining the device in a closed configuration. As seen in FIG. 13, mouthpiece 330 forms the inhaler body top portion, and comprises an oral placement section 312 with air conduit 340 and air inlet 310 and air outlet 335.



FIG. 15A and FIG. 15B depicts the embodiment of FIG. 12 showing the dry powder inhaler in the closed/inhalation position as cross-sections through the longitudinal axis with a cartridge 350 in the dosing position inside the cartridge holder 315 of housing 320. FIG. 15A illustrates gear mechanism 362, 363 engageably connected to sled 317 for opening and closing the inhaler and which simultaneously will move a cartridge container to the dosing or dispensing position upon closing the device.



FIG. 15B depicts the embodiment of FIG. 12 and FIG. 14 showing the dry powder inhaler in the closed/inhalation position as a cross-section through the mid-longitudinal axis. As can be seen, cartridge 350 is in the dosing position, wherein boss 326 fits or engages with aperture 355 of air conduit 340 to allow flow from dispensing ports 327 to exit cartridge 350 and merge into the flow path in conduit 340. FIG. 14 also shows cartridge top 359 securely held in position by projections 353 in the cartridge placement area. FIGS. 15A and 15B show cartridge container 351 configured in the dosing position and having air inlet port 356 in close proximity to and in communication with dispensing ports 327. Sled 317 abuts the cartridge container to maintain it in place for inhalation. In this embodiment, air inlet port 375 leading to cartridge inlet 319 is configured to run beneath and parallel to air conduit 340. Movement of the cartridge in this embodiment is effectuated by the opening and closing of the mouthpiece 330 relative to the housing wherein the gear mechanism opens and closes the cartridge by translational movement of sled 317. As shown in FIG. 15B and in use, airflow enters the inhaler through air inlet 310 and simultaneously into air inlet 375 which enters cartridge 350 through air inlet 319. In one example embodiment, the internal volume extending from inlet port 310 to outlet port 335 is greater than about 0.2 cm3. In other example embodiments, the internal volume is about 0.3 cm3, or about 0.3 cm3, or about 0.4 cm3 or about 0.5 cm3. In another example embodiment, this internal volume of greater than 0.2 cm3 is the internal volume of the mouthpiece. A powder contained within cartridge container 351 is fluidized or entrained into the airflow entering the cartridge through tumbling of the powder content. The fluidized powder then gradually exits through dispensing port 327 and into the mouthpiece air conduit 340 and further deagglomerated and diluted with the airflow entering at air inlet 310, prior to exiting outlet port 335.



FIGS. 15C-15K depict an alternate embodiment 302 of inhaler 300 depicted in FIGS. 12-15B. The inhaler comprises housing 320, mouthpiece 330, a gear mechanism, and a sled and can be manufactured using, for example, four parts in a top down assembly manner. Mouthpiece 330 further comprises air conduit 340 configured to run along the longitudinal axis of the inhaler and having an oral placement portion 312, air inlet 310 and air outlet 335 configured to have its surface angular or beveled relative to the longitudinal axis of the air conduit, and cartridge port opening 355 which is in fluid communication with housing 320 and/or a cartridge installed in housing 320 for allowing airflow to enter air conduit 340 from the housing or from a cartridge installed in the inhaler in use. FIG. 15C illustrates inhaler 302 in isometric view in a closed position having a more slender body 305 than inhaler 300 formed by housing 320 and cover portion 308 of mouthpiece 330, which extends over and engages housing 320 by a locking mechanism 312, for example, a protrusion. FIGS. 15D, 15E, 15F, 15G, and 15H depict side, top, bottom, proximal and distal views, respectively, of the inhaler of FIG. 15C. As shown in the figures, inhaler 302 comprises mouthpiece 330 having an oral placement section 312, an extended portion configured as a cover 308 that can attach to housing 320 at at least one location as shown in FIG. 15J. Mouthpiece 330 can pivot to open from a proximal position from a user's hands in an angular direction by hinge mechanism 313. In this embodiment, inhaler 302 is configured also to have a gear mechanism 363 as illustrated in FIG. 15J. Gear mechanism 317 can be configured with the mouthpiece as part of the hinge mechanism to engage housing 320, which housing can also be configured to engage with sled 317. In this embodiment, sled 317 is configured with a rack which engages the gearwheel configured on the hinge mechanism. Hinge mechanism 363 allows movement of mouthpiece 330 to an open or cartridge loading configuration, and close configuration or position of inhaler 302 in an angular direction. Gear mechanism 363 in inhalers 300, 302 can actuate the sled to allow concurrent movement of sled 317 within housing 320 when the inhaler is effectuated to open and close by being integrally configured as part of gear mechanism 363. In use with a cartridge, the inhaler's gear mechanism 363 can reconfigure a cartridge by movement of sled 317 during closing of the inhaler, from a cartridge containment configuration after a cartridge is installed on the inhaler housing, to a dosing configuration when the inhaler is closed, or to a disposable configuration after a subject has effectuated dosing of a dry powder formulation. In the embodiment illustrated herein, the hinge and gear mechanism are provided at the distal end of the inhaler, however, other configurations can be provided so that the inhaler opens and closes to load or unload a cartridge as a clam.


In one embodiment, housing 320 comprises one or more component parts, for example, a top portion 316 and a bottom portion 318. The top and bottom portions are configured to adapt to one another in a tight seal, forming an enclosure which houses sled 317 and the hinge and/or gear mechanisms 363. Housing 320 is also configured to have one or more openings 309 to allow air flow into the interior of the housing, a locking mechanism 313, such as protrusions or snap rings to engage and secure mouthpiece cover portion 308 in the closed position of inhaler 302. Housing 320 is also configured to have a cartridge holder or cartridge mounting area 315 which is configured to correspond to the type of cartridge to be used with the inhaler. In this embodiment, the cartridge placement area or holder is an opening in the top portion of housing 320 which opening also allows the cartridge bottom portion or container to lie on sled 317 once a cartridge is installed in inhaler 302. The housing can further comprise grasping areas 304, 307 configured to aid a user of the inhaler to firmly or securely grip the inhaler to open it to load or unload a cartridge. Housing 320 can further comprise flanges configured to define an air channel or conduit, for example, two parallel flanges 303 which are also configured to direct air flow into the inhaler air inlet 310 and into a cartridge air inlet of the cartridge air conduit positioned in the inhaler. Flanges 310 are also configured to prevent a user from obstructing inlet port 310 of inhaler 302.



FIG. 15I depicts an isometric view of the inhaler of FIG. 15C in an open configuration with mouthpiece covering, for example, cap 342 and cartridge 170 which are configured to correspond to the cartridge mounting area and allow a cartridge to be installed in cartridge holder 315 for use. In one embodiment, reconfiguration of a cartridge from a containment position, as provided after manufacturing, can be effectuated once the cartridge is installed in cartridge holder 315, which is configured within housing 320 and to adapt to the inhaler so that the cartridge has the proper orientation in the inhaler and can only be inserted or installed in only one manner or orientation. For example, cartridge 170 can be configured with locking mechanism 301 that matches a locking mechanism configured in the inhaler housing, for example, the inhaler mounting area, or holder can comprise a beveled edge 301 which would correspond to a beveled edge 180 on the cartridge of, for example, cartridge 170 to be installed in the inhaler. In this embodiment, the beveled edges form the locking mechanism which prevents the cartridge from popping out of holder 315 during movement of sled 317. In one particular embodiment illustrated in FIGS. 15J and 15K, the cartridge lid is configured with the beveled edge so that it remains secure in the housing in use. FIGS. 15J and 15K also show rack mechanism 319 configured with sled 317 to effectuate movement of a cartridge container 175 of cartridge 170 slideably under the cartridge top to align the container under the cartridge top undersurface configured to have dispensing port in a closed dosing position or configuration of the inhaler when inhaler 302 is ready for dosing a user. In the dosing configuration, an air inlet port forms by the border of the cartridge top and the rim of the container, since the undersurface of the cartridge top is raised relative to the containment undersurface. In this configuration, an air conduit is defined through the cartridge by the air inlet, the internal volume of the cartridge which is exposed to ambient air and the openings in the cartridge top or dispensing port in the cartridge top, which air conduit is in fluid communication with air conduit 340 of the mouthpiece.


Inhaler 302 can further include a mouthpiece cap 342 to protect the oral placement portion of the mouthpiece. FIG. 15K depict the inhaler of FIG. 15C in cross-section through the mid-longitudinal axis with a cartridge installed in the cartridge holder and in an open configuration, and in the closed configuration FIG. 15K.



FIG. 15J illustrates the position of cartridge 350 installed in holder or mounting area 315 and showing the internal compartment parts, including boss 326 with dispensing ports 327; gear mechanism 360, 363 and snaps 380 which assist in maintaining the device in a closed configuration.


In yet another embodiment, dry powder inhaler 400 is disclosed having a relatively round body and comprising mouthpiece 430; cartridge holder section 415 and housing 420 as illustrated in FIGS. 16-18. FIG. 16 illustrates a perspective view of an alternate embodiment of the dry powder inhaler in the closed position, wherein mouthpiece 430 comprises the top portion of the body of the inhaler and housing 420 comprises the bottom portion of the inhaler in the dosing position. Mouthpiece 430 also comprises oral placement section 412 having air outlet port 435.



FIG. 17 illustrates the embodiment of FIG. 16 in an opened, loading/unloading configuration showing cartridge 450 seated in cartridge holder 415, showing top 456 of cartridge 450. In this embodiment, the mechanism for actuating movement of cartridge 450 from a containment position to an open configuration is, for example, a cam. Handle or lever 480 containing cartridge 450 can be moved by rotation of lever 480 to the closed position. In the closed position, cartridge 450 within the lever 480 is moved under oral placement portion 412 of mouthpiece 430.



FIG. 18 illustrates a mid-longitudinal section of the embodiment depicted in FIG. 16 in a closed, inhalation position having cartridge 450 installed in cartridge holder 415 in an open configuration. As seen in FIG. 18, in the cartridge dosing configuration, air inlet 459 is formed or defined by a gap between cartridge top 456 and container 451, which is in communication with dispensing ports 427 on boss 426. Dispensing ports 427 are in fluid communication with air conduit 440, thereby during an inhalation maneuver, airflow entering air conduit 440 from cartridge 450 exits the cartridge and combines with airflow in the air conduit entering air inlet 410 and a flow is swept in the direction of air outlet 435.



FIG. 19 through FIG. 28 illustrate two alternative embodiments of the dry powder inhaler. In these embodiments, the dry powder inhaler is structurally configured for single use as a unit dose inhaler and cartridge assembled together into a disposable, non-reusable unit. The inhalers in this embodiment are manufactured to contain the desired pre-metered, unit dose, drug formulation within the formed cartridge container. In this embodiments, the container is also capable of movement from a containment position to a dosing or dispensing configuration.



FIGS. 19-23 illustrate perspective views of an embodiment of a dry powder inhaler for single use. FIG. 19 shows the inhaler in a containment configuration. In this embodiment, inhaler 500 comprises a top surface 563 and a bottom or undersurface 562; a mouthpiece 530 and a mounted cartridge assembly or sled 590. Mouthpiece 530 has an elongated shape and it is structurally configured with an air inlet 510 and an air outlet port 535. An air conduit extends from air inlet 510 to air outlet 535 which creates a secondary pathway for airflow entering inhaler 500 during inhalation.



FIG. 20 illustrates a perspective view of the inhaler embodiment shown in FIG. 19, wherein the inhaler is in the dose configuration establishing a flow pathway through the interior of the cartridge and the dispensing ports wherein the inhaler is ready for use. FIG. 20 depicts mouthpiece 530 having an increasingly wider cross-sectional area of air conduit 540 from air inlet port 510 to air outlet port 535, being narrower at the inlet port end 510. Mouthpiece 530 also is structurally configured to have side extension or panels 532 integrally extending from the walls of mouthpiece conduit 540 which support sled 590. A space between the mouthpiece air conduit wall 540 and the panel is provided which allows the sled 590 to slide over mouthpiece 530. Sled 590 has a first bridge 567 spanning mouthpiece 530 on the top side, and has wings or flanges 565 which allow manual gripping or grasping of the sled 590 to configure the device from the containment to the dose position, and vice versa.



FIG. 21 illustrates a perspective view of the inhaler shown in FIG. 19 in mid-longitudinal section in a containment position. In FIG. 21, cartridge container 551 is integrally adapted to the mouthpiece 530 so that it is flushed and sealed against the surface of mouthpiece 530. Container 551 has wing-like structures that can be suspended and moveable on tracts configured on the bottom surface of the mouthpiece panels or extensions 532. The mouthpiece panels 532 are structurally configured so that movement of container 551 is contained within panels 532. FIG. 23 depicts undersurface 562 showing sled 590 configured to have a second bridge 568 on the bottom side of inhaler 500 which can be configured to be in contact with container 551 for translational movement from the containment position to the dispensing or dosing position. When sled 590 is moved towards inlet port 510, it carries container 551 translationally to an open position and for alignment with dispensing ports 527 located in the floor of mouthpiece conduit 540. In the dosing configuration an inlet port is defined by the container rim and the mouthpiece undersurface to allow the internal volume to be exposed to ambient air. The dosing configuration also defines an air conduit between the inlet port, the internal volume of the container and the dispensing ports to allow a flow to transit the container and deliver a powder dose contained therein. Full alignment of container 551 and dispensing ports 527 is achieved by moving the sled from the containment position to the dose position until the sled cannot move further in panel 532. FIG. 22 illustrates a perspective view of the inhaler shown in FIG. 20 in longitudinal section wherein the cartridge is in the open or dosing position. In this configuration, a primary air passage is established through the container as represented by inlet 556 and dispensing port 527 with the container's internal volume. A secondary flow passage is provided by mouthpiece conduit 540 from air inlet 510 to outlet 535 which is configured to provide a flow that impinges a flow exiting the dispensing ports to prove shear force and promote deagglomeration of powder particles as they exit the dispensing ports in use.



FIGS. 24-28 illustrate perspective views of yet another embodiment of a dry powder inhaler for single use. In this embodiment, the inhaler 600 has top surface 665 and bottom or undersurface 652 and comprises mouthpiece 630 and container 651. FIG. 24 shows the container 651 component in a containment configuration. In this embodiment, inhaler 600 comprises mouthpiece 630 and mounted container 651 attached and moveable relative to mouthpiece 630. Mouthpiece 630 has an elongated shape and it is structurally configured with air inlet 610 and air outlet port 635. An air conduit 640 extends from air inlet 610 to air outlet 635 which is configured to create an additional or secondary pathway for airflow entering inhaler 600 during inhalation. FIG. 28 shows mouthpiece 630 undersurface 652 which is configured with parallel side panels 612 at each side of the inhaler, configured to have projections or wings 653 for holding or securely gripping inhaler 600. Panels 612 are configured on their bottom ends with, for example, a flange to form a track for adapting and supporting side wings 666 on the cartridge container. FIG. 26 shows undersurface 652 of mouthpiece 630 configured to hold the cartridge container in a sealed or containment position, and in this area, undersurface 652 is flushed against the top of cartridge container 651. Mouthpiece undersurface 615 is configured to have a concave-like or hollow form so that when the container 651 is moved to the inhalation or dosing position, air inlet 656 is created by the container wall and the mouthpiece undersurface. An air flow pathway is then established between inlet 656 and dispensing port 627.



FIG. 25 illustrates a perspective view of the inhaler shown in FIG. 24 wherein the cartridge component is in the open configuration which allows air to flow through the interior of the cartridge. FIG. 26 illustrates a perspective view of the inhaler shown in FIG. 24 in mid-longitudinal section wherein container 651 is in the containment position. FIG. 27 illustrates a perspective view of the inhaler shown in FIG. 25 in mid-longitudinal section wherein the cartridge is in the open or dosing position. In a dosing configuration, container inlet port 656 forms an air conduit with dispensing port 627 which is in communication with mouthpiece air conduit 640. Container 651 is supported by container wings 666 through parallel tracks and the undersurface of the device.


Perspective views of an alternate embodiment of the dry powder inhaler are illustrated in FIGS. 29-34. In this embodiment, the inhaler can be in a closed-containment configuration and in a closed-dosing configuration. The figures depict the inhaler with or without a cartridge, and depicting its relatively circular, disk-like body formed by a portion of mouthpiece 730 and housing 720, and having top and bottom surfaces. Mouthpiece 730 has an inlet port 710 and outlet port 735, and opening 755 in its undersurface. Mouthpiece 730 is configured to define the top portion 731 of the inhaler body and is movably attached by a hinge 760, which allows the inhaler to be opened from a containment position in an angular motion to load and unload a cartridge. Mouthpiece 730 can also be rotatably movable relative to housing 720 from a containment position to a closed, dosing positing of the inhaler through and angle of about 180°. FIG. 30A also illustrates a medicament cartridge 780 for use with this inhaler which is also depicted in FIGS. 40 through 44 and comprises a top or lid 756 and container 751 configured to fit in holder 715 within housing 720. Housing 720 comprises cartridge holder 715 and is configured to define the bottom portion of the inhaler body. FIGS. 30A, 30B and 31 show the inhaler in a containment configuration wherein mouthpiece 730 and the housing 720 are can allow a cartridge to be loaded. When a medicament cartridge is installed in holder 715 as illustrated in FIGS. 30B, 31, 32 and 34 mouthpiece 730 has an engagement mechanism with the housing such as a snap ring and can rotate relative to housing 720. FIG. 30A additionally shows that mouthpiece 730 can engage with an intermediate structure or rotator 717 which is configured to adapt to the housing 720 by a ring and groove mechanism and is configured to hold a cartridge. As shown in FIG. 32, mouthpiece 730 also engages cartridge top 756 defining an air conduit between the cartridge top and mouthpiece air conduit 740, wherein movement of mouthpiece 730 and cartridge top 756 move together relative to housing 720 to position cartridge boss 726 over container 751, aligning dispensing ports 727 over container 751 and holder 715. An inlet port 719 is defined by the cartridge top 756 over container 751 to allow air entry into the cartridge 780 and through the dispensing ports 727 in a dosing configuration. FIGS. 33 and 34 illustrate the inhaler in a closed-dosing configuration wherein rotation of the inhaler over cartridge container 751 also defines an air flow communication between an inhaler inlet port 710 of the inhaler body located over hinge 760 and the interior of the inhaler body with the cartridge inlet 719 which places the inhaler in a closed-dosing configuration. A portion of air flow entering the inhaler body through inlet port 710 enters the cartridge inlet 719 and exits through dispensing ports 727 into mouthpiece aperture 755 which then meets bypass air that enters the mouthpiece conduit 740 before reaching outlet port 735 and into a user. In this embodiment, the inhaler is configured to have a registration structure at predetermined sites to indicate the dosing position and the containment position once they are reached during rotational movement of the mouthpiece. As with other embodiments herein, a portion of the flow in use diverges and remains circulating in the internal volume of the container to promote entrainment and lifting of a powder medicament in the container and promote deagglomeration of the powder to form small masses of the powder that can exit through the dispensing ports.


Cartridge embodiments for use with the inhalers are describe above, such as cartridges 150, 170, 780, and 800 illustrated, respectively, in FIGS. 4B and 35; FIGS. 15I and 39A; FIG. 40 and FIG. 45. The present cartridges are configured to contain a dry powder medicament in a storage, tightly sealed or contained position and can be reconfigured within an inhaler from a powder containment position to an inhalation or dosing configuration. In certain embodiments, the cartridge comprises a lid or top and a container having one or more apertures, a containment configuration and dosing configuration, an outer surface, an inner surface defining an internal volume; and the containment configuration restricts communication to the internal volume and the dispensing configuration forms an air passage through said internal volume to allow an air flow to enter and exit the internal volume in a predetermined manner. For example, the cartridge container can be configured so that an airflow entering the cartridge air inlet is directed across the air outlets within the internal volume to meter the medicament leaving the cartridge so that rate of discharge of a powder is controlled; and wherein airflow in the cartridge can tumble substantially perpendicular to the air outlet flow direction, mix and fluidize a powder in the internal volume prior to exiting through dispensing apertures.



FIG. 35-38B further illustrate cartridge 150 comprising top or lid 156 and container 151 defining an interior space or volume. FIG. 36 exemplifies the cartridge top 156 having opposing ends and comprising recess area 154 and boss 126 at opposing ends of a longitudinal axis X, and relatively rectangular set of panels 152 along the sides and in the longitudinal axis X, which are integrally configured and attached to top 156 at their ends. The border 158 of cartridge top 156 extends downwardly and is continuous with panels 152. Panels 152 extend downwardly from either side of top 156 in the longitudinal axis X and are separated from the area of boss 126 and recess area 154 by a longitudinal space or slit 157. FIGS. 35-37 also show each panel 152 further comprising a flange 153 structurally configured to engage with projections or wings 166 of container 151, support container 151 and allow container 151 to be movable from a containment position under recess area 154 to a dosing position under area of boss 126. Panels 152 are structurally configured with a stop 132 at each end to prevent container 151 from moving beyond their end where they are attached to border 158. In this embodiment, container 151 or lid 156 can be movable, for example, by translational movement upon top 156, or top 156 can be movable relative to the container 151. In one embodiment, container 151 can be movable by sliding on flanges 153 on lid 156 when lid or top 156 is stationary, or lid 156 can be movable by sliding on a stationary container 151 depending on the inhaler configuration. Border 158 near the boss 126 has a recess area which forms part of the perimeter of inlet port 119 in the dosing configuration of the cartridge.



FIG. 37 illustrates a bottom view of cartridge 150 showing the relationship of the structures in a containment configuration, such as container 151, dispensing ports 127, panels 152, flanges 153 and area under the boss 126 or undersurface 168 which is relatively hollow or recessed. FIG. 38A illustrates a cross-section through the mid-longitudinal axis X of cartridge 150 in a containment configuration and showing container 151 in tight contact with lid 156 at recess area 154 and supported by flanges 153. The undersurface of the boss 126 is hollow and can be seen relatively at a higher position than the top border of container 151. FIG. 38B illustrates cartridge 150 in a dosing configuration wherein the upper border of container 151 and panel 158 under the area of boss 126 form an inlet port 119 which allows flow entry into the interior of cartridge 151.


In another embodiment, a translational cartridge 170 is illustrated in FIGS. 39A-39I, which is an alternate embodiment of cartridge 150 and can be used with, for example, inhaler 302 depicted in FIGS. 15C-15L. FIG. 39A depicts cartridge 170 comprising an enclosure comprising a top or lid 172 and a container 175 defining an interior space, wherein the cartridge is shown in a containment configuration. In this cartridge configuration, the cartridge top 172 is configured to form a seal with container 175 and container or lid is movable relative to one another. Cartridge 170 can be configured from a containment position (FIGS. 39A and 39H) to a dosing position (FIGS. 39C-39G and 39I) and to a disposable position (not shown), for example, in the middle of the cartridge, to indicate that the cartridge has been used. FIG. 39A also illustrates the various features of cartridge 170, wherein top 172 comprises side panels 171 configured to partially cover the exterior of the container. Each side panel 172 comprises a flange 177 at its lower edge which forms a track to support wing-like structures of container 175, which allows movement of container 175 along the lower border of top 172. The cartridge top 172 further comprises an exterior relatively flat surface at one end, a relatively rectangular boss 174 having an opening or dispensing port 173, and a concave or recess area configured internally to maintain the contents of container 175 in a tight seal. In one embodiment, the dispensing port can be configured to have various sizes, for example, the width and length of the opening can be from about 0.025 cm to about 0.25 cm in width and from about 0.125 cm to about 0.65 cm in length at its entry within the interior of the cartridge. In one embodiment, the dispensing port entry measures approximately 0.06 cm in width to 0.3 cm in length. In certain embodiments, cartridge top 172 can comprise various shapes which can include grasping surfaces, for example, tabs 176, 179 and other configurations to orient the cartridge in the right orientation for proper placement in the holder, and a securing mechanism, for example, a chamfered or beveled edge 180 to adapt securely to a corresponding inhaler. The flanges, external geometry of the boss, tabs, and various other shapes can constitute keying surfaces that can indicate, facilitate, and/or necessitate proper placement of the cartridge in the inhaler. Additionally, these structures can be varied from one inhaler-cartridge pairing system to another in order to correlate a particular medicament or dosage provided by the cartridge with a particular inhaler. In such manner, a cartridge intended for an inhaler associated with a first medicament or dosage can be prevented from being placed into or operated with a similar inhaler associated with a second medicament or dosage.



FIG. 39B is a top view of exemplifying the general shape of a cartridge top 172 with boss 174, dispensing port 173, recess area 178 and tabs 176 and 179. FIG. 39C is a bottom view of cartridge 170 showing container 175 in a containment position being supported by its wing-like projections 182 by each flange 177 from top 172. FIG. 39D depicts cartridge 170 in a dosing configuration further comprising an air inlet 181 formed by a notch on the cartridge top 172 and the container 175 upper border. In this configuration, air inlet 181 is in communication with the interior of the cartridge and forms and air conduit with dispensing port 173. In use, the cartridge air inlet 181 is configured to direct airflow entering the cartridge interior at the dispensing port 173.



FIG. 39F illustrates a side view of cartridge 150, showing the relationship of the structures in a dosing configuration, such as container 175, boss 174, side panels 172, and tab 176. FIG. 39G illustrates a cartridge 170 in a dosing configuration for use and comprising a container 175 and a top 172 having a relatively rectangular air inlet 181 and a relatively rectangular dispensing port 173 piercing through a boss 174 which is relatively centrally located on the cartridge top 172 upper surface. Boss 174 is configured to fit into an aperture within a wall of a mouthpiece of an inhaler. FIGS. 39H and 39I illustrate cross-sections through the mid-longitudinal axis X of cartridge 170 in a containment configuration and dosing configuration, respectively, showing container 175 in contact with the lid 172 undersurface of the recess area 178 and supported by flanges 177 which form tracks for the container to slide from one position to another. As shown in FIG. 39H, in the containment configuration, container 175 forms a seal with the undersurface of the cartridge top 172 at recess area 178. FIG. 39I depicts the cartridge 170 in the dosing configuration wherein the container is at opposing end of the recess area 181 and the container 175 and cartridge top form an air inlet 181 which allows ambient air to enter cartridge 170 as well as to form an air conduit with dispensing port 173 and the interior of container 175. In this embodiment, the cartridge top undersurface wherein the dosing position is attained is relatively flat and container 175 interior surface is configured to have somewhat of a U-shape. The boss 174 is configured to slightly protrude above the top surface of cartridge top 172.


In another embodiment of the cartridge, cartridge 780 is described above with reference to FIG. 30A and herewith illustrated in FIGS. 40-44. Cartridge 780 can be adapted to the dry powder inhalers disclosed herewith and is particularly suitable for use with an inhaler with a rotatable mechanism for moving the inhaler from a containment configuration to a dosing position, wherein the cartridge top is movable relative to the container, or for moving the container relative to the top in achieving alignment of the dispensing ports with the container to a dosing position, or moving either the container or the top to the containment configuration.


As described above, FIG. 40-44 further illustrate perspective views of cartridge 780 embodiment for use with, for example, the inhaler of FIG. 29, and show a cartridge in a containment configuration comprising a cartridge top or lid 756 and container 751 integrally attached to one another. Container 751 and top 756 are movable relative to one another in a rotating motion from a containment position to a dosing or inhalation position and back. Cartridge top 756 is relatively circular in form and also comprises a recessed area 754 and a raised area or boss 726 having dispensing ports 727 and a circular panel 752 extending downwardly to enclose and attach to container 751 and defining an interior space. Top 756 also has a raised top border or top edge 759 configured to adapt with an inhaler and a groove in the inside surface of panel 752 for engaging with container 751.



FIG. 41 illustrates an exploded view of the cartridge embodiment of FIG. 40, showing container 751 defining a chamber 757 for containing a medicament which is continuous with a relatively circular, top portion 747 of wider diameter to said chamber and configured to have an engaging mechanism to engage and move relative to cartridge top 756. FIG. 42 shows, for example, that upper border 758 of the container can have a circular configuration, for example, a snap ring for engaging with groove 761 of panel 752 to form cartridge 780. FIG. 42 also illustrates a perspective view of the cartridge embodiment of FIG. 40 in cross-section through the perpendicular axis and in the containment configuration, showing recess area 754 sealing container 751 and undersurface 767 of boss 726 being hollow. When recessed area 754 is over container chamber or internal volume 757, the cartridge is in a containment configuration as illustrated in FIG. 42.



FIG. 43 illustrates a perspective view of a cartridge embodiment of FIG. 40 in a dosing configuration, wherein the chamber 757 of container 751 is directly under the boss 726 and the cartridge is configured to have an inlet port 719 in communication with dispensing ports 727. FIG. 44 illustrates a perspective view of this embodiment in cross-section and in a dosing configuration to show the air inlet 719 and the position of the container and boss 726 with dispensing ports 727. In this embodiment, recess area 754 of lid 756 and area 747 of container form a tight abutment or seal on each other.


The air inlet port of a cartridge for use with the present inhalers can be configured at any point on the cartridge so that a powder medicament within the container can remain in a containment position prior to inhalation. For example, FIGS. 45, 46A, 46B, 47A and 47B illustrate two alternate embodiments of a cartridge for use with the dry powders inhaler, comprising a lid or top 856, a container 851 structurally configured as in FIG. 35-39 above. In this embodiment, however, air inlet 819 into the cartridge interior can be incorporated within the cartridge top or lid 851 along with one or more dispensing ports 827. In this embodiment, the cartridge comprises a container 851 and a lid or top 856. Lid or top 856 can be provided with a groove in its interior surface to engage with the upper border of the container 851 as locking mechanism. The cartridge can also be provided with a seal 860 to contain a powder medicament within the cartridge and can be made from, for example, plastic film or laminated foil. Seal 860 can be made to contain a single cartridge for single dose use or multiple, single dose cartridges on a strip. Lid 856 contains at least two ports which at least one works as an air inlet and another as a dispensing port. FIGS. 46A and 46B illustrate the embodiment of the cartridge in FIG. 45 comprising a container 851 which can be adapted to a lid 856 wherein the relatively square lid has an inlet port 819 relative round and two outlet ports 827 and a side panel 852 configured to have a groove to adapt to container 851, wherein container 851 is relatively shaped as a cup and has a protrusion on his upper border for engaging lid 856. FIG. 46B illustrates a perspective view of a cartridge embodiment of FIG. 45 in a cross-section and dosing configuration. In this embodiment, the cartridge top air inlet can have various configurations. For example, FIGS. 47A and 47B illustrate and alternate embodiment of cartridge 800, in which the cartridge top 856 is relatively semicircular and flat in shape having an air inlet port rectangular in shape. In this embodiment, the container and cartridge top can be manufactured from a thermoform material, for example, polyethylene pterephthalate, stock to facilitate production.


In embodiments described herein, cartridges can be configured to deliver a single unit, pre-metered dose of a dry powder medicament. Cartridges such as cartridge 150, 170, 780 and 800 can be structurally configured to contain a dose of, for example, from 0.1 mg to about 50 mg of a dry powder formulation. Thus the size and shape of the container can vary depending on the size of the inhaler and the amount or mass of powder medicament to be delivered. For example, the container can have a relatively cylindrical shape with two opposing sides relatively flat and having an approximate distance between of from about 0.4 cm to about 2.0 cm. To optimize the inhaler performance, the height of the inside of the cartridge along the Y axis may vary depending on the amount of powder that is intended to be contained within the chamber. For example, a fill of 5 mg to 15 mg of powder may optimally require a height of from about 0.6 cm to about 1.2 cm.


In an embodiment, a medicament cartridge for a dry powder inhaler is inhaler is provided, comprising: an enclosure configured to hold a medicament; at least one inlet port to allow flow into the enclosure, and at least one dispensing port to allow flow out of the enclosure; the at least one inlet port is configured to direct at least a portion of the flow entering the at least one inlet port at the at least one dispensing port within the enclosure in response to a pressure differential. In one embodiment, the inhaler cartridge is formed from a high density polyethylene plastic. The cartridge has a container which has an internal surface defining an internal volume and comprising a bottom and side walls contiguous with one another, and having one or more openings. The can have a cup-like structure and has one opening with a rim and it is formed by a cartridge top and a container bottom which are configurable to define one or more inlet ports and one or more dispensing ports. The cartridge top and container bottom are configurable to a containment position, and a dispensing or dosing position.


In embodiments described herein, the dry powder inhaler and cartridge form an inhalation system which can be structurally configured to effectuate a tunable or modular airflow resistance, as it can be effectuated by varying the cross-sectional area at any section of the airflow conduits of the system. In one embodiment, the dry powder inhaler system can have an airflow resistance value of from about 0.065 to about 0.200 (√kPa)/liter per minute. In other embodiments, a check valve may be employed to prevent air flow through the inhaler until a desired pressure drop, such as 4 kPa has been achieved, at which point the desired resistance reaches a value within the range given herewith.



FIGS. 48-54 illustrate yet another embodiment of the dry powder inhaler. FIG. 48 depicts an inhaler 900 in an open configuration which is structurally configured similarly as inhaler 300 shown in FIGS. 12-15B. Inhaler 900 comprises mouthpiece 930 and housing subassembly 920 which are attached to one another by a hinge so that mouthpiece 930 pivots relative to the housing subassembly 920. Mouthpiece 930 further comprises integrally formed side panels 932 wider than housing 920, which engage with housing protrusions 905 to attain the closed configuration of inhaler 900. Mouthpiece 930 further comprises air inlet 910, air outlet 935; air flow conduit 940 extending from air inlet 910 to air outlet 935 for contacting a user's lips or mouth, and aperture 955 on the floor or bottom surface which communicates with airflow conduit 940 of the inhaler. FIG. 49 illustrates inhaler 900 in an exploded view, showing the component parts of the inhaler, including the mouthpiece 930 and housing subassembly 920. As depicted in FIG. 49, the mouthpiece is configured as a single component and further comprises a bar, cylinder or tube 911 configured with teeth or gear 913 for articulating with housing 920 so that movement of mouthpiece 930 relative to housing 920 in an angular direction attains closure of the device. An air channel 912 can be provided to the housing which can direct an air flow towards mouthpiece air inlet 910. Air channel 912 is configured so that in use, a user's finger placed over the channel cannot limit or obstruct airflow into air conduit 940.



FIG. 48 illustrates the housing subassembly 920 comprising a cartridge placement or mounting area 908 and a notch 918 which is configured to define an air inlet when the inhaler is in a closed configuration. FIG. 49 illustrates housing 920 as an enclosure, further comprising two component parts for ease of manufacturing, although less or more parts can be used, including a tray 922, and a cover 925. Tray 922 is configured with notches 914 configured near its distal end which houses bar, cylinder or tube 911 in forming a hinge with mouthpiece 930. Tray 922 also houses sled 917. Sled 917 is configured to be movable within tray 922 and has a cartridge receiving area 921 and an arm-like structure having openings 915 for engaging the teeth or gear 913 of mouthpiece 930 so that in closing the device for use, movement of mouthpiece 930 relative to housing 920 moves the sled in a proximal direction, which results in the sled abutting a cartridge container seated on inhaler holder or mounting area 908 and translocates the container from a containment position to a dosing position. In this embodiment, a cartridge seated in the cartridge holder 908 has the air inlet opening in a dosing configuration facing towards the proximal end of the inhaler or the user. Housing cover 925 is configured so that it can securely attach to tray 922 by having, for example, protrusions 926 extending from the bottom border as a securing mechanism. FIG. 50 illustrates inhaler 900 in the open configuration depicting the position and orientation of a cartridge 150 in a containment configuration for mounting on the inhaler. FIG. 51 further illustrates inhaler 900 in the open configuration with cartridge 150 seated in the cartridge holder in the containment configuration. FIG. 52 illustrates a mid-longitudinal section of the inhaler in FIG. 51 showing the position of the gear 913 relative to sled 917 in the containment configuration of the cartridge container 151, which abuts sled 917. In this embodiment, container 151 moves relative to cartridge top 156. Upon closing inhaler 900 (FIG. 53) and as mouthpiece 930 moves to attain a closed configuration, sled 917 pushes container 151 until the dosing configuration is attained and mouthpiece aperture 955 slides over cartridge boss 126 so that dispensing ports 127 are in communication with the mouthpiece conduit 940 and an air flow pathway is established for dosing through air inlet aperture 918, cartridge air inlet 919 and dispensing ports 127 in air conduit 940. As seen in FIG. 54, mouthpiece 930 and therefore, air conduit 940 have a relatively tapered, hour-glass shape configuration at approximately mid to distal end. In this embodiment, sled 917 is configured so that when the inhaler is open after use, the sled cannot reconfigure a cartridge to the containment configuration. In some variations of this embodiment, it may be possible or desirable to reconfigure the cartridge.


In embodiments disclosed herein, inhaler apertures, for example, 155, 255, 355, 955 can be provided with a seal, for example, crushed ribs, conformable surfaces, gaskets, and o-rings to prevent air flow leakage into the system so that the airflow only travels through the cartridge. In other embodiment, to effectuate the seal, the seal can be provided to the cartridge. The inhalers are also provided with one or more zones of deagglomeration, which are configured to minimize build-up of powder or deposition. Deagglomeration zones are provided, for example, in the cartridge, including, in the container and the dispensing ports, and at one or more locations in the air conduit of the mouthpiece.


In the embodiments disclosed herein, the dry powder inhaler system is configured to have a predetermined flow balance distribution in use, having a first flow pathway through the cartridge and second flow pathway through, for example, the mouthpiece air conduit. FIG. 55 and FIG. 56 depict a schematic representation of air conduits established by the cartridge and inhaler structural configurations which direct the balance of flow distribution. FIG. 55 depicts the general direction of flow within a cartridge in the dispensing or dosing position of a dry powder inhaler as shown by the arrows. FIG. 56 illustrates the movement of flow of an embodiment of a dry powder inhaler showing the flow pathways of the inhaler in the dosing position as indicated by the arrows.


The balance of mass flow within an inhaler is approximately 10% to 70% of the volume going through the cartridge flow pathway, and about 30% to 90% through the beginning portion of the mouthpiece conduit. In this embodiment, the airflow distribution through the cartridge mixes the medicament in a tumbling manner to fluidize or aerosolize the dry powder medicament in the cartridge container. Airflow fluidizing the powder within the container then lifts the powder and gradually letting it exit the cartridge container through the dispensing ports, then shear from the airflow entering the mouthpiece conduit converges with the airflow containing medicament emanating from the cartridge container. Predetermined or metered exiting airflow from the cartridge converge with bypass airflow entering the air conduit of the mouthpiece to further dilute and deagglomerate the powder medicament prior to exiting the mouthpiece outlet port and entering the patient.


In yet another embodiment, an inhalation system for delivering a dry powder formulation to a patient is provided, comprising an inhaler comprising a container mounting area configured to receive a container, and a mouthpiece having at least two inlet apertures and at least one exit aperture; wherein one inlet aperture of the at least two inlet apertures is in fluid communication with the container area, and one of the at least two inlet apertures is in fluid communication with the at least one exit aperture via a flow path configured to bypass the container area to deliver the dry powder formulation to the patient; wherein the flow conduit configured to bypass the container area delivers 30% to 90% of the total flow going through the inhaler during an inhalation.


In another embodiment, an inhalation system for delivering a dry powder formulation to a patient is also provided, comprising a dry powder inhaler comprising a container region and a container; said dry powder inhaler and container combined are configured to have rigid flow conduits in a dosing configuration and a plurality of structural regions that provide a mechanism for powder deagglomeration of the inhalation system in use; wherein at least one of the plurality of mechanisms for deagglomeration is an agglomerate size exclusion aperture in the container region having a smallest dimension between 0.5 mm and 3 mm.


In an alternate embodiment, an inhalation system for delivering a dry powder formulation to a patient is provided, comprising a dry powder inhaler comprising a mouthpiece and a container; said dry powder inhaler and container combined are configured to have rigid flow conduits in a dosing configuration and a plurality of structural regions that provide a mechanism for powder deagglomeration of the inhalation system in use; wherein at least one of the plurality of mechanisms for deagglomeration is an air conduit configured in the mouthpiece which directs flow at an exit aperture in fluid communication with the container. In particular embodiments, the inhalation system of includes a container further comprising a mechanisms for cohesive powder deagglomeration which comprises a cup-like structure configured to guide a flow entering the container to rotate, re-circulating in the internal volume of the cup-like structure and lifting up a powder medicament so as to entrain the powder agglomerates in the flow until the powder mass is small enough prior to exiting the container. In this embodiment, the cup-like structure has one or more radii configured to prevent flow stagnation.


In embodiments describe herein, the cartridge is structurally configured having the inlet opening in close proximity to the dispensing ports in a horizontal and vertical axis. For example, the proximity of the inlet to the dispensing ports can be immediately next to the air inlet to about within one cartridge width, although this relationship can vary depending on the flow rate, the physical and chemical properties of the powder. Because of this proximity, flow from the inlet crosses the opening to the dispensing ports within the cartridge creating a flow configuration that inhibits fluidized powder or powder entrained within the airflow, from exiting the cartridge. In this manner, during an inhalation maneuver, flow entering the cartridge container can effectuate tumbling of the dry powder formulation in the cartridge container, and fluidized powder approaching the exit or dispensing ports of a cartridge can be impeded by flow entering the inlet port of the cartridge, thereby, flow within the cartridge can be restricted from exiting the cartridge container. Due to differences in inertia, density, velocity, charge interaction, position of the flow, only certain particles can navigate the path needed to exit the dispensing ports. Particles that do not pass through the exit port must continue to tumble until they possess the proper mass, charge, velocity or position. This mechanism, in effect, can meter the amount of medicament leaving the cartridge and can contribute to deagglomeration of powder. To further help meter the exiting fluidized powder, the size and number of dispensing ports can be varied. In one embodiment, two dispensing ports are used, configured to be circular in shape, each 0.10 cm in diameter and positioned near the inlet aperture about middle center line of the container to about 0.2 cm from the centerline towards the air inlet port. Other embodiments can, for example, have dispensing ports of various shapes including rectangular wherein the cross-sectional area of the one or more dispensing ports ranges from 0.05 cm2 to about 0.25 cm2. In some embodiments, the sizes ranging of the dispensing ports can be from about 0.05 cm to about 0.25 cm in diameter. Other shapes and cross-sectional areas can be employed as long as they are similar in cross-sectional area to the values given herewith. Alternatively, for more cohesive powders larger cross sectional area of the dispensing port can be provided. In certain embodiments, the cross sectional area of the dispensing port can be increased depending on the size of the agglomerates relative to the minimum opening dimension of the port or ports so that the length relative to the width of the port remains large. In one embodiment, the intake aperture is wider in dimension than the width of the dispensing port or ports. In embodiments wherein the intake aperture is rectangular, the air inlet aperture comprises a width ranging from about 0.2 cm to about the maximal width of the cartridge. In one embodiment the height is about 0.15 cm, and width of about 0.40 cm. In alternate embodiments, the container can have a height of from about 0.05 cm to about 0.40 cm. In particular embodiments, the container can be from about 0.4 cm to about 1.2 cm in width, and from about 0.6 cm to about 1.2 cm in height. In an embodiment, the container comprise one or more dispensing ports having and each of the ports can have a diameter between 0.012 cm to about 0.25 cm.


In particular inhalation systems, a cartridge for a dry powder inhaler, comprising a cartridge top and a container is provided, wherein the cartridge top configured relatively flat and having one or more openings and one or more flanges having tracks configured to engage the container; said container having an inner surface defining an internal volume and is moveably attached to the tracks on the one or more flanges on the cartridge top and configurable to attain a containment position and a dispensing or dosing position by moving along the tracks of the one or more flanges.


In another embodiment, the inhalation system comprises an enclosure having one or more exit ports configured to exclude a powder mass of a dry powder composition having a smallest dimension greater than 0.5 millimeters and less than 3 mm. In one embodiment, a cartridge for a dry powder inhaler, comprising an enclosure having two or more rigid parts; the cartridge having one or more inlet ports and one or more dispensing ports, wherein one or more inlet ports have a total cross-sectional area which is larger than the total cross-sectional area of the dispensing ports, including wherein the total cross-sectional area of one or more dispensing ports ranges from 0.05 cm2 to about 0.25 cm2.


In one embodiment, a method for deagglomerating and dispersing a dry powder formulation for inhalation, comprising the steps of: generating an airflow in a dry powder inhaler comprising a mouthpiece and a container having at least one inlet port and at least one dispensing port and containing a dry powder formulation; said container forming an air conduit between the at least one inlet port and the at least one dispensing port and said inlet port directs a portion of the airflow entering said container to the at least one dispensing port; allowing airflow to tumble powder within the container so as to lift and mix the dry powder medicament in the container to form an airflow medicament mixture; and accelerating the airflow exiting the container through the at least one dispensing port. In this embodiment, the powder medicament that passes through the dispensing ports can immediately accelerate due to reduction in cross-sectional area of the exit ports relative to the inlet port. This change in velocity may further deagglomerate the fluidized and aerosolized powder medicament during inhalation. Additionally, because of the inertia of the particles or groups of particles in the fluidized medicament, the velocity of the particles leaving the dispensing ports is not the same. The faster moving air flow in the mouthpiece conduit imparts a drag or shear force on each particle or group of particles of the slower moving fluidized powder leaving the exit or dispensing port or ports, which can further deagglomerate the medicament.


The powder medicament that passes through the dispensing port or ports immediately accelerates due to reduction in cross-sectional area of the exit or dispensing ports relative to the container, which are designed to be narrower in cross-sectional area than the air inlet of the container. This change in velocity may further deagglomerate the fluidized powder medicament. Additionally, because of the inertia of the particles or groups of particles in the fluidized medicament, the velocity of the particles leaving the dispensing ports and the velocity of the flow passing the dispensing ports is not the same.


In embodiments described herein, powder exiting the dispensing ports can further accelerate, for example, by an imparted change in direction and/or velocity of the fluidized medicament. Directional change of fluidized powder leaving the dispensing port and entering the mouthpiece conduit can occur at an angle of approximately 0° to about 180°, for example approximately 90°, to the axis of the dispensing port. Change in flow velocity and direction may further deagglomerate the fluidized powder through the air conduits. The change in direction can be accomplished through geometric configuration changes of the air flow conduit and/or by impeding the air flow exiting the dispensing ports with a secondary air flow entering the mouthpiece inlet. The fluidized powder in the mouthpiece conduit expands and decelerates as it enters the oral placement portion of the mouthpiece prior to exiting due to a cross-sectional area increase in the conduit. Gas trapped within agglomerates also expands and may help to break apart the individual particles. This is a further deagglomeration mechanism of the embodiments described herein. Airflow containing medicament can enter the patient's oral cavity and be delivered effectively, for example, into the pulmonary circulation.


Each of the deagglomeration mechanisms described herein and part of the inhalation system represent a multi-stage approach which maximizes powder deagglomeration. Maximal deagglomeration and delivery of powder can be obtained by optimizing the effect of each individual mechanism, including, one or more acceleration/deceleration conduits, drag, or expansion of gas trapped within the agglomerates, interactions of powder properties with those of the inhaler components material properties, which are integral characteristics of the present inhaler system. In the embodiments described herein, the inhalers are provided with relatively rigid air conduits or plumbing system to maximize deagglomeration of powder medicament so that there is consistency of the powder medicament discharge from the inhaler during repeated use. Since the present inhalers are provided with conduits which are rigid or remain the same and cannot be altered, variations in the air conduit architecture resulting from puncturing films or peeling films associated with prior art inhalers using blister packs are avoided.


In one embodiment, there is provided a method of deagglomerating a powder formulation in a dry powder inhalation system, comprising: providing the dry powder formulation in a container having an internal volume to a dry powder inhaler; allowing a flow to enter said container which is configured to direct a flow to lift, entrain and circulate the dry powder formulation until the powder formulation comprises powder masses sufficiently small to pass through one or more dispensing apertures into a mouthpiece. In this embodiment, the method can further comprise the step of accelerating the powder masses entrained in the flow leaving the one or more dispensing apertures and entering the mouthpiece.


In embodiments disclosed herein, a dry powder medicament is dispensed with consistency from the inhaler in less than about 2 seconds. The present inhaler system has a high resistance value of approximately 0.065 to about 0.20 (√kPa)/liter per minute. Therefore, in the system comprising a cartridge, peak inhalation pressure drops applied of between 2 and 20 kPa produce resultant peak flow rates of about through the system of between 7 and 70 liters per minute. These flow rates result in greater than 75% of the cartridge contents dispensed in fill masses between 1 and 30 mg of powder. In some embodiments, these performance characteristics are achieved by end users within a single inhalation maneuver to produce cartridge dispense percentage of greater than 90%. In certain embodiments, the inhaler and cartridge system are configured to provide a single dose by discharging powder from the inhaler as a continuous flow, or as one or more pulses of powder delivered to a patient. In an embodiment, an inhalation system for delivering a dry powder formulation to a patient's lung is provided, comprising a dry powder inhaler configured to have flow conduits with a total resistance to flow in a dosing configuration ranging in value from 0.065 to about 0.200 (√kPa)/liter per minute. In this and other embodiments, the total resistance to flow of the inhalation system is relatively constant across a pressure differential range of between 0.5 kPa and 7 kPa.


The structural configuration of the inhaler allows the deagglomeration mechanism to produce respirable fractions greater than 50% and particles of less than 5.8 μm. The inhalers can discharge greater than 85% of a powder medicament contained within a container during an inhalation maneuver. Generally, the inhalers herein depicted in FIG. 15I can discharge greater that 90% of the cartridge contents or container contents in less than 3 seconds at pressure differentials between 2 and 5 kPa with fill masses ranging up to 30 mg.


While the present inhalers are primarily described as breath-powered, in some embodiments, the inhaler can be provided with a source for generating the pressure differential required to deagglomerate and deliver a dry powder formulation. For example, an inhaler can be adapted to a gas powered source, such as compressed gas stored energy source, such as from a nitrogen can, which can be provided at the air inlet ports. A spacer can be provided to capture the plume so that the patient can inhale at a comfortable pace.


In embodiments described herewith, the inhaler can be provided as a reusable inhaler or as a single use inhaler. In alternate embodiments, a similar principle of deagglomeration can be adapted to multidose inhalers, wherein the inhaler can comprise a plurality of, for example, cartridge like structures in a single tray and a single dose can be dialed as needed. In variations of this embodiment, the multidose inhaler can be provided with enough doses for example for a day, a week or a month supply of a medication. In the multidose embodiments described herein, end-user convenience is optimized. For example, in prandial regimens breakfast, lunch and dinner dosing is achieved for a course of 7 days in a single device. Additional end-user convenience is provided by an indicator mechanism that indicates the day and dosing, for example, day 3 (D3), lunchtime (L). An exemplary embodiment is illustrated in FIGS. 57-68, wherein the inhaler 950 comprises a relatively circular shape comprising a plurality of dosing units as part of a disk-like cartridge system. Inhaler 950 comprises a mouthpiece 952 having air inlet 953 and air outlet 954 and housing subassembly 960. Mouthpiece 952 is configured to have a relatively hour glass shape and therefore air conduit 980 (FIG. 67) is configured with a corresponding shape. Mouthpiece 952 also comprises a cover for engaging with housing subassembly 960 and an air conduit 980 having an opening 985 (FIG. 67) which communicates with the interior of housing subassembly 960.



FIG. 58 is an exploded view of the inhaler of FIG. 57 showing the component parts, including mouthpiece 952; housing subassembly 960 comprising multiple parts, including bottom cover or tray 955, an actuator 956 having a ratchet 957, a cartridge disk system with a bottom tray portion 958 and a lid portion 959 and a seal disk or plate 961. In one embodiment, a spring can be provided with ratchet 957 to index tray 958. Housing tray 955 is structurally configured so that it can engage securely with the mouthpiece, for example, snap fits, ultrasonic weld, threads and the like. FIG. 59 illustrates the bottom tray portion 958 of the cartridge disk system showing an outer gear mechanism 963 and an inner gear mechanism 964 with relative position around the center axis of the cartridge disk. The cartridge system is configured to have a centrally located aperture for engaging with the actuator. FIG. 59 also shows the position of the plurality of unit dose containers 962, each configured of the same dimension and shape and are radially located towards the periphery of the cartridge disk system. FIG. 60 illustrates the housing tray showing the actuator 956 and the ratchet system 957, 957′ in place without a return spring. FIG. 61 depicts the bottom portion 958 of the cartridge disk system showing the plurality of containers 962 radially located within the disk and also showing a relatively circular raised area 965 comprising two projections 966 place in the horizontal plane of the disk and a second projection 967 located in the central axis and projecting upwards and perpendicular to the disk. FIG. 62 illustrates housing tray 955 with the cartridge disk system 958, 959, actuator 956, and ratchet system assembled therein.



FIG. 63 depicts the cartridge disk system of inhaler 950 in an assembled configuration showing the plurality of containers 962 and can engageably attach to one another to provide powder containment. The cartridge system lid portion 959 comprises a plurality of cartridge-like tops 970 which in alignment correspond to the containers 962 of the bottom tray of the cartridge disk system to form a plurality of unit dose cartridge units within the cartridge disk system. Alignment of the cartridge system lid 959 and bottom tray portion is achieved by the lid portion 959 having a centrally located aperture 969 configured with two notches 968 which engage securely with the raised area of the bottom tray portion 958. In this embodiment, the cartridge disk system is also configured to have a plurality of air inlets 971 and a plurality of dispensing ports 972, wherein each unit dose cartridge comprises at least one air inlet 971 and one ore more dispensing ports 972. FIG. 64 shows a cross-section of a cartridge disk system 958, 959 showing air inlet 971 establishing an air conduit pathway in the interior compartment of the container with the dispensing ports 972 so that an airflow entering the unit compartment enters through air inlet 971, tumbles inside the container and exits through the dispensing ports.



FIG. 65 illustrates the housing subassembly 960 assembled with its component parts, in particular, the seal disk 961 is illustrated comprising an aperture 977 located toward the edge of the disk which aligns with the dispensing ports 972 of a unit dose cartridge of the cartridge disk system in the dosing position. Seal disk 961 is also configured to seal dispensing ports 972 and air inlets 971 into the unit dose cartridge of the cartridge disk system, except for the unit dose cartridge that is in alignment with aperture 977. In this manner, powder containment in a filled cartridge system is maintained. Seal disk 961 also has a central opening 975 and a plurality of spring-like structures, exemplified as undulating elements, or arms 973 extending from the disk inner portion with reference to the central axis, which form a plurality of openings 976 that allow air flow into the interior of the inhaler 950 and into the unit dose cartridge being dispensed when in use. FIG. 66 is a cross-section of the housing subassembly 960 showing seal disk 961 configuration which restricts air passage into the unit dose cartridge of all cartridge units except at aperture 977 of the seal disk cartridge disk system. FIG. 67 shows inhaler 950 in cross-section showing the dosing configuration, wherein the mouthpiece shows air conduit 980 and mouthpiece aperture 985 aligned with the dispensing ports 972 of a unit dose cartridge and aperture 977 of the seal disk. The other units in the cartridge are in containment by seal disk 961.


In this embodiment, the inhaler device 950 is simple to use and can be used one cartridge at a time and for dosing. After all dosages are dispensed the inhaler can be disposed or reloaded with a new cartridge disk system. In this embodiment, movement from an initial position to an adjacent cartridge is effectuated by actuator 956 through a complementary ratchet system 957. One ratchet which is attached to the actuator advances the cartridge disk, while another holds the cartridge disk in place while the actuator resets to its original position.



FIGS. 68 through 79 illustrate an alternate embodiment of a multidose inhaler 990 comprising a mouthpiece 952 and an inhaler body 991. Mouthpiece 952 having an air inlet port 953, an air outlet port 954 and configured to have a relatively hour glass shape having an aperture for communicating with the body 991 and attached to inhaler body 991. FIGS. 69-73 disclosed the various component parts of inhaler 990. In this embodiment, inhaler body 991 comprises several parts with the cartridge disk system forming the bottom portion of the body 991. FIG. 74 shows a gear drive assembly comprising first gear 992 and second gear 993 is used to rotate a unit dose cartridge to alignment with the mouthpiece aperture for dispensing. An alphanumeric indicator system can be applied to the cartridge container to indicate the dose unit being dispensed. FIG. 75 shows the cartridge unit system comprising bottom tray portion 958 comprising a plurality of wells or unit dose containers 962 radially located and a plurality of air inlet ports, and a lid or top portion 959 comprising a cartridge cover plate that can be glued or welded permanently on the bottom disk containing the wells. FIG. 76 shows a back view of the cartridge disk system and FIG. 77 shows a front view of the cartridge disk comprising a plurality of cartridge tops which can be movable in the cartridge from a containment position to a dosing position. FIG. 78 shows a bottom view of the cartridge system of the inhaler 990 showing the position numerically, represented by at least one numeral 994 of the order in which the doses are dispensed. FIG. 79 shows a disk seal having an aperture to align with the dispensing ports of a unit dose cartridge of the cartridge disk system.


In one embodiment, the dry powder medicament may comprise, for example, a diketopiperazine and a pharmaceutically active ingredient. In this embodiment, the pharmaceutically active ingredient or active agent can be any type depending on the disease or condition to be treated. In another embodiment, the diketopiperazine can include, for example, symmetrical molecules and asymmetrical diketopiperazines having utility to form particles, microparticles and the like, which can be used as carrier systems for the delivery of active agents to a target site in the body. The term ‘active agent’ is referred to herein as the therapeutic agent, or molecule such as protein or peptide or biological molecule, to be encapsulated, associated, joined, complexed or entrapped within or adsorbed onto the diketopiperazine formulation. Any form of an active agent can be combined with a diketopiperazine. The drug delivery system can be used to deliver biologically active agents having therapeutic, prophylactic or diagnostic activities.


One class of drug delivery agents that has been used to produce microparticles that overcome problems in the pharmaceutical arts such as drug instability and/or poor absorption, are the 2,5-diketopiperazines. 2,5-diketopiperazines are represented by the compound of the general Formula 1 as shown below where E=N. One or both of the nitrogens can be replaced with oxygen to create the substitution analogs diketomorpholine and diketodioxane, respectively.




embedded image


These 2,5 diketopiperazines have been shown to be useful in drug delivery, particularly those bearing acidic R groups (see for example U.S. Pat. No. 5,352,461 entitled “Self Assembling Diketopiperazine Drug Delivery System;” U.S. Pat. No. 5,503,852 entitled “Method For Making Self-Assembling Diketopiperazine Drug Delivery System;” U.S. Pat. No. 6,071,497 entitled “Microparticles For Lung Delivery Comprising Diketopiperazine;” and U.S. Pat. No. 6,331,318 entitled “Carbon-Substituted Diketopiperazine Delivery System,” each of which is incorporated herein by reference in its entirety for all that it teaches regarding diketopiperazines and diketopiperazine-mediated drug delivery). Diketopiperazines can be formed into drug adsorbing microparticles. This combination of a drug and a diketopiperazine can impart improved drug stability and/or absorption characteristics. These microparticles can be administered by various routes of administration. As dry powders these microparticles can be delivered by inhalation to specific areas of the respiratory system, including the lung.


The fumaryl diketopiperazine (3,6-bis-(N-fumaryl-4-aminobutyl)-2,5-diketopiperazine; FDKP) is one preferred diketopiperazine for pulmonary applications:




embedded image


FDKP provides a beneficial microparticle matrix because it has low solubility in acid but is readily soluble at neutral or basic pH. These properties allow FDKP to crystallize under acidic conditions and the crystals self-assemble to form particles. The particles dissolve readily under physiological conditions where the pH is neutral. In one embodiment, the microparticles disclosed herein are FDKP microparticles loaded with an active agent such as insulin.


FDKP is a chiral molecule having trans and cis isomers with respect to the arrangement of the substituents on the substituted carbons on the DKP ring. As described in U.S. Provisional Patent Application No. 61/186,779 entitled DIKETOPIPERAZINE MICROPARTICLES WITH DEFINED ISOMER CONTENTS filed on Jun. 12, 2009 even with the present disclosure, more robust aerodynamic performance and consistency of particle morphology can be obtained by confining the isomer content to about 45-65% trans. Isomer ratio can be controlled in the synthesis and recrystallization of the molecule. Exposure to base promotes ring epimerization leading to racemization, for example during the removal of protecting groups from the terminal carboxylate groups. However increasing methanol content of the solvent in this step leads to increased trans isomer content. The trans isomer is less soluble than the cis isomers and control of temperature and solvent composition during recrystallization can be used to promote or reduce enrichment for the trans isomer in this step.


Microparticles having a diameter of between about 0.5 and about 10 microns can reach the lungs, successfully passing most of the natural barriers. A diameter of less than about 10 microns is required to navigate the turn of the throat and a diameter of about 0.5 microns or greater is required to avoid being exhaled. DKP microparticles with a specific surface area (SSA) of between about 35 and about 67 m2/g exhibit characteristics beneficial to delivery of drugs to the lungs such as improved aerodynamic performance and improved drug adsorption.


As described in U.S. Provisional Patent Application No. 61/186,773 entitled DIKETOPIPERAZINE MICROPARTICLES WITH DEFINED SPECIFIC SURFACE AREAS filed on Jun. 12, 2009 even with the present disclosure, the size distribution and shape of FDKP crystals are affected by the balance between the nucleation of new crystals and the growth of existing crystals. Both phenomena depend strongly on concentrations and supersaturation in solution. The characteristic size of the FDKP crystal is an indication of the relative rates of nucleation and growth. When nucleation dominates, many crystals are formed but they are relatively small because they all compete for the FDKP in solution. When growth dominates, there are fewer competing crystals and the characteristic size of the crystals is larger.


Crystallization depends strongly on supersaturation which, in turn, depends strongly on the concentration of the components in the feed streams. Higher supersaturation is associated with the formation of many small crystals; lower supersaturation produces fewer, larger crystals. In terms of supersaturation: 1) increasing the FDKP concentration raises the supersaturation; 2) increasing the concentration of ammonia shifts the system to higher pH, raises the equilibrium solubility and decreases the supersaturation; and 3) increasing the acetic acid concentration increases the supersaturation by shifting the endpoint to lower pH where the equilibrium solubility is lower. Decreasing the concentrations of these components induces the opposite effects.


Temperature affects FDKP microparticle formation through its effect on FDKP solubility and the kinetics of FDKP crystal nucleation and growth. At low temperatures, small crystals are formed with high SSA. Suspensions of these particles exhibit high viscosity indicating strong inter-particle attractions. A temperature range of about 12 to about 26° C. produced particles with acceptable (or better) aerodynamic performance with various inhaler systems including inhaler systems disclosed herein.


These present devices and systems are useful in the pulmonary delivery or powders with a wide range of characteristics. Embodiments of the invention include systems comprising an inhaler, an integral or installable unit dose cartridge, and powder of defined characteristic(s) providing an improved or optimal range of performance. For example, the devices constitute an efficient deagglomeration engine and thus can effectively deliver cohesive powders. This is distinct from the course pursued by many others who have sought to develop dry powder inhalation systems based on free flowing or flow optimized particles (see for example U.S. Pat. Nos. 5,997,848 and 7,399,528, US Patent Application No. 2006/0260777; and Ferrari et al. AAPS PharmSciTech 2004; 5 (4) Article 60). Thus embodiments of the invention include systems of the device plus a cohesive powder.


Cohesiveness of a powder can be assessed according to its flowability or correlated with assessments of shape and irregularity such as rugosity. As discussed in the US Pharmacopeia USP 29, 2006 section 1174 four techniques commonly used in the pharmaceutical arts to assess powder flowability: angle of repose; compressibility (Can's) index and Hausner ratio; flow through an orifice; and shear cell methods. For the latter two no general scales have been developed due to diversity of methodology. Flow through an orifice can be used to measure flow rate or alternatively to determine a critical diameter that allows flow. Pertinent variables are the shape and diameter of the orifice, the diameter and height of the powder bed, and the material the apparatus is made of Shear cell devices include cylindrical, annular, and planar varieties and offer great degree of experimental control. For either of these two methods description of the equipment and methodology are crucial, but despite the lack of general scales they are successfully used to provide qualitative and relative characterizations of powder flowability.


Angle of repose is determined as the angle assumed by a cone-like pile of the material relative to a horizontal base upon which it has been poured. Hausner ratio is the unsettled volume divided by the tapped volume (that is the volume after tapping produces no further change in volume), or alternatively the tapped density divided by the bulk density. The compressibility index (CI) can be calculated from the Hausner ratio (HR) as

CI=100×(1−(1/HR)).


Despite some variation in experimental methods generally accepted scales of flow properties have been published for angle of repose, compressibility index and Hausner ratio (Carr, R L, Chem. Eng. 1965, 72:163-168).



















Angle of
Hausner
Compressibility



Flow Character
Repose
Ratio
Index (%)









Excellent
25-30°
1.00-1.11
≤10



Good
31-35°
1.12-1.18
11-15



Fair
36-40°
1.19-1.25
16-20



Passable
41-45°
1.26-1.34
21-25



Poor
46-55°
1.35-1.45
26-31



Very Poor
56-65°
1.46-1.59
32-27



Very, Very Poor
≥66°
≥1.60
≥38










The CEMA code provides a somewhat different characterization of angle of repose.













Angle of repose
Flowability







≤19°
Very free flowing


20-29°
Free flowing


30-39°
Average


≥40°
Sluggish









Powders with a flow character according to the table above that is excellent or good can be characterized in terms of cohesiveness as non- or minimally cohesive, and the powders with less flowability as cohesive and further dividing them between moderately cohesive (corresponding to fair or passable flow character) and highly cohesive (corresponding to any degree of poor flow character). In assessing angle of repose by the CEMA scale powders with an angle of repose ≥30° can be considered cohesive and those ≥40° highly cohesive. Powders in each of these ranges, or combinations thereof, constitute aspects of distinct embodiments of the invention.


Cohesiveness can also be correlated with rugosity, a measure of the irregularity of the particle surface. The rugosity is the ratio of the actual specific surface area of the particle to that for an equivalent sphere:






Rugosity
=



(

S





S





A

)

particle



(

S





S





A

)

sphere






Methods for direct measurement of rugosity, such as air permeametry, are also known in the art. Rugosity of 2 or greater has been associated with increased cohesiveness. It should be kept in mind that particle size also affects flowability so that larger particles (for example on the order of 100 microns) can have reasonable flowability despite somewhat elevated rugosity. However for particles useful for delivery into the deep lung, such as those with primary particle diameters of 1-3 microns, even modestly elevated rugosity or 2-6 may be cohesive. Highly cohesive powders can have rugosities ≥10 (see example A below).


Many of the examples below involve the use of dry powders comprising fumaryl diketopiperazine (3,6-bis-(N-fumaryl-4-aminobutyl)-2,5-diketopiperazine; FDKP). The component microparticles are self-assembled aggregates of crystalline plates. Powders comprised of particles with plate-like surfaces are known to have generally poor flowability, that is, they are cohesive. Indeed smooth spherical particles generally have the best flowability, with flowability generally decreasing as the particles become oblong, have sharp edges, become substantially two dimensional and irregularly shaped, have irregular interlocking shapes, or are fibrous. While not wanting to be bound, it is the applicants' present understanding that the crystalline plates of the FDKP microparticles can interleave and interlock contributing to the cohesiveness (the inverse of flowability) of bulk powders comprising them and additionally making the powder more difficult to deagglomerate than less cohesive powders. Moreover factors affecting the structure of the particles can have effects on aerodynamic performance. It has been observed that as specific surface area of the particles increases past a threshold value their aerodynamic performance, measured as respirable fraction, tends to decrease. Additionally FDKP has two chiral carbon atoms in the piperazine ring, so that the N-fumaryl-4-aminobutyl arms can be in cis or trans configurations with respect to the plane of the ring. It has been observed that as the trans-cis ratio of the FDKP used in making the microparticles departs from an optimal range including the racemic mixture respirable fraction is decreased and at greater departures from the preferred range the morphology of the particles in SEM becomes visibly different. Thus embodiments of the invention include systems of the device plus DKP powders with specific surface areas within preferred ranges, and the device plus FDKP powders with trans-cis isomer ratios within preferred ranges.


FDKP microparticles either unmodified or loaded with a drug, for example insulin, constitute highly cohesive powders. FDKP microparticles have been measured to have a Hausner ratio of 1.8, a compressibility index of 47%, and an angle of repose of 40°. Insulin loaded FDKP microparticles (TECHNOSPHERE® INSULIN; TI) have been measured to have a Hausner ratio of 1.57, a compressibility index of 36%, and an angle of repose of 50°±3°. Additionally in critical orifice testing it was estimated that to establish flow under gravity an orifice diameter on the order of 2 to 3 feet (60-90 cm) would be needed (assumes a bed height of 2.5 feet; increased pressure increased the size of the diameter needed). Under similar conditions a free flowing powder would require an orifice diameter on the order of only 1-2 cm (Taylor, M. K. et al. AAPS PharmSciTech 1, art. 18).


Accordingly, in one embodiment, the present inhalation system comprises a dry powder inhaler and a container for deagglomerating cohesive powder is provided, comprising a cohesive dry powder having a Can's index ranging from 16 to 50. In one embodiment, the dry powder formulation comprises a diketopiperazine, including, FDKP and a peptide or protein including an endocrine hormone such as insulin, GLP-1, parathyroid hormone, oxyntomodulin, and others as mentioned elsewhere in this disclosure.


Microparticles having a diameter of between about 0.5 and about 10 microns can reach the lungs, successfully passing most of the natural barriers. A diameter of less than about 10 microns is required to navigate the turn of the throat and a diameter of about 0.5 microns or greater is required to avoid being exhaled. Embodiments disclosed herein show that microparticles with a specific surface area (SSA) of between about 35 and about 67 m2/g exhibit characteristics beneficial to delivery of drugs to the lungs such as improved aerodynamic performance and improved drug adsorption.


Disclosed herein are also fumaryl diketopiperazine (FDKP) microparticles having a specific trans isomer ratio of about 45 to about 65%. In this embodiment, the microparticles provide improved flyability.


In one embodiment, there is also provided a system for the delivery of an inhalable dry powder comprising: a) a cohesive powder comprising a medicament, and b) an inhaler comprising an enclosure defining an internal volume for containing a powder, the enclosure comprising a gas inlet and a gas outlet wherein the inlet and the outlet are positioned so that gas flowing into the internal volume through the inlet is directed at the gas flowing toward the outlet. In an embodiment, the system is useful for deagglomerating a cohesive powder having a Carr's index of from 18 to 50. The system can also be useful for delivering a powder when the cohesive powder has an angle of repose from 30° to 55°. The cohesive powder can be characterized by a critical orifice dimension of ≤3.2 feet for funnel flow or ≤2.4 feet for mass flow, a rugosity >2. Exemplary cohesive powder particles include particles comprising of FDKP crystals wherein the ratio of FDKP isomers in the range of 50% to 65% trans:cis.


In another embodiment, the inhalation system can comprise an inhaler comprising a mouthpiece and upon applying a pressure drop of ≥2 kPa across the inhaler to generate a plume of particles which is emitted from the mouthpiece wherein 50% of said emitted particles have a VMAD of ≤10 micron, wherein 50% of said emitted particles have a VMAD of ≤8 microns, or wherein 50% of said emitted particles have a VMAD of ≤4 microns.


In yet another embodiment, a system for the delivery of an inhalable dry powder comprising: a) a dry powder comprising particles composed of FDKP crystals wherein the ratio of FDKP isomers in the range of 50% to 65% trans:cis, and a medicament; and b) an inhaler comprising a powder containing enclosure, the chamber comprising a gas inlet and a gas outlet; and a housing in which to mount said chamber and defining two flow pathways, a first flow pathway allowing gas to enter the gas inlet of the chamber, a second flow pathway allowing gas to bypass the chamber gas inlet; wherein flow bypassing the enclosure gas inlet is directed to impinge upon the flow exiting the enclosure substantially perpendicular to the gas outlet flow direction.


In certain embodiments, a system for the delivery of an inhalable dry powder is provided, comprising: a) a dry powder comprising particles composed of FDKP crystals wherein the microparticles have a specific surface area (SSA) of between about 35 and about 67 m2/g which exhibit characteristics beneficial to delivery of drugs to the lungs such as improved aerodynamic performance and improved drug adsorption per milligram, and a medicament; and b) an inhaler comprising a powder containing enclosure, wherein the enclosure comprises a gas inlet and a gas outlet; and a housing in which to mount said chamber and defining two flow pathways, a first flow pathway allowing gas to enter the gas inlet of the chamber, a second flow pathway allowing gas to bypass the chamber gas inlet; wherein flow bypassing the chamber gas inlet is directed to impinge upon the flow exiting the enclosure substantially perpendicular to the gas outlet flow direction.


A system for the delivery of an inhalable dry powder is also provided, comprising: a) a dry powder comprising a medicament, and b) an inhaler comprising a powder containing cartridge, the cartridge comprising a gas inlet and a gas outlet, and a housing in which to mount the cartridge and defining two flow pathways, a first flow pathway allowing gas to enter the gas inlet of the cartridge, a second flow pathway allowing gas to bypass the enclosure gas inlet, and a mouthpiece and upon applying a pressure drop of ≥2 kPa across the inhaler plume of particles is emitted from the mouthpiece wherein 50% of said emitted particles have a VMAD of ≤10 microns, wherein flow bypassing the cartridge gas inlet is directed to impinge upon the flow exiting the enclosure substantially perpendicular to the gas outlet flow direction.


Active agents for use in the compositions and methods described herein can include any pharmaceutical agent. These can include, for example, synthetic organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, inorganic compound, and nucleic acid sequences, having therapeutic, prophylactic, or diagnostic activities. Peptides, proteins, and polypeptides are all chains of amino acids linked by peptide bonds.


Examples of active agents that can be delivered to a target or site in the body using the diketopiperazine formulations, include hormones, anticoagulants, immunomodulating agents, vaccines, cytotoxic agents, antibiotics, vasoactive agents, neuroactive agents, anaesthetics or sedatives, steroids, decongestants, antivirals, antisense, antigens, and antibodies. More particularly, these compounds include insulin, heparin (including low molecular weight heparin), calcitonin, felbamate, sumatriptan, parathyroid hormone and active fragments thereof, growth hormone, erythropoietin, AZT, DDI, granulocyte macrophage colony stimulating factor (GM-CSF), lamotrigine, chorionic gonadotropin releasing factor, luteinizing releasing hormone, beta-galactosidase, exendin, vasoactive intestinal peptide, and argatroban. Antibodies and fragments thereof can include, in a non-limiting manner, anti-SSX-241-49 (synovial sarcoma, X breakpoint 2), anti-NY-ESO-1 (esophageal tumor associated antigen), anti-PRAME (preferentially expressed antigen of melanoma), anti-PSMA (prostate-specific membrane antigen), anti-Melan-A (melanoma tumor associated antigen) and anti-tyrosinase (melanoma tumor associated antigen).


In certain embodiments, a dry powder formulation for delivering to the pulmonary circulation comprises an active ingredient or agent, including a peptide, a protein, a hormone, analogs thereof or combinations thereof, wherein the active ingredient is insulin, calcitonin, growth hormone, erythropoietin, granulocyte macrophage colony stimulating factor (GM-CSF), chorionic gonadotropin releasing factor, luteinizing releasing hormone, follicle stimulating hormone (FSH), vasoactive intestinal peptide, parathyroid hormone (including black bear PTH), parathyroid hormone related protein, glucagon-like peptide-1 (GLP-1), exendin, oxyntomodulin, peptide YY, interleukin 2-inducible tyrosine kinase, Bruton's tyrosine kinase (BTK), inositol-requiring kinase 1 (IRE1), or analogs, active fragments, PC-DAC-modified derivatives, or O-glycosylated forms thereof. In particular embodiments, the pharmaceutical composition or dry powder formulation comprises fumaryl diketopiperazine and the active ingredient is one or more selected from insulin, parathyroid hormone 1-34, GLP-1, oxyntomodulin, peptide YY, heparin and analogs thereof.


In one embodiment, a method of self-administering a dry powder formulation to one's lung with a dry powder inhalation system is also provided, comprising: obtaining a dry powder inhaler in a closed position and having a mouthpiece; obtaining a cartridge comprising a premetered dose of a dry powder formulation in a containment configuration; opening the dry powder inhaler to install the cartridge; closing the inhaler to effectuate movement of the cartridge to a dose position; placing the mouthpiece in one's mouth, and inhaling once deeply to deliver the dry powder formulation.


In one embodiment, a method of delivering an active ingredient comprising: a) providing dry powder inhaler containing a cartridge with a dry powder formulation comprising a diketopiperazine and the active agent; and b) delivering the active ingredient or agent to an individual in need of treatment. The dry powder inhaler system can deliver a dry powder formulation such as insulin FDKP having a respirable fraction greater than 50% and particles sizes less than 5.8 μm.


In still yet a further embodiment, a method of treating obesity, hyperglycemia, insulin resistance, and/or diabetes is disclosed. The method comprises the administration of an inhalable dry powder composition or formulation comprising a diketopiperazine having the formula 2,5-diketo-3,6-di(4-X-aminobutyl)piperazine, wherein X is selected from the group consisting of succinyl, glutaryl, maleyl, and fumaryl. In this embodiment, the dry powder composition can comprise a diketopiperazine salt. In still yet another embodiment of the present invention, there is provided a dry powder composition or formulation, wherein the diketopiperazine is 2,5-diketo-3,6-di-(4-fumaryl-aminobutyl)piperazine, with or without a pharmaceutically acceptable carrier, or excipient.


An inhalation system for delivering a dry powder formulation to a patient's lung, comprising a dry powder inhaler configured to have flow conduits with a total resistance to flow in a dosing configuration ranging in value from 0.065 to about 0.200 (√kPa)/liter per minute.


In one embodiment, a dry powder inhalation kit is provided comprising a dry powder inhaler as described above, one or more medicament cartridge comprising a dry powder formulation for treating a disorder or disease such as respiratory tract disease, diabetes and obesity.


EXAMPLE 1

Measuring the resistance and flow distribution of a dry powder inhaler—cartridge system: Several dry powder inhaler designs were tested to measure their resistance to flow—an important characteristic of inhalers Inhalers exhibiting high resistance require a greater pressure drop to yield the same flow rate as lower resistance inhalers. Briefly, to measure the resistance of each inhaler and cartridge system, various flow rates are applied to the inhaler and the resulting pressures across the inhaler are measured. These measurements can be achieved by utilizing a vacuum pump attached to the mouthpiece of the inhaler, to supply the pressure drop, and a flow controller and pressure meter to change the flow and record the resulting pressure. According to the Bernoulli principle, when the square root of the pressure drop is plotted versus the flow rate, the resistance of the inhaler is the slope of the linear portion of the curve. In these experiments, the resistance of the inhalation system, comprising a dry powder inhaler and cartridge as described herein, were measured in the dosing configuration using a resistance measuring device. The dosing configuration forms an air pathway through the inhaler air conduits and through the cartridge in the inhaler.


Since different inhaler designs exhibit different resistance values due to slight variations in geometries of their air pathways, multiple experiments were conducted to determine the ideal interval for pressure settings to use with a particular design. Based on the Bernoulli principle of linearity between square root of pressure and flow rate, the intervals for assessing linearity were predetermined for the three inhalers used after multiple tests so that the appropriate settings could be used with other batches of the same inhaler design. An exemplary graph for an inhaler can be seen in FIG. 80 for an inhalation system depicted in FIG. 15I. The graph depicted in FIG. 80 indicates that the resistance of the inhalation system as depicted in FIG. 15I can be measured with good correlation to the Bernoulli principle at flow rates ranging from about 10 to 25 L/min. The graph also shows that the resistance of the exemplary inhalation system was determined to be 0.093 √kPa/LPM. FIG. 80 illustrates that flow and pressure are related. Therefore, as the slope of the line in square root of pressure versus flow graph decreases, i.e., inhalation systems exhibiting lower resistance, the change in flow for a given change in pressure is greater. Accordingly, higher resistance inhalation systems would exhibit less variability in flow rates for given changes in pressure provided by the patient with a breath powered system.


The data in Tables 1 show the results of a set of experiments using the inhalers described in FIG. 50 (DPI 1), and FIGS. 15C-15K (DPI 2). For the dry powder inhaler 1 (DPI 1), the cartridge illustrated in design 150, FIGS. 35-38, was used, and the cartridge illustrated in design 170, FIG. 39A-I was used with DPI 2. Accordingly, DPI 1 used Cartridge 1 and DPI 2 used Cartridge 2.












TABLE 1





Device
Total Device
Cartridge
% of Total Flow


Tested
Resistance
Resistance
Through Cartridge







MEDTONE ®
0.1099
0.368
15.28


DPI 1
0.0874
0.296
29.50


DPI 2
0.0894
0.234
35.56









Table 1 illustrates the resistance of the inhalation system tested herewith is 0.0874 and 0.0894 √kPa/LPM, respectively for DPI 1 and DPI 2. The data show that the resistance of the inhalation system to flow is in part determined by the geometry of the air conduits within the cartridge.


EXAMPLE 2

Measurement of particle size distribution using an inhaler system with an insulin formulation: Measurements of the particle size distribution with a laser diffraction apparatus (Helos Laser Diffraction system, Sympatec Inc.) with an adaptor (MannKind Corp.) were made of a formulation of various amounts in milligram (mg) of an insulin and fumaryl diketopiperazine particles provided in a cartridge-inhaler system as described herewith (inhaler of FIGS. 15C-15K with cartridge 170 shown in FIGS. 39A-39I). The device is attached at one end to a tubing, which is adapted to a flow meter (TSI, Inc. Model 4043) and a valve to regulate pressure or flow from a compressed air source. Once the laser system is activated and the laser beam is ready to measure a plume, a pneumatic valve is actuated to allow the powder to be discharged from the inhaler. The laser system measures the plume exiting the inhaler device automatically based on predetermined measurement conditions. The laser diffraction system is operated by software integrated with the apparatus and controlled by computer program. Measurements were made of samples containing different amounts of powder and different powder lots. The measurement conditions are as follows:

  • Laser measurement start trigger conditions: when ≥0.6% laser intensity is detected on a particular detector channel;
  • Laser measurement end trigger conditions: when ≤0.4% laser intensity is detected on a particular detector channel;
  • Distance between vacuum source and inhaler chamber is approximately 9.525 cm.


Multiple tests were carried out using different amounts of powders or fill mass in the cartridges. Cartridges were only used once. Cartridge weights were determined before and after powder discharge from the inhaler to determine discharged powder weights. Measurements in the apparatus were determined at various pressure drops and repeated multiple times as indicated in Table 2 below. Once the powder plume is measured, the data is analyzed and graphed. Table 2 depicts data obtained from the experiments, wherein CE denotes cartridge emptying (powder discharged) and Q3 (50%) is the geometric diameter of the 50th percentile of the cumulative powder particle size distribution of the sample, and q3(5.8 μm) denotes the percentage of the particle size distribution smaller than 5.8 μm geometric diameter.
















TABLE 2






Pressure

Fill






Test
Drop
Discharge
Mass
Sample

Q3
q3


No.
(kPa)
Time (s)
(mg)
Size
% CE
(50%)
(5.8 μm)






















1
4
3
6.7
30
98.0
4.020
63.8


2
4
3
6.7
20
97.0
3.700
67.4


3
4
3
6.7
20
98.4
3.935
64.6


4
4
3
3.5
20
97.8
4.400
61.0


5
2
4
6.7
7
92.9
4.364
61.0


6
2
4
6.7
7
95.1
4.680
57.9


7
4
4
6.7
7
97.0
3.973
64.4


8
4
4
6.7
7
95.5
4.250
61.7


9
6
4
6.7
7
97.3
3.830
65.3


10
6
4
6.7
7
97.8
4.156
62.2









The data in Table 2 showed that 92.9% to 98.4% of the total powder fill mass was emitted from the inhalation system. Additionally, the data indicate that regardless of the fill mass, 50% of the particles emitted from the inhalation system had a geometric diameter of less than 4.7 μm as measured at the various times and pressure drops tested. Moreover, between 60% and 70% of the particles emitted had a geometric diameter of less than 5.8 μm.



FIG. 81 depicts data obtained from another experiment in which 10 mg of powder fill mass was used. The graph shows the particle size distribution of the sample containing particles of a formulation comprising insulin and fumaryl diketopiperazine resulted in 78.35% of the measured particles had a particle size of ≤5.8 μm. The laser detected 37.67% optical concentration during the measurement duration of 0.484 seconds at the above measurement conditions. The data show that the inhalation system effectively deagglomerates the insulin-FDKP formulation to small sizes over a relevant and lower range of user inhalation capacities, i.e., pressure drops. These small geometric sizes for this cohesive (Can's index=36%) formulation are believed to be respirable.


EXAMPLE 3

Measurement of powder discharge from a cartridge as a measure of inhalation system performance.


The experiments were conducted using the inhalation system described herewith using multiple inhaler prototypes depicted in FIGS. 15C-15K with cartridge 170 prototypes as shown in FIGS. 39A-39I. Multiple cartridges were used with each inhaler. Each cartridge was weighed in an electronic balance prior to fill. The cartridges were filled with a predetermined mass of powder, again weighed and each filled cartridge was placed in an inhaler and tested for efficiency of emptying a powder formulation, i.e., Technosphere® Insulin (insulin-FDKP; typically 3-4 U insulin/mg powder, approximately 10-15% insulin w/w) powder batches. Multiple pressure drops were used to characterize the consistency of performance. Table 3 depicts results of this testing using 35 cartridge discharge measurements per inhaler. In the data in Table 3, all tests were carried out using the same batch of a clinical grade insulin-FDKP powder. The results show that relevant user pressure drops, ranging from 2 through 5 kPa demonstrated a highly efficient emptying of the powder from the cartridge.















TABLE 3






Pressure








Drop
Discharge
Fill Mass
Sample
Mean
% CE


Test No.
(kPa)
Time (s)
(mg)
Size
% CE
SD





















1
5.00
3.00
3.08
35
99.42
0.75


2
5.00
3.00
3.00
35
98.11
1.11


3
5.00
3.00
6.49
35
99.49
0.81


4
5.00
3.00
6.55
35
99.05
0.55


5
5.00
2.00
6.57
35
98.69
0.94


6
5.00
2.00
6.57
35
99.33
1.03


7
4.00
3.00
6.47
35
98.15
1.15


8
4.00
3.00
6.50
35
99.37
0.46


9
4.00
3.00
3.28
35
98.63
0.93


10
4.00
3.00
3.18
35
98.63
1.48


11
4.00
2.00
6.61
35
92.30
3.75


12
4.00
2.00
6.58
35
98.42
1.71


13
3.00
3.00
6.55
35
92.91
5.04


14
3.00
3.00
6.56
35
98.88
0.63


15
3.00
2.00
6.56
35
96.47
3.19


16
3.00
2.00
6.59
35
99.49
0.54


17
3.00
1.00
6.93
35
98.06
2.37


18
3.00
1.00
6.95
35
98.74
0.67


19
3.00
1.00
3.12
35
97.00
1.06


20
3.00
1.00
3.15
35
96.98
0.99


21
2.00
1.00
6.53
35
97.24
1.65


22
2.00
1.00
6.49
35
98.48
2.27









EXAMPLE 4

Measurement of Predictive Deposition by Andersen Cascade Impaction:


The experiments were conducted using an Andersen Cascade Impactor to collect stage plate powder deposits during a simulated dose delivery using flow rates of 28.3 LPM. This flow rate resulted in a pressure drop across the inhalation system (DPI plus cartridge) of approximately 6 kPa. Depositions on the plate stages were analyzed gravimetrically using filters and electronic balances. Fill weights of a cohesive powder in 10 mg, 6.6 mg and 3.1 mg fill mass were evaluated for inhalation system performance. Each impaction test was conducted with five cartridges. The cumulative powder mass collected on stages 2-F was measured in accordance with aerodynamic particle sizes less than 5.8 μm. The ratio of the collected powder mass to the cartridge fill content was determined and is provided as percent respirable fraction (RF) over the fill weight. The data is presented in Table 4.


The data show that a respirable fraction ranging from 50% to 70% was achieved with multiple powder batches. This range represents a normalized performance characteristic of the inhalation system.


The inhaler system performance measurements were repeated 35 times with a different cartridge. Fill mass (mg) and discharge time (seconds) were measured for each inhaler cartridge system used. Additionally, the percent of respirable fraction, i.e., particles suitable for pulmonary delivery, in the powder was also measured. The results are presented in Table 4 below. In the table, the % RF/fill equals the percent of particles having a size (≤5.8 μm) that would travel to the lungs in the powder; CE indicates cartridge emptying or powder delivered; RF indicates respirable fraction. In Table 4, Test Nos. 1-10 were conducted using a second batch of a clinical grade of the insulin-FDKP powder, but the test powder for 11-17 used the same powder as the tests conducted and presented in Table 3.
















TABLE 4






Pressure

Fill







Drop
Discharge
Mass
Sample
Mean
%
% RF/


No.
(kPa)
Time (s)
(mg)
Size
% CE
RF/Fill
Delivered






















1
6.4
8
9.7
5
98.9
56.6
58.3


2
6.4
8
9.9
5
88.8
53.7
60.4


3
6.4
8
8.2
5
97.5
54.9
56.9


4
6.4
8
6.7
5
98.4
56.8
58.1


5
6.4
8
10.0
5
89.2
60.4
67.8


6
6.4
8
9.6
5
99.3
53.5
53.9


7
6.4
8
9.6
5
98.2
57.3
58.4


8
6.4
8
9.6
5
99.0
56.9
57.5


9
6.4
8
9.6
5
95.4
59.3
62.1


10
6.4
8
6.6
5
99.4
61.7
62.1


11
6.4
8
6.6
5
99.6
59.0
59.2


12
6.4
8
6.6
5
96.5
62.6
64.8


13
6.4
8
6.6
5
98.7
59.8
60.6


14
6.4
8
3.1
5
99.5
66.3
66.6


15
6.4
8
3.1
5
99.7
70.7
70.9


16
6.4
8
3.1
5
97.6
65.9
67.5


17
6.4
8
3.1
5
98.2
71.6
73.0









The data above show that the present inhalation system comprising a dry powder inhaler and a cartridge containing a cohesive powder, i.e., TECHNOSPHERE® Insulin (FDKP particles comprising insulin) can discharge effectively almost all of the powder content, since greater than 85% and in most cases greater than 95% of the total powder content of a cartridge at variable fill masses and pressure drops were obtained with consistency and significant degree of emptying. The Andersen cascade impaction measurements indicated that greater than 50% of the particles are in the respirable range wherein the particles are less than 5.8 μm and ranging from 53.5% to 73% of the total emitted powder.


EXAMPLE 5

Rugosity of TECHNOSPHERE® Insulin (TI).


The rugosity is the ratio of the actual specific surface area of the particle to that for an equivalent sphere. The specific surface area of a sphere is:







S





S






A
sphere


=



π






d
eff
2



ρ


π
6



d
eff
3



=

6

ρ






d
eff









where deff=1.2 μm is the surface-weighted diameter of TI particles from Sympatec/RODOS laser diffraction measurements.


An average sphere with the same density as the TI particle matrix (1.4 g/cm3) would therefore have an SSA of







S





S






A
sphere


=


6

ρ






d
eff



=



6


(

1.4


g

cm
3



)



(

1.2
×

10

-
6







m

)





(


m
3



10
6







cm
3



)


=

3.6






m
2



/


g








Thus for TI particles with specific surface area (SSA) of approximately 40 m2/g






Rugosity
=




(

S





S





A

)

TI



(

S





S





A

)

sphere


=



40






m
2



/


g


3.6






m
2



/


g



11.






For similarly sized particles with specific surface area of 50 or 60 m2/g the rugosity would be roughly 14 and 16 respectively.


EXAMPLE 6

Geometric Particle Size Analysis of Emitted Formulations by Volumetric Median Geometric Diameter (VMGD) Characterization


Laser diffraction of dry powder formulations emitted from dry powder inhalers is a common methodology employed to characterize the level of de-agglomeration subjected to a powder. The methodology indicates a measure of geometric size rather than aerodynamic size as occurring in industry standard impaction methodologies. Typically, the geometric size of the emitted powder includes a volumetric distribution characterized by the median particle size, VMGD. Importantly, geometric sizes of the emitted particles are discerned with heightened resolution as compared to the aerodynamic sizes provided by impaction methods. Smaller sizes are preferred and result in greater likelihood of individual particles being delivered to the pulmonary tract. Thus, differences in inhaler de-agglomeration and ultimate performance can be easier to resolve with diffraction. In these experiments, an inhaler as specified in Example 3 and a predicate inhaler are tested with laser diffraction at pressures analogous to actual patient inspiratory capacities to determine the effectiveness of the inhalation system to de-agglomerate powder formulations. Specifically, the formulations included cohesive diketopiperazine powders with an active insulin loaded ingredient and without. These powder formulations possessed characteristic surface areas, isomer ratios, and Carr's indices. Reported in Table 5 are a VMGD and an efficiency of the container emptying during the testing. FDKP powders have an approximate Carr's index of 50 and TI powder has an approximate Can's index of 40.
















TABLE 5





Inhaler



pressure
sample

VMGD


system
powder
% trans
SSA
drop (kPa)
size
% CE
(micron)






















DPI 2
FDKP
56
55
4
15
92.5
6.800


MedTone ®
FDKP
56
55
4
30
89.5
21.200


DPI 2
FDKP + active
56
45
4
30
98.0
4.020


DPI 2
FDKP + active
56
45
4
20
97.0
3.700


DPI 2
FDKP + active
56
45
4
20
98.4
3.935


DPI 2
FDKP + active
56
45
4
20
97.8
4.400


MedTone ®
FDKP + active
56
45
4
10
86.1
9.280


MedTone ®
FDKP + active
56
45
4
10
92.3
10.676


DPI 2
FDKP + active
56
45
2
7
92.9
4.364


DPI 2
FDKP + active
56
45
2
7
95.1
4.680


DPI 2
FDKP + active
56
45
4
7
97.0
3.973


DPI 2
FDKP + active
56
45
4
7
95.5
4.250


DPI 2
FDKP + active
56
56
4
10
99.6
6.254


DPI 2
FDKP + active
56
14
4
10
85.5
4.037


MedTone ®
FDKP + active
56
56
4
20
89.7
12.045


MedTone ®
FDKP + active
56
14
4
20
37.9
10.776


DPI 2
FDKP + active
54
50
4
10
97.1
4.417


DPI 2
FDKP + active
54
44
4
10
96.0
4.189


DPI 2
FDKP + active
56
35
4
10
92.0
3.235


DPI 2
FDKP + active
50
34
4
10
93.2
5.611


DPI 2
FDKP + active
66
33
4
10
79.0
4.678


DPI 2
FDKP + active
45
42
4
10
93.2
5.610


DPI 2
FDKP + active
56
9
4
10
78.9
5.860









These data in Table 5 show an improvement in powder de-agglomeration over a predicate inhaler system as compared to the inhaler system described herein. Diketopiperazine formulations with surface areas ranging from 14-56 m2/g demonstrated emptying efficiencies in excess of 85% and VMGD less than 7 microns. Similarly, formulations possessing an isomer ratio ranging from 45-66% trans demonstrated improved performance over the predicate device. Last, performance of the inhaler system with formulations characterized with Carr's indices of 40-50 were shown to be improved over the predicate device as well. In all cases, the reported VMGD values were below 7 microns.


The preceding disclosures are illustrative embodiments. It should be appreciated by those of skill in the art that the devices, techniques and methods disclosed herein elucidate representative embodiments that function well in the practice of the present disclosure. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a” and “an” and “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.”


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects those of ordinary skill in the art to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


Furthermore, numerous references have been made to patents and printed publications throughout this specification. Each of the above cited references and printed publications are herein individually incorporated by reference in their entirety.


Further, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. An inhaler comprising: a housing, a mouthpiece, and a cartridge contained within the housing, the cartridge comprising two or more rigid parts;wherein at least one of the two or more rigid parts of the cartridge is a container, wherein the mouthpiece is configured to translocate the container from a powder containment position in a first location to a dosing position in a second location different than the first location by moving the container relative to another of the at least two or more rigid parts of the cartridge thereby creating an entrance into and an exit from the container when in the dosing position;wherein in the powder containment position, there is not an airflow passageway through the container; andwherein in the dosing position there is an airflow passageway through the container and 10% to 70% of total airflow through the inhaler enters and exits the cartridge.
  • 2. The inhaler of claim 1, wherein the mouthpiece is configured to engage a moveable member.
  • 3. The inhaler of claim 1, further comprising a cartridge housing to accommodate the container.
  • 4. The inhaler of claim 1, wherein the container is configured to hold a dry powder medicament including at least one active ingredient.
  • 5. The inhaler of claim 4, wherein the least one active ingredient is a peptide, polypeptide, protein, or a combination thereof.
  • 6. The inhaler of claim 4, wherein the active ingredient is insulin, glucagon-like peptide 1, oxyntomodulin, peptide YY, exendin, heparin, calcitonin, felbamate, sumatriptan, parathyroid hormone, growth hormone, erythropoietin, AZT, DDI, granulocyte macrophage colony stimulating factor, lamotrigine, chorionic gonadotropin releasing factor, luteinizing releasing hormone, beta-galactosidase, exendin, vasoactive intestinal peptide, an argatroban, anti-SSX-241-49, anti-NY-ESO-1, anti-PRAME, anti-PSMA, anti-Melan-A, anti-tyrosinase, or a combination thereof.
  • 7. The inhaler of claim 4, wherein the active ingredient is insulin, glucagon-like peptide 1, oxyntomodulin, peptide YY, exendin, analogs thereof, or a combination thereof.
  • 8. The inhaler of claim 4, wherein the active ingredient is insulin granulocyte macrophage colony stimulating factor (GM-CSF), parathyroid hormone, parathyroid hormone related protein, or parathyroid hormone 1-34.
  • 9. The inhaler of claim 4, wherein the active ingredient is a neuroactive agent.
  • 10. The inhaler of claim 4, wherein the active ingredient is oxyntomodulin.
  • 11. The inhaler of claim 4, wherein the dry powder medicament comprises a diketopiperazine.
  • 12. The inhaler of claim 11, wherein the diketopiperazine is
  • 13. An inhaler comprising: a housing a mouthpiece, and a removable cartridge contained within the housing, the cartridge including two or more rigid parts;wherein at least one of the two or more rigid parts of the removable cartridge is a container, wherein the mouthpiece is configured to translocate the container from a powder containment position in a first location to a dosing position in a second location different than the first location by moving the container relative to another of the at least two or more rigid parts of the cartridge thereby creating an entrance into and an exit from the container when in the dosing position;wherein in the powder containment position, there is not an airflow passageway through the container; andwherein in the dosing position there is an airflow passageway through the container and 10% to 70% of total airflow through the inhaler enters and exits the removable cartridge.
  • 14. The inhaler of claim 13, wherein the mouthpiece is configured to engage a moveable member.
  • 15. The inhaler of claim 1, further comprising a cartridge housing to accommodate the container.
  • 16. The inhaler of claim 13, wherein the removable container is configured to hold a dry powder medicament including at least one active ingredient.
  • 17. The inhaler of claim 16, wherein the least one active ingredient is a peptide, polypeptide, protein, or a combination thereof.
  • 18. The inhaler of claim 16, wherein the active ingredient is insulin, glucagon-like peptide 1, oxyntomodulin, peptide YY, exendin, heparin, calcitonin, felbamate, sumatriptan, parathyroid hormone, growth hormone, erythropoietin, AZT, DDI, granulocyte macrophage colony stimulating factor, lamotrigine, chorionic gonadotropin releasing factor, luteinizing releasing hormone, beta-galactosidase, exendin, vasoactive intestinal peptide, an argatroban, anti-SSX-241-49, anti-NY-ESO-1, anti-PRAME, anti-PSMA, anti-Melan-A, anti-tyrosinase, or a combination thereof.
  • 19. The inhaler of claim 16, wherein the active ingredient is insulin, glucagon-like peptide 1, parathyroid hormone, oxyntomodulin, peptide YY, exendin, analogs thereof, or a combination thereof.
  • 20. The inhaler of claim 16, wherein the active ingredient is granulocyte macrophage colony stimulating factor (GM-CSF), parathyroid hormone, parathyroid hormone related protein, or parathyroid hormone 1-34.
  • 21. The inhaler of claim 16, wherein the active ingredient is a neuroactive agent, a vasoactive agent, a sedative, an antibiotic, or a vaccine.
  • 22. The inhaler of claim 16, wherein the active ingredient is oxyntomodulin.
  • 23. The inhaler of claim 16, wherein the dry powder medicament comprises a diketopiperazine.
  • 24. The inhaler of claim 23, wherein the diketopiperazine is
  • 25. An inhaler comprising: a housing, a mouthpiece, and a cartridge contained with the housing, the cartridge including two or more rigid parts; wherein at least one of the two or more rigid parts of the cartridge is a container, wherein the mouthpiece is configured to engage a movable member within the housing and translocate the container from a powder containment position in a first location to a dosing position in a second location different than the first location by moving the container relative to another of the at least two or more rigid parts of the cartridge thereby creating an entrance into and an exit from the container when in the dosing position; wherein in the powder containment position, there is not an airflow passageway through the container; wherein in the dosing position there is an airflow passageway through the container and 10% to 70% of total airflow through the inhaler enters and exits the cartridge; and wherein the container is configured to hold a dry powder medicament including insulin and
  • 26. An inhaler comprising: a housing, a mouthpiece, and a removable cartridge contained within the housing, the cartridge including two or more rigid parts; wherein at least one of the two or more rigid parts of the removable cartridge is a container, wherein the mouthpiece is configured to engage the removable cartridge within the housing and translocate the container from a powder containment position in a first location to a dosing position in a second location different than the first location by moving the container relative to another of the at least two or more rigid parts of the removable cartridge thereby creating an entrance into and an exit from the container when in the dosing position; wherein in the powder containment position, there is not an airflow passageway through the container; wherein in the dosing position there is an airflow passageway through the container and 10% to 70% of total airflow through the inhaler enters and exits the removable cartridge; and wherein the removable cartridge is configured to hold a dry powder medicament including glucagon-like peptide 1 and
  • 27. An inhaler comprising: a housing, a mouthpiece, and a removable cartridge contained with the housing, the cartridge including two or more rigid parts; wherein at least one of the two or more rigid parts of the removable cartridge is a container, wherein the mouthpiece is configured to engage the removable cartridge within the housing and translocate the container from a powder containment position in a first location to a dosing position in a second location different than the first location by moving the container relative to another of the at least two or more rigid parts of the removable cartridge thereby creating an entrance into and an exit from the container when in the dosing position; wherein in the powder containment position, there is not an airflow passageway through the container; wherein in the dosing position there is an airflow passageway through the container and 10% to 70% of total airflow through the inhaler enters and exits the removable cartridge, wherein the removable cartridge is configured to hold a dry powder medicament including oxyntomodulin and
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/484,125, filed Jun. 12, 2009, which claims benefit of priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent Applications Ser. Nos. 61/157,506, filed Mar. 4, 2009, and 61/061,551, filed on Jun. 13, 2008, the contents of each of these applications are incorporated herein by reference in their entirety.

US Referenced Citations (1166)
Number Name Date Kind
2549303 Friden Apr 1951 A
2754276 Joseph et al. Jul 1956 A
D189076 Altman Oct 1960 S
3337740 Gray et al. Aug 1967 A
3407203 Buijle Oct 1968 A
3518340 Raper Jun 1970 A
3622053 Ryden Nov 1971 A
3673698 Guerard Jul 1972 A
3669113 Altounyan et al. Aug 1972 A
3823816 Controullis et al. Jul 1974 A
3823843 Stephens et al. Jul 1974 A
3856142 Vessalo Dec 1974 A
3873651 Mosley, Jr. et al. Mar 1975 A
3906950 Cocozza Sep 1975 A
3921637 Bennie et al. Nov 1975 A
3976773 Curran et al. Aug 1976 A
3980074 Watt et al. Sep 1976 A
3998226 Harris Dec 1976 A
4013075 Cocozza Mar 1977 A
4018619 Webster et al. Apr 1977 A
4022749 Kuechler May 1977 A
4040536 Schwarz Aug 1977 A
4047525 Kulessa et al. Sep 1977 A
4066756 Orr et al. Jan 1978 A
4078128 Hoyt et al. Mar 1978 A
4091077 Smith et al. May 1978 A
4098273 Glenn Jul 1978 A
4102953 Johnson et al. Jul 1978 A
4110240 Leo et al. Aug 1978 A
4148308 Sayer Apr 1979 A
4153689 Hirai May 1979 A
D252707 Besnard Aug 1979 S
4168002 Crosby Sep 1979 A
4171000 Uhle Oct 1979 A
4175556 Freezer Nov 1979 A
4187129 Bost et al. Feb 1980 A
4196196 Tiholiz Apr 1980 A
4206758 Hallworth et al. Jun 1980 A
4210140 James et al. Jul 1980 A
4211769 Okada Jul 1980 A
4268460 Boiarski et al. May 1981 A
4272398 Jaffe Jun 1981 A
4275820 LeBlond Jun 1981 A
4289759 Heavener Sep 1981 A
4294829 Suzuki Oct 1981 A
4300546 Kruber Nov 1981 A
4356167 Kelly Oct 1982 A
D269463 Young et al. Jun 1983 S
4407525 Hoppe Oct 1983 A
4456007 Nakao et al. Jun 1984 A
4481139 Folkers et al. Nov 1984 A
4483922 Carpenter Nov 1984 A
D276654 Snellman-Wasenius et al. Dec 1984 S
4487327 Grayson Dec 1984 A
4524769 Wetterlin Jun 1985 A
4526804 Escallon Jul 1985 A
4534345 Wetterlin Aug 1985 A
D282209 Newell et al. Jan 1986 S
4581020 Mittleman Apr 1986 A
4592348 Waters, IV et al. Jun 1986 A
4613500 Suzuki Sep 1986 A
4615817 McCoy Oct 1986 A
4624861 Yale et al. Nov 1986 A
4637996 Konishi Jan 1987 A
D288852 Miyoshi Mar 1987 S
4659696 Hirai et al. Apr 1987 A
4668218 Virtanen May 1987 A
4671954 Goldberg et al. Jun 1987 A
4681752 Melillo Jul 1987 A
D295321 Hallworth Apr 1988 S
4742156 Wright May 1988 A
4757066 Shiokari et al. Jul 1988 A
4792451 Kim Dec 1988 A
4811731 Newell et al. Mar 1989 A
D301273 Leonard May 1989 S
4835312 Itoh et al. May 1989 A
4841964 Hurka et al. Jun 1989 A
4847091 Illum Jul 1989 A
4849227 Cho Jul 1989 A
4861627 Mathiowitz Aug 1989 A
4866051 Hunt et al. Sep 1989 A
4873087 Morishita et al. Oct 1989 A
4887722 Greenward, Sr. Dec 1989 A
4900730 Miyauchi Feb 1990 A
4907583 Wetterlin Mar 1990 A
4925673 Steiner May 1990 A
4926852 Zoltan et al. May 1990 A
4927555 Colarusso, Jr. May 1990 A
4927928 Shroot et al. May 1990 A
4946828 Markussen Aug 1990 A
4981295 Belman et al. Jan 1991 A
4981625 Rhim et al. Jan 1991 A
4983402 Steiner et al. Jan 1991 A
4984158 Hillsman Jan 1991 A
4991605 Keritsis Feb 1991 A
4998624 Capes et al. Mar 1991 A
5006343 Benson Apr 1991 A
D316902 Hoefling May 1991 S
5017383 Ozawa et al. May 1991 A
5019400 Gombotz et al. May 1991 A
5021376 Nienburg et al. Jun 1991 A
5027806 Zoltan et al. Jul 1991 A
5042975 Chien Aug 1991 A
D321570 Blasdell et al. Nov 1991 S
5067500 Keritsis Nov 1991 A
5069204 Smith et al. Dec 1991 A
5074418 Buan et al. Dec 1991 A
5075027 Dixit et al. Dec 1991 A
5098590 Dixit et al. Mar 1992 A
5105291 Matsumoto et al. Apr 1992 A
D326517 Funai et al. May 1992 S
5110007 Law et al. May 1992 A
5110823 Hamaguchi et al. May 1992 A
5118666 Habener Jun 1992 A
5120712 Habener Jun 1992 A
5124291 Bremer et al. Jun 1992 A
5131539 Karita et al. Jul 1992 A
5139878 Kim Aug 1992 A
5145684 Liversidge et al. Sep 1992 A
5152284 Valentini et al. Oct 1992 A
D331106 Fuchs Nov 1992 S
5167506 Kilis et al. Dec 1992 A
5170801 Casper et al. Dec 1992 A
5188837 Domb Feb 1993 A
5196049 Coombs et al. Mar 1993 A
5201308 Newhouse Apr 1993 A
5203768 Haak et al. Apr 1993 A
5204108 Ilium Apr 1993 A
5208998 Dyler, Jr. May 1993 A
5215739 Kamishita et al. Jun 1993 A
D337636 Kocinski Jul 1993 S
D338062 Yair Aug 1993 S
D338268 Kobayashi et al. Aug 1993 S
5239992 Bougamont et al. Aug 1993 A
5239993 Evans Aug 1993 A
5244653 Berke et al. Sep 1993 A
5250287 Cocozza Oct 1993 A
D340975 Sladek Nov 1993 S
5260306 Boardman et al. Nov 1993 A
5270305 Palmer Dec 1993 A
5287850 Haber et al. Feb 1994 A
D344796 Sochon et al. Mar 1994 S
D344797 Sochon et al. Mar 1994 S
D345013 Huck et al. Mar 1994 S
5301666 Lerk et al. Apr 1994 A
5306453 Shulman Apr 1994 A
D347057 Yair May 1994 S
D348100 Clarke Jun 1994 S
5320094 Laube et al. Jun 1994 A
D348928 Ashley et al. Jul 1994 S
D348929 Paton Jul 1994 S
5327883 Williams et al. Jul 1994 A
5328464 Kriesel et al. Jul 1994 A
5331953 Andersson et al. Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
D349572 Jagnandan et al. Aug 1994 S
D350193 Huck et al. Aug 1994 S
5337740 Armstrong et al. Aug 1994 A
D350602 Hobbs Sep 1994 S
D350821 Wright et al. Sep 1994 S
5351683 Chiesi et al. Oct 1994 A
5352461 Feldstein et al. Oct 1994 A
5354562 Platz Oct 1994 A
5358734 Lenox et al. Oct 1994 A
D352107 Meier et al. Nov 1994 S
5360614 Fox et al. Nov 1994 A
5363842 Mishelevich et al. Nov 1994 A
5364838 Rubsamen Nov 1994 A
5372128 Haber et al. Dec 1994 A
D355029 Kinneir et al. Jan 1995 S
5385904 Andersson et al. Jan 1995 A
5394868 Ambrosio et al. Mar 1995 A
5401516 Milstein et al. Mar 1995 A
D357603 Wolff Apr 1995 S
5404871 Goodman et al. Apr 1995 A
D358880 Mulhauser et al. May 1995 S
5413804 Rhodes May 1995 A
5415162 Casper et al. May 1995 A
D359153 Viggiano Jun 1995 S
D359555 Funai et al. Jun 1995 S
5424286 Eng Jun 1995 A
5437271 Hodson et al. Aug 1995 A
5443841 Milstein et al. Aug 1995 A
D362500 Cook et al. Sep 1995 S
5447150 Bacon Sep 1995 A
5447151 Bruna et al. Sep 1995 A
5447728 Milstein et al. Sep 1995 A
5451410 Milstein et al. Sep 1995 A
D363775 Hobbs Oct 1995 S
5454871 Liaw et al. Oct 1995 A
5455335 Kahne et al. Oct 1995 A
5469750 Lloyd et al. Nov 1995 A
5469971 Chilton et al. Nov 1995 A
5476093 Laniken Dec 1995 A
5477285 Riddle et al. Dec 1995 A
D365876 Chawla Jan 1996 S
5482032 Smith et al. Jan 1996 A
5482927 Maniar et al. Jan 1996 A
5483954 Mecikalski Jan 1996 A
5484606 Dhaber et al. Jan 1996 A
5485135 Hipp Jan 1996 A
5487378 Robertson et al. Jan 1996 A
5492112 Mecikalski et al. Feb 1996 A
D368364 Reitano et al. Apr 1996 S
5503144 Bacon Apr 1996 A
5503852 Steiner et al. Apr 1996 A
5505194 Adjei et al. Apr 1996 A
5506203 Backstrom et al. Apr 1996 A
D370255 Yamamoto et al. May 1996 S
5514646 Chance et al. May 1996 A
5518998 Backstrom et al. May 1996 A
5524613 Haber et al. Jun 1996 A
5532461 Crummenauer et al. Jul 1996 A
5533502 Piper Jul 1996 A
5533505 Kallstrand et al. Jul 1996 A
5541155 Leone-Bay Jul 1996 A
5542411 Rex Aug 1996 A
5542539 Early Aug 1996 A
5545618 Buckley et al. Aug 1996 A
5547929 Anderson, Jr. et al. Aug 1996 A
5562909 Allcock et al. Oct 1996 A
5562918 Stimpson Oct 1996 A
5568884 Bruna Oct 1996 A
5570810 Lambelet, Jr. et al. Nov 1996 A
5571795 Kahne et al. Nov 1996 A
5574008 Johnson et al. Nov 1996 A
5577497 Mecikalski et al. Nov 1996 A
5578323 Milstein et al. Nov 1996 A
5584417 Graf et al. Dec 1996 A
D377215 Rand Jan 1997 S
D377686 Waldeck et al. Jan 1997 S
5595175 Malcher et al. Jan 1997 A
5596701 Augusteijn et al. Jan 1997 A
D377861 Jacober Feb 1997 S
5598835 von Schrader Feb 1997 A
5601846 Milstein et al. Feb 1997 A
5610271 Dooley et al. Mar 1997 A
5614492 Habener Mar 1997 A
5615670 Rhodes et al. Apr 1997 A
5617844 King Apr 1997 A
5619984 Hodson et al. Apr 1997 A
5622164 Kilis et al. Apr 1997 A
5622166 Eisele et al. Apr 1997 A
5623724 Gurkovich et al. Apr 1997 A
5623920 Bryant Apr 1997 A
D379506 Maher May 1997 S
5629020 Leone-Bay May 1997 A
5631224 Efendic et al. May 1997 A
5632971 Yang May 1997 A
5634900 Makino et al. Jun 1997 A
5639441 Sievers et al. Jun 1997 A
5641861 Dooley et al. Jun 1997 A
D381416 Hansson et al. Jul 1997 S
5642727 Datta et al. Jul 1997 A
5642728 Andersson et al. Jul 1997 A
5643957 Leone-Bay et al. Jul 1997 A
5645051 Schultz Jul 1997 A
5651359 Bougamont et al. Jul 1997 A
5653961 McNally et al. Aug 1997 A
5655516 Goodman et al. Aug 1997 A
5655523 Hodson et al. Aug 1997 A
5657748 Braithwaite Aug 1997 A
5658878 Backstrom et al. Aug 1997 A
5660169 Kallstrand et al. Aug 1997 A
5672581 Rubsamen et al. Sep 1997 A
5673686 Villax et al. Oct 1997 A
5679377 Bernstein et al. Oct 1997 A
5687710 Ambrosio et al. Nov 1997 A
5690910 Ahmed et al. Nov 1997 A
5693338 Milstein Dec 1997 A
5699789 Hendricks Dec 1997 A
D389238 Kirk, III et al. Jan 1998 S
D389570 Savolainen Jan 1998 S
5705483 Galloway et al. Jan 1998 A
D390651 Smith et al. Feb 1998 S
D390653 Blasdell et al. Feb 1998 S
5714007 Pletcher et al. Feb 1998 A
5714167 Milstein et al. Feb 1998 A
5715811 Ohki et al. Feb 1998 A
5727333 Folan Mar 1998 A
5727546 Clarke et al. Mar 1998 A
5740793 Hodson et al. Apr 1998 A
5740794 Smith et al. Apr 1998 A
5746197 Williams May 1998 A
5746227 Rose et al. May 1998 A
5747445 Backstorm et al. May 1998 A
5752505 Ohki et al. May 1998 A
5755218 Johansson et al. May 1998 A
D395147 Vidgren et al. Jun 1998 S
D395499 Eisele et al. Jun 1998 S
5758638 Kreamer Jun 1998 A
5763396 Weiner et al. Jun 1998 A
5766620 Heiber et al. Jun 1998 A
5766633 Milstein et al. Jun 1998 A
5769073 Eason et al. Jun 1998 A
5772085 Bryant et al. Jun 1998 A
RE35862 Steiner et al. Jul 1998 E
5775320 Patton et al. Jul 1998 A
5785049 Smith et al. Jul 1998 A
5785989 Stanley et al. Jul 1998 A
D397435 Naumann Aug 1998 S
5792451 Sarubbi et al. Aug 1998 A
5794613 Piskorski Aug 1998 A
5797391 Cook et al. Aug 1998 A
D398992 Feret Sep 1998 S
5799821 Lambelet, Jr. et al. Sep 1998 A
5807315 Va Antwerp et al. Sep 1998 A
5809997 Wolf Sep 1998 A
5811127 Milstein et al. Sep 1998 A
5813397 Goodman et al. Sep 1998 A
5817343 Burke Oct 1998 A
5824345 Milstein et al. Oct 1998 A
5839429 Marnfeldt et al. Nov 1998 A
5840279 Narodylo et al. Nov 1998 A
5840340 Milstein et al. Nov 1998 A
5846447 Beatty Dec 1998 A
5848589 Welnetz Dec 1998 A
5849322 Ebert et al. Dec 1998 A
5857457 Hyppola Jan 1999 A
5858099 Sun et al. Jan 1999 A
5865012 Hansson et al. Feb 1999 A
5868774 Reil Feb 1999 A
5874064 Edwards et al. Feb 1999 A
5875776 Vaghefi Mar 1999 A
5877174 Ono et al. Mar 1999 A
5881719 Gottenauer et al. Mar 1999 A
5881721 Bunce et al. Mar 1999 A
5884620 Gonda et al. Mar 1999 A
5888477 Gonda et al. Mar 1999 A
5896855 Hobbs et al. Apr 1999 A
5901703 Ohki et al. May 1999 A
5904139 Hauser May 1999 A
D410541 Moulin Jun 1999 S
D411005 Coe Jun 1999 S
5908639 Simpkin et al. Jun 1999 A
5912011 Makino et al. Jun 1999 A
5918594 Asking et al. Jul 1999 A
5919897 Dooley et al. Jul 1999 A
5921237 Eisele et al. Jul 1999 A
5922253 Herbert et al. Jul 1999 A
5924419 Kotliar Jul 1999 A
5929027 Takama et al. Jul 1999 A
D412572 Gray Aug 1999 S
D412744 Braithwaite Aug 1999 S
D412978 Cameron Aug 1999 S
D412979 Weinstein et al. Aug 1999 S
5934273 Andersson et al. Aug 1999 A
5942242 Mizushima et al. Aug 1999 A
5972242 Mizushima et al. Aug 1999 A
5948749 Igarashi et al. Sep 1999 A
5952008 Backstrom et al. Sep 1999 A
5954047 Armer et al. Sep 1999 A
5965701 Junien Oct 1999 A
5971951 Ruskewicz Oct 1999 A
D416085 Forssell et al. Nov 1999 S
D416621 Forssell et al. Nov 1999 S
D416998 Hodson et al. Nov 1999 S
D417271 Denyer et al. Nov 1999 S
5975347 Lambelet, Jr. et al. Nov 1999 A
5976559 Milstein Nov 1999 A
5976569 Milstein Nov 1999 A
5976574 Gordon Nov 1999 A
5977071 Galloway et al. Nov 1999 A
5980865 Ahmed et al. Nov 1999 A
5981488 Hoffman Nov 1999 A
5983893 Wetterlin Nov 1999 A
5985248 Gordon et al. Nov 1999 A
5985309 Edwards et al. Nov 1999 A
5990077 Drucker Nov 1999 A
D417732 Dagsland et al. Dec 1999 S
D417912 Dagsland et al. Dec 1999 S
5996577 Ohki et al. Dec 1999 A
5997848 Patton et al. Dec 1999 A
6001336 Gordon Dec 1999 A
6006747 Eisele et al. Dec 1999 A
6006753 Efendic Dec 1999 A
D418600 Haerle Jan 2000 S
D420736 Moulin Feb 2000 S
6026809 Abrams et al. Feb 2000 A
6029663 Eisele et al. Feb 2000 A
D421800 Doat Mar 2000 S
6039208 Lambelet et al. Mar 2000 A
6043214 Jensen et al. Mar 2000 A
6045828 Bystrom et al. Apr 2000 A
6051256 Platz et al. Apr 2000 A
6051551 Hughes et al. Apr 2000 A
6055980 Mecikalski et al. May 2000 A
6056169 Bruna et al. May 2000 A
6060069 Hill et al. May 2000 A
6063910 Debenedetti et al. May 2000 A
6071497 Steiner et al. Jun 2000 A
6073629 Hardy et al. Jun 2000 A
6076521 Lindahl et al. Jun 2000 A
6077543 Gordon et al. Jun 2000 A
6080762 Allen et al. Jun 2000 A
6085745 Levander et al. Jun 2000 A
D428486 Schuckmann Jul 2000 S
6087334 Beeley et al. Jul 2000 A
6087351 Nye Jul 2000 A
6089228 Smith et al. Jul 2000 A
6095136 Virtanen Aug 2000 A
6098618 Jennings et al. Aug 2000 A
6098619 Britto et al. Aug 2000 A
6102035 Asking et al. Aug 2000 A
6105571 Coffee Aug 2000 A
6105574 Jahnsson Aug 2000 A
6109261 Clarke et al. Aug 2000 A
6109481 Alexander et al. Aug 2000 A
6099517 Daughterty Sep 2000 A
6116237 Schultz Sep 2000 A
6116238 Jackson et al. Sep 2000 A
6116239 Volgyesi Sep 2000 A
6119684 Nohl et al. Sep 2000 A
6119688 Whaley et al. Sep 2000 A
6131567 Gonda et al. Oct 2000 A
6132766 Sankaram et al. Oct 2000 A
6133235 Galloway et al. Oct 2000 A
6142145 Dagsland Nov 2000 A
6152130 Abrams Nov 2000 A
6153613 Ono et al. Nov 2000 A
6155423 Katzne et al. Dec 2000 A
6156114 Bell et al. Dec 2000 A
6158431 Poole Dec 2000 A
6159360 Gerteis et al. Dec 2000 A
RE37053 Hanes et al. Feb 2001 E
6182655 Keller et al. Feb 2001 B1
6187291 Weinstein et al. Feb 2001 B1
6191102 DiMarchi et al. Feb 2001 B1
6192876 Denyer et al. Feb 2001 B1
6193844 McLaughlin et al. Feb 2001 B1
6193957 Ahmed Feb 2001 B1
D438612 Suh Mar 2001 S
D439325 Frost Mar 2001 S
D439656 Andersson et al. Mar 2001 S
6198847 Washizawa Mar 2001 B1
D441446 Dagsland et al. May 2001 S
D441859 Pera May 2001 S
D442685 Sladek May 2001 S
6235725 Ahmed May 2001 B1
D444226 Geert-Jensen et al. Jun 2001 S
6250300 Andersson et al. Jun 2001 B1
6254854 Edwards et al. Jul 2001 B1
6257232 Andersson et al. Jul 2001 B1
6258816 Singh et al. Jul 2001 B1
6263871 Brown et al. Jul 2001 B1
6269952 Watt et al. Aug 2001 B1
6273084 Frig Aug 2001 B1
6273085 Eisele et al. Aug 2001 B1
6273086 Ohki et al. Aug 2001 B1
6277819 Efendic Aug 2001 B1
6279511 Loughnane Aug 2001 B1
D448076 Von Shuckmann Sep 2001 S
6286506 MacAndrew et al. Sep 2001 B1
6286507 Jahnsson Sep 2001 B1
6294204 Rossling et al. Sep 2001 B1
D449684 Christrup et al. Oct 2001 S
6298846 Ohki et al. Oct 2001 B1
6298847 Datta et al. Oct 2001 B1
D450117 Braithwaite et al. Nov 2001 S
D451597 Suh Dec 2001 S
6328034 Eisele et al. Dec 2001 B1
6331318 Milstein Dec 2001 B1
D452910 Braithwaite et al. Jan 2002 S
6335316 Hughes et al. Jan 2002 B1
D453264 Acevedo, Jr. Feb 2002 S
6347629 Braithwaite Feb 2002 B1
6348447 Hellstrom et al. Feb 2002 B1
6357442 Casper et al. Mar 2002 B1
6358058 Strupat et al. Mar 2002 B1
6358924 Hoffman Mar 2002 B1
6360743 Andersson et al. Mar 2002 B1
6360929 McCarthy Mar 2002 B1
D455208 Bacon et al. Apr 2002 S
6363932 Forchione et al. Apr 2002 B1
6365190 Gordon et al. Apr 2002 B1
6372258 Platz et al. Apr 2002 B1
6375975 Modi Apr 2002 B1
6380357 Hermeling et al. Apr 2002 B2
6386195 Coffee May 2002 B1
6388053 Galloway et al. May 2002 B1
6394085 Hardy et al. May 2002 B1
6395300 Straub et al. May 2002 B1
6395774 Milstein May 2002 B1
6410513 Galloway et al. Jun 2002 B1
D460173 Harrison et al. Jul 2002 S
6415784 Christrup et al. Jul 2002 B1
6418926 Chawla Jul 2002 B1
6423344 Platz et al. Jul 2002 B1
D461239 Cassidy Aug 2002 S
6427688 Ligotke et al. Aug 2002 B1
6428771 Steiner et al. Aug 2002 B1
6428805 Dohi et al. Aug 2002 B1
6432383 Modi Aug 2002 B1
6436443 Edwards et al. Aug 2002 B2
6439227 Myrman et al. Aug 2002 B1
6440463 Feldstein et al. Aug 2002 B1
6441172 Nefzi et al. Aug 2002 B1
D463544 Engelberth et al. Sep 2002 S
6443143 Ishida et al. Sep 2002 B1
6444226 Steiner et al. Sep 2002 B1
6446626 Virtanen Sep 2002 B1
6446627 Bowman et al. Sep 2002 B1
6447750 Cutie et al. Sep 2002 B1
6447751 Weinstein et al. Sep 2002 B1
6447753 Edwards et al. Sep 2002 B2
6451337 Smith et al. Sep 2002 B1
6457470 Coffee Oct 2002 B1
6468507 Cutie et al. Oct 2002 B1
6470884 Horlin Oct 2002 B2
6479049 Platz et al. Nov 2002 B1
6484715 Ritsche et al. Nov 2002 B1
6484717 Dagsland et al. Nov 2002 B1
D469527 Keller et al. Jan 2003 S
6503480 Edwards et al. Jan 2003 B1
6509006 Platz et al. Jan 2003 B1
6509313 Smith Jan 2003 B1
D469866 Albulet et al. Feb 2003 S
6514482 Bartus et al. Feb 2003 B1
6518239 Kuo et al. Feb 2003 B1
6523536 Fugelsang et al. Feb 2003 B2
D471273 Albulet et al. Mar 2003 S
6528096 Musa et al. Mar 2003 B1
6532437 Clardy et al. Mar 2003 B1
6536427 Davies et al. Mar 2003 B2
D473298 Bowman et al. Apr 2003 S
D473640 Cuffaro et al. Apr 2003 S
6540672 Simonsen et al. Apr 2003 B1
6540982 Adjei et al. Apr 2003 B1
6540983 Adjei et al. Apr 2003 B1
6543448 Smith et al. Apr 2003 B1
6546929 Burr et al. Apr 2003 B2
6555127 Steiner Apr 2003 B2
6555521 Hermeling et al. Apr 2003 B2
D474536 Albulet et al. May 2003 S
D475133 McLuckie May 2003 S
6557549 Schmidt et al. May 2003 B2
6561186 Casper et al. May 2003 B2
6567686 Sexton May 2003 B2
6568390 Nichols et al. May 2003 B2
6569406 Stevenson et al. May 2003 B2
6571793 Nilsson et al. Jun 2003 B1
6572893 Gordon et al. Jun 2003 B2
6575160 Volgyesi Jun 2003 B1
6575162 Rand Jun 2003 B1
6578571 Watt Jun 2003 B1
6582728 Platz et al. Jun 2003 B1
6583111 DiMarchi et al. Jun 2003 B1
D477665 Myrman et al. Jul 2003 S
6589560 Foster et al. Jul 2003 B2
6591832 DeJonge Jul 2003 B1
6592904 Platz et al. Jul 2003 B2
6595205 Andersson et al. Jul 2003 B2
6595208 Coffee et al. Jul 2003 B1
D478983 Whitehall et al. Aug 2003 S
6606992 Schuler et al. Aug 2003 B1
D479745 Albulet et al. Sep 2003 S
6613308 Bartus et al. Sep 2003 B2
6615987 Greenhill et al. Sep 2003 B1
6620910 Calas et al. Sep 2003 B1
6626173 Genova et al. Sep 2003 B2
6651987 Greenhill et al. Sep 2003 B1
D480806 Engelberth et al. Oct 2003 S
6630169 Bot et al. Oct 2003 B1
6632258 Wheelock et al. Oct 2003 B1
6632456 Backstrom et al. Oct 2003 B1
6635283 Edwards et al. Oct 2003 B2
6637431 Ekelius et al. Oct 2003 B2
6640050 Nichols et al. Oct 2003 B2
6644309 Capser et al. Nov 2003 B2
6645468 Cutie et al. Nov 2003 B2
6645504 Weiner et al. Nov 2003 B1
6652838 Weinstein et al. Nov 2003 B2
6652885 Steiner et al. Nov 2003 B2
D483860 Knoch Dec 2003 S
6655379 Clark et al. Dec 2003 B2
6655380 Andersson et al. Dec 2003 B1
6655381 Keane et al. Dec 2003 B2
6660716 Yakubu-Madus et al. Dec 2003 B1
6663898 Milstein Dec 2003 B2
6668826 Myrman et al. Dec 2003 B1
6672304 Casper et al. Jan 2004 B1
6676931 Dugger, III. Jan 2004 B2
6679255 Pera Jan 2004 B2
6681767 Patton et al. Jan 2004 B1
6681768 Haaije de Boer et al. Jan 2004 B2
6685967 Patton et al. Feb 2004 B1
6696090 Nilsson et al. Feb 2004 B1
6698421 Attolini Mar 2004 B2
6698422 Fugelsang et al. Mar 2004 B2
6698425 Widerstorm Mar 2004 B1
6701917 O'Leary Mar 2004 B2
6703361 Weiner et al. Mar 2004 B2
6703365 Galloway et al. Mar 2004 B2
6703381 Ekwuribe et al. Mar 2004 B1
6705313 Niccolai Mar 2004 B2
6715486 Gieschen et al. Apr 2004 B2
6715487 Nichols et al. Apr 2004 B2
6718972 O'Leary Apr 2004 B2
6720407 Hughes et al. Apr 2004 B1
6722363 von Schuckmann Apr 2004 B1
D489448 Shayan May 2004 S
6729324 Casper et al. May 2004 B2
6729328 Raul May 2004 B2
6737045 Patton May 2004 B2
6745761 Christrup et al. Jun 2004 B2
6747006 Efendic Jun 2004 B2
6748946 Rand Jun 2004 B1
6748947 Keane et al. Jun 2004 B2
6752145 Bonney et al. Jun 2004 B1
6755190 Rasmussen Jun 2004 B2
D492769 Hatanaka Jul 2004 S
D493220 Burge et al. Jul 2004 S
D493519 Jonsson et al. Jul 2004 S
6774112 Gougoutas Aug 2004 B2
6787152 Kirby et al. Sep 2004 B2
6790496 Levander et al. Sep 2004 B1
6792945 Davies et al. Sep 2004 B2
6797258 Platz et al. Sep 2004 B2
6799572 Nichols et al. Oct 2004 B2
6800643 Cuenoud et al. Oct 2004 B2
6803044 Catania et al. Oct 2004 B1
6821949 Bridon et al. Nov 2004 B2
6823863 Huxham et al. Nov 2004 B2
D499802 Pinon et al. Dec 2004 S
6830046 Blakley et al. Dec 2004 B2
6838075 Stevenson et al. Jan 2005 B2
6838076 Platton et al. Jan 2005 B2
6847595 Tanaka Jan 2005 B2
6848443 Schmidt et al. Feb 2005 B2
6849708 Habener Feb 2005 B1
6852690 Nauck et al. Feb 2005 B1
6858199 Edwards et al. Feb 2005 B1
6860262 Christrup et al. Mar 2005 B2
6866037 Aslin et al. Mar 2005 B1
6871646 Keane et al. Mar 2005 B2
6871647 Allan et al. Mar 2005 B2
6880554 Coffee Apr 2005 B1
6881423 Dohi et al. Apr 2005 B2
6884435 O'Hagan et al. Apr 2005 B1
6887459 Haeberlin May 2005 B1
6887849 Bridon et al. May 2005 B2
6889687 Olsson May 2005 B1
6892728 Helgesson et al. May 2005 B2
6896906 Hastedt et al. May 2005 B2
6904907 Speldrich et al. Jun 2005 B2
6906030 Milstein Jun 2005 B2
6916354 Elliot Jul 2005 B2
6918991 Chickering, III et al. Jul 2005 B2
6921458 Chickering, III et al. Jul 2005 B2
6921528 Edwards et al. Jul 2005 B2
6923175 Poole Aug 2005 B2
D509296 Minshull et al. Sep 2005 S
D509898 Bunce et al. Sep 2005 S
6948496 Eason et al. Sep 2005 B2
6949258 Zhang Sep 2005 B2
6951215 Hoffman Oct 2005 B1
6953812 Joregenson et al. Oct 2005 B2
D511208 Pardonage et al. Nov 2005 S
D511977 Saelzer Nov 2005 S
6962006 Chickering, III et al. Nov 2005 B2
D512777 Beisner et al. Dec 2005 S
6979437 Bartus et al. Dec 2005 B2
D514222 Andersson et al. Jan 2006 S
6981499 Andersson et al. Jan 2006 B2
6989155 Ganderton et al. Jan 2006 B1
6991779 Steiner et al. Jan 2006 B2
D515696 Lucking et al. Feb 2006 S
D515924 Grant Feb 2006 S
D516211 Minshull et al. Feb 2006 S
6998387 Goke et al. Feb 2006 B1
D518170 Clarke et al. Mar 2006 S
D518171 Anderson et al. Mar 2006 S
7022674 DeFelippis et al. Apr 2006 B2
7025056 Eason et al. Apr 2006 B2
7028686 Gonda et al. Apr 2006 B2
7030084 Ekwuribe et al. Apr 2006 B2
7032593 Johnston et al. Apr 2006 B2
7035294 Dove et al. Apr 2006 B2
7047967 Knudsen May 2006 B2
7048908 Basu et al. May 2006 B2
7060274 Blumberg et al. Jun 2006 B2
7067129 Blumberg et al. Jun 2006 B2
7077130 Nichols et al. Jul 2006 B2
7080642 Hodson et al. Jul 2006 B2
7084243 Glaesner et al. Aug 2006 B2
7093594 Harrison et al. Aug 2006 B2
7093595 Nesbitt Aug 2006 B2
D527817 Ziegler et al. Sep 2006 S
7101843 Glaesner et al. Sep 2006 B2
7101866 Biggadike et al. Sep 2006 B2
7105489 Hathaway Sep 2006 B2
7107988 Pinon et al. Sep 2006 B2
7109161 Gayed Sep 2006 B1
D529604 Young et al. Oct 2006 S
7125566 Etter Oct 2006 B2
7128067 Byron et al. Oct 2006 B2
7131441 Keller et al. Nov 2006 B1
7132115 Musa et al. Nov 2006 B2
7140365 Poole et al. Nov 2006 B2
D533268 Olfati Dec 2006 S
7143764 Dagsland et al. Dec 2006 B1
7143765 Asking et al. Dec 2006 B2
7144863 DeFelippis et al. Dec 2006 B2
7146978 Edwards et al. Dec 2006 B2
7151456 Godfrey Dec 2006 B2
7163014 Nichols et al. Jan 2007 B2
D537522 Cox et al. Feb 2007 S
7171965 Young et al. Feb 2007 B2
7172768 Hastedt et al. Feb 2007 B2
7179788 DeFelippis et al. Feb 2007 B2
D537936 Cox et al. Mar 2007 S
D538423 Berube et al. Mar 2007 S
7185650 Huber et al. Mar 2007 B2
D540671 Born Apr 2007 S
D541151 Born Apr 2007 S
7198806 Berndt Apr 2007 B2
7211557 DiMarchi et al. May 2007 B2
7219664 Ruckdeschel et al. May 2007 B2
7223728 Yakubu-Madus et al. May 2007 B2
D544093 Eriksen Jun 2007 S
7231919 Giroux Jun 2007 B2
7232897 Hotamisligil et al. Jun 2007 B2
7234459 Del Bon Jun 2007 B2
7234460 Greenleaf et al. Jun 2007 B2
7234464 Goede et al. Jun 2007 B2
7238663 DeFelippis et al. Jul 2007 B2
7246617 Hammer et al. Jul 2007 B1
D548330 Cox et al. Aug 2007 S
D548618 Ferguson et al. Aug 2007 S
D548619 Ferguson et al. Aug 2007 S
D548833 Young et al. Aug 2007 S
D549111 Ferguson et al. Aug 2007 S
7258118 Goede et al. Aug 2007 B2
7259233 Dodd et al. Aug 2007 B2
D550835 Tanaka et al. Sep 2007 S
7265087 Goke et al. Sep 2007 B1
7270124 Rasmussen Sep 2007 B2
D552729 Cox et al. Oct 2007 S
7276534 Milstein Oct 2007 B2
7278419 Gonda Oct 2007 B2
7278426 Myrman et al. Oct 2007 B2
7278843 Feldstein et al. Oct 2007 B2
7279457 Pohl et al. Oct 2007 B2
7284553 Hochrainer Oct 2007 B2
D557799 Greenhalgh et al. Dec 2007 S
7305986 Steiner et al. Dec 2007 B1
7306787 Tarara et al. Dec 2007 B2
D560793 Pearl et al. Jan 2008 S
7314859 Green et al. Jan 2008 B2
7316748 Li et al. Jan 2008 B2
7331340 Barney Feb 2008 B2
7334577 Gumaste et al. Feb 2008 B2
7344734 Heijerman et al. Mar 2008 B2
D566549 Russell Apr 2008 S
7368102 Tarara et al. May 2008 B2
7373938 Nichols et al. May 2008 B2
7377277 Hickey et al. May 2008 B2
D506680 Saelzer Jun 2008 S
7387122 Nishibayashi et al. Jun 2008 B2
7399528 Caponetti et al. Jul 2008 B2
7401712 Kaye et al. Jul 2008 B2
7401713 Ede et al. Jul 2008 B2
7402564 Schteingart et al. Jul 2008 B1
7414720 Wachtel et al. Aug 2008 B2
D577815 Gokhale et al. Sep 2008 S
7422013 Burr et al. Sep 2008 B2
D579549 Birath et al. Oct 2008 S
7448375 Gonda et al. Nov 2008 B2
7448379 Yamashita et al. Nov 2008 B2
7451761 Hickey et al. Nov 2008 B2
7453556 Hochrainer et al. Nov 2008 B2
D583463 Wood et al. Dec 2008 S
7461653 Oliva Dec 2008 B2
7462367 Schmidt et al. Dec 2008 B2
7464706 Steiner et al. Dec 2008 B2
7469696 Yang et al. Dec 2008 B2
7500479 Nichols et al. Mar 2009 B2
7503324 Barney et al. Mar 2009 B2
7504538 Chang et al. Mar 2009 B2
7517874 Beckett et al. Apr 2009 B2
7520278 Crowder et al. Apr 2009 B2
7521069 Patton et al. Apr 2009 B2
7533668 Widerstrom May 2009 B1
D594753 Eadicicco et al. Jun 2009 S
7556798 Edwards et al. Jul 2009 B2
7559322 Foley et al. Jul 2009 B2
D597418 Stojek Aug 2009 S
D597657 Kinsey et al. Aug 2009 S
D598785 Stojek Aug 2009 S
7584846 Senter Sep 2009 B2
7598222 Prouty, Jr. et al. Oct 2009 B2
D604832 Smutney et al. Nov 2009 S
D604833 Polidoro Nov 2009 S
D605752 Polidoro Dec 2009 S
D605753 Smutney Dec 2009 S
7625865 Colombo Dec 2009 B2
7648960 Steiner et al. Jan 2010 B2
D613849 Smutney Apr 2010 S
D614045 Gaudenzi et al. Apr 2010 S
D614760 Smutney et al. Apr 2010 S
7694676 Wachtel Apr 2010 B2
7709639 Stevenson May 2010 B2
7713937 Schteingart et al. May 2010 B2
7727963 Schteingart et al. Jun 2010 B2
D620812 Gaudenzi et al. Aug 2010 S
7794754 Feldstein et al. Sep 2010 B2
7799344 Oberg Sep 2010 B2
7803404 Hokenson Sep 2010 B2
7820676 Leone-Bay et al. Oct 2010 B2
D626836 Lien Nov 2010 S
D628090 Stuiber et al. Nov 2010 S
7833549 Steiner et al. Nov 2010 B2
7833550 Steiner et al. Nov 2010 B2
7842662 Schteingart et al. Nov 2010 B2
D629505 Adamo Dec 2010 S
D629506 Adamo Dec 2010 S
D629886 Adamo Dec 2010 S
D629887 Adamo Dec 2010 S
D629888 Adamo Dec 2010 S
D635241 McLean Mar 2011 S
D635242 Adamo Mar 2011 S
D635243 Kinsey Mar 2011 S
7913688 Cross Mar 2011 B2
D636867 Polidoro et al. Apr 2011 S
D636868 Kinsey et al. Apr 2011 S
D636869 Laurenzi et al. Apr 2011 S
7919119 Straub et al. Apr 2011 B2
7943178 Steiner et al. May 2011 B2
7943572 Cheatham et al. May 2011 B2
7954491 Hrkach Jun 2011 B2
7959609 Gaydos et al. Jun 2011 B2
D641076 Grunstad et al. Jul 2011 S
D643308 Bergey Aug 2011 S
D645954 Hately Sep 2011 S
D647195 Clarke et al. Oct 2011 S
D647196 Clarke et al. Oct 2011 S
8037880 Zhu et al. Oct 2011 B2
8037881 Pentafragas Oct 2011 B2
8039431 Wilson et al. Oct 2011 B2
8047203 Young et al. Nov 2011 B2
D652322 Stuiber et al. Jan 2012 S
8109267 Villax et al. Feb 2012 B2
8119593 Richardson Feb 2012 B2
D655622 Sadler et al. Mar 2012 S
8133514 Milstein Mar 2012 B2
8146588 Steiner et al. Apr 2012 B2
8156936 Steiner et al. Apr 2012 B2
D659020 Kemner May 2012 S
D659022 Kemner May 2012 S
D660956 Zuyderhoudt May 2012 S
8166970 Poole et al. May 2012 B2
8172817 Michaels et al. May 2012 B2
8196576 Kriksunov Jun 2012 B2
8201555 Chawla Jun 2012 B2
8202992 Stevenson Jun 2012 B2
D663830 Sears Jul 2012 S
D664640 Smutney et al. Jul 2012 S
8217007 Schteingart Jul 2012 B1
8227409 Kraft Jul 2012 B2
8236766 Schteingart Aug 2012 B2
8252916 Simard et al. Aug 2012 B2
8258095 Boss et al. Sep 2012 B2
8278308 Leone-Bay et al. Oct 2012 B2
8293869 Bossard Oct 2012 B2
8314106 Kraft Nov 2012 B2
D671842 Bergey Dec 2012 S
D674893 Kinsey et al. Jan 2013 S
8372804 Richardson Feb 2013 B2
8389470 Steiner Mar 2013 B2
8394414 Steiner et al. Mar 2013 B2
8408200 Clark et al. Apr 2013 B2
8420604 Hokenson Apr 2013 B2
8424518 Smutney Apr 2013 B2
8485180 Smutney Jul 2013 B2
8486894 Schteingart et al. Jul 2013 B2
8499757 Smutney et al. Aug 2013 B2
8512932 Wilson et al. Aug 2013 B2
8522775 Malhotra et al. Sep 2013 B2
8536131 Schteingart et al. Sep 2013 B2
8538707 Adamo et al. Sep 2013 B2
8539946 Esteve et al. Sep 2013 B2
8551528 Grant et al. Oct 2013 B2
8563101 Spallek Oct 2013 B2
8636001 Smutney Jan 2014 B2
8642548 Richardson et al. Feb 2014 B2
8671937 Steiner et al. Mar 2014 B2
8677992 Villax Mar 2014 B2
8763606 Mosier et al. Jul 2014 B2
8778403 Grant et al. Jul 2014 B2
8783249 Poole et al. Jul 2014 B2
D711740 Lien Aug 2014 S
8808786 Jinks et al. Aug 2014 B2
8820324 Smith et al. Sep 2014 B2
8909487 Adamo et al. Dec 2014 B2
8925726 Bergey Jan 2015 B2
9041925 Adamo et al. May 2015 B2
9138407 Caponetti et al. Sep 2015 B2
D771237 Smutney et al. Nov 2016 S
20010020147 Staniforth et al. Sep 2001 A1
20010039442 Gorge et al. Nov 2001 A1
20020000225 Schuler et al. Jan 2002 A1
20020015737 Shih et al. Feb 2002 A1
20020033177 Ohki et al. Mar 2002 A1
20020052381 Bar-Or et al. May 2002 A1
20020053344 Davies et al. May 2002 A1
20020053347 Ziaee May 2002 A1
20020065239 Caplan et al. May 2002 A1
20020088462 Genova et al. Jul 2002 A1
20020101590 Shimaoka Aug 2002 A1
20020144680 Nilsson et al. Oct 2002 A1
20020161001 Kanstrup et al. Oct 2002 A1
20030000524 Andersson et al. Jan 2003 A1
20030010794 Herdtle et al. Jan 2003 A1
20030013641 Steiner et al. Jan 2003 A1
20030017211 Steiner Jan 2003 A1
20030053960 Heijerman et al. Mar 2003 A1
20030064097 Patel et al. Apr 2003 A1
20030068378 Chen et al. Apr 2003 A1
20030099636 Epshtein et al. May 2003 A1
20030136405 Goede et al. Jul 2003 A1
20030168370 Merboth et al. Sep 2003 A1
20030194420 Holl et al. Oct 2003 A1
20030235538 Zireneberg Dec 2003 A1
20040022861 Williams et al. Feb 2004 A1
20040024180 Drauz Feb 2004 A1
20040025875 Reber et al. Feb 2004 A1
20040034014 Kanstrup et al. Feb 2004 A1
20040038865 Gelber et al. Feb 2004 A1
20040053819 Dodd et al. Mar 2004 A1
20040062722 Gonda et al. Apr 2004 A1
20040076588 Batycky et al. Apr 2004 A1
20040077528 Steiner et al. Apr 2004 A1
20040096403 Steiner May 2004 A1
20040107963 Finlay et al. Jun 2004 A1
20040121964 Madar et al. Jun 2004 A1
20040138099 Draeger Jul 2004 A1
20040151059 Roberts, II et al. Aug 2004 A1
20040151774 Pauletti et al. Aug 2004 A1
20040157928 Kiim et al. Aug 2004 A1
20040163648 Burton Aug 2004 A1
20040182387 Steiner et al. Sep 2004 A1
20040187869 Bjorndal et al. Sep 2004 A1
20040204439 Staniforth et al. Oct 2004 A1
20040204440 Staniforth et al. Oct 2004 A1
20040211419 Eason et al. Oct 2004 A1
20040211420 Minshull Oct 2004 A1
20040234615 Sabetsky Nov 2004 A1
20040234616 Sabetsky Nov 2004 A1
20040235956 Quay Nov 2004 A1
20040241232 Brown et al. Dec 2004 A1
20040247628 Lintz et al. Dec 2004 A1
20040250812 Davies et al. Dec 2004 A1
20050000518 Dunkley et al. Jan 2005 A1
20050039743 Taylor Feb 2005 A1
20050043228 DeFelippis et al. Feb 2005 A1
20050043247 Trunk et al. Feb 2005 A1
20050056281 Snow Mar 2005 A1
20050070469 Bloom Mar 2005 A1
20050080000 Thurow et al. Apr 2005 A1
20050119604 Bonney et al. Jun 2005 A1
20050124644 Nilsson et al. Jun 2005 A1
20050147581 Zamiri et al. Jul 2005 A1
20050153874 Cheatham et al. Jul 2005 A1
20050155601 Steiner et al. Jul 2005 A1
20050156601 Steiner et al. Jul 2005 A1
20050183723 Pinon et al. Aug 2005 A1
20050187749 Singley Aug 2005 A1
20050203002 Tzannis et al. Sep 2005 A1
20050214251 Pohl et al. Sep 2005 A1
20050252508 Koerner Nov 2005 A1
20050265927 Lee Dec 2005 A1
20050274378 Bonney et al. Dec 2005 A1
20060000469 Tseng Jan 2006 A1
20060003316 Simard et al. Jan 2006 A1
20060040953 Leone-Bay et al. Feb 2006 A1
20060041133 Stevenson et al. Feb 2006 A1
20060060194 Oliva Mar 2006 A1
20060062740 Rand Mar 2006 A1
20060073105 Yamashita et al. Apr 2006 A1
20060099269 Cheatham et al. May 2006 A1
20060102511 Pasbrig et al. May 2006 A1
20060120969 Nilsson et al. Jun 2006 A1
20060153778 Gelber Jul 2006 A1
20060160722 Green et al. Jul 2006 A1
20060165756 Catani et al. Jul 2006 A1
20060169280 Yamashita et al. Aug 2006 A1
20060219242 Zierenberg Oct 2006 A1
20060239933 Nilsson et al. Oct 2006 A1
20060239934 Cheatham Oct 2006 A1
20060243275 Ruckdeschel et al. Nov 2006 A1
20060249419 Taylor et al. Nov 2006 A1
20060260777 Rashba-Step et al. Nov 2006 A1
20060283758 Pasbrig et al. Dec 2006 A1
20070006876 Finlay et al. Jan 2007 A1
20070017506 Bell et al. Jan 2007 A1
20070020191 Boss et al. Jan 2007 A1
20070027063 Boss et al. Feb 2007 A1
20070044793 Kleinstreuer et al. Mar 2007 A1
20070049576 Barlow et al. Mar 2007 A1
20070059373 Oberg Mar 2007 A1
20070059374 Hokenson et al. Mar 2007 A1
20070074989 Merboth et al. Apr 2007 A1
20070077219 Fahl et al. Apr 2007 A1
20070086952 Steiner Apr 2007 A1
20070099454 Gordon May 2007 A1
20070125375 Finlay et al. Jun 2007 A1
20070128193 O'Neil et al. Jun 2007 A1
20070151562 Jones Jul 2007 A1
20070160789 Merical et al. Jul 2007 A1
20070175314 Wanne Aug 2007 A1
20070190163 Malaknov et al. Aug 2007 A1
20070191462 Hettiarachchi Aug 2007 A1
20070196503 Wilson Aug 2007 A1
20070207958 Bridon et al. Sep 2007 A1
20070225587 Burnell et al. Sep 2007 A1
20070235029 Zhu et al. Oct 2007 A1
20070240708 Schuckmann Oct 2007 A1
20070272763 Dunne et al. Nov 2007 A1
20070277820 Crowder Dec 2007 A1
20070277821 Oliva et al. Dec 2007 A1
20070295332 Ziegler et al. Dec 2007 A1
20070299074 Netz et al. Dec 2007 A1
20080008764 Milstein Jan 2008 A1
20080015457 Silva Jan 2008 A1
20080039368 Steiner et al. Feb 2008 A1
20080039402 Mossalayi et al. Feb 2008 A1
20080047550 Steiner et al. Feb 2008 A2
20080066739 LeMahieu et al. Mar 2008 A1
20080108554 Jackson et al. May 2008 A1
20080108574 Barlow et al. May 2008 A1
20080115785 Eason et al. May 2008 A1
20080127970 Steiner et al. Jun 2008 A1
20080127971 King et al. Jun 2008 A1
20080127974 Lastow Jun 2008 A1
20080168987 Denny et al. Jul 2008 A1
20080190424 Lucking et al. Aug 2008 A1
20080190425 Steiner et al. Aug 2008 A1
20080197044 Hickey et al. Aug 2008 A1
20080216824 Ooida Sep 2008 A1
20080217199 Burress et al. Sep 2008 A1
20080255468 Derchak et al. Oct 2008 A1
20080260838 Hokenson et al. Oct 2008 A1
20080260840 Alessi Oct 2008 A1
20080295833 Rohrschneider et al. Dec 2008 A1
20080312155 Kitada et al. Dec 2008 A1
20080314384 Harris et al. Dec 2008 A1
20080319333 Gavish et al. Dec 2008 A1
20090025720 Chen Jan 2009 A1
20090068274 Edwards et al. Mar 2009 A1
20090084379 Goeckner et al. Apr 2009 A1
20090084380 Gieschen et al. Apr 2009 A1
20090110647 Richardson Apr 2009 A1
20090134051 Rapp et al. May 2009 A1
20090149727 Truitt et al. Jun 2009 A1
20090151720 Inoue et al. Jun 2009 A1
20090178676 Villax et al. Jul 2009 A1
20090205657 Barney et al. Aug 2009 A1
20090209502 Haeberlin et al. Aug 2009 A1
20090232891 Gelber et al. Sep 2009 A1
20090241949 Smutney Oct 2009 A1
20090250058 Lastow Oct 2009 A1
20090258818 Surolia et al. Oct 2009 A1
20090308391 Smutney Dec 2009 A1
20090314291 Anderson et al. Dec 2009 A1
20090314292 Overfield Dec 2009 A1
20090320837 Smith et al. Dec 2009 A1
20100012120 Herder Jan 2010 A1
20100051027 Remmelgas et al. Mar 2010 A1
20100065048 Walz et al. Mar 2010 A1
20100086609 Steiner et al. Apr 2010 A1
20100113363 Holst et al. May 2010 A1
20100163042 Bhowmick et al. Jul 2010 A1
20100180894 Jones Jul 2010 A1
20100181225 Spallek et al. Jul 2010 A1
20100190701 Day et al. Jul 2010 A1
20100193380 Sullivan et al. Aug 2010 A1
20100197565 Smutney et al. Aug 2010 A1
20100212667 Smith et al. Aug 2010 A1
20100235116 Adamo et al. Sep 2010 A1
20100238457 Adamo et al. Sep 2010 A1
20100278924 Oberg Nov 2010 A1
20100288276 Ganderton et al. Nov 2010 A1
20100326438 Dunne Dec 2010 A1
20110000482 Gumaste et al. Jan 2011 A1
20110003004 Hokenson Jan 2011 A1
20110011394 Edwards et al. Jan 2011 A1
20110023876 Vehring et al. Feb 2011 A1
20110083667 Briant Apr 2011 A1
20110155129 Stedman et al. Jun 2011 A1
20110158935 Kraft Jun 2011 A1
20110183901 Cheatham Jul 2011 A1
20120014999 Grant et al. Jan 2012 A1
20120040899 Costello Feb 2012 A1
20120071510 Liu Mar 2012 A1
20120094905 Costello Apr 2012 A1
20120115777 Richardson May 2012 A1
20120122775 Boss et al. May 2012 A1
20120160241 Oliva Jun 2012 A1
20120164186 Grant et al. Jun 2012 A1
20120178935 Stevenson Jul 2012 A1
20120192865 Steiner et al. Aug 2012 A1
20120207913 Smyth Aug 2012 A1
20120240929 Steiner et al. Sep 2012 A1
20120247235 Adamo et al. Oct 2012 A1
20120247465 Wachtel Oct 2012 A1
20120328676 Leone-Bay et al. Dec 2012 A1
20130012710 Freeman et al. Jan 2013 A1
20130053309 Kraft Feb 2013 A1
20130104887 Smutney May 2013 A1
20130118491 Richardson et al. May 2013 A1
20130125886 Richardson et al. May 2013 A1
20130143801 Steiner et al. Jun 2013 A1
20130189365 Hokenson Jul 2013 A1
20130199527 Smutney Aug 2013 A1
20130289278 Kraft Oct 2013 A1
20130291867 Smutney Nov 2013 A1
20130303445 Wilson et al. Nov 2013 A1
20130338065 Smutney Dec 2013 A1
20140007873 Smutney Jan 2014 A1
20140014106 Smutney Jan 2014 A1
20140083421 Smutney Mar 2014 A1
20140096771 Remmelgas et al. Apr 2014 A1
20140100158 Richardson et al. Apr 2014 A1
20140187490 Richardson et al. Jul 2014 A1
20140199398 Grant et al. Jul 2014 A1
20140227359 Leone-Bay et al. Aug 2014 A1
20140243530 Stevenson et al. Aug 2014 A1
20140271888 Grant et al. Sep 2014 A1
20140290654 Poole et al. Oct 2014 A1
20140302151 Leone-Bay et al. Oct 2014 A1
20140308358 Oberg et al. Oct 2014 A1
20140315953 Leone-Bay et al. Oct 2014 A1
20150031609 Steiner et al. Jan 2015 A1
20150045295 Smutney et al. Feb 2015 A1
20150052977 Adamo et al. Feb 2015 A1
20150065422 Kraft Mar 2015 A1
20150080298 Costello et al. Mar 2015 A1
20150108023 Bergey Apr 2015 A1
20150122258 Steiner et al. May 2015 A1
20150150980 Leone-Bay et al. Jun 2015 A1
20150174210 Boss et al. Jun 2015 A1
20150196724 Adamo et al. Jul 2015 A1
20150226656 Adamo et al. Aug 2015 A1
20150231067 Mann Aug 2015 A1
20150246188 Steiner et al. Sep 2015 A1
20150283069 Smutney et al. Oct 2015 A1
20150283213 Costello et al. Oct 2015 A1
20150290132 Gelber et al. Oct 2015 A1
20150359744 Hokenson et al. Dec 2015 A1
20160008557 Smutney et al. Jan 2016 A1
20160031833 Wilson et al. Feb 2016 A1
20160067183 Kraft Mar 2016 A1
20160095990 Smutney et al. Apr 2016 A1
20160101049 Wilson et al. Apr 2016 A1
20160151287 Oberg et al. Jun 2016 A1
20160158156 Fabio et al. Jun 2016 A1
20160175079 Adamo et al. Jun 2016 A1
20160193432 Harris et al. Jul 2016 A1
20160221967 Stevenson et al. Aug 2016 A1
20160228659 Smutney et al. Aug 2016 A1
20160243322 Smutney et al. Aug 2016 A1
20160250297 Leone-Bay et al. Sep 2016 A1
20160256640 Overheld et al. Sep 2016 A1
20160287820 Smutney et al. Oct 2016 A1
20160346212 Hokenson et al. Dec 2016 A1
20160346394 Grant et al. Dec 2016 A1
Foreign Referenced Citations (248)
Number Date Country
2536047 Mar 2005 CA
2551182 Aug 2010 CA
101290219 Oct 2008 CN
101851213 Oct 2010 CN
102436238 May 2012 CN
2840442 Feb 1982 DE
3639836 Jun 1988 DE
19519840 Dec 1996 DE
0069715 Jan 1983 EP
0122036 Oct 1984 EP
0143524 Jun 1985 EP
0180543 May 1986 EP
220958 May 1987 EP
0237507 Aug 1987 EP
0257915 Feb 1988 EP
0308637 Mar 1989 EP
0360340 Mar 1990 EP
0364235 Apr 1990 EP
0387222 Sep 1990 EP
0388621 Sep 1990 EP
00606486 Dec 1993 EP
00581473 Feb 1994 EP
0655237 May 1995 EP
0666085 Aug 1995 EP
0748213 Dec 1996 EP
0558879 May 1997 EP
0844007 Dec 1998 EP
1060741 Dec 2000 EP
1114644 Jul 2001 EP
0837710 Nov 2001 EP
0640354 Dec 2001 EP
1348428 Oct 2003 EP
1364967 Nov 2003 EP
0825885 Mar 2004 EP
96911738 Jun 2004 EP
1598066 Nov 2005 EP
0833652 Feb 2008 EP
1923087 May 2008 EP
2060268 May 2009 EP
2314298 Apr 2011 EP
475440 Nov 1937 GB
716815 Oct 1954 GB
2072536 Oct 1981 GB
2148841 Jun 1985 GB
2240337 Jul 1991 GB
2253200 Sep 1992 GB
2262452 Jun 1993 GB
2398065 Aug 2004 GB
S55-156085 Nov 1980 JP
63-020301 Jan 1988 JP
2115154 Apr 1990 JP
2-149545 Feb 1992 JP
H07-041428 Feb 1995 JP
09-208485 Aug 1997 JP
10234827 Sep 1998 JP
2002322294 Nov 2002 JP
2003-503420 Jan 2003 JP
2004-121061 Apr 2004 JP
2006-280620 Oct 2006 JP
2007-061281 Mar 2007 JP
200505517 Feb 2005 TW
1990013285 Nov 1990 WO
1991004011 Apr 1991 WO
1991006287 May 1991 WO
1991016038 Oct 1991 WO
1991016882 Nov 1991 WO
1991019524 Dec 1991 WO
1992004069 Mar 1992 WO
1992008509 May 1992 WO
1993002712 Feb 1993 WO
1993014110 Jul 1993 WO
1993017728 Sep 1993 WO
1993018754 Sep 1993 WO
1994000291 Jan 1994 WO
1994008552 Apr 1994 WO
1994008599 Apr 1994 WO
1994019041 Sep 1994 WO
1994023702 Oct 1994 WO
1994025005 Nov 1994 WO
1995000127 Jan 1995 WO
1995005208 Feb 1995 WO
1995011666 May 1995 WO
1995024183 Sep 1995 WO
1995031979 Nov 1995 WO
1995034294 Dec 1995 WO
1996001105 Jan 1996 WO
1996005810 Feb 1996 WO
1996013250 May 1996 WO
1996022802 Aug 1996 WO
1996027386 Sep 1996 WO
1996032149 Oct 1996 WO
1996036314 Nov 1996 WO
1996036317 Nov 1996 WO
1996040206 Dec 1996 WO
1997001365 Jan 1997 WO
1997004747 Feb 1997 WO
1997025086 Jul 1997 WO
1997030743 Aug 1997 WO
1997035562 Oct 1997 WO
1997046206 Dec 1997 WO
1997049386 Dec 1997 WO
1998026827 Jun 1998 WO
1998039043 Sep 1998 WO
1998041255 Sep 1998 WO
1998043615 Oct 1998 WO
1999014239 Mar 1999 WO
1999018939 Apr 1999 WO
1999032510 Jul 1999 WO
1999033862 Jul 1999 WO
1999052506 Oct 1999 WO
2000012116 Mar 2000 WO
2000033811 Jun 2000 WO
2000059476 Oct 2000 WO
2000071154 Nov 2000 WO
2001000654 Jan 2001 WO
2001081321 Jan 2001 WO
2001007107 Feb 2001 WO
2001049274 Jul 2001 WO
2001051071 Jul 2001 WO
2001052813 Jul 2001 WO
2001066064 Sep 2001 WO
2001068169 Sep 2001 WO
2001097886 Dec 2001 WO
2002011676 Feb 2002 WO
2002012201 Feb 2002 WO
2002047659 Jun 2002 WO
2002058735 Aug 2002 WO
2002059574 Aug 2002 WO
2002067995 Sep 2002 WO
2002085281 Oct 2002 WO
2002098348 Dec 2002 WO
2002102444 Dec 2002 WO
2003000202 Jan 2003 WO
2003015857 Feb 2003 WO
2003018059 Mar 2003 WO
2003022304 Mar 2003 WO
2003055547 Jul 2003 WO
2003057170 Jul 2003 WO
2003061578 Jul 2003 WO
2003072195 Sep 2003 WO
2003080149 Oct 2003 WO
2003086345 Oct 2003 WO
2003094951 Nov 2003 WO
2004012672 Feb 2004 WO
2004012720 Feb 2004 WO
2004033010 Apr 2004 WO
2004035121 Apr 2004 WO
2004041338 May 2004 WO
2004050152 Jun 2004 WO
2004054647 Jul 2004 WO
2004056314 Jul 2004 WO
2004060458 Jul 2004 WO
2004064862 Aug 2004 WO
2004075919 Sep 2004 WO
2004080401 Sep 2004 WO
2004080482 Sep 2004 WO
2004103304 Dec 2004 WO
2005002654 Jan 2005 WO
2005020964 Mar 2005 WO
2005023348 Mar 2005 WO
2005028699 Mar 2005 WO
2005067964 Jul 2005 WO
2005081977 Sep 2005 WO
2005089722 Sep 2005 WO
2005089843 Sep 2005 WO
2005102428 Nov 2005 WO
2005102429 Nov 2005 WO
2005113042 Dec 2005 WO
2005113043 Dec 2005 WO
2005120616 Dec 2005 WO
2006010248 Feb 2006 WO
2006017688 Feb 2006 WO
2006023849 Mar 2006 WO
2006023943 Mar 2006 WO
2006023944 Mar 2006 WO
2006037636 Apr 2006 WO
2006059939 Jun 2006 WO
2006061637 Jun 2006 WO
WO 2006061637 Jun 2006 WO
2006086107 Aug 2006 WO
2006090149 Aug 2006 WO
2006105501 Oct 2006 WO
2007007110 Jan 2007 WO
2007016600 Feb 2007 WO
2007019229 Feb 2007 WO
2007024953 Mar 2007 WO
2007030706 Mar 2007 WO
2007033316 Mar 2007 WO
2007033372 Mar 2007 WO
2007042822 Apr 2007 WO
2007068896 Jun 2007 WO
2007075534 Jul 2007 WO
2007093310 Aug 2007 WO
2007098500 Aug 2007 WO
2007100535 Sep 2007 WO
2007118342 Oct 2007 WO
2007118343 Oct 2007 WO
2007121411 Oct 2007 WO
2007132217 Nov 2007 WO
2007144607 Dec 2007 WO
2007144614 Dec 2007 WO
2008001744 Jan 2008 WO
2008008021 Jan 2008 WO
2008014613 Feb 2008 WO
2008020217 Feb 2008 WO
2008060484 May 2008 WO
2008092864 Aug 2008 WO
2008110809 Sep 2008 WO
2009005546 Jan 2009 WO
2009008001 Jan 2009 WO
2009009013 Jan 2009 WO
2009047281 Apr 2009 WO
2009055030 Apr 2009 WO
2009055740 Apr 2009 WO
2009055742 Apr 2009 WO
2009095684 Aug 2009 WO
2009121020 Oct 2009 WO
2009140587 Nov 2009 WO
2009047281 Dec 2009 WO
2009152477 Dec 2009 WO
2009155581 Dec 2009 WO
2010021879 Feb 2010 WO
2010078373 Jul 2010 WO
2010080964 Jul 2010 WO
2010102148 Sep 2010 WO
2010105094 Sep 2010 WO
2010108046 Sep 2010 WO
2010125103 Nov 2010 WO
2010144785 Dec 2010 WO
2010144789 Dec 2010 WO
2011017554 Feb 2011 WO
2011056889 May 2011 WO
2011082328 Jul 2011 WO
2011163272 Dec 2011 WO
2012064892 May 2012 WO
2012135765 Oct 2012 WO
2012174472 Dec 2012 WO
2012174556 Dec 2012 WO
2013016754 Feb 2013 WO
2013063160 May 2013 WO
2014012069 Jan 2014 WO
2014036323 Mar 2014 WO
2014066856 May 2014 WO
20140144895 Sep 2014 WO
2015010092 Jan 2015 WO
2015021064 Feb 2015 WO
2015063100 May 2015 WO
2015148905 Oct 2015 WO
Non-Patent Literature Citations (640)
Entry
Mann “Pulmonary insulin—the future of prandial insulin therapy.” Presented at the 5th Annual Meeting of the Diabetes Technology Society, Nov. 2005, abstract A94.
Monnier et al. “Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.” JAMA 295:1681-7, 2006.
Nathan et al. “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.” N Engl J Med 353:2643-53, 2005.
Owens et al. “Alternative routes of insulin delivery.” Diabetic Medicine 20:886-898, 2003.
Patton et al. “Clinical pharmacokinetics and pharmacodynamics of inhaled insulin.” Clin Pharmacokinet 43:781-801, 2004.
Peyrot et al. “Resistance to insulin therapy among patients and providers.” Diabetes Care 28:2673-2679, 2005.
Pfeiffer et al. Insulin secretion in diabetes mellitus. Am J Med 70:579-88, 1981.
Pfützner A. et al. “Influence of small dose i.v., s.c. and pulmonary insulin treatment on prandial glucose control in patients with Type 2 diabetes.” 37th Annual Meeting of the EASD, Sep. 9-13, 2001, abstract 812.
Pfützner A et al. “Variability of insulin absorption after subcutaneous and pulmonary application in patients with type 2 diabetes.” Diabetes 51 Supplement, Jun. 2002, A47-48.
Pfützner A et al. Pilot study with Technosphere/PTH(1-34)—a new approach for effective pulmonary delivery of parathyroid hormone (1-34). Horm Metab Res 35:319-323, 2003.
Pfützner A et al. “Lung distribution of radiolabeled Technosphere™/Insulin.” Diabetes 52 Supplement, Jun. 2003, A107.
Katchalski, Ephraim, “Synthesis of Lysine Anhydride”, J. Amer. Chem. Soc., vol. 68, 1946, pp. 879-880.
Kopple, Kenneth D., “A Convenient Synthesis of 2.,5-Piperazinediones”, J. Org. Chem., vol. 33, No. 2, 1968, pp. 862-864.
Pfutzner et al. “Pulmonary Insulin Delivery by Means of the Technosphere Drug Carrier Mechanism.” Expert Opin Drug Deliv 2:1097-1106, 2005.
Pfutzner et al. “Inhaled Technosphere/Insulin Shows a Low Variability in Metabolic Action in Type 2 Diabetic Patients.” Diabetes 49 Supplement, May 2000, A121.
Polonsky et al. “Abnormal Patterns of Insulin Secretion in Non-insulin-Dependent Diabetes Mellitus.” N Eng J Med 318:1231-39, 1988.
Raskin et al. “Continuous Subcutaneous Insulin Infusion and Multiple Daily Injection Therapy are Equally Effective in Type 2 Diabetes.” Diabetes Care 26:2598-2603, 2003.
Rave et al. “Results of a Dose-Response Study with a New Pulmonary Insulin Formulation and Inhaler.” Diabetes 49, Supplement, May 2000, A75.
Rave et al. “Dose Response of Inhaled Dry-Powder Insulin and Dose Equivalence to Subcutaneous Insulin Lispro.” Diabetes Care 28:2400-2405, 2005.
Raz et al. “Pharmacodynamics and Pharmacokinetics of Dose Ranging Effects of Oralin Versis S.S. Regular Insulin in Type 1 Diabetic Subjects.” Fourth Annual Diabetes Technology Meeting, Philadelphia, 2004.
Rhodes et al. “Technosphere: Microspherical Particles from Substituted Diketopiperazines for Use in Oral Drug Delivery.” 208th ACS National Meeting, Aug. 1994.
Rosenstock et al. “Inhaled Insulin Improves Glycemic Control when Substituted for or Added to Oral Combination Therapy in Type 2 Diabetes.” Ann Intern Med 143:549-558, 2005.
Rousseau et al. “Drug delivery by fumaryl diketopiperazine particles: evidence for passive transport.” Presented at the American Diabetes Association 64th Scientific Sessions, Jun. 2004, abstract 484-P.
Sakagami et al. “Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy.” Clin Pharmacokinet 44:263-77, 2005.
Skyler JS et al. “Use of inhaled insulin in a basal/bolus insulin regimen in type 1 diabetic subjects.” Diabetes Care 28:1630-1635, 2005.
Steiner et al. “Technosphere®, a novel drug delivery system for oral administration of calcitonin.” Pharmaceutical Res 11:S299, 1994.
Steiner et al. “A novel glucagon delivery system for the management of hyperinsulinemia.” Diabetes 49 Supplement, May 2000, A368.
Steiner et al. “Bioavailability and pharmacokinetic properties of inhaled dry powder Technosphere®/Insulin.” Diabetes 49 Supplement, May 2000, A126.
Steiner et al. Technosphere(TM)/Insulin—proof of concept study with a new insulin formulation for pulmonary delivery. Exp Clin Endocrinol Diabetes 110:17-21, 2002.
Taylor et al. “Aerosols for macromolecule delivery. Design challenges and solutions.” Am J Drug Deliv 2:143-155, 2004.
Warren et al. “Postprandial versus prandial dosing of biphasic insulin aspart in elderly type 2 diabetes patients.” Diabetes Res Clin Pract 66:23-29, 2004.
White JR et al. “Inhaled insulin: an overview.” Clinical Diabetes 19:13-16, 2001.
Kaur et al., A delineation of diketopiperazine self-assembly processes: understanding the molecular events involved in N∧e-(Fumaroyl) diketopiperazine of L-Lys (FDKP) Ineractions. Molecular Pharmaceutics, vol. 5, No. 2, pp. 294-315 (2008).
English translation of Chinese Office Action for Chinese Patent application No. 201080026117.7.
Coors et al., Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions. Ann. Allergy Asthma Immunol., 95(6): 593-599 (2005). Abstract only. Accessed by Examiner on Jul. 22, 2013 and cited in Office Action dated Jul. 26, 2013 in U.S. Appl. No. 12/830,557.
Non-covalent interactions from UCDavis ChemWiki, pp. 1-5. Accessed by Examiner on Jul. 23, 2013 and cited in Office Action dated Jul. 26, 2013 in U.S. Appl. No. 12/830,557.
Definition of analog from http://cancerweb.ncl.ac.uk/omd/about.html, pp. 1-5. Accessed by Examiner on Jul. 7, 2005 and cited in Office Action dated Jul. 26, 2013 in U.S. Appl. No. 12/830,557.
Drug Delivery, Easing the drug delivery route, Jun. 2006, Pharmaceutical & Medical Packaging News, Canon Communications.
Edwards et al., Recent advances in pulmonary drug delivery using large, porous inhaled particles. Journal of Applied Physiology, pp. 379-385 (1998).
Exubera indications, dosage, storage, stability. Http://www.rxlist.com/cgi/generic4/exubera_ids.htm.
Exubera package insert, p. 1.
Ferrin et al, Pulmonary retention of ultrafine and fine particles in rats. Am. J. Repir. Cell Mol. Biol., pp. 535-542 (1992).
Insulin inhalation NN 1998, Drugs R & D, 2004, pp. 46-49, Adis Data Information BV.
Klinger et al., Insulin-micro and nanoparticles for pulmonary delivery. International Journal of Pharmaceutics, vol. 377, pp. 173-179 (2009).
Nemmar et al., Passage of inhaled particles into the blood circulation in humans. Circulation pp. 411-414 (2002).
Newman, Principles of metered-dose inhaler design. Respiratory Care, vol. 50, No. 9, pp. 1177-1190 (2005).
Next Generation Inhaler Nears Market, Manufacturing Chemist, Cambridge Consultants, Polygon Media Ltd. (2006).
Oberdorster et al., Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102 Suppl 5, pp. 173-179 (1994).
Oberdorster et al.,Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health, vol. 74, pp. 1-8 (2001).
O'Neill, Air pollution and inflammation in type 2 diabetes: a mechanism for susceptibility. Occup Environ Med. vol. 64, pp. 373-379 (2007).
Pesic, Inhaler delivers more drug to the deep lung, says Cambridge Consultants. in-Pharma Technologist.com, http://www/in-pharmatechnologist.com/content/view/print/344335, Dec. 1, 2010.
Pfutzner, Technosphere/Insulin—A new approach for effective delivery of human insulin via the pulmonary route. Diabetes Technology & Therapeutics, vol. 4, No. 5, pp. 589-594 (2002).
Roumeliotis, New inhaler launched with a bag, in-Pharma Technologist.com, Decision News Media SAS (2006).
Shimada et al. Translocation pathway of the intertracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicologic Pathology pp. 949-957 (2006).
Svartengren et al., Added External Resistance Reduces Oropharyngeal Deposition and Increases Lung Deposition of Aerosol Particles in Asthmatics. Am. J. Respir. Crit. Care Med., vol. 152, pp. 32-27, 1995.
Telko et al., Dry Powder Inhaler Formulation. Respiratory Care, Sep. 2005, vol. 50, No. 9, pp. 1209-1227.
Vaczek, Accelerating drug delivery firms exploring new drug-delivery routes and devices intently awaiting the commercial launch of Exubera. Pharmaceutical & Medical Packaging News, vol. 14, No. 6 (2006).
CN Office Action cited in application No. 200880122670.3 dated Nov. 23, 2011.
International Search Report for PCT/US2010/038287.
“An inhaled insulin formulation (Technosphere Insulin) effectively improves glycaemic control in patients with type 2 diabetes mellitus.” Inpharma Weekly, vol. 1522, Jan. 28, 2006, p. 8.
Basu A et al. “Effects of a change in the pattern of insulin delivery on carbohydrate tolerance in diabetic and nondiabetic humans in the presence of differing degrees of insulin resistance.” J Clin Invest 97:2351-2361, 1996.
Bayés M et al. “Gateways to clinical trials” Methods Find Exp Clin Pharmacol 24:431-455, 2002.
Belmin J et al. “Novel drug delivery systems for insulin. Clinical potential for use in the elderly.” Drugs Aging 20:303-12, 2003.
Boss AH et al. “Insulin bio-effect is limited by speed of absorption and elimination: similarities between an inhaled insulin formulation that mimics first-phase kinetics and i.v. insulin.” Diabetologia 47:A314, 2004.
Boss AH et al. “Markedly reduced post prandial glucose excursions through inhaled Technosphere®/Insulin in comparison to SC injected regular insulin in subjects with type 2 diabetes.” 1st Annual Meeting of the European Association for the Study of Diabetes, Sep. 2005, abstract 816.
Boss AH et al. “Does kinetics matter? Physiological consequences of the ability of Technosphere®/Insulin inhalation to mimic first phase insulin release.” Presented at the 5th Annual Meeting of the Diabetes Technology Society, Nov. 2005, abstract A14.
Boss AH et al. “Mimicry of the early phase insulin response in humans with rapidly available inhaled insulin accelerates post prandial glucose disposal compared to slower bioavailable insulin.” Presented at the American Diabetes Association 65th Scientific Sessions, Jun. 2005, abstract 1373-P.
Boss AH et al. “Inhaled Technosphere®/Insulin: Glucose elimination at the right time?” Poster presented at the American Diabetes Association 65th Scientific Sessions, Jun. 2005, abstract 443-P.
Boss AH et al. “The variability and time-action profile of inhaled Technosphere®/Insulin compares favorably to that of subcutaneous human regular insulin.” Presented at the American Diabetes Association 65th Scientific Sessions, Jun. 2005, abstract 358-OR.
Brownlee M et al. “Glycemic variability: a hemoglobin A1c-independent risk factor for diabetic complications.” JAMA 295:1707-8, 2006.
Caumo et al. “First-phase insulin secretion: does it exist in real life” Considerations on shape and function. Am J Physiol Endocrinol Metab 287:E371-E385, 2004.
Cefalu “Concept, strategies and feasibility of noninvasive insulin delivery.” Diabetes Care 27:239-246, 2004.
Cefalu “Novel routes of insulin delivery for patients with type 1 or type 2 diabetes.” Ann Med 33:579-586, 2001.
Cerasi et al. Decreased sensitivity of the pancreatic beta cells to glucose in prediabetic and diabetic subjects. A glucose dose-response study. Diabetes 21(4):224-34, 1972.
Cernea et al. “Dose-response relationship of oral insulin spray in healthy subjects.” Diabetes Care 28:1353-1357, 2005.
Cheatham et al. “Desirable dynamics and performance of inhaled insulin compared to subcutaneous insulin given at mealtime in type 2 diabetes: A report from the Technosphere®/Insulin study group.” Diabetes Tech Ther 6:234-235, 2004.
Cheatham et al. “A novel pulmonary insulin formulation replicates first phase insulin release and reduces s-proinsulin levels.” Presented at the American Diabetes Association 64th Scientific Sessions, Jun. 2004, abstract 457-P.
Cheatham et al. “Prandial Technosphere®/Insulin inhalation provides significantly better control of meal-related glucose excursions than prandial subcutaneous insulin.” Presented at the Diabetes Technology Society meeting, Oct. 2004.
Del Prato “Unlocking the opportunity of tight glycaemic control. Far from goal.” Diabetes Obesity Metabolism 7:S1-S4, 2005.
Edelman SV Type II diabetes mellitus. Adv Int Med 43:449-500, 1998.
Gates BJ “Update on advances in alternative insulin therapy.” Advances in Pharmacy 1:159-168, 2003.
Grant et al “Both insulin sensitivity and maximal glucose elimination rate are reduced in type 2 diabetes.” Presented at the American Diabetes Association 65th Scientific Sessions, Jun. 2005, abstract 2202-PO.
Grant et al. “The distribution of 14C-labeled particles following intra-tracheal liquid installation in the Sprague-Dawley rat.” Presented at the American Diabetes Association 64th Scientific Sessions, Jun. 2004, abstract 461-P.
Gupta et al. Contemporary approaches in aerosolized drug delivery to the lung. J Controlled Release 17:129-148, 1991.
Harsch IA “Inhaled Insulins: Their potential in the treatment of diabetes mellitus.” Treat Endocrinol 4:131-138, 2005.
Heinemann, L., et al., “Current status of the development of inhaled insulin” Br. Diabetes Vasc Dis 4:295-301, 2004.
Hirsch IB “Insulin analogues.” N Engl J Med 352:174-83, 2005.
Kapitza et al. “Dose-response characteristics for a new pulmonary insulin formulation and inhaler.” Presented at the 35th Annual Meeting of the EASD, Sep. 2000, abstract OP29 184.
Kohler et al. Non-radioactive approach for measuring lung permeability: inhalation of insulin. Atemw Lungenkrkh 13:230-232, 1987.
Krueger et al. “Toxicological profile of pulmonary drug delivery agent.” Presented at the American Diabetes Association 64th Scientific Sessions, Jun. 2004, abstract 465-P.
Laureano et al. “Rapid absorption and elimination of insulin from the lung following pulmonary administration of Technosphere®/Insulin: A pharmacokinetic study in a rat model.” Presented at the American Diabetes Association 65th Scientific Sessions, Jun. 2005, abstract 445-P.
Leahy et al. Beta-cell dysfunction in type II diabetes mellitus. Curr Opin Endocrinol Diabetes 2:300-306, 1995.
Leiner et al. “The pharmacokinetic profile of insulin administered by inhalation in the rat.” Diabetes 53 Supplement, Jun. 2004, A111.
Leiner et al. “Particles facilitate the absorption of insulin in a primary cell culture model of alveolar epithelium without evidence of cytotoxicity.” Presented at the American Diabetes Association 64th Scientific Sessions, Jun. 2004, abstract 467-P.
Lian et al. A self-complementary self-assembling microsphere system: application for intravenous delivery of the antiepileptic andneuroprotectant compound felbanate. J Pharm Sci 89:867-875, 2000.
Lindner et al. “Increase in serum insulin levels is correlated with lung distribution after pulmonary delivery of Technosphere/Insulin.” Diabetologia 46:A277, 2003.
Mandal “Inhaled insulin for diabetes mellitus.” Am J Health Sys Pharm 62:1359-64, 2005.
File History of Related U.S. Appl. No. 14/092,810, filed Nov. 27, 2013.
File History of Related U.S. Appl. No. 13/921,104, filed Jun. 18, 2013.
File History of Related U.S. Appl. No. 13/941,365, filed Jul. 12, 2013.
Fabio et al., Heat-stable dry powder oxytocin formulations or delivery by oral inhalation. AAPS PharmSciTech, (2015).
Actos Product Insert. Aug. 2008.
Adjusting Mealtime Insulin Doses. BD Diabetes. http://www.bd.com/diabetes/page.aspx?cat=7001&id=7280 (2014).
Ahren “GLP-1 and extra-islet effects.” Horm. Med Res 36:842, 2004.
Ahren B et al. “Characterization of GLP-1 effects on b-cell function after meal ingestion in humans.” Diabetes Care 26:2860, 2003.
Ahren B., Glucagon-like peptide-1 (GLP-1): a gut hormone of potential interest in the treatment of diabetes. BioEssays, V. 20, pp. 642-651 (1998).
Akerlund et al., Diketopiperazine-based polymers from common acids. Journal of Applied Polymer Science (2000), 78(12), 2213-2218.
Alabraba et al. Diabetes Technology & Therapeutics. Jul. 2009, 11(7): 427-430.
Alcohols limited. Alcohol speciality solvents—Go green! Jul. 24, 2010. Available from: <http://webarchive.org/web/20100724193725/http://www.alcohols.co.uk/speciality_solvents.php>.
Aljada et al. “Insulin inhibits the pro-inflammatroy transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations.” The Journal of Clinical Endocrinology and Metabolism, vol. 87, No. 3, p. 1419-1422, 2002.
Al-Showair et al., Can all patients with COPD use the correct inhalation flow with all inhalers and does training help? Respiratory Medicine, vol. 101, No. 11, p. 2395-2401 (2007).
American Diabetes Association, “Standards of medical care in diabetes—2009”, Diabetes Care, Jan. 2009, 32 Suppl 1: S13-61.
Amin N, Boss AH, Petrucci R, et al. Pulmonary functions (over 2 years) in diabetic subjects treated with Afresa® or usual antidiabetic treatment ADA 2009; Poster 570.
Amin N, et al. Long-term sustained safety and efficacy of continued use of Technosphere insulin in subjects with type 2 diabetes. Abstract—Oral Presentation 215, 48th EASD Annual Meeting, Sep. 29-Oct. 2, 2009, Vienna Austria.
Amin N, Marino MT, Cassidy JP, et al. Acute pulmonary effects of Technosphere® insulin inhalation powder administered using a Gen2B inhaler compared to MedTone® C inhaler. Diabetes Technology Meeting 2010; poster.
Amin N, Phillips M, Boss AH, et al. Pulmonary functions (over 2 years) in diabetic patients treated with Technosphere® insulin (TI) or usual antidiabetic treatment. Third International Conference on Advanced Technologies and Treatments for Diabetes. 2010; Poster 290.
Angelo et al., Technosphere Insulin: Defining the Role of Technosphere Particles at the Celluar Level. J. Diabetes Sci. Technol., vol. 3, Issue 3, pp. 545-554 (2009).
Angelo et al. Technosphere® insulin inhalation powder: Defining the mechanism of action. ADA 2008; 57: Poster 428-P.
Antosiewiez et al., Prediction of pH-dependent properties of proteins. J Mol. Biol., 238:415-436 (1994).
Arakawa et al., Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system. Biochemistry, 29:1914-1923 (1990).
Ashwell et al. “Twice-daily compared with once-daily insulin glargine in people with Type 1 diabetes using meal-time insulin aspart.” 2006 Diabetes UK, Diabetic Medicine, 23, 879-886.
Ashwell et al., “Optimal timing of injection of once-daily insulin gargine in people with Type 1 diabetes using insulin ispro at meal-times” 2005 Diabetes UK, Diabetic Medicine, 23, 46-52.
Atherton, F. et al. “Synthesis of 2(R)-A3(S)-Acylamino-2-OXO-1-Azetidinyloxy U-Acetic Acids.” Tetrahedron, vol. 40, No. 6, Jan. 1, 1984, pp. 1039-1046.
Avandia Product Insert, Oct. 2008.
Baggio et al. “A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostatsis.” Diabetes 53:2492, 2004.
Baggio et al. “Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and noneneteral glucose clearance in mice.” Endocrinology 141:3703, 2000.
Baggio et al. “Harnessing the therapeutic potential of glucagon-like peptide-1.” Treat Endocrinol 1:117, 2002.
Drucker et al., Minireview: The glucagon-like peptides. Endocrinology, vol. 142, No. 2, pp. 521-527 (2001).
Balkan B et al. “Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms.” Am J. Physiol Regulatory Integrative Comp Physiol 279:R1449, 2000.
Barnett AH et al. “An open, randomized, parallel-group study to compare the efficacy and safety profile of inhaled human insulin (Exubera) with glibenclamide as adjunctive therapy in patients with Type 2 diabetes poorly controlled on metformin.” Diabetes Care 29(8):1818-1825, 2006.
Barnett et al., An open, randomized, parallel-group study to compare the efficacy and safety profile of inhaled human insulin (Exubera) with metformin as adjunctive therapy in patients with type 2 diabetes poorly controlled on a sulfonylurea. Diabetes Care, 29(6): 1282-1287 (2006).
Barragan et al. “Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats.” Am J. Physiol 266 (Endocrinol Metab 29):E459, 1994.
Bauer et al., “Assessment o beta-adrenergic receptor blockade after isamoitane, a 5-HT1-receptor active compound, in healthy volunteer”, Clin. Pharmacol Ther 53:76-83 (1993).
Bauer et al., “Pharmacodynamic effects of inhaled dry powder formulations of fenterol and colforsin in asthma”, Clin Pharmacol Ther 53:76-83, 1993.
Baughman R, Cassidy J, Amin N, et al. A phase I, open-label study of the effect of albuterol or fluticasone on the pharmacokinetics of inhaled Technosphere® insulin inhalation powder in healthy subjects. ADA 2010; Poster 528.
Baughman R, Cassidy J, Levy B, et al. Technosphere® insulin inhalation powder pharmacokinetics unchanged in subjects who smoke. Diabetes 2008; 57: A128.
Baughman R, Haworth P, Litwin J, et al. No cardiac effects found with therapeutic and suprtherapeutic doses of Technosphere® inhalation powder: results from a thorough QTc clinical study. ADA 2011. Poster 933-P.
Baughman, RA, Evans, SH, Boss, AH, et al. Technosphere insulin does not affect pulmonary function in a 6 month study of patients with type 2 diabetes. Diabetologia 2006;49:177-118.
Beers et al., Section 2—Chapter 13—Diabetes Mellitus, The Merck Manual of Diagnosis and Therapy, Merck Research Laboratories, pp. 165-177 (1999).
Behme et al. “Glucagon-like peptide-1 improved glycemic control in type 1 diabetes.” BMC Endocrine Disorders 3:3, 2003.
Bellary et al. “Inhaled insulin:new technology, new possibilities.” Int J Clin Pract 60:728, 2006.
Benita, Charaterization of Drug-Loaded Poly(d,l-lactide) Microspheres. J. Pharm. Sci., 73: 1721-1724 (1984).
Benito E et al. “Glucagon-like peptide-1-(7-36) amide increases pulmonary surfactant secretion through a cyclic adenosine 3′,5′-monophosphate-dependent protein kinase mechanism in rat type II pneumocytes.” Endocrinology 139:2363, 1998.
Bensch et al., Absorption of intact protein molecules across the pulmonary air-tissue barrier, Science 156: 1204-1206 (1967).
Berge et al., “Pharmaceutical Salts”, J. Pharmaceutical Sciences, Review Article, 66(1):1-19 (1977).
Bergenstal R, Kapsner P, Rendell M, et al., Comparative efficacy and safety of Afresa® and a rapid-acting analog both given with glargine in subjects with T1 DM in a 52-week study ADA 2009; Poster 479.
Bergeron et al. “Macromolecular Self-Assembly of Diketopiperazine Tetrapeptides.” J. Am. Chem. Soc. 116, 8479-8484, 1994.
Li et al. “GLP-1; a novel zinc finger protein required in somatic cells of the gonad for germ cell development.” Dev Biol 301:106, 2007.
Li, Jun. Chapter 15: Drug Therapy of Metabolic Diseases. Clinical Pharmacotherapy, People's Medical Publishing House, 1st Edition, pp. 333-335 (2007).
Lim, “Microencapsulation of Living Cells and Tissues”, J. Pharm. Sci., 70: 351-354 (1981).
Liu et al., “Pulmonary delivery of free and liposomal insulin”, Pharmaceuticals Res. 10:228-232, 1993.
Lorber D, Howard CP, Ren H, et al. Reduced incidence and frequency of hypoglycemia in an integrated analysis of pooled data from clinical trials of subjects with type 2 diabetes using prandial inhaled Technosphere® insulin. AACE 2010; Poster 270.
Luque et al. “Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.” J. Endocrinol 173:465, 2002.
Luzi, L. and DeFronzo, R.A. “Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans.” Am. J. Physiol. 257 (Endocrinol. Metab. 20):E241-E246, 1989.
Luzio, S.D., et al. “Intravenous insulin simulates early insulin peak and reduces post-prandial hyperglycaemia/hyperinsulinaemia in type 2 (non-insulin-dependent) diabetes mellitus.” Diabetes Res. 16:63-67, 1991.
Malhotra et al., Exendin-4, a new peptide from Heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini. Regulatory Peptides, 41:149-56, 1992.
MannKind Corporation “Postprandial hyperglycemia: clinical significance, pathogenesis and treatment.” MannKind Corporation Monograph. 2009.
MannKind Corporation, Pulmonary Delivery: Innovative Technologies Breathing New Life into Inhalable Therapeutics, www.ondrugdelivery.com, 2006.
Burcelin et al., Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analong of glucagon-like peptide-1. Metabolism, vol. 48, No. 2, pp. 252-258 (1999).
Marino MT, Cassidy JP, Smutney CC, et al. Bioequivalence and dose proportionality of Afrezza® inhalation powder administered using a Gen2 inhaler compared to the MedTone® inhaler. Diabetes Technology Meeting 2010; poster.
Marino MT, Cassidy JP, Smutney CC, et al. Improvement in bioavailability of FDKP with the NexGen2A device: Implications for delivery of pulmonary insulin. Third International Conference on Advanced Technologies and Treatments for Diabetes 2010; Poster 108.
Marino MT, Cassidy JP, Smutney CC, et al. Improvement in bioavailability of FDKP and insulin with the NGDSB device. Third International Conference on Advanced Technologies and Treatments for Diabetes 2010; Poster 107.
Marino MT. A pharmacokinetic/pharmacodynamic model of inhaled insulin with application to clinical trial simulation. ADA 2010; Abstract 2105-PO.
Marino MT. Cassidy JP, Baughman RA, et al. C-peptide correction method to determine exogenous insulin levels in pk studies using Afresa® (Technosphere® insulin [TI]) ADA 2009; Poster 1451.
Marshall “Preventing and detecting complications of diabetes.” BMJ 333:455, 2006.
Mastrandrea “A breath of life for inhaled insulin: severe subcutaneous insulin resistance as an indication.” Pediatric Diabetes 2010: 11: 377-379.
Mathiowitz, Morphology of Polyanhydride Microsphere Delivery Systems, Scanning Microscopy, 4: 329-340 (1990).
Mathiowitz, Novel microcapsules for delivery systems. Reactive Polymers, 6: 275-283 (1987).
Mathiowitz, Polyanhydride microspheres as drug carriers I, hot-melt microencapsulation. J. Controlled Medicine, 5: 13-22 (1987).
Mathiowitz, Polyanhydride microspheres as drug carriers II, microencapsulation by solvent removal. J. Appl. Polymer Sci., 35: 755-774 (1988).
Mathiowitz, Polyanhydride microspheres IV, morphology and characterization systems made by spray drying. J. App. Polymer Sci., 45: 125-134 (1992).
Matsui et al. “Hyperplasia of type II pheumocytes in pulmonary lymphangioleiomyomatosis. Immunohistochemical and electron microscope study.” Arch Pathol Lab Med 124:1642, 2000.
Matthews DR et al. “Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.” Diabetologia. Jul. 1985;28(7):412-9.
McElduff A et al. “Influence of acute upper respiratory tract infection on the absorption of inhaled insulin using the AERx(R) insulin diabetes management system.” Br J Clin Pharmacol 59:546, 2005.
McMahon et al., “Effects of basal insulin supplementation on disposition of mixed meal in obese patients with NIDDM”, Diabetes, vol. 38, pp. 291-303 (1989).
Meier et al. “Absence of a memory effect for the insulinotropic action of glucagon-like peptide-1 (GLP-1) in healthy volunteers.” Horm Metab Res 35:551, 2003.
Meier et al. “Secretion, degradation, and elimination of glucagon-like peptide-1 and gastric inhibitor polypeptide in patients with chronic renal insufficiency and healthy control subjects.” Diabetes 53:654, 2004.
Meier et al. “The glucagon-like peptide-1 metabolite GLP-1-(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans.” Am J Physiol Endocrinol Metab 290:E1118, 2006.
Mendes et al., A non-dimensional functional relationship for the fine particle fraction produced by dry powder inhalers, Aerosol Science 38, pp. 612-624 (2007).
Mentlein et al., Dipeptidyl peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem., 214:829-835, 1993.
Merck Manual 17th, Japanese Edition, Nikkei BP Corp., 1999, p. 167-179.
Mitchell et al. “Intranasal Insulin: PK Profile Designed Specifically for Prandial Treatment of Type 2 Diabetes.” Drug Development Research 69(3):143-152 (2008).
Montrose-Rafizadeh et al., Diabetes, 45(Suppl. 2):152A, 1996.
Moren, Aerosols in Medicine (2nd Ed.), Elsevier, pp. 321-350 (1993).
Mudaliar et al., Insulin Therapy in Type 2 Diabetes. Endocrinology and Metabolism Clinics, vol. 30, No. 4, pp. 1-32 (2001).
Nagai et al., “Powder Dosage Form of Insulin for Nasal Administration”, J. Control Ref., 1:15-22 (1984).
Narayan et al. “Impact of recent increase in incidence on future diabetes burden.” Diabetes Care 29:2114, 2006.
Naslund E et al. “GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans.” Am J Physiol (Regulatory Integrative Comp Physiol 46):R910, 1999.
Naslund E et al. “Prandial subcutaneous injections of glucagon-like petide-1 cause weight loss in obese human subjects.” Br J Nutrition 91:439, 2004.
International Search Report dated Nov. 21, 2013 for International Application No. PCT/US2013/057397 filed on Aug. 29, 2013.
Eavarone et al., A voxel-based monte carlo model of drug release from bulk eroding nanoparticles. Journal of Nanoscience and Nanotechnology, vol. 10, pp. 5903-5907 (2010).
Marino MT, Cassidy JP, Smutney CC, et al. Improvement in bioavailability of FDKP with the NexGen2A device: Implications for delivery of pulmonary insulin. Diabetes Technology Meeting 2009; poster.
Heine “Unlocking the opportunity of tight glycaemic control. Promise ahead: the role of inhaled insulin in clinical practice.” Diabetes, Obesity and Metabolism 7:S19, 2005.
Heinemann “Variability of Insulin Absorption and Insulin Action.” Diabetes Technology & Therapeutics, vol. 4, No. 5, pp. 673-682. 2002.
Heinemann L et al. “Time-action profile of inhaled insulin.” Diabetic Med 14:63-72, 1997.
Heinemann, L. “Intra-individual Variability of the Metabolic Effect of Inhales Insulin Together with an Absorption Enhancer”, Diabetes Care, vol. 23, No. 9, Sep. 2000, p. 1343-1347.
Heise et al. “The effect of insulin antibodies on the metabolic action of inhaled and subcutaneous insulin.” Diabetes Care 28:2161, 2005.
Herbst et al., Insulin Strategies for Primary Care Providers. Clinical Diabetes, vol. 20, No. 1, pp. 11-17 (2002).
Heubner et al. “On inhalation of insulin” Klinische Wochenschrift 16:2342, 1924. (Original and English translation provided in one document).
Heyder “Particle Transport onto Human Airway Surfaces”, Eur. J. Respir. Dis, Suppl. 119, 29-50 (1982).
Heyder, “Alveolar deposition of inhaled particles in humans”, Am. Ind. Hyg. Assoc. J. 43(11): 864-866 (1982).
Hirsch, “Type 1 Diabetes Mellitus and the Use of Flexible Insulin Regimens” American Family Phyician, Nov. 15, 1999, p. 1-16.
Hirshberg B et al. “Islet transplantation: where do we stand now?” Diabetes Metab Res Rev 19:175-8, 2003.
Hite et al. “Exhuberance over Exubera.” Clin Diabetes 24(3):110-114, 2006.
Hoet et al., Review: Nanoparticles—known and unknown health risks. Journal of Nanobiotechnology, vol. 2, No. 12, (15 pages) (2004).
Hollander et al. “Efficacy and Safety of Inhaled Insulin (Exubera) Compared with Subcutaneous Insulin Therapy in Patients with Type 2 Diabetes.” Diabetes Care, vol. 27, No. 10, Oct. 2004, p. 2356-2362.
Holst “Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1.” Diabetes Metab Res Rev 18:430, 2002.
Holst et al. “On the effects of glucagon-like peptide-1 on blood glucose regulation in normal and diabetic subjects.” Ann N Y Acad Sci. Dec. 26, 1996;805:729-36.
Howard C, Ren H, Rossiter A, et al. Reduced incidence and frequency of hypoglycemia in an integrated analysis of pooled data from clinical trials of subjects with type 1 diabetes using prandial inhaled Technosphere® insulin. Diabetologia 2009; 52 (suppl 1).
Howard CP, Gnudi L, Lorber D, et al. Prandial inhaled Technosphere® insulin plus insulin glargine vs. biaspart 70/30 insulin in type 2 diabetes inadequately controlled with/without oral agents. Third International Conference on Advanced Technologies and Treatments for Diabetes. 2010; Poster 300.
Howard CP, Lorber D, Ren H, et al. Reduced incidence and frequency of hypoglycemia in pooled data from trials of type 2 diabetics using prandial inhaled Technosphere® insulin. Third International Conference on Advanced Technologies and Treatments for Diabetes 2010; Poster 304.
Howard CP, Petrucci R,Amin N, et al. Pulmonary function test remain similar in patients who received Technosphere® insulin and in patients currently receiving standard antidiabetic therapy. AACE 2010; Poster 267.
Howard CP, Ren H, Rossiter A, Boss AH. Reduced incidence and frequency of hypoglycemia in pooled data from trials of type 1 diabetics using prandial inhaled Technosphere® insulin. Third International Conference on Advanced Technologies and Treatments for Diabetes. 2010; Poster 302.
Howard CP, Ren H, Rossiter A, et al. Reduced incidence and frequency of hypoglycemia in an integrated analysis of pooled data from clinical trials of subjects with type 1 diabetes using prandial inhaled Technosphere® insulin. AACE 2010; Poster 269.
Howard CP, Rubin RR, Peyrot. M. Patient reported outcomes in adults with type 2 diabetes using mealtime Afresa® (inhaled Technosphere® insulin) and basal insulin versus premixed insulin ADA 2009; Poster 551.
http://www.bilcaresolutions.com/en/products/pharma-packaging-innovations-pvc-aclar-films <URL:http://web.archive.org/web/20110127102552/http://www.bilcaresolutions.com/en/products/pharma-packaging-innovations-pvc-aclar-films> published on Jan. 27, 2011 as per “Wayback Engine”.
http://www.pmpnews.com/article/blister-packaging-materials (May 26, 2009).
Huda et al. “Gut peptides and the regulation of appetite.” Obesity Reviews 7:163, 2006.
Hui et al., The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. European Journal of Endocrinology, 146: 863-869 (2002).
Hussain et al. “State of insulin self-association does not affects its absorption from the pulmonary route.” Eur. J. Pharm. Sciences 25:289-298, 2005.
Ikeda, Kuniki et al. “Peptide Antibiotics. XXVI. Syntheses of Cyclodipeptides Containing N. delta.-p-aminobenzenesulfonyl Ornithine Residue.” Chemical & Pharmaceutical Bulletin, 20(9), 1849-55, 1972.
Imeryuz et al. “Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms.” Am J Physiol 273 (Gastrointest Liver Physiol 36):G920, 1997.
Insulin is a natural product from http://www.levemir.com/startingoninsulin/whatisinulin.aspx, pp. 1-3. Accessed by Examiner on Apr. 30, 2014 and in Non-Final Offfice Action dated May 22, 2014 for U.S. Appl. No. 13/797,657 and in Non-Final Office Action dated May 22, 2014 for U.S. Appl. No. 12/883,369.
International Search Report for PCT International Application No. PCT/US2010/055323 filed on Nov. 3, 2010.
Witten Opinion dated Jul. 1, 2013 for International Application No. PCT/US2013/032162 filed on Mar. 15, 2013.
International Search Report dated Jun. 21, 2010 for International Application No. PCT/US2010/027038 filed on Mar. 11, 2010.
Witten Opinion for International Application No. PCT/US2011/060057 filed on Nov. 9, 2011.
International Search Report dated Mar. 18, 2013 for International Application No. PCT/US2012/061749 filed on Oct. 24, 2012.
International Search Report dated Jun. 20, 2012 for International Applicaion No. PCT/US2012/031695 filed on Mar. 30, 2012.
International Search Report dated Nov. 19, 2014 for International Application No. PCT/US2014/049817 filed on Aug. 5, 2014.
International Search Report for International Application No. PCT/US2010/020448 filed on Jan. 8, 2010.
International Search Report dated Mar. 11, 2010 for International Application No. PCT/US2009/069745 filed on Dec. 29, 2009.
International Search Report dated Oct. 17, 2011 for International Application No. PCT/US2010/026271 filed on Mar. 4, 2010.
International Search Report for International Application No. PCT/US2010/038287 filed on Jun. 11, 2010.
Ishibashi, Norio et al. “Studies on Flavord Peptides. Part V. A Mechanism for Bitter Taste Sensibility in Peptides.” Agricultural and Biological Chemistry, 52(3), 819-27, 1988.
Iwanij et al., Characterization of the Glucagon Receptor and its Functional Domains Using Monoclonal Antibodies. The Journal of Biological Chemistry, vol. 265, No. 34, pp. 21302-21308, 1990.
Jain et al. “Insulin Therapy in Type 2 Diabetic Subjects Suppresses Plasminogen Activator Inhibitor (PAI-1) Activity and Proinsulin-like Molecules Independently of Glycaemic Control.” Diabetic Medicine, vol. 10, No. 1, p. 27-32, 1993.
Johnson et al., Peptide turn mimetics. Biotechnology and Pharmacy, p. 366-378 (1993).
International Search Report for International Application No. PCT/US2013/050392 filed on Jul. 12, 2013.
Bilheimer DW, Ren H, Boss AH. Analysis of cardiovascular adverse events in patients with type 1 or type 2 diabetes enrolled in selected therapeutic trials in the phase 2/3 Technosphere® insulin development program. ADA 2011. Poster 922-P.
Billings CC, Smutney CC, Howard CP, et al. Handleability and characterization of inhalation profiles using the Gen2 delivery system in a pediatric population. Diabetes Technology Meeting 2010; poster.
Biodel's Intellecutal Property position strengthened for ultra-rapid-acting insulin programs by notice of intent to grant from European Patent Office. Newswire Feed, published May 2, 2012.
Blazquez E et al. “Glucagon-like peptide-1 (7-36) amide as a novel neuropeptide.” Mol Neurobio 18:157, 1998.
Bloomgarden “Gut-derived incretin hormones and new therapeutic approaches.” Diabetes Care 27:2554, 2004.
Boer et al., Design and application of a new modular adapter for laser diffraction characterization of inhalation aerosols. International Jornal of Pharmaceutics 249, pp. 233-245 (2002).
Boer et al., Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers. Part 1. Inhalation characteristics, work of breathing and volunteers' preference in dependence of the inhaler resistance. Int. J. Pharm. 130 (1996) 231-244.
Bojanowska “Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity and stress.” Med Sci Monit 11:RA271, 2005.
Bonner-Weir S et al. “New sources of pancreatic beta-cells.” Nat Biotechnol 23:857-61, 2005.
Boss et al. “Prandial Insulin: Is Inhaled Enough?” Drug Development Research 69(3):138-142 (2008).
Boss A H, Petrucci R, Lorber D. Coverage of prandial insulin requirements by means of an ultra-rapid-acting inhaled insulin. Journal of diabetes science and technology 2012;6:773-779.
Boss AH, Baughman RA, Evans SH, et al. A 3 month comparison in type 1 diabetes of inhaled Technosphere®/Insulin (TI) to Sc administered rapid-acting insulin analogue (RAA) as prandial insulin in a basal/prandial regimen. Diabetes 2006; 55:A97.
Boss AH, Evans SH, Firsov I, et al. Technosphere® insulin as effective as sc rapid acting insulin analogue in providing glycemic control in a 6-month study of patients with type 2 diabetes. Diabetes Technology Meeting 2006; poster.
Boss AH, Evans, SH, Ren, H, et al. Superior post prandial glucose control in patients with type 1 diabetes when using prandial technosphere insulin compared to NovoLog. Diabetologia 2006; Abstract 181.
Boss AH, Marino MT, Cassidy JP, et al. C-peptide correction method to determine exogenous insulin levels in pharmacokinetic studies using Technosphere® insulin. Diabetologia 2009; 52 (suppl 1).
Boss AH, Raskin P, Philips M, et al. Glycosylated hemoglobin and hypoglycaemia in patients with Type 2 diabetes mellitus: Technosphere® insulin and usual antihyperglycaemic regimen vs usual antihyperglycaemic regimen. Diabetologia 2010;53(suppl 1).
Brandt D, Boss AH. The next generation insulin therapy. OndrugDelivery 2006 (published online).
Brange et al., “Insulin Structure and Stability”, Pharm Biotechnol, 5:315-50 (1993).
Bray “Exanatide” Am J Health-Sys Pharm 63:411, 2006.
Bruce, D.G., et al. “Physiological importance of deficiency of early prandial insulin secretion in non-insulin-dependent diabetes.” Diabetes 37:736-44, 1988.
Bullock BP et al. “Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor.” Endocrinology 137:2968, 1996.
Burcelin et al. “Encapsulated, genetically engineered cells, secreting glucagon-like peptide-1 for the treatment of non-insulin-dependent diabetes mellitus.” Ann N Y Acad Sci. Jun. 18, 1999;875:277-85.
Calles-Escandon, J. and Robbins, D.C. “Loss of early phase insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose.” Diabetes 36:1167-72, 1987.
Camilleri, Clinical Practice: Diabetic Gastroparesis. The New England Journal of Medicine, 356: 820-829 (2007).
Campos et al. “Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon0like peptide-1 in the mouse.” Endocrinology 134:2156, 1994.
Cassidy J P, Amin N, Marino M, et al. Insulin lung deposition and clearance following Technosphere® insulin inhalation powder administration. Pharmaceutical Research 2011; 28:2157-2164.
Cassidy J, Amin N, Baughman R, et al. Insulin kinetics following Technosphere® insulin inhalation powder administration unchanged in albuterol-treated asthmatics. ADA 2010; Poster 522.
Cassidy J, Baughman RA, Tonelli G, et al. Use of rapid acting insulin analog as the baseline infusion during glucose clamping improves pharmacokinetic evaluation. ADA 2007; 56: Abstract 602-P.
Cassidy JP, Baughman RA, Schwartz SL, et al. Afresa® (Technosphere® insulin) dosage strengths are interchangeable ADA 2009; Poster 433.
Cassidy JP, Marino MT, Amin N, et al. Lung deposition and absorption of insulin from Afresa® (Technosphere® insulin) ADA 2009; Poster 425.
Cassidy JP, Potocka E, Baughman RA, et al. Pharmacokinetic characterization of the Technosphere® inhalation platform Diabetes Technology Meeting 2009. poster.
Cefalu et al., Inhaled human insulin treatment in patients with type 2 diabetes mellitus. Ann. Int. Med., 2001, 134(3): 203-207.
Ceglia et al. “Meta-analysis: efficacy and safety of inhaled insulin therapy in adults with diabetes mellitus.” Ann Intern Med 145:665, 2006.
Cernea et al. “Noninjectable Methods of Insulin Administration.” Drugs of Today 2006, 42 (6): 405-424.
Chan et al., “Pharmacological Management of Type 2 Diabetes Mellitus: Rationale for Rational Use of Insulin”, Mayo Clin Proc, 2003, 78, 459-467.
Chase et al., “Redefining the clinical remission period in children with type 1 diabetes”, Pediatric Diabetes, 2004, 5, 16-19.
Rosenstock et al. “Efficacy and Safety of Technosphere Inhaled Insulin Compared With Technosphere Powder Placebo in Insulin-Naive Type 2 Diabetes Suboptimally Controlled with Oral Agents.” Diabetes Care, vol. 31, No. 11, pp. 2177-2182, 2008.
Rosenstock et al., “Reduced hypoglycemia risk with insulin glargine: a meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes”, Diabetes Care, 28(4):950-5 (2005).
Rosenstock J, Baughman RA, Ribera-Schaub T, et Al. A randomized, double-blind, placebo controlled study of the efficacy and safety of inhaled Technosphere® insulin in patients with type 2 diabetes (T2DM). Diabetes 2005;54: Abstract 357-OR.
Rosenstock J, Lorber D, Petrucci R, et al. Basal/bolus with prandial inhaled Technosphere® insulin (TI) plus insulin glargine qd vs biaspart 70/30 insulin bid in T2 DM inadequately controlled on insulin with/without oral agents ADA 2009; Poster 466.
Rosenstock J, Lorger DL. Gnudi L, et al.Prandial inhaled insulin plus basal insulin glargine versus twice daily biaspart insulin for type 2 diabetes: a multicentre randomised trial. Lancet 2010;375:2244-2253.
Rossiter A, Amin N, Harris R, et al. Pulmonary safety of inhaled Technosphere® insulin therapy in adults with diabetes using high-resolution computerized tomography of the chest. Diabetologia 2009; 52 (suppl 1).
Rossiter A, Howard C, Amin N, et al. Technosphere® insulin: Safety in type 2 diabetes mellitus. ADA 2010; Poster 523.
Rubin RR, Peyrot M. Psychometric properties of an instrument for assessing the experience of patients treated with inhaled insulin: The inhaled insulin treatment questionnaire (INTQ) Health & Quality of Life Outcomes 2010.8:32.
Rubin RR, Peyrot M; Patient reported outcomes in adults with type 1 diabetes using mealtime Afresa® (inhaled Technosphere® insulin) or rapid acting insulin with basal insulin ADA 2009; Poster 1881.
Ryan EA et al. “Successful islet transplantation. Continued insulin reserve provides long-term glycemic control.” Diabetes 51:2148-2157, 2002.
Sajeesh et al., Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. International Journal of Pharmaceuticals, 2006, 325, pp. 147-154.
Sakr, A new approach for insulin delivery via the pulmonary route: design and pharmacokinetics in non-diabetic rabbits. International Journal of Pharmaceutics, 86: 1-7 (1992).
Salib, Utilization of sodium alginate in drug microencapsulation. Pharazeutische Industrie, 40(11a): 1230-1234 (1978).
Saraceni C et al. “Effects of glucagon-like peptide-1 and long-acting analogues on cardiovascular and metabolic function.” Drugs R D 8:145, 2007.
Sarrach et al., “Binding and entrapment of insulin by liposomes made of lecithin-phosphotidix acid in acid solution” Pharmazie 40:642-645, 1985 (German and English Abstract).
Savage et al., “Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying healthy volunteers”, Gut, vol. 28, pp. 166-170, 1987.
Sawhney et al., Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(a-hydroxy acid) diacrylate macromere. Macromolecules, 26: 581-587 (1993).
Schaffer et al. “Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks.” PNAS 100:4435-4439, 2003.
Schepp et al., Eur. J. Pharmacol., 269:183-91, 1994.
Scherbaum “Unlocking the opportunity of tight glycaemic control. Inhaled insulin: clinical efficacy.” Diabetes Obesity and Metabolism 7:S9-S13, 2005.
Schirra et al. “Gastric emptying and release of incretin hormones after glucose ingestion in humans.” J Clin Invest 97:92-103, 1996.
Schluter et al., “Pulmonary Administration of Human Insulin in volunteers and Type I Diabetics”, Diabetes, 33, (Suppl) 298 (1984).
Schneider et al., “Stimulation by proinsulin of expression of plasminogen activator inhibitor type 1 in endothelial cells”, Diabetes 41(7):890-895 (1992).
Schon, Istvan et al. “Formation of Aminosuccinyl Peptides During Acidolytic Deprotection Followed by their Tranformation to Piperazine-2, 5-dione Derivatives in Neutral Media.” International Journal of Peptide & Protein Research, 14(5), 485-494, 1979.
Schroder, “Crystallized carbohydrate spheres as a slow release matrix for biologically active substances”, Biomaterials 5:100-104, 1984.
Scrocchi et al. “Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene.” Nature Medicine 2:1254-1258, 1996.
Seshiah & Balaji, “Early Insulin Therapy in Type 2 Diabetics”, Int. J. Diabetes in Developing Countries, 2003, 23, 90-93.
Seville, P.C. et al., Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray drying. J. Gene Medicine 2002; 4:428-437.
Shah et al. “Lack of suprression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus.” J Clin Indocrinol Metab 85:4053, 2000.
Shelly et al. “Polysorbate 80 hypersensitivity.” The Lancet 345:1312, 1995.
Shojania et al. “Effect of quality improvement strategies for type 2 diabetes on glycemic control.” JAMA 296:427, 2006.
Silverstein et al., “Care of Children and Adolescens with Type 1 Diabetes, A Statement of the American Diabetes Association”, Diabetes Care, Jan. 2005, vol. 28, p. 186-212.
Singh et al., Use of 125I-[Y39]exendin-4 to characterize exendin receptors on dispersed pancreatic acini and gastric chief cells from guinea pig. Regul. Pept. 53 : 47-59 (1994).
Simms JR, Carballo I, Auge CR, et al. Assessment of immunotoxic effects on humoral and cellular immune parameters following repeated inhalation of Technosphere insulin in the rat. Diabetes 2005;54:Abstract 2078-PO.
Skyler, Pulmonary insulin: current status. Diabetes Voice, vol. 51, Issue I, p. 23-25, 2006.
Skyler “Pulmonary Insulin Delivery—State of the Art 2007” Diabetes Tecnology & Therapeutics, vol. 9, Supplement 1, pp. S1-S3. 2007.
Smith et al. “New-onset diabetes and risk of all-cause and cardiovascular mortality.” Diabetes Care 29:2012, 2006.
Smutney CC, Friedman EM, Amin N. Inspiratory efforts achieved in use of the Technosphere® insulin inhalation system. Diabetes Technology Meeting 2008; Poster SMUT8052.
Smutney CC, Friedman EM, Amin N. Inspiratory efforts achieved in use of the Technosphere® insulin inhalation system. Journal of Diabetes Science and Technology 2009 3(5):1175-1189.
Smutney CC, Polidoro JM, Adamo B, et al. In-vitro performance improvement realized in a next generation dry powder delivery system. Diabetes Technology Meeting 2009; poster.
Smutney CC, Polidoro JM, Adamo B, Shah S. In vitro performance improvement realized in a next generation dry powder delivery system. Third International Conference on Advanced Technologies and Treatments for Diabetes 2010; Poster 122.
Smutney CC, Polidoro JM. Easy-to-use next-generation pulmonary insulin delivery system. ADA 2010; Abstract 2093.
Smutney CC, Polidoro JM. Improvements realized in a next-generation pulmonary insulin delivery system. ADA 2010; Abstract 2097.
Sodium chloride is a natural product from http://www.wqpmag.com/potassium-chloride-vs-sodium-chloride, pp. 1-3. Accessed by Examiner on May 16, 2014 and in Non-Final Ofthce Action dated May 22, 2014 for U.S. Appl. No. 13/797,657 and in Non-Final Office Action dated May 22, 2014 for U.S. Appl. No. 12/883,369.
Pfuetzner A, Rave K, Heise T, et al. Inhaled Technosphere™/insulin results in low variability in metabolic action in type 2 diabetic patients. Exp Clin Endocrinol Diabetes 2000; 108:S161.
Pfuetzner A, Rave K, Heise T, et al. Low variability in metabolic action in type 2 diabetic patients with inhaled Technosphere/insulin. Diabetologia 2000; 43:Abstract 774.
Phillips M, Amin N, Boss AH, et al. Pulmonary functions (over 2 years) in diabetic subjects treated with Technosphere® insulin or usual antidiabetic treatment. Diabetologia 2009; 52 (suppl 1).
Pohl R, Muggenberg BA, Wilson BR, et al. A dog model as predictor of the temporal properties of pulmonary Technosphere/insulin in humans. Respiratory Drug Delivery 2000; VII: 463-465.
Potocka E, Amin N, Cassidy J, et al. Insulin pharmacokinetics following dosing with Technosphere® insulin in subjects with chronic obstructive pulmonary disease. Current Medical Research and Opinion 2010; 26:2347-2353.
Potocka E, Baughman R A, Derendorf H. Population pharmacokinetic model of human insulin following different routes of administration. Journal of Clinical Pharmacology 2011;51:1015-1024.
Potocka E, Baughman R, Derendorf H. Population Pharmacokinetic Model of Regular Human Insulin Following Different Routes of Administration. AAPS Journal. 2009; 11(S1). Available from: http://www.aapsj.org. Presented at the 2009 AAPS (American Association of Pharmaceutical Scientists) National Biotechnology Conference, Jun. 21-24, Seattle, WA.
Potocka E, Baughman RA, Derendorf J. A population PK/PD model of Technosphere® insulin administered to healthy and type 2 diabetics. ADA 2010; Poster 624.
Potocka E, Baughman RA, Schwartz SL, et al. Pharmacokinetics of Afresa® unchanged in patients with chronic obstructive pulmonary function ADA 2009; Poster 437.
Potocka E, Cassidy J P, Haworth P, et al. Pharmacokinetic characterization of the novel pulmonary delivery excipient fumaryl diketopiperazine. Journal of diabetes science and technology 2010;4:1164-1173.
Potocka E, Cassidy JP, Haworth P, et al. Pharmacokinetic characterization of fumaryl diketopiperazine. Third International Conference on Advanced Technologies and Treatments for Diabetes 2010; Poster 291.
Potocka E, Hovorka R, Baughman R, et al. Characterization of metabolism parameters following Technosphere® insulin and insulin Lispro. ADA 2010; Poster 1561.
Potocka E, Hovorka R, Baughman RA, et al. Afresa™ supresses endogenous glucose production earlier than a rapid-acting analog (Lispro) and inhaled Exubera® ADA 2009; Oral 232.
Potocka E, Hovorka R, Baughman RA, et al. Technosphere® insulin suppresses endogenous glucose production earlier than a rapid-acting analog (lispro) and an inhaled insulin (exubera). Diabetologia 2009; 52 (suppl 1).
Prabhu et al. “A study of factors controlling dissolution kinetic of zinc complexed protein suspensions in various ionic species”, Int. J. Pharm. 217(1-2):71-8 (2001).
Laube et al., The lung as an alternative route for delivery for insulin in controlling postrprandial glucose levels in patients with diabetes. Chest, Preliminary Report 114 (6) : 1734-1739 (1998).
Quattrin et al. “Efficacy and Safety of Inhaled Insulin (Exubera) Compared with Subcutaneous Insulin Therapy in Patients with Type 1 Diabetes.” Diabetes Care, vol. 27, No. 11, Nov. 2004, p. 2622-2627.
Quddusi et al. “Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans.” Diabetes Care 26:791, 2003.
Rachman et al. “Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7-36) amide in patients with NIDDM.” Diabetes 45:1524, 1996.
Raju et al., Naseseazines A and B: a new dimeric diketopiperazine framework from a marine-derived actinomycete, Streptomyces sp. Organic letters, vol. 11, No. 17, pp. 3862-3865 (2009).
Raskin P, Heller S, Honka M, et al. Pulmonary function over 2 years in diabetic patients treated with prandial inhaled Technosphere® Insulin or usual antidiabetes treatment: A randomized trial. Diabetes, Obesity and Metabolism 2012;14:163-173.
Raskin P, Phillips M, Amin N, et al. Hypoglycemia in patients with type 1 diabetes incorporating prandial inhaled Technosphere® insulin into their usual diabetes treatment regimen vs continuing their usual diabetes management. AACE 2010; Poster 283.
Raskin P, Phillips MD, Rossiter A, et al. A1C and hypoglycemia in patients with type 2 diabetes mellitus incorporating prandial inhaled Technosphere® insulin into their usual antihyperglycemic regimen vs continuing their usual antihyperglycemic regimen. ADA 2010; Abstract 359-OR.
Raufman et al., Exendin-3, a novel peptdie from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed aciin from guinea pig pancreas. J. Biol. Chem. 266(5) : 2897-2902 (1991).
Raufman et al., Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guina pig pancreas. J. Biol. Chem. 267(30) : 21432-21437 (1992).
Raun et al. “Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, where as a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not.” Diabetes 56:8, 2007.
Rave et al. “Coverage of Postprandial Blood Glucose Excursions with Inhaled Technosphere Insulin in Comparison to Subcutaneously Injected Regular Human Insulin in Subjects with Type 2 Diabetes.” Diabetes Care, vol. 30, No. 9, pp. 2307-2308, Sep. 2007.
Rave et al. “Inhaled Technosphere Insulin in Comparison to Subcutaneous Regular Human Insulin: Time Action Profile and Variability in Subjects with Type 2 Diabetes.” Journal of Diabetes Science and Technology, vol. 2, Issue 2, pp. 205-212, Mar. 2008.
Rave et al. “Time-action profile of inhaled insulin in comparison with subcutaneously injected insulin lispro and regular human insulin.” Diabetes Care 28:1077, 2005.
Rave K, Heise T, Pfuetzner A, et al. Assessment of dose-response characteristics for a new pulmonary insulin formulation and inhaler. Exp Clin Endocrinol Diabetes 2000; 108:S161.
Rave K, Potocka E, Boss AH, et al. Pharmacokinetics and linear exposure of Afresa™ compared with the subcutaneous injection of regular human insulin Diabetes, Obesity and Metabolism 2009; 11:715-720.
Razavi et al. “TRPVI+ sensory neurons control beta cell stress and islet inflammation in autoimmune disease.” Cell 127:1123, 2006.
Retrieved from website: http://groups.molbiosci.northwestern.edu/holmgren/Glossary/Definitions/Def-P/placebo.html, 1 page, Retrieved on Mar. 12, 2013.
Richardson et al. “Technosphere Insulin Technology.” Diabetes Technology & Therapeutics, vol. 9, Supplement 1, pp. S65-S72, 2007.
Richardson PC, Potocka E, Baughman RA, et al. Pharmacokinetics of Technosphere® insulin unchanged in patients with chronic obstructive pulmonary disease. Diabetologia 2009; 52 (suppl 1).
Richter et al. “Characterization of glucagon-like peptide-1(7-36)amide receptors of rat membranes by covalent cross-linking.” FEBS Letters 280:247, 1991.
Richter et al. “Characterization of receptors for glucagon-like peptide-1 (7-36)amide on rat lung membranes.” FEBS Letters 267:78, 1990.
Riddle “Combining Sulfonylureas and Other Oral Agents.” Am J Med, 2000, vol. 108(6A), pp. 15S-22S.
Riddle et al. “Emerging therapies mimicking the effects of amylin and glucagon-like peptide 1.” Diabetes Care 29:435, 2006.
Ritzel et al. “Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 (7-36 amide) after subcutaneous injection in healthy volunteers. Dose-response-relationships.” Diabetologia 38:720, 1995.
Rosen et al., Substance P microinjected into the periaqueductal gray matter induces antinociception and is released folloing morphine administration. Brain Research, 1001: 87-94 (2004).
Rosenmund et al., Diketopiperazines from Leuchs Anhydrides. Angew Chem Intern. Edit. vol. , No. 2 (1970).
Rosenstock “Dual therapy with inhaled human insulin (Exubera(R)) as add-on to metformin (with stopping sulfonurea) is better than triple therapy with rosiglitazone add-on to combination metformin and sulfonurea in poorly controlled Type 2 diabetes.” Diabetes 57:supplement 1:A557, Abstract 2018-PO, 2008.
Exubera package insert, p. 1, 2008.
Fadl et al., Effects of MDI spray angle on aerosol penetration efficiency through an oral airway cast. Journal of Aerosol Science, vol. 38, No. 8, pp. 853-864 (2007).
Falsone et al., The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a mild and efficient cyclocondensation/dehydration reagent. Institute of Chemistry, Organic and Bioorganic Chemistry, Karl-Franzens-University, pp. 122-134 (2001).
Farr, S.J. et al., Pulmonary insulin administration using the AERx® system:physiological and physiochemical factors influencing insulin effectiveness in healthy fasting subjects. Diabetes Tech. Ther. 2:185-197, 2000.
Fehmann et al. “Cell and molecular biology of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulin releasing polypeptide.” Endocrine Reviews 16:390, 1995.
Festa et al., “LDL particle size in relation to insulin, proinsulin, and insulin sensitivity” Diabetes Care, 22 (10):1688-1693 (1999).
Forst et al., “Metabolic Effects of Mealtime Insulin Lispro in Comparison to Glibenclamide in Early Type 2 Diabetes”, Exp. Clin. Endocrinol. Diabetes, 2003, 111, 97-103.
Fritsche et al. “Glimepiride Combined with Morning Insulin Glargine, Bedtime Neutral Protamine Hagedorm Insulin, or Bedtime Insulin Glargine in Patients with Type 2 Diabetes.” American College of Physicians 2003.
Galinsky et al., A synthesis of diketopiperazine's using polyphosphoric acid. Journal of the American Pharmaceutical Association, vol. 46, No. 7, pp. 391-393 (1957).
Garber, “Premixed insulin analogues for the treatment of diabetes mellitus”, Drugs, 66(1):31-49 (2006).
Garg et al. “Improved glycemic control without an increase in severe hypoglycemic episodes in intensively treated patients with type 1 diabetes receiving morning, evening, or split dose insulin glargine.” Diabetes Research and Clinical Practice 66 (2004) 49-56.
Garg SK, Kelly W, Freson B, et al. Treat-to-target Technosphere® insulin in patients with type 1 diabetes. ADA 2011; Abstract 941-P.
Garg SK, McGill JB, Rosenstock J, et al. Technosphere® insulin vs insulin lispro in patients with type 1 diabetes using multiple daily injections. ADA, Abstract 917-P (2011).
Glucagon for Injection (1999) glucagon for injection (rDNA origin), pp. 1-7.
Glucagon-like peptide-1; http://en.wikipedia.org/wiki/Glucagon-like peptide-1 (accessed Apr. 24, 2015).
Glucophage Product Insert. Jan. 2009.
Glucotrol Product Insert. Sep. 2006.
Gnudi L, Lorber D, Rosenstock J, et al. Basal/bolus with prandial inhaled Technosphere® insulin (TI) plus insulin glargine qd vs biaspart 70/30 insulin bid in type T2 diabetes mellitus inadequately controlled on insulin with/without oral agents. Diabetologia 2009; 52 (suppl 1).
Goke et al., Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem. 268(26):19650-19655 (1993).
Golpon et al. “Vasorelaxant effect of glucagon-like peptide-(7-36) amide and amylin on the pulmonary circulation of the rat.” Regulatory Peptides 102:81, 2001.
Gonzalez et al., Actualizacion del tratamiento farmacologico de la diabetes mellitus tipo 2. Del Sistema Nacional de Salud. vol. 32, No. 1, pp. 3-16 (2008)—full article in Spanish with English abstract.
Gotfried M, Cassidy JP, Marino MT, et al. Lung deposition and absorption of insulin from Technosphere® insulin. Diabetologia 2009; 52 (suppl 1).
Grant M, Harris E, Leone-Bay A, Rousseau K. Technosphere®/insulin: Method of action. Diabetes Technology Meeting 2006; Poster.
Grant ML, Greene S, Stowell GW, et al. Mimicking endogenous peptide secretion by inhalation APS 2009; poster.
Greene et al. “Effects of GLP-1 Technosphere(TM) powder: administered by pulmonary insufflation in male obese Zucker diabetic fat (ZDF) rats.” Diabetes Technology Meeting, San Francisco, Oct. 2007.
Greene et al., Greene's protective groups in organic synthesis. 4th ed., pp. 781-783 (2007).
Gurrieri et al., Thermal condensation of some alpha-aminoacids with phatalic acid. Thermochimica Acta, 7 (1973) 231-239.
Gutniak et al. “Antidiabetogenic action of glucagon-like peptide-1 related to administration relative to meal intake in subjects with type 2 diabetes.” J Int Med 250:81, 2001.
Gutniak et al. “Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus.” NEJM 326:1316, 1992.
Gutniak et al. “GLP-1 tablet in type 2 diabetes in fasting and postprandial conditions.” Diabetes Care 20:1874, 1997.
Gutniak et al. “Potential therapeutic levels of glucagon-like peptide I achieved in humans by a buccal tablet.” Diabetes Care 19:843, 1996.
Gutniak et al. “Subcutaneious injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial glycemia in NIDDM.” Diabetes Care 17:1039, 1994.
Guyton et al., “Acute Control of Llocal Blood Flow”, Textbook of Medical Physiology, Chapter 17, 10th Edition, W.B. Saunders Company, pp. 176-177, 2000.
Gyore et al., Thermal Analysis, vol. 2—Proceedding Fourth ICTA Budapest 1974; 387-394.
Haak “New developments in the treatment of type 1 diabetes mellitus.” Exp Clin Endocrinol Diabetes 107:Suppl 3: S108, 1999.
Haffner et al., “Proinsulin and insulin concentrations I relation to carotid wall thickness”, Strock 29:1498-1503 (1998).
Hagedorn et al. “Protamine Insulin”, JAMA, 106:177-180 (1936).
Haino, Takeharu et al. “On-beads Screening of Solid-Attached Diketopiperzines for Calix[5]Arene-Based Receptor.” Tetrahedron Letters, 40(20), 3889-3892, 2003.
Halozyme Press Release. Jun. 6, 2009.
Hanley et al., “Cross-sectional and prospective associations between proinsulin and cardovascular disease risk factors in a population experiencing rapid cultural transition” Diabetes Care 24(7): 1240-1247 (2001).
Hassan et al. “A Randomized, Controlled Trial Comparing Twice-a-Day Insulin Glargine Mixed with Rapid-Acting Insulin Analogs Versus Standard Neutral Protamine Hagedom (NPH) Therapy in Newly Diagnosed Type 1 Diabetes.” Pediatrics, 121(3), e466-e472, 2008.
Hassan et al. “In vivo dynamic distribution of 131I-glucagon0like peptide-1 (7-36) amide in the rat studied by gamma camera.” Nucl Med Biol 26:413, 1999.
Hausmann et al. “Inhaled insulin as adjunctive therapy in subjects with type 2 diabetes failing oral agents: a controlled proof of concept study.” Diabetes Obesity and Metabolism 8:574, 2006.
Hayasaka et al. “Proliferation of type II pneumocytes and alteration in their apical surface membrane antigenicity in pulmonary sarcoidosis.” Chest 116:477, 1999.
Nathan DM et al. “Management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy.” Diabetes Care 29:1963-1972, 2006.
Nathan DM et al. “Management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy.” Diabetes Care 31:173-175, 2008.
Nathan DM et al. “Management of hyperglycemia in Type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy.” Diabetes Care 32:193-203, 2009.
Nathan, “Initial Management of Glycemia in Type 2 Diabetes Melllitus” N. Eng. J. Med., 2002, 347, 1342-9.
Nauck “Is glucagon-like peptide 1 an incretin hormone?” Diabetologia 42:373-379, 1999.
Nauck et al. “Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans.” Am J Physiol 273 (Endocrinol Metabl 36):E981, 1997.
Nauck et al. “Reduced incretin effect in type 2 (non-insulin-dependent) diabetes.” Diabetologia 29:46-52, 1986.
Nauck et al., Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab., 87:1239-1246, 2002.
Nauck et al., Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia, 39:1546-1553, 1996.
Nauck et al., Normalization of fasting hyperglycemia by exogenous GLP-1 (7-36 amide) in type 2 diabetic patients. Diabetologia, 36:741-744, 1993.
NHS Clinical Guidelines, “Type 1 diabetes diagnosis and mangement of type 1 diabetes in children and young people”, National Collaborating Centre for Women's and Children's Health Commissioned by the National Institute for Clinical Excellence, Sep. 2004, p. 1-217.
Nystrom et al. “Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetic patients with stable coronary artery disease.” Am J Physiol Endocrinol Metabl 287:E1209, 2004.
Okumura et al., Intratracheal delivery of insulin: absorption from solution and aerosol by rat lung. Int. J. Pharmaceuticals 88: 63-73 (1992).
Orgsoltab et al., Division of Organic Chemistry. Ohio Northern University. Nov. 24, 2009. Available from: <http://www.2.onu.edu/˜b-meyers/organic_solvents.html>.
Oshima et al. “Comparison of half-disappearance times, distribution volumes and metabolic clearance rates of exogenous glucagon-like peptide 1 and glucagon in rats.” Regulatory Peptides 21:85, 1988.
Ostrovsky, Gene. Mannkind Inhalation Insulin Going to FDA to Seek Approval [on-line]. MedGadget.com, posted on Mar. 17, 2009, Retrieved from the Internet: <URL:http://medgadget.com/2009/03mannkind_inhalation_insulin_going_to_fda_to_seek_approval.html>.
Owens et al. “Inhaled human insulin.” Nature Reviews, Drug Discovery, vol. 5, No. 5, pp. 371-372, May 2006.
Ozyazgan et al. “Effect of glucagon-like peptide-1)7-36) and exendin-4 on the vascular reactivity in streptozotocin/nicotinamide-induced diabetic rats.” Pharmacology 74:119, 2005.
Pacini P, Marino MT. Evaluation of endogenous and exogenous components to peripheral insulin concentration during administration of inhaled insulin. ADA 2010; Abstract 2094-PO.
Patton “Mechanisms of macromolecule absorption by the lungs.” Advanced Drug Delivery Reviews 19:3, 1996.
Patton “Unlocking the opportunity of tight glycaemic control. Innovative delivery of insulin via the lung.” Diabetes Obesity and Metabolism 7:S5, 2005.
Patton & Platz, Routes of Delivery: Case studies: pulmonary delivery of peptides and proteins for systemic action. Adv. Drug. Del. Rev. 8: 179-196 (1992).
Patton et al. “The lungs as a portal of entry for systemic drug delivery.” Proc Am Thorac Soc 1:338, 2004.
Patton et al., “Inhaled Insulin”, Advanced Drug Delivery Reviews, 35, Feb. 1999, p. 235-247.
Onoue et al., Dry powder inhalation systems for pulmonary delivery of therapeutic peptides and proteins. Expert Opin. Ther. Patents 18(4):429-442 (2008).
Pearson et al., Systematically Initiating Insulin, supplemental to vol. 32, No. 1, 19S-28S, 2006.
Perera et al. “Absorption and Metabolic Effect of Inhaled Insulin.” Diabetes Care, vol. 25, No. 12, Dec. 2002, p. 2276-2281.
Petkowicz et al., “Hypoglycemic effect of liposome-entrapped insulin adminstered by various routes into normal rats”, Pol. J. Pharmacol. Pharm. 41:299-304 (1989).
Petrucci R, Amin N, Lovertin P. et al. Pulmonary function tests remain similar in patients who received Technosphere® insulin and in patients currently receiving standard antidiabetic therapy. Diabetologia 2009; 52 (suppl 1).
Peyrot M, Rubin RR, Otterbach K. Effect of Technosphere® inhaled insulin on treatment satisfaction, glycemic control and quality of life. Diabetes 2006; 55:Abstract 423-P.
Pezron et al., Insulin aggregation and asymmetric transport across human bronchial epithelial cell monolayers (Calu-3). J. Pharmaceutical Sci. 91: 1135-1146 (2002).
Chelikani et al., Intravenous infusion of glucagon-like peptide-1 potently inhibits food intake, sham feeding, and gastric emptying in rats. Am J Physiol. Regul. Integr. Comp. Physiol., 288(6):R1695-706, 2005.
Chemical Abstracts, vol. No. 114(22), Abstract No. 214519x (1990).
Chemicaland21.com. Solvents. Dec. 12, 2008. Available from: <http://web.archive.org/web20081212035748/http://www.chemicalland21.com/info/SOLVENTS.htm.
Chow et al., Particle Engineering for Pulmonary Drug Delivery. Pharmaceutical Research, vol. 24, No. 3, pp. 411-437 (2007).
Clee et al. Nature Genetics 38:688-693, 2006.
Cobble “Initiating and Intensifying Insulin Therapy for Type 2 Diabetes: Why, When, and How.” Am J Ther. Jan. 8, 2009.
Coffey et al. “Valuing heath-related quality of life in diabetes.” Diabetes Care 25:2238, 2002.
Colagiuri et al., Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? Diabetes Care, vol. 25, pp. 1410-1417 (2002).
Combettes and Kargar, C, Newly Approved and Promising Antidiabetic Agents. Therapie, Jul.-Aug. 2007: 62 (4): 293-310.
Costello et al., “Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism in prostate epithelial cells”, Journ. Biol. Chem. 272(46):28875-28881 (1997).
Cricket TM Single-Use Inhalers [on-line]. MannKind Technologies Website, posted in 2011, [retrieved on Jul. 30, 2012]. Retrieved from the Internet. <URL:mannkindtechnologies,com/DeviceTechnology/CricketSingleUseInhalers.aspx>.
Crosby, J. “Dog Normals”, <http://vetmedicine.about.com/od/diseasesconditionsfaqs/tp/TP_dogfacts.htm>, copyright 2013.
Cruetzfeldt et al. “Glucagonostatic actions and reduction of fasting hyerglycemia by exogenous glucagon-like peptide i(7-36) amide in type 1 diabetic patients.” Diabetes Care 19:580, 1996.
D'Alessio et al., Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons. J. Clin. Invest., 97:133-38 (1996).
Database adisinsight, “Gucagon-like peptide-1 inhalation-MannKind Corporation”, Database accession No. 2009:1048 Abstract.
Davis “Postprandial Physiology and the Pathogenesis of Type 2 Diabetes Mellitus.” Insulin, vol. 3, Apr. 1, 2008, pp. 132-140.
De Heer et al. “Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide-1.” Diabetes 56:438, 2007.
Deacon “Therapeutic strategies based on glucagon-like peptide 1.” Diabetes. Sep;53(9):2181-9, 2004.
Deacon et al., “Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig”, Am. J. Physiol. 271 (Endocrino. Metab. 34): E458-E464, 1996.
Decode study group. “Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria.” Lancet. Aug. 21, 1999;354(9179):617-21.
DedicatedPhase, “Preclinical Trials and Research”, <http://www.dedicatedphase1.com/preclinical-research.html>, copyright 2006-2011, p. 1.
Delgado-Aros et al. “Effect of GLP-1 on gastric volume, emptying, maximum volume ingested and postprandial symptoms in humans.” Am J Physiol Gastrointest Liver Physiol 282:G424, 2002.
Diabetes: Counting Carbs if You Use Insulin, WedMD, http://diabetes.webmd.com/carbohydrate-counting-for-people-who-use-insulin#m Oct. 1, 2010.
Diez et al. “Inhaled insulin—a new therapeutic option in the treatment of diabetes mellitus” Expert Opin. Pharmacother., 2003, 4, 191-200.
Dorwald, F.A. Side reactions in organic synthesis. Wiley, (2005).
Doyle et al. “Glucagon-like peptide-1.” Recent Prog Horm Res. 2001;56:377-99.
Dreamboat TM Reusable Inhalers [on-line]. MannKind Technologies Website, posted in 2011, Retrieved from the Internet: <URL: mannkindtechnologies.com/Device Technology/Dream Boat Reuseable Inhalers.aspx>.
Drucker “Development of glucagon-like peptide-1-based pharmaceuticals as therapeutic agents for the treatment of diabetes.” Curr Pharma Design 7:1399, 2001.
Drucker et al., “The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes”, www.thelancet.com, vol. 368, pp. 1696-1705, Nov. 11, 2006.
Dungan et al., Glucagon-like peptide 1-based therapies for type 2 diabetes: a focus on exntadtide. Clinical Diabetes, 23: 56-62 (2005).
Dunn, “Zinc-ligand interactions modulate assembly and stability of the insulin hexamer”, Biometals, 18(4):295-303 (2005).
Edited by Fukushima, Masanori, “Arterial Sclerosis,” Merck Manual 17th, Japanese Edition, Nikkei BP Corp., p. 1659-1663, 1999.
Edwards CMB et al. “Cardiovascular and pancreatic endocrine response to glucagon-like peptide-1(7-36) amide in the conscious calf.” Exp Physiol 82:709, 1997.
Edwards CMB et al. “Subcutaneous glucagon-like peptide-1(7-36) amide is insulinotropic and can cause hypoglycaemia in fasted healthy subjects.” Clinical Science 96:719, 1998.
Eggers et al., Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci., 10:250-261 (2001).
Ehlers et al. “Recombinant glucagon-like peptide-1 (7-36 amide) lowers fasting serum glucose in a broad spectrum of patients with type 2 diabetes.” Horm Metab Res 35:611, 2003.
Eissele et al., Rat gastric somatostatin and gastrin relase: interactions of exendin-4 and truncated glucagon-like peptide-1 (GLP-1) amide. Life Sci., 55(8):629-634 (1994).
Elliot et al., Parenteral absorption of insulin from the lung in diabetic children. Austr. Paediatr. J. 23: 293-297 (1987).
Elrick et al. “Plasma insulin response to oral and intravenous glucose administration.” J Clin Endocr 24:1076, 1964.
Engelgau MM “Screening for type 2 diabetes.” Diabetes Care 23:1563-1580, 2000.
Engwerda et al., Improved pharmackinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care, vol. 34, Aug. 2011, pp. 1804-1808.
Erlanger et al., Phosphorous pentoxide as a reagent in peptide synthesis. College of Physicians and Surgeons—Columbia Univeristy, vol. 26, pp. 2534-2536 (1960).
Exubera indications, dosage, storage, stability. Http://www.rxlist.com/cgi/generic4/exubera_ids.htm, 2008.
Amorij et al., Development of stable infleunza vaccine powder formulations challenges and possibilities. Pharmaceutical Research, vol. 25, No. 6, pp. 1256-1273 (2008).
Audouy et al., Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine, vol. 29, pp. 4345-4352 (2011).
Volund “Conversion of insulin units to SI units.” American Journal of Clinical Nutrition, Nov. 1993, 58(5), pp. 714-715.
Wachters-Hagedoorn et al. “The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men.” J Nutr 136:1511, 2006.
Wang et al., Glucagon-like peptide-1 is a physiological incretin in rat. J. Clin. Invest., 95 : 417-421 (1995).
Wang et al., Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia, 47:478-487, 2004.
Wareham et al., “Fasting Proinsulin Concentrations Predict the Development of Type 2 Diabetes”, Diabetes Care, 1999, 22, 262-70.
Waterhouse et al., “Comparatie assessment of a new breath-actuated inhaler in patients with reversible airways obstruction”, Respiration 59:155-158 (1992).
WebMD (retrieved from http://www.webmd.com/pain-management/tc/pain-management-side-effects-of-pain-medicines in 2012, 4 pages).
Wei et al. “Tissue-specific expression of the human receptor for glucagon-like peptide-1: brain and pancreatic forms have the same deduced amino acid sequence.” FEBS Letters 358:219, 1995.
Weir et al. “Glucagonlike peptide 1 (7-37) actions on endocrine pancreas.” Diabetes 38:338, 1989.
Weiss, SR et al. “Inhaled insulin provides improved glycemic control in patients with type 2 diabetes mellitus inadequately controlled with oral agents.” Arch Intern Med 163:2277-2282, 2003.
Weissberger, “Mannkind: Overlooked Biotech with Excellent Prospects (Part V),” http://www.investorvillage.com/smbd.asp?mb=2885&mn=45817&pt=msg&mid=5021385 (posted on Jun. 19, 2008, accessed on Oct. 18, 2012).
West, Solid State Chemistry and its Applications, Chp 10, Solid Solutions. Wiley, New York, 358 (1998).
Wettergren A et al. “Truncated GLP-1 (proglucagon 78-107-Amide) inhibits gastric and pancreatic functions in man.” Digestive Diseases and Sciences 38:665, 1993.
Wigley et al., Insulin across respiratory mucosae by aerosol delivery. Diabetes 20(8): 552-556 (1971).
Willms B et al. “Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients.” J. Clin Endocrinol Metab 81:327, 1996.
Wilson BR et al. “Technospheres(TM) for pulmonary and nasal applications.” Respiratory Drug Delivery VIII, 2002,p. 545.
Wilson et al., Spray-drying, a viable technosphere formulation process option to lyophilization, http://www.aapsj.org/abstracts/AM_2004/AAPS2004-002724.PDF, 1 page, 2004.
Witchert, Low molecular weight PLA: A suitable polymer for pulmonary administered microparticles. J. Microencapsulation, 10(2): 195-207 (1993).
Wright et al., Inhaled Insulin: Breathing new life into diabetes therapy. Nursing, vol. 37, No. 1, p. 46-48 (2007).
Wong et al. “From cradle to grave: pancreatic b-cell mass and glucagon-like peptide-1.” Minerva Endocrinologica 31:107, 2006.
Wuts et al. “The Role of Protective Groups in Organic Synthesis,” John Wiley, New York, 2nd Ed. 1991.
Yan et al., Analgesic action of microinjection of neurokinin A into the lateral reticular nucleus and nucleus raphe magnus in rats. Acta Physiologica Sinica, vol. 48, No. 5, pp. 493-496 (1996)—abstract.
Yang et al., Division and differentiation of natural antibody-producing cells in mouse spleen. PNAS, 104(11): 4542-4546 (2007).
Yoshida et al., Absorption of insulin delivered to rabbit trachea using aerosol dosage form. J. Pharm. Sci. 68(5): 670-671 (1979).
Yoshioka et al., “Serum proinsulin levels at fasting and after oral glucose load in patients with Type 2 (non-insulin dependent) diabetes mellitus”, Diabetogia, 1988, 31, 355-60.
Yu W, Marino MT, Cassidy JP, et al. Insulin antibodies associated with Technosphere® insulin. ADA 2010; Abstract 216-OR.
Yusta B et al. “GLP-1 receptor activation improves b-cell function and survival following induction of endoplasmic reticulum stress.” Cell Metabolism 4:391, 2006.
Zander et al., Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet, 359:824-830, 2002.
Zethelius et al., “Proinsulin is an Independent Predictor of Coronary Heart Disease”, Circulation 105:2153-2158 (2002).
Zimmerman, K., “Respiratory System: Fats, Function, and Diseases”, <www.livescience.com/22616-respiratory-system.html>, copyright 2013, p. 1.
Zisser et al. “In Patients Using Technospere Insulin. Variation in PPG Stayed Within ADA-recommended Targets Despite Large Variations in Glucose Load.” Mannkind Corporation (2010), ADA 2010; Poster 554.
Zisser H, Jovanovic L, Markova K, et al. Technosphere® insulin effectively controls postprandial glycemia in patients with type 2 diabetes mellitus. Diabetes Technology and Therapeutics 2012;14:997-1001.
Wasada, Glucagon-like peptide-1 (GLP-1). Nihon Rinsho, vol. 62, No. 6, pp. 1175-1180 (2004) (full Japanese article with English abstract).
Bosquillon et al., Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rates. Journal of Controlled Release 96: 233-244 (2004).
Cho et al., Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacology & Therapeutics 135: 247-278 (2012).
Definition of medicament from http://medical-dictionary.thefreedictionary.com/medicament, retrieved by the Examiner on Mar. 20, 2015 and cited in Office Action dated Mar. 26, 2015 in U.S. Appl. No. 13/942,482.
Definition of matrix from http://medical-dictionary.thefreedictionary.com/matrix, retrieved by the Examiner on Mar. 5, 2015 and cited in Office Action dated Mar. 26, 2015 in U.S. Appl. No. 12/471,260.
Diabetes Frontier, vol. 10, No. 5, p. 647-657 (1999) (full Japanese article with translated English portion provided in separate attachment, portion translated in English is the bottom of p. 655 and the left column of p. 656).
Ely et al., Effervescent dry powder for respiratory drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 65: 346-353 (2007).
European Search report for European Application 14192154.4 dated Mar. 19, 2015.
Extended European Search report for European Application 14187552.6 dated Mar. 2, 2015.
Gillespie et al., Using carbohydrate counting in diabetes clinical practice. Journal of the American Diabetic Association, vol. 98, No. 8, p. 897-905 (1998).
Yamamoto et al., Engineering of Poly (DL-lactic-co-glycolic acid) Nano-composite particle for dry powder inhalation dosage forms of insulin with spray fludized bed granulating system. J. Soc. Powder Technol., Japan, 41: 514-521 (2004).
Johnson et al., “Turbuhaler a new device for dry powder terbutaline inhalation”, Allergy 43(5):392-395 (1988).
Johnson et al: RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J Biol Chem., 279(23):24794-802, 2004.
Johnson, Keith A., Preparation of peptide and protein powders for inhalation. Advanced Drug Delivery Reviews 1997; 26:3-15.
Jones et al., An investigation of the pulmonary absorption of insulin in the rat. Third European Congress of Biopharmaceutics and Pharmacokinetics, (1987).
Joseph et al. “Oral delivery of glucagon-like peptide-1 in a modified polymer preparation normalizes basal glycaemia in diabetic db/db mice.” Diabetologia 43:1319-1328, 2000.
Joy et al. “Incretin mimetics as emerging treatments for type 2 diabetes.” Annal Pharmacother 39:110, 2005.
Juntti-Berggren et al. “The antidiabetogenic effect of GLP-1 is maintained during a 7-day treatment period and improves diabetic dyslipoproteinemia in NIDDM patients.” Diabetes Care 19:1200-1206, 1996.
Kanse et al. “Identification and characterization of glucagon-like peptide-1 7-36 amide-binding sites in the rat brain and lung.” FEBS Letters 241:209, 1988.
Kapitza C et al. “Impact of particle size and aerosolization time on the metabolic effect of an inhaled insulin aerosol.” Diabetes Tech Ther 6:119, 2004.
Kapsner P, Bergenstal RM, Rendell M, et al. Comparative efficacy and safety of Technosphere® insulin and a rapid-acting analog both given with glargine in subjects with type 1 diabetes in a 52-week study. Diabetologia 2009; 52 (suppl 1).
Katz et al. “Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.” J. Clin. Endocrinol. Metab. 85:5402-2410, 2000.
Kawai et al. “Evidence that glucagon stimulates insulin secretion through its own receptor in rats.” Diabetologia 38:274, 1995.
Kawamori et al. “Does hyperinsulinemia accelerate atherosclerosis?” Department of Medicine, Juntendo University School, vol. 13, No. 12, p. 954-960, 1994.
Kelley, D. et al. “Impaired postprandial glucose utilization in non-insulin dependent diabetes mellitus.” Metabolism 43:1549-1557, 1994.
Kenny AJ et al. “Dipeptidyl peptidase IV, a kidney brush-border serin peptidase.” Biochem J. 155:169, 1976.
Kim et al. “Development and characterization of a glucagon-like peptide 1-albumin conjugate. The ability to activate the glucagon-like peptide 1 receptor in vivo.” Diabetes 52:751, 2003.
Kinzig et al. “The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness.” J Neurosci 22:10470, 2002.
Kirk et al. “Disparities in HbA1c levels between African-American and non-hispanic white adults with diabetes.” Diabetes Care 29:2130, 2006.
Kitabchi, Proinsulin and C-peptide:a review. May 26, 1977 (5):547-87, http://www/ncbi.nlm.nih.gov/pubmed/403392.
Knop et al. “No hypoglycemia after subcutaneous administration of glucagon-like peptide-1 in lean type 2 diabetic patients and in patients with diabetes secondary to chronic pancreatitis.” Diabetes Care 26:2581, 2003.
Knop et al. “Reduced incretin effect in type 2 diabetes. Cause or consequence of the diabetic state?” Diabetes 56:1951, 2007.
Kohler, “Aerosols for Systemic Treatment”, Lung (Suppl.) 677-684 (1990).
Komada et al., Intratracheal delivery of peptide and protein agents: absorption from solution and dry powder by rat lung. J. Pharm. Sci. 83(6): 863-867 (1994).
Komatsu et al. “Glucagonostatic and insulinotropic action of glucagon-like peptide-1 (7-36)-amide.” Diabetes 38:902, 1989.
Koning et al., Relationship between inspiratory flow through simulated dry powder inhalers and peak maximal inspiratory pressure. Flow Through a Simulated DPI, Chapter 3, pp. 43-56 (2001).
Labiris et al., Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmocology 56: 588-599 (2003).
Kontny et al., Issues Surrounding MDI Formulation Development with Non-CFC Propellants), J. Aerosol Med 4(3), 181-187 (1991).
Kraft KS, Grant M. Preparation of macromolecule-containing drug powders for pulmonary delivery Methods in Molecular Biology 2009;480:165-174.
Kreymann B et al. “Glucagon-like peptide-1 7-36: a physiological incretin in man.” The Lancet, Dec. 5, 1987, p. 1300.
Krssak, M. et al. “Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes.” Diabetes 53:3048-3056, 2004.
Kwon et al. “Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets.” Diabetes 53:S225, 2004.
Lankat-Buttgereit B et al. “Molecular cloning of a cDNA encoding for the GLP-1 receptor expressed in rat lung.” Exp Clin Endocrinol 102:241, 1994.
Lebovitz “Therapeutic options in development for management of diabetes: pharmacologic agents and new technologies.” Endocr Pract 12:142, 2006.
Lee et al. “Synthesis, characterization and pharmacokinetic studies of PEGylated glucagon-like peptide-1.” Bioconjugate Chem 16:377, 2005.
Lee et al., “Development of an Aerosol Dosage Form Containing Insulin”, J. Pharm. Sci. 65(4), 567-572 (1976).
Leone-Bay et al. “Evaluation of novel particles as an inhalation system for GLP-1.” Diabetes, Obesity and Metabolism. 11:1050-1059, 2009.
Leone-Bay A, Grant M. Technosphere® Technology: A Platform for inhaled protein therapeutics. OndrugDelivery 2006 (published online).
Leone-Bay A, Grant M. Technosphere®/insulin: mimicking endogenous insulin release. In: Rathbone M, Hadgraft J, Roberts M, et al, eds. Modified Release Drug Delivery, 2e. New York, NY: Informa Healthcare USA, Inc; 2008.
Kieffer et al. “The glucagon-like peptides.” Endocrine Reviews 20:876, 1999.
Standl et al. “Good Glycemic Control With Flexibility in Timing of Basal Insulin Supply.” Diabetes Care, vol. 28, No. 2, Feb. 2005.
Stanley et al. “Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY and pacretic peptide.” Am J Physiol Gastrointest Liver Physiol 286:G693, 2004.
Steinberg et al. “A new approach to the safety assessment of pharmaceutical excipients.” Reg Toxicol Pharmacol 24:149, 1996.
Steiner, K. et al. “The relative importance of first- and second-phase insulin secretion in countering the action of glucagon on glucose turnover in the conscious dog.” Diabetes 31:964-972, 1982.
Steiner S, Rave K, Heise T, et al. Pharmacokinetic properties and bioavailablility of inhaled drug powder Technosphere™/insulin. Exp Clin Endocrinol Diabetes 2000; 108:S161.
Steiner S, Rave K, Heise T, et al. Technosphere™/insulin: Bioavailability and pharmacokinetic properties in healthy volunteers. Diabetologia 2000;43:Abstract 511-P.
Steiner SS, Burrell BB, Feldstein R, et Al. Pulmonary delivery of Technosphere™/insulin: Increased bioefficacy and bioavailability in clinical trials using the PDC Medtone™ inhaler. Proceed Int'l Symp Control Rel Bioact Mater 2000; 27: 1000-1001.
Stowell et al. “Development of GLP-1 Technosphere(TM) powder: an inhaled GLP-1 product.” Diabetes Technology Meeting, San Francisco, Oct. 2007.
Strack “Inhaled Human Insulin.” Drugs of Today 2006, 42 (4): 207-221.
Sturis et al., GLP-1 deriative liraglutide in rats with beta-cell deficiences: influence of metabolic state on beta-cell mass dynamics. British Journal of Pharmacology, 140: 123-132 (2003).
Sympatecs. Dry Dispersion for Laser Diffraction and Image Analysis, 2011. XP-002586530.
Leone-Bay et al., Innovation in drug delivery by inhalation. Ondrugdelivery, No. 7, pp. 4-8 (2010).
Tack CJ, Boss AH, Baughman RA, et al. A randomized, double blind, placebo controlled study of the forced titration of prandial Technosphere®/Insulin in patients with type 2 diabetes mellitus. Diabetes 2006;55:Abstract 428-P.
Tack CJ, Christov V, deGalan BE, et al. Randomized forced titration to different doses of Technosphere® insulin demonstrates reduction in postprandial glucose excursions and hemoglobin A1c in patients with type 2 diabetes. J Diabetes Sci Technol 2008; 2(1) :47-57.
Tang-Christensen et al. “Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats.” Am J Physiol 271 (Regulatory Integrative Comp Physiol 40):R848, 1996.
Teeter et al. “Dissociation of lung function changes with humoral immunity during inhaled human insulin therapy.” Am J Resp Crit Care Med 173:1194, 2006.
The American Diabetes Association “Insulin Administration” Diabetes Care, vol. 27, Supplement 1, S106-S109 (2004).
Gerber et al., Treatment satisfaction with inhaled insulin in patients with type 1 diabetes. Diabetes Care 24:1556-1559 (2001).
The Lancet. 1989, vol. 333, p. 1235-1236.
Thorens “Expression cloning of the pancreatic b-cell receptor for the gluco-incretin hormone glucagon-like peptide-1.” PNAS 89:8641, 1992.
Thorens B et al. “Cloning and function expression of the human islet GLP-1 receptor: demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.” Diabetes 42:1678, 1993.
Todd et al. “Glucagon-like peptide-1 (GLP-1: a trial of treatment in non-insulin-dependent diabetes mellitus.” Eur J Clin Invest 27:533, 1997.
Todd et al. Subcutaneous glucagon-like peptide-1 improves postprandial glucaemic control over a 3-week period in patients with early type 2 diabetes. Clinical Science 95:325, 1998.
Toft-Nielson et al. “Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes.” J Clin Endocrinol Metab 86:3853, 2001.
Toft-Nielson et al. “Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglcaemia.” Diabetologia 41:1180, 1998.
Toft-Nielson et al. “The effect of glucagon-like peptide-1 (GLP-1) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones” Diabetes 45:552, 1996.
Tornusciolo D.R. et al., Biotechniques 19(5):800-805, 1995. Simultaneous detection of TDT-mediated dUTP-biotin nick end-labeling (TUNEL)-positive cells and multiple immunohistochemical markers in single tissue sections.
Triantafyllidis et al., Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite based materials. Microporous and Mesoporous Materials, 75:89-100 (2004).
Tu N, Kramer DA, Baughman RA. Inhaled Technosphere® Insulin improves glycemic control without weight gain. Diabetes 2007;56:Abstract 471-P.
Tuley et al., Experimental observations of dry powder inhaler dose fluidisation. International Journal of Pharmaceutics, 358, pp. 238-247 (2007).
Utah Valley University. Saponification. © 2009. Available from: <http://science.uvu.edu/ochem/index.php/alphabetical/s-t/saponification/printpage/>.
Vahl et al. “Effects of GLP-1-(7-36)NH2, GLP-1-(7-37), and GLP-1-(9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans.” J Clin Endocrinol Metabol 88:1772, 2003.
Van Alfen-Van Der Velden et al. “Successful treatment of severe subcutaneou insulin resistance with inhaled insulin therapy”, Pediatric Diabetes 2010: 11:380-382.
Vara E et al. “Glucagon-like peptide-1 (7-36) amide stimulates surfactant secretion in human type II pneumocytes.” Am J Resp Crit Care Med 163:840-846, 2001.
Vella A et al. “Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes.” Diabetes 49:611, 2000.
Vella A et al. “The gastrointestinal tract and glucose tolerance.” Curr Opin Clin Nutr Metab Care 7:479, 2004.
Vendrame et al. “Prediabetes: prediction and prevention trials.” Endocrinol Metab Clin N Am, 2004, vol. 33, pp. 75-92.
Verdich C, et al., A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab., 86:4382-4389, 2001.
Vilsboll et al. “Reduced postprandial concentrations of intact biologically active glucagon-like peptide-1 in type 2 diabetic patients.” Diabetes 50:609, 2001.
Vilsboll et al. “Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects.” J Clin Endocrinol Metab 88:220, 2003.
Vilsboll et al., “Evaluation of β-Cell Secretary Capacity Using Glucagon-Like Peptide 1”, Diabetes Care, vol. 23, No. 6, pp. 807-812, Jun. 2000.
Vilsboll et al., “Incretin secretion in Relation to Meal Size and Body Weight in Healthy Subjects and People with Type 1 and Type 2 diabetes Mellitus”, The Journal of Clinical Endrocronology & Metabolism, vol. 88, No. 6, pp. 2706-2713, 2003.
Shields, Irritable bowel syndrome, archived Jun. 21, 2009, available at: https://web.archive.org/web/200906211 00502/http://www.gastroenterologistpaloalto.com/conditions-diseases-irritable-bowelsyndrome-palo-alto-ca. html; on Aug. 26, 2015 is US case U.S. Appl. No. 14/139,714.
Smith et al., Evaluation of novel aerosol formulations designed for mucosal vaccination against infleunza virus. Vacine, vol. 21, pp. 2805-2812 (2003).
U.S. Appl. No. 14/873,041, filed Oct. 1, 2015.
Design U.S. Appl. No. 29/504,212, filed Oct. 2, 2014.
U.S. Appl. No. 15/017,153, filed Feb. 5, 2016.
Young et al., Encapsulation of lysozyme in a biodegradable polymer by preparation with a vapor-over-liquid antisolvent. Journal of Pharmaceutical Sciences, 88:640-650 (1999).
Hazard Prevention and Control in the Work Environment: Airborne Dust WHO/SDE/OEH/99. 14 Chapter 1—Dust: Definitions and Concepts [retrieved from internet by Examiner in European case on Sep. 22, 2015]. <URL: http://www.who.int/occupational_health/publications/airdust/en/> published on Oct. 29, 2004 as per Wayback Machine.
Owens et al., Blood glucose self-monitoring in type 1 and type 2 diabetes: reaching a multidisciplinary consensus. Diabetes and Primary Care, vol. 6, No. 1, pp. 8-16 (2004).
U.S. Appl. No. 14/905,236, filed Jan. 14, 2016.
U.S. Appl. No. 14/991,777, filed Jan. 8, 2016.
U.S. Appl. No. 14/971,785, filed Dec. 16, 2015.
U.S. Appl. No. 14/910,235, filed Feb. 4, 2016.
Amodeo et al., Pain peptides. Solution structure of orphanin FQ2. FEBS Letters, vol. 473, Issue 2, pp. 157-160 (2000).
Vanderah et al., FE200041 (D-Phe-D-Phe-D-Nle-D-Arg-NH2): A peripheral efficacious k opioid agonist with unprecedented selectivity. The Journal of Pharmacology and Experimental Therapeutics, vol. 310, No. 1, pp. 326-333 (2004).
Krondahl et al., Regional differences in bioavailability of an opioid tetrapeptide in vivo rats after administration to the respiratory tract. Peptides, vol. 23, No. 3, pp. 479-488 (2002).
Design U.S. Appl. No. 29/553,303, filed Jan. 29, 2016.
Design U.S. Appl. No. 29/553,302, filed Jan. 29, 2016.
Design U.S. Appl. No. 29/553,305, filed Jan. 29, 2016.
Design U.S. Appl. No. 29/553,300, filed Jan. 29, 2016.
Lee et al., Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent. Regulatory Peptides, 152:101-107 (2009).
Selam, Jean-Louis. Inhaled Insulin: Promises and Concerns. Journal of Diabetes Science and Technology, vol. 2, Issue 2, pp. 311-315 (2008).
Kim et al., Dose-response relationships of inhaled insulin delivered via the aerodose insulin inhaler and subcutaneously injected insulin in patients with type 2 diabetes. Diabetes Care, 26:2842-2847 (2003).
Klonoff, David C. M.D., Afrezza inahled insulin: the fastest-acting FDA-approved insulin on the market has favorable properties. Journal of Diabetes Science and Technology, vol. 8(6): 10-71-1073 (2014).
Chan et al., Physical stability of salmon calcitonin spray-dried powders for inhalation. Journal of Pharmaceutical Sciences, vol. 93, No. 3, pp. 792-804 (2004).
Mumenthaler et al., Feasibility study on spray-drying protein pharmaceuticals: recombinant human growth hormone and tissue-type plasminogen activator. Pharm Res., 11(1):12-20 (1994).
Sarala et al., Technosphere: New drug delivery system for inhaled insulin. Future Prescriber, vol. 13, No. 1, pp. 14-16 (2012).
U.S. Appl. No. 15/233,794, filed Aug. 10, 2016.
U.S. Appl. No. 15/300,239, filed Sep. 28, 2016.
Uwaifo et al., Novel pharmacologic agents for type 2 diabetes. Endocrinology and Metabolism Clinics of North America, vol. 34, No. 1, pp. 155-197 (2005).
Xi-de Tu, et al. Pharmaceutics. Oct. 2002, 3rd edition, second printing, p. 905.
Lane et al., Influence of post-emulsification drying processes on the microencapsulation of Human Serum Albumin. International Journal of Pharmaceutics, 307: 16-22 (2006).
U.S. Appl. No. 15/152,355, filed May 11, 2016.
U.S. Appl. No. 15/182,503, filed Jun. 14, 2016.
U.S. Appl. No. 15/377,641, filed Dec. 13, 2016.
Related Publications (1)
Number Date Country
20130291866 A1 Nov 2013 US
Provisional Applications (2)
Number Date Country
61061551 Jun 2008 US
61157506 Mar 2009 US
Continuations (1)
Number Date Country
Parent 12484125 Jun 2009 US
Child 13933813 US